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Preface

The Cambridge Handbook of Computational Cognitive Sciences is meant to be a
definitive reference source for the increasingly important interdisciplinary field
of computational cognitive sciences – that is, computational modeling in
cognitive sciences.

This handbook provides a broad, authoritative, and cutting-edge summary of
models, domains, paradigms, and approaches in this thriving field. It combines
the breadth of coverage with in-depth elucidation, written by many leading
scientists working in this field. It covers the state of the art at present, as well as
how research should move forward in the future. It should appeal to researchers
and advanced students working in this field, as well as to researchers and
advanced students working in cognitive sciences in general, including in phil-
osophy, psychology, linguistics, anthropology, sociology, neuroscience, eco-
nomics, artificial intelligence, and so on. This book could also be relevant to
education researchers, human factors researchers, intelligent system engineers,
psychology or education software developers, and so on.

Models (or theories) in cognitive sciences can be divided roughly into com-
putational, mathematical, and verbal-conceptual ones. Although each of these
types of models/theories has its role to play, this handbook is mainly concerned
with computational models/theories. The reason for this emphasis is that, at
least at present, computational modeling appears to be the most promising
approach in many ways and offers the flexibility and the expressive power that
no other approaches can match. (Mathematical models may be viewed as a
kind of subset of computational models, as they can usually lead to computa-
tional implementation.) Furthermore, a computational model can often be
viewed as a theory by itself and may be important intellectually in this way.

This handbook brings together and compares, within the realm of computa-
tional cognitive sciences, different perspectives, paradigms, approaches,
methods, domains, models, and results. Each chapter in this handbook intro-
duces and explains basic concepts, techniques, models, and findings of a major
topic area, sketches its history, assesses its successes and failures, and evaluates
the directions of current and future research. Thus the handbook, with its wide-
ranging and in-depth coverage of the field, should be useful to cognitive
scientists, especially those who work on or with computational models (e.g.,
in terms of exploring models, deriving predictions from models, or relating data
to models) or those who seek introductions to (or quick overviews of ) particular
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topics within the field (e.g., modeling paradigms, modeling domains, and so
on). However, equally important is the fact that the book provides a general
introduction to the field of computational cognitive sciences: It introduces its
methodologies and discusses influential approaches and significant domains,
often with ample details and examples. Thus this handbook provides an entry
point into the field for the next generation of researchers, helping them to find
bearings in this complex landscape. It may serve as a textbook for graduate
students and upper-level undergraduate students (for courses or for self-study).
Therefore, this handbook has the dual role of helping students orient themselves
and of helping researchers look beyond their own specialties.
It is worth noting that, in relation to this dual role, there are a variety of

online resources available that can supplement this handbook for pedagogical
purposes. For broad overviews of models, systems, and tools in computational
cognitive sciences, the reader may refer to the following websites (among many
others):

https://visca.engin.umich.edu
https://transair-bridge.org/workshop-2021/
http://www.isle.org/symposia/cogarch/archabs.html
https://sites.google.com/site/drronsun/arch
https://global.oup.com/academic/content/series/o/oxford-series-on-cognitive-
models-and-architectures-oscma

http://books.nap.edu/openbook.php?isbn=0309060966
https://sk.sagepub.com/books/computational-modeling-in-cognition
http://psych.colorado.edu/~oreilly/pdp++/
https://www.nengo.ai

as well as the following websites for specific cognitive architectures (e.g., ACT-
R or Clarion):

http://act-r.psy.cmu.edu/
https://sites.google.com/site/drronsun/clarion
http://sitemaker.umich.edu/soar/home
https://www.eecs.umich.edu/~kieras/epic.html

In addition, some chapters in this handbook contain links to websites that are
specific to the contents of these chapters.
Thanks are due to the advisory board for their many suggestions: Jay

McClelland, Tom Shultz, and Sébastien Hélie. Thanks are also due to other
researchers who provided helpful suggestions: Jerome Busemeyer, Pat Langley,
Andy Clark, David Shanks, Evan Heit, Bradly Love, Michael Arbib, Gary
Dell, William Bechtel, Frank Ritter, Rob Goldstone, and many others.
I would also like to thank all the contributing authors of this handbook.

Many of them not only contributed chapters, but also participated in the review
of chapters, thus helping to ensure the quality of the book.
Each draft chapter was carefully reviewed by multiple reviewers. I would like

to thank all the reviewers of the draft chapters. Those reviewers (some of whom
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are also contributing authors) include (in chronological order): Peter Dayan,
Michael Öllinger, David Over, Mike Oaksford, Stellan Ohlsson, Sébastien
Hélie, Denis Mareschal, Stephen Read, Matthew Crocker, Robert Nosofsky,
Marc Jekel, Pierre-Yves Oudeyer, Peter Kvam, Ismael Martínez-Martínez,
Alexander Mehler, Michael Thomas, Piers Steel, Evan Heit, Selmer
Bringsjord, Greg Ashby, Aidan Feeney, Nelson Cowan, Lewis Chuang,
Joseph Johnson, Jeff Vancouver, Bruce Edmonds, Niels Taatgen, John
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Szymanik, Nick Wilson, Rainer Reisenzein, Andrea d’Avella, John Pearce,
Fred Westbrook, Clay Holroyd, Tom Verguts, Brett Hayes, Geoffrey Hall,
Kenji Doya, Ken McRae, Lynn Lohnas, Lola Canamero, Joost Broekens,
Stefan Frank, Milena Rabovsky, Kevin Korb, John Hale, Nick Chater, Sean
Polyn, Michael Wheeler, Liz Irvine, Sergei Nirenburg, Michael Frank, Ute
Schmid, Chih-Chung Ting, Mehdi Khamassi, Jay Myung, and others.

Finally, I would like to thank Stephen Acerra and Matthew Bennett of
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It has been a pleasure working with Cambridge University Press.

Ron Sun
Troy, New York
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PART I

Introduction

This part provides an overview of, and a general introduction to, computational
cognitive sciences. It discusses the general methodology of computational cog-
nitive modeling and justifies its use in cognitive sciences.
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1 An Overview of Computational
Cognitive Sciences
Ron Sun

1.1 Introduction

Cognitive science and its close sibling, cognitive neuroscience, have
been in place, as disciplines, since the 1970s and the 1990s, respectively
(Bechtel & Graham, 1998; Boden, 2006; Chipman, 2017; Thagard, 2019).
Mixing these two with other disciplines concerned with the human (as well
as animal, to some extent) mind, there is what one may refer to, in their
totality, as the cognitive sciences (which include, for example, cognitive
psychology, social psychology, philosophy of mind, cognitive anthropology,
cognitive sociology, behavioral economics, neuroeconomics, linguistics, and
artificial intelligence).

However, what are computational cognitive sciences (cf. Sun, 2020)? What
are their relationships to other branches of cognitive sciences? What exactly can
they contribute to cognitive sciences? What have they contributed thus far?
Where are they going currently and in the foreseeable future? Answering these
questions is important, and may even be crucial, to the advancement of cogni-
tive sciences. It is also important to a handbook like the present one – because
these questions lie at the very foundation of the field. Even though answering
some of these questions may sound defensive, their answers are very much
needed. Many insiders and outsiders alike would like to take a balanced and
rational look at these questions, without indulging in excessive cheerleading and
without being hypercritical, which, as one would expect, happens sometimes
(e.g., among enthusiastic computational modelers or among staunch critics of
the approach, respectively).

So, at the very beginning of the present handbook, instead of going straight
into specific models, paradigms, and domains of computational cognitive sci-
ences, it is appropriate to first explore a few general questions, like those raised
above, that are at the core of computational cognitive sciences. However, given
the large number of issues involved and the complexity of these issues, only a
cursory discussion is possible in this introductory and overview chapter. One
may thus view the present chapter as providing a set of pointers to the existing
literature, rather than a full-scale treatment.

One simple way to think of the field of computational cognitive sciences is to
think of it in its entirety as an “integrating science” (McShane et al., 2019).
Specifically, empirical disciplines, such as cognitive psychology, social psychology,

3

https://doi.org/10.1017/9781108755610.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.003


experimental philosophy, and linguistics, funnel a large amount of empirical
data, findings, phenomena, and other information into computational cognitive
sciences. What a computational cognitive scientist then does is sifting through
them and viewing them through various theoretical prisms. Then they take
what remains (i.e., the most important and most valuable empirical findings)
and distill them into coherent mechanistic, process-based theories in computa-
tional or mathematical forms (which are often integrative, e.g., in the form of a
computational cognitive architecture; Sun, 2020). In turn, these theories impact
other disciplines, including those empirical disciplines from which they draw
their initial inspirations.
Therefore, naturally, work in computational cognitive sciences relies on work

from various empirical disciplines, and work of other disciplines in turn is
influenced by work from computational cognitive sciences. There is a symbiotic
relationship between computational and empirical cognitive sciences.
Similar interaction occurs with theoretical disciplines as well, such as phil-

osophy of mind and philosophy of science. Instead of contributing empirical
findings to computational cognitive sciences, theoretical disciplines contribute
theoretical ideas and analysis (either abstract or concrete), and in turn are
influenced by more detailed, more mechanistic, or more integrative theories
from computational cognitive sciences.
In the remainder of this chapter, first, the nature and the benefit of computa-

tional cognitive sciences are sketched (in Sections 1.2 and 1.3, respectively).
Multiple levels of computational cognitive modeling are discussed (in Section
1.4). Then, the successes of the past and the possibilities for the future of
computational cognitive sciences are presented (in Sections 1.5 and 1.6, respect-
ively). Finally, a quick look inside the present handbook (in Section 1.7) and a
conclusion section (Section 1.8) complete this chapter.

1.2 What Are Computational Cognitive Sciences Exactly?

Computational cognitive sciences explore the essence of cognition
(which should be noted as being broadly defined here, including all kinds of
processes of the mind, such as motivation, emotion, perception, and so on, far
beyond just pure cognition) and various cognitive functionalities, through
developing detailed, mechanistic, process-based understanding by specifying
corresponding computational models (in a broad sense) of representations,
mechanisms, and processes (Craver & Bechtel, 2006). These models embody
descriptions of cognition in computer algorithms and programs, based on or
inspired by artificial intelligence and computer science (Turing, 1950). That is,
they impute computational processes onto cognitive functions, and thereby they
produce runnable programs. Detailed simulations and other operations can be
conducted based on computational models (Newell, 1990; Rumelhart et al.,
1986). Computational cognitive sciences may be considered a field by itself,
although various parts of it are also embedded within separate disciplines (such

4 ron sun
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as within psychology, linguistics, and so on) and it interacts closely with
other disciplines.

In general, models in cognitive sciences may be (roughly) categorized into
computational, mathematical, or verbal-conceptual models (Bechtel &
Graham, 1998; Chipman, 2017; Sun, 2008). Computational models (as broadly
defined) present mechanistic and process details (Craver & Bechtel, 2006) using
computational (algorithmic) descriptions (e.g., Sun, 2008). Mathematical
models present relationships between variables using mathematical equations
(e.g., Busemeyer et al., 2015). Verbal-conceptual models describe entities, rela-
tions, or processes in informal natural languages. Each model, regardless of its
genre, might as well be viewed as a theory of whatever phenomena that it
purports to capture (as argued before by, e.g., Newell, 1990; Sun, 2009).

Although each of these types of models has its role to play, the present
handbook is concerned with computational modeling in the main. The reason
for this emphasis is that, at least at present, computational modeling appears to
be the most promising approach in many respects; it offers the flexibility and the
expressive power that no other approach can match, as it provides a variety of
modeling paradigms, methodologies, and techniques (McClelland, 2009); it
supports practical applications of cognitive theories in a rather direct way
(Pew & Mavor, 1998). In this regard, mathematical models may be somehow
viewed as a subset of computational models, as usually they can lead to
computational implementations and thus computational models (although
some of them, due to their mathematical nature, may appear abstract and lack
process details).

Computational models are, mostly, “process theories” (or “process models”).
That is, they are aimed at answering the question of how human performance
comes about, by what psychological mechanisms, processes, representations,
knowledge, etc., and in what ways exactly. In this regard, it is also possible to
formulate theories of the same phenomena through “product theories” (or
“product models”) that provide a functional account of the phenomena but
do not commit to a particular psychological mechanism or process (Vicente &
Wang, 1998); one may also term them “blackbox theories” or “input-output
theories.” Product theories do not make predictions about processes, although
they may constrain processes. Thus, product theories can only be evaluated by
product measures. Process theories, in contrast, can be evaluated by using
process measures when they are available and relevant (such as eye movement
in visual search), or by using product measures (such as response accuracy).
Evaluation of process theories using the latter type of measure is indirect,
because process theories generate outputs given inputs based on processes
postulated (Vicente & Wang, 1998). In reality, depending on the amount of
process detail specified, a computational model may lie somewhere along the
continuum from pure product theories to pure process theories.

There can also be several different senses of “modeling” (e.g., different
degrees of fidelity; Sun & Ling, 1998). The match of a model with human
cognition or behavior may be, for example, qualitative (i.e., nonnumerical
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or relative) or quantitative (i.e., numerical and exact), with or without statis-
tical measures to demonstrate the match. There may even be looser notions of
“modeling,” based, for example, on abstracting ideas from observations of
human cognition or behavior and developing these ideas into computational
models (e.g., Reed, 2019; Vernon, 2014). However, at the opposite end of the
spectrum, for some models, matching human behavioral data with model
outcomes is only a first step; for further validation, detailed probes into mech-
anistic and process details of a model are also carried out and results are
compared with a variety of human measures (behavioral or biological), in
qualitative or quantitative ways, with rigorous statistical measures (e.g.,
Anderson & Lebiere, 1998). Even though different senses of cognitive modeling
have been used, the overall goal remains the same, which is to understand
cognition in a precise, mechanistic, process-oriented way (along with possible
applications of such understanding).
This approach of applying computational models to the understanding of

human cognition is relatively new, although its roots can be traced back to
times before the term “cognitive science” was even coined. Major developments
of computational cognitive modeling have occurred since the 1960s. For
example, Newell and Simon’s early computational work has been seminal
(see, e.g., Newell & Simon, 1976). The work of Miller, Galanter, and Pribram
(1960) and the work of Chomsky (1968) have also been influential in this regard.
Right from the beginning of cognitive science in the late 1970s, computational
modeling has been a mainstay. It has since been nurtured, for example, by the
Annual Conference of Cognitive Science Society, and by the journal Cognitive
Science. See Chapter 38 in this handbook (and also Boden, 2006) for a more
complete historical perspective.
From Schank and Abelson (1977) to Minsky (1981), a variety of symbolic

cognitive models were proposed in artificial intelligence (Bringsjord &
Govindarajulu, 2018; Frankish & Ramsey, 2014; Russell & Norvig, 2010).
They employ complex symbolic structures and process information through
symbol manipulation. However, they were usually not rigorously validated
against human data. Inspired by symbolic AI, psychologists also developed
symbolic cognitive models, which were usually more specific and were more
rigorously evaluated in relation to human data (e.g., Klahr, Langley, &
Neches, 1987).
The resurgence of neural network (connectionist) models since the 1980s

brought another type of model into prominence (e.g., Grossberg, 1982;
Rumelhart et al., 1986). Instead of complex symbolic structures, simple, often
massively parallel numerical computation was used in these models. Many of
these models were meant to be rigorous models of human cognitive processes,
evaluated in relation to human data.
Hybrid models that combine the characteristics of neural networks and

symbolic models emerged later in the 1990s (e.g., Sun & Bookman, 1994).
They have been used to tackle a broad range of cognitive phenomena, often
in a rigorous way.
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Other types of models and their applications to cognitive modeling also
appeared over the past decades. These models will be discussed later in
Section 1.5 (as well as in Part II of this handbook).

Computational cognitive modeling has thus far helped to deepen the under-
standing of the processes and mechanisms of the mind in many ways. Progress
made during the past several decades has led to a great deal of hope that the
mind and its processes and mechanisms can eventually be fully understood
(more on this later in Sections 1.5 and 1.6).

For further discussions of the nature of computational cognitive sciences, the
reader is referred to a number of existing treatments, for example, Bechtel and
Graham (1998), Chipman (2017), Lewandowsky and Farrell (2011), Sun
(2008), and Vernon (2014). (See also the pointers provided in the Preface.)

1.3 What Are Computational Cognitive Sciences Good For?

There are reasons to believe that the goal of understanding the human
mind strictly from observations of, and experiments with, human behavior is
ultimately untenable, except perhaps for small, limited task domains. The rise
and fall of behaviorism can be considered a case in point (Bechtel & Graham,
1998; Boden, 2006). This point may also be argued on the basis of analogy with
physical sciences, as has been done before (see Sun, Coward, & Zenzen, 2005 for
details). The processes and mechanisms of the mind cannot be easily understood
purely on the basis of behavioral observations and experiments, with tests
probing (relatively superficial) features of human behavior, which are further
obscured by individual/group differences and a myriad of contextual factors. It
would be extremely hard to understand the human mind in this way, just like it
would be extremely hard to understand a complex computer system purely on the
basis of testing its behavior, if we do not have any a priori ideas about the nature,
the inner workings, and the theoretical underpinnings of that system (Jonas &
Kording, 2017; Sun, 2009). In any experiment involving human behavior, there
are many parameters that could influence the results, which are either measured
or unmeasured. Given the large number of such parameters in any sufficiently
complex situations, many (or even most) have to be left to chance. The selection
of parameters to measure is a subjective decision, made by the experimenter
on the basis of what the experimenter thinks is important. In this regard,
some theoretical formulations and hypotheses need to go hand-in-hand with
experimental tests of human behavior in order to guide these tests.

On the other hand, cognitive neuroscience apparently goes deeper than
purely behavioral experiments, but yet it is subject to many of the same
criticisms outlined above (Sun, 2009; Sun, Coward, & Zenzen, 2005).
Experimental neuroscience alone is unlikely to lead to deep understanding of
the human mind, if it does not have sufficient a priori ideas about the nature, the
inner workings, and the theoretical underpinnings of the mind (Jonas &
Kording, 2017), same as argued before.
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Given the complexity of the human mind and its manifestation in behav-
ioral flexibility, precise, mechanistic, process-oriented theories, in the forms of
computational models (in the broad sense of the term), are necessary to
explicate the intricate details of the human mind and to guide experimental
explorations. Without such theories, experimentation may lead to the mere
accumulation of data without clear purposes or any apparent hope of arriving
at a precise and meaningful understanding. It is true that even pure experi-
mentalists may often be guided by their intuitive (or verbal-conceptual)
theories in designing experiments and in generating hypotheses. However,
without precise, mechanistic, process-oriented theories, most of the details of
an intuitive theory are left out of consideration and the theory might be
somehow vacuous, internally inconsistent, or otherwise invalid. These prob-
lems of an intuitive theory may not be discovered until a more detailed model/
theory is developed (Sun, 2009; Sun, Coward, & Zenzen, 2005). As related by
Hintzman (1990), “The common strategy of trying to reason backward from
behavior to underlying processes (analysis) has drawbacks that become pain-
fully apparent to those who work with simulation models (synthesis). To have
one’s hunches about how a simple combination of processes will behave
repeatedly dashed by one’s own computer program is a humbling experience
that no experimental psychologist should miss” (p. 111). The key to under-
standing cognitive processes (and to applying such understanding for practical
purposes) is often in fine details, which computational modeling can help to
bring out (Newell, 1990; Sun, 2007, 2009). Computational models provide
algorithmic specificity: detailed, exactly specified, and carefully thought-out
steps, arranged in precise and yet flexible sequences. Therefore, they provide
precision and conceptual clarity.
One viewpoint concerning computational models is that a model (and its

resulting simulation) is a generator of phenomena and data and thus it is a
theory-building tool. Hintzman (1990) gave a positive assessment of this role:
“a simple working system that displays some properties of human memory
may suggest other properties that no one ever thought of testing for, may offer
novel explanations for known phenomena, and may provide insight into
which modifications that next generation of models should include” (p. 111).
That is, computational models are useful media for thought experiments and
hypothesis generation, especially for exploring possibilities regarding details
of cognitive processes. In this way, a model may serve as a tool for developing
theories. A related position is that computational modeling is suitable for the
precise instantiation of a preexisting verbal-conceptual theory (e.g., for
exploring various possible details when instantiating the theory) and conse-
quently the careful evaluation of the theory against empirical data. However,
a radically different position (e.g., Newell, 1990; Sun, 2009) is that a computa-
tional model may constitute a theory by itself. It is not the case that a model is
limited to being built on top of an existing theory, being applied for the sake of
validating an existing theory, being applied for the sake of generating data,
or being applied for the sake of building a future theory. To the contrary,
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according to this view, a computational model per se may constitute a theory.
Therefore, a computational model can be either pretheoretical, posttheoreti-
cal, or theoretical.

Computational modeling may be necessary for understanding a system as
complex and as diverse as the human mind. Pure mathematics alone, developed
to describe the physical universe, may not be convenient or sufficient for
understanding a system as different and as complex as the human mind (but
see Coombs et al., 1970; Luce, 1995). Compared with scientific theories in some
other disciplines (e.g., in physics), computational cognitive modeling may be
mathematically less elegant sometimes, but the point is that the human mind
itself is likely to be less mathematically elegant compared with the physical
universe (see, e.g., Minsky, 1985 for an argument) and therefore an alternative
form of theory is called for – a form that is more complex, more diverse, and
more algorithmic in nature. Computational modeling provides a viable way of
specifying complex and detailed theories of the mind. Consequently, it may
provide interpretations and insights that no other experimental or theoretical
approach can readily provide.

In particular, the notion of computational cognitive architecture denotes a
comprehensive, domain-generic computational cognitive model that captures
the essential structures, mechanisms, and processes of cognition (Helie & Sun,
2014; Kotseruba & Tsotsos, 2020; Sun, 2007). It can be used for broad, multiple-
level, multiple-domain analysis of cognition and behavior. It addresses cognition
in a structurally and mechanistically well defined way and provides an essential
framework to facilitate more detailed modeling and exploration of various
components of the mind. A cognitive architecture is useful because it provides
a comprehensive framework for further exploration. The assumptions that it
embodies may be based on available empirical data, philosophical thoughts,
arguments, and analysis, and working hypotheses (including computationally
inspired such hypotheses). Through embodying fundamental assumptions, a
cognitive architecture narrows down possibilities and provides scaffolding struc-
tures. Such benefits of cognitive architectures, as broad theories of cognition,
have been argued extensively before; see, for example, Anderson and Lebiere
(1998, 2003), Newell (1990), and Sun (2007, 2016). (For information regarding
existing cognitive architectures, see Chapter 8 in this handbook; see also Helie &
Sun, 2014; Kotseruba & Tsotsos, 2020.)

In general, science may progress from understanding to prediction and then
to prescription. Computational cognitive modeling may contribute to all of
these phases. For instance, through process-based simulation, computational
models may reveal dynamic aspects of cognition that might not be revealed
otherwise and allow a detailed look at constituting elements and their inter-
action on the fly. In turn, such understanding may lead to new hypotheses and
predictions regarding cognition. The ability to make reasonably accurate pre-
dictions about cognition can lead further to prescription, for example, through
choosing appropriate environmental conditions or appropriate mental condi-
tions for various tasks.
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Thus, the benefits and the values of computational cognitive modeling
(including those of cognitive architectures) can be argued in many ways.
These computational models, in their totality, are more than just simulation
tools or programming languages of some sorts. They are theoretically pertinent
and important, because they represent cognitive theories in a unique, indispens-
able way. Cognitive architectures, for example, are broad theories of cognition
in fact.

1.4 Multiple Levels of Computational Cognitive Sciences

A strategic decision that one has to make with respect to computational
cognitive modeling is the level of analysis (the level of abstraction) at which one
tackles cognition. Computational cognitive modeling can vary in terms of
amount of process detail and granularity of input and output, and thus may
be carried out at different levels (or at multiple levels simultaneously). This issue
of level of computational cognitive modeling will be examined here (drawing
upon Sun, Coward, & Zenzen, 2005).
Some traditional theories of multilevel analysis hold that there are different

levels, each of which involves a different amount of computational detail. In
Marr’s (1982) theory, first, there is the computational theory level, in which one
is to determine the computation to be performed, its goals, and the logic of the
strategies by which the computation is to be carried out. Second, there is the
representation and algorithm level, in which one is to be concerned with
carrying out the computational theory determined at the first level and, in
particular, the representation for input and output and the algorithm for the
transformation from the input to the output. The third level is the hardware
implementation level, in which one is to physically realize the representation
and the algorithm determined at the second level. According to Marr, these
three levels are only loosely coupled; that is, they are relatively independent,
and there is usually a wide array of choices at each level, independent of the
other levels. Some phenomena may be explained at only one or two levels. Marr
(1982) emphasized the “critical” importance of formulation at the level of
computational theory. His rationale was that the nature of computation
depended more on the computational problems to be solved than on the ways
in which the solutions were implemented. Thus, he preferred a top-down
approach – from a more abstract level to a more concrete level. See Table 1.1

Table 1.1 A traditional hierarchy of levels (Marr, 1982)

Level Object of analysis

1 computation
2 algorithm
3 implementation
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for the three levels. It often appears that Marr’s theory centered too much on
the (relatively minor) differences in computational abstractions (e.g., problems,
algorithms, and programs; Dayan, 2003; Sun, Coward, & Zenzen, 2005). It also
often appears that his theory represented an over-simplification of psycho-
logical and biological reality (e.g., ignoring species-specific or motivation-
relevant representations of the environment, ignoring the close relationship
between low-level implementation and high-level computation, and so on)
and, as a result, represented an over-rationalization of cognition.

One variant of Marr’s theory is the three-level theory of Newell and Simon
(1976). They proposed the following three levels: the knowledge level, in which
why cognitive agents do certain things is explained by appealing to their goals
and their knowledge and by showing rational connections between them; the
symbol level, in which the knowledge and goals are encoded by symbolic
structures and the manipulations of these structures implement their connec-
tions; and the physical level, in which the symbolic structures and their manipu-
lations are realized in some physical form. The point emphasized by this view
was very close to Marr’s view: what is important is the analysis at the know-
ledge level and then at the symbol level. Once the analysis at these two levels is
worked out, it can be implemented in any available physical means.

In contrast, according to Sun, Coward, and Zenzen (2005), the differences
among computation, algorithms, programs, hardware realizations, and their
variations, as have been the focus in Marr’s (1982) and Newell and Simon’s
(1976) level theories (borrowed from computer science), are relatively insignifi-
cant. This is because, first, the differences among them are usually small, subtle,
and graded, compared with the differences among phenomena to be modeled.
Second, these different computational constructs are in reality closely entangled
(especially in the psychological and the biological realm): one cannot specify
algorithms without at least some considerations of possible implementations,
and what is to be considered “computation” (i.e., what can be computed) relies
on algorithms, including the issue of algorithmic complexity, and so on.
Therefore, one often has to consider them together. Third, the separation of
these computational details did not produce significant insights in relation to
cognition (Sun, Coward, & Zenzen, 2005). A reorientation toward a systematic
examination of phenomena, instead of tools that one uses for modeling them,
will be a step in the right direction.

This view focuses attention on the very phenomena to be studied – on their
scopes, scales, degrees of abstraction, and so on. Thus, the differences among
levels of analysis can be roughly cast as the differences among disciplines, from
the most macroscopic to the most microscopic. These levels of analysis include:
the sociological level, the psychological level, the structural (componential)
level, and the biological level. Different levels of modeling may be established
in correspondence with these different levels of analysis (Sun, Coward, &
Zenzen, 2005). See Table 1.2.

First of all, there is the sociological level, which includes interagent inter-
actions, sociocultural processes, and collective behavior (Durkheim, 1895).

An Overview of Computational Cognitive Sciences 11

https://doi.org/10.1017/9781108755610.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.003


Cognition is, at least in part, a sociocultural process (Nisbett et al., 2001;
Vygotsky, 1986). To ignore sociocultural processes is to ignore a major under-
lying determinant of individual cognition and behavior. The lack of under-
standing of sociocultural processes may result in the lack of understanding of
some major constraints in cognition. Thus, any understanding of individual
cognition can only be partial and incomplete when sociocultural processes are
ignored or downplayed (see Sun, 2001, 2006, 2012 for arguments regarding the
relevance of sociocultural processes to cognition and vice versa).
The next level is the psychological level, which deals with individual

behavior (e.g., when interacting with environments and others), as well as
individual beliefs, knowledge, skills, motivation, and so on (e.g., in the
forms of memory, reasoning, decision making, etc.). At this level, one may
examine human behavioral data, and compare them with predictions from
theories or models, possibly taking into consideration insights from the
sociological level and further details from the lower levels. In relation to
the sociological level, one can investigate, for example, the relationship of
individual beliefs and knowledge with those of the society and the culture,
and the processes of change of these independent of or in relation to those
of the society and the culture.
The third level is the structural (componential) level. In computational

cognitive modeling, processes of an individual are mostly specified in terms of
structures and components of the individual mind, that is, in terms of intraagent
processes. At this level, one may specify a cognitive architecture and compon-
ents therein. One may specify essential computational processes of each com-
ponent as well as essential connections among components (e.g., Anderson &
Lebiere, 1998; Sun, 2016). Thus, analysis of capacity (functional analysis) and
analysis of components (structural and mechanistic analysis) become one and
the same at this level. However, unlike the psychological level, work at this level
is more along the line of structural and mechanistic analysis than functional
analysis (while the psychological level is more concerned with functional analy-
sis). At this level, models are specified in terms of structural components, which
are then described with the theoretical language of a particular paradigm, for
example, symbolic computation or connectionist networks, or their combin-
ations. In this way, one imputes computational processes onto cognitive

Table 1.2 Another hierarchy of four levels (Sun, Coward, & Zenzen, 2005)

Level Object of analysis Type of analysis Type of model

1 inter-agent processes social/cultural collections of agents
2 agents psychological individual agents
3 intra-agent processes structural/componential modular construction

of agents
4 substrates biological biological realization

of modules
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functions.1 Data and constructs from the psychological level – the psychological
constraints from above, which bear on the division of components and possible
mechanisms of components – are among the most important considerations.
This level may also incorporate biological observations regarding plausible
structures and mechanisms; that is, it can incorporate ideas from the biological
level, which offers the biological constraints. This level results in structures,
components, and mechanisms, although they are usually computational and
thus relatively abstract compared with biological-level specifications. Although
this level is described in terms of intraagent processes, computational models
developed therein may be used to capture processes at higher levels, including
the interaction at the sociological level where multiple individuals are involved
(Sun, 2006).

The lowest level is the biological level – that is, the biological substrate, or
biological implementation, of computation (e.g., Arbib & Bonaiuto, 2016;
Dayan, 2003; Grossberg, 1982). This level has been the focus of a range of
disciplines. One main utility of this level is to facilitate analysis at higher levels,
for example, by using low-level information to narrow down choices in selecting
computational architectures as well as choices in implementing componential
computation.

Although computational modeling is often limited to within a particular level
(interagent, agent, intraagent, or substrate) at a time, this need not always be
the case: cross-level analysis and modeling can be intellectually enlightening
and may even be essential to the progress of computational cognitive sciences
(Dayan, 2003; Sun, Coward, & Zenzen, 2005). These levels described above do
interact with each other (e.g., constraining each other). Moreover, their respect-
ive territories are often intermingled, without clear-cut boundaries. Thus they
may not be easily isolated and tackled alone.

For instance, the cross-level link between the psychological and the biological
levels has been explored, in the form of cognitive neuroscience (e.g., Arbib &
Bonaiuto, 2016; Grossberg, 1982). For another instance, the psychological and
the sociological level have been crossed in many ways, in order to generate new
insights into sociocultural phenomena on the basis of cognitive processes (e.g.,
Boyer & Ramble, 2001; Sun, 2012) and, conversely, to generate insights into
cognitive phenomena on the basis of sociocultural processes (e.g., Nisbett et al.,
2001). In all of these cases, the ability to shift appropriately between levels when
needed is crucial.

A framework somewhat related to the view above was proposed by
Rasmussen (1986) (see also Vicente & Wang, 1998). In this hierarchical frame-
work, (1) each level provides a different description of the system; (2) each level

1 In general, theories at the psychological level are more behavioral in nature and less internal-
process-oriented. This level mostly addresses variables that can be directly observed or measured.
It usually does not address internal mechanisms and processes in a detailed manner. Theories at
the structural (componential) level are more mechanistic and more process-oriented. Variables at
this level are often not directly measured experimentally and thus are more hypothetical
in nature.
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has its own terms, concepts, and principles; (3) the selection of levels may be
dependent on the observer’s purpose; (4) the description at any level may serve
as constraints on the operations of lower levels; (5) by moving up the hierarchy,
one understands more the significance of some process details; by moving down
the hierarchy, one understands more how the system functions in terms of
process details; (6) there might also be a means–ends relationship between levels
in a hierarchy.
The idea of abstract computational cognitive models is worth mentioning as

well. To avoid large gaps between evidence and full-blown computational
models, Ohlsson and Jewett (1997) proposed “abstract computational models,”
which were relatively abstract computational cognitive models that were
designed to test a particular high-level hypothesis without taking a stand on
all low-level details. The explanatory power may sometimes lie at a higher level
of abstraction.
In sum, there have been various proposals regarding multiple levels of

computational cognitive modeling. While details vary, the very notion of mul-
tiple levels of modeling is important to the development of this field.

1.5 Successes of the Past

There have been many exciting stories of computational cognitive
sciences, in a practical or a theoretical sense. For example, as touched upon
earlier, movements and paradigms that have had, or are still having, seminal
impact on the field include, for example:

• the symbol systems approach
• the connectionist approach
• the dynamic systems approach
• computational cognitive architectures
• deep learning

and so on. They each led to a great deal of excitement and helped to move the
field forward.
For instance, within the symbolic paradigm, cognitive modeling was con-

ceived mainly as the development of models using symbol structures with
symbol manipulations. The physical symbol system hypothesis (Newell &
Simon, 1976) articulated the tenets of this approach. This paradigm dominated
research effort in artificial intelligence and cognitive science early on and is still
relevant today.
Two of the fundamental ideas of this approach are search and representation.

For a problem to be solved, there is supposed to be a space of states each of
which describes a step in solving the problem. Operators can be applied to reach
a new state from a current state. Techniques for applying operators to traverse
the state space include exhaustive search algorithms and various heuristic
search algorithms.
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Another fundamental idea is representation, reflecting the belief that know-
ledge is expressed in an internal form that facilitates its use. A variety of
symbolic representational forms have been used in conjunction with search
algorithms (Frankish & Ramsey, 2014; Russell & Norvig, 2010). One form is
rule-based reasoning, in which discrete rules are used to direct search (e.g.,
production systems; Klahr et al., 1987). An alternative is formal logics, which
are formally defined languages capable of performing inference in a rigorous
way (Bringsjord & Govindarajulu, 2018). Another type of representation cap-
tures aggregate structures of knowledge, organized around structured chunks
(e.g., schemas) each of which is centered on a particular entity and can link to
other chunks (e.g., via semantic networks).

The connectionist paradigm, largely resulting from dissatisfactions with
symbolic models, aims at flexible, robust processing in an efficient manner
(Grossberg, 1982; Rumelhart et al., 1986). In many connectionist models,
representations are distributed throughout a large number of processing units,
often in the form of a pattern of activations over these units (Levine, 2000).
Structures are often embedded in such patterns. Learning takes place through
the change of numerical weights (which mediates propagation of activations
between processing units) as a function of the activity in the network. These
networks can learn what features to rely on for representing concepts, so that
similarity-based processes can involve pertinent features. Search becomes a
metaphor for the operation of such networks (e.g., for activation propagation).
Because of the massively parallel nature, such models are often good at
flexible, robust processing and show promise at dealing with some tasks that
have been difficult for the symbolic paradigm (even though they may be less
adept at complex symbol manipulation). They have evolved into the highly
successful “deep learning” paradigm (Goodfellow, Bengio, & Courville, 2016).
Connectionist models, in particular deep learning models, have been applied to
many practical tasks, for example, perceiving objects and events, producing
and understanding language, and playing complex games. In relation to cog-
nitive modeling, connectionist models have been applied to address, for
example, memory, categorization, child development, and psycholinguistics.
Connectionist models have often generated explanations radically different
from those generated by symbolic models (Rumelhart et al., 1986).

An important type of hybrid model has been the combination or synthesis of
connectionist and symbolic models. Combining a variety of representations and
processes, they tend to be more expressive, more powerful, or more efficient
(Sun & Bookman, 1994). Apparently, cognitive processes are not homoge-
neous; a variety of representations and processes are likely involved, playing
different roles. Some are best captured by symbolic models, while others by
connectionist models. Some existing cognitive dichotomies are relevant in this
regard: for example, implicit versus explicit learning, implicit versus explicit
memory, automatic versus controlled processing, and unconscious versus con-
scious perception (see, e.g., Reber, 1989; Sun, 2002). Hybrid models have been
used to address a broad range of issues, including human memory, concept
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learning, skill learning, reasoning, creativity, motivation, and even human
consciousness (e.g., Dong, 2021; Sun, 2016).
However, with the dynamic systems approach (e.g., Smith & Thelen, 1993),

instead of representations as static structures (and manipulated in a discrete
cycle), a cognitive system is defined by states of the system and its behavior is
defined as changes of states over time on a continuous basis. Such a model is
often described by continuous-time differential equations that specify how
states change over time, which indicate their possible trajectories and internal
and external forces that shape the trajectories. Inputs alter the dynamics, rather
than creating an internal representation. Such an approach has been shown to
be able to capture and explain human cognition in some domains (e.g.,
Grossberg, 1982; Smith & Thelen, 1993).
Related to that, the mind–body connection has also been emphasized, which

can be extended to the mind–body–environment connection, and then on to
social and cultural embeddedness. Some of these strands may be collectively
termed the embodied/situated/enactive movement. They have had intellectual
impact on how one thinks about and models cognition.
A number of other paradigms also came to prominence over the years, such

as Bayesian models, cognitive architectures, reinforcement learning, and so on.
These topics will be covered in detail: the chapters in Part II of this handbook
cover these paradigms extensively, including their various technical specifics
(see also Sun, 2008).
Using these paradigms, there have been many specific successes in computa-

tional cognitive sciences. A few examples are: models of developmental psych-
ology; the tutoring systems based on the ACT-R cognitive architecture; the
model of implicit and explicit learning based on the Clarion cognitive architec-
ture; and so on.
Specifically, computational models of child development have been successful

in accounting for and explaining fine-grained developmental processes. In terms
of broad impact and theoretical interest, computational models of verb past-
tense learning may be ranked at or near the top of all computational cognitive
models (see, e.g., Rumelhart et al., 1986; Shultz, 2013). Many theoretical
controversies and debates stemmed from these models.
Computational development models have helped to clarify some major

theoretical issues. In developmental psychology, there is the dichotomy
contrasting knowledge that a child acquires through interacting with the
environment (nurture) with knowledge of phylogenic origin (nature). It was
argued that mechanisms of gene expression and brain development did not
allow for the detailed specification of neural networks in the brain as
required by the nativist position. Neural network models have provided
new ways of thinking about innateness: instead of asking whether or not
something is innate, one may ask how evolution constrains or facilitates the
acquisition of a function during development. Theorizing in this regard has
benefited significantly from neural network models (see Chapter 23 in this
handbook; see also Shultz, 2013).
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For another example, an interpretation of a broad range of skill learning
data was proposed based on the Clarion cognitive architecture (Sun, Slusarz,
& Terry, 2005). At a theoretical level, this work explicated the interaction
between implicit and explicit processes in skill learning, in contrast to the
tendency of studying each type in isolation. It highlighted the interaction and
its various effects on learning. At an empirical level, a computational model
based on Clarion accounted for data in a variety of task domains: process
control tasks, artificial grammar learning tasks, serial reaction time tasks, as
well as some more complex task domains (Sun, 2002, 2016). The model shed
light on some apparently contradictory empirical findings (including some
findings once considered as casting doubt on implicit learning). Together,
this work argued for an integrated theory of skill learning that took into
account both implicit and explicit processes, as the model pointed to the
usefulness of incorporating both. Moreover, it emphasized a bottom-up
direction (learning first implicit knowledge and then explicit knowledge on
its basis) in an integrated theory of skill learning (different from then existent
theories and models; see Sun, 2002; see also Chapter 17 in this handbook).
So, this application of the cognitive architecture to skill-learning data helped
to achieve a level of theoretical integration and explanation beyond previous
theorizing. For other cases of using cognitive architectures to provide theor-
etical interpretation and integration, see, for example, Anderson and Lebiere
(1998) and Meyer and Kieras (1997).

As yet another example, tutoring systems have been developed out of the
ACT-R cognitive architecture (Koedinger et al., 1997). These tutoring systems
were constructed based on analysis of task units that were necessary to achieve
competence in domains of mathematics and computer programming. These
units were represented as production rules. A typical course involves around
500 production rules. On the assumption that learning in these domains
involves the acquisition of production rules, it is possible to diagnose whether
students have acquired these production rules and to provide instructions to
remedy any difficulties that they might have with specific rules. This led to the
design of tutoring systems that ran production rule models in parallel with a
student and interpreted the behavior of the student in terms of these rules.
These systems tried to find some sequence of production rules that produced
the behavior exhibited by the student. This model-tracing process allowed the
interpretation of student behavior and in turn the interpretation led to tuto-
rial interactions. Thus, these systems are predicated on the validity of the
cognitive model and the validity of the attributions that the model-tracing
process makes about student learning. There have been assessments that
established to some extent the effectiveness of these systems. These systems
have been used to deliver instruction to many students. They demonstrated the
practical usefulness of computational cognitive modeling. Other practical
applications of computational cognitive modeling may be found in Pew and
Mavor (1998), Ritter et al. (2003), Vernon (2014), and so on (see also
Chapter 33 in this handbook).
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1.6 Possibilities for the Future

It may be worthwhile to briefly examine possible future developments
of computational cognitive sciences.
Some have claimed that grand scientific theorizing has become a thing of the

past. What remains to be done is filling in details and refining some minor
points. However, some cognitive scientists, especially computational cognitive
scientists, believe otherwise. Indeed, many of them are pursuing integrative
principles that attempt to explain data in multiple domains and multiple func-
tionalities (e.g., Anderson & Lebiere, 1998; Sun, 2016). In cognitive sciences, as
in many other scientific fields, significant advances may be made through
discovering (i.e., hypothesizing and confirming) deep-level principles that unify
superficial explanations across multiple domains, in a way analogous to
Einstein’s theory that unified electromagnetic and gravitational forces, or
String Theory that aims to provide even further unifications. Such theories are
what cognitive sciences need, currently and in the foreseeable future.
Integrative computational cognitive models may serve in the future as an

antidote to the increasing specialization of research (i.e., the idea of “integrating
science” discussed earlier). In particular, computational cognitive architectures
are going against the trend of increasing specialization and constitute an
effective tool in this regard. Researchers are currently actively pursuing such
approaches and, hopefully, will be increasingly doing so in the future. Over-
specialization has many shortcomings and thus counterbalance, or reversal, of
this tendency by means of computational cognitive modeling is a useful way
towards advancing cognitive sciences (Sun, 2007).
Second, related to the point above, while being able to reproduce the nuances

of empirical data from specific psychological experiments (with pertinent statis-
tical measures) is important, broad functionality is critical (Newell, 1990; Sun,
2004, 2007). The human mind needs to deal with the full cycle that includes
transducing signals, processing them, representing them, storing them, manipu-
lating them, and generating motor actions based on them. In computational
cognitive sciences, there is correspondingly a need to develop generic models of
cognition that are capable of a broad range of cognitive functionalities, to avoid
the myopia often resulting from narrowly scoped research. In particular, com-
putational cognitive architectures may incorporate many relevant cognitive
functionalities: perception, categorization and concepts, memory, decision
making, reasoning, planning, problem solving, motor control, learning, meta-
cognition, motivation, emotion, language and communication, and others. In
the past, this issue often did not get the attention that it deserved in cognitive
sciences (Newell, 1990), and it remains a major challenge.
However, it should be recognized that over-generality, beyond what is neces-

sary, is always a danger in computational cognitive modeling and in developing
cognitive architectures (Sun, 2007). It is highly desirable to come up with a well-
constrained cognitive model with as few parameters as possible while account-
ing for as large a variety of empirical data and phenomena as possible (Regier,
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2003). This may be achievable through adopting a broad perspective – philo-
sophical, psychological, biological, as well as computational – and by adopting
a multilevel framework going from the sociological, to the psychological, to the
structural (componential), and to the biological level, as discussed before (Sun,
2004; Sun, Coward, & Zenzen, 2005). Although some attempts have been made
to achieve this, much more work is needed.

Third, in integrative computational cognitive modeling, especially in
developing cognitive architectures with a broad range of functionalities, it is
important to keep in mind a broad set of desiderata. For example, in Anderson
and Lebiere (2003), a set of desiderata was used to evaluate a cognitive archi-
tecture versus typical connectionist models. These desiderata include flexible
behavior, real-time performance, adaptive behavior, vast knowledge base,
dynamic behavior, knowledge integration, natural language, learning, develop-
ment, evolution, and brain realization (see Newell, 1990 for details). In Sun
(2004), a broader set of desiderata was proposed and used to evaluate a larger
set of cognitive architectures. These desiderata include ecological realism, bio-
evolutionary realism, cognitive realism, and others (see Sun, 2004 for details).
The advantages of coming up with and applying these sets of desiderata in
computational cognitive modeling include avoiding overly narrow models and
avoiding missing important functionalities. It can be reasonably expected that
this issue will provide impetus for further research in computational
cognitive sciences.

Fourth, the validation of process details of computational cognitive models
has been a difficult, but important, issue (Pew & Mavor, 1998; Roberts &
Pashler, 2000). This is especially true for cognitive architectures, which often
involve a great deal of intricate details that are difficult to disentangle. There
have been instances where research communities rushed into some particular
model or some particular modeling approach, without knowing exactly how
much of the approach or the model was veridical or useful. Validation often
lagged behind. Sometimes without sufficient validation and analysis, claims
were made about the promise of a certain model or a certain modeling
approach. As in any scientific field, painstakingly detailed work must be carried
out in computational cognitive sciences before sweeping claims can be made.
Validation, in the future, might also be carried out on a large scale, using data
mining, data science, and other emerging technologies (Griffiths, 2015).

Not only is empirical validation necessary, theoretical analysis, including
detailed mathematical and computational analysis, is also necessary in order
to understand models and modeling approaches before committing an inordin-
ate amount of resource. In particular, sources of explanatory power need to be
identified and analyzed (Sun & Ling, 1998). The issues of validation and
analysis should be important in directing future research in computational
cognitive sciences.

Selection of models, whenever there are multiple possible models, is also
important. Models may differ in terms of explanatory scope and capability
(e.g., accuracy or goodness of fit). But models may also differ in terms of
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complexity. The more complex a model is, the more accurately and the more
broadly the model can potentially account for data. However, the more com-
plex a model is, the more likely overfitting will happen. The more overfitting a
model suffers, the less likely it will generalize well. There are also other trade-
offs. One may prefer simpler models, for example, in terms of number of
parameters, functional form, and so on (especially when everything else
is equal).
A number of mathematical or statistical methods have been developed to

address this issue and to take these factors (goodness of fit, number of param-
eters, functional form, and so on) into consideration to various extents. For
instance, Akaike’s information criterion, Bayesian information criterion, likeli-
hood ratio test, minimum description length, cross-validation, and other
methods have been used for model selection (see, e.g., Lewandowsky &
Farrell, 2011; see also Chapter 36 in this handbook). Better methods, especially
for complex models such as cognitive architectures, are still needed.
Related to model selection, the “design” space of computational cognitive

models needs to be more fully explored (Sloman & Chrisley, 2005; Sun & Ling,
1998). While one explores the behavioral space (identifying ranges and vari-
ations of human behavior), one also needs to explore the design space (i.e., the
possibilities of constructing computational models) that maps onto the behav-
ioral space, so that a better understanding of possibilities and limitations of
models may be achieved. This exploration may open up avenues for better
capturing cognitive processes. This is especially important for cognitive archi-
tectures, which are complex and in which many design decisions need to be
made. More systematic exploration of the design space of cognitive models is
needed, along with better model selection (as mentioned previously).
Computational cognitive models may find both finer and broader applica-

tions, that is, both at lower levels and at higher levels. Some cognitive models
found applications in large-scale simulations at a social and organizational
level. Some other cognitive models found applications in interpreting not only
psychological data but also neuroimaging data at a biological level. More than
twenty years ago, a review commissioned by the National Research Council
found that computational cognitive modeling had progressed to a degree that
had made it useful in a number of practical application domains (Pew &Mavor,
1998). Another review later (Ritter, Shadbolt, Elliman, Young, Gobet, &
Baxter, 2003) pointed to similar conclusions. Both reviews provided concrete
examples of practical applications of computational cognitive modeling.
Inevitably, this direction will provide impetus for future research not only in
applied areas of computational cognitive sciences but also in theoretical areas of
computational cognitive sciences.
Cognitive modeling may be applied to social simulation (Sun, 2006).

Agent-based social simulation in the social sciences utilizes models consisting
of a population of agents whereby the effects of interactions among agents
are explored. Social processes ultimately rest on the behaviors and decisions
of individuals, and thus understanding the mechanisms and processes of
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individual cognition can lead to better understanding of social processes
(Sun, 2001, 2012). At the same time, by integrating social simulation and
cognitive modeling, one may also better understand individual cognition and
learn more about how sociocultural processes influence individual cognition
(Brekhus & Ignatow, 2019). See Chapter 32 of this handbook regarding
cognitive social simulation.

Related to that, motivation, emotion, personality, morality, and other
socially relevant aspects not traditionally tackled extensively by computational
cognitive sciences need to be better addressed. Some relevant models have
already been developed. See Chapters 24, 30, and 31 in this handbook.

Work across the psychological and the biological level, as mentioned before,
will continue to be an important direction for future research. Increasingly,
researchers are exploring both psychological and neurobiological facets. In so
doing, the hope is that more realistic and better constrained computational
cognitive models may be developed. See, for example, Chapters 12, 19, and 22
in this handbook for some such models.

1.7 Inside This Handbook

The present handbook is meant to be a comprehensive and definitive
reference source for the increasingly important field of computational cogni-
tive sciences. In the subsequent chapters of this handbook, detailed accounts
will be presented of the current state of computational cognitive sciences, in
terms of different areas and different aspects, as well as their background
and history.

This handbook aims to combine breadth of coverage with depth of critical
details. It aims to appeal to researchers and advanced students in computa-
tional cognitive sciences, as well as to researchers and advanced students in
cognitive psychology, social psychology, linguistics, philosophy of mind, phil-
osophy of science, cognitive anthropology, cognitive sociology, behavioral
economics, cognitive neuroscience, artificial intelligence, education, and other
fields. Although this field draws on many social sciences and humanity discip-
lines and draws on computer science and mathematics, it is, more or
less, centered on psychology and thus this is a major emphasis in this handbook.
At the same time, this handbook embodies an important contemporary theme
in scientific research: how technology (in this case, computing technology)
affects the understanding of the subject matter – cognition and its various
issues.

Research in this field has made many significant advances (e.g., see Section
1.5), and thus the field needs an up-to-date reference to the best work in the
field. The publication of the predecessor of the present handbook (i.e., the 2008
Cambridge Handbook of Computational Psychology; Sun, 2008) did fill this void
to some extent, but it has been more than ten years since its publication and, in
retrospect, its scope can also be beneficially expanded to serve better a broader
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readership. A new handbook should bring together chapters each of which
summarizes and explains the basic concepts, techniques, and findings of a major
topic area, sketching its history, assessing its successes and failures, and outlin-
ing directions in which it is going. The handbook should provide quick over-
views for experts as well as provide an entry point for new scholars. The present
handbook was indeed conceived with these goals in mind. Hopefully, the result
is a broadly scoped, ecumenical, readable, and useful collection.
This handbook is comprised of thirty-eight chapters, organized into five

parts. The first part, “Introduction” (containing the present chapter), provides
a general introduction to computational cognitive sciences. The second part,
“Cognitive Modeling Paradigms,” introduces the reader to broadly influential
approaches in computational cognitive sciences. The interdisciplinary combin-
ation of computational modeling, psychology, linguistics, and other fields has
required researchers to develop a new set of research approaches. These chap-
ters have been written by some of the influential scholars who helped to define
the field. The third part, “Computational Modeling of Basic Cognitive
Functionalities,” describes computational modeling of basic (the most funda-
mental and most important) cognitive functionalities. This part surveys and
explains computational modeling research, in terms of computational mechan-
isms and processes, of categorization, memory, reasoning, decision making,
skill learning, and so on. It describes some significant models in this field. The
fourth part, “Computational Modeling in Various Cognitive Fields,” covers
computational models in various (sub)fields such as developmental psychology,
personality and social psychology, industrial-organizational psychology, psych-
iatry, psycholinguistics, natural language processing, social simulation, as well
as vision, motor control, creativity, morality, emotion, and so on. This part
includes some detailed surveys, as well as case studies of projects. The final part,
“General Discussion,” explores a range of issues associated with computational
cognitive sciences and provides some perspectives and assessments.
Although the vision for the present handbook has been to be as comprehen-

sive as possible, the coverage, in reality, has to be selective. The selectivity is
made necessary by practical considerations (e.g., concerning length), as well as
by varying amounts of activities across different topic areas – we need to cover
areas with large amounts of scholarly activities, inevitably at the cost of less
active areas. Given the wide-ranging and often fast-paced research activities in
computational cognitive sciences, there is no shortage of topics to include.

1.8 Conclusion

The field of computational cognitive sciences has been making import-
ant strides and significant progress has been made. However, the field still has a
long way to go before the intricate details of the human mind/brain are fully
understood and mapped onto precise and detailed computational mechanisms
and processes.
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Although many aspects of computational cognitive sciences are covered in
the present handbook, in order to further advance the state of the art, it is
necessary to explore more fully possibilities in computational cognitive sciences.
In particular, it is necessary to build integrative cognitive models with a wide
variety of functionalities (e.g., computational cognitive architectures), so that
they can explain in a unified way a broad range of human behaviors. Many
challenges and issues need to be addressed, including those stemming from
designing cognitive models, from validation of cognitive models, and from
application of cognitive models to a variety of domains.

Computational cognitive sciences will have significant and lasting impact
on other disciplines relevant to cognitive sciences, such as psychology, phil-
osophy, (psycho)linguistics, (cognitive) anthropology, (cognitive) sociology,
education, and artificial intelligence, in terms of better understanding the
human mind or in terms of developing better intelligent systems. It is thus a
crucial field of scientific research, lying at the intersection of a number of
theoretical and practical endeavors. It is also notable for broad incorporation
of diverse paradigms, methodologies, levels of abstraction, and empirical data
sources across many disciplines (i.e., being the “integrating science”).
Through the collective effort of this research community, significant advances
will be achieved.
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PART II

Cognitive Modeling Paradigms

The chapters in Part II introduce the reader to broadly influential and founda-
tional approaches to computational cognitive sciences. Each of these chapters
describes in detail one major approach and provides examples of its use in
computational cognitive sciences.
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2 Connectionist Models
of Cognition
Michael S. C. Thomas and James L. McClelland

2.1 Introduction

In this chapter, computer models of cognition that have focused on
the use of neural networks are reviewed. These architectures were inspired by
research into how computation works in the brain, and particularly the
observation that large, densely connected networks of relatively simple
processing elements can solve some complex tasks fairly easily in a modest
number of sequential steps. Subsequent work has produced models of
cognition with a distinctive flavor. Processing is characterized by patterns of
activation across simple processing units connected together into complex
networks. Knowledge is stored in the strength of the connections between
units. It is for this reason that this approach to understanding cognition has
gained the name of connectionism.

Since the first edition of this volume, it has become apparent that the field
has entered the third age of artificial neural network research. The first began
in the 1930s and 1940s, part of the genesis of the first formal theories of
computation; the second arose in the 1980s and 1990s with Parallel
Distributed Processing models of cognition; and the third emerged in the
mid-2000s with advances in “deep” neural networks. Transition between the
ages has been triggered by new insights into how to create and train more
powerful artificial neural networks.

2.2 Background

Over the last forty years, connectionist modeling has formed an influen-
tial approach to the computational study of cognition. It is distinguished by its
appeal to principles of neural computation to inspire the primitives that are
included in its cognitive level models. Also known as artificial neural network
(ANN) or parallel distributed processing (PDP) models, connectionism has
been applied to a diverse range of cognitive abilities, including models of
memory, attention, perception, action, language, concept formation, and
reasoning (see, e.g., Houghton, 2005; Joanisse & McClelland, 2015; Mayor,
Gomez, Chang, & Lupyan, 2014). While many of these models seek to capture
adult function, connectionism places an emphasis on learning internal repre-
sentations. This has led to an increasing focus on developmental phenomena
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and the origins of knowledge. Although, at its heart, connectionism comprises a
set of computational formalisms, it has spurred vigorous theoretical debate
regarding the nature of cognition. Some theorists have reacted by dismissing
connectionism as mere implementation of preexisting verbal theories of cogni-
tion, while others have viewed it as a candidate to replace the Classical
Computational Theory of Mind and as carrying profound implications for
the way human knowledge is acquired and represented; still others have viewed
connectionism as a sub-class of statistical models involved in universal function
approximation and data clustering.
The chapter begins by placing connectionism in its historical context, leading

up to its formalization in Rumelhart and McClelland’s two-volume Parallel
Distributed Processing (1986) written in combination with members of the
Parallel Distributed Processing Research Group. The innovations that then
triggered the emergence of deep networks are indicated. Next, there is a
discussion of three important foundational cognitive models that illustrate some
of the key properties of connectionist systems and indicate how the novel
theoretical contributions of these models arose from their key computational
properties. These three models are the Interactive Activation model of letter
recognition (McClelland & Rumelhart, 1981; Rumelhart and McClelland,
1982), Rumelhart and McClelland’s model of the acquisition of the English
past tense (1986), and Elman’s simple recurrent network for finding structure in
time (1991). The chapter finishes by considering how connectionist modeling
has influenced wider theories of cognition, and how in the future, connectionist
modeling of cognition may progress by integrating further constraints from
neuroscience and neuroanatomy.

2.2.1 Historical Context

Connectionist models draw inspiration from the notion that the information
processing properties of neural systems should influence theories of cognition.
The possible role of neurons in generating the mind was first considered not
long after the existence of the nerve cell was accepted in the latter half of the
nineteenth century (Cobb, 2020). Early neural network theorizing can there-
fore be found in some of the associationist theories of mental processes
prevalent at the time (e.g., Freud, 1895; James, 1890; Meynert, 1884;
Spencer, 1872). However, this line of theorizing was quelled when Lashley
presented data appearing to show that the performance of the brain degraded
gracefully depending only on the quantity of damage. This argued against the
specific involvement of neurons in particular cognitive processes (see, e.g.,
Lashley, 1929).
In the 1930s and 1940s, there was a resurgence of interest in using mathemat-

ical techniques to characterize the behavior of networks of nerve cells (e.g.,
Rashevksy, 1935). This culminated in the work of McCulloch and Pitts (1943)
who characterized the function of simple networks of binary threshold neurons
in terms of logical operations. In his 1949 book The Organization of Behavior,
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Donald Hebb proposed a cell assembly theory of cognition, including the idea
that specific synaptic changes might underlie psychological principles of learn-
ing. A decade later, Rosenblatt (1958, 1962) formulated a learning rule for two-
layered neural networks, demonstrating mathematically that the perceptron
convergence rule could adjust the weights connecting an input layer and an
output layer of simple neurons to allow the network to associate arbitrary
binary patterns (see also Novikoff, 1962). With this rule, learning converged
on the set of connection values necessary to acquire any two-layer-computable
function relating a set of input–output patterns. Unfortunately, Minsky and
Papert (1969) demonstrated that the set of two-layer computable functions was
somewhat limited – that is, these simple artificial neural networks were not
particularly powerful devices. While more computationally powerful networks
could be described, there was no algorithm to learn the connection weights of
these systems. Such networks required the postulation of additional internal or
“hidden” processing units, which could adopt intermediate representational
states in the mapping between input and output patterns. An algorithm (back-
propagation) able to learn these states was discovered independently several
times. A key paper by Rumelhart, Hinton, and Williams (1986) demonstrated
the usefulness of networks trained using backpropagation for addressing key
computational and cognitive challenges facing neural networks.

In the 1970s, serial processing and the Von Neumann computer metaphor
dominated cognitive psychology, relying heavily on symbolic representations
(Newell, 1980). Nevertheless, a number of researchers continued to work on the
computational properties of neural systems. Some of the key themes identified
by these researchers include the role of competition in processing and learning
(e.g., Grossberg, 1976a; Kohonen, 1984), and the use of hierarchically organ-
ized bi-directional connectivity for perceptual inference in adaptive competitive
interactive systems (Grossberg, 1976b).

Researchers also began to explore the properties of distributed representa-
tions (e.g., Anderson, 1977; Hinton & Anderson, 1981), and the possibility of
content addressable memory in networks with attractor states, formalized using
the mathematics of statistical physics (Hopfield, 1982). A fuller characterization
of the many historical influences in the development of connectionism can be
found in Rumelhart, McClelland and the PDP Research Group (1986, chapter
1), Bechtel and Abrahamsen (1991), McLeod, Plunkett, and Rolls (1998), and
O’Reilly and Munakata (2000).

Backpropagation networks prompted an explosion of models targeting sim-
plified versions of problem domains from language and cognition. But it seemed
for many years that such networks could not readily scale to complex, real-
world problems such as natural language processing or vision. Once again, the
issue was not that it was impossible to describe sufficiently powerful networks,
but that such networks were not trainable using the available tools. This time,
instead of a single breakthrough, this barrier was overcome by several conver-
gent developments. These included several architectural and processing
enhancements, the availability of much greater computational power, and the

Connectionist Models of Cognition 31

https://doi.org/10.1017/9781108755610.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.005


availability of large data sets to train the models (LeCun, Bengio, & Hinton,
2015). Now, instead of shallow networks typically containing only three layers
(input, hidden, and output), networks with tens or even hundreds of layers
(hence, “deep”) could be trained to solve complex problems. The latest deep
neural networks are now applied to problems such as visual object recognition,
speech recognition, and natural language processing, sometimes showing near
human or even super-human levels of performance (Kriegeskorte, 2015; Storrs
& Kriegeskorte, 2019; see also Chapter 9 in this handbook).
Figure 2.1 depicts a selective schematic of this history and demonstrates the

multiple types of neural network system that have latterly come to be used in
building models of cognition. While diverse, they are unified on the one hand by
the proposal that cognition comprises processes of constraint satisfaction,
energy minimization and pattern recognition, and on the other that adaptive
processes construct the microstructure of these systems, primarily by adjusting
the strengths of connections among the neuron-like processing units involved in
a computation.

2.2.2 Key Properties of Connectionist Models

Connectionism starts with the following inspiration from neural systems: com-
putations will be carried out by a set of simple processing units operating in
parallel and affecting each other’s activation states via a network of weighted
connections. Rumelhart, Hinton, and McClelland (1986) identified seven key
features that would define a general framework for connectionist processing.
The first feature is the set of processing units ui. In a cognitive model, these

may be intended to represent individual concepts (such as letters or words), or
they may simply be abstract elements over which meaningful patterns can be
defined. Processing units are often distinguished into input, output, and hidden
units. In associative networks, input and output units have states that are
defined by the task being modeled (at least during training), while hidden units
are free parameters whose states may be determined as necessary by the
learning algorithm.
The second feature is a state of activation (a) at a given time (t). The state of

a set of units is usually represented by a vector of real numbers a(t). These may
be binary or continuous numbers, bounded or unbounded. A frequent assump-
tion is that the activation level of simple processing units will vary continuously
between the values 0 and 1.
The third feature is a pattern of connectivity. The strength of the connection

between any two units will determine the extent to which the activation state of
one unit can affect the activation state of another unit at a subsequent time
point. The strength of the connections between unit i and unit j can be repre-
sented by a matrix W of weight values wij. Multiple matrices may be specified
for a given network if there are connections of different types. For example, one
matrix may specify excitatory connections between units and a second may
specify inhibitory connections. Potentially, the weight matrix allows every unit
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Figure 2.1 A simplified schematic showing the historical evolution of neural
network architectures. Simple binary networks (McCulloch & Pitts, 1943) are
followed by two-layer feedforward networks (perceptrons; Rosenblatt, 1958).
Three subtypes then emerge: feedforward networks (Rumelhart &McClelland,
1986), competitive or self-organizing networks (e.g., Grossberg, 1976a;
Kohonen, 1984), and symmetrically connected energy-minimization networks
(Hinton & Sejnowksi, 1986; Hopfield, 1982). Adaptive interactive networks
have precursors in detector theories of perception (Logogen: Morton, 1969;
Pandemonium: Selfridge, 1959) and hard-wired interactive models
(Interactive Activation: McClelland & Rumelhart, 1981; Interactive
Activation and Competition: McClelland, 1981; Stereopsis: Marr & Poggio,
1976; Necker cube: Feldman, 1981), and Grossberg provided an early adaptive
learning rule for such systems (Grossberg, 1976b). Feedforward pattern
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to be connected to every other unit in the network. Typically, units are arranged
into layers (e.g., input, hidden, output) and layers of units are fully connected to
each other. For example, in a three-layer feedforward architecture where acti-
vation passes in a single direction from input to output, the input layer would be
fully connected to the hidden layer and the hidden layer would be fully con-
nected to the output layer.
The fourth feature is a rule for propagating activation states throughout the

network. This rule takes the vector a(t) of output values for the processing units
sending activation and combines it with the connectivity matrixW to produce a
summed or net input into each receiving unit. The net input to a receiving unit is
produced by multiplying the vector and matrix together, so that

neti ¼ W � a tð Þ ¼
X

j

wijaj (2.1)

The fifth feature is an activation rule to specify how the net inputs to a given
unit are combined to produce its new activation state. The function F derives
the new activation state

ai tþ 1ð Þ ¼ F neti tð Þð Þ (2.2)

For example, F might be a threshold so that the unit becomes active only if the
net input exceeds a given value. Other possibilities include linear, Gaussian, and
sigmoid functions, depending on the network type. Sigmoid is perhaps the most
common, operating as a smoothed threshold function that is also differentiable.
It is often important that the activation function be differentiable because
learning seeks to improve a performance metric that is assessed via the acti-
vation state while learning itself can only operate on the connection weights.
The effect of weight changes on the performance metric therefore depends to
some extent on the activation function, and the learning algorithm encodes this
fact by including the derivative of that function (see below).
The sixth key feature of connectionist models is the algorithm for modifying

the patterns of connectivity as a function of experience. Virtually all learning
rules for PDP models can be considered a variant of the Hebbian learning rule
(Hebb, 1949). The essential idea is that a weight between two units should be

Caption for Figure 2.1 (cont.) associators have been extended to three or
more layers with the introduction of backpropagation (Rumelhart, Hinton &
Williams, 1986), and have produced multiple subtypes used in modeling
dynamic aspects of cognition: these include cascaded feedforward networks
(e.g., Cohen, Dunbar, & McClelland, 1990) and attractor networks in which
states cycle into stable configurations (e.g., Plaut & McClelland, 1993); for
processing sequential information, recurrent networks (Elman, 1991; Jordan,
1986); for systems that alter their structure as part of learning, constructivist
networks (e.g., cascade correlation: Fahlman & Lebiere, 1990; Shultz, 2003).
Since the early 2000s, deep neural networks have emerged, characterized by
multiple layers of hidden units (LeCun, Bengio, & Hinton, 2015).
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altered in proportion to the units’ correlated activity. For example, if a unit ui
receives input from another unit uj, then if both are highly active, the weight wij

from uj to ui should be strengthened. In its simplest version, the rule is

Δwij ¼ ηaiaj (2.3)

where η is the constant of proportionality known as the learning rate. Where an
external target activation ti(t) is available for a unit i at time t, this algorithm is
modified by replacing ai with a term depicting the disparity of unit ui’s current
activation state ai(t) from its desired activation state ti(t) at time t, so forming
the delta rule:

Δwij ¼ η ti tð Þ � ai tð Þð Þaj (2.4)

However, when hidden units are included in networks, no target activation is
available for these internal parameters. The weights to such units may be
modified by variants of the Hebbian learning algorithm (e.g., Contrastive
Hebbian; Hinton, 1989; see Xie & Seung, 2003) or by the backpropagation of
error signals from the output layer.

Backpropagation makes it possible to determine, for each connection weight
in the network, what effect a change in its value would have on the overall
network error. The policy for changing the strengths of connections is simply to
adjust each weight in the direction (up or down) that would tend to reduce the
error, by an amount proportional to the size of the effect the adjustment will
have. If there are multiple layers of hidden units remote from the output layer,
this process can be followed iteratively: first error derivatives are computed for
the hidden layer nearest the output layer; from these, derivatives are computed
for the next deepest layer into the network, and so forth. On this basis, the
backpropagation algorithm serves to modify the pattern of weights in powerful
multilayer networks. It alters the weights to each deeper layer of units in such a
way as to reduce the error on the output units (see Rumelhart, Hinton, &
Williams, 1986, for the derivation). The weight change algorithm can be for-
mulated by analogy to the delta rule as shown in Equation 2.4. For each deeper
layer in the network, the central term that represents the disparity between the
actual and target activation of the units is modified. Assuming ui, uh, and uo are
input, hidden, and output units in a three-layer feedforward network, the
algorithm for changing the weight from hidden to output unit is:

Δwoh ¼ η to � aoð ÞF 0 netoð Þah (2.5)

where F 0 netð Þ is the derivative of the activation function of the units (e.g., for
the sigmoid activation function, F 0 netoð Þ ¼ ao 1� aoð Þ). The term (to – ao) is
proportional to the negative of the partial derivative of the network’s overall
error with respect to the activation of the output unit, where the error E is given
by E ¼ P

o to � aoð Þ2.
The derived error term for a unit at the hidden layer is based on the derivative

of the hidden unit’s activation function, times the sum across all the connections
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from that hidden unit to the output later of the error term on each output unit
weighted by the derivative of the output unit’s activation function
to � aoð ÞF 0 netoð Þ times the weight connecting the hidden unit to the output unit:

F 0 nethð Þ
X

o
to � aoð ÞF 0 netoð Þwoh (2.6)

The algorithm for changing the weights from the input to the hidden layer is
therefore:

Δwhi ¼ ηF 0 nethð Þ
X

o
to � aoð ÞF 0 netoð Þwohai (2.7)

It is interesting that the above computation can be construed as a backward pass
through the network, similar in spirit to the forward pass that computes activa-
tions in that it involves propagation of signals across weighted connections, this
time from the output layer back toward the input. The backward pass, however,
involves the propagation of error derivatives rather than activations.
It should be emphasized that a very wide range of variants and extensions of

Hebbian and error-correcting algorithms have been introduced in the connec-
tionist learning literature. Most importantly, several variants of backpropaga-
tion have been developed for training recurrent networks, that is, those in which
activation can cycle around loops (Williams & Zipser, 1995); and several
algorithms (including the Contrastive Hebbian Learning algorithm and
O’Reilly’s 1998 LEABRA algorithm) have addressed some of the concerns that
have been raised regarding the biological plausibility of backpropagation con-
strued in its most literal form (O’Reilly & Munakata, 2000).
One challenge of training deep neural networks, with many layers of hidden

units, is called the vanishing gradient problem (Hochreiter, 1991). As has been
seen, the change to each layer of weights extending deeper into the network (that
is, further from the output, closer to the input) depends on the extent to which
each weight contributes to the error at the output layer, scaled by the gradient of
the activation function at each layer of units above. Since for many activation
functions, such as the sigmoid, the gradient falls between 0 and 1, this results in
the multiplication of several numbers each less than one: potentially it produces
very small weight change at deeper layers, slowing down learning. A parallel
problem exists for recurrent networks, where each pass through the recurrent
loop involves multiplying the weight change by another activation function
derivative (Hochreiter et al., 2001). Equivalently, weight changes can be very
small in response to information separated by several recurrent passes through
the network. Indeed, in practice, the vanishing gradient problem may be more
serious for recurrent networks than feedforward networks, since the identical
weights are involved in each iteration around a recurrent loop, guaranteeing
exponential decay of the error signal. Together with other challenges (such as the
disappearing signal problem, where many intermediate layers of initially ran-
domized weights create noise that makes it hard to detect input–output relation-
ships), the result was a limitation in the scalability of backpropagation networks
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to the depth required to solve complex real-world problems, such as natural
language processing or vision.

Several innovations subsequently made the training of deep neural networks
viable, aided by large increases in computational power (perhaps a million-fold
since the early 1990s; Schmidhuber, 2015). These included drop out, randomly
disabling a subset of input units and hidden units on a given pattern presenta-
tion, which aids learning of more robust, generalizable input–output functions
(Srivastava et al., 2014); rectified linear units, activation functions that are linear
when their net input is greater than zero, but deactivated when less than zero –

the larger, consistent gradient reduces the vanishing gradient problem deeper in
the network (Hahnloser et al., 2000); and for image processing, convolution
networks, which use structures analogous to visual receptive fields, serving to
duplicate what is learned about useful visual features in one area of an input
retina to other areas, so that location-invariant recognition is possible when this
information is pooled (e.g., Krizhevsky, Sutskever, & Hinton, 2012).

For natural language processing, an important innovation was the use of long
short-term memory (LSTM) units in recurrent networks. These units can hold
information over as many recurrent cycles as necessary before feeding it into a
computation, enabling the learning of dependencies further separated in time
(Hochreiter & Schmidhuber, 1997). However, LSTMs only partially alleviated
the central problem facing recurrent networks, which is that contextual infor-
mation still had to be funneled through a very narrow bottleneck (a “context”
vector of the same length as the previous hidden state in a simple recurrent
network). The breakthroughs in natural language processing that attracted public
notice in 2016 with the introduction of the Google Neural Machine Translation
system depend on an innovation called Query Based Attention (see McClelland,
Hill, Rudolph, Baldridge, & Schuetze, 2020, for an explanation of this mechan-
ism; and also Chapter 9 in this handbook). Broadly, the attention mechanism
stores multiple versions of the preceding context and then learns to differently
weight them when predicting the output – in effect, helping to solve the problem
of what in the input sequence goes with what in the output sequence.

Another important development has been the use of weak supervisory sig-
nals, in the form of reward or reinforcement signals, which only indicate
whether a network is right or wrong, instead of specifying exactly what it should
do. While such reinforcement-based approaches have been investigated within a
neural network framework for decades (e.g., Sutton & Barto, 1981), their
potential to address cognitively interesting problems stems from further innov-
ations enabled by the massive scale of computation that has only been available
recently. For instance, breakthroughs in playing games such as chess or Go
stem from architectures enabled by increased computational power, which
allows a system to play games with itself millions of times to identify the
sequences of moves that produce the best possible outcomes. These innovations
are further described in Chapter 10 in this handbook.

The seventh and last general feature of connectionist networks is a represen-
tation of the environment with respect to the system. This is assumed to consist
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of a set of externally provided events or a function for generating such events.
An event may be a single pattern, such as a visual input; an ensemble of related
patterns, such as the spelling of a word and its corresponding sound and/or
meaning; or a sequence of inputs, such as the words in a sentence. A range of
policies have been used for specifying the order of presentation of the patterns,
including sweeping through the full set to random sampling with replacement.
The selection of patterns to present may vary over the course of training but is
often fixed. Where a target output is linked to each input, this is usually
assumed to be simultaneously available.
Two points are of note in the translation between PDP network and cognitive

model. First, a representational scheme must be defined to map between the
cognitive domain of interest and a set of vectors depicting the relevant infor-
mational states or mappings for that domain. Second, in many cases, connec-
tionist models are addressed to aspects of higher-level cognition, where it is
assumed that the information of relevance is more abstract than sensory or
motor codes. This has meant that the models often leave out details of the
transduction of sensory and motor signals, using input and output representa-
tions that are already somewhat abstract. The same principles at work in
higher-level cognition are also held to be at work in perceptual and motor
systems, and indeed there is also considerable connectionist work addressing
issues of perception and action, though these will not be the focus of the
present chapter.

2.2.3 Neural Plausibility

It is a historical fact that most connectionist modelers have drawn their inspir-
ation from the computational properties of neural systems. However, it has
become a point of controversy whether these “brain-like” systems are indeed
neurally plausible. If they are not, should they instead be viewed as a class of
statistical function approximators? And if so, should not the ability of these
models to simulate patterns of human behavior be judged in the context of the
large number of free parameters they contain (e.g., in the weight matrix)
(Green, 1998)?
Neural plausibility should not be the primary focus for a consideration of

connectionism. The advantage of connectionism, according to its proponents, is
that it provides better theories of cognition. Nevertheless, this issue will be briefly
dealt with since it pertains to the origins of connectionist cognitive theory. In
this area, two sorts of criticism have been leveled at connectionist models. The
first is to maintain that many connectionist models either include properties that
are not neurally plausible and/or omit other properties that neural systems
appear to have (e.g., Crick, 1989). Some connectionist researchers have
responded to this first criticism by endeavoring to show how features of con-
nectionist systems might in fact be realized in the neural machinery of the brain.
For example, the backward propagation of error across the same connections

38 michael s. c. thomas and james l. mcclelland

https://doi.org/10.1017/9781108755610.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.005


that carry activation signals is generally viewed as biologically implausible.
However, a number of authors have shown that the difference between activa-
tions computed using standard feedforward connections and those computed
using standard return connections can be used to derive the crucial error
derivatives required by backpropagation (Hinton & McClelland, 1988;
O’Reilly, 1996), even indeed if those return connections simply have random
weights (Lillicrap et al., 2016). It is widely held that connections run bidirec-
tionally in the brain, as required for this scheme to work. Under this view,
backpropagation may be shorthand for a Hebbian-based algorithm that uses
bidirectional connections to spread error signals throughout a network (Xie &
Seung, 2003). This view was encapsulated in Lillicrap et al.’s (2020) proposal
that the brain’s feedback connections induce neural activities whose differences
can be used to locally approximate error signals and drive effective learning in
deep networks in the brain. Other researchers have argued that the apparent
limited biological plausibility of backpropagation stems not from the algorithm
per se but to the lack of temporal extension of processing in its usual implemen-
tation (specifically the instantaneous mapping from the input to output) (e.g.,
Betti & Gori, 2020; Scellier & Bengio, 2019).

Other connectionist researchers have responded to the first criticism by
stressing the cognitive nature of current connectionist models. Most of the work
in developmental neuroscience addresses behavior at levels no higher than
cellular and local networks, whereas cognitive models must make contact with
the human behavior studied in psychology. Some simplification is therefore
warranted, with neural plausibility compromised under the working assump-
tion that the simplified models share the same flavor of computation as actual
neural systems. Connectionist models have succeeded in stimulating a great deal
of progress in cognitive theory – and sometimes generating radically different
proposals to the previously prevailing symbolic theory – just given the set of
basic computational features outlined in the preceding section.

The second type of criticism leveled at connectionism questions why, as
Davies (2005) put it, connectionist models should be reckoned any more plaus-
ible as putative descriptions of cognitive processes just because they are “brain-
like.” Under this view, there is independence between levels of description
because a given cognitive level theory might be implemented in multiple ways
in different hardware. Therefore the details of the hardware (in this case, the
brain) need not concern the cognitive theory. This functionalist approach, most
clearly stated in Marr’s three levels of description (computational, algorithmic,
and implementational; see Marr, 1982) has been repeatedly challenged (see,
e.g., Mareschal et al., 2007; Rumelhart & McClelland, 1985). The challenge to
Marr goes as follows. While, according to computational theory, there may be a
principled independence between a computer program (the “software”) and the
particular substrate on which it is implemented (the “hardware”), in practical
terms, different sorts of computation are easier or harder to implement on a
given substrate. Since computations have to be delivered in real time as the
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individual reacts with his or her environment, in the first instance cognitive-level
theories should be constrained by the computational primitives that are most
easily implemented on the available hardware; human cognition should be
shaped by the processes that work best in the brain.
The relation of connectionist models to symbolic models has also proved

controversial. A full consideration of this issue is beyond the scope of the
current chapter. Suffice to say that because the connectionist approach now
includes a diverse family of models, there is no single answer to this question.
Smolensky (1988) argued that connectionist models exist at a lower (but still
cognitive) level of description than symbolic cognitive theories, a level that he
called the sub-symbolic. Connectionist models have sometimes been put for-
ward as a way to implement symbolic production systems on neural architec-
tures (e.g., Touretzky & Hinton, 1988). At other times, connectionist
researchers have argued that their models represent a qualitatively different
form of computation: while under certain circumstances, connectionist models
might produce behavior approximating symbolic processes, it is held that
human behavior often only approximates the characteristics of symbolic
systems rather than directly implementing them. That is, when human behavior
is (approximately) rule-following, it need not be rule-driven. Furthermore,
connectionist systems incorporate additional properties characteristic of human
cognition, such as content addressable memory, context-sensitive processing,
and graceful degradation under damage or noise. Under this view, symbolic
theories are approximate descriptions rather than actual characterizations of
human cognition. Connectionist theories should replace them because they both
capture subtle differences between human behavior and symbolic characteriza-
tions, and because they provide a specification of the underlying causal mech-
anisms (van Gelder, 1991).
This strong position has prompted criticisms that connectionist models are

insufficiently powerful to account for certain aspects of human cognition – in
particular those areas best characterized by symbolic, syntactically driven
computations (Fodor & Pylyshyn, 1988; Lake et al., 2017; Marcus, 2001).
Again, however, the characterization of human cognition in such terms is highly
controversial; close scrutiny of relevant aspects of language – the ground on
which the dispute has largely been focused – lends support to the view that the
systematicity assumed by proponents of symbolic approaches is overstated, and
that the actual characteristics of language are well matched to the characteris-
tics of connectionist systems (Bybee & McClelland, 2005; Kollias &
McClelland, 2013; McClelland, Plaut, Gotts, & Maia, 2003). Furthermore,
recent breakthroughs in machine language processing now demonstrate that
aspects of structure can emerge in powerful ways from neural networks that
have been trained on large text corpora (see Section 2.3.3). Nevertheless,
explanations of explicitly symbolic ways of thinking remain an area of debate,
including behaviors such as generalization over variables, which are less readily
delivered by connectionist architectures.
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2.2.4 The Relationship Between Connectionist Models
and Bayesian Inference

Since the early 1980s, it has been apparent that there are strong links between
the calculations carried out in connectionist models and key elements of
Bayesian calculations (McClelland, 2013). It was noted, first of all, that units
can be viewed as playing the role of probabilistic hypotheses; that weights and
biases play the role of conditional probability relations between hypotheses and
prior probabilities, respectively; and that if connection weights and biases have
the correct values, the logistic activation function sets the activation of a unit to
its posterior probability given the evidence represented on its inputs. A second
and more important observation is that, in stochastic neural networks
(Boltzmann Machines and Continuous Diffusion Networks; Hinton &
Sejnowski, 1986; Movellan & McClelland, 1993) a network’s state over all of
its units can represent a constellation of hypotheses about an input; and (if the
weights and the biases are set correctly) that the probability of finding the
network in a particular state is monotonically related to the probability that
the state is the correct interpretation of the input. The exact nature of the
relation depends on a parameter called temperature; if set to one, the probabil-
ity that the network will be found in a particular state exactly matches its
posterior probability. When temperature is gradually reduced to zero, the
network will end up in the most probable state, thus performing optimal
perceptual inference (Hinton & Sejnowski, 1983). It is also known that back-
propagation can learn weights that allow Bayes-optimal estimation of outputs
given inputs (MacKay, 1992) and that the Boltzmann machine learning algo-
rithm (Ackley, Hinton, & Sejnowski, 1985; Movellan & McClelland, 1993) can
learn to produce correct conditional distributions of outputs given inputs. The
original algorithm was very slow but recent variants are more efficient (Hinton
& Salakhutdinov, 2006), and have been effectively used to model, for example,
human numerosity judgments (Stoianov & Zorzi, 2012). (See Chapter 3 in this
handbook for a fuller discussion.)

2.3 Three Foundational Models

This section outlines three of the landmark models in the emergence of
connectionist theories of cognition. The models serve to illustrate the key
principles of connectionism and demonstrate how these principles are relevant
to explaining behavior in ways that are different from other prior approaches.
The contribution of these models was twofold: they were better suited than
alternative approaches to capturing the actual characteristics of human cogni-
tion, usually on the basis of their context-sensitive processing properties; and
compared to existing accounts, they offered a sharper set of tools to drive
theoretical progress and to stimulate empirical data collection. Each of these
models significantly advanced its field.
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2.3.1 An Interactive Activation Model of Context Effects in Letter
Perception (McClelland & Rumelhart, 1981, 1982)

The interactive activation model of letter perception illustrates two interrelated
ideas. The first is that connectionist models naturally capture a graded con-
straint satisfaction process in which the influences of many different types of
information are simultaneously integrated in determining, for example, the
identity of a letter in a word. The second idea is that the computation of a
perceptual representation of the current input (in this case, a word) involves the
simultaneous and mutual influence of representations at multiple levels of
abstraction – this is a core idea of parallel distributed processing.
The interactive activation model addressed itself to a puzzle in word recogni-

tion. By the late 1970s, it had long been known that people were better at
recognizing letters presented in words than letters presented in random letter
sequences. Reicher (1969) demonstrated that this was not the result of tending
to guess letters that would make letter strings into words. He presented target
letters either in words, unpronounceable nonwords, or on their own. The stimuli
were then followed by a pattern mask, after which participants were presented
with a forced choice between two letters in a given position. Importantly, both
alternatives were equally plausible. Thus, the participant might be presented
with WOOD and asked whether the third letter was O or R. As expected,
forced-choice performance was more accurate for letters in words than for
letters in nonwords or presented on their own. Moreover, the benefit of sur-
rounding context was also conferred by pronounceable pseudowords (e.g.,
recognizing the P in SPET) compared to random letter strings, suggesting that
subjects were able to bring to bear rules regarding the orthographic legality of
letter strings during recognition.
Rumelhart and McClelland took the contextual advantage of words and

pseudowords on letter recognition to indicate the operation of top-down pro-
cessing. Previous theories had put forward the idea that letter and word recog-
nition might be construed in terms of detectors which collect evidence consistent
with the presence of their assigned letter or word in the input (Morton, 1969;
Selfridge, 1959). Influenced by these theories, Rumelhart and McClelland built
a computational simulation in which the perception of letters resulted from
excitatory and inhibitory interactions of detectors for visual features.
Importantly, the detectors were organized into different layers for letter fea-
tures, letters and words, and detectors could influence each other both in a
bottom-up and a top-down manner.
Figure 2.2 illustrates the structure of the Interactive Activation (IA) model,

both at the macro level (left) and for a small section of the model at a finer level
(right). The explicit motivation for the structure of the IA was neural: “[We]
have adopted the approach of formulating the model in terms similar to the way
in which such a process might actually be carried out in a neural or neural-like
system” (McClelland & Rumelhart, 1981, p. 387). There were three main
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assumptions of the IA model: (1) perceptual processing takes place in a system
in which there are several levels of processing, each of which forms a represen-
tation of the input at a different level of abstraction; (2) visual perception
involves parallel processing, both of the four letters in each word and of all
levels of abstraction simultaneously; (3) perception is an interactive process in
which conceptually driven and data-driven processing provide multiple, simul-
taneously acting constraints that combine to determine what is perceived.

The activation states of the system were simulated by a sequence of discrete
time steps. Each unit combined its activation on the previous time step, its
excitatory influences, its inhibitory influences, and a decay factor to determine
its activation on the next time step. Connectivity was set at unitary values and
along the following principles: in each layer, mutually exclusive alternatives
should inhibit each other. For each unit in a layer, it excited all units with which
it was consistent and inhibited all those with which it was inconsistent in the
layer immediately above. Thus in Figure 2.2, the first-position W letter unit has
an excitatory connection to the WEED word unit but an inhibitory connection
to the SEED and FEED word units. Similarly, a unit excited all units with
which it was consistent and inhibited all those with which it was inconsistent in
the layer immediately below. However, in the final implementation, top-down
word-to-letter inhibition and within-layer letter-to-letter inhibition were set to
zero (gray arrows, Figure 2.2).

WORD LEVEL 

LETTER LEVEL 

FEATURE LEVEL 

VISUAL INPUT 

SEED 

FEED 

WEED 

S

F

W

Figure 2.2 Interactive Activation model of context effects in letter recognition
(McClelland & Rumelhart, 1981, 1982). Pointed arrows are excitatory
connections, circular headed arrows are inhibitory connections. Left: macro
view (connections in gray were set to zero in the implemented model). Right:
micro view for the connections from the feature level to the first letter position
for the letters S, W, and F (only excitatory connections shown) and from the
first letter position to the word units SEED, WEED, and FEED (all
connections shown).
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The model was constructed to recognize letters in four-letter strings. The full
set of possible letters was duplicated for each letter position, and a set of 1,179
word units created to represent the corpus of four-letter words. Word units were
given base rate activation states at the beginning of processing to reflect their
different frequencies. A trial began by clamping the feature units to the appropri-
ate states to represent a letter string, and then observing the dynamic change
in activation through the network. Conditions were included to allow the simula-
tion of stimulus masking and degraded stimulus quality. Finally, a probabilistic
response mechanism was added to generate responses from the letter level,
based on the relative activation states of the letter pool in each position.
The model successfully captured the greater accuracy of letter detection for

letters appearing in words and pseudowords compared to random strings or in
isolation. Moreover, it simulated a variety of empirical findings on the effect of
masking and stimulus quality, and of changing the timing of the availability of
context. The results on the contextual effects of pseudowords are particularly
interesting, since the model only contains word units and letter units and has no
explicit representation of orthographic rules. Let us say on a given trial, the
subject is required to recognize the second letter in the string SPET. In this case,
the string will produce bottom-up excitation of the word units for SPAT, SPIT,
and SPOT, which each share three letters. In turn, the word units will propagate
top-down activation reinforcing activation of the letter P and so facilitating its
recognition. Were this letter to be presented in the string XPQJ, no word units
could offer similar top-down activation, hence the relative facilitation of the
pseudoword. Interestingly, although these top-down “gang” effects produced facili-
tation of letters contained in orthographically legal nonword strings, the model
demonstrated that they also produced facilitation in orthographically illegal,
unpronounceable letter strings such as SPCT. Here, the same gang of SPAT,
SPIT, and SPOT produce top-down support. Rumelhart and McClelland (1982)
reported empirical support for this novel prediction. Therefore, although the
model behaved as if it contained orthographic rules driving recognition, it did not
in fact do so, because continued contextual facilitation could be demonstrated
for strings that had gang support but violated the orthographic rules.
There are two specific points to note regarding the IA model. First, this early

connectionist model was not adaptive – connectivity was set by hand. While the
model’s behavior was shaped by the statistical properties of the language it
processed, these properties were built into the structure of the system, in terms
of the frequency of occurrence of letters and letter combinations in the words.
However, such hierarchical representations at increasing levels of abstraction
can now be found as the outcome of learning processes in contemporary models
of visual object recognition using deep neural networks, and indeed bear
resemblance to representations observed along the human ventral visual pro-
cessing stream in the temporal lobe (see Section 2.4.5). Second, the idea of
bottom-up excitation followed by competition amongst mutually exclusive
possibilities is a strategy familiar in Bayesian approaches to cognition. In that
sense, the IA bears similarity to more recent probability theory-based
approaches to perception.
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Subsequent work saw the principles of the IA model extended to the recogni-
tion of spoken words (the TRACE model: McClelland & Elman, 1986) and to
bilingual speakers where two languages must be incorporated in a single repre-
sentational system (Grainger, Midgley & Holcomb, 2010; Thomas & van
Heuven, 2005). The architecture was applied to other domains where multiple
constraints were thought to operate during perception, for example in face
recognition (Burton, Bruce, & Johnston, 1990). Within language, more complex
architectures tried to recast the principles of the IA model in developmental
settings, such as Plaut and Kello’s (1999) model of the emergence of phonology
from the interplay of speech comprehension and production.

The more general lesson to draw from the interactive activation model is the
demonstration of multiple influences (feature, letter, and word-level knowledge)
working simultaneously and in parallel to shape the response of the system; and
the somewhat surprising finding that a massively parallel constraint satisfaction
process of this form can appear to behave as if it contains rules (in this case,
orthographic) when no such rules are included in the processing structure. At
the time, the model brought into question whether it was necessary to postulate
rules as processing structures to explain regularities in human behavior. This
skepticism was brought into sharper focus by the next example.

2.3.2 On Learning the Past Tense of English Verbs (Rumelhart &
McClelland, 1986)

Rumelhart and McClelland’s (1986) model of English past tense formation
marked the real emergence of the PDP framework. Where the IA model used
localist coding, the past tense model employed distributed coding. Where the IA
model had handwired connection weights, the past tense model learned its
weights via repeated exposure to a problem domain. However, the models share
two common themes. Once more, the behavior of the past tense model will be
driven by the statistics of the problem domain, albeit these will be carved into
the model by training rather than sculpted by the modelers. Perhaps more
importantly, there is a return to the idea that a connectionist system can exhibit
rule-following behavior without containing rules as causal processing struc-
tures; but in this case, the rule-following behavior will be the product of learning
and will accommodate a proportion of exception patterns that do not follow the
general rule. The key point that the past tense model illustrates is how (approxi-
mate) conformity to the regularities of language – and even a tendency to
produce new regular forms (e.g., regularizations like “thinked” or past tenses
for novel verbs like “wugged”) – can arise in a connectionist network without
an explicit representation of a linguistic rule.

The English past tense is characterized by a predominant regularity in which
the majority of verbs form their past tenses by the addition of one of three
allomorphs of the “-ed” suffix to the base stem (walk/walked, end/ended, chase/
chased). However, there is a small but significant group of verbs which form
their past tense in different ways, including changing internal vowels (swim/
swam), changing word final consonants (build/built), changing both internal
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vowels and final consonants (think/thought), an arbitrary relation of stem to
past tense (go/went), and verbs which have a past tense form identical to the
stem (hit/hit). These so-called irregular verbs often come in small groups sharing
a family resemblance (sleep/slept, creep/crept, leap/leapt) and usually have high
token frequencies (see Pinker, 1999, for further details).
During the acquisition of the English past tense, children show a characteris-

tic U-shaped developmental profile at different times for individual irregular
verbs. Initially they use the correct past tense of a small number of high
frequency regular and irregular verbs. Latterly, they sometimes produce “over-
regularized” past tense forms for a small fraction of their irregular verbs (e.g.,
thinked) (Marcus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992), along with
other, less frequent errors (Xu & Pinker, 1995). They are also able to extend the
past tense “rule” to novel verbs (e.g., wug – wugged). Finally, in older children,
performance approaches ceiling on both regular and irregular verbs (Berko,
1958; Ervin, 1964; Kuczaj, 1977).
In the early 1980s, it was held that this pattern of behavior represented the

operation of two developmental mechanisms (Pinker, 1984). One of these was
symbolic and served to learn the regular past tense “rule,” while the other was
associative and served to learn the exceptions to the rule. The extended phase of
overregularization errors corresponded to difficulties in integrating the two
mechanisms, specifically a failure of the associative mechanism to block the
function of the symbolic mechanism. That the child comes to the language
acquisition situation armed with these two mechanisms (one of them full of
blank rules) was an a priori commitment of the developmental theory.
By contrast, Rumelhart and McClelland (1986) proposed that a single net-

work that does not distinguish between regular and irregular past tenses is
sufficient to learn past tense formation. The architecture of their model is shown
in Figure 2.3. A phoneme-based representation of the verb root was recoded
into a more distributed, coarser (more blurred) format, which they called
“Wickelfeatures.” The stated aim of this recoding was to produce a representa-
tion that (a) permitted differentiation of all of the root forms of English and
their past tenses, and (b) provided a natural basis for generalizations to emerge
about what aspects of a present tense correspond to what aspects of a past tense.
This format involved representing verbs over 460 processing units. A two-layer
network was then used to associate the Wickelfeature representations of the
verb root and past tense form. A final decoding network was then used to derive
the closest phoneme-based rendition of the past tense form and reveal the
model’s response (the decoding part of the model was somewhat restricted by
computer processing limitations of the machines available at the time).
The connection weights in the two-layer network were initially randomized.

The model was then trained in three phases, in each case using the delta rule to
update the connection weights after each verb root/past tense pair was pre-
sented (see Section 2.1.2). In Phase 1, the network was trained on ten high
frequency verbs, two regular and eight irregular, in line with the greater pro-
portion of irregular verbs amongst the most frequent verbs in English. Phase
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1 lasted for ten presentations of the full training set (or “epochs”). In Phase 2,
the network was trained on 410 medium frequency verbs, 334 regular and 76
irregular, for a further 190 epochs. In Phase 3, no further training took place,
but 86 lower frequency verbs were presented to the network to test its ability to
generalize its knowledge of the past tense domain to novel verbs.

There were four key results for this model. First, it succeeded in learning both
regular and irregular past tense mappings in a single network that made no
reference to the distinction between regular and irregular verbs. Second, it
captured the overall pattern of faster acquisition for regular verbs than irregular
verbs, a predominant feature of children’s past tense acquisition. Third, the
model captured the U-shaped profile of development: an early phase of accurate
performance on a small set of regular and irregular verbs, followed by a phase
of overregularization of the irregular forms, and finally recovery for the irregu-
lar verbs and performance approaching ceiling on both verb types. Fourth,
when the model was presented with the low-frequency verbs on which it had not
been trained, it was able to generalize the past tense rule to a substantial
proportion of them, as if it had indeed learned a rule. Additionally, the model
captured more fine-grained developmental patterns for subsets of regular and
irregular verbs, and generated several novel predictions.

Rumelhart and McClelland explained the generalization abilities of the
network in terms of the superpositional memory of the two-layer network. All
the associations between the distributed encodings of verb root and past tense
forms must be stored across the single matrix of connection weights. As a result,

Phonological representation of past tense 

Phonological representation of verb root 

Recoding 

Decoding 

2-layer network 
trained with the 

delta rule 

Coarse coded, distributed 
Wickelfeature 

representation of root 

Coarse coded, distributed 
Wickelfeature representation 

of past tense 

Figure 2.3 Two-layer network for learning the mapping between the verb roots
and past tense forms of English verbs (Rumelhart & McClelland, 1986).
Phonological representations of verbs are initially encoded into a coarse,
distributed “Wickelfeature” representation. Past tenses are decoded from the
Wickelfeature representation back to the phonological form. Later
connectionist models replaced the dotted area with a three-layer feedforward
backpropagation network (e.g., Plunkett & Marchman, 1991, 1993).
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similar patterns blend into one another and reinforce each other. Generalization
is contingent on the similarity of verbs at input. Were the verbs to be presented
using an orthogonal, localist scheme (e.g., 420 units, one per verb), then there
would be no similarity between the verbs, no blending of mappings, no gener-
alization, and therefore no regularization of novel verbs. As the authors state,
“it is the statistical relationships among the base forms themselves that deter-
mine the pattern of responding. The network merely reflects the statistics of the
featural representations of the verb forms” (p. 267). Based on the model’s
successful simulation of the profile of language development in this domain
and, compared to the dual mechanism model, its more parsimonious a priori
commitments, Rumelhart and McClelland viewed their work on past tense
morphology as a step towards a revised understanding of language knowledge,
language acquisition, and linguistic information processing in general.
The past tense model stimulated a great deal of subsequent debate, not least

because of its profound implications for theories of language development (no
rules!). The model was initially subjected to concentrated criticism. Some of this
was overstated – for instance, the use of domain-general learning principles (such
as distributed representation, parallel processing, and the delta rule) to acquire
the past tense in a single network was interpreted as a claim that all of language
acquisition could be captured by the operation of a single domain-general
learning mechanism. Such an absurd claim could be summarily dismissed.
However, as it stood, the model made no such claim: its generality was in the
processing principles. The model itself represented a domain-specific system
dedicated to learning a small part of language. Nevertheless, a number of the
criticisms were more telling: the Wickelfeature representational format was not
psycholinguistically realistic; the generalization performance of the model was
relatively poor; the U-shaped developmental profile appeared to be a result of
abrupt changes in the composition of the training set; and the actual response of
the model was hard to discern because of problems in decoding theWickelfeature
output into a phoneme string (Pinker & Prince, 1988).
The criticisms and following rejoinders were interesting in a number of ways.

First, there was a stark contrast between the precise, computationally imple-
mented connectionist model of past tense formation and the verbally specified
two-system theory (e.g., Marcus, Pinker, Ullman, Hollander, Rosen, & Xu,
1992). The implementation made simplifications but was readily evaluated
against quantitative behavioral evidence; it made predictions and it could be
falsified. The verbal theory by contrast was vague – it was hard to know how or
whether it would work or exactly what behaviors it predicted (Thomas,
Forrester, & Richardson, 2006). Therefore, it could only be evaluated on loose
qualitative grounds. Second, the model stimulated a great deal of new multi-
disciplinary research in the area. Today, inflectional morphology (of which past
tense is a part) is one of the most studied aspects of language processing in
children, in adults, in second language learners, in adults with acquired brain
damage, in children and adults with neurogenetic disorders, and in children
with language impairments, using psycholinguistic methods, event-related
potential measures of brain activity, functional magnetic resonance imaging,
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and behavioral genetics . . . This rush of science illustrates the essential role
of computational modeling in driving forward theories of human cognition.
Third, further modifications and improvements to the past tense model have
highlighted how researchers go about the difficult task of understanding which
parts of their model represent the key theoretical claims and which are imple-
mentational details. Simplification is inherent to modeling but successful
modeling relies on making the right simplifications to focus on the process of
interest. For example, in subsequent models, the Wickelfeature representation
was replaced by more plausible phonemic representations based on articula-
tory features; the recoding/two-layer-network/decoding component of the
network (the dotted rectangle in Figure 2.3) that was trained with the delta
rule was replaced by a three-layer feedforward network trained with the
backpropagation algorithm; and the U-shaped developmental profile was
demonstrated in connectionist networks trained with a smoothly growing
training set of verbs or even with a fixed set of verbs (see, e.g., Plunkett &
Marchman, 1991, 1993, 1996).

The English past tense model prompted further work within inflectional
morphology in other languages (pluralization in German: Goebel & Indefrey,
2000; pluralization in Arabic: Plunkett & Nakisa, 1997), as well as models that
explored the possible causes of deficits in acquired and developmental disorders
such as aphasia, developmental language disorder, and Williams syndrome
(e.g., Hoeffner & McClelland, 1993; Joanisse & Seidenberg, 1999; Thomas &
Karmiloff-Smith, 2003a; Thomas & Knowland, 2014). More recent work treats
the past tense as one role of a more general system which has the goal of
outputting the phonological form of words appropriate to the syntactic context
of the sentence in which they appear – whether this involves the tense of verbs,
the number of nouns, or the comparative of adjectives (Karaminis & Thomas,
2010, 2014). Moreover, the idea that rule-following behavior could emerge in a
developing system that also has to accommodate exceptions to the rules was
also successfully pursued via connectionist modeling in the domain of reading
(e.g., Plaut et al., 1996). This led to work that also considered various forms of
acquired and developmental dyslexia.

For the past tense itself, there remains much interest in the topic as a crucible
to test theories of language development. There is now extensive evidence from
child development, adult cognitive neuropsychology, developmental neuro-
psychology, and functional brain imaging to suggest partial dissociations
between performance on regular and irregular inflection under various condi-
tions. For the connectionist approach, the dissociations represent the integra-
tion of multiple information sources, syntactic, lexical semantic, and
phonological. Regular and irregular inflections depend differently on these
sources depending on statistical properties of the mappings, explaining the
dissociations. For the two-system approach, the dissociations represent separate
contributions of causal rules and associative memory. (See Pater, 2019, and
Kirov & Cotterell, 2018, for more recent reviews of this debate from the
perspective of linguistics.) Nevertheless, the force of the original past tense
model remains: so long as there are regularities in the statistical structure of a
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problem domain, a massively parallel constraint satisfaction system can learn
these regularities and extend them to novel situations. Moreover, as with
humans, the behavior of the system is flexible and context sensitive – it can
accommodate regularities and exceptions within a single processing structure.

2.3.3 Finding Structure in Time (Elman, 1990)

This section introduces the notion of the simple recurrent network and its
application to language. As with past tense, the key point of the model will be
to show how conformity to regularities of language can arise without an explicit
representation of a linguistic rule. Moreover, the following simulations will
demonstrate how learning can lead to the discovery of useful internal represen-
tations that capture conceptual and linguistic structure on the basis of the
cooccurrences of words in sentences.
The IA model exemplified connectionism’s commitment to parallelism: all of

the letters of the word presented to the network were recognized in parallel and
processing occurred simultaneously at different levels of abstraction. But not all
processing can be carried out in this way. Some human behaviors intrinsically
revolve around temporal sequences. Language, action planning, goal-directed
behavior, and reasoning about causality are examples of domains that rely on
events occurring in sequences. How has connectionism addressed the processing
of temporally unfolding events? One solution was offered in the TRACE model
of spoken word recognition (McClelland & Elman, 1986) where a word was
specified as a sequence of phonemes. In that case, the architecture of the system
was duplicated for each time slice and the duplicates wired together. This
allowed constraints to operate over items in the sequence to influence recogni-
tion. In other models, a related approach was used to convert a temporally
extended representation into a spatially extended one. For example, in the past
tense model, all the phonemes of a verb were presented across the input layer.
This could be viewed as a sequence if one assumed that the representation of the
first phoneme represents time slice t, the representation of the second phoneme
represents time slice tþ1, and so on. As part of a comprehension system, this
approach assumes a buffer that can take sequences and convert them to a
spatial vector. However, this solution is fairly limited, as it necessarily precom-
mits to the size of the sequences that can be processed at once (i.e., the size of
the input layer).
Elman (1990, 1991) offered an alternative and more flexible approach to

processing sequences, proposing an architecture that has been extremely influ-
ential and much used since. Elman drew on the work of Jordan (1986) who had
proposed a model that could learn to associate a “plan” (i.e., a single input
vector) with a series of “actions” (i.e., a sequence of output vectors). Jordan’s
model contained recurrent connections permitting the hidden units to “see” the
network’s previous output (via a set of “state” input units that are given a copy
of the output on the previous time step). The facility for the network to shape its
next output according to its previous response constitutes a kind of memory.
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Elman’s innovation was to build a recurrent facility into the internal units of the
network, allowing it to compute statistical relationships across sequences of
inputs and outputs. To achieve this, first, time is discretized into a number of
slices. On time step t, an input is presented to the network and causes a pattern
of activation on hidden and output layers. On time step t þ 1, the next input in
the sequence of events is presented to the network. However, crucially, a copy
of the activation of the hidden units on time step t is transmitted to a set of
internal “context” units. This activation vector is also fed to the hidden units on
time step t þ 1. Figure 2.4 shows the architecture, known as the simple recurrent
network (SRN). It is usually trained with the backpropagation algorithm (see
Section 2.2.3) as a multi-layer feedforward network, ignoring the origin of the
information on the context layer.

Each input to the SRN is therefore processed in the context of what came
before, but in a way subtly more powerful than the Jordan network. The input
at t þ 1 is processed in the context of the activity produced on the hidden units
by the input at time t. Now consider the next time step. The input at time t þ 2
will be processed along with activity from the context layer that is shaped by
two influences:

the input at tþ 1 shaped by the input at tð Þð Þ
The input at time t þ 3 will be processed along with activity from the context
layer that is shaped by three influences:

the input at tþ 2 shaped by the input at tþ 1 shaped by the input at tð Þð Þð Þ
The recursive flavor of the information contained in the context layer means
that each new input is processed in the context of the full history of previous

Input units 

Output units 

Hidden units 

Context units 

HU activations 
at time (t+1) 

HU activations 
at time (t) 

Fixed 1-to-1 weights
copy activation of

hidden layer to
context units

Figure 2.4 Elman’s simple recurrent network architecture for finding structure
in time (Elman, 1991, 1993). Connections between input and hidden, context
and hidden, and hidden and output layers are trainable. Sequences are applied
to the network element by element in discrete time steps; the context layer
contains a copy of the hidden unit activations on the previous time step
transmitted by fixed, one-to-one connections.
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inputs. This permits the network to learn statistical relationships across
sequences of inputs or, in other words, to find structure in time.
In his original paper of 1990, Elman demonstrated the powerful properties of

the SRN with two examples. In the first, the network was presented with a
sequence of letters made up of concatenated words, e.g.:

MANYYEARSAGOABOYANDGIRLLIVEDBYTHESEATHEYPLAYED
HAPPILY

Each letter was represented by a distributed binary code over five input units.
The network was trained to predict the next letter in the sentence for 200 sen-
tences constructed from a lexicon of fifteen words. There were 1,270 words and
4,963 letters. Since each word appeared in many sentences, the network was not
particularly successful at predicting the next letter when it got to the end of each
word, but within a word it was able to predict the sequences of letters. Using the
accuracy of prediction as a measure, one could therefore identify which
sequences in the letter string were words: they were the sequences of good
prediction bounded by high prediction errors. The ability to extract words
was of course subject to the ambiguities inherent in the training set (e.g., for
the and they, there is ambiguity after the third letter). Elman suggested that if
the letter strings are taken to be analogous to the speech sounds available to the
infant, the SRN demonstrates a possible mechanism to extract words from the
continuous stream of sound that is present in infant-directed speech. Elman’s
work contributed to the increasing interest in the statistical learning abilities of
young children in language and cognitive development (e.g., Saffran &
Kirkham, 2018; Saffran, Newport, & Aslin, 1996).
In the second example, Elman created a set of 10,000 sentences by combin-

ing a lexicon of twenty-nine words and a set of short sentence frames (noun þ
[transitive] verb þ noun; noun þ [intransitive] verb). There was a separate
input and output unit for each word and the SRN was trained to predict the
next word in the sentence. During training, the network’s output came to
approximate the transitional probabilities between the words in the sentences –
that is, it could predict the next word in the sentences as much as this was
possible. Following the first noun, the verb units would be more active as the
possible next word, and verbs that tended to be associated with this particular
noun would be more active than those that did not. At this point, Elman
examined the similarity structure of the internal representations to discover
how the network was achieving its prediction ability. He found that the
internal representations were sensitive to the difference between nouns and
verbs, and within verbs, to the difference between transitive and intransitive
verbs. Moreover, the network was also sensitive to a range of semantic
distinctions: not only were the internal states induced by nouns split into
animate and inanimate, but the pattern for “woman” was most similar to
“girl,” and that for “man” was most similar to “boy.” The network had learnt
to structure its internal representations according to a mix of syntactic and
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semantic information because these information states were the best way to
predict how sentences would unfold. Elman concluded that the representa-
tions induced by connectionist networks need not be flat but could include
hierarchical encodings of category structure.

Based on his finding, Elman also argued that the SRN was able to induce
representations of entities that varied according to their context of use. This
contrasts with classical symbolic representations that retain their identity irre-
spective of the combinations into which they are put, a property called “com-
positionality.” This claim is perhaps better illustrated by a second paper Elman
published two years later called “The importance of starting small” (1993). In
this later paper, Elman explored whether rule-based mechanisms are required to
explain certain aspects of language performance, such as syntax. He focused on
“long-range dependencies,” which are links between words that depend only on
their syntactic relationship in the sentence and, importantly, not on their
separation in a sequence of words. For example, in English, the subject and
main verb of a sentence must agree in number. If the noun is singular, so must
be the verb; if the noun is plural, so must be the verb. Thus, in the sentence “The
boy chases the cat,” boy and chasesmust both be singular. But this is also true in
the sentence “The boy whom the boys chase chases the cat.” In the second
sentence, the subject and verb are further apart in the sequence of words, but
their relationship is the same; moreover, the words are now separated by plural
tokens of the same lexical items. Rule-based representations of syntax were
thought to be necessary to encode these long-distance relationships because,
through the recursive nature of syntax, the words that have to agree in a
sentence can be arbitrarily far apart.

Using an SRN trained on the same prediction task as that outlined above but
now with more complex sentences, Elman (1993) demonstrated that the net-
work was able to learn these long-range dependencies even across the separ-
ation of multiple phrases. If boy was the subject of the sentence, when the
network came to predict the main verb chase as the next word, it predicted that
it should be in the singular. The method by which the network achieved this
ability is of particular interest. Once more, Elman explored the similarity
structure in the hidden unit representations, using principal component analyses
to identify the salient dimensions of similarity across which activation states
were varying. This enabled him to reduce the high dimensionality of the internal
states (150 hidden units were used) to a manageable number in order to
visualize processing. Elman was then able to plot the trajectories of activation
as the network altered its internal state in response to each subsequent input.
Figure 2.5 depicts these trajectories as the network processes different multi-
phrase sentences, plotted with reference to particular dimensions of principal
component space. This figure demonstrates that the network adopted similar
states in response to particular lexical items (e.g., tokens of boy, who, chases),
but that it modified the pattern slightly according to the grammatical status of
the word. In Figure 2.5a, the second principal component appears to encode
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singularity/plurality. Figure 2.5b traces the network’s state as it processes two
embedded relative clauses containing iterations of the same words. Each clause
exhibits a related but slightly shifted triangular trajectory to encode its role in
the syntactic structure.
The importance of this model is that it prompts a different way to understand

the processing of sentences. Previously one would view symbols as possessing
fixed identities and as being bound into particular grammatical roles via a
syntactic construction. In the connectionist system, sentences are represented
by trajectories through activation space in which the activation pattern for each
word is subtly shifted according to the context of its usage. The implication is
that the property of compositionality at the heart of the classical symbolic
computational approach may not be necessary to process language.
Elman (1993) also used this model to investigate a possible advantage to

learning that could be gained by initially restricting the complexity of the
training set. At the start of training, the network had its memory reset (its
context layer wiped) after every third or fourth word. This window was then
increased in stages up to six to seven words across training. The manipulation
was intended to capture maturational changes in working memory in children.
Elman (1993) reported that starting small enhanced learning by allowing the
network to build simpler internal representations that were later useful for
unpacking the structure of more complex sentences (see Rohde & Plaut, 1999,
for discussion and further simulations). This idea resonated with developmental
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Figure 2.5 Trajectory of internal activation states as the SRN processes
sentences (Elman, 1993). The data show positions according to the dimensions
of a principal components analysis (PCA) carried out on hidden unit
activations for the whole training set. Words are indexed by their position in the
sequence but represent activation of the same input unit for each word. (a)
PCA values for the second principal component as the SRN processes two
sentences, “Boy who boys chase chases boy’”or “Boys who boys chase chase
boy”; (b) PCA values for the first and eleventh principal components as the
SRN processes “Boy chases boy who chases boy who chases boy.”
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psychologists in its demonstration of the way in which learning and maturation
might interact in constructing cognition (Elman et al., 1996).

Recurrent models were subsequently extended to consider other domains
where temporal information about sequence is important. For example,
Botvinick and Plaut (2004) demonstrated how simple recurrent networks can
capture the control of routine sequences of actions without the need for schema
hierarchies. Elman and McRae (2019) used simple recurrence to construct a
model of semantic event knowledge, that is, what tends to happen in different
situations involving actors and agents. The model learned both the internal
structure of activities as well as the temporal structure that organizes activity
sequences. Cleeremans and colleagues demonstrated how simple recurrent
models were a useful architecture to understand phenomena within implicit
learning, which often involve detecting patterns within sequences of stimuli (see
Cleeremans & Dienes, 2008).

In the domain of language processing, meanwhile, subsequent progress was
initially slow (Christiansen & Chater, 2001). The ability of simple recurrent
networks to induce structured representations containing grammatical and
semantic information from word sequences prompted the view that associative
statistical learning mechanisms might play a much more central role in lan-
guage acquisition. This innovation was especially welcome given that symbolic
theories of sentence processing do not offer a ready account of language
development. Indeed, they are largely identified with the nativist view that little
in syntax develops. But a limitation of Elman’s initial simulations was that the
prediction task does not learn any categorizations over the input set. While the
simulations demonstrate that information important for language comprehen-
sion and production can be induced from word sequences, neither task
was performed.

Recurrent neural network approaches to sentence processing have gone in
two directions. In terms of cognitive modeling, connectionist simulations have
included more differentiated structure to learn mappings between messages and
word sequences, including limited use of binding to temporarily link concepts
and roles (Chang, Dell, & Bock, 2006). Latterly, the model has been applied to
how children learn the relationship between declarative (statement) and inter-
rogative (question) sentences (Fitz & Chang, 2017). In terms of engineering
approaches, deep recurrent neural networks have been scaled up to an extent
where they can achieve automatic translation between sentences in different
languages with a reasonable degree of accuracy, such as in the case of Google
Translate (Wu et al., 2016). The architecture of Google Translate includes a
deep recurrent neural network (eight layers) that encodes a sentence of the first
language in a vector of numbers, and a decoder network (also eight layers) that
learns to map to a similar vector in the second language and then to an output
sequence. The mapping between encoder and decoder is mediated by an
“attention” mechanism that gives flexibility on which parts of the first sentence
might map to which parts of the second sentence. The overall system is trained
to map between millions of sentences in the two languages.
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While the degree of accuracy of translation is unimaginable from the per-
spective of the early PDP models and must rely heavily on the syntactic infor-
mation in the respective languages, from a cognitive perspective, it contains no
representation of sentence meaning. The shallowness of the mapping between
languages becomes apparent when real world knowledge is required to solve
ambiguities in sentence processing, such as which pronouns refer to which
nouns; here, Google Translate can perform poorly (Hofstadter, 2018).
However, within linguistics, the successes of machine translation by deep recur-
rent neural networks has focused attention on learning theory to constrain
theories of grammar (Pater, 2019). Moreover, the new recurrent network trans-
lation models lend credence to early claims by PDP researchers (e.g.,
Rumelhart, Smolensky, McClelland, & Hinton, 1986) that thoughts – although
they can be expressed as sentences – are represented in the brain as vectors
(patterns of neural activation) and that reasoning is a sequence of transitions
between such vectors. As of mid 2020, further breakthroughs in machine
language processing have occurred (Brown et al., 2020). The latest models
now resolve referential ambiguities better than earlier versions, and their
internal representations appear to capture syntactic structure in language better
than critics expected (Manning et al., 2020). However, they still fail at capturing
human understanding of common-sense physical relationships, indicating they
are still somewhat shallow language processors. An exciting next step for neural
language models will be to place them within systems that understand and
communicate about real or hypothetical situations, since ultimately this is what
language is for (McClelland et al., 2020).
In sum, then, Elman’s work demonstrates how simple connectionist architec-

tures can learn statistical regularities over temporal sequences. These systems
may indeed be sufficient to produce many of the behaviors that linguists have
described with grammatical rules. However, in the connectionist system, the
underlying primitives are context-sensitive representations of words and trajec-
tories of activation through recurrent circuits. Such representations appear to be
playing a more and more important role in theories of how humans process –
and even understand – natural language.

2.4 Connectionist Influences on Cognitive Theory

Connectionism offers an explanation of human cognition because
instances of behavior in particular cognitive domains can be explained with
respect to a set of general principles (parallel distributed processing) and the
conditions of the specific domains. However, from the accumulation of suc-
cessful models, it is also possible to discern a wider influence of connectionism
on the nature of theorizing about cognition, and this is perhaps a truer
reflection of its impact. How has connectionism made people think differently
about cognition?

56 michael s. c. thomas and james l. mcclelland

https://doi.org/10.1017/9781108755610.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.005


2.4.1 Knowledge versus Processing

One area where connectionism has changed the basic nature of theorizing is
memory. According to the old model of memory based on the classical compu-
tational metaphor, the information in long-term memory (e.g., on the hard
disk) has to be moved into working memory (the CPU) for it to be operated on,
and the long-term memories are laid down via a domain-general buffer of short-
term memory (RAM). In this type of system, then, long-term memory is
separated from processing. It is relatively easy to shift informational content
between different systems, back and forth between central processing and short-
and long-term stores. Computation is predicated on variables: the same binary
string can readily be instantiated in different memory registers or encoded onto
a permanent medium.

By contrast, knowledge is hard to move about in connectionist networks
because it is encoded in the weights. For example, in the past tense model,
knowledge of the past tense rule “add –ed” is distributed across the weight
matrix of the connections between input and output layers. The difficulty in
portability of knowledge is inherent in the principles of connectionism –

Hebbian learning alters connection strengths to reinforce desirable activation
states in connected units, tying knowledge to structure. If the foundational
premise is that knowledge will be very difficult to move about in the human
information processing system, what kind of cognitive architecture results?
There are four main themes.

First, it is necessary to distinguish between two different ways in which
knowledge can be encoded: active and latent representations (Munakata &
McClelland, 2003). Latent knowledge corresponds to the information stored
in the connection weights from accumulated experience. By contrast, active
knowledge is information contained in the current activation states of the
system. Clearly the two are related, since the activation states are constrained
by the connection weights. But, particularly in recurrent networks, there can be
subtle differences. Active states contain a trace of recent events (how things are
at the moment) while latent knowledge represents a history of experience (how
things tend to be). Differences in the ability to maintain the active states (e.g., in
the strength of recurrent circuits) can produce errors in behavior where the
system lapses into more typical ways of behaving (Morton & Munakata, 2002;
Munakata, 1998).

Second, if information does need to be moved around the system, for
example from a more instance-based (episodic) system to a more general
(semantic) system, this will require special structures and special (potentially
time consuming) processes. Thus McClelland, McNaughton, and O’Reilly
(1995) proposed a dialogue between separate stores in the hippocampus and
neocortex to gradually transfer knowledge from episodic to semantic memory
(see O’Reilly, Bhattacharyya, Howard, & Ketza, 2014). For example, French,
Ans, and Rousset (2001) proposed a special method to transfer knowledge
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between the two memory systems: internally generated noise produces “pseu-
dopatterns” from one system that contain the central tendencies of its
knowledge; the second memory system is then trained with this extracted
knowledge to effect the transfer.
Third, information will be processed in the same substrate where it is stored.

Therefore, long-term memories will be active structures and will perform com-
putations on content. An external strategic control system plays the role of
differentially activating the knowledge in this long-term system that is relevant
to the current context. In anatomical terms, this distinction broadly corresponds
to frontal/anterior (strategic control) and posterior (long-term) cortex, with
posterior cortex comprising a suite of content-specific processing systems. The
design means, somewhat counter-intuitively, that the control system has no
content. Rather, the control system contains placeholders that serve to activate
different regions of the long-term system. The control system may contain plans
(sequences of placeholders) and it may be involved in learning abstract concepts
(using a placeholder to temporarily co-activate previously unrelated portions of
long-term knowledge while Hebbian learning builds an association between
them) but it does not contain content in the sense of a domain-general working
memory. The study of frontal systems then becomes an exploration of the
activation dynamics of these placeholders and their involvement in learning
(see, e.g., work by Botvinick & Cohen, 2014; Davelaar & Usher, 2002;
Haarmann & Usher, 2001; O’Reilly, Braver, & Cohen, 1999; Usher &
McClelland, 2001).
Similarly, connectionist research has explored how activity in the control

system can be used to modulate the efficiency of processing elsewhere in the
system, for instance to implement selective attention. For example, in an early
model, Cohen, Dunbar, and McClelland (1990) demonstrated how task units
could be used to differentially modulate word naming and color naming pro-
cessing channels in a model of the color-word Stroop task. Here, latent know-
ledge interacted with the operation of task control, so that it was harder to
selectively attend to color naming and ignore information from the more
practiced word-naming channel than vice versa. This work was later extended
to demonstrate how deficits in the strategic control system (prefrontal cortex)
could lead to problems in selective attention in disorders like schizophrenia (see
Botvinick & Cohen, 2014, for a review).
Lastly, the connectionist perspective on memory alters the conception of

domain generality in processing systems. It is unlikely that there are any
domain-general processing systems that serve as a “Jack of all trades,” i.e., that
can move between representing the content of multiple domains. However,
there may be domain-general systems that are involved in modulating many
disparate processes without taking on the content of those systems, either via
direct connectivity or through the regional modulation of neurotransmitter
levels. This type of general system might be called one with “a finger in every
pie.” Meanwhile, short-term or working memory (as exemplified by the active
representations contained in the recurrent loop of a network) is likely to exist as
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a devolved panoply of discrete systems, each with its own content-specific loop.
For example, research in the neuropsychology of language tends to support the
existence of separate working memories for phonological, semantic, and syn-
tactic information (MacDonald & Christiansen, 2002). And one might expect
recurrent loops in the prefrontal cortex to maintain information about current
goal states and positions in task sequences. From a connectionist perspective,
therefore, and in contrast to traditional cognitive theory, there is no such thing
as working memory as a general mechanism; rather it is a content-specific
activity carried out in multiple systems.

2.4.2 Cognitive Development

A key feature of PDP models is the use of a learning algorithm for modifying
the patterns of connectivity as a function of experience. Compared to symbolic,
rule-based computational models, this has made them a more sympathetic
formalism for studying cognitive development (Elman et al., 1996). The com-
bination of domain-general processing principles, domain-specific architectural
constraints, and structured training environments has enabled connectionist
models to give accounts of a range of developmental phenomena. These include
infant category development, language acquisition and reasoning in children
(see Mareschal & Thomas, 2007; see also Chapter 23 in this handbook).

Connectionism has become aligned with a resurgence of interest in statistical
learning, and a more careful consideration of the information available in the
child’s environment that may feed their cognitive development. One central
debate revolves around how children can become “cleverer” as they get older,
appearing to progress through qualitatively different stages of reasoning.
Connectionist modeling of the development of children’s reasoning was able
to demonstrate that continuous incremental changes in the weight matrix driven
by algorithms such as backpropagation can result in nonlinear changes in
surface behavior, suggesting that the stages apparent in behavior may not
necessarily be reflected in changes in the underlying mechanism (McClelland,
1989). Other connectionists have argued that algorithms able to supplement the
computational resources of the network as part of learning may also provide an
explanation for the emergence of more complex forms of behavior with age in
so-called constructivist networks (e.g., cascade correlation; see Shultz, 2003; see
also Chapter 23 in this handbook).

The key contribution of connectionist models in the area of developmental
psychology has been to specify detailed, implemented models of transition
mechanisms that demonstrate how the child can move between producing
different patterns of behavior. This was a crucial addition to a field that has
accumulated vast amounts of empirical data cataloging what children are able
to do at different ages. The specification of mechanism is also important to
counter some strongly empiricist views that simply to identify statistical infor-
mation in the environment suffices as an explanation of development; instead, it
is necessary to show how a mechanism could use this statistical information to
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acquire some cognitive capacity. Moreover, when connectionist models are
applied to development, it often becomes apparent that passive statistical
structure is not the key factor; rather, the relevant statistics are in the trans-
formation of the statistical structure of the environment to the output or the
behavior that is relevant to the child, thereby appealing to notions like the
regularity, consistency, and frequency of input–output mappings.
Connectionist approaches to development have influenced understanding of

the nature of the knowledge that children acquire. For example, Mareschal
et al. (2007) argued that many mental representations of knowledge are partial
(i.e., capture only some task-relevant dimensions) and only some dimensions of
knowledge may be activated in any given situation; the existence of explicit
language may blind people to the fact that there could be a limited role for truly
abstract knowledge in the normal operation of the cognitive system
(Westermann et al., 2007; Westermann, Thomas, & Karmiloff-Smith, 2010).
One important topic area gaining more attention is the use of connectionist

models to capture aspects of numerical and mathematical cognition. This is an
attractive application area since it has now become clear that an understanding
of exact number (Gordon, 2004), and even the precision of approximate
number estimation (Piazza et al., 2013) are highly experience-dependent.
Building on earlier work by Verguts and Fias (2004), Stoianov and Zorzi
(2012) introduced a neural network that captured aspects of adult human
numerical estimation abilities, and Tesolin, Zou, and McClelland (2020)
applied a similar approach to capture experience-dependent developmental
increases in precision. More recent work using newer neural network architec-
tures captures the emergence of an understanding of the exact number system
through experience with an ensemble of distinct but underlyingly overlapping
exact-number dependent tasks (Sabatiel, McClelland, & Solstad, 2020).

2.4.3 The Study of Acquired Disorders in Cognitive Neuropsychology

Traditional cognitive neuropsychology of the 1980s was predicated on the
assumption of underlying modular structure, i.e., that the cognitive system
comprises a set of independently functioning components. Patterns of selective
cognitive impairment after acquired brain damage could then be used to
construct models of normal cognitive function. The traditional models com-
prised box-and-arrow diagrams that sketched out rough versions of cognitive
architecture, informed both by the patterns of possible selective deficit (which
bits can fail independently) and by a task analysis of what the cognitive system
probably has to do.
In the initial formulation of cognitive neuropsychology, caution was advised

in attempting to infer cognitive architecture from behavioral deficits, since a
given pattern of deficits might be consistent with a number of underlying
architectures (Shallice, 1988). It is in this capacity that connectionist models
have been extremely useful. They have both forced more detailed specification
of proposed cognitive models via implementation and also permitted
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assessment of the range of deficits that can be generated by damaging these
models in various ways. For example, models of reading have demonstrated
that the ability to decode written words into spoken words and recover their
meanings can be learned in a connectionist network; and when this network is
damaged by, say, lesioning connection weights or removing hidden units,
various patterns of acquired dyslexia can be simulated (e.g., Plaut et al., 1996;
Woollams, 2014). Connectionist models of acquired deficits have grown to be
an influential aspect of cognitive neuropsychology and have been applied
to domains such as language, memory, semantics, and vision (see Cohen,
Johnstone, & Plunkett, 2000, for examples).

Several ideas have gained their first or clearest grounding via connectionist
modeling. One of these ideas is that patterns of breakdown can arise from the
statistics of the problem space (i.e., the mapping between input and output)
rather than from structural distinctions in the processing system. In particular,
connectionist models have shed light on a principal inferential tool of cognitive
neuropsychology, the double dissociation. The line of reasoning argues that if in
one patient, ability A can be lost while ability B is intact, and in a second
patient, ability B can be lost while ability A is intact, then the two abilities may
be generated by independent underlying mechanisms. In a connectionist model
of category-specific impairments of semantic memory, Devlin et al. (1997)
demonstrated that a single undifferentiated network trained to produce two
behaviors could show a double dissociation between them simply as a conse-
quence of different levels of damage. This can arise because the mappings
associated with the two behaviors lead them to have different sensitivity to
damage. For a small level of damage, performance on A may fall off quickly
while performance on B declines more slowly; for a high level of damage,
A may be more robust than B. The reverse pattern of relative deficits implies
nothing about structure.

Connectionist researchers have often set out to demonstrate that, more
generally, double dissociation methodology is a flawed form of inference, on
the grounds that such dissociations arise relatively easily from parallel distrib-
uted architectures where function is spread across the whole mechanism.
However, on the whole, when connectionist models show robust double dissoci-
ations between two behaviors (for equivalent levels of damage applied to
various parts of the network and over many replications), it does tend to be
because different internal processing structures (units or layers or weights) or
different parts of the input layer or different parts of the output layer are
differentially important for driving the two behaviors – that is, there is special-
ization of function. Connectionism models of breakdown have, therefore,
tended to support the traditional inferences. Crucially, however, connectionist
models have greatly improved understanding of what modularity might look
like in a neurocomputational system: a partial rather than an absolute property;
a property that is the consequence of a developmental process where emergent
specialization is driven by structure-function correspondences (the ability of
certain parts of a computational structure to learn certain kinds of computation
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better than other kinds); and a property that must now be complemented by
concepts such as division of labor, degeneracy, interactivity, compensation, and
redundancy (see Thomas & Karmiloff-Smith, 2002a). These insights have
emerged even while advances in neuroimaging have tended to revise the overall
notion of modularity, from an a priori theoretical principle of cognitive design
to a data-driven way of describing patterns of activation across the brain during
behavior (Thomas & Brady, 2021).
The most recent developments in cognitive neuropsychology have tended to

reflect a growing trend in connectionist cognitive models as a whole: the
inclusion of more constraints from neuroanatomy (Chen, Lambon Ralph, &
Rogers, 2017). This produces so-called connectivity-constrained theories of
cognition. For example, models of language have included dual pathways
linking auditory areas for hearing a word to motor areas for producing the
same word, reflecting the dorsal and ventral pathways observed in the brain
(Ueno et al., 2011). This model is able to capture patterns of breakdown where
adults can retain the ability to repeat words while losing the ability to compre-
hend them. Models of semantics have incorporated a hub-and-spoke architec-
ture, where information from different sensory modalities is bound together in
an amodal hub, based on the connectivity observed in the ventral anterior
temporal lobe, the hub, with posterior fusiform gyrus (visual representations
of objects), superior temporal gyrus (auditory representations of speech), and
lateral parietal cortex (representations of object function and actions), the
spokes (Chen et al., 2017). This model is able to capture various patterns of
knowledge loss during semantic aphasia and semantic dementia as structure is
lost from the anterior temporal lobe, as well as disorders stemming from the loss
of control in retrieving semantic knowledge (Chen et al., 2017; Hoffman,
McClelland, & Lambon Ralph, 2018). Lastly, the connectionist framework
has been applied to the diagnosis of acquired disorders of language (Abel,
Huber, & Dell, 2009) and therapeutic interventions (Abel, Willmes, & Huber,
2007), though the latter is comparatively under-developed to date (Thomas
et al., 2019).

2.4.4 The Origins of Individual Differences

The fact that many connectionist models learn their cognitive abilities makes
them a useful framework within which to study variations in trajectories of
cognitive development, such as those associated with developmental disorders,
intelligence, and giftedness. Connectionist models contain a number of con-
straints (architecture, activation dynamics, input and output representations,
learning algorithm, training regime) that determine the efficiency and outcome
of learning. Developmental outcomes may also be influenced by the quality of
the learning experiences (the training set) to which the system is exposed.
Manipulations to these constraints produce candidate explanations for impair-
ments found in developmental disorders – for example, if a network has insuffi-
cient computational resources – or the impairments caused by exposure to
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atypical environments such as in cases of deprivation, as well as the factors that
underlie resilience and strong developmental outcomes.

In the 1980s and 1990s, many theories of developmental deficits employed the
same explanatory framework as adult cognitive neuropsychology. There was a
search for specific behavioral deficits or dissociations in children, which were
then explained in terms of the failure of individual modules to develop.
However, as Karmiloff-Smith (1998) pointed out, this meant that developmen-
tal deficits were actually being explained with reference to non-developmental,
static, and sometimes adult models of normal cognitive structure. Karmiloff-
Smith (1998, 2009) argued that the causes of developmental deficits of a genetic
origin are likely to lie in changes to low-level neurocomputational properties
that only exert their influence on cognition via an extended atypical develop-
mental process (Elman et al., 1996; Mareschal et al., 2007). Connectionist
models provided a way to explore the thesis that an understanding of the
constraints on the developmental process is essential for generating explan-
ations of developmental deficits because the developmental process could be
implemented and investigated. Models were applied to explaining a range of
behavioral disorders including dyslexia, developmental language disorder and
autism, as well as genetic disorders such as Williams syndrome and Down
syndrome (Harm & Seidenberg, 1999; Joanisse & Seidenberg, 2003;
Seidenberg, 2017; Thomas & Karmiloff-Smith, 2002b, 2003a; Thomas et al.,
2016; Tovar, Westermann, & Torres, 2017).

If one can capture the development of the “average child,” and one can
capture particular cases of atypical development, the stage is set to consider
the origin of variations across the normal range. Some children develop more
quickly than others; at a given age, a “bell-curve” or normal distribution of
variation in ability is observed. The causes of such individual differences are often
construed in terms of multiple interacting genetic and environmental factors.
From the genetic side, the current view is that there are small contributions
from many, perhaps thousands, of gene variants to individual differences in
cognition, the so-called polygenic model (Knopik et al., 2016). From the environ-
mental side, the most salient predictor of variation in cognitive outcomes is socio-
economic status, although this metric is a proxy for potentially many underlying
environmental influences (Hackman, Farah, & Meaney, 2010). To capture this
range of variation in a formal model, however, requires simulations of whole
populations, where individuals differ in their neurocomputational properties
and in the quality of the learning environment to which they are exposed.

Connectionist models of cognitive development have been scaled to consider-
ing population-level characteristics in this manner, including applications to
consider intelligence and giftedness (Thomas, 2016, 2018), as well as the inter-
play of genetic factors and of socio-economic status in influencing trajectories of
development (Thomas, Forrester, & Ronald, 2013, 2016). These models have
given mechanistic insight into how, for example, similar behavioral develop-
mental disorders can arise from a monogenic cause – a large alteration of a
single computational parameter produced by a genetic mutation – or from a
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polygenic cause – the cumulative contribution of smaller differences in many
computational parameters, perhaps lying on a continuum with variation in
the normal range and produced by common genetic variants (Thomas &
Knowland, 2014; Thomas et al., 2019).
Reflecting a move towards neuroanatomically constrained models discussed

in the previous section, multiscale models of variation have sought to reconcile
population-level data at multiple levels of description, including genes, brain
structure, behavior, and environment (Thomas, Forrester, & Ronald, 2016).
For example, to the extent that scientists are committed to viewing cognition as
arising from the information processing properties of the brain, genetic effects
on cognition must correspond to influences on neurocomputational properties; and
some properties of connectionist networks, such as the number or strength of
connections, can be seen as analogues to measures of brain structure, such as
volumes of gray and white matter (Thomas, 2016). To give one recent example,
Dündar-Coecke and Thomas (2019) sought to reconcile apparently paradoxical
data from brain and behavior. Why are high IQs associated with having a
bigger brain (as if more neural resources were better for cognition) but also
associated with faster gray matter loss and cortical thinning during cognitive
development (as if fewer neural resources were better for cognition)? The model
suggested that the network size drives ability (so more is always better), but that
a higher peak of network size during growth is then associated with faster
connectivity loss as the brain optimizes processing through pruning unused
resources (in the manner that higher mountain peaks have steeper sides).
Lastly, as with acquired disorders, implemented models of developmental

deficits provide a foundation to explore interventions to ameliorate these def-
icits. While models of interventions are fewer than models of deficits, more
attention has recently been paid to their implications. In these models, the
success of behavioral interventions to remediate development deficits depends
on the nature of the computational deficit, where it occurs in the model’s
architecture, the timing when the intervention is applied, and the content of
the intervention items with respect to the training set (the latter corresponding
to natural or educational experiences) (Thomas et al., 2019). Interventions that
buttress developmental strengths rather than attempt to remediate weaknesses
may also have more lasting benefits (Alireza, Fedor, & Thomas, 2017). These
models may contribute to the (sometimes substantial) gap between theories of
deficit and theories of treatment (see Moutoussis et al., 2017 for related work).

2.4.5 Deep Neural Networks for Cognitive Modeling

Deep neural networks have provided a step change in the performance of artifi-
cial intelligence systems for visual object recognition and natural language pro-
cessing. Do they provide the basis for better cognitive models? As a case study, a
number of researchers have explored whether the representations developed in
the respective hidden unit layers of deep neural networks of visual object recog-
nition accord to the types of representation found in the hierarchy of neural areas
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in the ventral pathway of vision in the inferior temporal cortex (e.g.,
Kriegeskorte, 2015; Yamins et al., 2014). Such a comparison is made possible
by assessing the representational similarity between activity produced by a range
of images of objects (faces, places, animals, tools, etc.), either in functional
magnetic resonance imaging data of human participants or in the hidden unit
activation levels of the trained neural network. The sequence of lower level
features (edges), intermediate level features (contours), and high-level features
(objects) is found both in neural areas and in network layers moving further from
the input, suggesting similar computations are taking place. However, in other
respects, these deep neural networks are not human-like: in the face of noise, their
performance declines in nonhumanlike ways, suggesting over-fitting to the
training data or the absence of crucial human-like architectural constraints; and
at best, current models are capturing bottom-up, feedforward aspects of visual
processing, not the top-down expectation-based influences enabled by bidirec-
tional connectivity (Kriegeskorte, 2015; Storrs & Kriegeskorte, 2019).

Deep neural networks may be necessary to train more complex connectionist
architectures suggested by the inclusion of neuroanatomical constraints. For
example, Blakeman and Mareschal (2020) used a deep reinforcement learning
architecture to model the interaction between neocortical, hippocampal, and
striatal systems for learning the evaluation of actions. However, deep architec-
tures do not provide better models solely by virtue of greater computational
power. Indeed, the emergence of deep neural networks has resurrected some of
the concerns expressed in the early PDP days, that the lack of transparency in
how trained networks operate limits their use for cognitive theory – if it is
unknown how the model is working, how can the understanding of cognition be
advanced? (See Seidenberg, 1993, for discussion.)

Some argue that deep neural networks are less readily extendible to higher
level cognition, because unlike visual object recognition, it is unknown what
cost function is being optimized (Aru & Vincente, 2018). For example, Aru and
Vincente (2018) give the example of theory of mind/mindreading. The skills
presumably being optimized (communication or deception) are themselves
complex and hard to formulate. Higher cognitive functions may arise from
the combination of many different neural processes that obey their own opti-
mization cost functions. Others argue that deep networks indicate researchers in
the field should ready themselves to deal with mechanisms that elude a concise
mathematical description and an intuitive understanding (Kriegeskorte, 2015).
The brain, after all, is complex. Yet others argue that understanding how big
artificial neural networks work after they have learned will be similar to figuring
out how the brain works but with several advantages: in the model, the
following are known: exactly what each neuron computes, the learning algo-
rithm they are using, and exactly how they are connected; the input can be
controlled and the behavior of any set of neurons observed over an extended
time period; and the system can be manipulated without any ethical concerns.
Furthermore, these models may even be amendable to the methods used in
cognitive psychology experiments (Ritter, Barrett, Santoro, & Botvinick, 2017).
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2.4.6 Connectionism and Predictive Coding

Deep neural networks represent one instance of the reemergence of connection-
ism in the 2000s. Another can be identified in predictive processing, which has
attracted considerable attention in certain areas of psychology, neuroscience,
and philosophy. The idea of predictive coding was articulated in a paper on
visual processing by Rao and Ballard (1999). Rao and Ballard proposed a model
of visual processing in which feedback connections from a higher-order to a
lower-order visual cortical area carry predictions of lower-level neural activities.
This aspect of the predictive coding approach has similarities to the bidirec-
tional, interlevel constraint satisfaction in McClelland & Rumelhart’s (1981)
Interactive Activation model of letter perception described in Section 2.3.1.
The broad idea of predictive processing is that a good internal model of the

world will be one which can predict future sensory input. This will include the
outcome of the organism’s actions on the world on what will subsequently be
perceived. And one way of improving the internal model is to compare its
predictions against the actual sensory input and modify the model to reduce
the disparity. This idea of minimizing temporal prediction error is already
present in the SRN model of Elman (1990) described in Section 2.3.3, and is
used widely in neural network models of learning and development.
However, predictive coding goes further in proposing that the signals propa-

gated forward in the brain are prediction error signals; that is, only deviations
from top-down expectations are passed between levels of representation within
the sensory systems of the brain. Moreover, it proposes a role for precision
weighting – a flexible calibration of how much noise is expected in bottom-up
signals in a given context – in determining whether a disparity between top-
down expectations and bottom-up input is sufficiently large to cause the internal
model to update, so that it better predicts sensory input in the future. In the
related idea of active inference, motor actions are no longer viewed as com-
mands to move muscles but as descending predictions about proprioceptive
sensory information (Friston, 2009).
The predictive coding approach has interesting applications to computational

psychiatry, perception and action, although accounts of cognition formulated
within this approach are not often used to create implemented models which
capture details of human performance. While predictive coding shares features
with some connectionist/PDP approaches, there are subtle differences whose
empirical consequences remain to be worked out (see, e.g., Magnuson, Li,
Luthra, You, & Steiner, 2019, for first steps in this direction).

2.5 Conclusion

This chapter has considered the foundation of connectionist modeling
and its contribution to understanding cognition. Connectionism was placed
in the historical context of nineteenth-century associative theories of mental
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processes and twentieth-century attempts to understand the computations
carried out by networks of neurons, as well as the most recent innovations in
deep learning. The key properties of connectionist networks were then reviewed,
and particular emphasis placed on the use of learning to build the microstructure
of these models. The core connectionist themes were: (1) that processing is
simultaneously influenced by multiple sources of information at different levels
of abstraction, operating via soft constraint satisfaction; (2) that representations
are spread across multiple simple processing units operating in parallel; (3) that
representations are graded, context-sensitive, and the emergent product of
adaptive processes; (4) that computation is similarity-based and driven by the
statistical structure of problem domains, but it can nevertheless produce rule-
following behavior. The connectionist approach was illustrated via three
foundational cognitive models, the Interactive Activation model of letter percep-
tion (McClelland & Rumelhart, 1981), the past tense model (Rumelhart &
McClelland, 1986), and simple recurrent networks for finding structure in time
(Elman, 1990). Apart from its body of successful individual models, connection-
ist theory has had a widespread influence on cognitive theorizing, and this
influence was illustrated by considering connectionist contributions to under-
standing of memory, cognitive development, acquired cognitive impairments,
and cognitive variation. New emerging themes were identified, including connec-
tionist models that incorporate neuroanatomical constraints, models that con-
sider variation across populations reflecting the interaction of genetic and
environmental influences, models that attempt to integrate data across levels of
description, and models that make use of deep neural network architectures.

One could argue that since the first edition of this volume, a number of the
theoretical constructs introduced by the connectionist approach have become so
integrated into mainstream cognitive science, spurred by supporting evidence
from neuroimaging, that they are no longer accompanied by the label “connec-
tionist” – among them, notions like distributed representations shaped by task
context; the role of prediction; and interactive processing (Mayor et al., 2014).
Connectionism continues to challenge symbolic conceptions of thought, in
areas such as language and mathematical cognition and in doing so, provides
a more sympathetic framework for capturing developmental change. Recent
directions have sought to integrate further constraints, such as from neuroanat-
omy and genetics. The future of connectionism, therefore, is likely to rely on its
relationships with other fields within the cognitive sciences, and its ability to
mediate between different levels of description in furnishing an understanding
of the mechanistic basis of thought.
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3 Bayesian Models of Cognition
Thomas L. Griffiths, Charles Kemp,
and Joshua B. Tenenbaum

3.1 Introduction

For over 200 years, philosophers and mathematicians have been using
probability theory to describe human cognition. While the theory of probabil-
ities was first developed as a means of analyzing games of chance, it quickly
took on a larger and deeper significance as a formal account of how rational
agents should reason in situations of uncertainty (Gigerenzer et al., 1989;
Hacking, 1975). The goal of this chapter is to illustrate the kinds of computa-
tional models of cognition that we can build if we assume that human learning
and inference approximately follow the principles of Bayesian probabilistic
inference, and to explain some of the mathematical ideas and techniques
underlying those models.
It is an interesting time to be exploring probabilistic models of the mind. The

fields of statistics, machine learning, and artificial intelligence have developed
powerful tools for defining and working with complex probabilistic models that
go far beyond the simple scenarios studied in classical probability theory; we
will have a taste of both the simplest models and more complex frameworks
here. The more complex methods can support multiple hierarchically organized
layers of inference, structured representations of abstract knowledge, and
approximate methods of evaluation that can be applied efficiently to data sets
with many thousands of entities. The result is practical methods for developing
computational models of human cognition that are based on sound probabil-
istic principles and that can also capture something of the richness and com-
plexity of everyday thinking, reasoning, and learning.
Over the last three decades Bayesian models have been applied to a wide

range of topics in psychology. Prominent examples include work on perception
(Froyen, Feldman, & Singh, 2015), attention (Yu, 2014), memory (Shiffrin &
Steyvers, 1997), categorization (Navarro & Kemp, 2017), language (Goodman
& Frank, 2016; Norris &McQueen, 2008), decision making (Shen &Ma, 2016),
reasoning (Hahn & Oaksford, 2007), and cognitive development (Xu &
Kushnir, 2013). Bayesian inference has been used to characterize and under-
stand biases in judgment and decision making (Chater et al., 2020), and is
currently the dominant theoretical approach to causal reasoning and learning
(Holyoak & Cheng, 2011; Pearl, 2018). Bayesian inference also plays a central
role in the theoretical framework of predictive coding (Clark, 2015), which has
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been applied to a wide range of topics in psychology and neuroscience including
computational psychiatry (Friston & Dolan, 2017).

What has led such different groups of researchers to Bayesian approaches is a
shared view of the computational questions that are most compelling to ask
about the human mind. The big question is this: how can the mind build such
rich, abstract, veridical, and generalizable models of the world’s structure from
such sparse, noisy, and incomplete data as observed through senses? This is by
no means the only computationally interesting aspect of cognition that one can
study, but it is surely one of the most central, and also one of the most
challenging. It is a version of the classic problem of induction, which is as old
as recorded Western thought and is the source of many deep problems and
debates in modern philosophy of knowledge and philosophy of science. It is also
at the heart of the difficulty in building machines with anything resembling
human-like intelligence.

The Bayesian framework for probabilistic inference provides a general
approach to understanding how problems of induction can be solved in
principle, and perhaps how they might be solved in the human mind. Let us
give a few examples. Vision researchers are interested in how the mind infers the
intrinsic properties of an object (e.g., its color or shape) as well as its role in a
visual scene (e.g., its spatial relation to other objects or its trajectory of motion).
These features are severely underdetermined by the available image data. For
instance, the spectrum of light wavelengths reflected off of an object’s surface
and into the observer’s eye is a product of two unknown spectra: the surface’s
color spectrum and the spectrum of the light illuminating the scene. Solving the
problem of “color constancy” – inferring the object’s color given only the light
reflected from it, under any conditions of illumination – is akin to solving the
equation y ¼ a� b for a given y, without knowing b. No deductive or certain
inference is possible. At best one can make a reasonable guess, based on some
expectations about which values of a and b are more likely a priori. This
inference can be formalized in a Bayesian framework (Brainard & Freeman,
1997), and it can be solved reasonably well given prior probability distributions
for natural surface reflectances and illumination spectra.

The problems of core interest in other areas of cognitive science may seem
very different from the problem of color constancy in vision, and they are
different in important ways, but they are also deeply similar. For instance,
language researchers want to understand how people recognize words so
quickly and so accurately from noisy speech, how people parse a sequence of
words into a hierarchical representation of the utterance’s syntactic phrase
structure, or how a child infers the rules of grammar – an infinite generative
system – from observing only a finite and rather limited set of grammatical
sentences, mixed with more than a few incomplete or ungrammatical utter-
ances. In each of these cases, the available data severely underconstrain the
inferences that people make, and the best the mind can do is to make a good
guess, guided – from a Bayesian standpoint – by prior probabilities about which
word structures are most likely a priori. Knowledge of a language – its lexicon,
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its syntax, and its pragmatic tendencies of use – provides probabilistic con-
straints and preferences on which words are most likely to be heard in a given
context, or which syntactic parse trees a listener should consider in processing a
sequence of spoken words. More abstract knowledge, perhaps what linguists
have referred to as “universal grammar,” can generate priors on possible rules
of grammar that guide a child in solving the problem of induction in
language acquisition.
The focus of this chapter will be on problems in higher-level cognition:

inferring causal structure from patterns of statistical correlation, learning about
categories and hidden properties of objects, and learning the meanings of
words. This focus is partly a pragmatic choice, as these topics are the subject
of the research of the present authors. But there are also deeper reasons for this
choice. Learning about causal relations, category structures, or the properties or
names of objects are problems that are very close to the classic problems of
induction that have been much discussed and puzzled over in the Western
philosophical tradition. Showing how Bayesian methods can apply to these
problems thus illustrates clearly their importance in understanding phenomena
of induction more generally. These are also cases where the important math-
ematical principles and techniques of Bayesian statistics can be applied in a
relatively straightforward way. They thus provide an ideal training ground for
readers new to Bayesian modeling.
Beyond their value as a general framework for solving problems of induction,

Bayesian approaches can make several contributions to the enterprise of mod-
eling human cognition. First, they provide a link between human cognition and
the normative prescriptions of a theory of rational inference. This normative
connection eliminates many of the degrees of freedom from a theory: it dictates
how a rational agent should update its beliefs in light of new data, based on a set
of assumptions about the nature of the problem at hand and the prior know-
ledge possessed by the agent. Theories based on probabilistic models are
typically formulated at Marr’s (1982) level of “computational theory,” rather
than the algorithmic or process level that characterizes more traditional cogni-
tive modeling paradigms (described in other chapters of this handbook), such as
connectionist or associative networks, similarity-based models, production
systems, constraint satisfaction systems, or analogical mapping engines.
Algorithmic or process accounts may be more satisfying in mechanistic

terms, but they require an extra set of assumptions about the structure of the
human mind that are no longer needed when we assume that cognition is an
approximately optimal response to the uncertainty and structure present in
natural tasks and environments (Anderson, 1990). Finding effective computa-
tional models of human cognition then becomes a process of considering how
best to characterize the computational problems that people face and the logic
by which those computations can be carried out (Marr, 1982). Of course some
phenomena will probably best be explained at an algorithmic or implementa-
tional level rather than at a computational theory level, e.g., that a certain
behavior takes people an average of 450 milliseconds to produce, measured
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from the onset of a visual stimulus, or that this reaction time increases when the
stimulus is moved to a different part of the visual field or decreases when the
same information content is presented auditorily. Moreover, not all
computational-level analyses of cognition will be Bayesian. Deductive
reasoning, planning, or problem solving, for instance, are not traditionally
thought of in this way. Most cognitive challenges, however, require grappling
with noisy, sparse, or incomplete data, and Bayesian analyses have therefore
come to be seen as relevant to almost every cognitive capacity.

A second key contribution of probabilistic models of cognition is the oppor-
tunity for greater communication with other fields studying computational
principles of learning and inference. Probabilistic methods are popular in
computer science, engineering, and biology, and of course they take center
stage in the field of statistics. There are interesting, fertile, and sometimes deep
analogies between probabilistic models of human cognition and models
developed in these other disciplines. Discovering these relationships can suggest
new models or new tools for working with existing models. This chapter will
discuss some of these relationships, but there are many other cases. For
example, prototype and exemplar models of categorization (Medin &
Schaffer, 1978; Nosofsky, 1986; Reed, 1972) can both be seen as rational
solutions to a standard classification task in statistical pattern recognition: an
object is generated from one of several probability distributions (or “categor-
ies”) over the space of possible objects, and the goal is to infer which distribu-
tion is most likely to have generated that object (Duda, Hart, & Stork, 2000). In
rational probabilistic terms, these methods differ only in how these category-
specific probability distributions are represented and estimated (Ashby &
Alfonso-Reese, 1995; Nosofsky, 1998).

Finally, probabilistic models can be used to advance and perhaps resolve
some of the great theoretical debates that divide traditional approaches to
cognitive science. The history of computational models of cognition exhibits
an enduring tension between models that emphasize symbolic representations
and deductive inference, such as first order logic or phrase structure grammars,
and models that emphasize continuous representations and statistical learning,
such as connectionist networks or other associative systems. Probabilistic
models can be defined with either symbolic or continuous representations, or
hybrids of both, and help to illustrate how statistical learning can be combined
with symbolic structure. More generally, the most promising routes to under-
standing human intelligence in computational terms will involve deep inter-
actions between these two traditionally opposing approaches, with
sophisticated statistical inference machinery operating over structured symbolic
knowledge representations. Probabilistic methods provide a general-purpose set
of tools for building such structured statistical models, and several simple
examples of these models will be shown in this chapter.

The tension between symbols and statistics is perhaps only exceeded by the
tension between accounts that focus on the importance of innate, domain-
specific knowledge in explaining human cognition, and accounts that focus on
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domain-general learning mechanisms. Again, probabilistic models provide a
middle ground where both approaches can productively meet, and they suggest
various routes to resolving the tensions between these approaches by combining
the important insights of both. Probabilistic models highlight the role of prior
knowledge in accounting for how people learn as much as they do from limited
observed data, and provide a framework for explaining precisely how prior
knowledge interacts with data in guiding generalization and action. They also
provide a tool for exploring the kinds of knowledge that people bring to
learning and reasoning tasks, allowing to work forwards from rational analyses
of tasks and environments to predictions about behavior, and to work back-
wards from subjects’ observed behavior to viable assumptions about the know-
ledge they could bring to the task. Crucially, these models do not require that
the prior knowledge be innate. Bayesian inference in hierarchical probabilistic
models can explain how abstract prior knowledge may itself be learned from
data, and then put to use to guide learning in subsequent tasks and new
environments.
The strengths and limitations of Bayesian models of cognition have been

widely discussed (Bowers & Davis, 2012; Goodman et al., 2015; Griffiths,
Chater, Norris, & Pouget, 2012; Mandelbaum, 2019; Marcus & Davis, 2013),
and there are different views on this matter even among researchers who work
on Bayesian models. For example, this chapter emphasizes the link between
Bayesian models and rational statistical inference, but Tauber, Navarro,
Perfors, and Steyvers (2017) argue for descriptive Bayesian models that make
no normative claims and can be applied and evaluated without any consider-
ation of rationality. This chapter will not attempt to survey all the ways in
which Bayesian models can be used, but instead aims to provide an introduction
to the core principles and techniques used by these models. The first step is to
summarize the logic of Bayesian inference which is at the heart of many
probabilistic models. Next is a discussion of three innovations that make it
easier to define and use probabilistic models of complex domains: graphical
models, hierarchical Bayesian models, and Markov chain Monte Carlo. The
central ideas behind each of these techniques are illustrated by considering a
detailed cognitive modeling application, drawn from causal learning, property
induction, and language modeling respectively. Finally, this chapter closes with
a discussion of more recent innovations in Bayesian models of cognition,
including systematic exploration of the cognitive mechanisms that carry out
probabilistic inference and new connections to neural networks and
deep learning.

3.2 The Basics of Bayesian Inference

Many aspects of cognition can be formulated as solutions to problems
of induction. Given some observed data about the world, the mind draws
conclusions about the underlying process or structure that gave rise to these
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data, and then uses that knowledge to make predictive judgments about new
cases. Bayesian inference is a rational engine for solving such problems within a
probabilistic framework, and consequently is at the heart of most probabilistic
models of cognition.

3.2.1 Bayes’ Rule

Bayesian inference grows out of a simple formula known as Bayes’ rule
(Bayes, 1763/1958). When stated in terms of abstract random variables,
Bayes’ rule is no more than an elementary result of probability theory.
Assume we have two random variables, A and B.1 One of the principles of
probability theory (sometimes called the chain rule) allows us to write the joint
probability of these two variables taking on particular values a and b, P a, bð Þ,
as the product of the conditional probability that A will take on value a given
B takes on value a, P ajbð Þ, and the marginal probability that B takes on value
b, P bð Þ. Thus, we have

P a, bð Þ ¼ P ajbð ÞP bð Þ: (3.1)

There was nothing special about the choice of A rather than B in factorizing the
joint probability in this way, so we can also write

P a, bð Þ ¼ P bjað ÞP að Þ: (3.2)

It follows from Equations 3.1 and 3.2 that P ajbð ÞP bð Þ ¼ P bjað ÞP að Þ, which can
be rearranged to give

P bjað Þ ¼ P ajbð ÞP bð Þ
P að Þ : (3.3)

This expression is Bayes’ rule, which indicates how we can compute the condi-
tional probability of b given a from the conditional probability of a given b.

While Equation 3.3 seems relatively innocuous, Bayes’ rule gets its strength,
and its notoriety, when we make some assumptions about the variables we are
considering and the meaning of probability. Assume that we have an agent who
is attempting to infer the process that was responsible for generating some data,
d. Let h be a hypothesis about this process. We will assume that the agent uses
probabilities to represent degrees of belief in h and various alternative hypoth-
eses h0. Let P hð Þ indicate the probability that the agent ascribes to h being the
true generating process, prior to (or independent of ) seeing the data d. This
quantity is known as the prior probability. How should that agent change his
beliefs in light of the evidence provided by d? To answer this question, we need a

1 Uppercase letters will be used to indicate random variables, and matching lowercase variables to
indicate the values those variables take on. When defining probability distributions, the random
variables will remain implicit. For example, P að Þ refers to the probability that the variable A
takes on the value a, which could also be written P A ¼ að Þ. Joint probabilities will be written in
the form P a, bð Þ. Other notations for joint probabilities include P a&bð Þ and P a \ bð Þ.
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procedure for computing the posterior probability, P hjdð Þ, or the degree of belief
in h conditioned on the observation of d.
Bayes’ rule provides just such a procedure, if we treat both the hypotheses

that agents entertain and the data that they observe as random variables, so that
the rules of probabilistic inference can be applied to relate them. Replacing a
with d and b with h in Equation 3.3 gives

P hjdð Þ ¼ P djhð ÞP hð Þ
P dð Þ , (3.4)

the form in which Bayes’ rule is most commonly presented in analyses of
learning or induction. The posterior probability is proportional to the product
of the prior probability and another term P djhð Þ, the probability of the data
given the hypothesis, commonly known as the likelihood. Likelihoods are the
critical bridge from priors to posteriors, reweighting each hypothesis by how
well it predicts the observed data.
In addition to telling us how to compute with conditional probabilities,

probability theory allows us to compute the probability distribution associated
with a single variable (known as the marginal probability) by summing over
other variables in a joint distribution: e.g., P bð Þ ¼ P

aP a, bð Þ. This is known as
marginalization. Using this principle, we can rewrite Equation 3.4 as

P hjdð Þ ¼ P djhð ÞP hð ÞP
h02HP djh0ð ÞP h0ð Þ , (3.5)

where H is the set of all hypotheses considered by the agent, sometimes referred
to as the hypothesis space. This formulation of Bayes’ rule makes it clear that
the posterior probability of h is directly proportional to the product of its prior
probability and likelihood, relative to the sum of these same scores – products
of priors and likelihoods – for all alternative hypotheses under consideration.
The sum in the denominator of Equation 3.5 ensures that the resulting posterior
probabilities are normalized to sum to one.
A simple example may help to illustrate the interaction between priors and

likelihoods in determining posterior probabilities. Consider three possible med-
ical conditions that could be posited to explain why a friend is coughing (the
observed data d): h1 ¼ “cold,” h2 ¼ “lung cancer,” h3 ¼ “stomach flu.” The first
hypothesis seems intuitively to be the best of the three, for reasons that Bayes’
rule makes clear. The probability of coughing given that one has lung cancer,
P djh2ð Þ is high, but the prior probability of having lung cancer P h2ð Þ is low.
Hence the posterior probability of lung cancer P h2jdð Þ is low, because it is
proportional to the product of these two terms. Conversely, the prior probabil-
ity of having stomach flu P h3ð Þ is relatively high (as medical conditions go), but
its likelihood P djh3ð Þ, the probability of coughing given that one has stomach
flu, is relatively low. So again, the posterior probability of stomach flu, P h3jdð Þ,
will be relatively low. Only for hypothesis h1 are both the prior P h1ð Þ and the
likelihood P djh1ð Þ relatively high: colds are fairly common medical conditions,
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and coughing is a symptom frequently found in people who have colds. Hence
the posterior probability P h1jdð Þ of having a cold given that one is coughing is
substantially higher than the posteriors for the competing alternative hypoth-
eses – each of which is less likely for a different sort of reason.

3.2.2 Comparing Hypotheses

The mathematics of Bayesian inference is most easily introduced in the context
of comparing two simple hypotheses. For example, imagine that you are told
that a box contains two coins: one that produces heads 50 percent of the time,
and one that produces heads 90 percent of the time. You choose a coin, and
then flip it ten times, producing the sequence HHHHHHHHHH. Which coin did you
pick? How would your beliefs change if you had obtained HHTHTHTTHT
instead?

To formalize this problem in Bayesian terms, we need to identify the
hypothesis space, H, the prior probability of each hypothesis, P hð Þ, and the
probability of the data under each hypothesis, P djhð Þ. We have two coins, and
thus two hypotheses. If we use θ to denote the probability that a coin produces
heads, then h0 is the hypothesis that θ ¼ 0:5, and h1 is the hypothesis that
θ ¼ 0:9. Since we have no reason to believe that one coin is more likely to be
picked than the other, it is reasonable to assume equal prior probabilities:
P h0ð Þ ¼ P h1ð Þ ¼ 0:5. The probability of a particular sequence of coinflips
containing NH heads and NT tails being generated by a coin which produces
heads with probability θ is

P djθð Þ ¼ θNH 1� θð ÞNT : (3.6)

Formally, this expression follows from assuming that each flip is drawn inde-
pendently from a Bernoulli distribution with parameter θ; less formally, that
heads occurs with probability θ and tails with probability 1� θ on each flip.
The likelihoods associated with h0 and h1 can thus be obtained by substituting
the appropriate value of θ into Equation 3.6.

We can take the priors and likelihoods defined in the previous paragraph, and
plug them directly into Equation 3.5 to compute the posterior probabilities for
both hypotheses, P h0jdð Þ and P h1jdð Þ. However, when we have just two
hypotheses it is often easier to work with the posterior odds, or the ratio of
these two posterior probabilities. The posterior odds in favor of h1 is

P h1jdð Þ
P h0jdð Þ ¼

P djh1ð Þ
P djh0ð Þ

P h1ð Þ
P h0ð Þ , (3.7)

where we have used the fact that the denominator of Equation 3.4 or 3.5 is
constant over all hypotheses. The first and second terms on the right-hand side
are called the likelihood ratio and the prior odds respectively. We can use
Equation 3.7 (and the priors and likelihoods defined above) to compute the
posterior odds of the two hypotheses for any observed sequence of heads and
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tails: for the sequence HHHHHHHHHH, the odds are approximately 357:1 in favor
of h1; for the sequence HHTHTHTTHT, approximately 165:1 in favor of h0.
The form of Equation 3.7 helps to clarify how prior knowledge and new data

are combined in Bayesian inference. The two terms on the right-hand side each
express the influence of one of these factors: the prior odds are determined
entirely by the prior beliefs of the agent, while the likelihood ratio expresses how
these odds should be modified in light of the data d. This relationship is made
even more transparent if we examine the expression for the log posterior odds,

log
P h1jdð Þ
P h0jdð Þ ¼ log

P djh1ð Þ
P djh0ð Þ þ log

P h1ð Þ
P h0ð Þ (3.8)

in which the extent to which one should favor h1 over h0 reduces to an additive
combination of a term reflecting prior beliefs (the log prior odds) and a term
reflecting the contribution of the data (the log likelihood ratio). Based upon this
decomposition, the log likelihood ratio in favor of h1 is often used as a measure
of the evidence that d provides for h1.

3.2.3 Parameter Estimation

The analysis outlined above for two simple hypotheses generalizes naturally to
any finite set. Bayesian inference can also be applied in contexts where there are
(uncountably) infinitely many hypotheses to evaluate – a situation that arises
often. For example, instead of choosing between just two possible values for the
probability θ that a coin produces heads, we could consider any real value of θ
between 0 and 1. What then should we infer about the value of θ from a
sequence such as HHHHHHHHHH?
Under one classical approach, inferring θ is treated as a problem of estimating a

fixed parameter of a probabilistic model, to which the standard solution is
maximum-likelihood estimation (see, e.g., Rice, 1995). Maximum-likelihood esti-
mation is simple and often sensible, but can also be problematic – particularly as a
way to think about human inference. The coinflipping example illustrates some of
these problems. The maximum-likelihood estimate of θ is the value θ̂ that maxi-
mizes the probability of the data as given in Equation 3.6. It is straightforward to
show that θ̂ ¼ NH

NH þNT
, which gives θ̂ ¼ 1:0 for the sequence HHHHHHHHHH.

It should be immediately clear that the single value of θ which maximizes the
probability of the data might not provide the best basis for making predictions
about future data. Inferring that θ is exactly 1 after seeing the sequence
HHHHHHHHHH implies that we should predict that the coin will never produce
tails. This might seem reasonable after observing a long sequence consisting
solely of heads, but the same conclusion follows for an all-heads sequence of
any length (because NT is always 0, so NH

NH þNT
is always 1). Would you really

predict that a coin would produce only heads after seeing it produce a head on
just one or two flips?
A second problem with maximum-likelihood estimation is that it does not

take into account other knowledge that we might have about θ. This is largely
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by design: maximum-likelihood estimation and other classical statistical tech-
niques have historically been promoted as “objective” procedures that do not
require prior probabilities, which were seen as inherently and irremediably
subjective. While such a goal of objectivity might be desirable in certain
scientific contexts, intelligent agents typically do have access to relevant and
powerful prior knowledge, and they use that knowledge to make stronger
inferences from sparse and ambiguous data than could be rationally supported
by the data alone. For example, given the sequence HHH produced by flipping
an apparently normal, randomly chosen coin, many people would say that the
coin’s probability of producing heads is nonetheless around 0:5 – perhaps
because we have strong prior expectations that most coins are nearly fair.

Both of these problems are addressed by a Bayesian approach to inferring θ. If
we assume that θ is a random variable, then we can apply Bayes’ rule to obtain

p θjdð Þ ¼ P djθð Þp θð Þ
P dð Þ , (3.9)

where

P dð Þ ¼
ð1
0

P djθð Þp θð Þdθ: (3.10)

The key difference from Bayesian inference with finitely many hypotheses is that
the beliefs about the hypotheses (both priors and posteriors) are now character-
ized by probability densities (notated by a lowercase “p”) rather than probabil-
ities strictly speaking, and the sum over hypotheses becomes an integral.

The posterior distribution over θ contains more information than a single point
estimate: it indicates not just which values of θ are probable, but also how much
uncertainty there is about those values. Collapsing this distribution down to a
single number discards information, so Bayesians prefer to maintain distributions
wherever possible (this attitude is similar to Marr’s (1982, p. 106) “principle of
least commitment”). However, there are two methods that are commonly used to
obtain a point estimate from a posterior distribution. The first method ismaximum
a posteriori (MAP) estimation: choosing the value of θ that maximizes the poster-
ior probability, as given by Equation 3.9. The second method is computing the
posterior mean of the quantity in question: a weighted average of all possible
values of the quantity, where the weights are given by the posterior distribution.
For example, the posterior mean value of the coin weight θ is computed as follows:

θ ¼
ð1
0

θp θjdð Þdθ: (3.11)

In the case of coinflipping, the posterior mean also corresponds to the posterior
predictive distribution: the probability that the next toss of the coin will produce
heads, given the observed sequence of previous flips.
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Different choices of the prior, p θð Þ, will lead to different inferences about the
value of θ. A first step might be to assume a uniform prior over θ, with p θð Þ
being equal for all values of θ between 0 and 1 (more formally, p θð Þ ¼ 1 for
θ 2 0, 1½ � ). With this choice of p θð Þ and the Bernoulli likelihood from Equation
3.6, Equation 3.9 becomes

p θjdð Þ ¼ θNH 1� θð ÞNTð1
0
θNH 1� θð ÞNT dθ

(3.12)

where the denominator is just the integral from Equation 3.10. Using a little
calculus to compute this integral, the posterior distribution over θ produced by
a sequence d with NH heads and NT tails is

p θjdð Þ ¼ NH þNT þ 1ð Þ!
NH ! NT !

θNH 1� θð ÞNT : (3.13)

This is actually a distribution of a well-known form: a beta distribution with
parameters NH þ 1 and NT þ 1, denoted Beta NH þ 1, NT þ 1ð Þ (e.g., Pitman,
1993). Using this prior, the MAP estimate for θ is the same as the maximum-
likelihood estimate, NH

NH þNT
, but the posterior mean is slightly different,

NH þ 1
NH þNT þ 2. Thus, the posterior mean is sensitive to the consideration that we
might not want to put as much evidential weight on seeing a single head as on a
sequence of ten heads in a row: on seeing a single head, the posterior mean
predicts that the next toss will produce a head with probability 2

3, while a
sequence of ten heads leads to the prediction that the next toss will produce a
head with probability 11

12.
We can also use priors that encode stronger beliefs about the value of θ. For

example, we can take a Beta VH þ 1, VT þ 1ð Þ distribution for p θð Þ, where VH

and VT are positive integers. This distribution gives

p θð Þ ¼ VH þ VT þ 1ð Þ!
VH !VT !

θVH 1� θð ÞVT (3.14)

having a mean at VH þ 1
VH þVT þ 2, and gradually becoming more concentrated around

that mean as VH þ VT becomes large. For instance, taking VH ¼ VT ¼ 1000
would give a distribution that strongly favors values of θ close to 0:5. Using
such a prior with the Bernoulli likelihood from Equation 3.6 and applying the
same kind of calculations as above, we obtain the posterior distribution

p θjdð Þ ¼ NH þNT þ VH þ VT þ 1ð Þ!
NH þ VHð Þ! NT þ VTð Þ! θNHþVH 1� θð ÞNTþVT , (3.15)

which is Beta NH þ VH þ 1, NT þ VT þ 1ð Þ. Under this posterior distribution,
the MAP estimate of θ is NH þVH

NH þNT þVH þVT
, and the posterior mean is

NH þVH þ 1
NH þNT þVH þVT þ 2. Thus, if VH ¼ VT ¼ 1000, seeing a sequence of ten heads

in a row would induce a posterior distribution over θ with a mean of
1011
2012 � 0:5025. In this case, the observed data matter hardly at all. A prior that
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is much weaker but still biased towards approximately fair coins might take
VH ¼ VT ¼ 5. Then an observation of ten heads in a row would lead to a
posterior mean of 16

22 � :727, significantly tilted towards heads but still closer to
a fair coin than the observed data would suggest on their own. We can say that
such a prior acts to “smooth” or “regularize” the observed data, damping out
what might be misleading fluctuations when the data are far from the learner’s
initial expectations. On a larger scale, these principles of Bayesian parameter
estimation with informative “smoothing” priors have been applied to a number
of cognitively interesting machine-learning problems, such as Bayesian learning
in neural networks (Mackay, 2003).

The analysis of coin flipping with informative priors has two features of
more general interest. First, the prior and posterior are specified using distri-
butions of the same form (both being beta distributions). Second, the param-
eters of the prior, VH and VT , act as “virtual examples” of heads and tails,
which are simply pooled with the real examples tallied in NH and NT to
produce the posterior, as if both the real and virtual examples had been
observed in the same data set. These two properties are not accidental: they
are characteristic of a class of priors called conjugate priors (e.g., Bernardo &
Smith, 1994). The likelihood determines whether a conjugate prior exists for a
given problem, and the form that the prior will take. The results presented in
this section exploit the fact that the beta distribution is the conjugate prior for
the Bernoulli or binomial likelihood (Equation 3.6) – the uniform distribution
on 0, 1½ � is also a beta distribution, being Beta 1, 1ð Þ. Conjugate priors exist for
many of the distributions commonly used in probabilistic models, such as
Gaussian, Poisson, and multinomial distributions, and greatly simplify many
Bayesian calculations. Using conjugate priors, posterior distributions can be
computed analytically, and the interpretation of the prior as contributing
virtual examples is intuitive.

While conjugate priors are elegant and practical to work with, there are also
important forms of prior knowledge that they cannot express. For example,
they can capture the notion of smoothness in simple linear predictive systems
but not in more complex nonlinear predictors such as multilayer neural net-
works. Crucially for modelers interested in higher-level cognition, conjugate
priors cannot capture knowledge that the causal process generating the
observed data could take on one of several qualitatively different forms. Still,
they can sometimes be used to address questions of selecting models of different
complexity, as is done in the next section, when the different models under
consideration have the same qualitative form.

3.2.4 Model Selection

Whether there were a finite number or not, the hypotheses considered so far
were relatively homogeneous, each offering a single value for the parameter θ
characterizing the coin. However, many problems require comparing hypoth-
eses that differ in their complexity. For example, the problem of inferring
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whether a coin is fair or biased based upon an observed sequence of heads and
tails requires comparing a hypothesis that gives a single value for θ – if the coin
is fair, then θ ¼ 0:5 – with a hypothesis that allows θ to take on any value
between 0 and 1.
Using observed data to choose between two probabilistic models that differ in

their complexity is often called the problem of model selection (Myung & Pitt,
1997; Myung, Forster, & Browne, 2000). One familiar statistical approach to this
problem is via hypothesis testing, but this approach is often complex and counter-
intuitive. In contrast, the Bayesian approach to model selection is a seamless
application of the methods discussed so far. Hypotheses that differ in their
complexity can be compared directly using Bayes’ rule, once they are reduced
to probability distributions over the observable data (see Kass & Raftery, 1995).
To illustrate this principle, assume that we have two hypotheses: h0 is the

hypothesis that θ ¼ 0:5, and h1 is the hypothesis that θ takes a value drawn from
a uniform distribution on 0, 1½ �. If we have no a priori reason to favor one
hypothesis over the other, we can take P h0ð Þ ¼ P h1ð Þ ¼ 0:5. The probability of
the data under h0 is straightforward to compute, using Equation 3.6, giving
P djh0ð Þ ¼ 0:5NHþNT. But how should we compute the likelihood of the data
under h1, which does not make a commitment to a single value of θ?
The solution to this problem is to compute the marginal probability of the

data under h1. As discussed above, given a joint distribution over a set of
variables, we can always sum out variables until we obtain a distribution over
just the variables that interest us. In this case, we define the joint distribution
over d and θ given h1, and then integrate over θ to obtain

P djh1ð Þ ¼
ð1
0

P djθ, h1ð Þp θjh1ð Þdθ (3.16)

where p θjh1ð Þ is the distribution over θ assumed under h1 – in this case, a
uniform distribution over 0, 1½ �. This does not require any new concepts – it is
exactly the same kind of computation as we needed to perform to compute the
denominator for the posterior distribution over θ (Equation 3.10). Performing
this computation, we obtain P djh1ð Þ ¼ NH ! NT !

NH þNT þ 1ð Þ!, where again the fact that we
have a conjugate prior provides us with a neat analytic result. Having computed
this likelihood, we can apply Bayes’ rule just as we did for two simple hypoth-
eses. Figure 3.1a shows how the log posterior odds in favor of h1 change as NH

and NT vary for sequences of length ten.
The ease with which hypotheses differing in complexity can be compared

using Bayes’ rule conceals the fact that this is actually a very challenging
problem. Complex hypotheses have more degrees of freedom that can be
adapted to the data, and can thus always be made to fit the data better than
simple hypotheses. For example, for any sequence of heads and tails, we can
always find a value of θ that would give higher probability to that sequence than
does the hypothesis that θ ¼ 0:5. It seems like a complex hypothesis would thus
have an inherent unfair advantage over a simple hypothesis. The Bayesian
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solution to the problem of comparing hypotheses that differ in their complexity
takes this into account. More degrees of freedom provide the opportunity to
find a better fit to the data, but this greater flexibility also makes a worse fit
possible. For example, for d consisting of the sequence HHTHTTHHHT,
P djθ, h1ð Þ is greater than P djh0ð Þ for θ 2 0:5,0:694ð �, but is less than P djh0ð Þ
outside that range. Marginalizing over θ averages these gains and losses: a more
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Figure 3.1 Comparing hypotheses about the weight of a coin. (a) The vertical
axis shows log posterior odds in favor of h1, the hypothesis that the probability
of heads (θ) is drawn from a uniform distribution on 0, 1½ �, over h0, the
hypothesis that the probability of heads is 0:5. The horizontal axis shows the
number of heads, NH, in a sequence of ten flips. As NH deviates from 5, the
posterior odds in favor of h1 increase. (b) The posterior odds shown in (a) are
computed by averaging over the values of θ with respect to the prior, p θð Þ,
which in this case is the uniform distribution on 0, 1½ �. This averaging takes into
account the fact that hypotheses with greater flexibility – such as the free-
ranging θ parameter in h1 – can produce both better and worse predictions,
implementing an automatic “Bayesian Occam’s razor.” The solid line shows
the probability of the sequence HHTHTTHHHT for different values of θ, while
the dotted line is the probability of any sequence of length ten under h0
(equivalent to θ ¼ 0:5 ). While there are some values of θ that result in a
higher probability for the sequence, on average the greater flexibility of h1
results in lower probabilities. Consequently, h0 is favored over h1 (this sequence
has NH ¼ 6). In contrast, a wide range of values of θ result in higher
probability for the sequence HHTHHHTHHH, as shown by the dashed line.
Consequently, h1 is favored over h0 (this sequence has NH ¼ 8).
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complex hypothesis will be favored only if its greater complexity consistently
provides a better account of the data. To phrase this principle another way, a
Bayesian learner judges the fit of a parameterized model not by how well it fits
using the best parameter values, but by how well it fits using randomly selected
parameters, where the parameters are drawn from a prior specified by the model
(p θjh1ð Þ in Equation 3.16) (Ghahramani, 2004). This penalization of more
complex models is known as the “Bayesian Occam’s razor” (Jeffreys &
Berger, 1992; Mackay, 2003), and is illustrated in Figure 3.1b.

3.2.5 Summary

Bayesian inference stipulates how rational learners should update their beliefs in
the light of evidence. The principles behind Bayesian inference can be applied
whenever we are making inferences from data, whether the hypotheses involved
are discrete or continuous, or have one or more unspecified free parameters.
However, developing probabilistic models that can capture the richness and
complexity of human cognition requires going beyond these basic ideas. The
remainder of the chapter summarizes several tools that have been developed in
computer science and statistics for defining and using complex probabilistic
models, and provides examples of how they can be used in modeling
human cognition.

3.3 Graphical Models

The discussion of Bayesian inference above was formulated in the
language of “hypotheses” and “data.” However, the principles of Bayesian
inference, and the idea of using probabilistic models, extend to much richer
settings. In its most general form, a probabilistic model simply defines the joint
distribution for a system of random variables. Representing and computing
with these joint distributions becomes challenging as the number of variables
grows, and their properties can be difficult to understand. Graphical models
provide an efficient and intuitive framework for working with high-dimensional
probability distributions, which is applicable when these distributions can be
viewed as the product of smaller components defined over local subsets
of variables.
A graphical model associates a probability distribution with a graph. The

nodes of the graph represent the variables on which the distribution is defined,
the edges between the nodes reflect their probabilistic dependencies, and a set of
functions relating nodes and their neighbors in the graph are used to define a
joint distribution over all of the variables based on those dependencies. There
are two kinds of graphical models, differing in the nature of the edges that
connect the nodes. If the edges simply indicate a dependency between variables,
without specifying a direction, then the result is an undirected graphical model.
Undirected graphical models have long been used in statistical physics, and
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many probabilistic neural network models, such as Boltzmann machines
(Ackley, Hinton, & Sejnowski, 1985), can be interpreted as models of this kind.
If the edges indicate the direction of a dependency, the result is a directed
graphical model. The focus of this section will be on directed graphical models,
which are also known as Bayesian networks or Bayes nets (Pearl, 1988).
Bayesian networks can often be given a causal interpretation, where an edge
between two nodes indicates that one node is a direct cause of the other, which
makes them particularly appealing for modeling higher-level cognition.

3.3.1 Bayesian Networks

A Bayesian network represents the probabilistic dependencies relating to a set
of variables. If an edge exists from node A to node B, then A is referred to as a
“parent” of B, and B is a “child” of A. This genealogical relation is often
extended to identify the “ancestors” and “descendants” of a node. The directed
graph used in a Bayesian network has one node for each random variable in the
associated probability distribution, and is constrained to be acyclic: one can
never return to the same node by following a sequence of directed edges. The
edges express the probabilistic dependencies between the variables in a fashion
consistent with the Markov condition: conditioned on its parents, each variable
is independent of all other variables except its descendants (Pearl, 1988; Spirtes,
Glymour, & Scheines, 1993). As a consequence of the Markov condition, any
Bayesian network specifies a canonical factorization of a full joint probability
distribution into the product of local conditional distributions, one for each
variable conditioned on its parents. That is, for a set of variables
X 1, X 2, . . . , XN , we can write P x1, x2, . . . , xNð Þ ¼ Q

iP xijPa Xið Þð Þ where
Pa Xið Þ is the set of parents of Xi.

Bayesian networks provide an intuitive representation for the structure of
many probabilistic models. For example, in the previous section we discussed
the problem of estimating the weight of a coin, θ. One detail that was left
implicit in that discussion was the assumption that successive coin flips are
independent, given a value for θ. This conditional independence assumption is
expressed in the graphical model shown in Figure 3.2a, where x1, x2, . . . , xN
are the outcomes (heads or tails) of N successive tosses. Applying the Markov
condition, this structure represents the probability distribution

P x1, x2, . . . , xN , θð Þ ¼ p θð Þ
YN
i¼1

P xijθð Þ (3.17)

in which the xi are independent given the value of θ. Other dependency struc-
tures are possible. For example, the flips could be generated in a Markov chain,
a sequence of random variables in which each variable is independent of all of
its predecessors given the variable that immediately precedes it (e.g., Norris,
1997). Using a Markov chain structure, we could represent a hypothesis space
of coins that are particularly biased towards alternating or maintaining their
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last outcomes, letting the parameter θ be the probability that the outcome xi
takes the same value as xi�1 (and assuming that x1 is heads with probability
0:5). This distribution would correspond to the graphical model shown in
Figure 3.2b. Applying the Markov condition, this structure represents the
probability distribution

P x1, x2, . . . , xN , θð Þ ¼ p θð ÞP x1ð Þ
YN
i¼2

P xijxi�1θð Þ (3.18)

in which each xi depends only on xi�1, given θ. More elaborate structures are
also possible: any directed acyclic graph on x1, x2, . . . , xN and θ corresponds to
a valid set of assumptions about the dependencies among these variables.
The introduction to the basic ideas behind Bayesian inference above empha-

sized the fact that hypotheses correspond to different assumptions about the
process that could have generated some observed data. Bayesian networks
help to make this idea transparent. Every Bayesian network indicates a
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Figure 3.2 Graphical models showing different kinds of processes that could
generate a sequence of coinflips. (a) Independent flips, with parameters θ
determining the probability of heads. (b) A Markov chain, where the
probability of heads depends on the result of the previous flip. Here the
parameters θ define the probability of heads after a head and after a tail.
(c) A hidden Markov model, in which the probability of heads depends on a
latent state variable zi. Transitions between values of the latent state are set by
parameters θ, while other parameters ϕ determine the probability of heads for
each value of the latent state. This kind of model is commonly used in
computational linguistics, where the xi might be the sequence of words in a
document, and the zi the syntactic classes from which they are generated.
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sequence of steps that one could follow in order to generate samples from the
joint distribution over the random variables in the network. First, one samples
the values of all variables with no parents in the graph. Then, one samples the
variables with parents taking known values, one after another. For example,
in the structure shown in Figure 3.2b, we would sample θ from the distribution
p θð Þ, then sample x1 from the distribution P x1ð Þ, then successively sample xi
from P xijxi�1, θð Þ for i ¼ 2, . . . ,N. A set of probabilistic steps that can be
followed to generate the values of a set of random variables is known as a
generative model, and the directed graph associated with a probability distri-
bution provides an intuitive representation for the steps that are involved in
such a model.

For the generative models represented by Figure 3.2a or 3.2b, we have
assumed that all variables except θ are observed in each sample from the model,
or each data point. More generally, generative models can include a number of
steps that make reference to unobserved or latent variables. Introducing latent
variables can lead to apparently complicated dependency structures among the
observable variables. For example, in the graphical model shown in
Figure 3.2c, a sequence of latent variables z1, z2, . . . , zN influences the
probability that each respective coin flip in a sequence x1, x2, . . . , xN comes
up heads (in conjunction with a set of parameters ϕ). The latent variables form a
Markov chain, with the value of zi depending only on the value of zi�1 (in
conjunction with the parameters θ). This model, called a hidden Markov model,
is widely used in computational linguistics, where zi might be the syntactic class
(such as noun or verb) of a word, θ encodes the probability that a word of one
class will appear after another (capturing simple syntactic constraints on the
structure of sentences), and ϕ encodes the probability that each word will be
generated from a particular syntactic class (e.g., Charniak, 1993; Jurafsky &
Martin, 2000; Manning & Schütze, 1999). The dependencies among the latent
variables induce dependencies among the observed variables – in the case of
language, the constraints on transitions between syntactic classes impose con-
straints on which words can follow one another.

3.3.2 Representing Probability Distributions Over Propositions

The treatment of graphical models in the previous section – as representations
of the dependency structure among variables in generative models for data –

follows their standard uses in the fields of statistics and machine learning.
Graphical models can take on a different interpretation in artificial intelli-
gence, when the variables of interest represent the truth value of certain
propositions (?). For example, imagine that a friend of yours claims to possess
psychic powers – in particular, the power of psychokinesis. He proposes to
demonstrate these powers by flipping a coin, and influencing the outcome to
produce heads. You suggest that a better test might be to see if he can levitate
a pencil, since the coin producing heads could also be explained by some kind
of sleight of hand, such as substituting a two-headed coin. We can express all
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possible outcomes of the proposed tests, as well as their causes, using the
binary random variables X 1, X 2, X 3, and X 4 to represent (respectively) the
truth of the coin being flipped and producing heads, the pencil levitating, your
friend having psychic powers, and the use of a two-headed coin. Any set of
beliefs about these outcomes can be encoded in a joint probability distribu-
tion, P x1, x2, x3, x4ð Þ. For example, the probability that the coin comes up
heads (x1 ¼ 1) should be higher if your friend actually does have psychic
powers (x3 ¼ 1). Figure 3.3 shows a Bayesian network expressing a possible
pattern of dependencies among these variables. For example, X 1 and X 2 are
assumed to be independent given X 3, indicating that once it was known
whether or not your friend was psychic, the outcomes of the coin flip and
the levitation experiments would be completely unrelated. By the Markov
condition, we can write P x1, x2, x3, x4ð Þ ¼ P x1jx3, x4ð ÞP x2jx3ð ÞP x3ð ÞP x4ð Þ.
In addition to clarifying the dependency structure of a set of random vari-

ables, Bayesian networks provide an efficient way to represent and compute
with probability distributions. In general, a joint probability distribution on N
binary variables requires 2N � 1 numbers to specify (one for each set of joint
values taken by the variables, minus one because of the constraint that prob-
ability distributions sum to 1). In the case of the psychic friend example, where
there are four variables, this would be 24 � 1 ¼ 15 numbers. However, the
factorization of the joint distribution over these variables allows us to use fewer
numbers in specifying the distribution over these four variables. We only need
one number for each variable conditioned on each possible set of values its
parents can take, or 2jPa Xið Þj numbers for each variable Xi (where jPa Xið Þ j is
the size of the parent set of Xi). For the “psychic friend” network, this adds up
to 8 numbers rather than 15, because X 3 and X 4 have no parents (contributing
one number each), X 2 has one parent (contributing two numbers), and X 1 has
two parents (contributing four numbers). Recognizing the structure in this
probability distribution can also greatly simplify the computations we want
to perform. When variables are independent or conditionally independent of
others, it reduces the number of terms that appear in sums over subsets of
variables necessary to compute marginal beliefs about a variable or conditional
beliefs about a variable given the values of one or more other variables.
A variety of algorithms have been developed to perform these probabilistic

x4

coin produces heads pencil levitates

two-headed coin friend has psychic powers

1x

3x

2x

Figure 3.3 Directed graphical model (Bayesian network) showing the
dependencies among variables in the “psychic friend” example discussed
in the text.
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inferences efficiently on complex models, by recognizing and exploiting condi-
tional independence structures in Bayesian networks (Pearl, 1988; Mackay,
2003). These algorithms form the heart of many modern artificial intelligence
systems, making it possible to reason efficiently under uncertainty (Korb &
Nicholson, 2010; Russell & Norvig, 2020).

3.3.3 Causal Graphical Models

In a standard Bayesian network, an edge between variables indicates only a
statistical dependency between them. Researchers, however, have also explored
the consequences of augmenting directed graphical models with a stronger
assumption about the relationships indicated by edges: that they indicate direct
causal relationships (Pearl, 2000; Spirtes et al., 1993). This assumption allows
causal graphical models to represent not just the probabilities of events that one
might observe, but also the probabilities of events that one can produce through
intervening on a system. The inferential implications of an event can differ
strongly, depending on whether it was observed passively or under conditions of
intervention. For example, observing that nothing happens when your friend
attempts to levitate a pencil would provide evidence against his claim of having
psychic powers; but secretly intervening to hold the pencil down while your
friend attempts to levitate it would make the pencil’s nonlevitation unsurprising
and uninformative about his powers.

In causal graphical models, the consequences of intervening on a particular
variable can be assessed by removing all incoming edges to that variable and
performing probabilistic inference in the resulting “mutilated” model (Pearl,
2000). This procedure produces results that align with our intuitions in the
psychic powers example: intervening on X 2 breaks its connection with X 3,
rendering the two variables independent. As a consequence, X 2 cannot provide
evidence about the value of X 3. Several studies have investigated whether
people are sensitive to the consequences of intervention, generally finding
that people differentiate between observational and interventional evidence
appropriately (Hagmayer, Sloman, Lagnado, & Waldmann, 2007; Lagnado &
Sloman, 2004; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).
Introductions to causal graphical models that consider applications to human
cognition are provided by Glymour (2001) and Sloman (2005).

The prospect of using graphical models to express the probabilistic conse-
quences of causal relationships has led researchers in several fields to ask
whether these models could serve as the basis for learning causal relationships
from data. A Bayesian learner should be able to work backwards from observed
patterns of correlation (or statistical dependency) to make probabilistic infer-
ences about the underlying causal structures likely to have generated those
observed data. We can use the same basic principles of Bayesian inference
developed in the previous section, where now the data are samples from an
unknown causal graphical model and the hypotheses to be evaluated are
different candidate graphical models. For technical introductions to the
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methods and challenges of learning causal graphical models, see Heckerman
(1998) and Glymour and Cooper (1999).
As in the previous section, it is valuable to distinguish between the problems

of parameter estimation and model selection. In the context of causal learning,
model selection becomes the problem of determining the graph structure of the
causal model – which causal relationships exist – and parameter estimation
becomes the problem of determining the strength and polarity of the causal
relations specified by a given graph structure. The differences between these two
aspects of causal learning, and how graphical models can be brought into
contact with empirical data on human causal learning, will be illustrated with
a task that has been extensively studied in the cognitive psychology literature:
judging the status of a single causal relationship between two variables based on
contingency data.

3.3.4 Example: Causal Induction from Contingency Data

Much psychological research on causal induction has focused upon this simple
causal learning problem: given a candidate cause, C, and a candidate effect, E,
people are asked to give a numerical rating assessing the degree to which C
causes E.2 The exact wording of the judgment question varies and until recently
was not the subject of much attention, although as will be seen below it is
potentially quite important. Most studies present information corresponding to
the entries in a 2� 2 contingency table, as in Table 3.1. People are given
information about the frequency with which the effect occurs in the presence
and absence of the cause, represented by the numbers N eþ, cþð Þ,N e�, c�ð Þ and
so forth. In a standard example, C might be injecting a chemical into a mouse,
and E the expression of a particular gene. N eþ, cþð Þ would be the number of
injected mice expressing the gene, while N e�, c�ð Þ would be the number of
uninjected mice not expressing the gene. Tasks of this sort will be referred to as
“elemental causal induction” tasks.
The leading psychological models of elemental causal induction are measures

of association that can be computed from simple combinations of the frequen-
cies in Table 3.1. A classic model first suggested by Jenkins and Ward (1965)
asserts that the degree of causation is best measured by the quantity

ΔP ¼ N eþ, cþð Þ
N eþ, cþð Þ þN e�, cþð Þ �

N eþ, c�ð Þ
N eþ, c�ð Þ þN e�, c�ð Þ

¼ P eþ cþj Þ � P eþjc�ð Þ,ð
(3.19)

where P eþjcþð Þ is the empirical conditional probability of the effect given the
presence of the cause, estimated from the contingency table counts N �ð Þ. ΔP
thus reflects the change in the probability of the effect occurring as a

2 As elsewhere in this chapter, variables such as C, E will be represented with capital letters, and
their instantiations with lowercase letters, with cþ, eþ indicating that the cause or effect is present,
and c�, e� indicating that the cause or effect is absent.
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consequence of the occurrence of the cause. More recently, Cheng (1997) has
suggested that people’s judgments are better captured by a measure called
“causal power,”

power ¼ ΔP
1� P eþjc�ð Þ : (3.20)

which takes ΔP as a component, but predicts that ΔP will have a greater effect
when P eþjc�ð Þ is large.

Several experiments have been conducted with the aim of evaluating ΔP and
causal power as models of human judgments. In one such study, Buehner and
Cheng (1997, Experiment 1B; this experiment also appears in Buehner, Cheng,
& Clifford, 2003) asked people to evaluate causal relationships for fifteen sets of
contingencies expressing all possible combinations of P eþjc�ð Þ and ΔP in
increments of 0.25. The results of this experiment are shown in Figure 3.4,
together with the predictions of ΔP and causal power. As can be seen from the
figure, both ΔP and causal power capture some of the trends in the data,
producing correlations of r ¼ 0:89 and r ¼ 0:88 respectively. However, since
the trends predicted by the two models are essentially orthogonal, neither model
provides a complete account of the data.3

ΔP and causal power seem to capture some important elements of human
causal induction, but miss others. We can gain some insight into the
assumptions behind these models, and identify some possible alternative
models, by considering the computational problem behind causal induction
using the tools of causal graphical models and Bayesian inference. The task of
elemental causal induction can be seen as trying to infer which causal graphical
model best characterizes the relationship between the variables C and E.
Figure 3.5 shows two possible causal structures relating C, E, and another
variable B which summarizes the influence of all of the other “background”
causes of E (which are assumed to be constantly present). The problem of
learning which causal graphical model is correct has two aspects: inferring the
right causal structure, a problem of model selection, and determining the right
parameters assuming a particular structure, a problem of parameter estimation.

In order to formulate the problems of model selection and parameter estima-
tion more precisely, we need to make some further assumptions about the
nature of the causal graphical models shown in Figure 3.5. In particular, we

Table 3.1 Contingency table representation used in elemental causal induction

Effect Present (eþ) Effect Absent (e�)

Cause Present (cþ) N eþ, cþð Þ N e�, cþð Þ
Cause Absent (c�) N eþ, c�ð Þ N e�, c�ð Þ

3 See Griffiths and Tenenbaum (2005) for the details of how these correlations were evaluated,
using a power-law transformation to allow for nonlinearities in participants’ judgment scales.
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need to define the form of the conditional probability distribution P EjB, Cð Þ for
the different structures, often called the parameterization of the graphs.
Sometimes the parameterization is trivial – for example, C and E are independ-
ent in Graph 0, so we just need to specify P0 EjBð Þ, where the subscript indicates
that this probability is associated with Graph 0. This can be done using a single
numerical parameter w0 which provides the probability that the effect will be
present in the presence of the background cause, P0 eþjbþ;w0

� � ¼ w0. However,
when a node has multiple parents, there are many different ways in which the
functional relationship between causes and effects could be defined. For
example, in Graph 1 we need to account for how the causes B and C interact
in producing the effect E.
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Figure 3.4 Predictions of models compared with the performance of human
participants from Buehner and Cheng (1997, Experiment 1B). Numbers along
the top of the figure show stimulus contingencies; error bars indicate one
standard error.
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A simple and widely used parameterization for Bayesian networks of binary
variables is the noisy-OR distribution (Pearl, 1988). The noisy-OR can be given
a natural interpretation in terms of causal relations between multiple causes and
a single joint effect. For Graph 1, these assumptions are that B and C are both
generative causes, increasing the probability of the effect; that the probability of
E in the presence of just B is w0, and in the presence of just C is w1; and that,
when both B and C are present, they have independent opportunities to produce
the effect. This gives

P1 eþjb, c;w0, w1ð Þ ¼ 1� 1� w0ð Þb 1� w1ð Þc: (3.21)

where w0, w1 are parameters associated with the strength of B,C respectively,
and bþ ¼ cþ ¼ 1, b� ¼ c� ¼ 0 for the purpose of arithmetic operations. This
expression gives w0 for the probability of E in the presence of B alone, and
w0 þ w1 � w0w1 for the probability of E in the presence of both B and C. This
parameterization is called a noisy-OR because if w0 and w1 are both 1, Equation
3.21 reduces to the logical OR function: the effect occurs if and only if B or C
are present, or both. With w0 and w1 in the range 0, 1½ �, the noisy-OR softens
this function but preserves its essentially disjunctive interaction: the effect
occurs if and only if B causes it (which happens with probability w0) or C
causes it (which happens with probability w1), or both.

There are many other ways we can parameterize these conditional probabil-
ity distributions. An alternative to the noisy-OR might be a linear parameter-
ization of Graph 1, asserting that the probability of E occurring is a linear
function of B and C. This corresponds to assuming that the presence of a cause
simply increases the probability of an effect by a constant amount, regardless of
any other causes that might be present. There is no distinction between genera-
tive and preventive causes. The result is

P1 eþjb, c;w0, w1ð Þ ¼ w0 � bþ w1 � c: (3.22)

This parameterization requires that we constrain w0 þ w1 to lie between 0 and 1
to ensure that Equation 3.22 results in a legal probability distribution. Because

Graph 1Graph 0

E

B B

E

CC

Figure 3.5 Directed graphs involving three variables, B,C,E, relevant to
elemental causal induction. B represents background variables, C a potential
causal variable, and E the effect of interest. Graph 1, shown in (a), is assumed
in computing ΔP and causal power. Computing causal support involves
comparing the structure of Graph 1 to that of Graph 0, shown in (b), in which
C and E are independent.
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of this dependence between parameters that seem intuitively like they should be
independent, such a linear parameterization is not normally used in Bayesian
networks. However, it is relevant for understanding models of human
causal induction.
Given a particular causal graph structure and a particular parameterization –

for example, Graph 1 parameterized with a noisy-OR function – inferring the
strength parameters that best characterize the causal relationships in that model
is straightforward. We can use any of the parameter-estimation methods dis-
cussed in the previous section (such as maximum-likelihood or MAP estima-
tion) to find the values of the parameters (w0 and w1 in Graph 1) that best fit a
set of observed contingencies. Tenenbaum and Griffiths (2001; Griffiths &
Tenenbaum, 2005) showed that the two psychological models of causal induc-
tion introduced above – ΔP and causal power – both correspond to maximum-
likelihood estimates of the causal strength parameter w1, but under different
assumptions about the parameterization of Graph 1. ΔP results from assuming
the linear parameterization, while causal power results from assuming the
noisy-OR.
This view of ΔP and causal power helps to reveal their underlying similarities

and differences: they are similar in being maximum-likelihood estimates of the
strength parameter describing a causal relationship, but differ in the assump-
tions that they make about the form of that relationship. This analysis also
suggests another class of models of causal induction that has not until recently
been explored: models of learning causal graph structure, or causal model
selection rather than parameter estimation. Recalling the discussion of model
selection above, the evidence that a set of contingencies d provide in favor of the
existence of a causal relationship (i.e., Graph 1 over Graph 0) can be expressed
as the log-likelihood ratio in favor of Graph 1. Terming this quantity “causal
support,” we have

support ¼ log
P djGraph 1ð Þ
P djGraph 0ð Þ (3.23)

where P djGraph 1ð Þ and P djGraph 0ð Þ are computed by integrating over the
parameters associated with the different structures

P djGraph 1ð Þ ¼
ð1
0

ð1
0

P1 djw0, w1, Graph 1ð Þ w0, w1jGraph 1ð Þ dw0 dw1

(3.24)

P djGraph 0ð Þ ¼
ð1
0

P0 djw0, Graph 0ð Þ w0jGraph 0ð Þ dw0: (3.25)

Tenenbaum and Griffiths (2001; Griffiths & Tenenbaum, 2005) proposed this
model, and specifically assumed a noisy-OR parameterization for Graph 1 and
uniform priors on w0 and w1. Equation 3.25 is identical to Equation 3.16 and
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has an analytic solution. Evaluating Equation 3.24 is more of a challenge, but
one that will be returned to later in this chapter when discussing Monte Carlo
methods for approximate probabilistic inference.

The results of computing causal support for the stimuli used by Buehner and
Cheng (1997) are shown in Figure 3.4. Causal support provides an excellent fit
to these data, with r ¼ 0:97. The model captures the trends predicted by both
ΔP and causal power, as well as trends that are predicted by neither model.
These results suggest that when people evaluate contingency, they may be
taking into account the evidence that those data provide for a causal relation-
ship as well as the strength of the relationship they suggest. The figure also
shows the predictions obtained by applying the χ2 measure to these data, a
standard hypothesis-testing method of assessing the evidence for a relationship
(and a common ingredient in nonBayesian approaches to structure learning,
e.g. Spirtes et al., 1993). These predictions miss several important trends in the
human data, suggesting that the ability to assert expectations about the nature
of a causal relationship that go beyond mere dependency (such as the
assumption of a noisy-OR parameterization), is contributing to the success of
this model. Causal support predicts human judgments on several other datasets
that are problematic for ΔP and causal power, and also accommodates causal
learning based upon the rate at which events occur (see Griffiths & Tenenbaum,
2005, for more details).

The Bayesian approach to causal induction can be extended to cover a
variety of more complex cases, including learning in larger causal networks
(Steyvers et al., 2003), choosing which interventions to perform in the aid of
causal learning (Steyvers et al., 2003), continuous causes and effects (Davis,
Bramley, & Rehder, 2020; Griffiths & Pacer, 2011; Lu, Rojas, Beckers, &
Yuille, 2016), and continuous time (Pacer & Griffiths, 2012, 2015).

Even in the simple case of elemental causal induction, there has been exten-
sive work trying to identify the prior distribution that people assume for the
strength of the causal relationships (Lu, Yuille, Liljeholm, Cheng, & Holyoak,
2006, 2007, 2008; Yeung & Griffiths, 2015). Modeling learning in more complex
cases often requires us to work with stronger and more structured prior distri-
butions. This prior knowledge can be usefully described in terms of intuitive
domain theories (Carey, 1985; Gopnik & Meltzoff, 1997; Wellman & Gelman,
1992), systems of abstract concepts and principles that specify the kinds of
entities that can exist in a domain, their properties and possible states, and
the kinds of causal relations that can exist between them. These abstract causal
theories can be formalized as probabilistic generators for hypothesis spaces of
causal graphical models, using probabilistic forms of generative grammars,
predicate logic, or other structured representations (Griffiths & Tenenbaum,
2009; Kemp, Tenenbaum, Niyogi, & Griffiths, 2010). Given observations of
causal events relating a set of objects, these probabilistic theories generate the
relevant variables for representing those events, a constrained space of possible
causal graphs over those variables, and the allowable parameterizations for
those graphs. They also generate a prior distribution over this hypothesis space
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of candidate causal models, which provides the basis for Bayesian causal
learning in the spirit of the methods described above.
One advantage of the Bayesian approach is that it forces modelers to make

clear their assumptions about the form and content of learners’ prior know-
ledge. The framework lets us test these assumptions empirically and study how
they vary across different settings, by specifying a rational mapping from prior
knowledge to learners’ behavior in any given task. It may also seem unsatisfy-
ing, though, by passing on the hardest questions of learning to whatever
mechanism is responsible for establishing learners’ prior knowledge. This is
the problem addressed in the next section, using the techniques of hierarchical
Bayesian models.

3.4 Hierarchical Bayesian Models

The predictions of a Bayesian model can often depend critically on
the prior distribution that it uses. The early cointossing examples provided a
simple and clear case of the effects of priors. If a coin is tossed once and
comes up heads, then a learner who began with a uniform prior on the bias
of the coin should predict that the next toss will produce heads with prob-
ability 2

3. If the learner began instead with the belief that the coin is likely to
be fair, she should predict that the next toss will produce heads with
probability close to 1

2.
Within statistics, Bayesian approaches have at times been criticized for

relying critically on some form of prior knowledge. It is often said that good
statistical analyses should “let the data speak for themselves,” hence the motiv-
ation for maximum-likelihood estimation and other classical statistical methods
that do not require a prior to be specified. Cognitive models, however, will
usually aim for the opposite goal. Most human inferences are guided by
background knowledge, and cognitive models should formalize this knowledge
and show how it can be used for induction. From this perspective, the prior
distribution used by a Bayesian model is critical, since an appropriate prior can
capture the background knowledge that humans bring to a given inductive
problem. As mentioned in the previous section, prior distributions can capture
many kinds of knowledge: priors for causal reasoning, for example, may
incorporate theories of folk physics, or knowledge about the powers and
liabilities of different ontological kinds.
Since background knowledge plays a central role in many human inferences,

it is important to ask how this knowledge might be acquired. In a Bayesian
framework, the acquisition of background knowledge can be modeled as the
acquisition of a prior distribution. We have already seen one piece of evidence
that prior distributions can be learned: given two competing models, each of
which uses a different prior distribution, Bayesian model selection can be used
to choose between them. This section will provide a more comprehensive
treatment of the problem of learning prior distributions, and show how this
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problem can be addressed using hierarchical Bayesian models (Gelman, Carlin,
Stern, & Rubin, 1995; Good, 1980). Although the focus is on just two applica-
tions, the hierarchical Bayesian approach has been applied to many other
cognitive problems (Glassen & Nitsch, 2016; Goodman, Ullman, &
Tenenbaum, 2011; Hagmayer & Mayrhofer, 2013; Lee, 2006; Mansinghka,
Kemp, Tenenbaum, & Griffiths, 2006; Tenenbaum, Griffiths, & Kemp, 2006;
Pajak, Fine, Kleinschmidt, & Jaeger, 2016; Ullman & Tenenbaum, 2020), and
many additional examples of hierarchical models can be found in the statistical
literature (Gelman et al., 1995; Goldstein, 2003).

Consider first the case where the prior distribution to be learned has known
form but unknown parameters. For example, suppose that the prior distribu-
tion on the bias of a coin is Beta α, βð Þ, where the parameters α and β are
unknown. We previously considered cases where the parameters α and β were
positive integers, but in general these parameters can be positive real numbers.4

As with integer-valued parameters, the mean of the beta distribution is α
αþβ , and

αþ β determines the shape of the distribution. The distribution is tightly peaked
around its mean when αþ β is large, flat when α ¼ β ¼ 1, and U-shaped when
αþ β is small (Figure 3.6). Observing the coin being tossed provides some
information about the values of α and β, and a learner who begins with prior
distributions on the values of these parameters can update these distributions as
each new coin toss is observed. The prior distributions on α and β may be
defined in terms of one or more hyperparameters. The hierarchical model in
Figure 3.7a uses three levels, where the hyperparameter at the top level (λ) is
fixed. In principle, however, we can develop hierarchical models with any
number of levels – we can continue adding hyperparameters and priors on these
hyperparameters until we reach a level where we are willing to assume that the
hyperparameters are fixed in advance.

At first, the upper levels in hierarchical models like Figure 3.7a might seem
too abstract to be of much practical use. Yet these upper levels play a critical
role – they allow knowledge to be shared across contexts that are related but
distinct. In the coin tossing example, these contexts correspond to observations
of many different coins, each of which has a bias sampled from the same prior
distribution Beta α, βð Þ. It is possible to learn something about α and β by
tossing a single coin, but the best way to learn about α and β is probably to
experiment with many different coins. If most coins tend to come up heads
about half the time, we might infer that α and β are both large, and are close to
each other in size. Suppose, however, that we are working in a factory that

4 The general form of the beta distribution is

p θð Þ ¼ Γ αþ βð Þ
Γ αð ÞΓ βð Þ θ

α�1 1� θð Þβ�1 (3.40)

where Γ αð Þ ¼ Ð∞
0 x

α�1e�x dx is the generalized factorial function (also known as the
gamma function), with Γ nð Þ ¼ n� 1ð Þ! for any integer argument n and smoothly
interpolating between the factorials for real-valued arguments (e.g., Boas, 1983).
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produces trick coins for magicians. If 80 percent of coins come up heads almost
always, and the remainder come up tails almost always, we might infer that α
and β are both very small, and that α

αþ β � 0:8.
More formally, suppose that we have observed many coins being tossed, and

that di is the tally of heads and tails produced by the ith coin. The ith coin has
bias θi, and each bias θi is sampled from a beta distribution with parameters α
and β. The hierarchical model in Figure 3.8 captures these assumptions, and is
known by statisticians as a beta-binomial model (Gelman et al., 1995). To learn
about the prior distribution Beta α, βð Þ we must formalize our expectations about
the values of α and β. We will assume that the mean of the beta distribution α

αþ β is
uniformly drawn from the interval 0, 1½ �, and that the sum of the parameters
αþ β is drawn from an exponential distribution with hyperparameter λ. Given
the hierarchical model in Figure 3.8, inferences about any of the θi can be made
by integrating out α and β:

p θijd1, d2, . . . , dnð Þ ¼
ð
p θijα, β, dið Þp α, βjd1, d2, . . . , dnð Þdαdβ

(3.26)
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Figure 3.6 The beta distribution serves as a prior on the bias θ of a coin. The
mean of the distribution is α

αþ β , and the shape of the distribution depends on
αþ β.
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(c)(b)(a)

dnew dnew dnew

θnew enew enew

λ λ F

λ
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Figure 3.7 Three hierarchical Bayesian models. (a) A model for inferring θnew,
the bias of a coin. dnew specifies the number of heads and tails observed when
the coin is tossed. θnew is drawn from a beta distribution with parameters α and
β. The prior distribution on these parameters has a single hyperparameter, λ.
(b) A model for inferring enew, the extension of a novel property. dnew is a
sparsely observed version of enew, and enew is assumed to be drawn from a prior
distribution induced by structured representation S. The hyperparameter λ
specifies a prior distribution over a hypothesis space of structured
representations. (c) A model that can discover the form F of the structure S.
The hyperparameter λ now specifies a prior distribution over a hypothesis space
of structural forms.
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Figure 3.8 Inferences about the distribution of features within tribes. (a) Prior
distributions on θ, log αþ βð Þ and α

αþ β. (b) Posterior distributions after
observing ten all-white tribes and ten all-brown tribes. (c) Posterior
distributions after observing twenty tribes. Black circles indicate individuals
with armbands, and the rate of armband wearing varies among tribes.
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and this integral can be approximated using the Markov chain Monte Carlo
methods described in the next section (see also Kemp, Perfors, & Tenenbaum,
2007).

3.4.1 Example: Learning About Feature Variability

Humans acquire many kinds of knowledge about categories and their features.
Some kinds of knowledge are relatively concrete: for instance, children learn
that balls tend to be round, and that televisions tend to be box-shaped. Other
kinds of knowledge are more abstract, and represent discoveries about categor-
ies in general. For instance, thirty-month-old children display a shape bias: they
appear to know that the objects in any given category tend to have the same
shape, even if they differ along other dimensions, such as color and texture
(Heibeck & Markman, 1987; Smith, Jones, Landau, Gershkoff-Stowe, &
Samuelson, 2002). The shape bias is one example of abstract knowledge about
feature variability, and Kemp et al. (2007) have argued that knowledge of this
sort can be acquired by hierarchical Bayesian models.
A study carried out by Nisbett, Krantz, Jepson, and Kunda (1983) shows

how knowledge about feature variability can support inductive inferences from
very sparse data. Adapting one of their scenarios, suppose that you are visiting
an island in the South Pacific for the first time and that you encounter a single
member of a local tribe who wears an armband and has brown skin. Based on
this single example you might conclude that most members of the tribe have
brown skin, but might give a lower estimate of the proportion of tribe members
that wear armbands. These inferences can be explained by the beliefs that skin
color is a feature that is consistent within tribes and that armband wearing tends
to vary within tribes, and the model in Figure 3.8 can explain how these beliefs
might be acquired.
Kemp et al. (2007) describe a model that can reason simultaneously about

multiple features, but for simplicity we will consider skin color and armband
wearing separately. Consider first the case where θi represents the proportion of
brown-skinned individuals within tribe i, and suppose that we have observed
twenty members from each of twenty tribes. Half the tribes are brown and the
other half are white, but all of the individuals in a given tribe have the same skin
color. Given these observations, the posterior distribution on αþ β indicates
that αþ β is likely to be small (Figure 3.8b). Recall that small values of αþ β
imply that most of the θi will be close to 0 or close to 1 (Figure 3.6): in other
words, that skin color tends to be homogeneous within tribes. Learning that
αþ β is small allows the model to make strong predictions about a sparsely
observed new tribe: having observed a single brown-skinned member of a new
tribe, the posterior distribution on θnew indicates that most members of the tribe
are likely to be brown (Figure 3.8b). Note that the posterior distribution on θnew
is almost as sharply peaked as the posterior distribution on θ11: the model has
realized that observing one member of a new tribe is almost as informative as
observing twenty members of that tribe.
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Consider now the case where θi represents the proportion of armband-
wearing individuals within tribe i. Suppose that armband wearing is a feature
that varies within tribes: a quarter of the twenty tribes observed have an
armband-wearing rate of 10 percent, and the remaining three quarters have
rates of 20 percent, 30 percent, and 40 percent respectively (Figure 3.8c). Given
these observations, the posterior distributions on αþ β and α

αþ β (Figure 3.8c)
indicate that armband wearing varies within tribes (αþ β is high), and that the
base rate of armband wearing is around 25 percent ( α

αþ β is around 0.25). Again,
we can use these posterior distributions to make predictions about a new tribe,
but now the model requires many observations before it concludes that most
members of the new tribe wear armbands. Unlike the case in Figure 3.8b, the
model has learned that a single observation of a new tribe is not very informa-
tive, and the distribution on θnew is now similar to the average of the θ values for
all previously observed tribes.

In Figures 3.8b and 3.8c, a hierarchical model is used to simultaneously learn
about high-level knowledge (α and β) and low-level knowledge (the values of
θi). Any hierarchical model, however, can be used for several different pur-
poses. If α and β are fixed in advance, the model supports top-down learning:
knowledge about α and β can guide inferences about the θi. If the θi are fixed in
advance, the model supports bottom-up learning, and the θi can guide infer-
ences about α and β. The ability to support top-down and bottom-up inferences
is a strength of the hierarchical approach, but simultaneous learning at multiple
levels of abstraction is often required to account for human inferences. Note,
for example, that judgments about the South Pacific tribe depend critically on
learning at two levels: learning at the level of θ is needed to incorporate the
observation that the new tribe has at least one armband-wearing, brown-
skinned member, and learning at the level of α and β is needed to discover that
skin-color is homogeneous within tribes but that armband wearing is not.

3.4.2 Example: Property Induction

The previous section showed how hierarchical Bayesian models can explain
how the parameters of a prior distribution might be learned. Prior knowledge in
human cognition, however, is often better characterized using more structured
representations. This section presents a simple case study that shows how a
hierarchical Bayesian model can acquire structured prior knowledge.

Structured prior knowledge plays a role in many inductive inferences, but we
will consider the problem of property induction. In a typical task of this sort,
learners find out that one or more members of a domain have a novel property,
and decide how to extend the property to the remaining members of the
domain. For instance, given that gorillas carry enzyme X132, how likely is it
that chimps also carry this enzyme? (Osherson, Smith, Wilkie, Lopez, & Shafir,
1990; Rips, 1975). For our purposes, inductive problems like these are interest-
ing because they rely on relatively rich prior knowledge, and because this prior
knowledge often appears to be learned. For example, humans learn at some
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stage that gorillas are more closely related to chimps than to squirrels, and
taxonomic knowledge of this sort guides inferences about novel anatomical and
physiological properties.
The problem of property induction can be formalized as an inference about

the extension of a novel property (Kemp & Tenenbaum, 2003). Suppose that
we are working with a finite set of animal species. Let enew be a binary vector
which represents the true extension of the novel property (Figures 3.7 and 3.9).
For example, the element in enew that corresponds to gorillas will be 1
(represented as a black circle in Figure 3.9) if gorillas have the novel property,
and 0 otherwise. Let dnew be a partially observed version of extension enew
(Figure 3.9). We are interested in the posterior distribution on enew given
the sparse observations in dnew. Using Bayes’ rule, this distribution can be
written as

P enewjdnew, Sð Þ ¼ P dnewjenewð ÞP enewjSð Þ
P dnewjSð Þ (3.27)

where S captures the structured prior knowledge which is relevant to the novel
property. The first term in the numerator, P dnewjenewð Þ, depends on the process
by which the observations in dnew were sampled from the true extension enew.
We will assume for simplicity that the entries in dnew are sampled at random
from the vector enew. The denominator can be computed by summing over all
possible values of enew :

P dnewjSð Þ ¼
X
enew

P dnewjenewð ÞP enewjSð Þ: (3.28)

For reasoning about anatomy, physiology, and other sorts of generic biological
properties (e.g., “has enzyme X132”), the prior P enewjSð Þ will typically capture
knowledge about taxonomic relationships between biological species. For
instance, it seems plausible a priori that gorillas and chimps are the only familiar
animals that carry a certain enzyme, but less probable that this enzyme will only
be found in gorillas and squirrels.
Prior knowledge about taxonomic relationships between living kinds can be

captured using a tree-structured representation like the taxonomy shown in
Figure 3.9. We will therefore assume that the structured prior knowledge S
takes the form of a tree, and define a prior distribution P enewjSð Þ using a
stochastic process over this tree. The stochastic process assigns some prior
probability to all possible extensions, but the most likely extensions are those
that are smooth with respect to tree S. An extension is smooth if nearby species
in the tree tend to have the same status – either both have the novel property, or
neither does. One example of a stochastic process that tends to generate
properties smoothly over the tree is a mutation process, inspired by biological
evolution: the property is randomly chosen to be on or off at the root of the tree,
and then has some small probability of switching state at each point of each
branch of the tree (Huelsenbeck & Ronquist, 2001; Kemp, Perfors, &
Tenenbaum, 2004).
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For inferences about generic biological properties, the problem of acquiring
prior knowledge has now been reduced to the problem of finding an appropriate
tree S. Human learners acquire taxonomic representations in part by observing
properties of entities: noticing, for example, that gorillas and chimps have many
properties in common and should probably appear nearby in a taxonomic
structure. This learning process can be formalized using the hierarchical
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Figure 3.9 Learning a tree-structured prior for property induction. Given a
collection of sparsely observed properties di (a black circle indicates that a
species has a given property), we can compute a posterior distribution on
structure S and posterior distributions on each extension ei. Since the
distribution over S is difficult to display, we show a single tree with high
posterior probability. Since each distribution on ei is difficult to display, we
show instead the posterior probability that each species has each property
(dark circles indicate probabilities close to 1).
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Bayesian model in Figure 3.9. We assume that a learner has partially observed
the extensions of n properties, and that these observations are collected in
vectors labeled d1 through dn. The true extensions ei of these properties are
generated from the same tree-based prior that is assumed to generate enew, the
extension of the novel property. Learning the taxonomy now amounts to
making inferences about the tree S that is most likely to have generated all of
these partially observed properties. Again we see that a hierarchical formulation
allows information to be shared across related contexts. Here, information
about n partially observed properties is used to influence the prior distribution
for inferences about enew. To complete the hierarchical model in Figure 3.9 it is
necessary to specify a prior distribution on trees S : for simplicity, we can use a
uniform distribution over tree topologies, and an exponential distribution with
parameter λ over the branch lengths.
Inferences about enew can now be made by integrating out the underlying

tree S :

P enewjd1, . . . , dn, dnewð Þ ¼
ð
P enewjdnew, Sð Þp Sjd1, . . . , dn, dnewð ÞdS

(3.29)

Where P enewjdnew, Sð Þ is defined in Equation 3.27. This integral can be approxi-
mated by using Markov chain Monte Carlo methods of the kind discussed in
the next section to draw a sample of trees from the distribution
p Sjd1, . . . , dn, dnewð Þ (Huelsenbeck & Ronquist, 2001). If preferred, a single
tree with high posterior probability can be identified, and this tree can be used
to make predictions about the extension of the novel property. Kemp et al.
(2004) follow this second strategy, and show that a single tree is sufficient to
accurately predict human inferences about the extensions of novel
biological properties.
The model in Figures 3.7b and 3.9 assumes that the extensions ei are gener-

ated over some true but unknown tree S. Tree structures may be useful for
capturing taxonomic relationships between biological species, but different
kinds of structured representations such as chains, rings, or sets of clusters are
useful in other settings. Understanding which kind of representation is best for a
given context is sometimes thought to rely on innate knowledge: Atran (1998),
for example, argues that the tendency to organize living kinds into tree struc-
tures reflects an “innately determined cognitive module.” The hierarchical
Bayesian approach challenges the inevitability of this conclusion by showing
how a model might discover which kind of representation is best for a given
data set. We can create such a model by adding an additional level to the model
in Figure 3.7b. Suppose that variable F indicates whether S is a tree, a chain, a
ring, or an instance of some other structural form. Given a prior distribution
over a hypothesis space of possible forms, the model in Figure 3.7c can
simultaneously discover the form F and the instance of that form S that best
account for a set of observed properties. Kemp et al. (2004) formally define a
model of this sort, and show that it chooses appropriate representations for

114 thomas l. griffiths, charles kemp, and joshua b. tenenbaum

https://doi.org/10.1017/9781108755610.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.006


several domains. For example, the model chooses a tree-structured representa-
tion given information about animals and their properties, but chooses a linear
representation (the liberal-conservative spectrum) when supplied with informa-
tion about the voting patterns of Supreme Court judges.

The models in Figure 3.7b and 3.7c demonstrate that the hierarchical
Bayesian approach can account for the acquisition of structured prior know-
ledge. Many domains of human knowledge, however, are organized into repre-
sentations that are richer and more sophisticated than the examples considered
here. The hierarchical Bayesian approach provides a framework that can help
to explore the use and acquisition of richer prior knowledge, such as the
intuitive causal theories described at the end of the previous section. For
instance, Mansinghka, Kemp, Tenenbaum, and Griffiths (2006) describe a
two-level hierarchical model in which the lower level represents a space of
causal graphical models, while the higher level specifies a simple abstract theory:
it assumes that the variables in the graph come in one or more classes, with the
prior probability of causal relations between them depending on these classes.
The model can then be used to infer the number of classes, which variables are
in which classes, and the probability of causal links existing between classes
directly from data, at the same time as it learns the specific causal relations that
hold between individual pairs of variables. Given data from a causal network
that embodies some such regularity, the model of Mansinghka et al. (2006)
infers the correct network structure from many fewer examples than would be
required under a generic uniform prior, because it can exploit the constraint of a
learned theory of the network’s abstract structure. Other work has evaluated
this kind of hierarchical Bayesian approach as an account of how people might
learn causal theories (Kemp et al., 2010; Lucas & Griffiths, 2010) and even the
notion of causality itself (Goodman et al., 2011). While the theories that can be
learned using best hierarchical Bayesian models are still quite simple, these
frameworks provide a promising foundation for future work and an illustration
of how structured knowledge representations and sophisticated statistical infer-
ence can interact productively in cognitive modeling.

3.5 Markov Chain Monte Carlo

The probability distributions we have to evaluate in applying Bayesian
inference can quickly become very complicated, particularly when using hier-
archical Bayesian models. Graphical models provide some tools for speeding up
probabilistic inference, but these tools tend to work best when most variables
are directly dependent on a relatively small number of other variables. Other
methods are needed to work with large probability distributions that exhibit
complex interdependencies among variables. In general, ideal Bayesian compu-
tations can only be approximated for these complex models, and many methods
for approximate Bayesian inference and learning have been developed (Bishop,
2006; Mackay, 2003). This section introduces the Markov chain Monte Carlo
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approach, a general-purpose toolkit for inferring the values of latent variables,
estimating parameters, and learning model structure, which can work with a
very wide range of probabilistic models. The main drawback of this approach is
that it can be slow, but given sufficient time it can yield accurate inferences for
models that cannot be handled by other means.
The basic idea behind Monte Carlo methods is to represent a probability

distribution by a set of samples from that distribution. Those samples provide
an idea of which values have high probability (since high probability values
are more likely to be produced as samples), and can be used in place of the
distribution itself when performing various computations. When working with
Bayesian models of cognition, we are typically interested in understanding the
posterior distribution over a parameterized model – such as a causal network
with its causal strength parameters – or over a class of models – such as the
space of all causal network structures on a set of variables, or all taxonomic
tree structures on a set of objects. Samples from the posterior distribution can
be useful in discovering the best parameter values for a model or the best
models in a model class, and for estimating how concentrated the posterior is
on those best hypotheses (i.e., how confident a learner should be in those
hypotheses).
Sampling can also be used to approximate averages over the posterior

distribution. For example, in computing the posterior probability of a para-
meterized model given data, it is necessary to compute the model’s marginal
likelihood, or the average probability of the data over all parameter settings of
the model (as in Equation 3.16 for determining whether we have a fair or
weighted coin). Averaging over all parameter settings is also necessary for ideal
Bayesian prediction about future data points (as in computing the posterior
predictive distribution for a weighted coin, Equation 3.11). Finally, we could be
interested in averaging over a space of model structures, making predictions
about model features that are likely to hold regardless of which structure is
correct. For example, we could estimate how likely it is that one variable A
causes variable B in a complex causal network of unknown structure, by
computing the probability that a link A ! B exists in a high-probability sample
from the posterior over network structures (Friedman & Koller, 2000).
Monte Carlo methods were originally developed primarily for approximating

these sophisticated averages – that is, approximating a sum over all of the
values taken on by a random variable with a sum over a random sample of
those values. Assume that we want to evaluate the average (also called the
expected value) of a function f xð Þ over a probability distribution p xð Þ defined on
a set of k random variables taking on values x ¼ x1, x2, . . . , xkð Þ. This can be
done by taking the integral of f xð Þ over all values of x, weighted by their
probability p xð Þ. Monte Carlo provides an alternative, relying upon the law
of large numbers to justify the approximationð

f xð Þp xð Þ dx �
Xm
i¼1

f
�
x ið Þ� (3.30)
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where the x ið Þ are a set of m samples from the distribution p xð Þ. The accuracy of
this approximation increases as m increases.

To show how the Monte Carlo approach to approximate numerical integra-
tion is useful for evaluating Bayesian models, recall the causal support model of
causal structure-learning. In order to compute the evidence that a set of contin-
gencies d provides in favor of a causal relationship, we needed to evaluate the
integral

P djGraph 1ð Þ ¼
ð1
0

ð1
0

P1 djw0,w1;Graph 1ð Þ P w0,w1jGraph 1ð Þ dw0 dw1

(3.31)

where P1 djw0, w1, Graph 1ð Þ is derived from the noisy-OR parameterization,
and P w0, w1jGraph 1ð Þ is assumed to be uniform over all values of w0 and w1

between 0 and 1. If we view P1 djw0, w1, Graph 1ð Þ simply as a function of w0

and w1, it is clear that we can approximate this integral using Monte Carlo. The
analogue of Equation 3.30 is

P djGraph 1ð Þ �
Xm
i¼1

P1 djw ið Þ
0 , w ið Þ

1 , Graph 1
� �

(3.32)

where the w ið Þ
0 and w ið Þ

1 are a set of m samples from the distribution
P w0, w1jGraph 1ð Þ. A version of this simple approximation was used to com-
pute the values of causal support shown in Figure 3.4 (for details, see Griffiths
& Tenenbaum, 2005).

One limitation of classical Monte Carlo methods is that it is not easy to
automatically generate samples from most probability distributions. There are a
number of ways to address this problem, including methods such as rejection
sampling and importance sampling (see, e.g., Neal, 1993). One of the most
flexible methods for generating samples from a probability distribution is
Markov chain Monte Carlo (MCMC), which can be used to construct samplers
for arbitrary probability distributions even if the normalizing constants of those
distributions are unknown. MCMC algorithms were originally developed to
solve problems in statistical physics (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), and are now widely used across physics, statistics,
machine learning, and related fields (e.g., Gilks, Richardson, & Spiegelhalter,
1996; Mackay, 2003; Neal, 1993; Newman & Barkema, 1999).

As the name suggests, Markov chain Monte Carlo is based upon the theory
of Markov chains – sequences of random variables in which each variable is
conditionally independent of all previous variables given its immediate prede-
cessor (as in Figure 3.2b). The probability that a variable in a Markov chain
takes on a particular value conditioned on the value of the preceding variable is
determined by the transition kernel for that Markov chain. One well-known
property of Markov chains is their tendency to converge to a stationary distri-
bution: as the length of a Markov chain increases, the probability that a variable
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in that chain takes on a particular value converges to a fixed quantity deter-
mined by the choice of transition kernel. If we sample from the Markov chain
by picking some initial value and then repeatedly sampling from the distribu-
tion specified by the transition kernel, we will ultimately generate samples from
the stationary distribution.
In MCMC, a Markov chain is constructed such that its stationary distribu-

tion is the distribution from which we want to generate samples. If the target
distribution is p xð Þ, then the Markov chain would be defined on sequences of
values of x. The transition kernel K x iþ1ð Þjx ið Þ� �

gives the probability of moving
from state x ið Þ to state x iþ1ð Þ. In order for the stationary distribution of the
Markov chain to be the target distribution p xð Þ, the transition kernel must be
chosen so that p xð Þ is invariant to the kernel. Mathematically this is expressed
by the condition

p
�
x iþ1ð Þ� ¼ X

x
p xð ÞK xjx0ð Þ: (3.33)

If this is the case, once the probability that the chain is in a particular state is
equal to p xð Þ, it will continue to be equal to p xð Þ – hence the term “stationary
distribution.” Once the chain converges to its stationary distribution, averaging
a function f xð Þ over the values of x ið Þ will approximate the average of that
function over the probability distribution p xð Þ.
Fortunately, there is a simple procedure that can be used to construct a

transition kernel that will satisfy Equation 3.33 for any choice of p xð Þ, known
as the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).
The basic idea is to define K x iþ1ð Þjx ið Þ� �

as the result of two probabilistic steps.
The first step uses an arbitrary proposal distribution, q x�jx ið Þ� �

, to generate a
proposed value x� for x iþ1ð Þ. The second step is to decide whether to accept this
proposal. This is done by computing the acceptance probability, A x�jx ið Þ� �

,
defined to be

A
�
x�jx ið Þ� ¼ min

p x�ð Þq x ið Þjx�� �
p x ið Þð Þq x�jx ið Þð Þ , 1

" #
: (3.34)

If a random number generated from a uniform distribution over 0, 1½ � is less
than A x�jx ið Þ� �

, the proposed value x� is accepted as the value of x iþ1ð Þ.
Otherwise, the Markov chain remains at its previous value, and x iþ1ð Þ ¼ x ið Þ.
An illustration of the use of the Metropolis-Hastings algorithm to generate
samples from a Gaussian distribution (which is easy to sample from in general,
but convenient to work with in this case) appears in Figure 3.10.
One advantage of the Metropolis-Hastings algorithm is that it requires

only limited knowledge of the probability distribution p xð Þ. Inspection of
Equation 3.34 reveals that, in fact, the Metropolis-Hastings algorithm can be
applied even if we only know some quantity proportional to p xð Þ, since only
the ratio of these quantities affects the algorithm. If we can sample from
distributions related to p xð Þ, we can use other Markov chain Monte Carlo
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methods. In particular, if we are able to sample from the conditional
probability distribution for each variable in a set given the remaining vari-
ables, p xjjx1, . . . , xj�1, xjþ1, . . . , xn

� �
, we can use another popular algo-

rithm, Gibbs sampling (Geman & Geman, 1984; Gilks et al., 1996), which
is known in statistical physics as the heatbath algorithm (Newman &
Barkema, 1999). The Gibbs sampler for a target distribution p xð Þ is the
Markov chain defined by drawing each xj from the conditional distribution
p xjjx1, . . . , xj�1, xjþ1, . . . , xk
� �

.
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Figure 3.10 The Metropolis-Hastings algorithm. The solid lines shown in the
bottom part of the figure are three sequences of values sampled from a Markov
chain. Each chain began at a different location in the space, but used the same
transition kernel. The transition kernel was constructed using the procedure
described in the text for the Metropolis-Hastings algorithm: the proposal
distribution, q x�jxð Þ, was a Gaussian distribution with mean x and standard
deviation 0:2 (shown centered on the starting value for each chain at the
bottom of the figure), and the acceptance probabilities were computed by
taking p xð Þ to be Gaussian with mean 0 and standard deviation 1 (plotted with
a solid line in the top part of the figure). This guarantees that the stationary
distribution associated with the transition kernel is p xð Þ. Thus, regardless of the
initial value of each chain, the probability that the chain takes on a particular
value will converge to p xð Þ as the number of iterations increases. In this case,
all three chains move to explore a similar part of the space after around 100
iterations. The histogram in the top part of the figure shows the proportion of
time the three chains spend visiting each part in the space after 250 iterations
(marked with the dotted line), which closely approximates p xð Þ. Samples from
the Markov chains can thus be used similarly to samples from p xð Þ.
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Markov chain Monte Carlo can be a good way to obtain samples from
probability distributions that would otherwise be difficult to compute with,
including the posterior distributions associated with complex probabilistic
models. To illustrate how MCMC can be applied in the context of a Bayesian
model of cognition, the next section will show how Gibbs sampling can be used
to extract a statistical representation of the meanings of words from a collection
of text documents.

3.5.1 Example: Inferring Topics from Text

Several computational models have been proposed to account for the large-
scale structure of semantic memory, including semantic networks (e.g., Collins
& Loftus, 1975; Collins & Quillian, 1969) and semantic spaces (e.g., Landauer
& Dumais, 1997; Lund & Burgess, 1996). These approaches embody different
assumptions about the way that words are represented. In semantic networks,
words are nodes in a graph where edges indicate semantic relationships, as
shown in Figure 3.11a. In semantic space models, words are represented as
points in high-dimensional space, where the distance between two words reflects
the extent to which they are semantically related, as shown in Figure 3.11b.
Probabilistic models provide an opportunity to explore alternative represen-

tations for the meaning of words. One such representation is exploited in topic
models, in which words are represented in terms of the set of topics to which
they belong (Blei, Ng, & Jordan, 2003; Griffiths & Steyvers, 2004; Hofmann,
1999). Each topic is a probability distribution over words, and the content of
the topic is reflected in the words to which it assigns high probability. For
example, high probabilities forwoods and stream would suggest a topic refers
to the countryside, while high probabilities for federal and reserve would
suggest a topic refers to finance. Each word will have a probability under each
of these different topics, as shown in Figure 3.11c. For example, meadow has a
relatively high probability under the countryside topic, but a low probability
under the finance topic, similar to woods and stream.
Representing word meanings using probabilistic topics makes it possible to

use Bayesian inference to answer some of the critical problems that arise in
processing language. In particular, we can make inferences about which seman-
tically related concepts are likely to arise in the context of an observed set of
words or sentences, in order to facilitate subsequent processing. Let z denote the
dominant topic in a particular context, and w1 and w2 be two words that arise in
that context. The semantic content of these words is encoded through a set of
probability distributions that identify their probability under different topics: if
there are T topics, then these are the distributions P wjzð Þ for z ¼ 1, . . . , Tf g.
Given w1, we can infer which topic z was likely to have produced it by using
Bayes’ rule,

P zjw1ð Þ ¼ P w1jzð ÞP zð ÞPT
z0¼1P w1jz0ð ÞP z0ð Þ (3.35)
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where P zð Þ is a prior distribution over topics. Having computed this
distribution over topics, we can make a prediction about future words by
summing over the possible topics,
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Figure 3.11 Approaches to semantic representation. (a) In a semantic network,
words are represented as nodes, and edges indicate semantic relationships. (b) In
a semantic space, words are represented as points, and proximity indicates
semantic association. These are the first two dimensions of a solution produced
by Latent Semantic Analysis (Landauer & Dumais, 1997). The black dot is the
origin. (c) In the topic model, words are represented as belonging to a set of
probabilistic topics. The matrix shown on the left indicates the probability of
each word under each of three topics. The three columns on the right show the
words that appear in those topics, ordered from highest to lowest probability.
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P w2jw1ð Þ ¼
XT
z¼1

P w2jzð ÞP zjw1ð Þ: (3.36)

A topic-based representation can also be used to disambiguate words: if bank
occurs in the context of stream, it is more likely that it was generated from the
bucolic topic than the topic associated with finance.
Probabilistic topic models are an interesting alternative to traditional

approaches to semantic representation, and in many cases actually provide
better predictions of human behavior (Griffiths & Steyvers, 2003; Griffiths,
Steyvers, & Tenenbaum, 2007). However, one critical question in using this
kind of representation is that of which topics should be used. Fortunately, work
in machine learning and information retrieval has provided an answer to this
question. As with popular semantic space models (Landauer & Dumais, 1997;
Lund & Burgess, 1996), the representation of a set of words in terms of topics
can be inferred automatically from the text contained in large document collec-
tions. The key to this process is viewing topic models as generative models for
documents, making it possible to use standard methods of Bayesian statistics to
identify a set of topics that are likely to have generated an observed collection of
documents. Figure 3.12 shows a sample of topics inferred from the TASA
corpus (Landauer & Dumais, 1997), a collection of passages excerpted from
educational texts used in curricula from the first year of school to the first year
of college.
We can specify a generative model for documents by assuming that each

document is a mixture of topics, with each word in that document being drawn
from a particular topic, and the topics varying in probability across documents.
For any particular document, we write the probability of a word w in that
document as

P wð Þ ¼
XT
z¼1

P wjzð ÞP zð Þ, (3.37)

where P wjzð Þ is the probability of word w under topic z, which remains constant
across all documents, and P zð Þ is the probability of topic j in this document. We
can summarize these probabilities with two sets of parameters, taking ϕ zð Þ

w to
indicate P wjzð Þ, and θ dð Þ

z to indicate P zð Þ in a particular document d. The
procedure for generating a collection of documents is then straightforward.
First, we generate a set of topics, sampling ϕ zð Þ from some prior distribution
p ϕð Þ. Then for each document d, we generate the weights of those topics,
sampling θ dð Þ from a distribution p θð Þ. Assuming that we know in advance
how many words will appear in the document, we then generate those words in
turn. A topic z is chosen for each word that will be in the document by sampling
from the distribution over topics implied by θ dð Þ. Finally, the identity of the
word w is determined by sampling from the distribution over words ϕ zð Þ associ-
ated with that topic.
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Figure 3.12 A sample of topics from a 1700 topic solution derived from the TASA corpus. Each column contains the twenty
highest probability words in a single topic, as indicated by P wjzð Þ. Words in boldface occur in different senses in neighboring
topics, illustrating how the model deals with polysemy and homonymy. These topics were discovered in a completely
unsupervised fashion, using just word-document co-occurrence frequencies.
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To complete the specification of the generative model, we need to specify
distributions for ϕ and θ so that we can make inferences about these parameters
from a corpus of documents. As in the case of coinflipping, calculations can be
simplified by using a conjugate prior. Both ϕ and θ are arbitrary distributions
over a finite set of outcomes, or multinomial distributions, and the conjugate
prior for the multinomial distribution is the Dirichlet distribution. Just as the
multinomial distribution is a multivariate generalization of the Bernoulli distri-
bution used in the coinflipping example, the Dirichlet distribution is a multi-
variate generalization of the beta distribution. We assume that the number of
“virtual examples” of instances of each topic appearing in each document is set
by a parameter α, and likewise use a parameter β to represent the number of
instances of each word in each topic. Figure 3.13 shows a graphical model
depicting the dependencies among these variables. This model, known as Latent
Dirichlet Allocation, was introduced in machine learning by Blei, Ng, and
Jordan (2003).
We extract a set of topics from a collection of documents in a completely

unsupervised fashion, using Bayesian inference. Since the Dirichlet priors are
conjugate to the multinomial distributions ϕ and θ, we can compute the joint
distribution P w, zð Þ by integrating out ϕ and θ, just as was done in the model
selection example above (Equation 3.16). We can then ask questions about the
posterior distribution over z given w, given by Bayes’ rule:

P zjwð Þ ¼ P w, zð ÞP
zP w, zð Þ : (3.38)

Since the sum in the denominator is intractable, having Tn terms, we are forced
to evaluate this posterior using Markov chain Monte Carlo. In this case, we use
Gibbs sampling to investigate the posterior distribution over assignments of
words to topics, z.
The Gibbs sampling algorithm consists of choosing an initial assignment of

words to topics (for example, choosing a topic uniformly at random for each
word), and then sampling the assignment of each word zi from the conditional

z

w w w w1
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z zz1
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Figure 3.13 Graphical model for Latent Dirichlet Allocation (Blei, Ng, &
Jordan, 2003). The distribution over words given topics, ϕ, and the distribution
over topics in a document, θ, are generated from Dirichlet distributions with
parameters β and α respectively. Each word in the document is generated by
first choosing a topic zi from θ, and then choosing a word according to ϕ zið Þ.
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distribution P zijz�i, wð Þ. Each iteration of the algorithm is thus a probabilistic
shuffling of the assignments of words to topics. This procedure is illustrated in
Figure 3.14. The figure shows the results of applying the algorithm (using just
two topics) to a small portion of the TASA corpus. This portion features thirty
documents that use the word money, thirty documents that use the word oil,
and thirty documents that use the word river. The vocabulary is restricted to
eighteen words, and the entries indicate the frequency with which the 731 tokens
of those words appeared in the ninety documents. Each word token in the
corpus, wi, has a topic assignment, zi, at each iteration of the sampling proced-
ure. In the figure, we focus on the tokens of three words: money, bank, and
stream. Each word token is initially assigned a topic at random, and each
iteration of MCMC results in a new set of assignments of tokens to topics. After
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Figure 3.14 Illustration of the Gibbs sampling algorithm for learning topics.
Each word token wi appearing in the corpus has a topic assignment, zi. The
figure shows the assignments of all tokens of three types – money, bank, and
stream – before and after running the algorithm. Each marker corresponds to a
single token appearing in a particular document, and shape and color indicates
assignment: topic 1 is a black circle, topic 2 is a gray square, and topic 3 is a
white triangle. Before running the algorithm, assignments are relatively
random, as shown in the left panel. After running the algorithm, tokens of
money are almost exclusively assigned to topic 3, tokens of stream are almost
exclusively assigned to topic 1, and tokens of bank are assigned to whichever of
topic 1 and topic 3 seems to dominate a given document. The algorithm consists
of iteratively choosing an assignment for each token, using a probability
distribution over tokens that guarantees convergence to the posterior
distribution over assignments.
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a few iterations, the topic assignments begin to reflect the different usage
patterns of money and stream, with tokens of these words ending up in
different topics, and the multiple senses of bank.
The details behind this particular Gibbs sampling algorithm are given in

Griffiths and Steyvers (2004), where the algorithm is used to analyze the topics
that appear in a large database of scientific documents. The conditional distri-
bution for zi that is used in the algorithm can be derived using an argument
similar to the derivation of the posterior predictive distribution in coinflipping,
giving

P zijz�i, wð Þ / n wið Þ
�i,zi þ β

n �ð Þ
�i,zi þWβ

n dið Þ
�i,zi þ α

n dið Þ
�i, � þ Tα

, (3.39)

where z�i is the assignment of all zk such that k 6¼ i, and n wið Þ
�i,zi is the number of

words assigned to topic zi that are the same as wi, n
�ð Þ

�i,zi is the total number of
words assigned to topic zi, n

dið Þ
�i,zi is the number of words from document di

assigned to topic zi, and n dið Þ
�i, � is the total number of words in document di, all

not counting the assignment of the current word wi. The two terms in this
expression have intuitive interpretations, being the posterior predictive distri-
butions on words within a topic and topics within a document given the current
assignments z�i respectively. The result of the MCMC algorithm is a set of
samples from P zjwð Þ, reflecting the posterior distribution over topic assign-
ments given a collection of documents. A single sample can be used to evaluate
the topics that appear in a corpus, as shown in Figure 3.12, or the assignments
of words to topics, as shown in Figure 3.14. We can also compute quantities
such as the strength of association between words (given by Equation 3.36) by
averaging over many samples.5

While other inference algorithms exist that can be used with this generative
model (e.g., Blei et al., 2003; Minka & Lafferty, 2002), the Gibbs sampler is an
extremely simple (and reasonably efficient) way to investigate the consequences
of using topics to represent semantic relationships between words. Griffiths and
Steyvers (2002, 2003) suggested that topic models might provide an alternative
to traditional approaches to semantic representation, and showed that they can
provide better predictions of human word association data than Latent
Semantic Analysis (LSA) (Landauer & Dumais, 1997). Topic models can also
be applied to a range of other tasks that draw on semantic association, such as
semantic priming and sentence comprehension (Griffiths et al., 2007).
The key advantage that topic models have over semantic space models is

postulating a more structured representation – different topics can capture
different senses of words, allowing the model to deal with polysemy and

5 When computing quantities such as P w2jw1ð Þ, as given by Equation 3.36, a way is needed of
finding the parameters ϕ that characterize the distribution over words associated with each topic.
This can be done using ideas similar to those applied in the coinflips example: for each sample of
z we can estimate ϕ as that which is the posterior predictive distribution over new words w for
topic z conditioned on w and z.
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homonymy in a way that is automatic and transparent. For instance, similarity
in semantic space models must obey a version of the triangle inequality for
distances: if there is high similarity between words w1 and w2, and between
words w2 and w3, then w1 and w3 must be at least fairly similar. But word
associations often violate this rule. For instance, asteroid is highly associated
with belt, and belt is highly associated with buckle, but asteroid and
buckle have little association. LSA thus has trouble representing these associ-
ations. Out of approximately 4500 words in a large-scale set of word association
norms (Nelson, McEvoy, & Schreiber, 1998), LSA judges that belt is the
thirteenth most similar word to asteroid, that buckle is the second most
similar word to belt, and consequently buckle is the forty-first most similar
word to asteroid – more similar than tail, impact, or shower. In contrast,
using topics makes it possible to represent these associations faithfully, because
belt belongs to multiple topics, one highly associated with asteroid but not
buckle, and another highly associated with buckle but not asteroid.

The relative success of topic models in modeling semantic similarity is thus an
instance of the capacity for probabilistic models to combine structured repre-
sentations with statistical learning – a theme that has run through all of the
examples considered in this chapter. The same capacity makes it easy to extend
these models to capture other aspects of language. As generative models, topic
models can be modified to incorporate richer semantic representations such as
hierarchies (Blei, Griffiths, Jordan, & Tenenbaum, 2004), as well as rudimen-
tary syntax (Griffiths, Steyvers, Blei, & Tenenbaum, 2005), and extensions of
the Markov chain Monte Carlo algorithm described in this section make it
possible to sample from the posterior distributions induced by these models.

3.6 Recent Developments in Bayesian Models of Cognition

Over the last decade there has been a shift from simply applying
Bayesian modeling to a range of phenomena to giving deeper consideration to
the kinds of cognitive mechanisms that might support probabilistic inference.
Two factors have motivated this shift. First, while understanding the ideal
solutions to the computational problems that human minds face is a key step
in understanding human cognition, part of what makes human cognition
distinctive is how we engage with our cognitive limitations (Griffiths, 2020).
Specifically, probabilistic inference can be extremely computationally costly,
while humans have only finite brains. By trying to understand how we use those
finite brains to approximate probabilistic inference, we can gain further insight
into the nature of the human mind. Second, the last decade has seen significant
advances in research on artificial neural networks (together with the rebranding
of this approach as “deep learning”; LeCun, Bengio, & Hinton, 2015). The
resulting architectures and algorithms provide a new set of tools for engaging
with some of the challenging problems posed by probabilistic inference. This
section briefly reviews recent research inspired by these two factors in turn.
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3.6.1 Monte Carlo as a Cognitive Mechanism

The previous section summarized howMonte Carlo algorithms such as MCMC
can be used to approximate probabilistic inference. These algorithms are useful
to modelers working with complex probabilistic models, but they also provide
an illustration of how finite computational resources can be used to approxi-
mate complex probabilistic inference. As a consequence, they offer a source of
hypotheses about cognitive mechanisms that could allow people to overcome
some of the computational challenges posed by probabilistic inference.
Monte Carlo algorithms simplify complex probabilistic computations by

replacing a probability distribution with a sample or set of samples from that
distribution. On the surface, this corresponds to a very plausible kind of cogni-
tive mechanism – considering one or more concrete simulations of what might
happen. A number of papers have explored this “sampling hypothesis” as an
explanation for how people might make challenging probabilistic inferences (for
reviews see Griffiths, Vul, & Sanborn, 2012; Sanborn & Chater, 2016). These
papers have looked at a variety of Monte Carlo algorithms, including simple
Monte Carlo (Vul, Goodman, Griffiths, & Tenenbaum, 2014), importance
sampling (Lieder, Griffiths, & Hsu, 2018; Shi, Griffiths, Feldman, & Sanborn,
2010), particle filters (Sanborn, Griffiths, & Navarro, 2010), and MCMC
(Gershman, Vul, & Tenenbaum, 2009; Lieder, Griffiths, Huys, & Goodman,
2018). Sampling has also been proposed as an explanation for how children
might perform probabilistic inference, providing a way of accounting for the
systematic variability in their behavior (Bonawitz, Denison, Griffiths, &
Gopnik, 2014; Denison, Bonawitz, Gopnik, & Griffiths, 2013).
Having definedmodels based on sampling as a cognitivemechanism, the natural

question to ask is how people might make best use of such a mechanism. The
framework of resource rationality (Griffiths, Lieder, & Goodman, 2015; Lieder &
Griffiths, 2020), building on the notion of computational rationality or bounded
optimality developed in artificial intelligence (Gershman, Horvitz, & Tenenbaum,
2015; Horvitz, 1990; Russell, 1988), provides a way to answer this question.
A resource rational agent is one who makes use of the best algorithm to solve
the problem, taking into account both the quality of the results and the computa-
tional costs involved. In the context of sampling, an agent might seek to optimize
the number of samples they generate or the distribution they sample from.
Using this framework it is possible to show that some classic phenomena that

are irrational by the standard criteria can be explained as the rational use of
limited computational resources. For example, probability matching – in which
people produce responses with frequency that matches their subjective prob-
ability rather than focusing on the response that has the highest probability –

naturally arises from decisions based on a small number of samples, which can
be shown to be resource rational in a surprising range of circumstances (Vul
et al., 2014). Likewise, classic heuristics such as anchoring and adjustment in the
over-representation of extreme events can be shown to be resource rational uses
of Monte Carlo algorithms (Lieder et al., 2018). Continuing to think about the
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rational use of limited cognitive resources is likely to be a productive source of
other insights into human cognition.

3.6.2 Connections to Neural Networks and Deep Learning

Recent advances in deep learning have resulted in neural network models that
improve on their predecessors by being capable of learning more complex
functions more quickly. While these approaches have had a variety of successes
in applications such as computer vision and natural language processing (see
LeCun et al., 2015), they also suggest novel ways of approaching the problems
posed by probabilistic inference. In particular, research at the interface of
probabilistic modeling and deep learning has explored the idea of training
“inference networks” that quickly approximate probabilistic inference. The
basic idea is to construct a probabilistic model, and then generate a data set
from this model which can be used to train a neural network. Specifically, given
hypotheses h and data d, the neural network is trained to approximate the
probability distribution p hjdð Þ by being given a large number of training
instances of d, hð Þ pairs and trying to predict h from d. Alternatively, the neural
network can be trained to approximate the posterior distribution p hjdð Þ dir-
ectly, being trained with input d and output p hjdð Þ.

Inference networks effectively amortize the computations involved in prob-
abilistic inference, replacing a costly computation that would have to be per-
formed many times with a fast deterministic approximation. This is an
appealing idea for explaining how people might perform probabilistic inference
in certain settings, with experience and an internal generative model providing a
way to train a quick approximate response. Recent work has begun to explore
the implications of this idea in psychology, explaining a variety of classic errors
in probabilistic reasoning as the output of an amortized inference system with
limited resources (Dasgupta, Schulz, Tenenbaum, & Gershman, 2020).

Recent research on neural networks also provides a different way of looking at
hierarchical Bayesian inference. One of the classic (and enduring) challenges for
neural networks is learning from limited data. One approach that has been used
to improve the performance of the systems from limited data settings is called
“meta-learning.” The key idea is to formulate a different kind of learning
problem: rather than training one monolithic system, we imagine training many
distinct neural networks that each perform a different task where that task has to
be learned from a small amount of data. For example, each neural network might
need to learn to classify objects into two classes based on a few examples from
each class. The parameters of each of these neural networks are optimized using a
standard learning algorithm such as stochastic gradient descent. However, this
“learning” process is augmented by a “meta-learning” process in which the
parameters of that learning algorithm are optimized across all of the tasks. For
example, one popular algorithm known as Model-Agnostic Meta-Learning
(MAML; Finn, Abbeel, & Levine, 2017) optimizes the initial parameters given
to all of the neural networks. The idea is to find initial parameters that are a good
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characterization of the shared structure of all of the tasks, meaning that any
specific task from a small amount of data becomes easier.
If this description sounds familiar, there is a good reason. MAML can be

shown to be an approximation to hierarchical Bayesian inference (Grant, Finn,
Levine, Darrell, & Griffiths, 2018). A few iterations of gradient descent moves
the parameters of the neural network only a short way from their initial values,
so those initial values act like a Bayesian prior. Learning the initial values
themselves across multiple tasks is like learning the prior distribution.
A second recent connection between Bayesian inference and deep learning
involves characterizing “dropout” and other techniques for deliberately intro-
ducing noise during neural network training as methods of approximating
Bayesian inference (Gal & Ghahramani, 2016). Connections like these not only
help to understand why neural network algorithms are effective, but offer new
hypotheses about how processes like hierarchical Bayesian inference could be
approximated by human minds and brains.

3.7 Conclusion

The aim of this chapter has been to survey the conceptual and math-
ematical foundations of Bayesian models of cognition, and to introduce several
advanced techniques that are driving state-of-the-art research. There has been
space to discuss only a few specific and rather simple cognitive models based on
these ideas, but much more can be found in the current literature referenced in
the introduction. This chapter hopefully conveys some sense of what all this
excitement is about – or at least why this line of work is exciting. Bayesian
models provide a way to approach deep questions about distinctively human
forms of cognition, questions which the field has not previously been able to
address formally and rigorously. How can human minds make predictions and
generalizations from such limited data, and so often be correct? How can
structured representations of abstract knowledge constrain and guide sophisti-
cated statistical inferences from sparse data? What specific forms of knowledge
support human inductive inference, across different domains and tasks? How
can these structured knowledge representations themselves be acquired from
experience? And how can the necessary computations be carried out or approxi-
mated tractably for complex models that might approach the scale of interesting
chunks of human cognition? We are still far from having good answers to these
questions, but as this chapter shows, we are beginning to see what answers
might look like and to have the tools needed to start building them.
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4 Symbolic and Hybrid Models
of Cognition
Tarek R. Besold and Kai-Uwe Kühnberger

4.1 Introduction

This chapter provides a concise overview of the basic concepts and
theoretical foundations of symbolic models of cognition, as well as hybrid
approaches. Whereas symbolic frameworks could be considered as the domin-
ant computational approaches of cognition for many decades in the past,
today’s situation is characterized by a trade-off between various approaches:
symbolic models coexist on a par with subsymbolic, statistical, and hybrid
models of cognition. Often, the particular domain of use restricts applicable
approaches to a certain extent. For example, learning domains are most often
the territory of subsymbolic, neural, or hybrid approaches, in contrast to
reasoning domains where symbolic frameworks are still the de facto standard.

The development of symbolic models cannot be separated from the triumphal
progress of information technology, the development of algorithms, and the
broad application of computing devices. The rise of computing applications as a
means to artificially recreate aspects of intelligence and intelligent behavior
made it necessary to develop computing methodologies that can simulate
reasoning, memory, planning, learning, the usage of natural language etc. An
increasingly thorough psychological understanding of such cognitive abilities
paved the way to develop implementable algorithms. The study of these cogni-
tive abilities showed that human reasoning requires knowing some antecedent
to be able to draw a conclusion, that is, a certain representation of what is
known is necessary. In order to use natural language, a rule system needs to be
specified that validates syntactically correct sentences and rejects grammatically
incorrect ones. A memory entry of a fact in the past requires a structured
representation of this entry. For these types of cognitive abilities, the need for
processing complex data structures resulted in the development of symbolic
models for cognition. Even in the domain of learning, originally symbolic
models were proposed (Plotkin, 1969), although in the meantime in most cases
hybrid and subsymbolic systems turned out to be the better alternatives.

This chapter summarizes important aspects of symbolic and hybrid models of
cognition approaching the topic from different perspectives. After some
remarks on historical aspects and the theoretical basis of symbolic models of
cognition in Section 4.2, cognitive architectures as models for intelligent agents
are discussed in Section 4.3 (cf. Chapter 8 in this handbook). The role of
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symbolic computational approaches towards processing natural language,
sometimes called the cognitive turn, is considered in Section 4.4 (cf. Chapters
27 and 28 in this handbook). Probably the strongest influence of symbolic
approaches on theories of cognition has been the problem of how to represent
knowledge with computational means. A large variety of corresponding models
have been proposed, the most prominent of which are sketched in Section 4.5.
Since applications are often located in situations of daily life, commonsense
reasoning plays another important role within the field, as discussed in Section
4.6. The crucial question of learning new representations and theories is the
topic of Section 4.7 (cf. Chapters 2, 9, and 10 in this handbook). Finally, Section
4.8 looks at the present and future of symbolic models of cognition, introducing
hybrid and neural-symbolic systems combining reasoning and learning and
bridging between symbolic and subsymbolic elements. Section 4.9 concludes
this chapter.

4.2 Historical Remarks and Theoretical Foundations

The birth of Artificial Intelligence as an academic discipline is usually
associated with the Dartmouth Summer Research Project on Artificial
Intelligence (in short Dartmouth Conference) in 1956 (McCarthy, 1988), where
John McCarthy coined the term artificial intelligence (AI). In September of the
same year, the 1956 Symposium on Information Theory at the Massachusetts
Institute of Technology assembled researchers such as Noam Chomsky, George
Miller, Herbert Simon, and Allen Newell (Bechtel, Abrahamsen, & Graham,
2001); the latter two had also been present at Dartmouth College a few months
earlier. For “Cognitive Science” as a scientific discipline the event in
Cambridge, MA, is often considered the equivalent to AI’s Dartmouth
Conference. Of course, each discipline’s roots reach back further in time: from
a computational perspective, it is hardly conceivable that AI could have been
invented without the seminal work by Alan Turing (Turing, 1950). Similarly,
without a certain maturity of the constituent disciplines, like psychology, com-
puting science, or linguistics, establishing cognitive science as an interdisciplin-
ary endeavor in its own right is hard to imagine.
At the beginning of the development of AI and cognitive science, many

researchers shared the belief that the brain is functioning essentially like a
computer. The core idea can be summarized as follows: whereas the brain itself
is fundamentally similar to an information processing system implementing
some model of computation, the mind corresponds to a “software” of the brain.
This metaphor of the computer model of the mind (referred to as computational
theory of mind) was the governing and leading idea of computational cognitive
science until the early 1990s. From this idea it is straightforward to connect
cognitive abilities with symbolic models that are in turn constitutive for mental
representations (Fodor, 1981). The metaphor of the computational theory of
mind makes a symbolic computational approach towards cognitive abilities
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appealing and plausible. Therefore, symbolic models were the leading frame-
works for (computational) cognitive science for decades. Even after the rise
(and reinvention) of neural learning, the endeavors in embodied and situated
cognition, and new imaging techniques in neuroscience, symbolic systems today
still are a de facto standard in many models of cognition and their correspond-
ing computational realizations in AI systems and real-world applications.

The computational theory of mind is based on at least two core assumptions:
first, it is assumed that a cognitive process can be described as an algorithmic
process and second, the world state (or environment state) can be formally
specified in a sufficiently precise way. The first assumption is rooted in philo-
sophical ideas such as Leibniz’s calculus ratiocinator, postulating that much of
human reasoning can be reduced to some form of algorithmic calculations
(Leibniz, 1677), whereas the second assumption is motivated by the possibility
of a logical description of world states. Regarding its modern conceptualiza-
tion, the first assumption strongly builds upon the notion of computability in
computer science. Different proposals exist for how to specify the concept of
computability. Among the most prominent approaches is the Turing Machine
(Turing, 1936), consisting of a potentially infinite tape that is separated into
fields and a write/read head that can modify the tape insofar symbols (from a
given finite alphabet) can be read, written, or erased from the tape. A function
that can be computed by a Turing Machine is called Turing computable. Other
proposals for specifying the concept of computability are, for example, recur-
sive functions, type 0 grammars, or register machines. These concepts are
provably equivalent concepts of computability (Kleene, 1952), that is, these
proposals for formally specifying the idea of computability describe essentially
the same concept. These theoretical insights build the basis for a deep under-
standing of what can be computed algorithmically, but also for delineating
which problems are not computable in this sense.

The second assumption underlying the computational theory of mind is that
logical representations can be the basis for representing world states (cf.
Chapter 5 in this handbook). Historical predecessors for this idea can be traced
back to ancient philosophy, e.g. Aristotle’s syllogistic (Aristotle, 1989).
Nevertheless, it was only in the second half of the nineteenth century when
Gottlob Frege invented the formal foundation of modern logic in his
“Begriffsschrift” (Frege, 1879): he developed an axiomatic system of logic in a
formal language that is until today the basis for most logical approaches.

Taken together, the two assumptions give rise to the computational theory of
mind. If it is the case that the world can be conceptualized in terms of facts that
hold in the world and rules that cover certain regularities in it, then logical
languages are plausible candidate formalisms for describing the world. By
making use of the possibility to deduce inferences from facts and rules in a
logical calculus, it is then in turn possible to infer new facts. Furthermore,
because a formal concept of computability is available, it is possible to auto-
mate the process of drawing inferences from world descriptions. Now the
computational theory of mind is the obvious next step: if the brain is an
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information processing system which performs computations, and computabil-
ity can be described by Turing Machines or an equivalent model of computa-
tion, then the brain is conceivable as a computer and the mind as a program
or software.

4.3 Cognitive Architectures as Models of Intelligent Agents

4.3.1 ACT-R and SOAR

There is only one commonly undisputed example for advanced general intelli-
gent behavior, namely the behavior of humans. Although smart systems and
some animals show remarkably intelligent abilities in certain special domains,
only human intelligence is widely considered general, extremely adaptive, and
can furthermore creatively explore and master very abstract domains like
mathematics or art.
A natural idea for the cognitively inspired computational modeling of intelli-

gent agents is the usage of architectures that integrate modules modeling certain
folk-psychological and psychological concepts such as belief, goal, fear, or
intention. Such architectures are often called cognitive architectures (cf.
Chapter 8 in this handbook). They aim to approximate the functioning of these
(folk-)psychological concepts, for example with respect to their input–output
relations, with computational means. In doing so, cognitive architectures can
focus on human-like performance or on human-like competence in intelligent
behavior. Although many such architectures have been proposed over the years,
three frameworks stand out. In the psychological research tradition, ACT-R
can be taken as the de facto standard (Anderson & Lebiere, 1998). The same
holds for SOAR in the research tradition of AI (Laird, 2012). Additionally,
originating from the AI subfield of Multi-Agent-Systems, the BDI architectural
framework is of importance for how researchers think about symbolic models
of cognition (Rao & Georgeff, 1991).1

Structurally ACT-R and SOAR have many features in common, but there
are also significant differences. Regarding the similarities between the two
approaches, both architectures were originally developed as symbolic produc-
tion systems.2 Over time the developers have departed more and more from the
strict symbolic foundation, though, evolving both frameworks towards hybrid
setups. ACT-R as well as SOAR borrow many concepts from psychology, e.g.
memory modules such as declarative memory, procedural memory, long-term
memory, or working memory. Also, both systems work with a state-space

1 It should be mentioned that an enormous number of different cognitive architectures has been
proposed during the last decades by researchers from different fields. Three major classes of
architectures are usually distinguished: symbolic architectures, emergent architectures, and
hybrid architectures. A good overview of the various systems can be found in Vernon (2022).

2 A production system can be considered as a set of IF-THEN rules, where the IF-part is a
precondition and the THEN-part is a consequence (action), firing in case the IF-part is satisfied
(Klahr et al., 1987).
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model, such that at each time step the state is matched against the preconditions
of a production rule. If the state matches the precondition of a particular
production rule, the rule fires and can trigger an action. In both systems,
learning did not play an important role in the beginning of their development.
Mostly chunking was originally a possibility to compress data, i.e., to learn
something. In the last two decades, this view changed significantly for both
architectures and learning is now considered more important, e.g. neurally
inspired learning forms in ACT-R and reinforcement learning in the case of
SOAR. Finally, both frameworks provide implementations and development
platforms for users to build their own ACT-R or SOAR models.

Besides many similarities between the two architectures, there are also sig-
nificant differences. Whereas ACT-R was developed to model human perform-
ance in psychological experiments, SOAR strives towards the modeling of
competence of humans concerning intelligent behavior. Also, while ACT-R in
its current versions can be interpreted as a model representing the modules of
the brain (i.e., ACT-R claims to be a model which is strongly cognitively and
neuroscientifically inspired), SOAR intends to reveal the building blocks for
intelligence from a computational perspective (without claiming that it is in any
sense cognitively adequate). Finally, regarding the actual implementations,
whereas both frameworks originated from very similar symbolic perspectives,
ACT-R and SOAR have now been extended with non-symbolic components
like neuroscientific modules in the case of ACT-R (Fincham, Lee, Anderson,
2020) and learning modules in the case of SOAR, increasing the difference
between both (Laird, 2012). Although the two frameworks share a rather long
history, there is still an active research community expanding these models
further and applying them to new domains (https://soartech.com/ and http://
act-r.psy.cmu.edu/).

4.3.2 Belief-Desire-Intention Architecture

A different approach has been taken in the case of the BDI architecture
(Wooldridge, 2000). This architectural model specifies folk-psychological con-
cepts, like belief, desire, and intention, with logical means and applies such
concepts for modeling intelligent behavior and reasoning of agents. The core
notions can be described as follows:

– “Belief” specifies in this context the knowledge the agent has, i.e. the facts the
agent believes about the environment.

– “Desire” is the concept used to represent the motivation of the agent, i.e.
results the agent wants to bring about.

– “Intention” is a desire, to which the agent is committed.

Taking these core notions as a basis, it is possible to define additional folk-
psychological concepts. For example, a “goal” can be specified as a persistent
desire. Following the common paradigm from AI, in order to fulfill an intention
the agent can construct a plan, considered as a sequence of actions, such that
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the execution of this plan results in the fulfillment of the intention. Insofar, BDI
systems are strongly connected with the reasoning and planning tradition in AI.
An important aspect of BDI architectures is the rigorous logical, i.e. sym-

bolic, formalization (Rao & Georgeff, 1991). The logical basis allows the
implementation of nontrivial reasoning processes, such that an agent can reason
about the states of other agents. In order to model the necessary folk-
psychological concepts, the logical specification requires a rather expressive
system including multi-modal features, temporal features, and some dynamic/
action features (Wooldridge, 2009). This expressivity and the underlying con-
ceptual structure have made BDI architectures an appealing framework for the
modeling of multiagent systems. Over the years, specialized programming
languages for implementing BDI agents have been developed, for example
AgentSpeak (Bordini, Hubner, & Wooldridge, 2007). BDI architectures can
be applied in many different domains. A particularly interesting current appli-
cation of BDI architectures with a strong cognitive component is plot gener-
ation in the context of computational creativity (Berov, 2017).

4.4 The Cognitive Turn in Modeling Natural Language

4.4.1 Syntactic Structures and Natural Language

Modern (theoretical) linguistics, as well as computational linguistics and natural
language processing, would not be conceivable without the seminal contributions
of Noam Chomsky on the syntax of natural language (Chomsky, 1957, 1981).
These contributions did not only pave the way for formal and automatable
systems for syntactic analysis of language expressions, they also heralded the
“cognitive turn” in the study of language. Prior to Chomsky’s generative approach
to grammar and the syntax of natural language, the learning of a language was
essentially considered as a reinforcement learning process in the tradition of
behaviorism (Skinner, 1957). This means that language learning was considered
as a behavior with no principal difference to the learning of other behaviors: at
the beginning the language learner (e.g. a toddler) does not know anything
about language (giving rise to the “empty vessel” metaphor) and by trial-and-
error learns a language by reinforcement from the environment, e.g. parents.
Chomsky argued against this view by departing from behaviorism and focus-

ing on a cognitive perspective (Chomsky, 1957, 1981). In his account, syntactic-
ally correct constructions are based on a generative grammar system (usually
considered as a transformational grammar), which can explain the productivity
of language. This productivity aspect can be exemplified simply by observing
competent speakers, who can produce sentences they never heard before and
judge in a large variety of cases whether a sentence they similarly never heard
before is grammatically correct or not (relative to certain complexity constraints
and cognitive limitations, e.g. with respect to memory). The insight that syntac-
tic structures of language are describable as a generative system can be
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considered as the foundation of computational models for natural language.
Taking into account that many current AI applications for end-users, for
example, offered by the major Silicon Valley platforms, are more and more
based on dialogue systems, the importance of this theoretical foundation cannot
be overestimated.

Regarding the learning of a previously unknown language, Chomsky claimed
that the successful acquisition of the grammar of a language is not possible
based exclusively on reinforcement by and imitation of the environment due to
the poverty of stimuli (Chomsky, 1980a). The quantity and diversity of data
available to a language learner during their first years are insufficient to become
a competent speaker of a particular language relying only on the mentioned
mechanisms. Thus, in Chomsky’s view, in order to be able to explain the actual
language abilities of human speakers, a universal grammar must be stipulated
that is based on some universal principles, which are considered to be innate
(Chomsky, 1980b). Acquiring the syntax of a particular language then means to
learn the specific parameters of the universal principles of that particular
language. Although this new cognitive foundation of a theory of language has
been disputed,3 Chomsky’s formal take on a theory of language strongly influ-
enced formal and computational approaches towards advanced natural lan-
guage models. The specification of a grammar in the form of production rules
(usually called phrase-structured rules)4 today still is a standard approach in
computer science to implement a productive language system. While the most
recent models for natural language processing focus on probabilistic and/or
deep learning approaches (e.g. Brown et al., 2020), Chomsky showed that a
formal and generative approach for language models is feasible and can finally
result in computational models.

4.4.2 Semantic Structures and Natural Language

With respect to formal models of the semantics of natural language, Richard
Montague started intensional semantics (today often referred to as Montague
Semantics) by building on possible world semantics (Kripke, 1959) and an

3 A classical dispute concerns, for example, the claim that the available language data during the
first years of development are not sufficient for a language learner to learn a language compe-
tently (i.e., the claimed poverty of stimulus). The argument was challenged from different
scientific perspectives like neuroscience, neuroinformatics, or cognitive science. An example for
this criticism is Jeff Elman’s work on simple recurrent neural networks (Plunkett & Elman, 1996).
It was shown that with the right preprocessing of data, it is in fact possible to learn from sparse
data nontrivial aspects of language that Chomsky subsumed under the inborn universal gram-
mar, as he deemed them to not be learnable from sparse data alone.

4 As mentioned in Section 4.3, production rules are IF-THEN rules, where the IF-part is a
precondition and the THEN-part is a consequence (action). In a grammar formalism, production
rules are usually called phrase structure rules and are based on recursion. A grammar can, for
example, specify that a sentence consists of a noun phrase and a verbal phrase S ->NP VP, where
the noun and verbal phrases can themselves be composed by other constituents. An example for
this rule is the sentence The old man opens a bottle of water, where The old man would be the noun
phrase and opens a bottle of water would be the verbal phrase.
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intensional interpretation of natural language expressions (Montague, 1974).5

As in Chomsky’s case, the motivation for developing a formal system of the
semantics of natural language is again cognitively inspired. For understanding
the cognitive ability of humans with respect to the semantics of language, it is
necessary to build a model that allows the derivation of the meaning of a
sentence, in order to then test and evaluate the model. Usually, it is assumed
that a compositionality principle holds for natural language (Heim & Kratzer,
1998), that is, the meaning of the sentence can be computed from the meaning of
its parts. Besides intensional semantics, Montague also contributed to quantifi-
cation and modality issues in natural language (Montague, 1973). Technically,
Montague semantics as a framework for the meaning of natural language
sentences is an extension of classical first-order predicate logic, essentially intro-
ducing additional operators, such as an intensionality operator. Due to the
mathematical, more precisely logical, specification it is possible to implement
Montague semantics on computers. In particular, modern versions of inten-
sional semantics, such as Combinatory Categorical Grammar (Steedman,
1996) or Discourse Representation Theory (Kamp & Reyle, 1993) are examples
of implementable systems. Both frameworks attempt to integrate both, syntax
and semantics of natural language in one model, although there is a clear focus
on a fine-grained representation of the semantic aspect of natural language.
The most prominent examples of computational approaches for modeling

syntax and semantics of natural language with symbolic frameworks are probably
constraint-based grammars such as Head-Driven Phrase Structure Grammar
(HPSG) (Pollard & Sag, 1994) and Lexical-Functional Grammar (LFG)
(Kaplan &Bresnan, 1982). HPSGwas likely themost prominent natural language
processing system in the 1990s and is probably the most integrative approach of a
symbolic computational natural language model to date. Besides other language
models, it integrates elements of Chomsky’s government and binding theory and
aspects of categorial grammar (Steedman, 1996). The basic computational mech-
anism in HPSG is unification, a well-known algorithmic approach from auto-
mated theorem proving that computes substitutions to make expressions equal.
Practically, unification algorithms are used in AI and computer science by the
resolution calculus in theorem proving (Robinson, 1971) and in logic program-
ming (Bratko, 2012) to align data structures in computer science contexts.

4.5 Knowledge Representation

From the very beginning, one of the shared core topics of computa-
tional cognitive science and AI has been the development of symbolic models

5 In this context, intensional semantics specifies the meaning of a concept not by the set of
individuals that fall under the concept, e.g. the meaning of car is not just the set of all those
entities that are cars. The meaning of a concept is rather specified by the properties characterizing
the concept, e.g. the meaning of unicorn is the concept that is specified by the properties a unicorn
usually exhibits.
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for the representation of knowledge. The need for such representation formal-
isms has emerged from practical applications. For example, the General
Problem Solver (GPS) (Newell, Shaw, & Simon, 1958) attempts to solve com-
plex problems by heuristic search in a problem space. The search process tries to
find a sequence of operators applicable to an initial state that finally results in a
goal state. Processing state descriptions of an environment, may it be concrete
or abstract, presupposes a way to represent the facts that hold in each state,
which is essentially the task of knowledge representation.

It is often possible to represent entries of a knowledge representation formal-
ism directly using logical languages such as first-order predicate logic.6

Nevertheless, many variants of logical formalisms have been proposed in
computational cognitive science and artificial intelligence. Examples of such
logic-based approaches are programming paradigms like the programming
language PROLOG (Bratko, 2012), the representation of terminological and
conceptual knowledge in the form of upper ontologies (Sowa, 2000), represen-
tations in massively knowledge-based systems such as CYC (Lenat & Guha,
1989), or knowledge entries used for resolution-based (higher-order) reasoning
in theorem provers (Robinson, 1965). Usually such approaches use different
types or subsystems of predicate logic with different expressive strengths.
Similarly, many representation formalisms that have been proposed for com-
putational cognition depart from a classical logical representation and propose
their specific formalisms. It is possible to motivate many of these formalisms by
cognitively inspired requirements. For example, from cognitive psychology and
neuroscience it is well known that the memory systems of cognitive agents can
be divided into different submodules (cf. Byrne, 2020): working memory, long-
term memory, declarative memory, episodic memory, skill memory, factual
memory, just to mention some of them. Such distinctions had a strong influence
on cognitive architectures, particularly the distinction between working
memory and long-term memory has been adopted by most cognitive architec-
tures. As a consequence, the different types of memory served as a motivation
and conceptual model for representation formalisms in computational cognitive
science. Declarative memory and its various types, for instance, have been
addressed in order to computationally model conceptual, terminological, and
factual knowledge, e.g. in the form of ontologies (Staab & Studer, 2009),
while episodic memory was the inspiration for conceptual dependency theory
and scripts (Schank, 1975; Schank & Abelson, 1977). Semantic memory can,
among others, be computationally addressed by semantic networks (Quillian,

6 We briefly summarize some essential concepts of first-order predicate logic as the practically most
relevant formal logic (cf. Chapter 5 in this handbook). A signature Σ = (c1,. . .,cn,f1,. . .,fm,R1,. . .,
Rl) is given specifying constants ci, function symbols fj, and relation symbols Rk. Terms and well-
formed formulas for a given signature Σ are defined inductively. Constants ci are terms. Variables
x 2 Var are terms. The application of a function symbol f with arity n to terms t1,. . .,tn results in a
term f(t1,. . .,tn). Finally, well-formed formulas are the smallest class such that Rk(t1,. . .,tn) for an
n-ary relation symbol Rk is a formula, for all formulas φ and ψ: φ ^ ψ, φ ∨ ψ, ¬φ, φ ! ψ, φ $ ψ
are formulas, and if x 2 Var and φ is a formula, then 8xφ and ∃xφ are formulas. A good overview
of (predicate) logic for computer science can be found in Schöning (1989).
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1968), as is the case for conceptual parthood relations using frames (Minsky,
1975). The basic ideas behind these knowledge representation formalisms are
described in the following subsections.

4.5.1 Ontologies and Description Logics

In the context of knowledge representation, ontologies can be understood as
formal specifications of concepts and their relations in order to provide a
terminological basis for a domain of interest.7 Concepts are usually considered
as one-ary predicates (e.g. car(x) defining x is a car). A subsumption relation
between these concepts is specifying generalizations and specializations of con-
cepts (e.g. limousine is a specialization of car, vehicle is a generalization of car).
Furthermore, relations between individuals are defined in order to be able to
specify facts of the domain (e.g. mother_of(x,y) specifies that x is mother of y).8

Ontologies allow the simplification of reasoning processes: bottom-up reasoning
allows the inference that individuals falling under a concept do also fall under a
more general concept, e.g. every x which is a limousine is also a car (so-called
“inheritance of individuals”). Top-down reasoning allows the inference that a
property that holds for a certain concept does also hold for a more specific
concept, e.g. every car has wheels, therefore every limousine also has wheels (so-
called “inheritance of properties”).
There is a variety of different representation formalisms for ontologies. These

formalisms range from decidable fragments of predicate logic, e.g. description
logic (Baader, Horrocks, & Sattler, 2007), to higher-order logics (Lehmann,
Chan, & Bundy, 2013). As a commonly used standard, description logics (DLs)
were a determining factor in the development of ontology design. Viewed as
subsystems of predicate logic, DLs consist of constants, unary predicates, and
binary predicates. In the terminology of DLs, these entities correspond to
individuals, concepts, and roles. If certain atomic concepts and roles are given,
the family of DLs is defined by a set of applicable operators determining the
expressive power of the respective formalism. These operators can be defined
with respect to concepts, for example, (atomic) negation, union, or intersection
of concepts, in order to define new concepts from old ones. For example, if the
two statements x is parent and x is female are given, then x is mother can be
inferred (corresponding to an intersection of concepts parent and female).
Similarly, operators can be defined on roles: if someone has at least one son,
this concept can be defined by a role restriction such that at least one entity
standing in the has_child relation must be male.
To give a more precise idea of the syntax of DLs, a rather basic DL, the

so-called “Attributive Language” (AL), is considered consisting of the following
definition:

7 An in-depth discussion of the term ontology can be found in Guarino, Oberle, and Staab (2009).
8 There is no generally accepted formal definition of an ontology. A formal version of the specified
properties can be found in Stumme and Maedche (2001).
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C,D ! A >j j⊥ ¬Aj jC uD 8R:Cj j∃R:> (4.1)

In this definition, A is an atomic concept, > is the universal concept (most
general concept), ⊥ is the inconsistent concept (bottom concept), ¬A is the
negation of an atomic concept, and C u D is the conjunction of two concepts.
8R.C is a value restriction in the sense that one argument of the binary relation
R must fall under concept C, and ∃R.> is a (limited) form of existential
quantification.

The semantics of AL is defined using an interpretation <ΔI,�I> where ΔI is a
set of individuals and �I is a function mapping concepts to subsets of ΔI and roles
to subsets of ΔI x ΔI. Meaning of concept descriptions is inductively defined as
follows:

>I ¼ΔI ⊥I ¼Ø ð¬AÞI ¼ΔI\AI ðCuDÞI ¼CI\DI

ð8R:CÞI ¼fa2ΔIj8b : ða,bÞ 2RI ! b2CIg ð∃R:>ÞI¼fa2ΔIj∃b : ða,bÞ 2RIg
(4.2)

AL can be used to define concepts like the inconsistent concept ⊥ (i.e. no
individual satisfies this concept), the conjunctive concept of being human and
being female (i.e. being a woman), or the concept of not being a car (i.e. being
everything without being a car). It is also possible to define more complex
concepts like being someone who has only sons, i.e. being someone, such that
everybody who stands in the child-of relation is male (i.e. is a son).

Traditionally, DL formalizations depart from classical logical syntactic
standards. Nevertheless, it is possible to represent DLs as subsystems of predi-
cate logic with a well-defined semantics. For many, though not all, DLs there
exist therefore completeness, decidability, and complexity results (Baader et al.,
2003). The semantics of DLs is specified by a set-theoretic interpretation of
extensions of concepts as sketched above (Baader & Nutt, 2003), and reasoning
is commonly based on a semantic Tableaux-like reasoning system (Möller &
Haarslev, 2003). Tableaux-like algorithms in description logic prove an infer-
ence p! q by proving that the expression p u ¬q has no model. For example, in
order to prove whether a concept limousine is subsumed by a concept car (that
is, whether limousine is more specific than car), the Tableaux algorithm
attempts to show that the concept limousine and not car is unsatisfiable by
showing that there is no finite model for this conjunction.

Although the study of formal properties of DLs has often been a rather
theoretical endeavor, DLs are good candidate languages for the representa-
tion of domains, in particular, for massively knowledge-based systems that
require performant representation formalisms allowing sound reasoning pro-
cesses. One such system, which had great historical significance for both AI
and cognitive science and with its popularity started the triumph of DLs, is the
undecidable language KL-ONE (Brachman & Schmolze, 1985). A further
important milestone is the fact that the W3C standard (World Wide Web
Consortium) OWL-DL (Web Ontology Language) is a syntactic variant of a
certain description logic (Horrocks & Patel-Schneider, 2004). The existence of
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easy-to-use ontology editors and knowledge management systems like Protégé
(https://protege.stanford.edu/) facilitates the popularity to specify domains by
ontologies further.

4.5.2 Conceptual Dependency Theory

In the 1970s, Roger Schank proposed conceptual dependency theory (CD), a
representation framework that was intended to address two issues in particular:
two semantically equivalent natural language expressions should be assigned a
unique semantic representation. Additionally, the framework should support
the drawing of inferences from natural language input (Schank, 1975; Schank &
Abelssohn, 1977). Relative to a given level of granularity, conceptual depend-
ency theory provides a set of semantic primitives and a representation structure
in which pieces of information can be arranged in a graph to specify a unique
meaning. As semantic primitives Schank proposed eleven primitive physical
and nonphysical actions:

ATRANS: Transfer of an abstract relationship of a physical object, e.g. give.
PTRANS: Transfer of the physical location of an object, e.g. go.
PROPEL: Application of a physical force to an object, e.g. push.
MTRANS: Transfer of mental information, e.g. tell.
MBUILD: Constructing new information from old information, e.g. decide.
SPEAK: Utter a sound, e.g. say.
ATTEND: Focus a sense on a stimulus, e.g. listen, watch.
MOVE: Movement of a body part by owner, e.g. punch, kick.
INGEST: Taking something inside an animate object, e.g. eat.
EXPEL: Taking something from inside an animate object and forcing it out,
e.g. cry.

GRASP: Physically grasping an object, e.g. grasp.

Six primitive conceptual categories provide building blocks, which can be
combined by dependency relations usually represented as arrows in a graph:

PP: Physical object (“Picture Producer”).
ACT: Physical or nonphysical action.
PA: Attribute of an object.
AA: Attribute of a physical or nonphysical action.
T: Time.
LOC: Location.

The six conceptual categories allow the representation of objects (together with
their attributes), actions (together with their attributes), and specifications of
time and location. The last ingredient for CD are conceptual roles assigning
roles to conceptual categories. In particular, it is possible to represent who is
performing an action (Actor), what it is that is acted upon (Object), who
receives something as a consequence of an action (Recipient), what is the
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location that an action is directed to (Direction), what is the state of an object
(State), and what is the action that is performed (ACT).

An example, intuitively and informally described, should make this clearer.
Consider the sentence: “John gave Mary the yellow book quickly”:

The “giving-relation” is represented by the ATRANS action (conceptual
category ACT).

“John,” “Mary,” and “book” are picture producers (conceptual category PP).
“Yellow” is the attribute of an object (conceptual category PA).
“Quickly” is the attribute of ATRANS (conceptual category AA).
Arrows are used to represent that e.g. “John” is the giver and “Mary” is
the recipient, i.e. arrows indicate the direction of dependency in the
giving-action.

Usually such representations are depicted as graphs. The above sentence can be
graphically represented as follows:

Two obvious advantages of CD are first, the rather clear semantics of the
connections in the graph, contrary to e.g. semantic networks (compare Section
4.5.3) and a relatively small inventory of concept types and relations.
A drawback limiting the practical applicability of the framework is that CD
requires advanced knowledge of what needs to be represented in a particular
application. Regarding the conceptual connection to episodic memory, in the
1970s and 1980s, CD prominently found application in parsing research. At the
time, the focus in natural language processing was on creating cognitive models
of the way people process text. This perspective took the form of models that
emphasized the semantic and memory-based aspect of parsing. Following the
tradition of systems like MARGIE (Schank et al., 1973), Martin’s Direct
Memory Access Parsing (DMAP) modeled parsing as an integrated memory
process connected to episodic memory (Martin, 1989).

4.5.3 Semantic Networks

As already observable in CD, graphs are quite plausible data structures when
modeling knowledge and, in particular, semantic relations between concepts.

John ATRANS book

Mary

John

speed:quick color:yellow

P o R

from

to

Figure 4.1 A CD graph representing the sentence “John gave Mary the yellow
book quickly.”
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Semantic networks follow a rather simple principle in order to represent
knowledge in a graph structure: nodes of a graph are taken to represent
concepts, and edges between two nodes represent semantic relations that hold
between the respective concepts. The following graph is an example of such a
semantic network, specifying a small part of possible operations in a text
processing system:

Although this basic idea of semantic networks is quite straightforward and
intuitive, there is neither a generally accepted standard for the formal definition
of a semantic network nor is there a generally accepted model-theoretic seman-
tics. Depending on the particular application, different versions of semantic
networks have been proposed. Historically, semantic networks for the repre-
sentation of knowledge were strongly motivated by models for natural language
(e.g. Schank, 1975; Simmons, 1963).
In natural language processing, WordNet (Millner et al., 1990) is not only

one of the best-known lexical–semantic data bases, but also the most famous
lexical–semantic network, where nodes are so-called synsets, representing lex-
ical classes like nouns, verbs, adjectives etc. Edges represent linguistic relations
between synsets. These relations are hypernym, hyponym, meronym, holonym
etc. relations.9 WordNet contains both directional and bidirectional edges.
A hypernym (superconcept) relation (y is a hypernym of x, if every x is a y) is
an example of a directional relation and needs to be represented by a directional
edge. On the other hand, the relation specifying coordinated terms is an
example of a bidirectional relation (x and y are coordinated terms, if there is
a synset that is a hypernym of x and y). Language-specific WordNets exist for
several different natural languages, e.g. GermaNet for German (https://uni-
tuebingen.de/en/142806). WordNet is not intended to provide a logically sound
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Figure 4.2 A graph representing a semantic network describing some of the
possible operations in a text processing system.

9 A hypernym denotes a superconcept (i.e. a more general concept), hyponym a subconcept (i.e. a
more specific concept), meronym denotes a part of a concept, and a holonym a whole of
some concepts.
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basis for reasoning in lexical semantics. Therefore, a formal characterization of
the resulting network cannot be given.

A different but related approach for natural language semantics is FrameNet
(Ruppenhofer et al., 2010), which is based on Fillmore’s frame semantics
(Fillmore, 1976). In FrameNet, no lexical meanings of words are represented,
but events (or situations) are represented instead together with their argument
structure. For example, a giving-event usually includes an agent (someone, who
gives something away), a patient (someone, who receives something), and an
object (something that is given). WordNet and FrameNet can even be com-
bined and used together for advanced natural language understanding systems
as shown in Ovchinnikova (2012).

A different, logic-based version of semantic networks are conceptual graphs
(Sowa, 1976). These graphs are considered to have a thorough logical basis
and can be used for reasoning in knowledge-based systems. Conceptual
graphs were also used to translate predicate logic formulas into graph struc-
tures and vice versa, thereby establishing an interface between a graphical
representation of knowledge of a domain and aspects of formal and computa-
tional logical reasoning.

A type of semantic networks proposed for the purpose of linking available
data are knowledge graphs. The best-known example of a knowledge graph
is Google’s knowledge graph adding additional information for search
results in Google’s search engine. The concept of a knowledge graph is
connected with the development of the semantic web (Berners-Lee,
Hendler, & Lassila, 2001), intended to enrich the previously mostly syntac-
tic- and probabilistic-based web services with semantics in order to allow for
the creation of deeper and more general forms of reasoning over the large
quantities of heterogeneous data and knowledge available on the Internet.
Because the required additional information needs to be retrieved from
various heterogeneous information sources, refinement methods have been
proposed to add missing knowledge and to recognize errors in the knowledge
graph (Paulheim, 2017).

Although the number of proposals for different types of semantic networks is
large (and could be easily extended), a very important usage of semantic
networks is a more informal one. Quite often working computer scientists and
engineers, but also designers and other professionals, use semantic networks in
an informal sense to structure ideas, to represent insights, or to optimize a
certain design. For example, design processes for Human-Computer Interaction
can be supported by the representation of a particular interface design using
semantic networks (Heim, 2007). In these contexts, semantic networks are
rather intuitively used and described, but allow a simple but comprehensible
visualization of the respective design task. This allows the designer also to
communicate her ideas and design decisions in a very efficient way.

In summary, although semantic networks have no rigorous formal definition,
they are extensively used in their respectively specific forms, for example, in natural
language processing systems, search engine applications, or ontology-based
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systems contexts. Up to today, they are probably one of the most heavily used
cognitively inspired symbolic knowledge representation frameworks.

4.5.4 Frames

Marvin Minsky proposed so-called frames as a knowledge representation for-
malism for representing concepts, their properties, and their hierarchical struc-
ture in stereotypical situations (Minsky, 1975). Frames are considered as static
data structures consisting of four types of information, but do not have a well-
defined logical semantics. Each frame has a name (ID, e.g. a concept name) and
one or several slots corresponding to an attribute or a property (i.e., a dimen-
sion along which the concept can vary). Each slot in turn can have further slots,
so-called facets (this can also be a name of another concept, i.e. frames can be
embedded into each other and allow the inheritance of certain properties).
Finally, facets have fillers (i.e. values a facet can have). Here is a simple example
of a frame describing a house:

residential building

is_a: building
has_part: bathroom, kitchen, living-room, bedroom
located_on: real estate
part_of: city, village
type: one-family house, semi-detached house, town house

As mentioned above, facets can specify again concepts, e.g. the facet bathroom of
the slot has_part is again a concept. As a consequence, certain inferences based on
inheritance are possible. For example, if x is a residential building, then x is also a
building. On the other hand, attributes can also be inferred: for example, if every
building has walls, then every residential building has also walls.
Although Minsky had no logical specification in mind, frames are describable

by an existentially quantified subsystem of predicate logic (Bibel, 1993). As a
consequence, frames (in the sense of Minsky’s frames) can be represented in the
form of conceptual graphs as discussed above. Alternatively, frames can also be
viewed as analogous to class hierarchies in object-oriented programming para-
digms. Last but not least, researchers developed logical formalisms that were
inspired by Minsky frames: an example is F-logic (Kifer & Lausen, 1989), a
framework that has been used as an ontology language, although it never
reached the popularity of description logics (Section 4.5.1).

4.6 Commonsense Reasoning

Humans interact constantly with their environment in a nontrivial way.
Smart behavior in everyday situations is often explainable, if it is assumed that
humans use suppositions, invariants, and predictions regarding how the environ-
ment usually behaves. This includes the behavior of other agents, for example,
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explained by concepts like goals, intentions, beliefs, desires, etc. of other agents,
but also properties and features of objects in the physical world (in the sense of
naïve physics). These capacities need often be connected to further cognitive
abilities like object recognition, perception, motor behavior, planning, and
reasoning. Furthermore, knowledge about the world is important in translation
and text understanding tasks, e.g. for drawing inferences from text, for disam-
biguating word senses, or for contextualizing textual content. This type of
knowledge about facts of the world and about how the physical world (includ-
ing their agents and their behaviors) usually behaves is called commonsense
knowledge.

Commonsense knowledge and commonsense reasoning is rather difficult to
model in computational terms. The reason for this is the sheer complexity and
breadth of knowledge humans have and use constantly while acting in their
environment. Furthermore, knowledge appears in different forms, as factual
knowledge, as terminological knowledge, as skill knowledge, as semantic know-
ledge, as episodic knowledge etc. In order to address commonsense knowledge
and reasoning with computational means the history of AI and computational
cognitive science research covers many examples. Two important projects with
high relevance also for the modeling of cognition are Cyc and the LaRC.

Cyc (Lenat, Prakash, & Shepherd, 1986) is a project that has been ongoing
for more than thirty-five years and that attempts to build a comprehensive,
consistent, large knowledge base of commonsense knowledge. The idea is to
combine ontological, i.e. terminological knowledge, with factual knowledge, to
code this in a provable consistent way in a machine-readable expressive lan-
guage, more precisely in a higher-order logic (cf. Matuszek et al., 2006), and to
implement an inference system that can efficiently draw consequences from
available knowledge (in a classical and a nonmonotonic style). Today Cyc is
a trademarked product of Cycorp, Inc. According to their own presentation,
Cyc contains more than 10 million default rules-of-thumb:

A pre-existing knowledge base primed with tens of millions of rules-of-thumb
and rules of good judgment spanning common sense, domain knowledge, and a
general understanding of “how the world works” (www.cyc.com/products).

Although Cyc is not uncontroversial, it is probably the largest consistent
knowledge base that currently exists. In a certain sense, systems like IBM’s
Watson (Ferrucci et al., 2013) can be considered follow-up developments
building on the example of Cyc, for instance by adding probabilistic evaluation
functions to a huge knowledge base.

The Large Knowledge Collider (LarKC) was a European Union funded
project that focused on the snippets of knowledge available on the web
(Fensel et al., 2008). In this respect, LarKC significantly departs from the
overall strategy of the Cyc project: instead of hand-coding millions of rules,
the LarKC project focused on the automated population of (heterogeneous)
RDF triple stores (Resource Description Framework triple stores). RDF is a
data model primarily used for metadata in semantic web applications (Hitzler,

Symbolic and Hybrid Models of Cognition 155

https://doi.org/10.1017/9781108755610.007 Published online by Cambridge University Press

http://www.cyc.com/products
http://www.cyc.com/products
http://www.cyc.com/products
https://doi.org/10.1017/9781108755610.007


Krötzsch, & Rudolph, 2009), where relations between subject and object are
represented as triples of the form subject – predicate – object, e.g. resource –

aspect of the resource – value of the aspect. LarKC is using a variety of rather
restricted and incomplete forms of reasoning. LarKC relied on interleaving
reasoning and knowledge selection, enabling the reasoning process to focus
on a limited (but meaningful) part of the available data. The resulting selec-
tion-reasoning-decision-loop selected a (consistent) subset of the data, reasoned
with the selected data to get answers, and then decided whether or not the
answers were satisfying, either aborting the loop or reselecting data for another
run. The inspiration from cognition is striking due to the fact that cognitive
agents rarely use complex rules or the entirety of their knowledge, but instead
rely on micro-theories and small factual pieces of information. In doing so, the
LarKC project showed that a restricted and incomplete form of semantic
reasoning with billions of data entries is possible (Urbani, 2010).
Over the years, commonsense reasoning has become an important topic in AI

and cognitive science, not least because commonsense reasoning as cognitive
capacity appears explicitly or implicitly in many application domains (Davis &
Marcus, 2015). As might be expected, today there are numerous thematic areas
addressing related questions, including analogical reasoning (cf. Falkenhainer,
Forbus, & Genter, 1989), conceptual blending (Fauconnier & Turner, 2003),
discrete qualitative reasoning (Bredeweg & Struss, 2004), subareas of robotics
(Mota & Sridharan, 2019; Zhang & Stone, 2015), and computer vision (Zellers
et al., 2019).

4.7 Symbolic Approaches for Learning

Over the course of the 2010s, learning became a dominant topic in
computational cognitive science. Regarding the wider context, this coincided
with the rise of platform economies, a rapid growth of interest in learning
methods in computer science for increasing productivity in work and produc-
tion scenarios, and generally the application of machine learning methods in
many domains of everyday life. Although symbolic machine learning frame-
works had been developed since the early 1970s (e.g. Plotkin, 1969), symbolic
models for cognition historically focused rather on representation-related ques-
tions, the possibility to draw inferences from facts, or the modeling of folk-
psychological reasoning and the like. Nonetheless, in the wake of the increasing
general interest in computational learning, the development of symbolic frame-
works for learning also gained traction. In fact, many conceptually different
learning methods have been proposed.
In the following, we consider two logic-based frameworks, one for ordering

hypotheses and one combining reasoning and learning. Then, we focus on four
particularly important approaches from the field of symbolic learning, which
have seen significant advances over the last years: decision trees, inductive logic
programming, probabilistic or Bayesian program induction, and statistical
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relational learning. Finally, we introduce symbolic approaches to explainable
AI as recently rediscovered application of symbolic methods in the context of
computational learning.

4.7.1 Logic-based Models for Ordering Hypotheses and Combining
Reasoning with Learning

An approach for ordering hypotheses according to their generality is version
space learning (Mitchell, 1982): given a sample of classified examples, possible
hypotheses that are consistent with the training set can be ordered in most
general consistent (upper bound) and most specific consistent (lower bound)
hypotheses. Most general hypotheses cover the positive examples and a max-
imum of the feature space not containing a negative example. Most specific
hypotheses cover all positive examples and a minimum of the feature space not
containing a negative example. These hypotheses are usually represented in a
logical language and by adding new examples, the most general hypothesis can
be specialized by excluding a new negative example and the most specific
hypothesis can be generalized by including a new positive example. The lower
and the upper bound of hypotheses describe the space of all consistent hypoth-
eses. From a cognitive point of view, version spaces approaches have, for
instance, been used in modeling human skill acquisition or learning context-
free grammars (Vanlehn & Ball, 1987).

A further symbolic approach that can be located at the interface between
logical reasoning and learning is case-based reasoning (CBR) (Aamodt & Plaza,
1994; Kolodner, 1993). The approach is strongly cognitively motivated: if
humans search for a solution of a new problem, they often consult their experi-
ence trying to apply a known solution to a sufficiently similar (known) problem
from the past. In a CBR system, the same approach is applied in the context of
computational problem-solving. A knowledge base is given where problems,
together with their solutions, are stored. If a new problem is encountered, the
CBR system retrieves a similar problem-solution entry, applies the retrieved
solution to the new problem (potentially first requiring an adaptation step), tests
and revises the new solution, and finally memorizes the new problem and its
solution. Because CBR allows treating unknown cases by experience, this
generalization capacity places the approach conceptually close to inductive
learning models. There are several further frameworks in the tradition of
combining logic representations with certain generalization abilities.
Prominent examples from a cognitive perspective are models for analogical
reasoning and conceptual blending (Besold, Kühnberger & Plaza, 2017;
Schmidt et al., 2014).

4.7.2 Decision Trees

Decision trees are a family of models that predict the value of a target variable
based on several input variables. In order to do so, a decision tree takes the
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form of a set of tests (each represented as an internal node of the tree)
performed in sequence to solve a classification task (Quinlan, 1986). After
performing a test on the pattern that is to be classified, one either reaches a
terminal branch of the tree (i.e. the pattern can be classified) or another node of
the decision tree, in which case the test corresponding to the new node is
triggered in the next step. Similar to many other methods in machine learning,
decision trees are created by processing instances in a training set. Following a
popular approach called “top-down induction of decision trees”, a tree is
induced by splitting the starting set (i.e. the root node of the tree) into
subsets (i.e. the successor children), applying a set of splitting rules based on
classification features. This process is repeated on each derived subset in a
recursive manner until either the subset at a node has all the same values of the
target variable, or when further splitting does not add value to the predictions.
A decision tree can, thus, be seen as a generative model of induction rules from
empirical data (Quinlan, 1983), for which an optimality criterion can be
introduced by using the conjunction between the maximization of data cover-
age and the minimization of the number of levels. Regarding their learning
power, decision trees can approximate any Boolean function to any desired
amount of accuracy (Mehta & Raghavan, 2002), in this regard putting them on
par with other contemporary methods like Deep Neural Networks. One of the
benchmark algorithms for decision tree learning is C4.5 (Quinlan, 1993), a
substantial extension of the algorithm ID3 (Quinlan, 1986).
Overall, decision trees are popular models of categorization, with the com-

prehensibility of the rules in a tree as an important factor: following the path
from a tree’s root to a leaf and joining the involved nodes in a conjunction gives
a classification rule. The process of creating a decision rule out of a decision tree
is called linearization (Quinlan, 1987), and the resulting rules usually take the
form of an if-then clause “IF condition a AND condition b AND condition c
THEN outcome” (where outcome is the content of the leaf node). In cognitive
modeling, decision trees have found application among others in conceptual-
izing sequential decision-making in a wide variety of domains ranging from
game setups (Avni et al., 1990; Van Opheusden et al., 2017) to preferential
choice tasks (Solvick & Botvinick, 2015). A variant of decision tree learning
comprises regression tree learning for nondiscrete values for attributes (Breiman
et al., 1984).

4.7.3 Inductive Programming

Next to decision trees, another prototypical symbolic learning approach with a
rich history is inductive programming (Flener & Schmid, 2010). Inductive
programming is an interdisciplinary field of research spanning AI and cognitive
science, addressing the problem of constructing a program that computes some
desired function based on incomplete information (such as input–output
examples, constraints, or computation traces) and background knowledge.
The generated program then serves as a hypothesis about the data that has been
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obtained by generalization. Inductive programming has several sub-branches,
with inductive logic programming (Cropper et al., 2020; Muggleton, 1991) and
inductive functional programming (Olsson, 1995) counting among the most
popular fields of activity. Inductive functional programming addresses the syn-
thesis of recursive functional programs generalized from regularities detected in
(traces of ) input/output examples using generate-and-test approaches, while
inductive logic programming has its roots in research on induction in logical
frameworks (Gulwani et al., 2015).

Regarding its use in cognitive models, variants of inductive programming are
appealing as they are similar to human knowledge-level learning in that they
usually perform well with limited data (at least compared to most current
connectionist learning models) and yield structured learning outputs. By way
of example, we want to have a brief look at the IGOR2 inductive functional
programming system (Kitzelmann & Schmid, 2006) that has successfully been
applied, among others, to problem-solving tasks like the Tower of Hanoi
(Schmid & Kitzelmann, 2011) or the solving of number series tasks (Hofmann
et al., 2014). IGOR2 learns functional MAUDE or HASKELL programs based
on constructor-term-rewriting (Baader & Nipkow, 1998), making it necessary
to declare the algebraic data type(s) for the target function in addition to the
examples which are provided as a training set. Algebraic data types are specified
using constructors, i.e., a minimal set of functions from which instances of the
type can be built. As part of IGOR2’s analytical approach to program synthe-
sis, programs are constructed over detected regularities in the examples also
relying on techniques typically associated with inductive logic programming
(such as the use of background knowledge in the form of additional functions
used for synthesizing besides the predefined constructors, or function invention
on the fly). Overall, the hypothesis construction process is based on antiunifica-
tion of sets of equations (Plotkin, 1969). IGOR2 then constructs hypotheses in
the form of partial programs by applying an induction operator and carrying
out a best-first search with the minimization of the number of hypotheses as
optimality criterion. Program induction terminates when the body of the
resulting function does not contain any unbound variables, recursively applying
a set of induction and example abduction steps until that stage is reached.

Other applications of inductive programming in a cognitive context include,
among others, the modeling of drivers’ cognitive load (Mizoguchi et al., 2012),
autonomous human-like learning of object, event, and protocol models from
audio-visual data for cognitive agents (Magee et al., 2004), or learning with
relational spatio-temporal features identifiable in a range of domains involving
the processing and interpretation of dynamic visuo-spatial imagery (Suchan
et al., 2016).

4.7.4 Probabilistic Program Induction

Probabilistic (or Bayesian) program induction is another branch of inductive
programming. Still, due to its prominent role in current cognitive modeling, it
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deserves further discussion. Especially over the course of the 2010s until today,
the application of Bayesian models to cognitive phenomena (Chater et al.,
2010) has become one of the dominant paradigms in cognitive science research
(cf. Chapter 3 in this handbook). The driving force behind this steady increase
in popularity was the realization that across a wide variety of tasks, the
fundamental problem the cognitive system has to solve is to cope with
uncertainty. This is where probabilistic program induction enters the modeling
stage. Starting from the overall concept of inductive programming, in the case
of probabilistic programs, which specify candidate generative models for data,
again an abstract description language is used to define a set of allowable
programs and learning is a search for the programs likely to have generated
the data. The key differences to “classical” inductive programming are the
probabilistic nature of the constraints and that the output itself is a distribution
over programs that can be further refined.
An important concept to grasp in understanding probabilistic program

induction is the idea of a generative model, i.e., a model that specifies a
probability distribution over a given set of data. For instance, in a classification
task with example set X and class labels y, a generative model specifies the
distribution of data given labels P(X|y), as well as a prior on labels P(y), which
can be used for sampling new examples or for classification by using Bayes’
rule to compute P(y|X). One of today’s de facto standards for modeling
applications in cognitive science, and a concrete instantiation of the described
general pattern of probabilistic program induction, is Bayesian program learn-
ing (Lake et al., 2015). There, the learning task addresses the synthesis of
stochastic programs representing concepts, building them compositionally
from parts, subparts, and relations between them. Bayesian program learning
defines a generative model that can sample new types of concepts combining
parts and subparts in new ways, where each new type is also represented as a
generative model. This lower-level generative model then produces new
examples (or tokens) of the concept, giving rise to a generative model for
generative models, i.e., an instantiation of a hierarchical Bayesian model
(Lee, 2011).
Regarding concrete applications in cognitive modeling, the literature is

replete with examples. We want to have a brief look at the domain of intuitive
psychology, and particularly at people’s expectation that agents act in a goal-
directed, efficient, and socially sensitive fashion. Corresponding models like the
“Bayesian theory-of-mind” (Baker et al., 2011) or “naive utility calculus” (Jara-
Ettinger et al., 2015) formalize explicitly “goal,” “agent,” “planning,” and other
mentalistic concepts. Assuming that people treat other agents as approximately
rational planners, who choose the most efficient means to their goals, the
computations involved in planning can be modeled as solutions to Markov
Decision Processes (Howard, 1960). These take as input utility and belief
functions defined over an agent’s state-space, together with state-action transi-
tion functions, and output a series of actions leading to the agent’s goals in the
most efficient way. Using this type of mental simulation, people can then
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predict what agents might do next, or use inverse reasoning from observing a
series of actions to infer the utilities and beliefs of agents in a scene.

4.7.5 Statistical Relational Learning

Conceptually closely connected to probabilistic program induction, statistical
relational learning (SRL) is a subfield of artificial intelligence developing learn-
ing approaches especially for domains that exhibit uncertainty and complex,
relational structure (Getoor & Taskar, 2007). While not yet as prominent in
cognitive science as, for instance, probabilistic program induction, SRL com-
bines several of the key concepts discussed in this chapter into a powerful
framework for computational learning and reasoning. SRL often uses (some
subset of ) first-order logic to describe relational properties of a domain model,
and Bayesian networks or similar probabilistic graphical models to account for
uncertainty. Alternatively, instead of starting from a statistical learning per-
spective and extending probabilistic formalisms with relational aspects, other
SRL approaches build upon inductive logic programming and expand these (by
construction) relational formalisms, settings, and techniques to also deal with
probabilities in what is then called probabilistic inductive logic programming
(De Raedt & Kersting, 2008).

As an example for a popular SRL framework we want to have a closer look
at Markov logic networks (Richardson & Domingos, 2006). The underlying
idea is to apply a Markov random field (Kindermann & Snell, 1980) to (some
fragment of ) first-order logic in order to enable uncertain inference. A set of
classical first-order logic formulas can be seen as a hard constraint on the set of
possible worlds in that only worlds that fulfill all formulas have nonzero
probability. Markov logic networks aim to soften these constraints in making
worlds that violate formulas increasingly improbable with the number of viola-
tions, but not immediately outright impossible. Additionally, each formula is
assigned a weight that reflects how strong the corresponding constraint is: a
higher weight corresponds to a greater difference in probability between worlds
that do or do not satisfy the formula. Formally speaking, a Markov logic
network L is a set of pairs (Fi, wi), where Fi is a formula in first-order logic
and wi is a real number (also called “weight”). Together with a finite set of
constants C ¼ {c1, c2,. . .,c|C|}, it defines a Markov network ML,C as follows:
ML,C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise. Also, ML,C contains one feature for each possible grounding of each
formula Fi in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise, and the weight of the feature is the wi associated with Fi in L. Taking
this definition, a Markov logic network can be seen as a template that can be
instantiated into specific Markov random fields, depending on the correspond-
ing sets of constants. Each of these ground Markov networks then gives a
probability distribution over possible worlds. Computing inferences in a
Markov logic network then requires finding the stationary distribution of the
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system (i.e., exact inference) or one that approximates it to a sufficient degree.
The stationary distribution specifies the most likely assignment of probabilities
to the vertices of the network, i.e. it indicates the probability of truth or
falsehood of each ground atom. Once the stationary distribution (or a satisfac-
tory approximation) has been found, statistical inference in the sense of condi-
tional probability (e.g., what is the probability that A holds provided that B is
the case?) becomes possible.
Statistical relational learning offers itself as a potential framework for com-

putational models of cognition. One of the main goals in the design of the
representation formalisms used in most SRL frameworks is to abstract away
from concrete entities and to represent instead general principles that are
intended to be universally applicable. Halstead (2011) used an SRL setup in
combining feature-based representations of data with structured representa-
tions, applying an analogy-inspired mechanism to translate back and forth
from the relational space to the reduced feature space. The outcome includes
new results about the nature of analogy and the relationship between similarity
and probability. Murray (2011) relied on SRL for student modeling for intelli-
gent tutoring systems, taking advantage of SRL’s ability to provide a common
language to express diverse kinds of rich learner models (e.g., probabilistic user
models that model causal influence with feedback loops, logical rules with
exceptions, and both hard and soft constraints in first-order logic).
Application cases include learner models for affective computing that simultan-
eously model inferences from affect to cognition and cognition to affect. Vu
et al. (2018) show how SRL methods can be used to address problems in
grammatical inference using model-theoretic representations of strings with
applications, for instance, in modeling phonological phenomena.

4.7.6 Symbolic Approaches in Explainable Artifical Intelligence

In recent years, questions regarding the explainability, particularly of connec-
tionist and statistical learning systems, have attracted attention from the AI and
the cognitive science communities (Gunning et al., 2019). Regarding the meth-
odological repertoire applied to explaining AI systems, symbolic approaches
play an important role within the ever-growing toolkit available to researchers
(Arrieta et al., 2020). To name but a few examples, some approaches rely on the
extraction of rules from neural networks (Zilke, Mencia, & Janssen, 2016) or on
the compilation of decision trees from connectionist models and the subsequent
combination with ontologies for contextualization (Confalonieri et al., 2021),
while others suggest the use of models combining symbolic background know-
ledge with data-driven learning (Donadello, Serafini, & Garcez, 2017).
A different take on explainable AI pursues the construction of learning

systems which are (better) comprehensible by design. Some of the symbolic
learning approaches discussed above offer promising starting points for such an
undertaking. Muggleton et al. (2018) apply inductive logic programming in an
effort to build systems which can support humans in understanding relational
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concepts derived from input data from a possibly complex domain. In their
experiments, participants were not able to learn the relational concepts on their
own from a set of examples but they were able to understand and correctly
apply the relational definitions given the abstract explanation provided by the
computational system.

4.8 Opening Up: Pluralism and the Shift Towards Hybrid
Formalisms and Models

Symbolic approaches for modeling cognitive abilities were successful in
many respects. Cognitive architectures like ACT-R and SOAR (Section 4.3,
“Cognitive Architectures as Models of Intelligent Agents”) were used to con-
vincingly model human behavior (at least in controlled lab environments). The
cognitive turn in linguistics (Section 4.4, “The Cognitive Turn in Modeling
Natural Language”) showed that a scientific and technical analysis of the
syntax and semantics of natural language is possible. Different knowledge
representation formalisms were used in many AI systems (Section 4.5,
“Knowledge Representation”) to establish representations of various
environments. Nevertheless, at the beginning of the 1990s, researchers from
different areas started to fundamentally question symbolic approaches as well
as the need for representations. The reasons for this often were perceived
limitations of the existing approaches related to the particular subject matter
and the focus of the respective research.

In the early 1990s, researchers such as Philip Agree, Rodney Brooks, and Luc
Steels proposed a “New AI” that was intended to consider AI and cognition
from a situated and embodied perspective (Agree & Chapman, 1990; Brooks,
1999). Cognitive robots acting in a real-world environment are confronted with
fundamentally different problems in comparison to rather abstract intelligence-
related tasks of human subjects in a lab situation. From the perspective of
robotics, symbolic representations did not fit to the tasks a simple robot has to
achieve in a real-world environment like exploring a certain environment or
moving robustly in an environmental situation with uncertain perceptions,
incomplete knowledge, a brittle motor system, and imprecise actuators. In
reaction, a growing number of researchers suggested avoiding explicit repre-
sentations of the world wherever possible and using the world as a model
instead. Most symbolic representations were perceived as too unwieldy and at
the same time too brittle as to serve as appropriate tools for modeling percep-
tions and motor actions. As a reaction, roboticists started with the development
of new frameworks for intelligent behavior giving rise to the field of cognitive
robotics. More generally, researchers interested in developing models of how
agents can learn from input from (and in interaction with) an environment
departed from symbolic frameworks and rediscovered neural networks as a
flexible tool for machine learning. Symbolic frameworks classically focused on
issues like knowledge-based reasoning, problem solving, and decision making,
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where the environment is often assumed to be given, removing the acquisition
of knowledge about the environment based on sensory devices and motor skills
from their focus. Since a robot exploring an unknown environment needs to
learn the features of the environment, cognitive robotics focused on learning
from sensory input, actions, and interactions in such environments.
As an immediate consequence of these developments, the scientific fields

addressing reasoning and learning became more diversified. In addition to
symbolic AI approaches, cognitive robotics, the rise of (neural) machine learn-
ing, and computational intelligence as a discipline established their own
research traditions. Still, when aiming to build truly complete models of cogni-
tion that cover both learning and reasoning, it is increasingly accepted that one
will have to reconcile the different methodologies (i.e., predominantly statistics
and logic) to obtain sufficiently fault-tolerant and flexible learning capabilities
next to sufficiently powerful and reliable reasoning. This has given rise to the
development of hybrid and “neural-symbolic” approaches (Besold et al., 2022).

Hybrid architectures (Sun, 2002) seek to tackle the problem of combining
symbolic rule-based reasoning with connectionist representations and connec-
tionist learning (Wermter & Sun, 2000). Structurally hybrid architectures often
are implemented as modularized systems combining components employing
one or the other paradigm in their respective sub-modules. This approach offers
a principled way of computing with explicit and implicit knowledge of various
types and on different levels of abstraction. Starting from multimodular
approaches such as, for instance, the Clarion architecture (Sun, 2016) in cogni-
tive modeling, such architectures not only allow to represent explicit and
implicit knowledge but can also be used to model a motivational system as
drives and aspects of metacognition. Another example for a hybrid system with
a constitutive focus on motivation as a modulator of cognition is the Micro-Psi
architecture (Bach, 2009). Still, besides the popular modularized approach to
building hybrid architectures, some researchers have also considered unified
neural architectures and transformation architectures. A unified neural archi-
tecture relies exclusively on connectionist representations and reasoning but
allows for symbolic interpretations on the level of neurons or connections
between neurons, giving rise to localist connectionist networks (Smolensky,
1988). Transformation architectures on the other hand lift neural representa-
tions into symbolic knowledge or insert symbolic representations into a connec-
tionist encoding. Similar to some of the methods mentioned above in Section
4.7.6, rule extraction methods allow the explicit encoding of the learned behav-
ior of a connectionist system in the form of if-then-else rules, while knowledge
insertion translates logic programs into neural network ensembles (Garcez,
Lamb, & Gabbay, 2007).
Looking towards the future, lessons learned from the development of hybrid

architectures have the potential to open up the way and serve as a foundation
for a more fundamental (re-)convergence between the paradigms and the devel-
opment of fully integrated monolithic neural-symbolic systems. In principle,
there is no substantial difference in representation or problem-solving power
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between dynamical systems with distributed representations and symbolic
systems with nonmonotonic reasoning capabilities (Leitgeb, 2005), and sym-
bolic and subsymbolic approaches are to be considered in practice equivalent
concerning computability (Siegelmann, 1999). If these theoretical foundations
can successfully be carried over into implementations and applications, the
resulting approaches have the potential to model cognition not only as a
number of separated and isolated abilities, but as a holistic system.

4.9 Conclusion

During the last decade, computational cognitive science has often been
associated exclusively with (deep) learning and statistical approaches as well as
with neuroscientific models. It might seem that symbolic models of cognition are
currently no longer considered as important frameworks for cognitive science.
This impression is misleading in several respects. First, there is a large, vivid, and
sustainable research community working on frameworks like knowledge graphs,
ACT-R, SOAR, Clarion, and several symbolic learning formalisms. Second,
many applications in fields such as linguistics, language understanding, simula-
tions of human behavior (e.g. in multiagent systems), expert systems for profes-
sionals, human–computer interaction, massively knowledge-based systems and
the like cannot be conceived without the usage of symbolic computational models
for cognition. Finally, symbolic approaches for modeling cognition are usually
better interpretable, more transparent, and more easily explainable than their
connectionist counterparts such as deep learning. In sum, there are good and
lasting reasons for symbolic frameworks to remain important tools for research
and applications in the field of computational cognitive science.
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5 Logic-Based Modeling
of Cognition
Selmer Bringsjord, Michael Giancola,
and Naveen Sundar Govindarajulu

5.1 Introduction

This chapter explains the approach to reaching the overarching scien-
tific goal of capturing the cognition of persons in computational formal logic.1

The cognition in question must be coherent, and the person must be at least
human-level (i.e., must at least have the cognitive power of a human person).2

In what can reasonably be regarded to be a prequel to the present chapter
(Bringsjord, 2008), a definition of personhood, with numerous references, was
provided; for economy here, that definition is not recapitulated. This chapter
shall simply take faute de mieux a person to be a thing that, through time, in an
ongoing cycle, perceives, cognizes, and acts (Sun & Bringsjord, 2009).3 The
cognizing, if the overarching goal is to be reached, must be comprised, all and
only, of that which can be done in and with computational formal logics. Since
it has been proved that Turing-level computation is capturable by elementary
reasoning over elementary formulae in an elementary formal logic,4 any cogni-
tion that can be modeled by standard computation is within the reach of the
methodology described herein, even with only the simplest logics in the universe

1 There is such a thing as informal logic; but the present overview leaves aside this field entirely.
Whatever virtues informal logic may have, because it cannot be used to compute (which is true in
turn simply because informal language, the basis for informal logic, cannot be a basis for
computing, which by definition is formal), it is of no use to practitioners of logic-based (computa-
tional) cognitive modeling. An introduction to and overview of informal logic, which confirms its
informal linguistic basis, is provided in Groarke (1996/2017).

2 It is possible that there exist now or will exist in the future persons who are not humans; this is a
prominent driver of science-fiction and fantasy literature. In addition, many religions claim that
there are nonhuman persons. (In the case of Christianity, e.g. The Athanasian Creed asserts that
God is a person.) Even if all such religious claims are false, things clearly could have been such
that some of them were true, so the concept of personhood outside of H. sapiens is perfectly
coherent. In fact, the field of AI, which is intimately bound up with at least computational
cognitive science and computational psychology, is a testament to this coherence, since, in the
view of many, AI is devoted to building artificial persons (a goal e.g. explicitly set by Charniak &
McDermott, 1985); see Bringsjord and Govindarajulu (2018) for a fuller discussion. Finally, it is
very hard to deny that humans will increasingly modify their own brains in ways that yield
“brains” far outside what physically supports the cognition of H. sapiens; see in this regard
Bringsjord (2014).

3 Cf. the similar cycle given in Pollock (1995).
4 There are multiple proofs, in multiple routes. A direct one is a proof that the operation of a
Turing machine can be captured by deduction in first-order logic¼L 1 (e.g., see Boolos, Burgess,
& Jeffrey, 2003). An indirect route is had by way of taking note of the fact that even garden-
variety logic-programming languages, e.g. Prolog, are Turing-complete.
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U in Figure 5.3, and explained below.5 However, it is important to note a
concession that stands at the heart of the logicist research program explained
herein: viz. that even if this program completely succeeds, the challenge to
cognitive science of specifying how it is that logic-based cognition emerges
from, and interacts with, sub-logic-based processing in such things as neural
networks will remain. Theoretically, in the artificial and alien case, where the
underlying physical substrate may not be neural in nature, this challenge can be
avoided, but certainly in the human case, as explained long ago by Sun (2002),
it cannot: humans are ultimately brain-based cognizers, and have a “duality of
mind” that spans from the subsymbolic/neural to the symbolic/abstract.
The remainder of the chapter unfolds straightforwardly as follows. After a

brief orientation to logic-based (computational) cognitive modeling, the neces-
sary preliminaries are conducted (e.g., it is explained what a logic is, and what it
is for one to “capture” some human cognition). Next, three “microworlds” or
domains are introduced; this trio is one that all readers should be comfortably
familiar with (natural numbers and arithmetic; everyday vehicles; and residen-
tial schools, e.g. colleges and universities), in order to facilitate exposition in the
chapter. Then the chapter introduces and briefly characterizes the ever-
expanding universe U of formal logics, with an emphasis on three categories
therein: deductive logics having no provision for directly modeling cognitive
states, nondeductive logics suitable for modeling rational belief through time
without machinery to directly model cognitive states such as believes and knows,
and finally nondeductive logics that enable the kind of direct modeling of
cognitive states absent from the first two types of logic. The chapter’s focus
then specifically is on two important aspects of human-level cognition that must
be modeled in logic-based fashion: the processing of quantification, and defeas-
ible (or nonmonotonic) reasoning. For coverage of the latter phenomenon, use of
an illustrative parable involving a tornado is first used, and then the chapter
turns to the suppression task, much studied and commented upon in cognitive
science. To wrap things up, there is a brief evaluation of logic-based cognitive
modeling, and offered in that connection are some comparisons with other
approaches to cognitive modeling, as well as some remarks about the future.
The chapter presupposes nothing more than high-school mathematics of the
standard sort on the part of the reader.

5.2 Preliminaries

For the goal of capturing the cognition of persons in computational
formal logic to be informative to the reader, it is naturally necessary to engage

5 One of the advantages of capturing cognition in formal logic is that it is the primary way to
understand computation beyond the level of standard Turing machines, something that, interest-
ingly enough, is exactly what Turing himself explored in his dissertation under Alonzo Church, a
peerless introduction to which, for those not well-versed in formal logic, is provided by Feferman
(1995). For a logic-based, indeed specifically a quantifier-based, introduction to computation
beyond what a Turing machine can muster, see Davis, Sigal, and Weyuker (1994).
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in preliminary exposition to explain what a logic is, what specifically a computa-
tional logic is, what cognition is herein taken to be, and finally what capturing
cognition via formal logic amounts to.

5.2.1 Anchoring Domains for Exposition: Numbers, Vehicles,
and Universities

In order to facilitate exposition, it will be convenient to rely upon straightforward
reference to three different domains of discourse, each of which will be familiar to
the reader: viz., the natural numbers and elementary arithmetic with them, which
all readers presumably learned about when very young; everyday vehicles (cars,
trucks, etc.); and residential schools, such as colleges and universities.

The natural numbers, customarily denoted by “N,” is simply the set

0, 1, 2, 3, . . .f g,
and “elementary arithmetic” simply refers to addition, subtraction, multipli-
cation, and so on. Readers are assumed to know for instance that zero 2 N
multiplied by 27 2 N is zero. (Later in the chapter, in Section 5.4.4, a rigorous,
axiomatic treatment of elementary arithmetic, so-called Peano Arithmetic, will
be provided.)

As to the domain of vehicles, the reader is assumed to understand the things
represented in Figure 5.1, which should now be viewed, taking care to read its
caption. Three types of familiar vehicles are invoked; each vehicle can be either
of two colors (black or gray). Each vehicle is either located at a particular
position in the grid shown, or is outside and adjacent to it. The grid is oriented
to the four familiar cardinal directions, of North, East, South, and West.

What about the domain of residential schools? Here nothing is assumed
beyond a generic conception, according to which such institutions, for instance
colleges and universities, include agents that fall into the categories of student,
teacher, and staff; and include as well that the standard buildings are in place in
accordance with the standard protocols. For example, residential universities
have dormitories, classrooms, and libraries. It is specifically assumed that all
readers have common knowledge of the invariants seen in such schools, for
instance that they commonly have classes in session, during which time students
in the relevant class perceive the teacher, hold beliefs about this instructor, and
so on.

5.2.2 What Is a Formal Logic?

It suffices to provide two necessary conditions for something’s being a formal
logic.6

6 As to informal logic, it is not known how to formally define such a thing, and at any rate doing so
in anything like a scientific manner is likely conceptually impossible. On the other hand,
everything said in the present section is perfectly consistent with conceptions of a formal inductive
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The first of these two necessary conditions is that one cannot have a formal
logic unless one has a formal specification of what counts as a formula, and in
the vast majority of cases this specification will be achieved by way of the
definition of a formal language L composed minimally of an alphabet A and
a grammar G.7 Without this, one simply does not have a formal logic; with this,
one has the ability to determine whether or not a given formal logic is expressive
enough to represent some declarative information. Importantly, it is often the
case that some natural-language content to be expressed as a formula in some
(formal) logic L cannot be intuitively and quickly expressed correctly by a
simple formula in the formal language for L , so that the formula can then be
used (for example by a computer program) instead of natural language. For
example, the (declarative) natural-language sentence (1n) “Every car is north of
some bus that’s south of every truck,” which is true in vehicular scenario #1
shown in Figure 5.2, cannot be represented in any dialect of the propositional

N

S

W E

v19

V7

?

Figure 5.1 The vehicular domain. The three types of vehicle are shown: cars,
box trucks, and buses. The reader will note that there is also a diagram that
indicates the existence (and perhaps location) of a “mystery” vehicle; such a
vehicle is either a car or a box truck or a bus – but which it is is not directly
conveyed via visual information. Each vehicle is either colored black or gray
(there is one gray vehicle in the grid (a box truck), and one such vehicle outside
the grid (a car). Notice that vehicles can be denoted by names (or constants).
Finally, we have the standard four cardinal directions.

logic, which is distinguished by reasoning that is nondeductive. For a nontechnical introduction
to inductive logic see Johnson (2016). For a sustained rigorous introduction to formal inductive
logic of the model-theoretic variety, which subsumes probability theory, see Paris and Vencovská
(2015).

7 This pair 〈A, G〉 need not be purely symbolic/linguistic. The pair might e.g. include purely visual
or “homomorphic” elements. See the logic Vivid as a robust, specified example (Arkoudas &
Bringsjord, 2009). This issue is returned to at the conclusion of the chapter.
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calculus ¼ L pc, since no object variables are permitted in this logic.8 But this
natural-language sentence is easily expressed in first-order logic ¼ L 1 by the
following formula in its formal language:

(1l) 8x C xð Þ ! ∃y By ^N x, yð Þ ^ 8z T zð Þ ! S y,zð Þð Þð Þ½ �:
Here x and y are object variables, C is a unary relation symbol used to
express being a car, B denotes the property of being a bus, and N is a binary
relation symbol that represents the property of being north-of. In addition,
we have in L 1 the two standard and ubiquitous quantifiers: where υ is any
object variable, ∃υ says that there exists an object υ, and 8υ says that for
every υ. The formal grammar of L 1 is not given here, since the level of detail
required for doing so is incompatible with the fact that the present chapter is
first and foremost an overview of cognitive modeling via logic, not a tech-
nical overview of logics themselves. The reader should take care to verify,
now, that the formula (1l) does in fact hold of the scenario shown in
Figure 5.2.

Note that without having on hand a precise definition of the formal language
L that is the basis for a given formal logic L , there is simply no way to
rigorously judge the expressive power of some L that is being referred to,
and hence no way to judge whether L (or for that matter some theory in
cognitive science that purports to subsume L ) is up to the task of modeling,
say, some proposition that some humans apparently understand and make
use of.

Now, what is the second necessary condition for L ’s being a formal logic,
over and above the one saying thatL must include some formal language? This
second condition is disjunctive (inclusive disjunction used: i.e. either disjunct, or
both, must hold) in nature, and can be stated informally thus:

N

S

W E

Figure 5.2 Vehicular scenario #1.

8 Starting here and continuing through to the end of the chapter, a subscript of n simply indicates
that the proposition so labeled is in natural language, whereas a subscript of l conveys that the
formula so labeled is in some logic.
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Any bona fide logic must have a fully specified system for checkable inference
(chains of which are expressed as proofs or arguments, where each link in the
chain conforms to an inference schema), and/or9 a fully specified system for
checkable assignments of semantic values (e.g., true, false, probable,
probable at value (some number) k, indeterminate, etc.) to formulae
and sets thereof.

Note that above use was made of truth and falsity in connection with first-order
logic ¼ L 1, since it was said that the formula (1l) in this formal logic is true on
vehicular scenario #1. Note as well that the semantic categories for a given logic
can often exceed the standard values of true and false. To make this concrete
and better understood, take a look back at Figure 5.1 now, and consider the
natural-language statement (2n) “Car v19 is east of every truck.” Expressing this
declarative sentence in L 1 as a formula yields

(2l) 8x T xð Þ ! E vr19; xð Þ ^ C v19ð Þð Þ½ �,
and what is the semantic value of this formula on the scenario shown in Figure 5.1?
There is simply no way to know, because while we know that vehicle v19 is a car,
it is not on the grid.We thus can add the semantic value indeterminate to what
we have available for modeling; and this is the value of (2l) on the scenario in
question. For excellent treatment of a trivalent form ofL 1, in connection as well
with a grid-based microworld, see Barwise and Etchemendy (1994).
For those in favor of couching formal theories of meaning for natural language

(and of cognition relating to the use of natural language) in terms of proof, (2l) is
indeterminate specifically because it cannot be proved from the information given
in Figure 5.1, nor can the negation of this formula be proved from this infor-
mation. However, notice something interesting about the scenario in this figure:
suppose that we knew what kind of vehicle the mystery vehicle in Figure 5.1 is;
specifically, suppose that that vehicle is a bus. In addition, assume that vehicle
v19 is located in some square in not the eastmost column, but the column one
column to the west of the eastmost column. Given this additional information, we
can easily prove (2l) from the information we have under these suppositions. For
some, for instance Francez (2015) (and such thinkers are aligned with the purely
inferential understanding of what a logic is within the disjunction given in the
second necessary condition above), the meaning of the natural-language sentence
(2n) for an agent consists in its being inferable from what is known by that agent.
We spare the reader the formal chain of inference inL 1 that constitutes a formal
proof of (2l). Such a proof is by cases, clearly. The proof starts with noting that
v19 will be in one of four different locations in the column in question, and then
proceeds to consider each of the only two trucks in the scenario; both of them are
west of each of these four locations.

9 Again, this is inclusive disjunction. The two disjuncts represent the two major, sometimes
competing schools in logic, namely proof theory and model theory. Proponents of the first
school avoid traditional semantic notions. The reason why the disjunction is inclusive is that
some logicians would desire to see both disjuncts satisfied. In particular, model theorists
emphasize semantics, but take proofs to be witnesses of validity of formulas.
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5.2.3 What Is a Computational Formal Logic?

Since the topic at hand is cognitive modeling via logic, and cognitive modeling is
by definition computational, it is necessary to understand what a computational
logic is. All readers will have come to this chapter with at least an intuitive
conception of what a logic is (and now, given the foregoing, they will have deeper
understanding), but no doubt some will be quite puzzled by the reference to a
“computational” logic. This is easy to address: a computational logic is just a
logic that can be used to compute, where computing is cast as inference of some
sort. Since computing in any form can be conceived of as a process taking inputs
to outputs by way of some function that is mechanized in some manner, in the
logicist approach to cognition, the mechanization consists in taking inputs to
outputs by way of reasoning from these inputs (and perhaps other available
content). This is as a matter of fact exactly how logicist programming languages,
for instance Prolog, work. Often the inputs are queries, and the outputs are
answers, sometimes accompanied by justificatory proofs or arguments. When
Newell and Simon presented their system LogicTheorist at the dawn of artificial
intelligence (AI) in 1956, at Dartmouth College, this is exactly what the system
did. The logic in question was the propositional calculus, the inputs to
LogicTheorist were queries as to whether or not certain strings were theorems
in this logic, and the outputs were answers with associated proofs. For more
details, see the seminal paper of Newell and Simon’s (1956); for a recent overview
of the history to which we refer, in the context of contemporary AI, see
Bringsjord and Govindarajulu (2018) and Russell and Norvig (2020).

5.2.4 What Is Cognition?

Now to the next preliminary to be addressed, which is to answer: What is
cognition? And what is it to cognize? Put another way, this pair of questions
distill to this question: What is the target for logicist cognitive modeling?

Fortunately, an efficient answer is available: Cognition can be taken to
consist in instantiation of the familiar cognitive verbs: communicating, deciding,
reasoning, believing, knowing, fearing, perceiving, and so on, through all the
so-called propositional attitudes (Nelson, 2015). In other, shorter words, what-
ever cognitive verb is targeted in human-level cognitive psychology, for instance
in any major, longstanding textbook for this subfield of cognitive science (e.g.,
see Ashcraft & Radvansky, 2013), must, if the overall goal of logicist modeling
is to be achieved, be captured by what can be done in and with computational
formal logics.

5.2.5 What Is It to Capture Cognition in Formal Logic?

But how is it known when logicist cognitive modeling of human-level cognition
succeeds? Such modeling succeeds when selected aspects of human-level cogni-
tion are captured. But what is it to “capture” part or all of human-level
cognition in computational formal logic? After all, is not “capture” operating
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as a metaphor here, and an imprecise one at that? Actually, the concept of
formal logic managing to capture some phenomena is not a metaphor; it’s a
technical concept, one easily and crucially conveyed here without going into its
ins and outs. Some phenomena P is captured by some formal content CP,
expressed in a (formal) logic L , if and only if all the elements p in P are such
that from CP one can provably infer in L the formal counterpart Cp that
expresses p. To illustrate with a simple example, suppose that the phenomena in
question is the appearance of English declarative sentences (in response, say, to
some queries) about elementary arithmetic. So an element here could be 3nð Þ
“Twelve is greater than two plus two,” or 4nð Þ “Seven times one is seven,” or
5nð Þ “Any (natural) number times 1 is that number,” and so on. It is known that
the particular, familiar formal logic first-order logic ¼ L 1 can express such
sentences rather easily. For instance, if _n is a constant in this logic’s language to
denote the natural number n, and � is a function symbol in this language for
multiplication, the latter two sentences are expressed in L 1 by two formulae (4l)
and (5l), respectively, like this:

• 4lð Þ≔ _7� _1 ¼ _7
• 5lð Þ≔ 8 _n _n� _1 ¼ _n

� �

And now, what of capturing? There is a rather famous body of content,
composed of a set of formulae in first-order logic, known as Peano
Arithmetic, or just PA; it captures all of elementary arithmetic.10 Given what
we said above, this means that every relevant sentence s about elementary
arithmetic not only can be expressed by some corresponding formula ϕs in
L 1, but that every such sentence that’s true can be proved from PA. This is
in fact true of 4lð Þ and 5lð Þ. Elementary arithmetic has been captured,11 as has
content in other fields outside mathematics.12 For now, this will do in order to
provide the reader with some understanding of the ambition, seen in action
below, to capture the defeasible reasoning of human persons. More specifically
and concretely, for this ambition to be reached, it must be shown that there is
some logic such that, whenever such a person defeasibly reasons to some
declarative sentence s, there is some content in that logic from which a formula
ϕs expressing s can be defeasibly inferred. In the present chapter, this is shown in
connection with a reasoning task that has been much studied in cognitive
science: namely, the fascinating suppression task, introduced by Byrne (1989).
This coming discussion will take advantage of the fact that some scholars who
have worked to model and computationally simulate human reasoning and
logic, have specifically tried their hand at the suppression task, which appears to

10 Coverage is provided in Ebbinghaus, Flum, and Thomas (1994).
11 For a technical presentation of the concept of capture, including the arithmetic case just drawn

from, see Smith (2013).
12 E.g., formal logic has successfully captured major parts of mathematical physics; specifically,

e.g., classical mechanics (McKinsey, Sugar, & Suppes, 1953) and –much more recently – special
relativity (Andréka, Madarász, Németi, & Székely, 2011). In addition, Pat Hayes captured
significant parts of everyday, naïve physics in L 1 (Hayes 1978, 1985).
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clearly call specifically for defeasible reasoning, not just purely deductive
reasoning. But before discussing this task and its treatment, some preparatory
work must be carried out.

5.3 The Universe of Logics and This Chapter

Consult again Figure 5.3. This picture is intended to situate the present
chapter within the context of the universe of logics that are available for
modeling of cognition. There will be no concern here with any logics that
permit expressions that are infinitely long; therefore we are working outside
the “Infinitary” oval on the left side of the all-encompassing oval shown
in Figure 5.3. (This omission will be returned to in the final section of the
chapter.) Hence discussion herein is within the “Finitary” oval shown. Notice
that within that oval there are shown two sub-categories: “Intensional” versus
“Extensional.” Roughly speaking, the first of these categories, which subsumes
what are known as modal logics, is marked by logics that are tailored to
represent such cognitive verbs as we cited above: for example, believing, know-
ing, intending, and also verbs that are “emotion-laden,” such as hoping, desiring,
fearing, and so on. The logics that are up to the task of representing content that

Infinitary Finitary

Intensional Extensional

Deductive InductiveDeductive Inductive

Symbolic Diagram Symbolic Diagram Symbolic Diagram Symbolic Diagram

ω1ω

1 = first-order logic

PropCalc = propositional calculus

DCEC∗

The nonmonotonic logic from Stenning & Lembalgen 

cognitive likelihood calculi

expanding

expanding

expanding

expanding

IDCEC

Figure 5.3 The ever-expanding universe of logics. The universe of formal logics
can be first divided into those that allow expressions which are infinitely long,
and those that do not. Among those that do not, the propositional calculus and
first-order logic have been much employed in CogSci and AI. The boxed logics
are the ones key to the upcoming analysis and discussion. Note that in the
previous section there was crucial use of L 1.
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is infused with such – to use again the phrase that has been popular in
philosophy – propositional attitudes (Nelson, 2015) must be sensitive to a key
fact arising from the cognition involved: viz., that when an agent has such an
attitude toward a proposition, it’s not possible to compute compositionally
what the semantic value of the overall attitude is from such values assigned
to the target propositions. The following simple example illustrates this
phenomenon.
Consider the proposition p1 that Umberto believes that Terry believes that

Umberto is brilliant. Now suppose that Umberto is brilliant (p2). Does it follow
from the fact that p2 is true that p1 is as well? Clearly not. Umberto may well
believe that Terry thinks that he (Umberto) is quite dim. In stark contrast, every
logic in the category “Extensional” is such that the semantic values of molecular
propositions built on top of “atomic” propositions are fully determined by the
semantic values of the atomic propositions. In the very earliest grades of the
study of mathematics, this determination is taught to students, because such
students, across the globe, are first taught the rudiments of the propositional
calculus (shown as LPropCalc in Figure 5.3). In this logic, once one knows the
value of sub-formulae within a composite formula, one can directly compute
the value of the composite formula. For instance, in LPropCalc, if p is false and
q is false, we know immediately that the value of the composite material
conditional p ! q is true.

5.4 Quantification and Cognition

From the perspective of those searching to capture human-level cogni-
tion via logic, there can be little doubt that quantification is a key, perhaps
the key, factor upon which to focus. Some quantification at work has already
been seen previously in this chapter, in connection with both the vehicular
domain and elementary arithmetic. Hence the reader is now well aware of the
fact that “quantification” in the sense of that word operative in logicist compu-
tational cognitive modeling (LCCM) has nothing to do with conventional
construals of such phrases as “quantitative reasoning.” Such phrases usually
refer to quantities or magnitudes in some numerical sense. Instead, in formal
logic, and in LCCM, quantification refers specifically to the use of of quantifiers
such as “all,” “some,” “many,” “a few,” “most,” “exactly three,” and so on. In
particular, this chapter has placed and will continue to place emphasis upon the
two quantifiers that are used most in at least deductive formal logics, the two
quantifiers that (accompanied by some additional machinery) form the basis for
most of the formal sciences, including mathematics and theoretical computer
science. These two quantifiers are exactly the ones we have already seen in
action previously: 8 (read as “for every” or “for all”) and ∃ (read as “there is at
least one” or “there exists at least one”). Again, when these two quantifiers are
employed, almost invariably they are immediately followed by an object vari-
able, so that the key constructions are
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8υ . . .
and

∃υ . . . ,

where, as above, υ is some object variable, for example x, y, or z. These
constructions are read, respectively, as “For every thing υ . . . ” and “There
exists at least one thing υ such that . . ..” The ellipses here are stand-ins for
formulae in the relevant formal language.

In our experience, not only students, but also even accomplished researchers
outside the formal sciences, are often initially incredulous that something so
unassuming as these two constructions could be at the very heart of the formal
sciences, and at the very heart of cognition. The chapter now proceeds to
explain why such incredulity is mistaken.

5.4.1 Quantification in the Study of the Mind

As a matter of empirical fact, a focus on quantification in the study of the mind,
at least when such study targets human/human-level cognition, has long been
established, and is still being very actively pursued. For example, since
Aristotle, there has been a sustained attempt to discover and set out a logic-
based theory that could account for the cognition of those who, by the produc-
tion of theorems and the proofs that confirm them, make crucial and deep use of
quantification (Glymour, 1992). The first substantial exemplar of such cogni-
tion known to us in the twenty-first century remains the remarkable Euclid,
whose reasoning Aristotle strove (but failed) to formalize in Organon (McKeon,
1941), and some of whose core results in geometry are still taught in all
technologized societies the world over. In fact, it is likely that most readers will
at least vaguely remember that they were asked to learn some of Euclid’s
axioms, and to prove at least simple theorems from them. If this request met
with success, the cognition involved included understanding of quantification
(over such things as points and lines, reducible therefore to quantification over
real numbers).

What about contemporary study of human-level-or-above cognition by way
of quantification? Given space restrictions, it is not possible to survey here all
the particular research in question; only a few specific examples can be men-
tioned, before the reader is taken into a deeper understanding of quantification,
and from there through a series of aspects of quantification that are important
to LCCM.

As to the examples of sample quantification-centric research, Kemp (2009),
under the umbrella conception that there is a human “language of thought,”
advances the general idea that this language is that of a logic, one that appears
to correspond to a kind of merging of first- and second-order logic (i.e. L 1 and
L 2). He advances as well the specific claim that first-order quantification is
easier for the mind to handle than the second-order case. Below, the distinction
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between first- and second-order quantification is explained, in connection with
our vehicular microworld.
As one might expect given how large a role quantification plays in all

human natural languages (such as English) as a brute empirical fact (the
comma that immediately follows the present parenthetical ends a phrase that
has one universal quantifier and one existential one), the connection between
linguistic cognition at the human-level and quantification is a deep one. In
fact, Partee (2013) argues that quantifiers should be the main pivot around
which cognitive linguistics from a formal point of view is pursued. In a
particular foray in just this direction, more recently Understanding
Quantifiers in Language (2009) has explored a connection between different
kinds of quantifiers and computational complexity, based in part upon experi-
ments that involve vehicular scenarios of their own (and which in part inspired
the somewhat more versatile ones used herein).
It is now time to convey a deeper understanding of quantification, and the

nexus between it and cognition at a number of points, starting with higher-
order quantification.

5.4.2 Quantification in Higher-Order Logic

One of the interesting, apparently undeniable, and powerful aspects of human-
level cognition is that it centrally involves not only use of relations such as “is a
bus” or “is a car” (which are of course represented, respectively, by the relation
symbols B and C in the vehicular setup), but also relations that can be applied to
relations. A body of cognitive-science work indicates this capacity to be present
in, and indeed routinely used by, humans (Hummel 2010; Hummel & Holyoak,
2003; Markman & Gentner, 2001). Using resources of LCCM, specifically a logic
from U well-known to practitioners of logic-based modeling, this aspect of
human-level cognition is quite easy to express in rigorous terms. More specific-
ally, LCCM has available to it higher-order logics. First-order logic¼L 1, as has
been seen previously, permits only object variables, so named because they refer
to objects, not relations (or properties or attributes); the logic L 1 does not have
relation variables. To make this concrete, consider vehicular scenario #2 for a
minute; this scenario is given in Figure 5.4. Note, upon studying this scenario,
that the immediately following declarative sentence holds in it.

(6n) There is at least one relation that holds of every vehicle north of every bus.

Confidence that the reader apprehends the truth of (6n) in vehicular scenario #2
rests on the strength of the cognitive science work cited previously, in the
present section. But this natural-language sentence cannot be represented in
L 1, since this logic has no provision for expressing “There is a relation that” in
this sentence. Second-order logic ¼ L 2 comes to the rescue, because it includes
provision for quantification over relation (property) variables. To thus model
what the reader apprehends in accordance with LCCM, a formula in second-
order logic that expresses (6n) is needed – and here it is:
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(6l) 8x 8y B yð Þ ! N x; yð Þð Þð Þ ! ∃XX xð Þ½ �
Notice that, following longstanding tradition in formal logic, we use majuscule
Roman letters X ,Y ,Z etc. for variables that can be instantiated with particular
relations. Another look at Figure 5.4 and the vehicular scenario it holds will
reveal to the reader that there are particular relations/properties that can serve
as particular instances of X in (6l). For example, one such relation/property is
the color gray, which is indeed the color of every vehicle north of every bus.

The reader may wonder whether there is a level higher than second-order
logic ¼ L 2. There is.

13 The next step up, perhaps unsurprisingly, is third-order
logic ¼ L 3. There are strong reasons to suspect that human-level cognition
makes routine use of third-order propositions – though of course it is not known
how such propositions are specifically encoded, in the human case, in human
brains (but see the use of Clarion for third-order formulae in Bringsjord, Licato,
& Bringsjord, 2016). The distinguishing new feature of L 3 is that it permits,
and renders precise, the ascription of relations/properties to relations/properties;
this is not permitted in L 2. This feature can be rendered concrete with help
from vehicular scenario #2, quickly, as follows. First, simply note that gray is a
color; hence we can sensibly write

C Gð Þ
to represent that fact. Next, to express

(7n) There is at least one color property (relation) that holds of every vehicle
north of every bus.

N

S

W E
v19

V7

Figure 5.4 Vehicular scenario #2. Observe that in this scenario there is a
relation (property)X which every vehicle north of a bus has. E.g., a witness for
such an X could in this scenario be the relation “Gray.”

13 That there is, and that plenty of humans have little trouble understanding these higher levels,
suggests that the first-versus-second level focus in the aforecited Kemp (2009) cannot be the
centerpoint of the language of thought.
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the following formula of L 3 does the trick:

(7l) 8x 8y B yð Þ ! N x; yð Þð Þð Þ ! ∃X X xð Þ ^ C Xð Þð Þ½ �

5.4.3 Quantification and the Infinite

As is well-known, human-level cognition routinely involves infinite objects,
structures, and systems. This is perhaps most clearly seen when such cognition
is engaged in the learning and practice of mathematics, and formal logic itself.
All readers will for example recall that even basic high-school geometry invokes
at its very outset infinite sets and structures. As to such sets, we have N and R,
both introduced previously, these being two specimens that every high-school
graduate needs to demonstrate considerable understanding of. And as to struc-
tures based upon these two infinite sets, readers will remember as well that for
instance two-dimensional Euclidean geometry is based upon the set of all pairs
of real numbers. Within this context, it turns out that cognition associated with
even some elementary quantification in L 1 instantly and surprisingly provides
an opportunity to zero in on cognition that is compelled to range over infinite
scenarios; and an excellent way to acquire deeper understanding of LCCM and
its resources is to reflect upon why such scenarios are forced to enter the scene.
Notice that so far vehicular scenarios have been decidedly finite in size.
In order to reveal the quantification in question, consider the following three

straightforward natural-language sentences pertaining to vehicles:14

(8n) No vehicle honks at itself.
(9n) If x honks at y and y honks at z, then x honks at z.
(10n) For every vehicle x, there’s a vehicle y x honks at.

This trio is quickly represented, respectively, by the following three extremely
simple formulae in L 1:

(8l) 8x¬H x, xð Þ
(9l) 8x8y8z H x; yð Þ ^H y; zð Þð Þ ! H x; zð Þ½ �
(10l) 8x∃yH x, yð Þ

Now here is a question: Can a human understand that (8n)–(10n), despite their
syntactic simplicity, cannot possibly be rendered true by a vehicular scenario
that is finite in size? The reader can answer this question by attempting to build
a scenario that does in fact do the trick. A sample try is enlightening. For
example, consider the vehicular scenario shown in Figure 5.5; for the moment,
ignore the use made there repeatedly of the ellipsis. The reader should be able to
see that the scenario in fact does not render (8l)–(10l) true, and should be able to
see why. In order to construct a vehicular scenario that works, the reader will
need to understand that an infinite progression of vehicles will need to be used,
with an infinite number of honks. It is not difficult to see that the cognition that

14 The discussion here is guided and inspired by a clever example given by Kleene (1967, p. 292).
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discovers and writes down such an infinite scenario can itself be modeled using
the resources of LCCM.

5.4.4 Quantification as the Heart of the Formal Sciences: Arithmetic
and Reverse Mathematics

It is important to share herein that formal logic is the basis for all of human-
known mathematics, and that given this, it seems rather likely that if mathemat-
ical cognition of the sort that produced/produces mathematics itself (as archived
in the form of proved theorems passed from generation to generation) is to
eventually be accurately modeled, LCCM will be the key approach to be
employed. But the specific, remarkable, and relevant point to quickly make
here is that it is quantification that is the bedrock of mathematics. It is the
bedrock because mathematics flows from axiom systems whose power and
reach are primarily determined by the modulated use of quantification.15 To
see this, we turn to arithmetic, and to the axiom system known as ‘Peano
Arithmetic’ (PA), mentioned above but now to be seen in some detail. PA
consists of the following six axioms, plus one axiom schema (which can be
instantiated in an infinite number of ways). Here, the function symbol s denotes
the function that, when applied to a natural number n 2 N, yields its successor
(so e.g. s 23ð Þ ¼ 24). Multiplication and addition are symbolized as normal.

N

E

…

…

…

…

…

⋮⋮⋮⋮⋮

…
…
…
…

Endless Supply 
of Vehicles

Figure 5.5 A “failing” vehicular scenario. The scenario here fails to model the
three rather simple quantified formulas specified in the body of the present
chapter. The sedulous reader should ascertain why this failure occurs.

15 The exact same thing holds for computer science, since e.g. it is layered quantification that
defines the hierarchical hardness of computational problems. For instance, both the Arithmetic
Hierarchy of increasingly hard computational problems ranging from those a Turing machine
can solve and proceeding upward from there (Davis et al., 1994), as well as the Polynomial
Hierarchy that gives us the time- and space-wise complexity of Turing-solvable computational
problems (Arora & Barak, 2009), are based on modulated, layered quantification.
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Axiom 1 8x 0 6¼ s xð Þð Þ
Axiom 2 8x8y s xð Þ ¼ s yð Þ ! x ¼ yð Þ
Axiom 3 8x þ x; 0ð Þ ¼ xð Þ
Axiom 4 8x8y þ x; s yð Þð Þ ¼ s þ x; yð Þð Þð Þ
Axiom 5 8x � x; 0ð Þ ¼ 0ð Þ
Axiom 6 8x8y � x; s yð Þð Þ ¼ þ � x; yð Þ; xð Þð Þ
Induction Schema Every formula that results from a suitable instance of the
following schema, produced by instantiating ϕ to a formula:

ϕ 0ð Þ ^ 8x ϕ xð Þ ! ϕ s xð Þð Þð � ! 8xϕ xð Þ½
PA, as can be readily seen once one understands basic quantification, is stun-
ningly simple – so much so that some of the axioms (expressed in natural
language) are even taught in elementary school (where e.g. schoolchildren learn
that multiplying any natural number by zero returns zero: Axiom 5). Yet, as
simple as it may seem, PA is so deep and rich that it cannot be proved consistent
by standard, finitary means (this is Gödel’s Second Incompleteness Theorem,
essentially), and once some of the quantification in PA is allowed to move to the
second-order case (recall the brief tutorial above, in Section 5.4.2), one arrives
at the basis for much of all of mathematics. This is something the field of reverse
mathematics is based upon, and continues to trace out the consequence arising
therefrom. Reverse mathematics is the field devoted to ascertaining what state-
ments in extensional logics pulled from the universe U suffice to deduce large,
particular parts of mathematics. Those wishing to know more about reverse
mathematics and the starring role of quantification in this field can consult
Simpson (2010).

5.5 Defeasible/Nonmonotonic Reasoning

Deductive reasoning of the sort visited above, in connection with
both arithmetic and the vehicular microworld, is monotonic. To put this
more precisely, to say that if a formula ϕ in some logic can be deduced from
some set Φ of formulae (written Φ‘Iϕ, where the subscript I gets assigned to
some particular set of inference schemata for precise deductive reasoning),
then for any formula ψ �2 Φ, it remains true that Φ [ ψf g‘Iϕ. In other
words, when the reasoning in question is deductive in nature, new know-
ledge never invalidates prior reasoning. More formally, the closure of Φ
under standard deduction (i.e., the set of all formulae that can be deduced
from Φ via I), denoted by Φ‘

I , is guaranteed to be a subset of Φ [ Ψð Þ‘I , for
all sets of formulas Ψ. Inductive logics within the universe U do not work
this way, and that’s a welcome fact, since much of real life does not
conform to monotonicity, at least when it comes to the cognition of
humans; this is easy to see:
Suppose – and here is the first reference herein to the domain of residential

education – that at present Professor Jones knows that his house is still standing
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as he sits in it, preparing to teach his class a bit later at his university. If, later in
the day, while away from his home and teaching at the university, the Professor
learns (along with his students), by notifications pushed to smartphones, that a
vicious tornado is passing over the town in which his house is located, he has
new information that probably leads him to reduce his confidence in the near
future as to whether or not his house still stands. Or to take a different example,
one much-used in AI (e.g., see the extended treatment in Genesereth & Nilsson,
1987), if our Professor Jones knows that Tweety is a bird, he will probably
deduce (or at least be tempted to do so) that Tweety can fly, on the strength of a
general principle saying that birds can fly. But if Jones learns that Tweety is a
penguin, the situation must be revised: that Tweety can fly should now not be
among the propositions that Jones believes. Nonmonotonic reasoning is the
form of reasoning designed to model, formally, this kind of defeasible inference;
and some logics within U , all of them nondeductive ¼ inductive in nature, have
been devised to specify such reasoning. In the hands of logic-based cognitive
modeling, such logics, when computationally implemented and run, can then
simulate the kind of human/human-level reasoning just seen in the mind of
Professor Jones.

There are many different logic-based approaches that have been designed to
allow such modeling and simulation, and each approach is associated with a
group of logics. Such approaches include: use of default logics (Reiter, 1980),
circumscription (McCarthy, 1980), and the approach probably most cognitively
plausible: argument-based defeasible reasoning (e.g. see for an overview, and an
exemplar of the approach, respectively Pollock 1992, Prakken & Vreeswijk,
2001).16 An excellent survey, one spanning AI, philosophy, and computational
cognitive science, the three fields that work in defeasible/nonmonotonic
reasoning spans, is also provided in the Stanford Encyclopedia of
Philosophy.17 Because argument-based defeasible reasoning seems to accord
best with what humans actually do as they adjust their knowledge through time
(e.g., Professor Jones and his students, if queried on the spot immediately after
the notification of the tornado’s path as to whether Jones’ house still stands, will
be able to provide arguments for why their confidence that it does has just
declined), this chapter emphasizes the apparent ability of argument-based

16 From a purely formal perspective, the simplest way to achieve nonmonotonicity is to use the so-
called closed world assumption, according to which, given a set Φ of initially believed declarative
statements, what an agent believes after applying the closed world assumption (CWA) to the set
is not only what can be deduced from Φ, but also the negation of every formula that cannot be
deduced. It is easy to verify that it does not always hold that CWA(Φ) � CWA( Φ [ Ψ ), for all
sets Ψ. I.e., monotonicity does not hold. Unfortunately, while this is a rapid route to nonmo-
notonicity, CWA is not cognitively plausible, at all. To see this, consider the parabular Professor
Jones and suppose without loss of generality that he is not a professional logician or mathemat-
ician, and hence cannot deduce, say, Gödel’s famous first incompleteness theorem (= G1). By
CWA, Jones should believe that G1 is false!

17 Available from: http://plato.stanford.edu/entries/logic-aihttp://plato.stanford.edu/entries/logic-
ai [last accessed June 10, 2022].
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defeasible reasoning to capture human/human-level defeasible reasoning. It is in
fact a rather nice thing about humans and defeasible reasoning that they are
often able to explain, and sometimes show, by articulating arguments, why their
beliefs have changed through time as new information is known or at least
believed, where that new information leads to the defeat of reasoning that they
earlier affirmed.
Now, returning to the tornado example, what is the argument that Professor

Jones might give to support his belief that his house still stands, while he is in
his home? There are many possibilities, one respectable one can be labeled
“Argument 1,” where the indirect indexical refers of course to Jones:

(11) I perceive that my house is still standing.
(12) If I perceive ϕ, ϕ holds.

∴ (13) My house is still standing.

The second premise is a principle that seems a bit risky, perhaps. No doubt
there should be some caveats included within it: that when the perception
in question occurs, Jones is not under the influence of drugs, not insane,
and so on. But to ease exposition, such clauses are left aside. So, on the
strength of this argument, let us assume that Jones’ knowledge includes
(13), at time t1.
Later on, as has been said, the Professor finds himself in class at his univer-

sity, away from home. Jones and his students quickly consult smartphone
weather apps and learn that the National Weather Service reports this tornado
to have touched down somewhere in the town T in which Jones’ house is
located, and that major damage resulted; in particular, some houses were
tragically leveled. At this point (t2, assume), if Jones were pressed to articulate
his current position on (13), and his reasoning for that position, and he had
sufficient time and patience to comply, he would likely offer something like this
(Argument 2):

(14) A tornado has just (i.e., at some time between t1 and t2) touched down in
T, and destroyed some houses there.

(15) My house is located in T.
(16) I have no particular evidence that my house was not struck to smithereens

by a tornado that recently passed through the town in which my house
is located.

(17) If a tornado has just destroyed some houses in (arbitrary) town T 0, and
house h is located in T 0, and one has no particular evidence that h is not
among the houses destroyed by the tornado, then one ought not to believe
that h was not destroyed.

∴ (18) I ought not to believe that my house is still standing. (I.e., I ought not to
believe (13).)

Assuming that Jones meets all of his “epistemic obligations” (in other words,
assuming that he’s rational), he will not believe (13) at t2. (Actually, in the
following this is dealt with using more plausible modeling; it is more reasonable
to imagine that Jones does still believe (13), but that the strength of his belief has
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declined.) Therefore, at this time, (13) will no longer be among the things he
knows. (If a cognitive system s does not believe ϕ, it follows immediately that s
does not know ϕ, in the sense of “know” with which we are concerned.) The
nonmonotonicity here should be clear.

The challenge to LCCM is to devise formalisms and mechanisms that
model this kind of mental activity through time. The argument-based
approach to nonmonotonic reasoning does this. As to how, the main move
is to allow one argument to invalidate another (and one argument to invali-
date an argument that invalidates an argument, which revives the original,
etc.), and to keep a running tab on which propositions should be believed at
any particular time. Argument 2 above rather obviously invalidates
Argument 1; this is the situation at t2. Should Jones then learn that only
two houses in town T were leveled, and that they are both located on a street
other than his own, Argument 2 would be defeated by a third argument,
because this third argument would overthrow (16). With Argument 2
defeated, (13) would be reinstated, and back in what Jones knows. Clearly,
this ebb and flow in argument-versus-argument activity is provably impos-
sible in straight deductive reasoning.

5.5.1 An Argument-Adjudication System for Defeasible Reasoning

In order to adjudicate competing arguments, such as those in the tornado
example of Section 5.5, a system for quantifying the level of subjective uncer-
tainty of declarative statements is needed. To obtain this, let us invoke a system
based upon strength factors first presented in Govindarajulu and Bringsjord
(2017). This work was in turn directly guided by a simpler and smaller system
of strength-indexed belief invented over half a century ago by Chisholm
(1966).18 While recently specification of a more robust formal inductive logic
(IDCEC; note that it is located within U , as Figure 5.3 indicates) for such
processing, accompanied by an implementation and demonstration, had been
achieved (Bringsjord, Govindarajulu, & Giancola, 2021), the survey nature of
the present chapter means that a “higher altitude” level of detail is prudent, and
in what now follows the chapter stays at that altitude. For more details, the
reader can consult the lengthy technical survey provided by Prakken &
Vreeswijk (2001).

18 There are formal logics that subsume probability theory, and theoretically they could be
deployed to model the tornado scenario (e.g. there is uncertain first-order logic; see Núñez,
Murthi, Premaratne, Bueno, & Scheutz, 2018). However, it does not seem cognitively plausible
that Professor Jones (consciously) associates real numbers between 0 and 1 with the proposition
that his house is still standing. One could also explore using so-called “fuzzy logic,” which
emerged out of fuzzy sets first introduced by Zadeh (1965). But here one must be very careful.
Most of the things called “fuzzy logics” are not in fact logics at all, and are not in the universe
U . The advent of bona fide formal fuzzy logics, replete with formal languages, inferential
machinery, and so on, came by way of the groundbreaking Hájek (1998).
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The strength factors to now be employed consist of thirteen values (see
Figure 5.6) that can be used to annotate statements expressing belief or know-
ledge. For example, one can formalize the sentence “Jones believes it is more
likely than not at time t0 that his house is still standing” by the formula
B jones, t0, Standing homeð Þð Þ.
Note at this point that the introduction of uncertainty measures already

forces a move beyond deductive reasoning into inductive reasoning and logics,
as with such measures one can no longer be producing proofs, but instead,
arguments. While a proof guarantees the truth of the formula it proves (as long
as the axioms/premises are true), an argument only provides some level of
strength that its conclusion is true. Hence, in moving from deductive reasoning
to inductive reasoning, such arguments are able to be expressed. The reader
may note that in Figure 5.3 inductive logics are denoted. For a recent introduc-
tion to inductive logic as an argument-based, as opposed to a proof-based,
affair, the reader can consult Johnson (2016).
Two intensional logics will be brought to bear, both suitable for the type of

modeling we need in the tornado scenario. Because the distinguishing purpose
of these logics and others like them is the modeling of human-level cognitive
states (such as believing and knowing a proposition at a time), and human-level
reasoning, some have long referred to these logics as cognitive calculi, and this
suit is followed here. The first cognitive calculus used here is for purely deduct-
ive reasoning; the second supports inductive reasoning. For the encapsulated
formal specification of these cognitive calculi, see Bringsjord et al. (2021). The
reader can find these two calculi in the universe U pictured in Figure 5.3; they
are named therein as DCEC� and IDCEC; the first is a deductive intensional
logic, the second an inductive intensional logic.

Strength-Factor Continuum

Certain
Evident

Highly Likely
Likely

Counterbalanced

Unlikely

Overwhelmingly Unlikely/Beyond Reasonable Belief

Evidently False
Certainly False

Epistemically Positive

Epistemically Negative

More Likely Than Not

Overwhelmingly Likely/Beyond Reasonable Doubt

More Unlikely Than Not

Highly Unlikely

(4)

(3)

(2)

(1)

(0)

(-1)

(-2)

(-3)

(-4)

(5)

(6)

(-5)

(-6)

Epistemically Positive

Epistemically Negative

Figure 5.6 The current strength factor continuum. The center value,
counterbalanced, indicates that there is no evidence for or against belief in the
subformula. Increasing positive and negative values indicate increasing and
decreasing likelihood of truth in the subformula, respectively.
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Note that when arguments are referred to in the present chapter, it is meant
more specifically formal arguments. Hence, like in any respectable proof, each
step must be sanctioned by the deployment of an inference schema.19

When one has multiple such arguments, each of which concludes with the
affirmation or rejection of belief in some subformula, the adjudication process is
simple: select the argument whose conclusion has the highest strength. This
method will be employed in Section 5.5.2 to formalize and rigorously model the
tornado example first given in Section 5.5. More complex adjudication methods
for more complex sets of arguments (e.g., where the adjudication process may
need to select out subarguments from multiple arguments in order to construct
the winning argument and corresponding final conclusion) are the focus of
active research outside the scope of the present chapter.

5.5.2 The Tornado Conquered

Consider again the following scenario, now made a bit more determinate.
Professor Jones left his home (at time thome) to go to his university, and while
there (at time twork) he learns the disturbing news and discovers that a tornado
has passed through the town (at time ttornado) in which his house is located
(town). Again, but in search of more precision, what should the Professor now
believe with regard to whether or not his house is still standing?

This problem can be posed in the argument-adjudication framework
employed here for defeasible/nonmonotonic reasoning in order to evaluate
the strength of each argument and thereby allow Jones to arrive at a final
belief-fixation decision. First, consider an argument Jones might plausibly use
to justify his belief that his house is standing at the time that he is about to
leave for work, thome, an argument that is now more nuanced and plausible
than discussed previously:

(19) P jones, thome, Standing homeð Þð Þ Jones perceived that his home was
standing when he left for work.

∴ (20) B5 jones, thome, Standing homeð Þð Þ Assuming Jones was not dreaming or
hallucinating, perception generates
evident beliefs. Therefore, Jones
believed it was evident that his home
was still standing at that time.

∴ (21) O jones,thome,ð
B5 jones, thome, Standing homeð Þð ÞÞ

Hence Jones ought to believe it is
evident at time thome that his house is
still standing.

Argument 1: Jones determines he ought to believe it is evident that his house is
still standing at time thome.

Here the obligation operator is of an intellectual variety; there is no reference
here to anything like moral obligations and deontic operators that are at the heart

19 For the relevant lists of such inference schemata, which are outside the scope of this overview
chapter, the reader is directed to Bringsjord et al. (2021).

Logic-Based Modeling of Cognition 193

https://doi.org/10.1017/9781108755610.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.008


of deontic logic, which is devoted to formalizing human moral reasoning. That
one ought to believe ϕ here means that there is a rational argument compelling
one to believe ϕ as a rational agent. This basic notion of intellectual obligation as
part and parcel of an abstract conception of rationality is at the heart of the logic
and mathematics of inductive logic (Paris & Vencovská, 2015).
Next, consider another sequence of reasoning Professor Jones might go

through while driving to work (at time tdriving). Since he is no longer perceiv-
ing his home, his belief cannot be at the level of evident. However, his
previous belief can persist at the next level down, overwhelmingly likely, so
long as Jones has not been made aware of any information to the contrary
since then.

(22) ¬P jones, tdriving, Standing homeð Þ� �
Jones no longer perceives
his home.

∴ (23) ¬B5 jones, tdriving, Standing homeð Þ� �
Hence, Jones no longer believes it is
evident that his home is
still standing.

∴ (24) O jones,tdriving,
�

B4 jones, tdriving, Standing homeð Þ� �Þ
Assuming Jones’ memory is
reasonably reliable, and since he has
no information to the contrary, he
ought to believe it is overwhelmingly
likely at time tdriving that his house is
still standing.

Argument 2: Jones retracts his previous belief that he ought to believe it is
evident that his house is still standing at time tdriving, and replaces it with a belief
at the level of overwhelmingly likely.
Finally, at twork, Jones becomes aware of the tornado which just passed

through his town. Therefore he is rationally obligated to retract his previous
belief, and replace it with a weaker belief that his house is still standing:

(25) K jones; twork;LocatedIn home; townð Þð Þ Jones knows his home is located
in his town.

(26) S news; jones; twork;ð
TornadoPassedThrough town; ttornadoð ÞÞ

Jones heard from the news
that a tornado passed through
the town where his home
is located.

(27) K jones,twork,8h a tð
TornadoPassedThrough a, tð Þð
^ LocatedIn h, að ÞÞ
! e¬Standing hð ÞÞ

Jones knows that if a tornado
passes through an area where a
home is located, it is possible
that that home is no
longer standing.

∴ (28) K jones,twork,e¬Standing homeð Þð Hence Jones knows it is possible
that his home is no
longer standing.

∴ (29) ¬B4 jones, twork, Standing homeð Þð Þ Hence Jones no longer believes it
is overwhelmingly likely that his
home is still standing.
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∴ (30) O jones,twork,ð
B2 jones, twork, Standing homeð Þð ÞÞ

However, since Jones has only
evidence indicating a possibility that
his home has been destroyed, he
ought to believe it is likely at time
twork that his house is still standing.

Argument 3: Jones determines he ought to believe it is likely that his house is
still standing at time twork.

Discussion of the tornado case study is now complete. At this point, the
chapter turns from this informal, illustrative study to the suppression task,
which has been explored by way of experiments reported in the cognitive-
science literature.

5.5.3 The Suppression Task

The task in question is reported in Byrne (1989). Three groups of subjects were
asked to select which proposition from among a trio of them “follows”20 from a
set of suppositions. Each group of subjects was given a different set of suppos-
itions. Group 1 (¼ G1) was given this pair of suppositions:

(s1) If she has an essay to finish, then she will study late in the library.
(s2) She has an essay to finish.

This group’s options to select from were the following three:

(o1) She will study late in the library.
(o2) She will not study late in the library.
(o3) She may or may not study late in the library.

Among G1, 96 percent selected (o1). G2 was given suppositions consisting of
(s1) and (s2), plus the following supposition:

(s3) If she has a textbook to read, then she will study late in the library.

In G2, again 96 percent of its members selected option (o1). G3 received (s1)
and (s2), plus this supposition:

(s4) If the library stays open, then she will study late in the library.

This time things turned out quite differently: only 38 percent of G3
selected (o1).

20 Unfortunately, “follows” is a metaphor here – but it is the term Byrne (1989) used. No firm
conception of what this term means is available. From the standpoint of formal logic, what
should have been said to subjects is something like “must necessarily be deducible,” because (i)
the hallmark of deduction since first systematically investigated by Aristotle has been appre-
hended as the fact that when deduction from givens/premises/suppositions to (a) conclusion(s) is
valid, the former necessarily entail the latter, and because (ii) plenty of conclusions are thought
by rational agents operating rationally to follow from givens/premises/suppositions that cer-
tainly do not necessitate these conclusions (e.g., consider a case in which a conclusion follows
from premises by statistical syllogism). However, this being said, for now, the unfortunate use of
“follows” by Byrne (1989) must be left aside.
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From the perspective of standard zero-order logic ¼ L 0 2 U ,21 which can
accordingly be assumed here to have any standard proof theory, such as is used
in early classical mathematics (e.g. high-school mathematics in every technolo-
gized society/nation), this result is interesting, since, to begin, in L 0 we might
represent the declarative sentences (s1), (s2), (s3), and (s4) as follows, where a
represents the female agent in question:

(s1*) ToFinish að Þ ! LateLibrary að Þ
(s2*) ToFinish að Þ
(s3*) ToRead að Þ ! LateLibrary að Þ
(s4*) StaysOpen ! LateLibrary að Þ
Next, following suit, the options would be represented thus:

(o1*) LateLibrary að Þ
(o2*) ¬LateLibrary að Þ
(o3*) ¬LateLibrary að Þ ∨ LateLibrary að Þ
With these representations, easy-to-find proofs in L 0 certify that

s1�ð Þ, s2�ð Þ, s3�ð Þf g ‘ o1�ð Þ: þð Þ
However, there is no available proof in this logic of option two from the first
three suppositions; that is:

s1�ð Þ, s2�ð Þ, s3�ð Þf g �‘ o2�ð Þ: �ð Þ

Option (o3�) is a theorem in this logic, so it’s provable from {(s1�), (s2�), (s3�)}.22

Because we are dealing here with standard deductive reasoning, which, as has
been noted, is non-defeasible/monotonic, adding one or both of (s3�), (s4�) to
{(s1�), (s2�), (s3�)} does not change provability/unprovability; that is, neither (þ)
nor (–) change. This is why group G3’s behavior is odd and interesting from the
point of view ofL 0, and hence from the point of view of the cognitive science of
reasoning. Clearly, the formal modeling just given via L 0 does not match what
most of the subjects in this group were thinking when they responded.

5.5.3.1 Stenning & van Lambalgen’s Extensional Treatment of the Suppression Task

Byrne, in her presentation of the suppression task (Byrne, 1989), argues that the
findings of her study imply that people do not strictly apply valid methods of
logical deduction when reasoning. Therefore, so her diagnosis goes, logic is not
sufficient for modeling human reasoning. She states that “ in order to explain
how people reason, we need to explain how premises of the same apparent
logical form can be interpreted in quite different ways” (Byrne, 1989).

21 Obtained by augmenting the formal language of the propositional calculus with provision for
relation and function symbols, and the identity symbol ¼; but no quantifiers are allowed. Like
the propositional calculus,L 0 is Turing-decidable; not so any n-order logicL n in U , where n is
a positive integer.

22 As a matter of fact it is not appropriate to represent (o3) as having the form ϕ∨¬ϕ, but this issue
is left aside here.
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Stenning and van Lambalgen (S&V) (2008) formalize the concept of what
can be called “premise interpretation.”23 They claim that humans, when pre-
sented with a set of premises and possible conclusions, first reason toward some
rational interpretation of the premises, then from that interpretation to some
conclusion. They formalize this process in a Horn-style24 propositional logic,
supplemented with a formalization of the Closed World Assumption (CWA).25

Given this context, when presented with a set of assumptions and a conclusion
to prove, S&V follow this three-step algorithm:

1. Reason to an interpretation.
2. Apply nonmonotonic closed-world reasoning (i.e., apply CWA) to the inter-

pretation produced by (1).
3. Reason from the result of what step (2) produces.

Let us now consider the application of these three steps to the first experiment in
Byrne’s (1989) study, but first we need to have handy here again the stimuli
presented to subjects. In her first experiment, subjects are given the two
suppositions

(s1) If she has an essay to write, she will study late in the library.
(s2) She has an essay to write.

and are then asked to choose from the following set of conclusions which one
follows from the premises.26

(o1) She will study late in the library.
(o2) She will not study late in the library.
(o3) She may or may not study late in the library.

Now comes the application of the three-step algorithm.

23 S&V are not the only LCCMers who have tried their hand at modeling ST: Dietz et al.
previously took two distinct logic-based approaches to modeling it. In their first approach, they
used a three-valued Łukasiewicz logic which allows the expression of a third truth-value beyond
true and false: unknown (Dietz, Hölldobler, & Ragni, 2012; Dietz, Hölldobler, & Wernhard,
2014). More recently, they have taken an approach which aims to model the suppression task in
a more cognitively plausible way (Saldanha & Kakas, 2020). Their framework, cognitive
argumentation, formalizes methods of reasoning used by humans (which may or may not be
logically sound) as cognitive principles. For example, their “Maxim of Quality” expresses that we
(humans) typically assume statements we are told are true if we do not have a reason to believe
otherwise (e.g. that the speaker may be lying or incompetent). In the context of the suppression
task, the Maxim of Quality dictates that the subjects will assume that all of the statements made
by the experimenters are true (e.g. “She has an essay to finish”).

24 Horn-style logics have formal languages permitting conditionals only of a highly restricted sort;
details are left aside. The programming language Prolog, mentioned above, is for example based
upon a Horn-style fragment of first-order logic ¼ L 1. Prolog programs are frequently called
“logic programs,” and S&V call a key part of their modeling of the suppression task “logic
programs.”

25 Recall that, in a word, CWA is the assumption that everything about a domain is known.
Formally, as explained above, any proposition which is not known to be true (or not provable) is
assumed to be false.

26 Note again that Byrne uses the informal term “follows” and not one necessitating formal
entailment like “logically deduces.”
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5.5.3.1.1 The Algorithm Applied
Step 1: Reasoning to an Interpretation. The first part of this step is appending the
antecedent of every conditional with “¬ab,” where this addition, intuitively,
means “no abnormalities.” The idea here is that people interpret the conditional
p ! q as p ^ ¬abð Þ ! q. That is, p implies q, if no external factors of which the
subject is currently unaware (i.e. the abnormalities represented by ab) subvert
the implication.
The last part of this step is to collect the assumptions as modified above into a

set which S&V refer to as the logic program corresponding to the assumptions.
Given the foregoing, the output of Step 1 for Experiment 1 would be the set:

EssayToWrite;EssayToWrite ^ ¬ab! StudyLateInLibraryf g (5.1)

Step 2: Applying Nonmonotonic Closed-World Reasoning to the Interpretation.
This step also consists of two sub-parts. First, for all atoms q in the logic
program produced in Step 1, if there is no antecedent p such that p ! q, the
conditional ⊥ ! q is added to the logic program. Note that in S&V’s logic, the
meaning of an atom p in the assumption base is really Τ ! p; but for clarity,
they typically just write p; the same is done here. Therefore, in the example
above, the only atom for which this step applies is ab; hence the conditional
⊥ ! ab is added to the logic program:

EssayToWrite;EssayToWrite^¬ab! StudyLateInLibrary;⊥! abf g
(5.2)

The second part of Step 2 is what S&V refer to as constructing the completion of
the logic program. This involves first joining all implications ϕi ! q (i.e. those
implications whose consequent is q) into a single implication ∨iϕi ! q.27

Second, all conditionals are converted to biconditionals. Therefore the final
logic program (also, the interpretation of the premises) is:

EssayToWrite;EssayToWrite^¬ab$ StudyLateInLibrary;⊥$ abf g
(5.3)

Step 3: Reasoning from the Result of Step 2. The third and final step is fairly
straightforward: the subject reasons from the final set of premises using the
inference rules of standard propositional logic. Notice that, because ⊥ $ ab, we
have Τ $ ¬ab; hence the logic program above can be simplified to:

EssayToWrite;EssayToWrite $ StudyLateInLibraryf g (5.4)

Finally, it is obvious that from these premises one can deduce
StudyLateInLibrary. Note that while the conclusion was obvious in this case,
this method of reasoning to and from an interpretation matches the reasoning
process of the majority of people in all of Byrne’s experiments. Next follows a
walk-through of S&V’s algorithm for a slightly more complicated (and more
interesting) case, in which an additional premise is introduced.

27 There are no instances of this in this example, but there will be in the next.

198 selmer bringsjord, michael giancola, and naveen sundar govindarajulu

https://doi.org/10.1017/9781108755610.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.008


5.5.3.1.2 Applying the Algorithm to the Additional-Premise Case
In the second experiment, recall, Byrne gave her subjects the following set of
premises:

If she has an essay to write, she will study late in the library.
If the library stays open, she will study late in the library.
She has an essay to write.

This additional premise is modeled using the same form as the original two
premises:

LibraryOpen ^ ¬ab0 ! StudyLateInLibrary (5.5)

However, in this case, S&V also (naturally) add the following premise:

¬LibraryOpen ! ab (5.6)

This premise is intended to model the belief of those who believed that modus
ponens applied in Experiment 1, but not in Experiment 2. (In other words, the
introduction of the additional premise suppressed their belief.) More specific-
ally, this conditional states that if the library is not open, then it would be
abnormal for her to go to study late in the library. The symmetric condition
¬EssayToWrite ! ab0 can also be added; that is, if she does not have an essay
to write, it would be abnormal for her to study late in the library.28

Now, performing Step 1 will produce the program:

EssayToWrite ^ ¬ab ! StudyLateInLibrary

LibraryOpen ^ ¬ab0 ! StudyLateInLibrary

EssayToWrite

¬LibraryOpen ! ab

¬EssayToWrite ! ab0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(5.7)

Next, applying nonmonotonic closed-world reasoning yields:

EssayToWrite^¬abð Þ∨ LibraryOpen^¬ab0ð Þ$StudyLateInLibrary

EssayToWrite

⊥∨¬LibraryOpenð Þ$ab

⊥∨¬EssayToWriteð Þ$ab0

8>>><
>>>:

9>>>=
>>>;

(5.8)

And next, using standard logical deduction for the propositional calculus, we
can simplify this set to:

EssayToWrite; EssayToWrite^LibraryOpenð Þ$StudyLateInLibraryf g
(5.9)

28 This is not necessary but will allow for a simplification of the final result.
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Finally, the subject reasons from this interpretation of the premises. Note that
the second statement says “She will study late in the library if and only if she has
an essay to write and the library stays open.” Since the premise set does not
include the proposition LibraryOpen, one cannot deduce StudyLateInLibrary.
This result matches the common human intuition29 that the additional premise
hinders the successful application of modus ponens to the original premises.

5.5.3.2 Modeling the Suppression with Intensional Logic

It is now quickly demonstrated that human reasoning in the suppression task can
be easily and efficiently modeled in a way simpler than that employed by S&V. In
this alternate route, (a) timepoints implicit in the narrative are taken seriously;
and (b) use is made of these timepoints in connection with a simple intensional
logic that includes (i) a way to represent and reason with what is known and what
is believed, and (ii) includes an operator for what is possibly the case.30

This first step in carrying out these two steps is to simply announce a simple
set of symbols used to enable the formulae that express what is presented to
subjects in the suppression task. This is done by way of the following table,
which simply presents the referent in each case intuitively, so that no technical
specifications are needed.
Given this more expressive vocabulary, one extended into the realm of

intensional logics, here is how the key propositions from above in the suppres-
sion task are expressed in the intensional approach:

∃e ToFinish s; t1; eð Þ ! ∃t > t1 NearFuture t; t1ð Þ ^ LateLibrary s; tð Þð Þ
(s1)

∃e ToFinish s, t1, eð Þ (s2)

∃t > t1 NearFuture t; t1ð Þ ^ LateLibrary s; tð Þð Þ (o1)

¬ ∃t > t1 NearFuture t; t1ð Þ ^ LateLibrary s; tð Þð Þð ÞÞ (o2)

e o1ð Þ ^ e¬ o1ð Þ∨eO2ð Þ (o3)

∃b ToRead s; t1; bð Þ ! ∃t > t1 NearFuture t; t1ð Þ ^ LateLibrary s; tð Þð Þ
(s3)

Open ℓ; t1ð Þ ^ 8t > t1 NearFuture t, t1ð Þ ! Open ℓ, tð Þð Þ ^ ∃e ToFinish s, t1, eð Þð �½
(s4)

! ∃t > t1 NearFuture t; t1ð Þ ^ LateLibrary s; tð Þð Þ

29 I.e., the intuition of the majority of the people in Byrne’s study.
30 Thus, use is made of basic constructs from epistemic logic (Hendricks & Symons, 2006), which

formalizes attitudes like believes and knows; and also basic constructs from alethic modal logic
(Konyndyk, 1986), which formalizes concepts like possibly and necessarily. Epistemic logic is
intensional logics within the universe U .
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And here is an economical summation of the deductive “facts of the case”
under the more expressive rubric afforded by Table 5.1, where Γ ‘ ϕ, as above,
is the ubiquitous way in formal logic, AI, and computer science of saying that ϕ
can be deduced from a set Γ of formulae (and �‘ means “not deducible”):

• s1ð Þ, s2ð Þf g ‘ (o1)
• s1ð Þ, s2ð Þf g �‘ (o2)
• s1ð Þ, s2ð Þf g �‘ (o3)
• s1ð Þ, s2ð Þ, s3ð Þf g ‘ (o1)
• s1ð Þ, s2ð Þ, s3ð Þf g �‘ (o2)
• s1ð Þ, s2ð Þ, s3ð Þf g �‘ (o3)

Now what is the intensional modeling that matches what occurs when subjects
are run in the suppression task? Such modeling, as said, takes time, possibility,
and epistemic attitudes (belief and knowledge) seriously. Specifically, the heart
of the matter is a simple inference schema that formalizes the principle that if an
agent believes some set Φ of propositions, and knows that from this set it can be
deduced specifically that proposition ϕ holds, then the agent will believe ϕ as
well. Here is the inference schema, S, expressed in a manner used in the
computational simulations in question:

BaΦ, KaΦ ‘ ϕ
Baϕ

S

And now, getting down to inferential brass tacks for computational simulation,
let “a” denote an arbitrary agent in both Group I and Group II in the

Table 5.1 Symbols for intensional modeling and simulation of the suppression task

Symbol Referent

s (object variable) student
e (object variable) essay
b (object variable) book
t,t0, . . . (object variables) timepoints
t1 (constant) the particular, initial timepoint
ℓ (constant) the library
a,b (constants) two particular agents
> (2-place relation) later than
ToFinish s; t; eð Þ (3-place relation) s at t has e to finish
NearFuture t0; tð Þ (2-place relation) t0 is in near future of t
LateLibrary s; tð Þ (2-place relation) s works late in the library at t
Open ℓ; tð Þ (2-place relation) the library is open at t
ToRead s; t; bð Þ (3-place relation) s at t has textbook b to read
e (alethic operator) “possibly”
Bx (epistemic operator) agent x believes that
ToRead s; t; bð Þ (3-place relation) s has at t to read b
Kx (epistemic operator) agent x knows that
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suppression task experiment recounted previously. It is then assumed, at the
particular timepoint t1, that

Ba s1ð Þ, s2ð Þf g;

and in addition that

Ka s1ð Þ, s2ð Þf g ‘ o1ð Þ:

Then, by way of crucial use of *, processing automatically locates a proof
corresponding to the responses of agents in Groups I and II: Ba o1ð Þ . In a
simulation using an automated theorem prover, this result (and the correspond-
ing proof ) was returned in 10�4 seconds.31

But now, what about the “peculiar” subjects in Group III? That is, what
about subjects who clearly reason defeasibly/nonmonotonically, because they
go from believing that (o1) “follows,” to believing, after receiving new infor-
mation, that this proposition no longer does? These are of course the subjects
that motivated the innovation of S&V. But how is the inferential behavior of
these subjects modeled and simulated in the intensional approach? The answer is
perfectly straightforward; it is that, first, Group III subjects obviously know that
when a library is closed (¼ not open) at some time t, no student can work in that
library at t. This underlying principle is in the modeling here expressed thus:

(u) 8s8t ¬Open ℓ; tð Þ ! ¬LateLibrary a, tð Þ½ �

In addition, of course, subjects in Group III know from what they have been
told that

(�) ∃s∃e ToFinish s, t1, eð Þ,

and know as well that at all near-future times relative to t1 the library is
closed;32 that is:

(?) 8t NearFuture t; t1ð Þ ! ¬Open ℓ; tð Þð Þ:
Given the pair of formulae (�) and (?) it follows by elementary deduction inL 1

that ¬ s1ð Þ . Therefore, while it is rationally presumed that Group III subjects –
denoted by b – are (like their counterparts in Groups I and II) such that

31 Two automated reasoners were used to generate these simulation results. The first,
ShadowProver (Govindarajulu, Bringsjord, & Peveler, 2019), uses a novel technique to prove
formulae in a modal logic. It alternates between “shadowing” modal formulae down to first-
order logic and applying modal inference schemata. The second, ShadowAdjudicator
(Giancola, Bringsjord, Govindarajulu, & Varela, 2020), builds upon ShadowProver, providing
the ability to generate arguments (as opposed to proofs) which can be justified using inductive
inference schemata (as opposed to purely deductive inference schemata).

32 Actually, it is necessary here to use the alethic operator e that has been introduced, since what
the subjects in Group III come to know by virtue of the new information given them is that it
might possibly be that the library is closed in the near future.
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Kb s1ð Þ, s2ð Þf g ‘ o1ð Þ,
they no longer believe (s1), and hence the use of schema S is blocked. In
addition, it is reasonably modeled that Group III subjects do believe (s4). But
also

s4ð Þ, s2ð Þf g �‘ o1ð Þ,

and these subjects presumably know this. Hence these subjects cannot possibly
know that s4ð Þ, s2ð Þf g ‘ o1ð Þ , and this too blocks any use of schema S to arrive
at the belief that (s1) holds.33

There is little point in asserting that capturing the suppression task via
intensional logic is superior to the extensional-logic approach taken by S&V.
However, it is very important for the student and scholar of computational
cognitive science to understand that any such ambition as to capture all of
human-level-and-above reasoning and decision-making in computational
formal logic must early on confront modeling-and-simulation challenges that
necessitate use of highly expressive intensional logics from U .

5.6 Evaluating Logic-Based Cognitive Modeling Briefly

Logic-based/logicist computational cognitive modeling, LCCM as it
has been abbreviated, surely seems to be a rather nice fit when the cognition to
be modeled is explicit, rational, and intensely inference-centric. But how accur-
ate and informative is such modeling? And how much reach does such an
approach to cognitive modeling have, in light of the fact that surely plenty of
human-level cognition is neither explicit, nor rational, nor inference-centric?
This is not the venue for polemical positions to be expressed in response to such
questions. But it is surely worth pointing out that “accuracy” of a cognitive
model is itself not exactly the clearest concept in science, and that LCCM
tantalizingly offers the opportunity to itself provide the machinery to render
this concept precise. The relationship of a model M to a targeted phenomenon
P to be modeled, in LCCM, should itself be a relation formalized in some logic
in the universe U . If the relation A stands for “accurately models,” it can then
be declared that what is needed is the completion of the biconditional

†ð Þ A M, Pð Þ $ ?? :

With this completion accomplished, LCCM would provide the very framework
that could be used to assess its own accuracy, because one would be able to
prove that ?? holds in the case at hand, and then reason from right to left on
the biconditional in order to deduceA M, Pð Þ. It is certainly not easy to find any

33 Simulations of these lines of reasoning found by the relevant automated-reasoning technology
are fast; stopwatch reports are left aside so as not to have to delve into rather tricky simultan-
eous use of the alethic operator e in combination with K (knows) and B (believes). Please see
note 32.
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other approach to cognitive modeling that can hold out the promise of such self-
containedness.
As to the reach of LCCM, some mental phenomena do seem, at least at first

glance, to be fundamentally ill-suited to this approach, for instance emotions
and emotional states – and yet such mental phenomena conform remarkably
well to collections of formulae from relatively simple modal (i.e. intensional)
logics in U (Adam, Herzig, & Longin, 2009).
One final point regarding the assessment of LCCM, a point that follows from

the above definition of what it is for logicist computational cognitive modeling
to capture some aspect or part of human-level cognition. The point is simply
this: whether or not some attempt to cognitively model (in the LCCM
approach) some phenomenon succeeds or not can be settled formally, by
proof/disproof. The ultimate strong suit of LCCM is indeed formal verifiability
of capture. The cognitive scientist can know that some phenomenon has been
captured, period, because outright proof is available. Unfortunately, carrying
this out in practice in a wide way would require the formalization of ?? so that
†ð Þ can be employed in the manner described above.

5.7 Conclusion

It should be clear to the reader that formal computational logic is
plausibly up to the challenge of modeling and simulating both quantification-
centric reasoning and defeasible (nonmonotonic) reasoning at the human level
and in the human case, even when this challenge is required to be substantively
based upon arguments of the sort that human agents routinely form as they
adjust their belief and knowledge through time. But for the overarching program
of LCCM, is the ambitious long-term goal of capturing all rational human
cognition in computational logic reasonable? And if it is, what is to be done next?
While the present chapter extends the rather narrow deduction-focused

overview of LCCM given earlier (Bringsjord, 2008) into the important realms
of quantification and dynamic defeasible reasoning in the human sphere, cer-
tainly humans reason and cognize in many additional ways, effectively. These
additional ways range from the familiar and everyday, to the rarefied heights of
cutting-edge formal science. In the former case, prominently, there is reasoning
that makes crucial use of pictorial elements, and hence is reasoning that simply
cannot be captured by the kind of symbolic structures we have hitherto brought
to bear. The universe U depicted in Figure 5.3 does include logics that offer
machinery for representing and reasoning over diagrams and images. For a
simple but relevant example, consider the question as to whether

or
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is more likely to have in front of it and shining upon it a light. Here, the two
things centered just above are not symbols; they are diagrams, and as such
denote not as symbols do, but – to use the apt terminology of Sloman (1971)
and Barwise (1995), respectively – in a manner that is analogical or homo-
morphic. Clearly, humans do routinely reason with diagrams – and yet the
logics that have been employed above from U have no diagrams. Therefore
further work in LCCM is clearly in order.34 This work must bring to bear the
spaces of pictorial logics indicated in the universe U .

Finally, what about the latter challenge, that of applying LCCM to
rarefied reasoning in the formal sciences? Here a key fact must be con-
fronted: viz., that reasoning in logic and mathematics often makes use of
expressions and structures that are infinitary in nature. For example, there
can be very good reason to make use of formulae that are infinitely long,
such as a disjunction like

δ≔∃¼1xRx∨∃¼2xRx∨ . . . ,

which – using a variation on the existential quantifier used repeatedly above –
says that there is exactly one thing that is an R, or exactly two things each of
which is an R, or exactly three things each of which is an R, and so on ad
infinitum. It turns out that however exotic δ may seem, this is about the only
way to express that there exist a finite number of Rs; but this way is utterly
beyond the reach of first-order logic ¼ L 1. And yet there has been no
discussion above of logics that allow for infinitely long disjunctions to be
constructed; what are classified as “infinitary logics” in the universe U , which
are the logics needed, have been untouched in the foregoing discussion. Of
course, as the reader will rationally suspect, the need for formulae of this
nature, given the infinitary expressions presented even in textbooks devoted to
bringing human students into serious cognizing about (say) analysis (e.g. see
Heil, 2019), is undeniable. So again, it would seem that if the general program
of logic-based cognitive modeling is to succeed in capturing human reasoning
and human-level reasoning across the board, additional effort of a different
nature than has so far been carried out will be required of relevant researchers.
This effort will need to tap other logics in U shown in Figure 5.3, which as the
reader can now note by returning to that figure, does indeed refer to the space
of infinitary logics.35

34 There are very few formal logics that allow, in addition to the standard symbolic/linguistic
alphabets and grammars, diagrams/images. For such a logic, see Arkoudas and Bringsjord
(2009), which provides comprehensive references to the relevant literature.

35 Readers wanting a short, cogent introduction to infinitary logic should see explanation of the
straightforward infinitary logic L ω1ω (which can express δ) in Ebbinghaus et al. (1994), and
those with some logico-mathematical maturity can see Dickmann (1975).
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6 Dynamical Systems Approaches
to Cognition
Gregor Schöner

6.1 Introduction

Think of a child playing in the playground, climbing up on ladders,
jumping, running, catching other kids. Or think of the child painting a picture,
dipping the brush into a paint pot, making a sequence of brush strokes to sketch
a house. These behaviors certainly are not driven by reflexes, are not fixed
action patterns elicited by key stimuli, nor are they strictly dictated by stimulus–
response relationships. They exhibit hallmarks of cognition such as selection
decisions, sequence generation, and working memory. What makes these daily
life activities intriguing is, perhaps, how seamlessly the flow of activities moves
forward. No artificial system has ever achieved even remotely comparable
behavior. While computer programs may play chess at grand master level, their
ability to generate smooth flows of actions in natural environments remains
extremely limited.
Emphasizing how cognition links to sensory-motor activity is part of the

embodiment perspective on cognition (Shapiro, 2019). Cognition that is
directed at objects in the world may interact with motor activation (for
example, Chrysikou, Casasanto, & Thompson-Schill, 2017). But motor acti-
vation is not mandatory for cognition and may be negligible for mental acts
that are not directed at physical objects (M. Wilson, 2002). It is certainly
possible to think without overt or even covert motor activation.
A more refined view of embodiment is, instead, that cognition inherits

properties from the sensory-motor processes from which it emerged evolu-
tionarily and developmentally. Lifting spatial relations and movement repre-
sentations through metaphor from the sensory-motor domain to abstract
thought is an example (Lakoff & Johnson, 1999). The use of spatial repre-
sentations in creativity (Fauconnier & Turner, 2002) and the idea that
concepts are embedded in feature spaces (Gärdenfors, 2000) are other
examples.
The dynamical systems perspective on cognition is linked to the embodiment

perspective for good reasons (Beer, 2000; Port & van Gelder, 1995). Dynamical
systems are characterized by state variables, whose values at any given moment
in time predict their future values (Perko, 2001). The laws of motion of physics
take the form of dynamical systems, with the initial conditions of the physical
state variables determining the future evolution of those state variables. The
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dynamical systems perspective on cognition refers, however, not to just any
dynamical system, but to those with particular properties, most prominently,
those with attractor states, that is, invariant solutions to which the system
converges from any initial condition nearby (Van Gelder, 1998). Such attractor
states are critical to control, that is, to steering a physical system to a desired
state (Ashby, 1956). In control, sensors pick up deviations from the desired state
and the controller drives change of the state variables in a direction that reduces
such deviations. Control works in closed loop, in which the controller’s action
leads to changes in sensory signals, which in turn lead to changes in the
controller’s action. Embodied cognition typically takes place as organisms act
in closed loop with their environment. To direct an action at an object, for
intance, you first shift gaze to the object’s location. As a result of this action, the
visual stimulus changes. As you handle an object, its visual appearance changes.
To avoid run-away behavior, closing sensory-motor loops through the environ-
ment requires dynamic stability.

The dynamical systems perspective on cognition postulates that cognitive
processes share properties with the sensory-motor domain, most centrally,
stability properties that enable cognitive processes to link to the sensory-motor
surfaces, continuously or intermittently. Dynamical systems ideas go beyond
the notion of control, however. Cognition is characterized by the multiplicity of
possible states, the complexity inherent in combining many different states into
new entities, and the capacity to generate new sequences of states never before
encountered. One idea is to attribute that complexity to the self-organizing
capacity of nonlinear dynamical systems (Schöner, 2014; Schöner & Kelso,
1988; Thelen & Smith, 1994), in which new states emerge from dynamic
instabilities, multiple stable states may coexist, and graded change during
learning and development may give rise to qualitative change of behavior
or competence.

Dynamical systems ideas also go beyond embodiment in that the closing of
the loop that requires stability properties may take place within the nervous
system. Recurrent neural networks (see Chapter 2 in this handbook) are
dynamical systems: When the inputs to some neurons depend on the outputs
of those neurons, activation must be looked at in time: the previous outputs
determine the current inputs, leading to an iterative form of computation. Even
though some models use discrete time, these iterative update rules for neural
activation really are dynamical systems. Their properties are critical for
sequence generation (Elman, 1990), for working (Compte, Brunel, Goldman-
Rakic, & Wang, 2000; Durstewitz, Seamans, & Sejnowski, 2000) and episodic
memory (Rolls, Stringer, & Trappenberg, 2002), and for the generation of
actions (see Chapter 35 in this handbook). Couched in terms of the dynamics
of neural populations, dynamical systems ideas are effectively a refinement of
the more general connectionist ideas.

A related source of dynamical systems ideas comes from neurophysics, the
dynamics of neural membranes and synapses (Gerstner, Kistler, Naud, &
Paninski, 2014). These electro-chemical processes introduce continuous state
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dependence even to individual neurons and thus also to feed-forward, not
just to recurrent neural networks. Stephen Grossberg’s pioneering work
(Grossberg, 1970) established how simplified models of the dynamics of
neurons provide the core mechanisms of perception, movement generation,
and cognition, building a neural-dynamic theory of essentially everything
that can be reached by the methods of experimental psychology (Grossberg,
2021). The neurally grounded dynamical systems ideas reviewed below could
be viewed as a variant of that framework in which a small set of principles is
used to organize this vast territory. The mathematics underlying much of
this work has been elaborated in a large literature which this chapter only
reviews selectively (Ermentrout, 1998; Coombes, beim Graben, Potthast, &
Wright, 2014).
One particular dynamical systems approach, the neurally grounded Dynamic

Field Theory (DFT, see Schöner, Spencer, & DFT Research Group, 2016 for a
book-length tutorial), is presented as a case study in some mathematical detail
below. Its relation to other dynamical systems approaches, to other neurally
grounded approaches, and to cognitive modeling in general, is discussed in the
final section of this chapter.

6.2 The Foundation of Neural Dynamics

To examine how cognition may emerge from sensory-motor processes,
consider first the sensory and motor periphery. Sensory surfaces like the retina,
the cochlea, the skin, or the proprioceptive system, respond to physical stimuli
that originate from the world. Hypothetically, patterns of stimulation could be
as high-dimensional as the number of sensor cells. In reality, stimuli driving
individual sensor cells are not independent of each other when stimulation
comes from the world. Such stimuli are much lower-dimensional, reflecting
the continuity of surfaces in vision and touch, or the properties of sound sources
in auditory perception (Gibson, 1966). Low-dimensional descriptions of stimuli
may entail the two spatial dimensions of the visual and auditory arrays, visual
feature dimensions such as local orientation, texture, or color, auditory feature
dimensions such as pitch, haptic feature dimensions like the direction of local
stress vectors, or proprioceptive feature dimensions like joint angles and their
rate of change. The motor surface could analogously be construed as the
ensemble of muscles and their mechanical linkages that span the space of
possible motor states. Again, the covariation of muscle activation observed as
synergies makes that the space of possible motor patterns is lower in dimension
(Latash, 2008).
The firing rate of sensory neurons varies monotonically with the physical

intensity of stimulation (e.g., luminance, loudness, or the displacement of a skin
element). When the firing rate of motor neurons varies, the level of force
generation in muscles co-varies. Figure 6.1 illustrates how these two links to
the sensory-motor periphery bracket neural dynamic architectures.
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6.2.1 Activation

Neural dynamic models abstract from some of the physiological details of
neural activity. Real neurons in the brain carry a negative electric potential
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Figure 6.1 A schematic view of a neural dynamic architecture (center box)
that is linked to sensory (top box) and motor systems (bottom box). Sensors
transform physical intensity (e.g. luminosity impinging on the eye from the
visual scene) into neural activation (here denoted by u). Forward neural
networks extract feature dimensions that provide input to the neural dynamic
architecture. Perceptual fields span such feature dimensions (here orientation
and visual space) by virtue of that input connectivity. Coupled neural fields of
varying dimensionality form the neural dynamic architecture. At the interface
to the motor system, the pattern of connectivity sets fields up to span movement
parameters. The neural dynamics of motor systems (often realized in the
periphery by reflex loops) feeds into muscles that transform neural activation
into force, driving the body’s movement. Behavior unfolds in closed loop, in
which actions impact on the visual scene.
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inside their cellular membrane. Input from the synapses on a neuron’s dendritic
tree may induce increases (for excitatory synapses) or decreases (for inhibitory
synapses) of the electric potential, which travel to the neuron’s soma. If the
electric potential near the soma exceeds a threshold, a spike or action potential
is generated in which the electrical potential briefly becomes positive. Action
potentials travel down the axon and activate synaptic connections on the output
side, inducing post-synaptic potential changes on the dendritic trees of down-
stream neurons. In neural dynamics, the electrical potential is replaced by an
activation state, u, that has abstract units. The mechanisms of spiking and
synaptic transmission are simplified by modeling the output of a neuron as a
sigmoid threshold function, σ uð Þ (illustrated in Figure 6.3), which provides
input to any down-stream neuron. This simplification is shared with most
connectionist models and provides a good approximation for the activity in
populations of neurons.

6.2.2 Activation Fields

Neurons in the brain receive input that ultimately comes from the sensory
surfaces (Figure 6.1) and reflects patterns of stimulation from the world. The
pattern of forward connectivity extracts feature information about such stimuli
and creates cortical and subcortical maps, in which neural firing is characterized
by tuning curves and receptive field (see Chapter 3 of Schöner, Spencer, & DFT
Research Group, 2016 for tutorials on the core neurophysiological concepts).
Modeling activity in such neural maps as neural fields amounts to neglecting the
discrete sampling of the sensory surface and feature spaces by individual
neurons. Because there are no known behavioral signatures of that discrete
sampling, this is a useful approximation that helps keep track of the continuity
of the underlying sensory and motor spaces. (There are also more specific
neuro-anatomical arguments for that approximation based on the relative
homogeneity of cortical layers and the strongly overlapping dendritic trees of
neighboring neurons, see H. R. Wilson & Cowan, 1972 and Coombes et al.,
2014.) This leads to the notion of neural activation fields, u xð Þ, that are
“defined” over spatial or feature dimensions, x (illustrated in Figure 6.2).
They can be defined that way only because the forward connectivity from the
sensory surface generates inputs to the fields that reflect the spatial and feature
dimensions of possible stimuli.
Activation fields can be analogously defined for motor representations.

Neurons in the motor areas of the cortex and of subcortical structures have
tuning curves that characterize how the firing rates of neurons vary when a
voluntary movement is varied. For instance, neurons in the motor and
premotor cortex have broad tuning curves to the hand’s movement direction
in space (Schwartz, Kettner, & Georgopoulos, 1988). Similar tuning to move-
ment parameters such as movement extent, or the direction of required force,
can be observed. For any specific motor act, activation is localized along such
motor dimensions. (This is true even though neighboring neurons do not always

214 gregor schöner
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have similar tuning curves in the motor domain. What matters is neighborhood
in connectivity, not neighborhood on the cortical surface.)

In Dynamic Field Theory (DFT), localized peaks of activation are the units
of representation. In the sensory domain, a localized peak of activation reflects
the presence of an object on the sensory surface that can be described by a value
along each of a set of feature dimensions. In the motor domain, a localized peak
of activation reflects the preparation of a particular motor act. Fields further
removed from the sensory and motor surfaces may come to represent more
abstract mental states.

The level of activation of a peak may reflect sensory or motor variables. For
instance, neural activation levels in visual feature fields may reflect local con-
trast (Grabska-Barwińska, Distler, Hoffmann, & Jancke, 2009). Neural acti-
vation levels in the primary motor cortex may reflect the speed of the hand’s
movement in space (Moran & Schwartz, 1999). As discussed below, however,
the activation levels of peaks are largely determined by neural interaction
within fields, and are only in a secondary way modulated by feed-forward
neural connectivity.

6.2.3 Field Dynamics

Activation fields are formalized mathematically as functions, u x, tð Þ of the field
dimension, x, and of time, t. (For now, consider one dimension only so that x is
a scalar.) The evolution in time of activation fields is modeled in DFT by
integro-differential equations of this general form:

τ _u x, tð Þ ¼ �u x, tð Þ þ resting levelþ external input x, tð Þ
þ interaction x, x0, σ u x0, tð Þð Þ for all x0 across the field½ �:

(6.1)

The general form of this equation is inherited from models of the dynamics of
neural membrane potentials (see Trappenberg, 2010 or Gerstner et al., 2014 for
textbook treatment). Activation relaxes in exponential form to the equilibrium
state, u ¼ resting level þ input , on the time scale of about 10 msec (so,
τ ¼ 10 ms).

dimension
activation

Figure 6.2 Activation fields span metric spaces whose dimensions are
determined by the connectivity to and from each field. Activation patterns
(thick line) represent particular values along the dimensions through peaks,
stabilized by local excitatory and global inhibitory interaction. Peaks are
induced, but not uniquely specified, by input (thin line), reflecting the capacity
of fields to make decisions.
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Inputs to a field that arise through forward connectivity from a sensory
surface set up a field to represent a sensory feature dimension. In DFT
architectures, input may also arise from the output of other activation fields.
Neural interaction is input that arises from the output of the same field, a form
of recurrent connectivty: the evolution of activation at a location, x, of the
field depends on the output of activation at all other locations, x0, of the field.
A core postulate of DFT is that neural interaction is organized to make
localized activation peaks attractors of the neural dynamics. Local excitatory
interaction stabilizes peaks against decay. Inhibitory interaction over larger
distances stabilizes peaks against diffusive spread. Signatures of such a spatial
pattern of neural interaction have been observed within populations of cor-
tical neurons in a variety of cortical areas (Georgopoulos, Taira, & Lukashin,
1993; Jancke et al., 1999).
This pattern of connectivity within a field is mathematically modeled by an

interaction kernel, w x� x0ð Þ, illustrated in Figure 6.3. In that description,
neural interaction is homogeneous, that is, it has the same form and strength
anywhere in the field. That enables neural activation fields to stabilize peaks
anywhere along the dimension they represent. In DFT, neural interaction is
postulated to be sufficiently strong to dominate the neural dynamics, so that
activation may persist purely supported by interaction, without the need for
input from outside the field. Strong interaction enables many of the core
cognitive functions of DFT architectures, including detection and selection
decisions, working memory, and sequence generation. Such strong, homoge-
neous neural interaction within populations of neurons characterizes DFT
models as special cases of generic connectionist models (see also Section 6.6.3).
A concrete mathematical formulation of the field dynamics often used in

DFT is:

σ(u)

u

x-x'

w(x-x')

Figure 6.3 (A) Sigmoidal threshold functions such as the one illustrated here,
σ uð Þ ¼ 1= 1þ exp �βuð Þð Þ, characterize the capacity of neural activation, u, to
affect down-stream neural dynamics. Only sufficiently activated field locations
contribute to output. (B) Homogeneous kernels, w x� x0ð Þ, depend only on the
distance, x� x0, between field locations. The neural interaction kernel
illustrated is positive over small distances (local excitation) and negative over
larger distances (global inhibition). Inhibitory interaction may fall off with
distance (not shown).
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τ _u x, tð Þ ¼ �u x, tð Þ þ hþ s x, tð Þ þ
ð
dx0w x� x0ð Þ σ u x0,tð Þð Þ (6.2)

where the resting level is designated by h < 0, and external input is designated
by s x, tð Þ. In this form, the neural dynamics of activation fields can be math-
ematically analyzed (Amari, 1977), characterizing the qualitative dynamics, that
is, the attractor states and their instabilities. A variety of other mathematical
formalizations are available (see Coombes et al., 2014 for a modern review,
Gerstner et al., 2014 for textbook treatment), whose qualitative dynamics is
overall consistent with that of Equation 6.2.

6.2.4 The Detection Instability and Its Reverse

The qualitative dynamics of neural fields comprise two categories of attractor
solutions (Figure 6.4). Input-driven attractors are subthreshold patterns of
activation shaped by input to which neuronal interaction contributes little.
Neural interaction contributes massively to self-stabilized peaks, lifting acti-
vation above the input-driven level and suppressing activation outside the peak.
That these are qualitatively different attractors can be seen from the fact that
they coexist bistably under some conditions and are separated by a dynamical
instability, the detection instability (see Bicho, Mallet, & Schöner, 2000 for an
analysis; see Figure 6.4 for an explanation).

dimension

activation

activation

dimension

dimension

activation

Figure 6.4 Detection decisions in dynamic fields. (A) For weak input (thin
solid line: input plus resting level), only the subthreshold input-driven state
(thick dashed line) is stable. (B) For stronger input, both the subthreshold
input-driven state (thick dashed line) and the self-stabilized peak (thick solid
line) are stable. In this bistable regime, which attractor activation converges to
depends on the activation pattern present when the inputs first arise (initial
condition). (C) For strong input, only the self-stabilized peak is stable. In the
detection instability, the subthreshold input-driven state becomes unstable
(transition from (B) to (C)). In the reverse detection instability, the self-
stabilized peak becomes unstable (transition from (B) to (C)).
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The detection instability is observed, for instance, when the amplitude of a
single localized input is slowly increased. Below a critical level, the subthreshold
input-driven solution, u xð Þ � hþ S xð Þ < 0, is stable (for slowly varying S x, tð Þ
which can be approximated as S xð Þ). At appropriate settings of the parameters
of the interaction kernel (Amari, 1977), a self-stabilized peak of activation
centered on the localized input coexists as a stable stationary state. When the
amplitude of localized input reaches a critical level, the subthreshold solution
becomes unstable and disappears. This is caused by activation passing through
the threshold of the sigmoidal function, so that neural interaction sets in,
driving the growth of the peak beyond the level specified by input.
At the detection instability, peaks are created. As peaks are the units of

representation, this amounts to a decision that sufficient input is detected to
create an instance of representation. If input increases continuously in time, the
detection instability occurs at a particular, discrete moment in time when input
reaches a critical level. The detection instability is thus instrumental in creating
discrete events from time-continuous neural processing, a feature critical to
understanding how sequences of neural processing steps arise in neural dynam-
ics (Section 6.4).
Once a peak has been created, it is stable. If input falls below the critical level,

the self-stabilized peak persists within a bistable range of input amplitudes. If
localized input shifts along the field dimension, the peak tracks that input
(Amari, 1977). So while self-stabilized peaks are separated from input-driven
activation by the detection decision, they continue to be responsive to input.
Self-stabilized peaks become unstable in the reverse detection instability when

activation falls below the critical level at which interaction is engaged. This
may happen because input falls below a lower critical level, or because inhibitory
input pushes activation levels down. At the reverse detection instability, activation
is no longer supported by local excitatory interaction and begins to decay,
converging to the subthreshold input-driven activation state. So the reverse
detection instability causes the deletion of a peak, removing a unit of representa-
tion. Again, a time-continuous change may be transformed into an event.

6.2.5 Sustained Activation

There are conditions under which self-stabilized peaks of activation may remain
stable even in the absence of any input beyond the resting level (Amari, 1977).
Such a sustained peak of activation is illustrated in Figure 6.5. This dynamic
regime comes about when excitatory interaction in the field, once engaged, is
sufficiently strong to keep activation at positive levels, bridging the gap from the
negative resting level. This may be because excitatory interaction simply is
strong or because the resting level is closer to zero, so that the gap is easy to
bridge. In fact, an increase of the resting level can shift the neural dynamics
from a regime without to a regime with sustained activation peaks.
Sustained activation is the standard picture for how working memory is

neurally realized (Fuster, 1995). Sustained peaks of activation may thus provide
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a neural mechanism for metric working memory. Localized input may induce a
peak through the detection instability. The activation peak remains stable after
the input is removed. The peak’s location in the field retains the metric infor-
mation about the earlier localized input. This metric information is preserved
only to the extent to which no other localized inputs act on the field. Such
inputs, even when they are small, may induce drift of the peak, both by
attracting to locations with excitatory input and by repelling from locations
with inhibitory inputs. Both effects have been observed behaviorally (Schutte &
Spencer, 2009; Schutte, Spencer, & Schöner, 2003). Such metric distortions of
working memory may be misread as evidence for underlying categorical repre-
sentations (Spencer, Simmering, & Schutte, 2006).

Capacity limits are natural for DFT models of working memory
(J. S. Johnson, Simmering, & Buss, 2014; Simmering, 2016): as the number of
peaks increases, the total amount of inhibitory interaction increases, ultimately
pushing peaks below the reverse detection instability. This emergent nature of
the capacity limit is in contrast to the idea of a fixed number of slots and
consistent with ability to modulate capacity by distributing resources
(J. S. Johnson et al., 2014) and with other indices of a graded capacity of
working memory (Schneegans & Bays, 2016).

6.2.6 Selection

When inhibitory interaction is sufficiently strong, only a single peak may be
stable at any given time. This enables selection decisions as illustrated in
Figure 6.6. In response to an input distribution that has multiple local maxima,
the field generates a single peak positioned over one of those local maxima.
That selection decision may be combined with a detection decision if the field is
in a subthreshold pattern of activation when input first arises. The location that
first reaches threshold wins the neural competition created by inhibitory inter-
action. Because the peak that emerges is a full self-stabilized peak whose shape
and total activation does not reflect how close the selection decision was, this
enacts a “winner takes all” mechanism. In some connectionist neural networks,
such a normalization step is implemented by a separate mechanism (such as an
algorithm reading out the location of the maximum, “argmax”). The decision

dimension
activation

Figure 6.5 In a sustained peak of activation (thick line), a peak of positive
activation persists in the absence of any localized input. Note that activation
outside the peak is suppressed below the resting level (marked by the thin
horizontal line) by inhibitory interaction. The positive activation level within
the peak, induced by some earlier stimulation, is stabilized by local
excitatory interaction.
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may be biased by earlier activation patterns, so that the selected location is not
necessarily the location of maximal input. In fact, selection decisions are stable:
When input at the selected location becomes weaker or input at another loca-
tion becomes stronger, the selected peak persists. The limit to that stability
occurs in the selection instability: When input at a new location becomes
sufficiently strong, it lifts activation at that location above the threshold in spite
of inhibitory interaction, inducing a new peak that then suppresses the earlier
peak. (Technically, the field may be bi- or multistable and one of those attract-
ors loses stability.)
A subtle, but important property of dynamic fields arises when selection

occurs in response to broadly distributed input or to a homogeneous boost to
the entire field. In the boost-driven detection instability, a field creates a single
peak whose location represents a selection decision. Selection is sensitive to
small inhomogeneities in the field from input or from a memory trace (Section
6.5): The peak arises at one of the locations with slightly higher initial activation
level. In a sense, the boost-driven detection instability amplifies small differ-
ences into a full self-stabilized peak at one location, while other locations with
very similar initial activation levels are suppressed.
Neural noise and noise originating in sensory inputs are important in DFT

due to their role at such instabilities. Noise may create a momentary selection
advantage for one location which is then amplified into a macroscopic

dimension
activation

activation

dimension

activation
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Figure 6.6 Selection decisions in dynamic fields. (A) When input on the left is
sufficiently much stronger than input on the right, only the left-most peak
remains stable. (B) In response to bimodal input (thin solid line), a dynamic
activation field may be bistable, supporting a stable peak centered over either
local maximum (thick solid and dashed lines). (C) When input on the right is
sufficiently much stronger than input on the left, only the right-most peak
remains stable.
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decision. Only at instabilities does noise play such a role. While far from an
instability, peaks are much too stable to be spontaneously suppressed or
switched. Nondeterministic aspects of behavior are accounted for in DFT by
the amplification of noise around instabilities. The generic mathematical
formalization of neural noise in DFT is Gaussian white noise, added to the
rate of change of activation (Equation 6.2). (Technically, this makes the
neural dynamic model a stochastic differential equation. Because the Ito and
Stratonovich calculus do not differ for additive noise, there is no need to
specify either framework, see pages 35–37 in Oksendal, 2013.) Typically, noise
is assumed independent at each field location (spatial correlations can be
modeled by a noise kernel).

6.2.7 Neural Dynamic Nodes

So far, all illustrations have been from one-dimensional fields, but the same
solutions and instabilities are obtained in two-, three-, or four-dimensional
fields (on limits to that later). What about zero-dimensional fields? Those could
be thought of as small populations of neurons, mathematically described by a
single activation variable, u tð Þ, subject to a neural dynamics of this general form

τ _u tð Þ ¼ �u tð Þ þ hþ s tð Þ þ wexcσ u tð Þð Þ, (6.3)

where wexc is the strength of self-excitation (really the net result of excitatory
interaction within the small population). These dynamics have stable
states analogous to those of neural dynamic fields: a subthreshold activation
state (u0 � hþ S < 0, the “off” state) and a suprathreshold activation state
(u1 � hþ sþ wexc > 0, the “on” state).

What the activation of such a neural dynamic node means is determined by
the pattern of connectivity of its input and output. Concept nodes, for instance,
may be linked to a variety of feature fields, so that particular ranges of feature
values may activate such a node, and conversely, a node may provide input to
those feature fields, supporting the form of cuing discussed next.

6.3 Neural Dynamic Architectures

6.3.1 Binding

When neural dynamic fields simultaneously represent dimensions that have
different meanings, new functions emerge from the dynamic instabilities.
Figure 6.7 shows a joint neural representation of visual space (only its horizon-
tal dimension for ease of illustration) and of a visual feature, orientation. Such a
joint representation could come about due to feed-forward connectivity from
the visual array that extracts visual position and local orientation (e.g. making
use of Gabor filters). Figure 6.7 also illustrates two fields that represent each
dimension separately and are coupled reciprocally to the joint representation.
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A peak in the joint field binds the location of a visual object to its orientation.
Summing activation along either dimension and projecting onto the separate
fields induces peaks there, effectively extracting the individual feature values
from the bound representation. Conversely, individual feature values repre-
sented by peaks in the separate fields can be bound together by projecting two
ridges into the joint field, one along orientation, the other along space. Under
appropriate conditions, the joint field reaches the detection threshold only at the
intersection of the two ridges, generating a peak there that binds the two feature
values together. Note that such binding requires that only one object is repre-
sented at a time. If a separate field had peaks at more than one feature value, the
projections would intersect at more than one location, inducing “illusory con-
junctions” of feature values that belong to different visual objects.
The core mechanism of visual search combines these two directions of

coupling. Localized input into the joint field from the visual array is boosted
by a ridge of input from a peak in the orientation field that represents the
search cue (Figure 6.7). This induces a peak in the joint field only at those
locations that overlap with the ridge (a form of biased competition
(Desimone, 1998)). A visual object is thus selected, whose orientation matches
the search cue represented by the peak in the orientation field. Based on this
core mechanism, a comprehensive DFT model of visual search (Grieben et al.,
2020) addresses conjunctive search and the autonomous sequential selection
of candidate objects.
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Figure 6.7 Core principle of a neural dynamic architecture for visual search.
A visual scene (A) consisting of a vertical and a horizontal object provides
input to a two-dimensional field (B) over space (horizontal spatial dimension)
and orientation (local orientation feature dimension). That input (light gray
blobs) is localized along both dimensions. A one-dimensional field defined over
the orientation feature dimension (C) has a peak at the vertical orientation
representing a search cue. That peak provides ridge input into the two-
dimensional field, which induces a peak where the ridge overlaps with the blob
input. Projecting suprathreshold activation, summed along the orientation
feature dimension, onto a one-dimensional field over space (D) induces a peak
at the spatial location of the vertical object.
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Binding dimensions by a joint neural field is neurally costly, however, as
every possible combination of feature values across dimensions requires dedi-
cated activation variables. Such binding scales poorly with the number of
dimensions. Using only 100 neurons per feature dimension, the binding of
orientation, color, texture, movement direction, and visual space, for instance,
would take 1012 neurons, as much as in the entire brain (see Eliasmith &
Trujillo, 2014 for a discussion of such scaling issues). The form of conjunctive
feature binding relevant for visual search and many other tasks must be more
flexible and efficient. Feature Integration Theory (Treisman, 1980) provides a
cue. Feature dimensions may each be individually bound to visual space by
joint neural representation, consistent with the fact that neurons tuned to
different feature dimensions all have spatial receptive fields. But there is no
need for all combinations of feature dimensions to be represented by particular
neurons. Instead, a stack of neural fields, each spanning visual space and one or
a small number of other feature dimensions may together represent the ensem-
ble of features. Binding the different feature dimensions of a particular visual
object now occurs through the shared spatial dimension. Bidirectional excita-
tory interaction along the shared spatial dimension (a cylinder-shaped input
pattern to each feature/space field) enables search for conjunctions of features
(Grieben et al., 2020). The same mechanism can be used to explain how change
detection for feature conjunctions may be achieved (Schneegans, Spencer, &
Schöner, 2016).

6.3.2 Coordinate Transforms

Binding different dimensions through joint neural representations enables
active coordinate transforms, which are relevant to many sensory-motor
and cognitive tasks. To direct action at an object, for instance, visual
information in retinal coordinates must be transformed into coordinates
anchored in the body (to which the arm is attached). Such a transform
depends on (is steered by) an estimate of gaze direction (Schneegans, 2016;
Schneegans & Schöner, 2012). The body-centered object location must be
further transformed into a frame centered on the initial position of the hand
to extract movement parameters such as direction and extent (Schöner,
Tekülve, & Zibner, 2019).

The bottom half of Figure 6.8 illustrates an active coordinate transform in a
much more cognitive context, perceptually grounding a spatial relation like
“the vertical bar to the left of the horizontal bar.” In a spatial representation of
the visual array that is centered on the reference object, the “horizontal bar”
(bottom of the figure), it is easy to conceive of a pattern of connectivity that
would define the relational concept “to the left of.” The connectivity would
activate a neural node representing that concept only when activation falls into
an appropriate spatial region to the left of the field’s center (Lipinski,
Schneegans, Sandamirskaya, Spencer, & Schöner, 2012). An active coordinate
transform of the original visual array into a frame centered on the reference
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object would enable generalizing this pattern of connectivity to reference
objects anywhere in the visual array. That transformation would be steered
by the reference object’s location in the original frame of reference.
Neural implementations of active coordinate transforms can be based on a

joint representation of the original space and a space representing the steering
dimension (Pouget & Snyder, 2000). Such representations are observed as gain
fields in area LIP of the parietal cortex (Andersen, Essick, & Siegel, 1985) and

reference

visual scene

spacespace

orientation
vertical

horizontal

target
centered on
reference

target

left right

Figure 6.8 A neural dynamic architecture for the grounding of spatial relations.
The visual scene on top provides input to a two-dimensional field over
orientation and space. Nodes for “vertical” and “horizontal” orientation
(circles on top left, filled for activated node) are reciprocally connected to
matching regions in a one-dimensional orientation field. The orientation-space
field projects onto two spatial fields, “target” and “reference,” by summing
along the orientation dimension. These are reciprocally coupled to the diagonal
two-dimensional transformation field, which is, in turn, reciprocally coupled to
a spatial field that represents the target centered on the reference. Nodes for “to
the left of” and “to the right of” are reciprocally coupled to corresponding
spatial regions of that spatial field.
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elsewhere. In the example, the joint representation binds the visual array
containing potential target objects of the relation to a spatial representation
of the reference object. The projections from the target and reference spaces
into the joint representation takes the form of two ridges. Where these ridges
meet, a peak is induced that binds the spatial locations of target objects to
those of reference objects. Projection from the joint representation onto the
transformed space sums outputs along an appropriate subspace. In this
example, summing along the diagonal yields a spatial representation centered
on the reference object.

6.3.3 Architectures

The neural dynamics in architectures such as the one illustrated in Figure 6.8
can be characterized in terms of dynamic concepts for the individual fields
like the detection instability and the capacity for selection. This is not trivial,
and only true because of the stability postulate for meaningful activation
states. The dynamic stability of such states implies structural stability under
change of dynamics. When the dynamics (the equation) change in a continu-
ous way, attractors remain stable (Perko, 2001). Coupling among fields can
be viewed as a continuous change of the dynamics by thinking of the
coupling strength as being increased from zero. So in tying function to
attractor states, DFT models avoid the classical problem of analog comput-
ing in which solutions may be completely changed when a new component
is added.

Fields retain their dynamic properties within limits that are reached
exactly when the coupling within neural architectures induces instabilities.
That makes DFT architectures intrinsically flexible. The architecture shown
in Figure 6.8 illustrates this point. To perceptually ground spatial relations
such as “the vertical bar to the left of the horizontal bar,” this architecture
performs visual search first for the reference (“the horizontal bar”), then for
the target object (“the vertical bar”). The top half of Figure 6.8 is simply the
mechanism for visual search from Figure 6.7. The search cue is provided by
concept nodes that may activate either the feature representation of “vertical
bar” or of “horizontal bar” by virtue of their connectivity with the feature
field defined over orientation. The output of visual search in the orientation-
space field projects both to a field representing the spatial location of the
reference object and to a field representing the spatial location of possible
target objects. By boosting the reference spatial field when the reference
object is searched, only that field can reach the detection instability based
on the search output. By boosting the target spatial field when, in the next
step, target objects are searched, only that field can build peaks. This way,
the outcome of the visual search can be directed into either field by boosting
the destination field. In connectionist models, such steering of projection is
achieved by multiplicative “gating” connections to the projections among
neural populations (O’Reilly, 2006).
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6.4 Autonomous Sequence Generation

The visual search for target and reference must be performed sequen-
tially. How may such sequences of processing steps arise in neural dynamic
systems? And how do the transitions among such steps arise at discrete
moments in time from the time-continuous neural dynamics? Figure 6.9 illus-
trates how the detection instability can be harnessed to bring about such
transition events (Sandamirskaya, 2016; Sandamirskaya & Schöner, 2010).
A neural field, labelled here the intention field, represents an ongoing mental
or motor act by a suprathreshold peak of activation. The peak’s location
specifies the intended act, for instance, the feature value of the object that must
be visually searched. That intentional state predicts a sensory or internal
outcome that counts as its condition of satisfaction (a term borrowed from
Searle, 1983). The prediction is realized through neural connectivity, which
may have to be learned, to a neural field that represents the condition of
satisfaction. The intention to visually search the target predicts an internal
outcome, a peak in the joint feature/space field at the cued feature value. The
predictive input alone is not sufficient, however, to push the condition of
satisfaction field through the detection instability. A peak is formed in that field
only when the predicted input arises from a sensory surface (for real motor acts)
or from another neural representation (for mental acts).
The condition of satisfaction field inhibits the intentional field globally by

providing a negative boost. So once it builds a peak, that inhibition pushes the
intentional field through the reverse detection instability, leading to the decay of

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

Figure 6.9 The neural dynamic mechanism for sequence generation is based on
a pair of neural fields, the intention and the condition of satisfaction fields,
which may be defined over different dimensions. A peak in the intention field
(thick line on the left) drives the mental or motor act by projecting onto the rest
of the neural dynamic architecture. It also provides input (thin line on the
right) to the condition of satisfaction field that predicts the outcome of a
succesful completion of the intended mental or motor act. When signals from
inside the neural dynamic architecture or from sensory systems provide input
that overlaps with that prediction, the condition of satisfaction field generates a
peak. Through inhibitory projection onto the intention field (top line with a
filled circle at its end), the peak in the condition of satisfaction field may then
suppress the peak in the intention field and subsequently become unstable itself.
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the peak there. This removes the predictive input from the condition of satisfac-
tion field, pushing that field below the reverse detection instability and leading
to the decay of that peak as well. The end result of this cascade of instabilities is
that both intention and condition of satisfaction fields are returned to a sub-
threshold state of activation. The intended act has successfully terminated.

What happens next depends on the neural dynamic architecture. The three
classical conceptions for serial order can all be realized in neural dynamic
architectures (Henson & Burgess, 1997). First, in the gradient conception,
intentional states are competing for activation and the most activated one wins.
This happens in many neural dynamic architectures. An example is the DFT
account of visual search referenced above in which object locations are selected
for attention based on the amplitude of summed inputs (Grieben et al., 2020).
Second, in the chaining conception, an intentional state has a successor that is
becoming activated once the intentional state is terminated. In neural dynamic
terms, such successor relationships may be expressed by specific coupling
structure. For instance, among sets of intentional states, asymmetrical inhibi-
tory coupling may prevent certain states from becoming activated while others
are active. Termination of one intentional state may then release other inten-
tional states from inhibition and allow them to become activated. This is how
the sequential search for target and reference objects is organized in the DFT
architecture of grounding relations (Figure 6.8) (Richter, Lins, & Schöner,
2017, 2021).

Third, the positional conception combines chaining with the idea that a
neural representation of ordinal position in a sequence points to its contents
by neural projection. A neural dynamic architecture realizing positional serial
order (Sandamirskaya & Schöner, 2010) is illustrated in Figure 6.10. A set of
neural dynamic nodes is coupled to enable their sequential activation along an
implied ordinal dimension. Two nodes, an intention and a working memory
node, represent each ordinal position. All intention nodes are coupled inhibi-
torily, so that only one of them can be active at any time. Each intentional
node activates its memory node which remains activated (sustains activation
by self-excitation) after the intention node has been deactivated. Each
memory node provides excitatory input to the intention node of its successor
within the ordinal set. This leads to the successive activation of intentional
nodes along the ordinal dimension each time a condition of satisfaction is
reached (Sandamirskaya, 2016). Content is associated with each ordinal pos-
ition by synaptic connectivity from each intention node to relevant feature
fields (which may be learned, see below). So when an intentional node at a
particular ordinal position becomes activated, it induces peaks in the feature
fields it projects to, which then drive further processes or actions in the
architecture. These peaks also provide input to the condition of satisfaction
field that predicts the outcome of the intention (connectivity which may again
be learned).

In effect, this system will go through the neural processes associated with
each ordinal position in serial order. The processing steps may entail actual
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motor behavior that may take variable amounts of time. For instance, the agent
modeled by Sandamirskaya & Schöner, 2010 was taught a serial order of colors
which it then searched for in a new environment. Finding an appropriately
colored object at any given step would then take variable amounts of time.
During that time, the intention to search for the current color would remain
stable against distractors (e.g. objects with colors that are to be searched at
other steps in the sequence). A similar demonstration for a robot arm is
reviewed in (Tekülve, Fois, Sandamirskaya, & Schöner, 2019). In other cases,
the processing steps may be entirely neural, but their duration may still vary
depending on activation levels and their distance from instabilities. An example
is the building of a mental map by processing spatial relations (Kounatidou,
Richter, & Schöner, 2018), in which the time needed to induce an entry into the
map depends on how many items are already present (due to inhibition from
those). This robustness of sequential processing is critical to scaling such neural
dynamic architectures beyond a limited set of demonstrations. Connectionist
architectures for serial order do not address this problem of stabilization against
variable timing of events. In the classical architectures, time is either discretized
so that one item is activated on each step (Elman, 1990) or is based on transient
activation patterns that generate a regular pattern of serial recall (Botvinick &
Plaut, 2006).

dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

intention

prediction

ordinal memory

ordinal intention

Figure 6.10 A neural dynamic mechanism for serial order in (A) is added to
the intention/condition of satisfaction system of Figure 6.9. Circles denote
neural dynamic nodes, above threshold when filled, below threshold when open.
Gray shading indicates subthreshold activation above resting level. The lower
row depicts ordinal intention nodes whose projection onto regions of the
intentional dimension (irregular arrows) gives contents to each ordinal step.
The upper row is matching memory nodes. Each ordinal intention node
activates its memory node (vertical arrow), which preactivates the successor
ordinal intention node (diagonal arrows). All ordinal intention nodes are
inhibited by the condition of satisfaction field (line with a filled circle at its
end). Inhibitory coupling among ordinal intention nodes is not shown.
Illustrated is an activation state while the system is in the first step of a serial
order task.
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6.4.1 Multi-Layer Fields and More Complex Neural Dynamics

In the brain, neurons make only one type of synapse on their targets, either
excitatory or inhibitory. This principle, sometimes referred to as Dale’s law,
gives the notions of “excitatory” and “inhibitory” neuron their meaning. From
the interplay of excitatory and inhibitory populations, more complex neural
dynamics emerge that may deliver further cognitive and motor function. Only
some basic ideas are reviewed here (see Buonomano & Laje, 2010; Schöner
et al., 2019; Sussillo, Churchland, Kaufman, & Shenoy, 2015; Tripp &
Eliasmith, 2016 for further reading).

The neural dynamics reviewed up to this point violate, in part, Dale’s
principle. For instance, the interaction kernel of Equation 6.2 (Figure 6.3)
postulates that activation at one field location has excitatory connections to
nearby locations and inhibitory connections to locations further removed in the
field. In the brain, the inhibitory influence must be mediated by inhibitory
interneurons that are excited by the activation field and that, conversely, project
inhibitorily onto the activation field, a pairing of excitatory and inhibitory
populations. In fact, the model of Equation 6.2 is an approximation of such a
more realistic two-layer model (Amari, 1977). The approximation is valid when
inhibition is sufficiently fast dynamically, but fails when the time needed to
build up inhibition matters. This is relevant to understanding the time course of
decision making (Wilimzig, Schneider, & Schöner, 2006), for instance, in which
early decisions are influenced more strongly by excitatory input and interaction
that promote averaging among inputs, while late decisions are more strongly
influenced by inhibitory interaction that promotes selection. Excitatory and
inhibitory neural populations also play different roles during learning (see
Section 6.5).

More complex arrangements of layers of excitatory and inhibitory neural
populations lead to new functions. Inspired by the so-called canonical microcir-
cuit of the neocortex (Douglas, Martin, & Whitteridge, 1989), a model with two
excitatory and one inhibitory layer has been proposed that accounts for change
detection in visual working memory tasks (J. Johnson, Spencer, Luck, &
Schöner, 2009; Schneegans et al., 2016). Multilayer structures also account for
match and mis-match detection such as those occurring for each examined item
in visual search (Grieben et al., 2020). Pairs of excitatory–inhibitory popula-
tions may generate time courses, either as active transients or as periodic
oscillations. These may be used to model the generation and coordination of
movement (see, for instance, Knips, Zibner, Reimann, & Schöner, 2017;
Schöner et al., 2019).

6.5 Memory Formation and Learning in Neural Dynamics

Learning is the change of behavior or thought that is driven by experi-
ence. In DFT terms, learning is the change of the neural dynamics of a system
that is driven by the activation patterns themselves and their sensory-motor
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consequences. The simplest forms of such learning from experience are prob-
ably sensitization and habituation (Thompson & Spencer, 1966). Sensitization
is the lowering of the threshold for a motor behavior or percept over its repeated
experience. Habituation is the increase of the threshold across experience. In
DFT, these two simple forms of learning can be modeled by the laying down of
a memory trace of activation fields. Sensitization is modeled by a memory trace
for excitatory fields that locally lifts the resting level making it easier to induce a
peak at locations that had previusly been activated. Habituation is modeled by
a memory trace for inhibitory fields that locally makes it easier to build inhib-
ition and thus more difficult to build peaks in the associated excitatory field.
The mathematical formalization of the memory trace in DFT has taken a

variety of forms which are all largely equivalent. The evolution of the memory
trace, umem x, tð Þ, of an activation field, u x, tð Þ, is described as a dynamical
system on the somewhat slower time scale, τmem:

τmem _umem x, tð Þ ¼ �umem x, tð Þ þ σ u x, tð Þð Þ: (6.4)

The memory trace is thus a local low-pass filter of the activation field. The
equation must be modified to express the understanding that _umem x, tð Þ ¼ 0 if
activation in the field, u x, tð Þ, is nowhere above threshold (see Erlhagen &
Schöner, 2002 for a formalization). That means that there is no spontaneous
decay of the memory trace, which decays only by interference, that is, decays at
locations without activation when at the same time the memory trace builds at
other activated locations. More refined models postulate a slightly faster time
scale for building the memory trace than for the decay of the memory trace (see
Sandamirskaya, 2014, for review). The coupling from the activation field,
u x, tð Þ, into the memory trace may be described by a kernel, spreading acti-
vation to neighboring sites.
The memory trace couples back into the neural dynamics of the field by

providing excitatory input, for example, in this form:

τ _u x, tð Þ¼�u x, tð ÞþhþS x, tð Þþ
ð
dx0w x�x0ð Þσ u x0, tð Þð Þþcmemumem x, tð Þ

(6.5)

with coupling strength, cmem (which can be expanded to include a kernel).
Typically, the strength of input from the memory trace is small compared to
other inputs and to neural interaction, so that the memory trace amounts to a
small local adjustment of the resting level. One may thus think of the memory
trace as preshaping the activation field.
The functional constraints for the dynamics of the memory trace come from

accounts of behavioral experiments. The memory trace of excitatory fields was
used to account for perseverative reaching in infants (Thelen, Schöner, Scheier,
& Smith, 2001) and that work pointed to the absence (or very slow rate) of
spontaneous decay. That work also suggested decay of the memory trace by
interference (Clearfield, Dineva, Smith, Diedrich, & Thelen, 2009; Dineva &
Schöner, 2018). The memory trace of inhibitory fields has been used to account
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for infant habituation (Perone & Spencer, 2013, 2014; Schöner & Thelen, 2006).
Earlier work on choice reaction times has shown how the memory trace may
build estimates of the probability of choices from the frequencies of particular
decisions (Erlhagen & Schöner, 2002), consistent with similar signatures in
infant motor decision making (Dineva & Schöner, 2018).

From a connectionist perspective, the memory trace is an elaboration of the
bias term, an offset to the sum over inputs that each model neuron performs.
The bias term plays a limited role in neural network learning because it is just
one input in addition to many synaptic inputs to the neuron. In DFT, in
contrast, this term plays a much stronger role because the detection instability
may amplify small differences in activation into macroscopic suprathreshold
peaks. The dynamics of the memory trace does not model associative learning
as it strengthens active neural representations irrespective of how they were
activated. Associative learning through Hebbian strengthening of connections
reflects coactivation of pre- and postsynaptic neural populations. Such a mech-
anism can also be used within the framework of DFT. The appropriate math-
ematical formalization makes use of time-continuous learning rules modeled as
a dynamical system (Sandamirskaya, 2014), an approach that goes back at least
to Grossberg, 1970. For examples of using this form of learning in DFT see
Klaes, Schneegans, Schöner, & Gail, 2012; Sandamirskaya & Schöner, 2010;
Sandamirskaya & Storck, 2015; Tekülve & Schöner, 2020.

6.6 Relation to Other Approaches

6.6.1 Relation of Dynamic Field Theory to Other Dynamical
Systems Approaches

Neural dynamics as formalized in DFT was reviewed in this chapter as a
concrete, mathematically specific case study of dynamical systems thinking in
cognition. In DFT, meaningful thoughts and actions are generated by attractor
states of neural populations whose stability enables linking cognitive processes
to sensory-motor systems. Stability is generated by spatially organized neural
interactions that erect localist neural representations. Multiple local neural
activation patterns can be flexibly bound by such neural interaction within
neural dynamic architectures. The time- and state-continuous neural dynamics
gives rise to events at discrete moments in time through dynamic instabilities,
that can be harnessed to generate sequences of mental or motor acts.

How is DFT positioned relative to other strands of dynamical systems
thinking in cognition? The introduction to this chapter provided the embedding
of dynamical systems ideas in embodiment. A body equipped with sensors,
effectors, linked by a nervous system, and situated in an appropriately struc-
tured environment may give rise to meaningful and complex behavior
(Braitenberg, 1984). Because behavior is ultimately critical to evolutionary
success, one may think of physically embodied cognition as a form of “minimal
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cognition,” from which all other forms of cognition may have emerged (Beer,
2000). DFT is consistent with this line of thinking (Schöner, Faubel, Dineva, &
Bicho, 2016). DFT makes a distinction, however, between “behavioral”
dynamics, in which the physical state of an agent or organism is critical, and
“neural” dynamics, to which the physical state may, but need not, contribute.
Through neural dynamics, DFT makes use of the notion of representation
of thought as simply inner neural dynamic states that shape the evolution of
further thought and action (Spencer & Schöner, 2003). (In the philosophy of
mind, debates about the sense in which dynamical systems views are compatible
with the notion of representation are based on a more nuanced view of repre-
sentation reviewed, for instance, in Ramsey, 2007.)
More radically, neural dynamic thinking as formalized in DFT is based on

the hypothesis that embodiment, the evolutionary and developmental link of
cognition to behavior, and the properties of cognitive processes that derive from
that link, pervade all forms of cognition. The research program is to understand
how abstraction from sensory-motor states and invariance against change of the
sensory-motor rendering of experience are effortfully achieved by neural pro-
cesses (for example, by coordinate transforms). This is in contrast to the
research program of other approaches to cognition that postulate abstract,
invariant representations from the beginning.
Emergence is a related notion used to characterize how specific competences

arise once an embodied agent is situated in an appropriate environment. Over
development, the demands on the environment may be relaxed as competences
arise in ever broader and less specific contexts (Thelen & Smith, 1994). No single
component process may be sufficient nor necessary to bring about a competence
so that behavioral and developmental transitions may occur in multiple different
ways, not following a unique causal path. On the one hand, DFT embraces this
notion and provides concrete mechanistic accounts for how emergence in this
sense may happen (Schöner, 2014). Near instabilities, for instance, a variety of
small contributions to a neural or behavioral dynamics may push the system
through a bifurcation and bring about change, which may then be consolidated
by learning from experience. The inducing factors need not be causal for the
competence in any broader sense. On the other hand, the notion of emergence is
sometimes invoked to suggest that cause and effect cannot be identified. As a
mechanistic theory, DFT is not aligned with such a view.
Two potential tensions between DFT and other approaches are worth exam-

ining. The alignment of DFT with the general role of models of cognition as
informed by mathematical psychology is first addressed. The relationship of
DFT to other neurally mechanistic approaches to cognition is discussed second.

6.6.2 Does Dynamic Field Theory Deliver Models or Neural
Process Accounts?

Conceptually, dynamical systems accounts formalized in DFT are presented
as neural process models of cognition. In many cases, including some of the
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best-known DFT models, the interface to sensory and motor systems is
limited to a simple mapping of states of the model to events in the world.
For instance, in the DFT account of perseverative reaching (Dineva &
Schöner, 2018; Thelen et al., 2001), an intended movement was modeled by
a peak in a neural field defined over movement direction. That peak’s position
at given moments in time was mapped onto the observed movement of the
infant’s reach toward a matching location. Inputs to the field were modeled by
Gaussian functions centered on movement directions specified by putative
sources of sensory information. How sense data provide these inputs and
how a peak of activation actually drives the hand’s movement was not part
of the model (although an implementation of the model on a robot vehicle
demonstrated that the link to sensory-motor systems can be established, in
principle (Schöner, Faubel, et al., 2016)).

Mappings between model and experiment of this form are common in
mathematical psychology and connectionist modeling. For DFT models,
accounts for psychophysical data based on such mappings are strong when
the captured experimental signature is linked to the model’s deeper conceptual
structure rather than being merely a reflection of judiciously chosen parameter
values. The dependence of performance on the metrics of a task was structural
in this sense in a number of models as it is directly linked to the interaction
kernel. Examples are metric effects in reaction times (Erlhagen & Schöner,
2002), in change detection (J. Johnson et al., 2009), or in visual habituation
(Schöner & Thelen, 2006). The dependence of performance on time is also
often structural in this sense. Examples are the time courses of decision
making (Wilimzig et al., 2006), of perceptual preference (Perone & Spencer,
2013), or of motor biases (Schutte & Spencer, 2009; Schutte et al., 2003).
Because DFT models are strongly constrained by the imposed principles of
stability, homogeneity (reducing the number of parameters strongly over
connectionist models), achieving quantitative fit is not trivial (see Buss &
Spencer, 2014; Samuelson, Smith, Perry, & Spencer, 2011 for two insightful
case studies and Chapter 15 of Schöner, Spencer, & DFT Research Group,
2016 for a discussion).

Dynamic Field Theory models may be linked more directly to sensory and
motor processes. A recent model of visual search (Grieben et al., 2020), for
instance, takes visual input from a camera based on feed-forward feature
extraction that is consistent with known neural projections. A neural dynamic
model for the perceptual grounding of relations is similarly driven by real
camera input (Richter et al., 2017, 2021). Both the sensory and the motor
interface was physical and real in neural architectures for reaching movements
(Bicho, Louro, & Erlhagen, 2010; Knips et al., 2017; Strauss, Woodgate, Sami,
& Heinke, 2015). Such models come close to a neural process account in that
they can “act out” the modeled behavior and thus prove that the interfaces to
sensory-motor systems do not hide unsolved problems (such as when the input
to a model neuron is assumed to reflect the detection, segmentation, a shape
estimation of a visual object, a rather nontrivial task). Closest to true neural
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process models come neuromorphic implementations of DFT architectures on
robots with neuromorphic sensors (Kreiser, Aathmani, Quio, Indiveri, &
Sandamirskaya, 2018; Milde et al., 2017).
Mapping neural dynamic models onto neural data is another way to con-

strain the interface between model and experiment. The distribution of popula-
tion activation is a formalized method to estimate the activation state of neural
fields from multiple single unit recordings (Erlhagen, Bastian, Jancke, Riehle, &
Schöner, 1999). The method uses the tuning curves of individual neurons to
establish their contributions to a field defined over the probed sensory or motor
dimension. This is how a neural dynamic model of population activity in the
primary visual cortex (Jancke et al., 1999) provided evidence for the neural
interaction kernel (see Section 6.2). A neural dynamic model of population
activity in the motor and premotor cortex (Bastian, Riehle, Erlhagen, &
Schöner, 1998; Bastian, Schöner, & Riehle, 2003) provided evidence for the
integration of prior information. Through a neural dynamic model of saccadic
selection mapped onto neural activity in the superior colliculus, Trappenberg
and colleagues have been able to link different components of that model to
different subpopulations of neurons (Marino, Trappenberg, Dorris, & Munoz,
2012; Trappenberg, Dorris, Munoz, & Klein, 2001). Voltage-sensitive dye
imaging provides neural data sets ideally suited to constrain DFT models this
way (Markounikau, Igel, Grinvald, & Jancke, 2010).

6.6.3 Relation of Dynamic Field Theory to Other Neurally Grounded
Theories of Cognition

Mathematically speaking, the neural dynamic models of DFT are special cases
of general neural network models, characterized by dominant, recurrent con-
nectivity that is organized homogeneously over low-dimensional spaces. The
conceptual commitment to attractors as the functionally significant activation
states is shared by a line of neural models of spatial orientation that are more
strongly neurally mechanistic (reviewed in Knierim & Zhang, 2012). The
emphasis on instabilities as the basis for detection and selection decisions, for
how the capacity of working memory is limited, and how sequences are gener-
ated, is a defining feature of DFT.
The neural fields of DFT can represent continuously many different stable

states as localized peaks thanks to their invariant pattern of interaction con-
nectivity. With this localist form of representation, DFT foregoes the higher
representational capacity and the associative function of distributed representa-
tion (Bowers, 2017). Attractor states in distributed representations arise in
Hopfield networks whose neural dynamics have the same form as used in
DFT, but whose interaction connectivity is not constrained to low-dimensional
kernels (Hopfield & Tank, 1986). That interactive connectivity specifies particu-
lar vectors of neural activation as attractors. Hopfield networks may thus
represent as attractors specific learned (or memorized) states rather than a range
of states that may arise as a stable state for the first time. Hopfield networks also
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do not enable targeted instabilities that may drive autonomous cognitive oper-
ations of the type reviewed in Section 6.4. The commitment of DFT to localist
representations derives from that hypothesized limitation of distributed
representations.

Most feed-forward neural networks, including the currently very succesful
deep neural networks, exploit the power of distributed representations, but use
some form of localist representation at read-out, for instance, in the form of a
winner-takes-all mechanism. One vision could be that neural dynamics of the
DFT type happens at and beyond the classification decisions made in the final
layers of feedforward networks. Most cognition does not depend on the con-
tinued presence of high-dimensional sensory stimulation. So it is thinkable that
autonomous cognitive processing may take place primarily once the high-
dimensional sensory information has been left behind. In fact, a possible view
is that the generation of sequences of neural attractor states in DFT provides a,
perhaps limited, form of symbolic processing that remains consistent with
neural principles and with the need to link to sensory and motor systems (for
a first step in this direction, see Sabinasz, Richter, Lins, Richter, & Schöner,
2020). In that view, the frameworks of logic-based cognitive processing and
information processing would provide descriptions of what the neural processes
unfolding in DFT architectures achieve. Probabilistic approaches to cognition
could be similarly viewed as descriptions of the integrative function that the
strong interaction within neural fields provides. At this time, this vision remains
largely speculative.

An alternative to this vision is the framework of vector symbolic architectures
(VSA) (Smolensky, 1990). VSAs exploit the property of random, high-
dimensional neural activation vectors to be approximately orthogonal to each
other. This makes it possible to combine vectors in various ways without losing
access to the original component vectors (Gayler, 2003). VSAs thus enable a
form of information processing using distributed neural representations. The
difficulty of creating and sustaining such neural activation vectors in physiolo-
gically plausible neural networks has been viewed as a problem. The neural
engineering framework (Eliasmith, 2005) represents such vectors by small
populations of integrate and fire spiking neurons (Stewart, Tang, & Eliasmith,
2011), suggesting that VSAs could be implemented in the brain (Eliasmith et al.,
2012). To continue to represent the high-dimensional vectors as they are passed
from population to population in a neural architecture, the connectivity has to
be chosen in a specific way that is informed by the original encoding function.
That may raise doubts as to the neural viability of this framework.

6.7 Conclusion

In conclusion, dynamical systems thinking has evolved from its origins
in the sensory-motor domain toward capturing increasingly abstract and invari-
ant forms of cognition while retaining the princple of sensory-motor grounding
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of cognitive processes. Stable states of neural activation, realized by neural
populations localized in low-dimensional neural fields are the units of represen-
tation. Their dynamic instabilities lead to the emergence events at discrete
moments in time from continuous-time dynamics. These enable sequences of
neural processing steps and flexible binding of multiple localist representations
within neural dynamic architectures. Research challenges remain to establish
(or refute) the capacity of neural dynamic thinking to account for the
extraordinary flexibility and productivity of higher cognition.
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7 Quantum Models of Cognition
Jerome R. Busemeyer and Emmanuel M. Pothos

7.1 Introduction

This chapter presents a growing new approach to building computa-
tional models of cognition and decision based on quantum theory (for intro-
ductions, see Bruza, Wang, & Busemeyer, 2015; Pothos & Busemeyer, 2013).
The cognitive revolution that occurred in the 1970s was based on classical
information processing theory. Later, the connectionist/neural network move-
ments of the 1980s were based on classical dynamical systems theory. More
recently, the current Bayesian cognition trend relies on classical probability
theory. The classical assumptions underlying all of these developments are so
commonly and widely held that they are taken for granted. Quantum cognition
challenges these assumptions by providing a fundamentally different approach
to logical reasoning, probabilistic inference, and dynamical evolution: quantum
logic does not follow the axioms underlying classical logic; quantum dynamics
do not comply with the same principles as classical dynamics; quantum prob-
abilities do not obey the axioms of classical probability. It turns out that
humans do not always obey these axioms either, which has led a number of
researchers to consider this new approach.1

Why consider a quantum approach? There are at least three psychological
reasons. First, judgments and decisions are not simply recorded from a preex-
isting classical state; instead, they are constructed from an indefinite state for
the purpose of forming a judgment or a decision. In quantum theory, this
indefinite state is represented by what is called a superposition state, which
captures the intuitive state of conflict, ambiguity, or uncertainty before making
a decision. Second, the act of constructing a judgment or making a decision
changes the mental context and state of the cognitive system. The change in
context and state produced by a decision then affects the next judgment,
producing sequential effects. In quantum theory, these sequential effects are
represented by noncommuting operations on the superposition state. Third, the
sequential dependency of judgments leads to various types of decision-making
paradoxes when viewed from the point of view of classic theories. Quantum

1 The authors are not proposing that the brain is a quantum computer (see, e.g., Hameroff, 2013,
versus Khrennikov et al., 2018, for contrasting neural implementations). Instead, only the
mathematical principles of quantum theory are used to account for human behavior.
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theory provides a principled way to account for these decision-making para-
doxes. If one replaces “cognitive system” with “physical system,” “judgment
and decision” with “physical measurement,” and “paradoxical decision behav-
ior” with “paradoxical physical phenomena,” then these psychological reasons
are analogous to the physical reasons that motivated physicists in the 1920s to
develop quantum theory. These three psychological reasons may not seem new
to social and cognitive psychologists. On the contrary, these intuitive ideas have
been known for a long time (perhaps going back to William James). Quantum
cognition simply provides a rigorous mathematical framework that is well
designed for formalizing these intuitive ideas.

Classical probability theory evolved over several centuries, beginning in the
eighteenth century with contributions by Pascal, Fermat, Laplace, and other
mathematicians. However, an axiomatic foundation for classical probability
theory was not put forward until Kolmogorov (1933/1950) provided one. Much
of classical probability theory was initially motivated by problems arising in
classical physics, and later applications appeared in economics, engineering,
insurance, statistics, etc. Classical probability theory is founded on the premise
that events are represented as subsets of a larger set called the sample space.
Adopting subsets as the formal description of events entails the strict laws of
Boolean logic: this includes the closure axiom (if A, B are events, then A \ B is
an event), the commutative axiom, (A \ B) ¼ (B \ A), and the distributive
axiom, A \ (B [ C) ¼ (A \ B) [ (A \ C). Most social and behavioral scientists
consider this theory as the only way to think about events and probabilities.
How could there be other ways?

Earlier in history, scientists were faced with similar questions. Consider, for
example, Euclidean geometry: How could there be any other axioms for geom-
etry other than Euclidean? Nevertheless, new axioms were developed by Gauss,
Lobachevsky, Riemann, and others, and there are now many applications of
nonEuclidean geometry (e.g., general relativity theory). This is true for prob-
ability theory too. Quantum mechanics was invented by a brilliant group of
physicists in the 1920s including Bohr, Heisenberg, Schrödinger, Born, and
others. This theory revolutionized the world by providing transistors, lasers,
quantum chemistry, and hopefully quantum computers. Though not realizing it
at first, the early quantum physicists actually invented an entirely new theory of
probability; this became clear after quantum mechanics was put on a firm
axiomatic foundation by Dirac (1930/1958) and Von Neumann (1932/1955).
Quantum probability is founded on the premise that events (i.e., measurement
outcomes) are represented as subspaces of a vector space (called a Hilbert space,
see for example Figure 7.1). Adopting subspaces as the formal description of
events entails a new logic that relaxes some of the axioms of Boolean logic:
closure does not always hold, events are not always commutative, and distri-
butivity can break down.

So far, only probability theories have been discussed, but quantum cognition
also has important applications for understanding the dynamic processes

Quantum Models of Cognition 243

https://doi.org/10.1017/9781108755610.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.010


underlying judgments and decisions. It is useful to compare quantum dynamics
with Markov dynamics, which is more commonly used in cognitive science. For
example, sequential sampling models (Ratcliff et al., 2016) and Monte Carlo
samplers (Sanborn et al., 2010) are Markov. Consider the process of evidence
accumulation that occurs when trying to decide between two hypotheses.
According to Markov theory, a person’s state of belief about a hypothesis at
any single moment can be represented as a specific point along some internal
scale of evidence. This belief state changes moment by moment from one
location to another on the evidence scale, producing a trajectory across time
(see left panel in Figure 7.2). If at any point in time the decision-maker is asked
to report her belief, she simply reads out the location on the evidence scale that
existed before she was asked. Essentially, the report is determined by the
preexisting location of the belief state. According to quantum theory, the
decision-maker’s belief about a hypothesis at any single moment is not located
at any specific point on the mental evidence scale. Instead, at any moment, it is
a superposition over different levels of beliefs, so that a judgment has some
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Figure 7.1 Illustration of an event in quantum probability. The event A is
represented by the two-dimensional subspace (plane) within the three-
dimensional space. Quantum probabilities are computed by projecting a state
vector (S in this figure) down on the subspace, producing a projection on
the Z subspace (R ¼ PA � S in the figure) and squaring the length of the
projection, Rk k2.
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potential for realization across the scale. As this superposition changes, it forms
a wave that flows across the levels of evidence over time (see right panel of
Figure 7.2). If at any point in time the decision-maker is asked to report his
belief, then a specific location is constructed from this superposed state.
Essentially, the report is created from an indefinite state rather than recorded
from an existing state.

Beyond probability and dynamics, quantum cognition also provides new
principles for information processing. In the past, three different general
approaches have been used to model human information processing: probabil-
istic models of cognition, neural and connectionist networks, and production
rule systems. Quantum information processing provides a natural way to
integrate all three approaches into a single unified framework. Quantum infor-
mation processing is accomplished by applying a sequence of what are called
control U-gates (Nielsen & Chuang, 2000). First of all, control U-gates operate
like if-then production rules (see Chapter 4 and Chapter 8 in this handbook) by
using input antecedent conditions to control output actions. In Figure 7.3, the
vector jC〉 is the control input which determines whether the action vector jA〉
is changed from the initial state jA0〉 to a new state jA1〉 by a unitary gate U.
Second, control U-gates operate like connectionist networks (see Chapter 2 in
this handbook) by taking a fuzzy distribution over a set of input nodes (jC〉 in
Figure 7.3) and passing them through a set of weighted connections (U
in Figure 7.3) to produce a distribution over a set of output nodes (jA1〉 in
Figure 7.3). Third, the probabilities generated by control U-gates are derived
from axiomatic principles analogous to those in probabilistic models of cogni-
tion (see Chapter 3 in this handbook).

In sum, quantum cognition provides a general and viable new approach to
cognitive science. For books on this topic, see Khrennikov (2010) and
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Figure 7.2 Illustration of Markov (left) and quantum (right) processes for
evolution of beliefs. The horizontal axis represents states associated with
different levels of evidence, and the vertical axis represents the amount of time
during evidence accumulation.
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Busemeyer & Bruza (2012); for tutorial articles, see Yearsley & Busemeyer
(2016), Kvam & Busemeyer (2018), and Busemeyer, Wang, & Pothos (2015);
and for reviews, see Ashtiani & Azgomi (2015), Busemeyer et al. (2020), and
Pothos & Busemeyer (2022).2 In the following, first a more formal description
of quantum probability is presented, which is followed by applications to
human judgments, reasoning, and decision-making. Next a more formal
description of quantum dynamics is presented, which is followed by applica-
tions to evidence accumulation and preference evolution. Finally, a more
formal description of quantum information processing is presented, which is
followed by applications to simple heuristics that are commonly discussed in the
judgment and decision-making literature.

7.2 Quantum Probability

The best way to introduce quantum probability is to compare it side by
side with classical probability. Table 7.1 provides a quick summary of this
comparison. To make the comparison concrete, suppose a person is asked to
rate how much she thinks she will like a movie from its description on a scale
ranging from 1, 2, . . ., 9. Then there are nine possible outcomes produced by
this judgment task. An event is a result that can occur when some measurement
is made, such as for example observing the event that a rating is greater than 5.
According to the first classical principle, each possible outcome is represented

by a point within a universal set called the sample space; according to the first
quantum principle, each possible outcome is represented by an orthogonal
dimension in a vector space called the Hilbert space.3 Considering the simple
example, the sample space consists of nine points; the vector space consists of
nine orthogonal dimensions.
According to the second classical principle, each event corresponds to a

subset of the sample space; according to the second quantum principle, each
event corresponds to a subspace of the vector space. For example, consider the
event that the hypothetical person does not like the movie very much. Suppose
one defines this as event A : “rating is less than 5.” The event A is classically
represented by the subset containing four points corresponding to 1, . . .., 4; the

Figure 7.3 Control U-gate. An input condition state C controls that application
of a unitary gate U that changes an action from state A0 to A1.

2 The website https://jbusemey.pages.iu.edu/quantum/Quantum%20Cognition%20Notes.htm con-
tains tutorials presented at the Cognitive Science meetings.

3 Technically, a Hilbert space is a complete inner product vector space defined on a complex field.
Our spaces are finite, which are always complete.
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quantum representation of event A is a subspace spanned by four orthogonal
vectors corresponding to 1,.. . ., 4. Each subspace of a vector space corresponds
to a projector that maps vectors onto the subspace. In this example, the event A
corresponds to a 9� 9 projection matrix denoted PA.

According to the third classical principle, a probability function, p, is
defined on events and used to assign probabilities to events. For example,
considering the event A ¼ “rating is less than 5,” the classical principle assigns
p Að Þ ¼ P4

i¼1p ið Þ, where p(i) is the probability assigned to point i. According
to the third quantum principle, a unit length state vector ψ is used to assign
probabilities to events. This is done by (a) first projecting the state vector onto
the subspace for event A, and then squaring the length of this projection.
Using the example of the event A ¼ “rating is less than 5,” the state ψ is
a 9� 1 vector, the projector PA picks out the first four coodinates of ψ so
that the projection, PA �ψ, produces the probability of A equal to
q Að Þ ¼ PA �ψk k2 ¼ P4

i¼1 ψi ið Þj j2. Intuitively, the projection, PA �ψ, is the match
between the person’s belief, represented by ψ, and an answer to a question,
represented by PA. Furthermore, in classical theory, if two events are mutually
exclusive (observing a rating below and above 4 is impossible), then the probabil-
ity of either event occurring is the sum of the individual event probabilities;
the same is true of quantum probability, because their subspaces are orthogonal,
and the probability of either event is based on the direct sum of two
orthogonal subspaces.

The fourth principle concerns the situation when there is more than one
measurement so that there is a sequence of events. This situation is where
quantum theory starts to depart even more dramatically from classical (if
there is only a single measurement, then one system can be mapped directly
into the other by setting p(A) ¼ q(A)). Suppose the hypothetical person is
asked to rate how much she thinks she will like the movie, and then rate how
much she thinks her friend will like the movie. Event A again represents the
event that the hypothetical person rates the movie less than 5. Suppose event
B is the event that the hypothetical person thinks her friend will rate the movie
higher than 5.

According to classical probability theory, if the pair of events A, B belong to
the same sample space, then A \ B is the joint event and p(A \ B) is the joint
probability. If the hypothetical person decides that event A is true, then the
probability of event B is formed by a new conditional probability function

Table 7.1 Comparison of probability theories

Principle Classical Quantum

1. Space Sample space Vector space
2. Events Subset Subspace
3. State Probability function State vector
4. Inference Commutative Noncommutative
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p(B|A) ¼ p(A\B)/p(A). This conditional probability forms the foundation
for Bayesian inference. Commutativity of events implies that p(A \ B) ¼ p(A)
p(B|A) ¼ p(B)p(A|B) ¼ p(B \ A).
According to quantum probability theory, if the pair of events A, B belong to

the same vector space, then one can define a sequence of events A and then B
and the probability of this sequence is obtained by first projecting the state on
subspace for event A, then projecting on the subspace for event B, and finally
taking the squared length: q A, Bð Þ ¼ PB �PA �ψk k2. If the hypothetical person
decides that event A is true, then the probability of event B is formed by a new
conditional probability function q(B|A) ¼ q(A,B)/q(A). This conditional
probability forms the foundation for quantum inference. The critical point
where quantum theory departs from classical theory is when the projectors
for the events do not commute, so that PB �PA 6¼ PA �PB, in which case
q A, Bð Þ ¼ q Að Þ � q BjAð Þ 6¼ q Bð Þ � q AjBð Þ ¼ q B, Að Þ.
In quantum theory, some measurement events commute and some do not.

When the events commute, they are called compatible events, and when they do
not, they are called incompatible. If the events were all compatible, then
quantum probability essentially reduces to classical probability:
q A, Bð Þ ¼ PB �PA �ψk k2 ¼ PA �PB �ψk k2 ¼ p A \ Bð Þ. Incompatibility is the
critical ingredient that makes quantum probability different, for in this case,
q A, Bð Þ 6¼ p A \ Bð Þ. But what makes events incompatible and how can one
determine whether or not they commute?
Recall that in quantum theory, events are represented as subspaces in a vector

space. A subspace is spanned by a set of orthogonal basis vectors that describe
the subspace. For example, event A may be described by a set of four basis
vectors {X1, . . ., X4} selected from a basis X¼ {X1, . . ., X9} that spans the entire
nine-dimensional rating scale vector space. However, the beauty of using a
vector space is that different bases can be used to describe events. For example,
event B may be described by a set of four basis vectors {Y1, . . ., Y4} selected
from a different basis Y ¼ {Y1, . . ., Y9} that also spans the entire vector space,
where the basis Y is related to the basis X by rotating the axes. (See Figure 7.4
for an example of a change in basis for a three-dimensional space.) Now if event
A is described by a different basis than event B, then the events will not
commute. Essentially, a person needs to change the basis to judge the pair of
events. If a change in basis is required to judge different events, then they cannot
be judged simultaneously and must be judged sequentially, and the order of the
sequence can affect the final answers.
Self–other judgments provide a good example of this need to change bases. It

seems difficult to judge from a personal perspective and another person’s
perspective simultaneously. It seems that a person needs to view the problem
from her own perspective (put herself in her own shoes), and then turn and view
the problem from a different perspective (put herself in another person’s shoes).
In fact, self–other judgments have been empirically observed to produce order
effects (Tesar, 2020; Wang & Busemeyer, 2016a). Besides changes in
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psychological perspective, another reason for the need to use different bases
occurs when events have rarely been experienced together, providing no oppor-
tunity to learn a compatible (joint) representation of the events (Nilsson, 2008;
Trueblood et al., 2017).

7.3 Applications of Quantum Probability Theory

The applications in this subsection illustrate the importance of non-
commutativity for understanding human judgments and decisions. An
important point to make here is the following. In the past, different kinds of
ad hoc heuristics have been used to account for the various puzzling findings
reviewed in this section – a different specific model is made up for each
phenomenon. Our goal is to use the same basic quantum principles to account
for all of various different findings reviewed in this section, and connect these
phenomena together, which have never been connected before the application
of quantum theory.

7.3.1 Probability Judgment Errors

One of the early applications was designed to account for well-known research
on probability judgment errors (Tversky & Kahneman, 1983). Two of the most
important are the conjunction and disjunction fallacies. A conjunction fallacy
occurs when a person judges the probability of the conjunction of two events to
be more likely than one of the constituent events. An example would be judging
the conjunctive event that a man that is over 50 years old (event O) and has
a heart attack (event H) to be more likely than the event that a man has a
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Figure 7.4 Example showing a change in basis for a three-dimensional space.
In this example, there are only three answers (yes, no, uncertain) to the
question about liking the movie. The three basis vectors on the left are used to
describe the events from the “self” perspective. These are rotated to a different
set of three basis vectors to represent the answers from the “other” perspective.
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heart attack. But according to the law of total probability p(H) ¼ p(H \ O) þ
p(H \ Ō) � P (H \ O). A disjunction fallacy occurs when a person judges the
probability of the disjunction of two events to be less likely than one of the
constituent events. An example would be judging the disjunctive event that a
man is over 50 or has a heart attack to be less likely than the event that a man is
over 50. Busemeyer et al. (2011) developed a simple but general quantum
probability (QP) account for these puzzling findings as follows. Define PH as
the projector for the event H, define PO as the projector for the event O, PŌ as
the projector for the event not old PO � PŌ ¼ 0, PO þ PŌ ¼ Ið Þ, and define ψ as
the state based on a person’s beliefs. Then the quantum probability of event
H equals p Hð Þ ¼ PH �ψk k2 and the quantum probability for the sequence of
events O and then H equals PHPO �ψk k2. However, one can decompose
the probability of event H as PH �ψk k2 ¼ PHPO �ψ þ PHPŌ �ψk k2 ¼
PHPO �ψk k2 þ PHPŌ �ψk k2 þ Int, where Int symbolize the crossproduct terms
produced by squaring the sum of two terms.4 If Int is sufficiently negative then
one obtains PH �ψk k2 < PHPO �ψk k2. A similar application can produce the
disjunction fallacy (see Busemeyer et al. 2011 for details). Note that non-
commutativity is necessary for these results: if the projectors commute, then
the interference term Int ¼ 0 is zero. The model of the conjunction and
disjunction fallacies was developed after the facts were known. But the theory
also made new predictions about these fallacies. One novel prediction, in
particular, was based on the implication that the events producing these
fallacies must be incompatible to produce these fallacies, which implies that
the order of judgment of events should matter. Therefore, it is predicted that
these fallacies should be related to question order effects. This prediction is
supported by the results of some studies (Fantino et al., 1997; Yearsley &
Trueblood, 2018); it was not supported in another study (Costello et al.,
2017); and mixed results were obtained by Boyer-Kassem et al. (2016)(for the
famous “Linda” problem, one condition produced an order effect, but
another condition did not).

7.3.2 Conceptual Combinations

The next topic is closely related to conjunction and disjunction errors, but this
research concerns membership judgments for conceptual combinations,
including conjunctions, disjunctions, and negations of concepts. An overex-
tension effect occurs when the membership of an item is stronger for a
conjunction of two concepts as compared to a single concept (Hampton,
1988b). An example from the latter article is a “tree house,” which is rated
higher as a member of the combined concept of “building and dwelling” as
compared to “building” alone. An under-extension effect occurs when the
strength of membership of an item is weaker for a disjunction of two concepts

4 Technically, Int ¼ 2 �Realðψ† �P†
O �P†

H �PH �PO �ψÞ, and the dagger symbolize Hermitian
transpose.
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as compared to the individual concepts Hampton (1988a). An example from
the latter articles is when an “ashtray” is considered a better example of
“home furnishings” as compared to “home furnishings or furniture.” Aerts
et al. (2015) studied negations with conceptual conjunctions, e.g., fruits and
vegetables, fruits and not vegetables, not fruits and vegetables, and not fruits
and not vegetables. The judgments obtained from the latter combinations
produced deviations from predictions based on the marginal law (the measure
assigned to A and B plus the measure assigned to A and ~ B differed from the
measure assigned to A). Aerts and colleagues (Aerts, 2009; Aerts et al., 2013)
developed a quantum theory for conceptual combination, called the “state-
context-property” theory, which is one of the earliest quantum models in
psychology. The “state-context-property” theory uses two different kinds of
quantum events: compatible representations that produce classical conceptual
combinations, and incompatible representations that produce nonclassical
judgments. This model is built on the idea that there are two separate routes
to concept combination, a classical one and a quantum one.

7.3.3 Order Effects

Using the same principles described in Table 7.1, a general model for question
order effects was developed: If the events O and H are incompatible, then the
probability of the sequence of answers O and then H, which equals
PHPO �ψk k2, will differ from the probability for the sequence of events H and

then O, which equals POPH �ψk k2. More importantly, Wang et al. (2014)
derived a general, a priori, parameter free, quantitative prediction from this
general model, called the QQ equality: QQ ¼ [p(yes to A then no to B) þ p(no
to A and then yes to B)] � [p(yes to B and then no to A) þ p(no to B and then
yes to A)] ¼ 0. This prediction about the pattern of order effects provided a
strong a priori quantitative empirical test of the general model. The QQ equality
prediction was found to be statistically supported across a wide range of seventy
national field studies that examined question order effects (Wang et al., 2014).
This discovery attracted quite a bit of interest, and after discovering this finding,
two other competing nonquantum accounts were proposed to account for the
QQ equality (Costello & Watts, 2018; Kellen et al., 2018).

More recently, a new equality was derived from quantum probability by
Yearsley & Trueblood (2018) for order effects on inference. For example, the
probability of guilt changes depending on whether the prosecutor or defense
presented evidence first (Trueblood & Busemeyer, 2010). This new equality was
also empirically supported, but the models by Kellen et al. (2018) and Costello
&Watts (2018) do not cover these new findings. Trueblood & Busemeyer (2010)
proposed a low dimensional parametric quantum model to account for these
order effects on inference. The model was used to quantitatively compare the
accuracy of the predictions from the quantum model to previous models of
order effects (Hogarth & Einhorn, 1992). Using the same number of parameters
for both models, the quantum model produced more accurate predictions than
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these earlier models of order effects on inference. Order effects also occur with
causal reasoning and quantum models for these effects also have been success-
ful. Trueblood et al. (2017) (see also Mistry et al., 2018) developed a general
hierarchy of mental representations, from “fully” quantum to “fully” classical,
which moved from the quantum level to the classical level by changing assump-
tions about compatibility (i.e., how joint events are represented). The results of
the latter studies showed the hierarchy of models explains five key phenomena
in human inference including order effects, reciprocity (i.e., the inverse fallacy),
memorylessness, violations of the Markov condition, and antidiscounting.
Furthermore, transitions in the hierarchy from more quantum to more classical
occurred as individuals gained familiarity with the task.

7.3.4 Similarity Judgments

Geometric distance models of similarity have had a major impact on cognitive
theories. However, these models were challenged by Tversky (1977), who
showed that similarity judgments violate symmetry, one of the main axioms of
a distance metric. A classic example concerns the similarities between the two
countries of North Korea and China: the similarity of Korea to China (when
Korea is the subject and China is the object) is judged to be greater than the
similarity of China to Korea. These findings were based on the intuition that
people have more knowledge of China than North Korea (at that time).
Quantum models have a natural way to capture this asymmetry (Pothos et al.,
2013). The basic idea is that the similarity of A to B is based on the sequence of
projections PB �PA �ψk k2. If the projectors do not commute, then the similarity
judgment will be asymmetric. Further, if one assumes (a) that ψ is initially
neutral, and (b) that the dimensionality of the subspace for China is greater
than that for North Korea (China is described by more features), then it was
shown that this model predicts that PChina �PKorea �ψk k2 > PKorea �PChina �ψk k2.
Pothos et al. (2013) also describe how the quantum similarity model accounts
for Tversky’s other main findings regarding the triangle inequality and diag-
osticity. Later, Kintsch (2014) proposed a similarity model based on Latent
Semantic Analysis (LSA) that shares properties with the quantum similarity
model. More recently Pothos & Trueblood (2015) developed a quantum simi-
larity model that can be directly extended to accommodate structure in
similarity comparisons.

7.3.5 Irrational Decision Making

Another early application of quantum theory concerned violations of a basic
“rational” axiom of decision making, called the “sure thing” principle
(Savage, 1954). According to the “sure thing” principe, if you prefer action
A over B under state of the world X, and you also prefer action A over B under
the complementary state of the world not X, then you should prefer action
A over B even if the state of the world is unknown. Tversky & Shafir (1992)
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experimentally tested this axiom using two stage gambles. Each gamble on
each stage gave an equal chance to win $2 or lose $1. Participants were forced
to play the first stage, but then they were given a choice whether or not to play
the second stage. The experiment included three conditions: decide whether or
not to play the second stage given that (1) the first stage produced a win; (2) the
first stage produced a loss; or (3) the first stage outcome was unknown.
Tversky & Shafir (1992) reported that participants generally preferred to take
the gamble again when the first stage was a known loss, and also when the first
stage was a known win, but they generally preferred not to take the gamble
when the first stage was unknown, violating the “sure thing” principle. This
can also be interpreted as a violation of the prediction from total probability
because in that case we should find p(Take) ¼ p(Win) �p(Take|Win) þ p(Lose) �
p(Take|Lose); however the observed p(Take) fell below both p(Take|Win) and
p(Take|Lose) contrary to this prediction. This violation was called the “dis-
junction effect.” Pothos & Busemeyer (2009) developed a simple quantum
model to account for these results using the same principles as described in
the earlier subsections. Define PW as the projector for the event “winning” the
first stage, define PL as the projector for losing the first stage (PW � PL ¼ 0),
define PT as another projector representing the decision to take the second
gamble, and ψ is the initial state. Then the probability that the player takes the
gamble in the unknown case equals PT �ψk k2 ¼ PTPW �ψk k2 þ PTPL �ψk k2þ
Int. The Int term can be negative to produce the observed violation of the
prediction from total probability. Later, Busemeyer, Wang, & Shiffrin (2015)
used this model to quantitatively compare the predictions from the quantum
model to a traditional decision model originally developed by Shafir &
Tversky (1992). The models were compared at the individual level of analysis
for a large data set using the same number of parameters (four) by a Bayes
factor method. The results of the comparison clearly favored the quantum
model over traditional decision models. More recently, research on the dis-
junction effect was replicated and extended by Broekaert et al. (2020), and a
quantum model was shown to provide a better account for these more exten-
sive results than for example the original version of prospect theory proposed
by Tversky & Shafir (1992).

The disjunction effect was also reported by Shafir & Tversky (1992) using the
prisoner’s dilemma (PD) game. Three conditions were used to test the predic-
tion from the law of total probability: In an “unknown” condition, the player
acts without knowing the opponent’s action; in a “known defect” condition, the
player is informed that the opponent will defect before the player takes action;
and in a “known cooperate” condition, the player is informed that the opponent
will cooperate before the player takes action. Most players defected knowing
the opponent defected and knowing the opponent cooperated, but they
switched and decided to cooperate when they did not know the opponent’s
action. This preference reversal by many players caused the proportion of
defections for the unknown condition (0.63) to fall below the proportions
observed under both of the known conditions (0.97 knowing the opponent
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defected, and 0.84 knowing the opponent cooperated). Once again, these results
violate a prediction based on the law of total probability: p(PD) ¼ p(OD) � p(PD|
OD) þ p(OC) � p(PD|OC), where PD is the event that the player defects, OD is
the event that the opponent is predicted to defect, and OC is the event that the
opponent is predicted to cooperate. According to this law, the probability of
defection in the unknown condition must fall between the two known condi-
tions. Pothos & Busemeyer (2009) applied the same quantum model used with
the two-stage gamble to account for these results. Define a projector PPD for
the player to decide to defect; another projector POD representing the event
that the opponent will defect; and an initial state ψ of the player. Then
the probability that the player defects in the unknown case equals
kPPD �ψ 2 ¼jPPDPOD �ψj�� ��2 þ PPDPŌD �ψk k2 þ Int. The Int term can be nega-
tive to produce the observed violation of the prediction from total probability.
Extensions of quantum models to other more complex games involving mul-
tiple (more than two) actions have also been made (Denolf et al., 2016;
Martínez-Martínez, 2014).
There are many other applications of quantum theory to decision making

(see Asano et al., 2017; La Mura 2009; Yukalov & Sornette 2011). These
applications show how quantum theory also can be used to explain other
paradoxes of decision making, such as violations of independence axioms of
decision making. However, these violations are also well covered by traditional
decision theories (Birnbaum, 2008; Tversky & Kahneman, 1990). The primary
advantage of quantum decision theories is their superior account of the disjunc-
tion effect (Broekaert et al., 2020).

7.3.6 Interference of Categorization on Decision

Interference effects were also found to occur using a categorization–decision
paradigm (Townsend et al., 2000). On each trial, participants were shown
pictures of faces. They were asked to categorize the faces as belonging to either
a “good” guy or “bad” guy group, and they were asked to decide whether to
take an “attack” or “withdrawal” action. Two critical conditions were used to
test interference effects: In the C-then-D condition, participants categorized the
face and then made an action decision; in the D-Alone condition, participants
only made an action decision (no categorization response was required). The
test of interference was based on a prediction based on the law of total
probability: define p(Attack) as the probability to attack in the decision alone
condition, define p(G) as the probability to categorize as “good guy” and p(B) as
the probability to categorize as “bad guy” for the C-D condition, and define
pT(Attack) ¼ p(G) � p(Attack|G) þ p(B) � p(Attack|B) as the total probability
obtained from the C-D condition. An interference effect is defined as the
difference p(Attack) � pT (Attack). In other words, asking about the category
interferes with the final probability of taking the action to attack as compared
to not asking about the category. Systematic interference effects were found
across several experiments (Wang & Busemeyer, 2016b). For example, in one of
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the experiments, when the optimal decision was to attack, it was found that
p(Attack) ¼ .69 > pT (Attack) ¼ .60. A quantum model was formulated using
the same principles described for the previous applications: define PG as the
projector for categorizing the face as “good guy,” define PB as the projector for
categorizing the face as “bad guy,” and define PA as the projector for deciding
to attack. Then the probability to attack in the D-alone condition equals
PA �ψk k2 ¼ PAPG �ψk k2 þ PAPB �ψk k2 þ Int, and again the Int term accounts

for the interference effect. To be more specific, Wang & Busemeyer (2016b)
used the same quantum model used earlier for the prisoner’s dilemma game to
account for the interference of categorization on decision. They also quantita-
tively compared the Markov model proposed by Townsend et al. (2000) to the
quantum model. The Markov model could not predict the interference effect;
nevertheless, it is unclear whether the quantum or Markov could better predict
other properties of the choice data. So Wang & Busemeyer (2016b) used a
generalization test to compare the quantitative predictions of the two models:
both models were fit to payoff conditions using the same number of parameters;
then these same parameters were used to make new predictions for a new payoff
condition. The quantum model provided slightly more accurate predictions for
generalization than the Markov model.

Several new models have been proposed for the categorization–decision task.
Moreira & Wichert (2016) developed an alternative quantum model for the
categorization–decision task using a “quantum Bayesian” network that does
not require fitting model parameters. He & Jiang (2018) proposed an alternative
Markov model to account for interference effects that includes an additional
hidden state which is entered when the categorization response is not required.
These new models have yet to be tested using the full data set reported in Wang
& Busemeyer (2016b).

7.3.7 Concluding Comments on Quantum Probability

There are numerous other applications of quantum probability theory to atti-
tude judgments (Busemeyer & Wang, 2017; Khrennikov et al., 2014; White
et al., 2014), inference (Basieva et al., 2017; Yearsley & Pothos, 2016), risky
decision making (Favre et al., 2016), measurement context effects (Bruza, Kitto,
et al., 2015; Busemeyer & Wang, 2018; Cervantes & Dzhafarov, 2018;
Dzhafarov et al., 2016), and memory recognition (Brainerd et al., 2013;
Broekaert & Busemeyer, 2017; Denolf & Lambert-Mogiliansky, 2016;
Trueblood & Hemmer, 2017). However, it is time to turn to another topic. As
mentioned in the beginning of this section, the main point concerning the
applications of quantum probability is the following. Perhaps a classical model
could be built to account for any single application described in this section.
However, the power of quantum probability comes from its use of the same
axiomatic principles, such as noncommutativity, across all of the applications
considered here, thereby linking together a wide range of phenomena that have
never been connected before.
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7.4 Quantum Dynamics

Busemeyer et al. (2020) recently presented a comprehensive compari-
son of quantum and Markov dynamics. Table 7.2, adapted from their review,
provides a quick summary of this comparison. To make the comparison con-
crete, suppose a person is watching a murder mystery film with a friend. While
watching, the person’s beliefs move up and down across time as different kinds
of evidence are presented during the movie scenes. At any point in time, the
person can express the likelihood that a suspect is guilty or innocent on a
probability scale ranging from 0, 1, 2, . . ., 100. Although this example is focused
on evidence accumulation, Markov and quantum models also can be applied to
preference accumulation problems.
Both theories begin with a set of possible basic states that the system can pass

through over time, describing the relative degrees of support for one option or
the other. In the case of evidence accumulation, these states are distinct levels of
belief. In the case of preference accumulation, these states are distinct levels
of preference.
The first principle for Markov models asserts that there is a probability

distribution p(t) across basic states at each point in time. This probability
distribution always sums to one. The first principle for quantum models asserts
that there is an amplitude distribution ψ(t) across states at each point in time.
The amplitude assigned to a basic state can be a complex number, and the
probability of reporting that state is the squared magnitude of the amplitude.
The sum of squared amplitudes always sums to one (i.e., the amplitude distri-
bution has unit length).
According to the second principle for the Markov model, the probability

distribution over states evolves over time according to a transition operator,
which describes the probability of transiting from one basic state to another
over some period of time: p(t þ Δ) ¼ T(Δ) � p(t). The transition operator
maintains a probability distribution that sums to unity over states at each time.
For the quantum model, the amplitude distribution evolves over time according
to a unitary operator ψ(t þ Δ) ¼ U(Δ) �ψ(t). This operator describes the
amplitude for transiting from one basic state to another over time, and the
probability of making this transition is obtained from the squared magnitude.
The unitary operator maintains a squared amplitude distribution that sums to
unity over states at each time.

Table 7.2 Comparison of dynamic theories

Principle Markov Quantum

1. State Probability distribution Amplitude distribution
2. Evolution Transition operator Unitary operator
3. Dynamics Kolmogorov equation Schrödinger equation
4. Response Sum probabilities Sum squared amplitudes
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According to the third Markov principle, the rate of change in the transition
operator is determined by a linear differential equation called the Kolmogorov
equation: d

dt T tð Þ ¼ K �T tð Þ. The integration of these momentary changes forms
a transition operator. According to the third quantum principle, the rate of
change in the amplitude distribution is determined by a differential equation
called the Schrödinger equation: d

dt U tð Þ ¼ �i �H �U tð Þ. The integration of these
momentary changes forms a unitary operator. These differential equations look
surprisingly similar except for the complex number i that appears in the
Schrödinger equation, which is required to form a unitary operator.

According to the fourth Markov principle, the probability of reporting a
response at some point in time equals the sum of the probabilities over the states
that map into that response. After observing a response, a new probability
distribution, conditioned on the observed response, is formed for future evolu-
tion. According to the fourth quantum principle, the probability of reporting a
response at some point in time equals the sum of the squared magnitudes of
amplitudes over the states that map into that response. After observing a
response, a new amplitude distribution, conditioned on the observed response,
is formed for future evolution.

The key differences between Markov and quantum dynamics are the
following. The amplitudes of a quantum state represent the potentials for a
specific location to be realized if a measurement is taken, whereas the probabil-
ities of a Markov system represent the probability that the state currently exists
at some location before measurement. Quantum dynamics are generated by
rotating an amplitude distribution from one unit length distribution to another,
whereas classical dynamics are generated by transforming one probability
distribution to another. Thus, the Markov system operates on probabilities,
whereas the quantum system operates on amplitudes, and probabilities are
produced by their squared magnitudes. Squaring the magnitudes of the ampli-
tudes generates crossproduct interference terms that produce empirically distin-
guishable predictions. Conceptually, a Markov process is analogous to a pile of
sand with wind blowing the sand in some direction, so that the sand eventually
piles up on a wall in an equilibrium distribution. The quantum process is more
closely analogous to a wave of water with the wind blowing the wave in some
direction. Once the wave hits a wall, it bounces back until the wind blows it
forward again. The result is that the quantum model does not reach an equilib-
rium, and instead it oscillates back and forth across time. Later, some research
that examines this interesting prediction about oscillation behavior is described.

7.5 Applications of Quantum Dynamics

The applications in this subsection show the importance of evolving
amplitudes rather than probabilities across time. The first application, and one
of the earliest applications, uses quantum dynamics to account for bistable
perception. The next three applications compare Markov and quantum models
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on inference tasks in which participants accumulate evidence for one of two
hypotheses over time. The last application is new work comparing Markov and
quantum predictions for preference evolution during a decision task. For more
details about these kinds of applications, see Chapter 11 in this handbook.

7.5.1 Bistable Perception

One of the earliest applications of quantum dynamics was to bistable perception
by Atmanspacher et al. (2004) (see also Manousakis, 2009). In bistable percep-
tion, there are two competing interpretations of an ambiguous image, and a
person’s perception of the image flips from one to another over time. One of the
dependent variables of interest is the distribution of intervals between flips.
Atmanspacher et al. (2004) proposed a two-state quantum model of bistable

perception, with each basic state corresponding to one interpretation. When not
measured, the person is superposed between the two states, and a unitary
operator rotates the superposition over time producing oscillation in the state
amplitudes. When a person makes a judgment about which interpretation is
perceived at some time point, then this measurement “collapses” the superpos-
ition to one of the basic states (this is the conditional distribution following an
observation described in quantum principle 4 in Table 7.2). The time between
switches (dwell time) can be increased by increasing the frequency at which the
system is measured, i.e., asking whether it still resides in its previous state, which
is known as the quantum Zeno effect. Interestingly, a Markov model predicts
the opposite result (see Busemeyer & Bruza 2012, chapter 8). Based on the
quantum model, Atmanspacher et al. (2004) derived the prediction that the
expected dwell time (inverse switching rates) should follow a specific positively
accelerated quadratic function of the “off time” in a discontinuous presentation
of the image. The experimentally obtained average dwell times for a noncon-
tinuously presented Necker cube agree precisely with the prediction.
Furthermore, the model also accurately predicts the distribution dwell times
(Atmanspacher & Filk, 2013).

7.5.2 Choice–Confidence Paradigm

Concerning inference tasks, it is difficult to maintain precise control of the
evidence using interesting tasks such as watching a mystery movie. Instead, this
research has used tasks that allow more direct control of the evidence across
time. In particular, previous research used a “dot motion” task, which has
become popular among cognitive and neural scientists for studying evolution
of confidence. The dot motion task is a perceptual task that requires partici-
pants to judge the left/right direction of dot motion in a display consisting of
moving dots within a circular aperture. A small percentage of the dots move
coherently in one direction (left or right), and the rest move randomly.
Difficulty is manipulated between trials by changing the percentage of coher-
ently moving dots (called the coherence level). The judge watches the moving
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dots for a period of time at which point the experimenter requests a decision
about direction (left versus right motion) or a probability rating (0, .01, .02, . . .,
.99, 1.0) for a direction.

For this task, both quantum and Markov models postulate a scale of evi-
dence (e.g., 101 levels) and each point on the scale represents a basic evidence
state. Following principle 1 in Table 7.2, the Markov model begins with an
initial probability distribution over the evidence states, and the quantum model
begins with an amplitude distribution across states. This initial state is centered
around the middle (e.g., 0.50) of the scale. Following the Markov principle 2,
the transition operator evolves the probability distribution in the direction of
the coherent motion; following the quantum principle 2, the unitary operator
rotates the amplitude distribution in the direction of the coherent motion. Both
the Kolmogorov and the Schrödinger equation are determined by two param-
eters: a drift rate parameter that is related to the coherence of the dot motion,
and a diffusion parameter that spreads the distributions out across time.

In a study by Kvam et al. (2015), nine participants received over 2500 trials
on the dot motion task. The experimental design included four coherence levels
(2 percent, 4 percent, 8 percent, or 16 percent). The critical manipulation was
the use of two different kinds of judgment conditions. In the choice–confidence
condition, participants were given t1 ¼ 0.5s to view the display, followed by a
tone that signaled the time to make a binary (left/right) decision. After an
additional Δt ¼ 0.05; 0.75, 1.5s following the choice, a second tone indicated
time to make a probability rating on a 0 (certain left) to 100% (certain right)
rating scale. In a confidence-only condition, participants didn’t make a decision
about direction of movement. Instead they simply made an arbitrarily deter-
mined response when a tone signaled at time t1, and then made a probability
rating at the same t2 as with the choice–confidence condition. The critical test of
the two models concerns the marginal distribution of probability ratings at time
t2. For the confidence-only condition, this is simply the distribution of ratings at
time t2. For the choice–confidence condition, the marginal distribution was
obtained by summing the distribution of ratings at time t2 across the two
choices made at time t1.

According to a Markov model, the marginal distribution of confidence at
time t2 should be the same for the choice–confidence and confidence-only
conditions. This is a general prediction and not restricted to a particular version
of a Markov model. The prediction even holds if the dynamics of the Markov
process change between the first and second intervals. The only requirement for
this prediction is that the dynamics after time t1 are only determined by the dot
motion information, and not changed by the type of response at time t1 (see
Kvam et al., 2015 for proof ). In contrast, a quantum model predicts that these
two distributions should be different, and the difference between conditions is
called an interference effect.

The results of the experiment strongly favored the quantum model predic-
tions: the interference effect was significant at the group level, and six out of
the nine participants produced significant interference effects. Furthermore,
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parameterized versions of the Markov and quantum models were used to
predict both the binary choices and the confidence ratings using the same number
of model parameters. A Bayesian method was used to compare models, and
seven out of nine participants favored the quantum over the Markov model.
One could try to save the Markov model by arguing (as reviewers did) that

the act of choosing somehow changes the dynamics of the Markov process
during the second interval. For example, the choice may produce a confirm-
ation bias, such that the decision maker pays more attention to evidence in the
second interval that is consistent with the choice. However, this explanation
fails because it predicts that choice would increase average confidence at time t2
for the choice–confidence condition relative to the confidence-only condition.
But in fact the opposite results occurred: choice decreased average confidence.
Another possible argument is that choice causes noise, however, this fails to
account for the fact that accuracy did not differ between choice and no choice
conditions at time t2. Kvam et al. (2015) discuss and rule out seventeen posthoc
modifications of the Markov model.

7.5.3 Double Confidence Paradigm

The previous study examined the effects of a binary choice on a later probability
judgment. The next study examined the effects of a first probability rating on a
second probability judgment. The question is whether the first probability
judgment is sufficient to produce an interference effect like that produced by
committing to an earlier binary decision. A binary decision may evoke a
stronger commitment, whereas a probability judgment does not force the deci-
sion maker to make any clear decision (White et al., 2014). A total of eleven
participants (eight females, three males) were paid depending on their perform-
ance for making judgments on approximately 1000 trials across three daily
sessions. Once again, the participants monitored dot motion using four coher-
ence levels (2 percent, 4 percent, 8 percent, or 16 percent) with half of the trials
presenting left moving dots and the remaining half of the trials presenting right
moving dots.
Two probability ratings were made at a pair (t1, t2) of time points. The

experiment included three main conditions: requests for probability ratings at
times (condition 1) t1 ¼ 0.5s and t2 ¼ 1.5s; (condition 2) t1 ¼ 1.5s and t2 ¼ 2.5s,
and (condition 3) t1 ¼ 0.5s and t2 ¼ 2.5s. This design provided a new test for
interference effects by comparing the marginal distribution of probability
ratings at time t2 ¼ 1.5s for condition 1 (pooled across ratings made at time
t1 ¼ 0.5s ) with the distribution of ratings at time t1 ¼ 1.5s from condition 2.
Note that at time t1 ¼ 1.5s, condition 1 was not preceded by any previous
rating, whereas condition 2 was preceded by a rating. Once again, the Markov
model predicts no difference between conditions at the matching time points,
and in contrast, the quantum model predicts an interference effect of the first
rating on the second.
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The interference effect was tested by comparing the marginal distribution for
condition 1 at time t2 ¼ 1.5s with the marginal distribution for condition 2 at
time t1 ¼ 1.5s. The results produced significant differences only for the low
coherence levels and only three out of the eleven participants produced signifi-
cant effects at the low (2 percent, 4 percent) coherence levels. One way to
interpret this difference from the previous study by Kvam et al. (2015) is that
using a binary decision for the first measurement may be more effective for
“collapsing” the wave function than using a probabilistic judgment for the first
measurement, resulting in greater interference between choice and rating
responses than for sequential rating responses.

The double confidence experiment also provided a new generalization test for
quantitatively comparing the predictions computed from parameterized ver-
sions of the competing models. The generalization test provides a different
method than the Bayes factor previously used for quantitatively comparing
the two models because it is based on a priori predictions made to new experi-
mental conditions. The parameters from both models were estimated using
maximum likelihood from the probability rating distributions obtained from
the first two conditions (pair t1 ¼ 0.5s and t2 ¼ 1.5s and pair t1 ¼ 1.5s and t2 ¼
2.5s) for each individual; then these same parameters were used to predict
probability rating distributions for each person on the third condition (pair
t1 ¼ 0.5s and t2 ¼ 2.5s). Both models used two parameters to predict the
probability rating distributions. Using maximum likelihood, the parameters
were estimated from the joint distribution (pair of ratings at 0.5s and 1.5s)
obtained from condition 1, and the joint distribution (pair of ratings at 1.5s and
2.5s) from condition 2, separately for each coherence level and each participant.
Then these same two parameters were used to predict the joint distribution (pair
of ratings 0.5s and 2.5s) obtained from condition 3 for each coherence level
and participant.

The results were that the quantum model produced more accurate predictions
for the generalization tests for the low coherence levels. Eight of the eleven
participants produced results favoring the quantum model for coherence levels
2 percent, 4 percent, and 8 percent, but only five participants produced results
favoring the quantum model for coherence level 16 percent. The results clearly
favored the quantum model, but less so for high coherence.

7.5.4 Choice Response Time

One of the most important contributions of Markov models, such as random
walk or diffusion models, is to predict both choice and decision time. So far,
only studies using fixed or experimentally controlled decision times were dis-
cussed. In a typical choice–response time experiment, the decision maker is
presented with a noisy stimulus (like the dot motion task), and views the
stimulus until the decision maker decides when to stop and make a choice. In
this self-terminating stopping task, the decision time is a random variable.

Quantum Models of Cognition 261

https://doi.org/10.1017/9781108755610.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.010


Across many trials of this kind of experiment, a researcher can collect a
distribution of choices and response times to each stimulus condition.
Busemeyer et al. (2006) conducted an initial comparison between models with

regard to response times using data collected from a perceptual decision task.
The initial result was that, although the quantum model was capable of making
fairly accurate predictions, the Markov model (approximately a diffusion
model) predicted the choice–response time distribution better than the quantum
model. Later, Fuss & Navarro (2013) used a more general approach to model-
ing quantum dynamical systems that included additional quantum noise oper-
ators (related to what is later discussed as an open system model). This more
general quantum model outperformed a simple diffusion model in predicting
the choice–response time distributions in a perceptual decision-making experi-
ment. The Markov model has enjoyed much success predicting choice and
response time for simple perceptual and memory decisions after a long history
of development. Much more theoretical development, especially along the lines
of Fuss & Navarro (2013) using more general quantum dynamics, is needed to
make the quantum model more competitive against the Markov model when
applied to choice response time.

7.5.5 Preference Oscillation

In a preference task, participants are presented with a choice between two
valuable options. The options could be consumer products, or apartments, or
monetary gambles. Both the Markov and quantum models provide a descrip-
tion of the dynamic evolution of preference during the decision (see Busemeyer
et al., 2020). For this type of task, both quantum and Markov models postulate
a scale of preference (e.g., 101 levels) and each point on the scale represents a
basic preference state.
As discussed at the beginning of this chapter, quantum dynamics naturally

produce oscillation across time, which results from the wave nature of the
quantum evolution process. In contrast, the Markov process naturally produces
a monotonic increase toward an equilibrium, which results from the particle
nature of the Markov evolution process. In addition to the difference in predic-
tions concerning oscillation, the models continue to make different predictions
concerning the effect of making a decision on the subsequent evolution of
preference. As discussed earlier, the Markov model predicts no effect of making
an earlier choice (as compared to not making any choice) on later mean prefer-
ence (when averaged across the choice that was made for the choice condition),
but the quantum model predicts an interference effect of choice on later prefer-
ence ratings. Figure 7.5 shows the difference in time evolution predicted by the
quantum and Markov models. The figure shows preference plotted as a function
of time with three curves: the curve with larger oscillations shows the prediction of
the quantum model when no choice occurs, the curve with smaller oscillations
shows the prediction when a choice occurs at the time indicated by the vertical
line, and the monotonically increasing curve shows the prediction of the Markov
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model (and here there is no difference between choice and no choice). Note that
choice tends to dampen the oscillation produced by the quantum model. To test
these predictions it is necessary to monitor preference over an extended period of
time – if the measurement stops too early in Figure 7.5, then only an initial
increase in preference would be observed for both models.

Kvam et al. (2021) recently conducted an experimental test of these predic-
tions using a preference task in which participants chose between two gift cards.
The experiment included two conditions: (choice condition) after an initial 5
seconds, participants made a choice, and then rated their degree of preference
between them at 3, 6, 8, 18, 30, or 45 seconds after choice; (no choice condition)
after the initial 5 seconds, participants simply pushed a preplanned button, and
then rated preference at the same time intervals. As predicted by the quantum
model, preference strength shifted back and forth over time, creating a pattern
that exhibited oscillations. Furthermore, preference strength shifts were
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Figure 7.5 A comparison of preference evolution produced by quantum and
Markov models. Mean ratings of preference strength are plotted as a function of
time. The curve with larger oscillations is produced by the quantum model when
there is no preceding choice, the curve with smaller oscillations is produced by
the quantum model when there is a choice at the time indicated by the vertical
line, and the monotonically increasing curve is produced by the Markov model
(it predicts no difference between choice and no choice conditions).
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dampened by a prior choice, resulting in a difference in mean preference
between choice and no-choice conditions at different time points in
different directions.
Although there is intriguing experimental evidence for oscillation, much

remains to determine its source. Perhaps a Markov model, with a time-varying
transition operator produced by attention switching (Diederich & Trueblood,
2018) could be applied. However, this account fails to explain the empirically
observed interference (dampening) effect produced by making an initial choice.
The quantum model may also have trouble. It seems unlikely that humans
continue to oscillate indefinitely as the quantum model predicts, and some
operator is probably required to change from oscillation to equilibrium. The
latter issue can be addressed with the development of a combined quantum–

Markov dynamic system called an open system (Asano et al., 2011; Martínez-
Martínez & Sánchez-Burillo, 2016).

7.5.6 Concluding Comments on Quantum Dynamics

This section focused on contrasting quantum and Markov dynamic models.
Each approach has been shown to have strengths and weaknesses. However, it
is not necessary to choose one framework over the other. In fact, it is possible to
combine them into a more general and powerful quantum–Markov system.
This can be achieved by using what is called a Master dynamic equation that is
formed by a weighted average of two dynamic terms: one is the Schrödinger
operator and the second term is a Markov term involving what is technically
called the Lindblad operator. The Master equation produces dynamics that
start out in a superposed quantum state, but then evolve toward a classical
state, which is a process called decoherence. This more general model can
reduce to either a pure quantum dynamic or a pure Markov dynamic depending
on the weight used to average the two types of dynamics. Ultimately, this more
general system may provide a more comprehensive account for the dynamics of
human decision making. These types of hybrid quantum and Markov models
for decision making have been developed by several researchers (Asano et al.,
2011; Fuss & Navarro, 2013; Martínez-Martínez & Sánchez-Burillo, 2016;
Yearsley & Busemeyer, 2016).

7.6 Quantum Information Processing

Classic information processing systems are composed of a large
number of if-then production rules. Connectionist systems are composed of a
large number of neural nodes that are interconnected by connection weights.
Quantum systems are composed of a large number of basis vectors that span an
N�dimensional vector space, and U-gates that operate on the vectors.
Formally, the state spaces for both neural networks and quantum systems are
vector spaces, but the transformation rules are different. A comparison of the
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information processing principles used by classical, neural network, and quan-
tum systems is presented in Table 7.3.

According to the first principle for a classic information processing system,
the input to the system produces activation of a symbolic pattern in declarative
memory. A connectionist type of neural network uses a distribution of
activation strength across a set of input neural nodes to represent the input.5

According to a quantum system, the current context (state preparation) gener-
ates an initial state vector. Like a connectionist model, the state vector is an
amplitude distribution across the N basic states (N basis vectors that span the
space). However, this initial input is composed of two parts: a set of condition
states that form the antecedent conditions for applying a U-gate, and a set of
action states that are transformed by the U-gate (see Figure 7.3).

According to the second principle for a classic information processing system,
if the conditions of a rule match the current input pattern, then it is assigned an
action strength determined by the expected utility of the action for achieving the
current goal. A connectionist type of neural network sends the inputs through a
set of connections to a hidden layer of nodes with a weight connecting each
input to each hidden node; the activation of each hidden node is computed from
a nonlinear transformation of the weighted sum of inputs into the node; then
activation is passed to the next layer and so on until it reaches the final set of
nodes. The quantum transformation captures both the production rule principle
and the connectionist network principle. On the one hand, the U-gate is like a
production rule because the application of a U-gate to the action states is
determined by the amplitudes assigned to the condition states. On the other
hand, the U-gate is like a connectionist model because it is formed by a set of
connections from input basic states to output basic states, with a weight
connecting each input state to each output state. The output of the U-gate is
a new state vector, and again like a connectionist model, the output amplitude
at each state is a weighted sum of the inputs to that state.

According to the third principle for classic information processing, the choice
of production is determined probabilistically by the action strength of a pro-
duction relative to other productions that are active. For a connectionist
network model, the probability of choosing a response is determined probabil-
istically by the activation strengths associated with an action relative to the
activation strengths of other actions. For the quantum system, the probability

Table 7.3 Comparison of quantum and classical information processing

Classical Quantum Network

Input symbolic pattern superposition distributed activation
Transformation production rule control U-gate network connections
Output action strength superposition output activation

5 Some systems, such as Clarion (Sun, 2016), are hybrid symbolic and connectionist.
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of choosing an action is determined probabilistically by the squared magnitudes
of amplitudes associated with an action relative to those associated with
other actions.

7.7 Applications of Quantum Information Processing

The following application of quantum information processing was
first described by Kvam & Pleskac (2017). Suppose a person is presented
with three binary cues about the performance of two mutual funds, and they
are asked to predict which fund will perform best in the near future.
A simple heuristic that has been found to describe what many people do in
this kind of task is called “take the best,” denoted TTB, (Gigerenzer &
Goldstein, 1996), which is a type of lexicographic rule: for the first stage, a
person starts with the most valid cue and picks the best option on that cue; if
the options are not discriminable on that cue, then for the second stage, the
person chooses the best option using the second most valid cue; if the
options are not discriminable on the second cue, then for the third stage,
the person picks the best option on the third cue; finally, if the options are
not discriminable on the third cue, then the person guesses. Kvam & Pleskac
(2017) proposed a quantum information processing model for this heuristic.
Below is a slightly modified version of their proposal.

7.7.1 Building the Vector Space

The three cues are denoted C1, C2, C3. These three cues can be ordered
according to validity in six different ways to be denoted as O1, O2 . . ., O6.
For example, O1 is the order C1 > C2 > C3, and O2 is the order C1 > C3 >

C2. The “condition states” represent the eighteen combinations of the six
possible cue validity orders and the three possible cues to select at each
stage. For example, one of the eighteen condition states can be denoted
jO1〉 jC1〉 for picking order 1 and choosing cue C1 during the first stage of
TTB, and another can be denoted jO2〉 jC3〉 for selecting order 2 and
choosing cue C3 during the second stage of TTB. The action states represent
three possible actions: choose firm A (denoted jA1〉), undecided (denoted
jA2〉, and choose firm B (denoted jA3〉). Combining the eighteen condition
states with the three action states produces fifty-four basic states (basis
vectors) which span a fifty-four dimensional vector space. For example,
one of the basic states can be denoted jO1〉 jC1〉 jA1〉 for selecting order 1,
using cue C1, and choosing firm A1.
The initial state, denoted |ψ0), is represented by a 54� 1 column vector ψ0

containing an amplitude assigned to each basis vector. This initial state can be
constructed as follows. Define W as a 6� 1 unit length column vector that
assigns a weight to each order. Define C as a 3� 1 vector containing the initial
coordinates for cues C1, C2, C3 respectively, and for convenience set
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C ¼ 1 0 0½ �T to represent initially picking the first cue. Define A as a 3 � 1
vector containing the initial coordinates for actions A1, A2, A3 respectively, and
for convenience set A ¼ 0 1 0½ �T to represent initially picking the undecided
action. Then the initial state is formed by the tensor product

ψ0 ¼ W � C � A:

This initial state starts with cue C1 and the undecided action A2 and assigns a
weight Wj > 0 to each order.

7.7.2 Building a Gate to Pick a Cue

A U-gate denoted Uc is designed to select a cue given an order and stage of
processing. The cue order serves as the antecedent condition, and the selection
of a cue is the output of this gate. For example, for the first stage, Uc is designed
to pick the most valid cue depending on the cue order. Considering the first
stage, Uc is a 54� 54 block diagonal matrix

Uc ¼ diag Uc1, Uc1, Uc2, Uc2, Uc3, Uc3½ � � I3:

The first two matrices on the block diagonal correspond to orders 1 and 2, and
for both of these orders, cue C1 is the most valid cue. The matrix Uc1 is a 3 � 3
identity matrix designed to pick cue C1 (it is identity because the initial state is
already in C1). The second two matrices on the block diagonal correspond to
orders 3 and 4, and for both of these orders, cue C is the most valid cue. The
matrix Uc2 is a 3� 3 permutation matrix that rotates the initial state from
C ¼ 1 0 0½ � to C ¼ 0 1 0½ � in order to pick cue C2. The matrix Uc3 is a
3� 3 permutation matrix that rotates the initial state from C ¼ 1 0 0½ � to
C ¼ 0 0 1½ � in order to pick cue C3. The other stages are constructed in the
same manner but with a different arrangement of the permutation matrices to
match the stage with the cue that is picked for that stage. The block diagonal
matrix is tensor multiplied by a 3� 3 identity matrix I3. This allows Uc to
operate only on the order and cue coordinates, W � C, and it leaves the action
coordinates A unchanged.

7.7.3 Building the Gate to Pick an Action

A U-gate denoted Ua is designed to select an action given a cue. The cue serves
as the conditions for selecting a firm or remain undecided. The matrix Ua is a
54� 54 block diagonal matrix

Ua ¼ I6 � diag Uc1, Uc1, Uc2½ �:
The matrix Uc1 is a 3� 3 identity matrix designed to rotate the coordinates of
initial action states from A ¼ 0 1 0½ � to a new amplitude distribution
depending on the direction and magnitude indicated by cue C1. For example,
if cue C1 strongly favors action A1 then Uc1 rotates the action from
A ¼ 0 1 0½ � toward A ¼ 1 0 0½ �. Likewise, the matrix Uc2 is a 3 � 3
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identity matrix designed to rotate the coordinates of initial action states from
A ¼ 0 1 0½ � to a new amplitude distribution depending on the direction and
magnitude indicated by cue C2, and the same principles apply to Uc3. For
example, if cue C3 strongly favors action A3 then Uc3 rotates the action from
A ¼ 0 1 0½ � toward A ¼ 0 0 1½ �. A 6 � 6 identity matrix is tensor
multiplied by the block diagonal matrix. This allows Ua to operate only on
the cue and action coordinates, C � A, and it leaves the order coordinates
W unchanged.

7.7.4 Computing the Response Probabilities

The probabilities of choosing one of the actions from the set {A1, A2, A3} are
computed using three measurement operators (projectors) that pick out the
appropriate coordinates from the state vector ψ0. The projectors for actions
A1, A2, A3 respectively are

M1 ¼ I18 � diag 1 0 0½ �
M2 ¼ I18 � diag 0 1 0½ �
M3 ¼ I18 � diag 0 0 1½ �:

Then one can compute the probability of choosing each action at stage 1 using
the squared lengths of projections

p Aijs ¼ 1ð Þ ¼ kMi �Ua �Uc 1ð Þ �ψ0k2:

If the first stage results in an undecided choice, then the initial state is changed
to a new state conditioned on this result:

ψ1 ¼
M2 �Ua �Uc sð Þ �ψ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p A2jstage ¼ 1ð Þp :

Then the probability of stage 2 is computed from

p Ai s ¼ 2jð Þ ¼ Mi �Ua �Uc 2ð Þ �ψ1k k2,

ψ2 ¼
M2 �Ua �Uc sð Þ �ψ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p A2 stage ¼ 2jð Þp ,

and the probability for stage 3 equals

p Aijs ¼ 3ð Þ ¼ Mi �Ua �Uc 3ð Þ �ψ2k k2: (7.1)

A Matlab program for performing these computations is available from the
first author. Using this program, and setting the weights equal to W1 ¼ W6 ¼
.49 and otherwiseWj ¼ .005, and assuming that C1 rotates the action 72 degrees
toward A1, C2 leaves A unchanged, and C3 rotates the action 72 degrees toward
A3, then the model produces the predictions shown in Table 7.4.
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7.7.5 Concluding Comments on Quantum Information Processing

As Kvam & Pleskac (2017) point out, one immediate advantage of the quantum
model is that it naturally allows uncertainty about the orders, uncertainty about
the selection of cues, and uncertainty about the responses to the cues, so that the
predictions are naturally probabilistic rather than deterministic. The deterministic
nature of the original “take the best” (or any lexicographic model) makes it
difficult to apply to data from human decision makers that produce variation in
their answers to the same questions across trials. Other ways to formulate stochas-
tic versions of deterministic rules have been proposed (Scheibehenne et al., 2013),
but these lack coherent principles such as those provided by quantum theory.

7.8 Conclusion

This chapter provides a broad overview of the quantum cognition
framework to a wide range of problems using a common set of principles.
Three different kinds of applications were covered including applications of
the formal properties for probability assignment from quantum theory, appli-
cations to the dynamic part of the theory that uses quantum dynamics, and
applications to information processing. In each of these applications, the quan-
tum cognition models were compared with classical models including classical
probability and decision models, Markov models for dynamics, and production
rule models for information processing. The applications make a fairly strong
case for the viability of applying quantum probability, dynamics, and infor-
mation processing to cognitive science.

After reading this chapter, one might ask the following question: What makes
quantum probability so different than classical probability? The answer is that
quantum events “take place” in a vector (Hilbert) space whereas classical events
“take place” in a sample space. The use of vector spaces entails the use of a
quantum state and quantum probability computational rule: a famous theorem
by Gleason (1957, see p. 885) proves that any additive probability measure of
events described by subspaces of a vector space greater than 2 is derived from a
quantum state and probability computation rule. The dynamics of a quantum
system follows from the assumption that the unit length state of a system must
retain the same length during evolution. According to Wigner’s theorem, this

Table 7.4 Predicted probabilities of actions
given each stage of “take the best”

Stage A1 A2 A3

1 .45 .10 .45
2 .05 .90 .05
3 .45 .10 .45
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evolution must be unitary (see Peres 1998, pp. 217–218). Finally, the quantum
information processing principles then follow directly from the unit length
state representation, unitary transformation, and quantum probability
computation rules.
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8 Constraints in Cognitive
Architectures
Niels Taatgen and John Anderson

8.1 Introduction

When Turing wrote his famous paper in which he asked the question
whether machines can think, and how this can be tested (Turing, 1950), he set
out the goal of creating an intelligent machine whose intelligence is indistin-
guishable from human intelligence. Turing’s earlier work (Turing, 1936) proved
that the basic digital computer’s potential is as great as any conceivable
computational device, suggesting that it was only a matter of time before a
computer could be developed that is as intelligent as a human. Even though the
exponential growth in speed and memory did lead to many applications that
were beyond the dreams of the founders, human-like intelligence remained an
elusive goal. Diversification in the field led to modern artificial intelligence and
the smaller field of cognitive modeling. In modern artificial intelligence, the
main goal is to create intelligent programs, with the human intelligence aspect
only as a source of inspiration, while cognitive modeling has taken the opposite
route of focusing on faithfully modeling human intelligence, but not being
really interested in creating intelligent applications.

Cognitive architectures are on the one hand echoes of the original goal of
creating an intelligent machine faithful to human intelligence, and on the other
hand attempts at theoretical unification in the field of cognitive psychology.1

These two aspects imply a duality between functionality and theory. Cognitive
architectures should offer functionality, i.e., representations and cognitive
mechanisms to produce intelligent behavior. More choices in representation
and mechanisms offer a larger toolbox to create a model for a certain phenom-
enon. But cognitive architectures should also be theories. An ideal theory offers
only a single and not multiple explanations for a phenomenon. From the theory
perspective, having many representations and mechanisms is not a good idea,
because it increases the probability that many models can fit the same data.
Specific functionality and general theory can therefore be conflicting goals, and
different architectures strike a different balance between them. There are even
cognitive architectures that primarily focus on the functionality aspect and have
no or few theoretical claims (e.g., COGENT, Cooper & Fox, 1998).

1 Note that discussion is restricted to cognitive architectures that have the goal to model
psychological phenomena.
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The term cognitive architecture is an analogy of the term computer architec-
ture (Newell, 1990; see also the discussion in Chapter 1 of this handbook).
A computer architecture serves as a universal basis for a programmer to create
any program. Similarly, a cognitive architecture allows modelers to create
simulation models of human cognition. A model means a specific set of know-
ledge and parameters settings that are supplied by the architecture that allow
the architecture to perform a task or set of tasks, and produce predictions about
how humans would perform those tasks. For example, a model of multicolumn
addition might consist of a set of simple addition facts and a set of production
rules that specify that you have to start in the right column, how to handle
carries, etc. The classical method of finding this set of knowledge is through task
analysis: a careful study of the necessary knowledge and the control structure
associated with it. The knowledge specified in the task analysis is then encoded
as knowledge representations in the architecture, which can subsequently make
predictions about various aspects of human performance, including reaction
times, errors, choices made, eye movements, and fMRI.
A problem for cognitive models is the identifiability problem. If several

different cognitive architectures each produce a model that explains the data,
which is better? Even within a single architecture, several models are possible
that seem equally valid. Sometimes, multiple possible models may be desirable,
because probably not every human performs the same task in the same way, but
often one model is probably closer to the truth than another. Unfortunately,
there is no quantitative measure for model quality, but most cognitive modelers
agree that the following qualitative factors contribute to the validity of a model:

– A good model should have as few free parameters as possible. Many cognitive
architectures have free parameters that can be given arbitrary values by the
modeler. Because free parameters enable the modeler to manipulate the
outcome of the model, increasing the number of free parameters diminishes
the model’s predictive power (Roberts & Pashler, 2000).

– A model should not only describe behavior, but should also predict it. Cognitive
models are often made after the experimental data have been gathered and
analyzed. A model with high validity should be able to predict performance.

– A model should learn its own task-specific knowledge. Knowledge that is given
to the model can be considered as a “free parameter,” allowing the modeler
to program the desired outcome of the simulation. Anything that the model
can learn does not have to be programmed.

– A model should be able to explain phenomena that it was not originally
constructed for.

As discussed above, many current models use task analysis to specify the
knowledge that an expert would need to do the task. This violates the quality
criterion that a model should acquire task-specific knowledge on its own.
Moreover, basing a model on a task analysis of expert performance means that
the model is of an expert user whereas the typical user may not have mastered
the task being modeled. Useful predictions and a complete understanding of the
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task requires that models are built starting at the level of a novice and gradually
proceeding to become experts in the same way people do. In other words, many
applications require building models that not only perform as humans do, but
that also learn as humans do.

8.2 Varieties of Cognitive Architectures

In order to discuss the current state of cognitive architectures, six
distinct examples will be briefly characterized in this section, and then go
through areas of cognitive modeling and discuss what constraints the various
architectures offer in that area. Six examples may seem like an overly heavy
burden on the reader, but each embodies certain unique choices that are
important to discuss.

8.2.1 Soar

The Soar (States, Operators, and Reasoning) architecture, developed by Laird,
Rosenbloom, and Newell (1987; Newell, 1990), is a descendant of the General
Problem Solver (GPS), developed by Newell and Simon (1963). In 2012, Soar
received a major update (Laird, 2012). Here, the “original” Soar is discussed,
even though the new Soar has more functionality and shares components with
ACT-R and EPIC. As a theory, the original Soar is more distinct, making it
better suitable for the discussion here. Human intelligence, according to the
Soar theory, is an approximation of a knowledge system. Newell defines a
knowledge system as follows (Newell, 1990, p. 50):

A knowledge system is embedded in an external environment, with which it
interacts by a set of possible actions. The behavior of the system is the
sequence of actions taken in the environment over time. The system has
goals about how the environment should be. Internally, the system processes
a medium, called knowledge. Its body of knowledge is about its environment,
its goals, its actions, and the relations between them. It has a single law of
behavior: the system takes actions to attain its goals, using all the knowledge
that it has.

According to this definition, the single important aspect of intelligence is the
fact that a system uses all available knowledge. Errors due to lack of knowledge
are not failures of intelligence, but errors due to a failure in using available
knowledge are. Both human cognition and the Soar architecture are approxi-
mations of an ideal intelligent knowledge system. As a consequence, properties
of human cognition that are not directly related to the knowledge system are
not central to this version of Soar. For example, modeling the limitations of
short-term memory would not be an interesting problem for Soar, because an
intelligent knowledge system would not suffer from memory failure. On the
other hand, the decision whether or not to store a piece of information in
working memory because it may be needed later is interesting.
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The Soar theory views all intelligent behavior as a form of problem solving.
The basis for a knowledge system is the problem-space computational model, a
framework for problem solving in which a search process tries to accomplish a
goal state through a series of operators. In Soar, all tasks are represented by
problem spaces. Performing a certain task corresponds to reaching the goal in a
certain problem space. To be able to find the goal in a problem space, know-
ledge is needed about possible operators, about consequences of operators and
about how to choose between operators if there is more than one available. If a
problem (an impasse in Soar terms) arises due to the fact that certain knowledge
is lacking, resolving this impasse automatically becomes the new goal. This new
goal becomes a subgoal of the original goal, which means that once the subgoal
is achieved, control is returned to the main goal. The subgoal has its own
problem space, state, and possible set of operators. Whenever the subgoal has
been achieved it passes its results to the main goal, thereby resolving the
impasse. Learning is keyed to the passing on of results to a higher goal.
Whenever this happens, new knowledge is added to the knowledge base to
prevent the impasse that produced the subgoal from occurring again. If an
impasse occurs because the consequences of an operator are unknown, and in
the subgoal these consequences are subsequently found, knowledge is added to
Soar’s memory about the consequences of that operator. Because Soar can also
use external input as part of its impasse resolution process, new knowledge can
be incorporated into the learned rules.
Characteristic for Soar is that it is a purely symbolic architecture in which all

knowledge is explicit. Instead of attaching utility or activation to knowledge it
has explicit knowledge about its knowledge. This makes Soar a very con-
strained architecture, in the sense that the only means to model a phenomenon
are a single long-term memory, a single learning mechanism and only symbolic
representations. Despite the theoretical advantages of such a constrained
theory, current developments in Soar seek to extend the architecture to achieve
new functional goals, with more long-term memory systems, subsymbolic
mechanisms, mental imagery, reinforcement learning, and a module to model
the effects of emotion on the cognitive system (Marinier & Laird, 2004; Nason
& Laird, 2004).

8.2.2 ACT-R

The ACT-R (Adaptive Control of Thought, Rational) theory (Anderson, 2007;
Anderson et al., 2004) rests upon three important components: rational analysis
(Anderson, 1990), the distinction between procedural and declarative memory
(Anderson, 1976), and a modular structure in which components communicate
through buffers. According to rational analysis, each component of the cogni-
tive architecture is optimized with respect to demands from the environment,
given its computational limitations. If one wants to know how a particular
aspect of the architecture should function, one first has to look at how this
aspect can function as optimally as possible in the environment. Anderson
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(1990) relates this optimality claim to evolution. An example of this principle is
the way choice is implemented in ACT-R. Whenever there is a choice between
what strategy to use or what memory element to retrieve, ACT-R will take the
one that has the highest utility, which is the choice that has the lowest expected
cost while having the highest expected probability of succeeding. This is differ-
ent from Soar’s approach, which would involve finding knowledge to decide
between strategies.

The principle of rational analysis can also be applied to task knowledge.
While evolution shapes the architecture, learning shapes knowledge and pos-
sibly part of the knowledge acquisition process. Instead of only being focused
on acquiring knowledge per se, learning processes should also aim at finding the
right representation. This may imply that learning processes have to attempt
several different ways to represent knowledge, so that the optimal one can be
selected. For example, in a model of the past tense (Taatgen & Anderson, 2002),
the model had to choose between an irregular and a regular solution to inflect a
word. It chose the more efficient irregular solution for the high-frequency
words, because storing the exception is worth the efficiency gain. For low-
frequency words, having an efficient exception does not pay off, so the model
selected the more economic regular solution.

The second ACT-R foundation is the distinction between declarative and
procedural knowledge. ACT-R has a separate procedural and declarative
memory, each of which has their own representation and learning mechanisms.
Procedural memory stores productions that can directly act upon the current
situation. Each of these productions maintains a utility value to keep track of its
past success. Declarative memory is more passive: knowledge in it has to be
requested explicitly in order to be accessed. Elements in declarative memory
have activation values to track their past use that can model, among other
things, forgetting. Declarative memory also incorporates some of the functions
of working memory. Because ACT-R uses activation and utility values in
addition to purely symbolic representations, it is called a hybrid architecture.

The third foundation of ACT-R is its modular structure. The production
system, which forms the core of the architecture, cannot arbitrarily access any
information, but has to communicate with other modules through a buffer
interface. For example, if the visual module attends to new information, it
places the encoded information in the visual buffer, after which this information
can be accessed by production rules. Although this restricts the power a single
production rule, because it cannot test the inner structures that are maintained
within modules, it does allow each module to do its own processing in parallel
with other modules.

Both Soar and ACT-R claim to be based on the principles of rationality,
although they define rationality differently. In Soar rationality means making
optimal use of the available knowledge to attain the goal, while in ACT-R
rationality means optimal adaptation to the environment. Not using all the
knowledge available is irrational in Soar, although it may be rational in ACT-R
if the costs of using all knowledge are too high. On the other hand ACT-R takes
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into account the fact that its knowledge may be inaccurate, so additional
exploration is rational. Soar will explore only when there is a lack of knowledge,
but has, contrary to ACT-R, some built-in strategies to do so.

8.2.3 EPIC

Although most cognitive architectures start from the perspective of central
cognition, the EPIC (Executive-Process Interactive Control) architecture
(Meyer & Kieras, 1997) stresses the importance of peripheral cognition as a
factor that determines task performance. In addition to a cognitive processor
with its associated memory systems, EPIC provides a set of detailed perceptual
and motor processors. The perceptual modules are capable of processing stimuli
from simulated sensory organs, sending their outputs to working memory. They
operate asynchronously, and the time required to process an input depends on
the modality, intensity, and discriminability of the stimulus. The time require-
ments of the perceptual modules, as well as other modules, are based on fixed
equations like Fitts’ law, and serve as a main source of constraints.
EPIC’s cognitive processor is a parallel rule matcher: in each cycle, which takes

50 ms, production rules are matched to the contents of working memory. Each
rule that matches is allowed to fire, so there is no conflict resolution. It is up to the
modeler to ensure this parallel firing scheme produces the right behavior. Whereas
both Soar and ACT-R have a production firing system that involves both parallel
and serial aspects, EPIC has a pure parallel system of central cognition. As a
consequence, EPIC predicts that serial aspects of behavior are mainly due to
communication between central and peripheral processors and structural limita-
tions of sense organs and muscles. An important aspect of EPIC’s modular
structure is the fact that all processors can work in parallel. Once the cognitive
processor has issued a command to the ocular motor processor to direct attention
to a spot, it does not have to wait until the visual processor has processed a new
image. Instead, it can do something else. This allows the architecture to multitask:
the cognitive processor can use the extra time to do processing on the secondary
task. EPIC can represent multiple goals in a nonhierarchical fashion, and these
goals can be worked on in parallel, provided they do not need the same peripheral
resources. If they do, as is the case in experiments where participants have to
performmultiple tasks simultaneously, so-called executive processes are needed to
coordinate which of the goals belonging to the tasks may access which peripheral
processors. Because EPIC’s executive processes are implemented by production
rules, they do not form a separate part of the system. This makes EPIC very
flexible, but it also means that EPIC’s theory of central cognition is rather weak,
in the sense that it allows many different models, as opposed to a very strong
theory of peripheral cognition, where models are constrained by the limitation
that a module can only do one thing at a time. EPIC is mainly focused on expert
behavior and presently has no theory of how knowledge is learned. All the other
architectures have picked up EPIC’s peripheral modules, and combine this with a
constrained central cognitive system.
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A common property of Soar, ACT-R, and EPIC is that they all follow
Newell’s idea that there is a fundamental level of abstraction that is most
suitable to understand cognition. The remaining three architectures have a
different angle: they aim to understand cognition by allowing models at differ-
ent levels of abstraction, either with relatively independently operating levels or
where higher levels are implemented in the mechanisms of lower levels.

8.2.4 Clarion

The Clarion architecture (Sun, 2016; Sun, Merrill & Peterson, 2001; Sun,
Slusarz, & Terry, 2005) has as its main architectural assumption that there is
a structural division between explicit cognition and implicit cognition. As a
consequence, the architecture has two systems, the explicit (top layer) and the
implicit (bottom layer), that each have their own representations and processes.
Furthermore, each of the two layers is subdivided into two systems: an action-
centered system and a non-action-centered system. This latter distinction
roughly corresponds to procedural and declarative, respectively: the action-
centered system can directly influence action, while the non-action-centered
system can only do so indirectly. Learning can be bottom-up, in which case
knowledge is first acquired implicitly, and serves as a basis for later explicit
learning, or top-down, in which case knowledge is acquired explicitly, and
implicit learning follows later. A final central assumption of Clarion is that
when there is no explicit knowledge available a priori, learning will be bottom-
up. Many, but not all, of Clarion’s representations use neural networks. In that
sense, it is more a true hybrid architecture than ACT-R in having truly connec-
tionist and symbolist characteristics.

The central theory of Clarion is that behavior is a product of interacting
implicit (bottom-up) and explicit (top-down) processes, further modulated by a
motivational subsystem (which holds, among others, the system’s goals) and a
metacognitive subsystem. The explicit action-centered system has a rule system
in which rules map the perceived state onto actions. The implicit action-
centered system assigns quality measures to state/action pairs. The final choice
of an action is a combination of the values assigned to each action by the
explicit (top) and the implicit (bottom) system. Each of the two systems has its
own learning mechanisms: the implicit system uses a combination of reinforce-
ment learning and backpropagation to improve its assessment of state/action
pairs based on rewards, while the explicit system uses a rule-extraction mech-
anism that uses extraction, generalization, and specialization to generate new
rules. Apart from these two systems, each of the other subsystems of Clarion
uses their own mechanisms and representations.

8.2.5 PRIMs

The PRIMs architecture (Taatgen, 2013) has its roots in ACT-R, and shares
many of its properties. PRIMs takes into account that tasks are not performed
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and learned in isolation, and therefore explores models that involve multiple
tasks. A first phenomenon that PRIMs can explain is transfer: to reuse know-
ledge from one task for another task. To be able to model transfer, PRIMs
breaks down the traditional production rule into smaller components called
primitive operations. There are only two basic types of primitive operations: one
that makes a comparison between two specific slots in the architecture’s buffers
(e.g., is the visually perceived number the same as the number in working
memory), and one that transfers information from one location to another
(e.g., move the word retrieved from memory to the vocal system). PRIMs shows
that any traditional production rule (at least in the ACT-R sense) can be broken
down into these primitives. Transfer between tasks can then be explained by the
model reusing the same combinations of primitive operations in different
production rules. For example, a classical study of transfer was conducted by
Singley and Anderson (1985), in which they trained participants on several text
editors, and then transferred them to other editors. Singley and Anderson’s
model was able to explain transfer between very similar line-based editors, but
was not successful in explaining transfer between a line-based and a screen-
based editor. The PRIMs model was able to provide a theory of this transfer,
because the elements of transfer were of a smaller grain size (i.e., combinations
of primitive elements) than Singley and Anderson’s production rule approach.
By introducing primitive operations, PRIMs added an additional (lower) level
of abstraction to the level of production rules.
The level of primitive operations builds reusable knowledge structures that

can explain why certain new tasks are easier to learn given a certain learning
history. However, another type of cross-task learning not covered by this
mechanism is learning from instruction. In many experimental paradigms,
participants only need a few words of instruction to be able to do the task.
This indicates that constructing a knowledge representation for a new task can
be very easy, provided that the right knowledge chunks are already available.
For this purpose, PRIMs defines a new level of abstraction that is between
productions and tasks named the skill level. The assumption is that task
representations are created by combining a number of skills that have been
learned before. A skill consists of a number of production rules that work well
together. Hoekstra, Martens, and Taatgen (2020) demonstrated this principle
by constructing a model of the Attentional Blink that consisted only of skills
taken from two other models, a short-term memory model and a visual search
model. In this experiment, a rapid sequence of characters is displayed on the
screen, typically at a rate of 100 ms/character. Most of the characters are
distractors (digits), but two are targets (letters) that the subject has to report
at the end of the sequence. The typical result is that performance on the second
target is poor if it follows the first target by 200–500 ms, but not if it directly
follows the first target, or if there is more 500 ms between the first and the
second target.
The claim of the model is that the attentional blink is not due to a limitation

of the cognitive system, but instead due to a wrong choice of strategy in
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performing the task. If the model uses a strategy that combines the two targets
into a single chunk, there is no attentional blink, but if it tries to chunk the
targets separately, a blink will occur because the second target appears when the
first is still in the process of consolidation. The assumption is that the instruc-
tions suggest the latter strategy. Indeed, several other studies have shown that
the attentional blink can disappear under different instructions (Farlazzo et al.,
2007), or can be trained away (Choi et al., 2012).

To summarize, PRIMs uses three levels of abstraction: primitive operations,
productions, and skills, where the unit of abstraction on a particular level is
composed of several elements of the lower level.

8.2.6 Nengo/SPA2

How can a complex cognitive system be rooted in a neural architecture? And
how can neural representations offer benefits to computation? These are some
of the questions the Nengo system (Eliasmith, 2013) tries to answer. The basic
unit of representation in Nengo is the spiking neuron. These neurons are
organized into clusters. A particular pattern of spiking within a cluster can be
interpreted as representing information. Nengo assumes that a cluster repre-
sents a vector of real numbers. This vector can be decoded by feeding the
spiking patterns into a set of output nodes, one for each dimension of the
vector. By connecting clusters of neurons together, and setting, or training,
the connections between these clusters, functions from one vector to another
can be created. The level of interconnected clusters has already been quite
productive in modeling several perception and motor control tasks that are
hard to capture symbolically. On top of this, Nengo offers the so-called
Semantic Pointer Architecture, which is a way to build a system that can reason
with symbols that are represented subsymbolically. The idea is to associate a
particular vector of numbers, a semantic pointer (that can be represented by
activity in a cluster of neurons) with a symbol. These symbols can then be
connected using circular convolution. For example, in a symbolic architecture,
we might have a chunk that represents a red ball. This chunk would have two
slots, one representing color, and the other shape. In Nengo, this would be
represented by the semantic pointer COLOR � RED þ SHAPE � BALL.
COLOR, RED, SHAPE, and BALL are all semantic pointers themselves (i.e.,
vectors) in this representation, the � operation is circular convolution, and
the þ operation is a component-wise addition of vectors. This semantic pointer
can be decomposed by inverse operations, for example, COLOR-1� (COLOR�
RED þ SHAPE � BALL) � RED.

The semantic pointer architecture provided the basis for a large-scale system
called Spaun (Eliasmith et al., 2012). Spaun can be considered to be a cognitive
architecture that has a structure that is similar to architectures such as ACT-R

2 In the remainder of the text, Nengo/SPA is referred to as just Nengo.
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and EPIC, with a set of cognitive modules that can communicate through
buffers. The production system part is implemented by a model of the basal
ganglia, that maps the contents of the buffers onto an action that moves infor-
mation between buffers. Spaun is capable of carrying out a variety of sequential
tasks, producing psychologically plausible behavior.

8.3 Constraints on Modeling

As pointed out earlier, in each architecture there is a tension between
functional and theory goals. From the functional perspective there is a pressure
to add features, mechanisms, and systems to the architecture in order to capture
more phenomena. From the theory perspective there is a pressure to simplify
representations and mechanisms, and to remove features that are not strictly
necessary from the architecture. The goal of this pressure on simplicity is to
keep the possible space of models for a particular phenomenon as small as
possible. If an architecture allows many different models of the same phenom-
enon, there is no a priori method to select the right one. This section will review
how architectures can help constrain the space of possible models. It will
examine a number of topics that can serve as constraints on modeling, and
discuss how six architectures offer solutions to help modeling in that topic area.
A summary can be found in Table 8.1. Note that not all architectures address
all topic areas, so for example EPIC does not constrain its modeling through
learning because it presently has no theory of learning.

8.3.1 Working Memory Capacity

One of the findings that established cognitive psychology as a field was Miller’s
experiment in which he found that people can only retain a limited number of
unrelated new items in memory (Miller, 1956). This phenomenon quickly
became associated with short-term memory and later working memory. More
generally, the function of working memory is to maintain a representation of
the current task environment. What Miller’s and subsequent experiments
showed was that the capacity to maintain this representation is limited.
A naive model of working memory is to have a system with a limited number

of slots (for example the seven suggested by Miller) that can be used to
temporarily store items. Once the model runs out of slots, items have to be
tossed out. Although such a model is an almost direct implementation of the
phenomenon on which it is based, it does not work very well as a component in
an architecture. Miller’s task is about completely unrelated items, but as soon as
knowledge is related, which is the case in almost any natural situation, the slot-
model no longer holds.
A good theory of working memory capacity can be a powerful source of

constraint in a cognitive architecture because it rules out models that can
interrelate unrealistically large sets of active knowledge. Although working

284 niels taatgen and john anderson

https://doi.org/10.1017/9781108755610.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.011


Table 8.1 Overview on how architectures constrain aspects of information processing

Process Architecture Constraint Reference

Working memory
Soar Limitations of working memory arise on

functional grounds, usually due to lack of
reasoning procedures to properly process
information.

Young & Lewis
(1999)

ACT-R Limitations of working memory arise from
decay and interference in declarative
memory. Individual differences are explained
by differences in spreading activation.

Lovett, Reder, &
Lebiere (1999)

Clarion Limitations of working memory may be due
to a separate working memory with decay.

Sun & Zhang (2004)

PRIMs Limitations in working memory are due to
the availability of the right strategies.

Hoekstra, Martens, &
Taatgen (2020)

Nengo Limitations are due to noise in the neural
system, and the approximate accuracy of
unpacking semantic pointers.

Eliasmith (2013)

EPIC Limitations are a combination of capacity
constraints in various cognitive modules and
control strategy.

Kieras, Meyer,
Mueller, and
Seymour (1999)

Cognitive performance
Soar A decision cycle in Soar takes 50 ms,

although many production rules may fire in
parallel leading to the decision.

Newell (1990)

ACT-R
PRIMs

A production rule takes 50 ms to fire, no
parallel firing is allowed. A rule is limited to
inspecting the current contents of the perceptual
and memory-retrieval systems and initiating
motor action and memory-retrieval requests.

Anderson, et al.
(2004)

EPIC Production rules take 50 ms to fire, but
parallel firing of rules is allowed.

Meyer & Kieras
(1997)

Clarion Performance is produced by an implicit and
an explicit system that both have an action-
centered and a non-action-centered
subsystem.

Sun (2016)

Perceptual and motor systems
EPIC Perceptual and motor modules are based on

timing from the Model Human Processor
(Card, Moran, & Newell, 1983). Modules
operate asynchronously alongside central
cognition.

Meyer & Kieras
(1997)

ACT-R;
Soar;
Clarion

Use modules adapted from EPIC. Byrne & Anderson
(2001), Chong (1999),
Sun (2016)

Nengo Cognitive modules process actual images and
produce actual motor output.

Eliasmith et al. (2012)
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memory is traditionally viewed from the perspective of capacity, a resource that
can run out, another perspective is to consider working memory as a cognitive
function. The function of working memory is to keep information active for a
short duration in order to use it in the immediate future.

8.3.1.1 Capacity Limitations in Soar

An example of a functional approach of working memory is Soar (Young &
Lewis, 1999). Young and Lewis explain working memory limitations in terms of
what the current set of skills can do in limited time. For example, consider the
following three sentences:

1. The defendant examined the courtroom.
2. The defendant examined by the jury was upset.
3. The evidence examined by the jury was suspicious.

Assuming people read these sentences one word at a time from left to right, the
word examined is ambiguous in sentences (1) and (2), because it can either be
the main verb or the starting verb of a relative clause, but not in sentence (3)
because the word evidence is inanimate. Just and Carpenter (1992) found that
people differ in how they handle sentence (3), and attribute this to working

Table 8.1 (cont.)

Process Architecture Constraint Reference

Learning
Soar Learning is keyed to so-called impasses,

where a subgoal is needed to resolve a choice
problem in the main goal.

Newell (1990)

ACT-R Learning is based on rational analysis in
which knowledge is added and maintained in
memory on the basis of expected use and
utility.

Anderson, et al.
(2004)

Clarion Learning is a combination of explicit rule
extraction/refinement and implicit
reinforcement learning.

Sun, Slusarz, & Terry
(2005)

PRIMs Learning happens at each level of abstraction
in the cognitive architecture.

Taatgen (2018)

Neuroscience
ACT-R Components in ACT-R are mapped onto

areas in the brain, producing predictions of
fMRI activity.

Anderson (2005)

Clarion Uses brain-inspired neural networks as
components in the architecture.

Sun (2016)

Nengo Implemented using spiking neurons, produces
activity patterns that can be compared to
brain data.

Eliasmith (2013)
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memory capacity: high-capacity individuals are able to keep the information
that evidence is inanimate in working memory, disambiguating the sentence,
while low-capacity individuals do not hold that information in memory, forcing
them to disambiguate the sentence later like in sentence (2). Lewis (1996),
however, presented a different account of the individual differences based on
a Soar model of natural language comprehension. In sentence (3), after reading
examined, their model will propose two operators to update the current com-
prehension of the sentence, one corresponding to each interpretation of the
sentence. This will create an impasse, which Soar will try to resolve in a new
problem space. Although the Soar model has the knowledge to solve this
problem, this takes time, and given the time pressure, the model can revert to
selecting the normally preferred disambiguation of interpreting a verb as the
main verb, which means it will run into trouble later in the sentence.

In this model the individual differences are not explained by a limit in capacity
of working memory as such, because the fact that evidence is inanimate is
perfectly available in working memory, but a limitation of the available know-
ledge to actually do something with that fact in the given problem context.

8.3.1.2 Capacity Limitations in ACT-R

Similarly to Soar, ACT-R has no system that directly corresponds to the notion
of working memory capacity. Indeed, ACT-R does not even have a working
memory as such. Instead the function of working memory is tied to several of
ACT-R’s systems. ACT-R’s current task context is maintained in the set of
buffers. A buffer is a means for the central production system to correspond to
the various modules in the system. For example, there is a visual buffer to hold
the representation of the currently attended item in the visual field, there is a
retrieval buffer to hold the last item retrieved from declarative memory, and
there is a goal item that holds the current goal context. Each of these buffers has
a capacity of a single item and is constrained by their function (i.e., vision,
manual, retrieval, etc.).

Although the buffers together are the main means of holding the current
context, the system that is mainly associated with the notion of working
memory capacity is declarative memory. Any new item that enters the system
is eventually stored in declarative memory. If the task is to memorize a string of
numbers, each of the numbers is stored in memory as a separate item that is
linked to the other numbers (Anderson & Matessa, 1997). In order to recall the
string of numbers, each of the items must be retrieved successfully. However, as
the string of numbers becomes longer, interference and decay in declarative
memory decrease the probability that recall is successful, producing the phe-
nomenon of a limited working memory capacity.

Although ACT-R’s explanation seems to be closer to a capacity explanation,
in the root of the theory the explanation is functional. The purpose of activation
in declarative memory is not to model forgetting, but to rank knowledge in
order of potential relevance. Knowledge receives a high activation due to
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frequent past use or a high correlation with the current context because
that makes it more available and distinguishable from irrelevant knowledge.
From that perspective, working memory capacity is the ability to increase the
signal-to-noise ratio in declarative memory, and individuals who are good at
increasing this ratio have a high working memory capacity (Lovett, Reder, &
Lebiere, 1999).

8.3.1.3 Capacity Limitations in PRIMs

Although PRIMs shares many properties of ACT-R, it puts a lot of emphasis
on strategies, or in PRIMs terminology skills, for working memory. Working
memory is as much about making the right choices about what to retain, and
how to retain it, as capacity. To make the right choices, we need skills, such as
rehearsal, or decisions on how to structure knowledge in memory. An example
of this is an experiment by Huijser, van Vugt, and Taatgen (2018). In this
experiment, subjects had to perform a complex working memory task, in which
the items that needed to be memorized were interleaved with a choice reaction
task. In one condition, the choice reaction task was neutral: subjects had to
decide whether an item would fit in a shoebox. In the other condition, the
stimuli were emotion words (e.g., “anger”), and the subject had to say whether
these words applied to them. The results showed that the emotion words were
more distracting, leading to an apparent drop in working memory capacity. The
PRIMs model could explain this by setting up a competition between rehearsal
and mind wandering, where the latter was triggered by the words in the choice
reaction task.

8.3.1.4 Capacity Limitations in Nengo

Capacity limitations in Nengo are produced both by the noisy neural represen-
tation and by the fact that semantic pointers are not loss-less representations. In
the earlier example, extracting the color of the red ball from the semantic
pointer representation only gives you approximately the semantic pointer of
RED. As the representation becomes more complex by adding more slot-value
pairs, the inverse problem of extracting features from the representation
becomes increasingly less reliable. Nengo therefore has no hard limits in cap-
acity, but a graceful degradation that is characteristic of neural networks.

8.3.2 Cognitive Performance

8.3.2.1 The Serial Bottleneck

A recurrent topic of debate in the psychology of human perception and per-
formance is whether there is a central bottleneck in human cognition (Pashler,
1994; Schumacher et al., 2001). In terms of cognitive architectures, the extremes
in the debate are ACT-R and EPIC. In ACT-R, the central production system
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can only fire one rule at a time. Although each rule firing only takes 50 ms, it
limits the number of cognitive steps that can be taken. In EPIC, the central rule
system can fire any number of rules in parallel. EPIC can therefore naturally
explain dual-tasking experiments in which participants achieve perfect time-
sharing. An example of such an experiment is by Schumacher et al. (2001). In
that experiment participants were given a visual stimulus and a tone at the same
time. They had to respond to the visual stimulus by pressing a key, and to the
tone by saying a word. Given sufficient training, participants were eventually
able to do the two tasks perfectly in parallel, meaning that their reaction times
on each task were the same in the dual-task and in the single-task situation.

For ACT-R, dual-tasking experiments are a challenge. Nevertheless, Byrne
and Anderson (2001) constructed a model that was able to perfectly share time
between the models, and Taatgen, Anderson and Byrne made models that can
learn the perfect time-sharing that captured not only the eventual performance
but also the learning trajectory towards this final performance (Anderson,
Taatgen & Byrne, 2005; Taatgen, 2005). In the ACT-R models, the key to
perfect dual tasking is the fact that most of the time consumed in these tasks is
needed for either perception or motor actions, especially when the task is highly
trained. The occasional central action is needed to shift attention or to select a
response. In the highly trained cases, each of these actions only takes a single
production rule of 50 ms. Unless the response selection for both tasks has to
happen at exactly the same moment (which is unlikely given noise in the
perceptual processes), the costs of dual-tasking are very low or absent
(Salvucci & Taatgen, 2008).

An interesting aspect of the central bottleneck is the way the discussion plays
out. With a serial bottleneck, ACT-R has the more constrained theory, because
it is always possible to do things serially in EPIC, but one cannot do them in
parallel in ACT-R. ACT-R principally has the ability to predict circumstances
in which the serial bottleneck constrains performance, while EPIC poses no
constraints at all. So, for instance, ACT-R naturally models the fact that one
cannot perform mental addition and multiplication in parallel (Byrne &
Anderson, 2001). The case for parallelism has to consist of an example of a
phenomenon or task that cannot be performed serially, because there is not
enough time to perform all the steps. Even when such a phenomenon could be
found, it would only prove that ACT-R is incorrect, and not necessarily that
EPIC is right. This example shows that a more constrained architecture almost
automatically gains the scientific upper ground, despite (or, as Popper, 1962,
would say, because of ) the fact that it makes itself vulnerable to refutation.

8.3.2.2 Hidden Computational Power

The simplicity of production rules can be deceptive. If production rules can
match arbitrary patterns, it is possible to write production rules in which
matching a condition is an NP-complete problem (Tambe, Newell, &
Rosenbloom, 1990). Production rules in Soar have that nature, and this is
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why Soar needs a powerful rule-matching algorithm called Rete (Forgy, 1982).
Although powerful rules offer a great deal of flexibility, having them under-
constrains what can be done in a single production-matching cycle. To counter
this, Soar modelers try to refrain writing rules that use the full Rete power. In
Clarion (Sun, 2016), on the other hand, the rule system (the explicit action-
centered system) is implemented in a neural network. Given the localist nature
of neural networks, there is no hidden computational power, producing a more
constrained system. ACT-R also has a constrained production system: it can
only match items in its buffers. One of the buffers is used to retrieve items from
declarative memory, and can only match simple patterns. A complex match of
information might therefore take up multiple retrieval steps.

8.3.3 Perceptual and Motor Systems

Perceptual and motor systems are potentially a strong source of constraint,
because the perceptual and motor actions can be registered more precisely in
experiments than cognitive actions, and because the psychophysical literature
offers precise predictions about the timing of these actions. The EPIC architec-
ture (Meyer & Kieras, 1997) takes advantage of the large literature on percep-
tual and motor constraints and makes these systems central to explanations of
many phenomena.
The perceptual-motor modules in EPIC can handle only a single action at a

time, and each of these actions takes a certain amount of time. Although a
module can do only one thing at a time, expert behavior on a task is exemplified
by skillful interleaving of perceptual, cognitive, and motor actions. EPIC’s
modules incorporate mathematical models of the time it takes to complete
operations that are based on empirical data. The knowledge of the model is
represented using production rules.
An example of how perceptual and motor constraints can inform a model is

menu search (Hornof and Kieras, 1997). The task was to find a label in a pull-
down menu as quickly as possible. Perhaps the simplest model of such a task is
the serial-search model in which the user first attends to the top item on the list
and compares it to the label being searched for. If the item does not match the
target, the next item on the list is checked; otherwise, the search is terminated.
EPIC’s predictions for search time using this method can be obtained by
implementing the strategy in EPIC production rules and performing a simula-
tion in a test environment in which menus have to be searched. It turns out that
a naive serial-search model grossly overestimates actual search time (obtained
with human subjects), except when the target is in the first position to be
searched. For example, if the menu item is in position 10, the serial search
model predicts that finding the item takes 4 seconds while participants only
need in the order of 1.6 seconds.
Hornof and Kieras propose an alternative model, the overlapping search

model, that exploits the parallelism of the cognitive system. Instead of waiting
for the cognitive system to finish deciding whether or not the requested label is
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found, the eye moves on to the next item in the list while the first item is still
being evaluated. Such a strategy results in the situation that the eye has to move
back to a previous item in the list once it has been decided that the item has been
found, but this is a small price to pay for the speed-up this parallelism produces.
Parallelism is allowed in EPIC as long as perceptual-motor modules do one
thing at a time. In practice, the most influential constraint is posed by the
duration of actions. For example, in the serial-search model, the parameter
that influences the search time could, in theory, be changed to make this
(incorrect) model match the data. EPIC precludes this from occurring because
an eye-movement takes a certain amount of time, as does a decision as to
whether the label is correct or not, such that the data can only be explained if
these actions occur in parallel.

The menu-search example shows that while the perceptual and motor systems
in EPIC provide strong constraints, central cognition is underconstrained in the
sense that it allows both correct and incorrect models of menu search. EPIC’s
perceptual and motor modules, however, have proved to be powerful enough as
constraints that all the other architectures (ACT-R, Soar, and Clarion) have
copied them.

8.3.4 Learning

As mentioned in the introduction, a desirable feature of a model is that it learns
its own knowledge. In the classical modeling paradigm, the only constraints
placed on the knowledge come from the architecture and task analysis and this
usually leaves the knowledge specification partly up to the whim of the modeler.
This is particularly troublesome if the model includes components that are not
necessary to perform the task, but are necessary to explain the data. For
example, in experimental paradigms such as the Stroop task, or task switching,
the most simple model for most architectures would be one that does not inhibit
interference or switch costs, respectively.

The opposite of constructing a model is a model that learns the task com-
pletely from scratch. Clarion is constructed with this in mind, as well as many
neural network approaches. Learning from scratch, however, may take a long
time, and does not take into account that most learning takes place in the
context of prior knowledge.

A weak variant of this type of modeling is to supply the model with some
initial method that becomes faster through learning. For example, in an ACT-R
model of alphabet-arithmetic (Anderson & Lebiere, 1998), the task is to verify
additions using letters and numbers, like G þ 3 ¼ J. The model’s initial strategy
is to find the answer through a counting process. But because it stores its
answers, the model gradually accumulates addition facts in declarative
memory, allowing it to give a direct answer instead of having to count. The
shift from counting to retrieval changes the reaction time patterns, because in
counting the reaction time increases with the addend, whereas in the retrieval it
does not. Although the model learns the new addition facts, it already starts out
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with the production rules that can count and with the production rules that
attempt retrieval of initially nonexisting addition facts.

8.3.4.1 Learning from Direct Instruction

A more ambitious approach is to have a model that learns all of its own task-
specific knowledge through either instruction or feedback. An example in Soar
of such a system is Instructo-Soar (Huffman & Laird, 1995; see also the more
recent Rosie system, Kirk & Laird, 2019). Instructo-Soar can learn to carry out
commands in natural language. If it doesn’t know how to do a certain com-
mand, it will ask for an instruction. A sample dialog from Huffman and Laird is
as follows (Soar’s questions are in italics):

Push the green button.
That’s a new one. How do I do that?
Move to the gray table.
Ok. What next?
Move above the green button.

How do I do that?
Move the arm up.
Oh, I see! What next?

Move down.
Ok, What next?
The operator is finished.

In this example, Soar receives instructions on how to push a green button. The
indentation represents the structure of the problem solving, with each level of
indentation an impasse that has to be resolved. Soar’s learning mechanism will
learn new rules to resolve similar cases in the future. For example, after this
exchange, Soar will know how to move above things, and how to push
buttons. One of the challenges is to make the right generalization: instead of
learning how to push buttons, another generalization might have been a
procedure to push green things. To make the right generalization, Soar used
background knowledge to reason out that green is not a relevant attribute for
pushing things. An alternative to knowledge-based generalization is Clarion’s
bottom-up generalization, in which associations between state, action, and
success are first gathered by the implicit learning process. These bottom-up
associations then gradually inform the rule-extraction mechanism to make the
right generalization. So instead of making inferences about colors and but-
tons, Clarion would rather induce out of experiences that colors don’t matter
but buttons do.

8.3.4.2 Interpreting Instructions Stored in Memory

Instead of direct instruction, a model can also be taught what to do by memoriz-
ing an initial set of instructions. Several ACT-R models are based on this
paradigm (Anderson et al., 2004; Taatgen, 2005; Taatgen, Huss, Dickison &
Anderson, 2008; Taatgen & Lee, 2003). The idea is that the system first reads
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instructions that it then stores in declarative memory. When the task is per-
formed, these instructions are retrieved from memory and carried out by pro-
duction rules. These production rules are not specific for the task, but rather
represent general skills like pushing buttons, finding things on the screen, com-
paring items, etc. The declarative instructions string the general skills together to
produce task-specific behavior. The cycle of retrieving and interpreting instruc-
tions from memory can explain many aspects of novice behavior. Performance is
slow because the process of retrieving an instruction from memory is a time-
consuming process during which the system cannot do much else. It is serial,
because only one instruction is active at the same time, making it impossible to
do two steps in parallel. It is prone to errors, because instructions may have been
forgotten, requiring the model to reconstruct them through a time-consuming
problem-solving process. It also puts heavy demands on working memory cap-
acity: both instructions and temporary information have to be stored and
retrieved from declarative memory, making it the main bottleneck of novice
processing. Because declarative memory is the bottleneck, it is almost impossible
to do other tasks in parallel that also make demands on declarative memory.

Novice behavior is gradually transformed into expert behavior through a
knowledge compilation process (production compilation, Taatgen & Anderson,
2002). Production compilation combines two existing rules into one new rule,
while substituting any memory retrieval in between those rules into the new
rule. If the memory retrieval in between the two rules is an instruction, this
instruction is effectively encoded into the newly learned rule, creating a produc-
tion rule that is specific to the task. Production learning in ACT-R therefore
gradually transforms task-specific declarative knowledge and general produc-
tion rules into task-specific production rules. These newly learned rules exhibit
many characteristics of expert behavior. They are no longer tied to a linear
sequence of instructions, so they can be used out of sequence whenever they
apply, allowing parallel performance and increased flexibility of carrying out a
task (Taatgen, 2005).

Although models that learn from instructions cannot yet directly parse
natural language, they do offer the promise of more constrained models than
models that are given expert knowledge right away. Not all the expert models
that can be encoded using production rules are learnable, and those that are not
can therefore be ruled out. In addition to that, the fact that the model learns its
knowledge offers the opportunity to match predictions about the learning
trajectory to human data. This means that some expert models that are learn-
able, in the sense that the knowledge could be produced by the mechanisms in
the architecture, can still be ruled out because their learning trajectory doesn’t
match the human data.

8.3.4.3 From Implicit to Explicit Learning

One other way for a model to obtain its knowledge is by discovering regularities
in the environment. Although many classical models of discovery focus on
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explicit discovery processes, many modern models start from the assumption
that knowledge is often learned implicitly. In, for example, the sugar factory
experiment by Berry and Broadbent (1984), participants have to decide how
many workers they should send into the factory each day to achieve some target
output. The output depends not only on the number of workers, but also on the
production of the previous day. Although participants in the experiment gener-
ally do not explicitly discover the relationship between previous production,
number of workers, and the new production, they do get better at adjusting the
number of workers in the course of the experiment. This and similar experi-
ments suggest that there is some component to learning that cannot be reported,
implicit learning, that improves performance without awareness. Several
models have been proposed to capture this effect. An ACT-R model (Taatgen
& Wallach, 2002) stores examples of input/output relations in declarative
memory, and retrieves the example that has the highest activation and similarity
to the current situation. This model never gains explicit knowledge of the
relationships in the task, but achieves better performance by learning a repre-
sentative set of examples.
Sun, Slusarz, and Terry (2005) have modeled an extension to the original

experiment, in which, in some conditions, participants were explicitly taught
particular input–output pairs, or were given simple heuristic rules. In the
control (no explicit training) version of the model, the implicit level of
Clarion was solely responsible for picking up the regularities in the task. In
the instructed version of the model, the explicitly given instructions were
represented in Clarion’s explicit memory, driving the implicit learning processes
together with experience. The explicit instructions provided a performance
boost in the data, which was successfully captured by the model.

8.3.5 Constraints from Neuroscience

Human cognition is implemented in the brain. This fact can offer additional
sources of constraint in a cognitive architecture. The architecture of the brain
offers two levels of constraints: at the level of individual neurons and their
interconnections, and at the level of global brain structures.

8.3.5.1 Constraints at the Level of Individual Brain Cells

The actual substrate of cognition is an interconnected network of neurons.
Whether or not this is a significant source of constraint is open to debate. One
view is that brain cells implement some virtual architecture, and that the
characteristics of brain cells are irrelevant for an understanding of cognition
(e.g., Newell, 1990). A more moderate version of this point of view is adapted
by the ACT-R architecture (Anderson & Lebiere, 2003). In that view the main
level of abstraction to study cognition is higher than the level of brain cells.
Nonetheless, there have been efforts to show that these abstractions are com-
patible with neural details. For instance, Stocco, Lebiere, and Anderson (2010)
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have created a neural implementation that provides some of the same function-
ality as ACT-R, which could demonstrate that a neural implementation
is feasible.

The Spaun model in Nengo (Eliasmith et al., 2012) further reinforces this
point by providing a more complete ACT-R-style architecture that is capable of
performing a range of tasks. A limitation of Nengo/SPA is that most of its
connections are engineered, and few are actually learned. It therefore falls short
in satisfying the learning constraint.

Neural implementations can be quite informative of what is easy and what is
hard at the level of the brain. For example, matching complex conditions in
production rules is hard for neural networks. An alternative that is much easier
for neural implementations is to learn a mapping between the current state of
the system and the action to be taken (Taatgen, 2019).

Clarion (Sun, 2016) takes the point of view that elements and mechanisms
that resemble neurons are an important source of constraint on the architecture.
Many of Clarion’s subsystems are composed from neural networks. This offers
additional constraints, because neural networks are less easy to “program” than
symbolic models.

8.3.5.2 Constraints at the Global Brain Architecture Level

Recent advances in brain imaging have allowed neuroscientists to build increas-
ingly finer-grained theories of what the functions of various regions in the brain
are, and how these regions are interconnected. The result is a map of intercon-
nected, functionally labeled regions. What brain imaging does not provide is the
actual processing in these regions. Cognitive architectures can provide process-
ing theories constrained by the processing map of the brain. ACT-R (Anderson,
2005; Anderson et al., 2004; Borst & Anderson, 2013) has mapped its buffers
and production system onto brain regions, and is capable of making predictions
of brain activity on the basis of a cognitive model. For example, in a study in
which children had to learn to solve algebra equations, the ACT-R model
predicted how activity in several brain areas would differ with problem diffi-
culty and the effects of learning (Anderson, 2005).

8.4 Conclusions

The viewpoint of cognitive constraint is different from the perspective
of how much functionality an architecture can provide, as expressed by, for
example, Anderson and Lebiere (2003). Anderson and Lebiere have elaborated
Newell’s (1990) list of constraints that are mainly (but not all) functional goals
(e.g., use natural language). Although both functionality and strength as a
theory are important for a cognitive architecture, modelers tend to focus on
functionality, and the critics tend to focus on theory strength. One symptom of
the fact that cognitive architectures are still relatively weak theories is that few
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predictions are made, as opposed to fitting a model onto data after the experi-
ment has been done (but see Salvucci & Macuga, 2002 and Taatgen, van Rijn &
Anderson, 2007, for examples of successful predictive research). A research
culture in which modelers would routinely model their experiment before they
would conduct the experiment would create a much better research environ-
ment, in which confirmed predictions would be evidence for theory strength,
and in which failed predictions would be great opportunities to strengthen the
theory. For this research strategy to work, it is necessary that architectures limit
the number of possible models for a particular phenomenon. Alternatively,
attempts could be made to rank the possible space of models with the goal of
identifying the most plausible one based on nonarchitectural criteria. Chater
and Vitányi (2003) argue, following a long tradition in science in general, that
the most simple explanation should be preferred. More specific in the architec-
ture context, Taatgen (2007), argues that if there is a choice between multiple
models, the model should be preferred with the simplest control structure.
A recent development is an attempt at unification between the different

architectures, focusing on the common elements and particular strengths. The
common model of cognition (Laird, Rosenbloom, & Lebiere, 2017) includes
several successful components from existing architectures (such as declarative
and procedural memory, and perceptual and motor modules). The common
model is not an architecture in itself, but instead serves as a framework for
discussion and further theoretical development.
There is great promise for the field: as architectures become stronger theories,

they can go beyond modeling small experimental tasks, and provide a synergy
that can lead to the more ambitious functional goals to make cognitive archi-
tectures truly intelligent systems.
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9 Deep Learning
Marco Gori, Frédéric Precioso, and Edmondo Trentin

9.1 Introduction

In the seventh volume of their Traité de psychologie expérimentale,
devoted to the phenomenon of intelligence, Jean Piaget and his co-authors
postulated that intelligence manifests itself as the observable outcome of several
intellectual activities, activities that belong to the main, broad categories of
induction (learning), subsumption (recognition and generalization), deduction
(reasoning), and problem solving (Oléron et al., 1963). Accordingly, a definition
of artificial intelligence (AI) that complies with the framework could describe AI
as the study of machines that are capable of performing any activities that belong
to the aforementioned categories. In particular, in the opening essay of that
volume, Pierre Oléron pointed out that the intellectual activities rely on the
“construction and use of patterns (schemata or models) representing the objects
that the subject perceives” (Oléron, 1963) and manipulates. Although in the
experimentalist perspective only the stimulus S presented to the subject and the
corresponding response R can undergo an empirical investigation, it is fundamen-
tal to realize that a number of specialized schemata mediate between S and R,
actualizing “the connection between a class of stimuli and a class of responses”
(Oléron, 1963). The resemblance of the latter notion to the very process under-
lying automatic pattern classification (Duda & Hart, 1973) is striking.

Oléron pinpointed a second, fundamental characteristic of intellectual
activities, namely their being accomplished through long (or, deep) circuits.
This conception transcends the notion of a natural stimulus-reflex reaction pair
as observed in all organisms, a notion which (alongside that of conditioned
stimulus – conditioned response) is at the basis of classic associationism (Boring,
1950). In the case of the plain stimulus-reflex association, the reflex reaction
“follows immediately the presentation of the stimulus according to an organiza-
tion of inter-connections that is instantly mobilized” (Oléron, 1963). Figure 9.1
shows a shallow neural network realization of such a basic stimulus-reflex
association, where the interconnections may be modified (i.e., learned)
according to the experience in order to account for new, conditioned input-
output associations.1 To the contrary, long circuits are required in order to

1 The reader unfamiliar with the fundamentals of neural networks and their learning capabilities is
referred to Chapter 2 in this handbook.
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realize the détour typical of the intellectual activities. These long circuits connect
the natural perception of the stimulus to higher-level schemata which, in turn,
are connected to higher levels of abstraction (in terms of other schemata) until
a response is eventually formed. Figure 9.2 shows a deep neural network
realizing long circuits. Individual layers (populations of neurons) in the net-
work form patterns of internal representations of the original input stimulus,
according to a bottom-up hierarchy of higher-levels of abstraction. The cor-
responding response is yielded by the output layer. These schemata are
learned and refined through experience. Noticeably, when applied to pattern
recognition tasks, the schemata represented by the patterns of activation of
the internal layers of the deep neural network do literally result in the afore-
mentioned “connection between a class of stimuli and a class of responses,” to
put it in Oléron’s words.

9.1.1 Historical Notes

Rina Dechter is generally credited for having used the expression “deep learn-
ing” (as well as “shallow learning”) for the first time, in the year 1986, in the
context of solving constraint-satisfaction problems via search algorithms that

Figure 9.1 Shallow network realizing a simple stimulus-reflex reaction
mechanism (figure generated via NN-SVG (LeNail, 2019)).

Figure 9.2 Deep network realizing long circuits among stimulus, schemata,
and response (figure generated via NN-SVG (LeNail, 2019)).
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involved a particular sort of learning (Dechter, 1986). Nonetheless, possibly the
oldest deep learning algorithm can be dated back to 1963 when Joe H. Ward Jr.
published his paper on hierarchical clustering based on the optimization of a
criterion function (Ward Jr., 1963). Broadly speaking, hierarchical clustering
algorithms can be seen as the prototypes of deep learners, insofar that they build
deep hierarchies of higher and higher level “representations” (by means of
groupings) of the patterns in a data sample observed in the field. However, it
was not until two years later (1965) that the first proper algorithm for training
multilayer neural networks was delivered, thanks to the work by Alekseĭ
Grigoŕevich Ivakhnenko and Valentin Grigoŕevich Lapa (Ivakhnenko &
Lapa, 1965). The algorithm assumes that the neurons in the network realize
nonlinear transformations in the form of truncated Wiener series (Wiener,
1958). In retrospective it appears ironic that a few years later (1969) Marvin
Minsky and Seymour Papert published Perceptrons (Minsky & Papert, 1969), a
book that argued against the feasibility of training multiple layer networks and
that contributed, consequently, to the first AI winter (in the 1970s), putting
research on neural networks on hold for nearly two decades. In the same year,
Marvin Minsky won the Turing Award for “his central role in creating,
shaping, promoting, and advancing the field of Artificial Intelligence.” In
1971 Alekseĭ Grigoŕevich Ivakhnenko advanced one step further from his
previous work on multilayer networks with Wiener-like polynomial activation
functions by proposing the prototype of the popular Group Method of Data
Handling (GMDH) algorithm (Ivakhnenko, 1971), and applying it to a deep
(eight-layer) neural network. In such a context the GMDH operates as a
supervised growing and pruning technique. The approach revolves around a
least squares criterion, defined on the labeled training data, in order to estimate
the coefficients of the polynomials involved (during the learning and growing
process). A cross-validated regularization (pruning) process follows, based
on the evaluation of the least squares criterion on a separate, independent
validation dataset.

In the early seventies, several authors (e.g., Lee & Fu, 1974) active in the field
of syntactic pattern recognition proposed variants of grammar inference/learn-
ing algorithms capable of developing deep hierarchies (i.e., meta-levels of
abstraction) of grammatical rules describing the formal “language” underlying
the visual patterns within the images to be recognized.

From a strictly scientific perspective, the turning point in the history of deep
learning can be dated to 1974, when Paul J. Werbos discussed his Ph.D.
dissertation (Werbos, 1974). The dissertation presented the primigenial for-
mulation of the backpropagation (BP) algorithm. The latter, destined to
become the most popular training algorithm for neural networks for the
decades to come (and, still at the core of most modern deep learners), allowed
for learning effectively the parameters of neural networks having arbitrary
depth and nonlinear activation functions. BP is an instance of the general
gradient-descent (or, ascent) method for nonlinear optimization, suitable to
multilayered neural architectures having generic depth. Gradient-descent
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involves the computation of the partial derivatives of a differentiable loss
function (defined at the overall network level) with respect to the network
parameters. Since there is no general closed-form expression for such partial
derivatives in the lower layers of the network, BP provides a recursive com-
putation procedure (initialized at the output of the network, where such a
closed-form exists and is easy to compute explicitly) that yields the derivatives
at any given layer as a function of the derivatives computed already at
the immediately upper layer. As it happens, the breakthrough proved prema-
ture and was overlooked entirely by the community for the next fifteen years.
In fact, it was only in 1986 that BP was independently reinvented by
E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams (Rumelhart
et al., 1986a) and grew momentum under the driving force of the Parallel
Distributed Processing research group led by David E. Rumelhart and James
L. McClelland (Rumelhart et al., 1986b). Unfortunately, most of the
efforts put by scientists worldwide into BP-based neural networks in those
years focused on shallow (more precisely, one hidden layer) architectures.
The rationale behind not investigating deeper learners was twofold. On
the one hand, running many BP iterations to train a deep network from a
large real-world dataset was hardly feasible due to the limited computing
power of digital equipments at the time. On the other hand, a number of
theoretical results soon became available (Cybenko, 1989, is particularly
remarkable in a historical perspective) proving that networks having a
single hidden layer of sigmoid activation functions are per se “universal”
approximators.
A significant, implicit exception was represented by recurrent neural net-

works (RNNs), i.e., networks whose architecture contains cycles suitable to
sequence processing tasks, trained via the backpropagation through time
(BPTT) algorithm (Werbos, 1988). The unfolding in time realized by BPTT
results in a (possibly very) deep feedforward network built by stacking repeated
instances of the feedforward portion of the original network architecture on top
of each other (as many instances as the length of current input sequence).
A generic recurrent connection between neurons u and v is replaced by a
forward connection between the t-th copy of neuron u and the tþ 1ð Þ-th copy
of neuron v (where 1 � t � T � 1 is the index of any element of the sequence,
and the latter has length T) such that plain BP can be applied to the unfolded
machine. Unfortunately, at the time BPTT proved successful only in certain
setups, especially when the input sequences were short. Practitioners generally
motivated this shortcoming in terms of (1) the aforementioned limitation in
computational power available, and (2) the issue of “vanishing gradient,” that
is, BP of partial derivatives of the loss function results in numerically zero
values after backward propagation through several consecutive layers having
connection weights with small (say, close-to-zero) magnitude. A sound theoret-
ical rationale behind the issue was discussed by Yoshua Bengio, Patrice Simard,
and Paolo Frasconi in their 1994 paper “Learning long-term dependencies with
gradient descent is difficult” (Bengio et al., 1994). For RNNs, the issue was
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finally overcome in 1997 by Jürgen Schmidhuber and Sepp Hochreiter
(Hochreiter & Schmidhuber, 1997) who proposed the long short-term memory
(LSTM) recurrent network, destined to become the most popular deep RNN
for the next two decades.

As aforementioned, Cybenko’s work (Cybenko, 1989) has misled practition-
ers for many years by focusing attention on designing and training mainly
shallow neural networks. Indeed, Cybenko has shown that a neural network
with a single hidden layer of sigmoid activations can represent any continuous
function on compact subsets of Rn with an error ε as long as the hidden layer is
exponentially large, and the error can even be 0 if the unique hidden layer is
infinitely large. However, as explained in Bengio and Lecun (2007), other
previous mathematical results have laid the foundations of deep learning, for
instance, “Hastad (in Håstad, 1987) shows that (. . .) most functions represent-
able compactly with a deep architecture would require a very large number of
components if represented with a shallow one.” This property combined with
Cybenko’s work could result in the following rule of thumb: make networks as
deep as possible to approach universal approximators for a given problem. This
is also in agreement with Thomas M. Cover’s theorem on the separability of
patterns (Cover, 1965) (mainly known under Simon Haykin’s reformulation in
Haykin (1999)): “A complex pattern-classification problem, cast in a high-
dimensional space non-linearly, is more likely to be linearly separable than in
a low-dimensional space, provided that the space is not densely populated.”
A deeper network will increase the dimensionality of the input data representa-
tion inside the network, thus increasing the probability to correctly classify
input data with a final layer of simple neurons. If all these results tend to build
ever deeper networks, by increasing input data representation one could face
the curse of dimensionality (Bellman, 1961). A solution lies then in increasing
the depth of networks while accounting for invariances (to spatial transform-
ations of the data, to sequential transformations of the data, etc.) by integrating
specific structures in the hidden layers.

In a series of studies that spanned a decade (1988–1998), Yann LeCun et al.
developed LeNet, a convolutional neural network (CNN) for the analysis and
classification of images. Although LeNet was historically not the first “convo-
lutional” network to be put forward by scientists, it was the first properly deep
CNN, and its influence on the subsequent developments of the field turned out
to be paramount. The ultimate version of LeNet, called LeNet-5 (LeCun et al.,
1998), is a seven-level CNN that, substantially, still nowadays underlies most
modern deep CNNs for image processing.

Starting from the beginning of the new millennium, research on deep learning
has grown frantic, and only the most prominent milestones are mentioned
hereafter. In 2006, Geoffrey E. Hinton and Simon Osindero proposed deep
belief networks (DBNs) with an efficient pseudo-probabilistic greedy learning
algorithm (Hinton & Osindero, 2006). The latter exploits a layer-wise unsuper-
vised optimization of the model parameters that maximizes the pseudo-
likelihood of a set of discrete latent variables (the hidden units) given the
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discrete input observations. The process is iterated by stacking further probabil-
istic graphical models onto each other, in a bottom-up fashion, each such model
introducing a new set of higher-level latent variables that is expected to have
generated the outcome of the previous layer of random variables, and so forth.
In the same year, the DBN training scheme led Yoshua Bengio and his col-
leagues to extend the approach to continuous-valued variables, and to apply it
to that fundamental family of deep feed-forward neural network that is built by
stacking autoencoders of progressively reduced dimensionality, resulting in the
popular pyramidal architecture (Bengio et al., 2007). The technique trains the
individual layer-wise autoencoders first, in an unsupervised manner, resulting in
a plausible initialization of the weights of the overall deep network. The latter is
eventually refined via supervised, plain BP extended to the overall depth of the
machine. This innovation and others began to lead to practical applications that
proved so successful that, since then, the exploration of deep networks has
undergone a massive investigation and application worldwide. In 2018
Bengio, Hinton, and LeCun were jointly conferred the Turing Award for
“conceptual and engineering breakthroughs that have made deep neural net-
works a critical component of computing.”
Recent, relevant trends in the research on deep learning include graph con-

volutional networks (Kipf & Welling, 2017), deep networks with attention
mechanisms (Cho et al., 2015), generative adversarial networks (Goodfellow
et al., 2014b), and deep reinforcement learning (Arulkumaran et al., 2017),
among many others. All these advances have been made possible by the
impressive, relentless developments in hardware, software libraries, and data-
sets that have become of everyday use for researchers active in the field.
Advances in hardware technology provided deep learning algorithms with a
faster and highly parallel processing, thanks to many-core processors, high
bandwidth memory, and accelerators suitable to the learning and induction
tasks. The most popular form of accelerator is based on the graphics processing
unit (GPU), originally devised for fast image manipulation but equipped with
processing capabilities that match the computations required in deep neural
networks (Steinkrau et al., 2005). Due to the impressive growth in the use of
GPUs for deep learning, manufacturers have begun to incorporate neural
network-specific instruction sets, or specific tensor cores in their GPUs.
Software layers realizing the deep neural network functionalities on GPUs have
been developed, as well, and they have become extremely popular among
practitioners. Major instances are the libraries TensorFlow (Abadi et al.,
2016) and PyTorch (Paszke et al., 2019), among many others. Recently, other
forms of accelerators have been proposed (Shawahna et al., 2019), namely field-
programmable gate arrays (FPGA) and application-specific integrated circuits
(ASIC). Although both FPGAs and ASICs are promising for realizing neural
networks, due to their speed and extreme flexibility, they still lack enough
momentum to overtake GPUs because of the lack of software layers that
can compete with those available for the GPUs. Finally, another factor that
contributed to faster development of deep learning lies in the unprecedented
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effort put by the community into assembling large-scale, real-life datasets whose
complexity is challenging enough for constituting sound benchmarks for the
new algorithms, and whose size is large enough to allow for learning befitting
values for the considerable number of parameters characterizing deep networks
without overfitting the training data. OpenML (Vanschoren et al., 2013) and
PMLB (Olson et al., 2017) are popular instances of large, public, and curated
repositories of benchmark datasets, including software tools for accessing the
data in a standardized format.

9.1.2 Overview of the Chapter

Although the broad notion of deep learning has found application to diverse
areas of machine learning such as probabilistic graphical modeling (for
example, deep Bayesian networks (Hinton & Osindero, 2006)), kernel methods
(e.g., deep kernel machines (Bohn et al., 2019)), deep Gaussian Mixture Models
(Viroli & Mclachlan, 2019) and so forth, the present chapter focuses on the core
idea of deep neural network (DNN), the most popular and fundamental
instance of an automatic deep learner.

Section 9.2 discusses the main architectural and representational issues at the
basis of DNNs. Convolutional neural networks, possibly the most popular
instance of DNNs to date, are reviewed and analyzed in Section 9.3. Section
9.4 discusses a significant topic, namely artificial homeostatic neuroplasticity in
DNNs by means of adaptive neurons, either parametric or nonparametric,
offering a review of two algorithms for learning the amplitude and the slope
of nonlinear activation functions in feedforward and recurrent DNNs. Finally,
Section 9.5 draws some conclusions.

9.2 Deep Architectures and Representational Issue

9.2.1 Architectural Issues

Linear and linear-threshold machines construct a map for the input to the
output, without any internal representation, thus characterizing the inferential
process only by the coefficients of a separating hyperplane in the input space.
Inspiration from neuroscience early led to consider feedforward neural archi-
tectures which enrich the computation by nonlinear hidden neurons.
Interestingly, stacking layers of linear neurons does not increase the computa-
tional power of the neural network, since linear layers collapse to a single one.
This is clearly the consequence of interpreting the composition of linear func-
tions by the isomorphic matrix product. On the opposite, as we abandon neuron
linearity, more sophisticated internal representations of the input arise that are
typically referred to as the pattern features. As it will be claimed with more
details in the following, once the hidden neurons are organized in layers, a
higher degree of abstraction is gained. Interestingly, most interesting human
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cognitive skills seem to emerge thanks to a sort of natural compositionality, that
is in fact at the basis of deep architectures.
When regarding the hidden neurons as units that support appropriate features,

one early becomes curious of understanding the secrets behind the pattern of
connections generated by learning processes. In the case of fully connected units,
one typically expects neurons to construct a very large class of features. Basically,
in this case, there are no architectural constraints that, on the opposite, might
contribute to gaining invariant properties. Let us consider the classic example of
handwritten character recognition task. As for any object recognition task, one
very much would like to see neurons developing features that are invariant under
scale and roto-translation. In the case of full connections, neurons are developed
under the tacit assumption that they are all different from each other, so as they
do not support invariant features. An interesting case of invariance arises as the
units share the same weights, which also yields a sort of fault-tolerance. Grouping
neurons depending on the values of their common weights is a way of forcing the
development of features that are translation-invariant. The unit replication,
however, becomes more interesting whenever we abandon full connectivity.
This is of great importance in vision, where invariance is acquired at different
levels. The intrinsic hierarchical nature of deep nets leads to develop neurons
acting on small portions of the retina, that are called receptive fields. As we share
the weights of neurons operating on receptive fields, we promote the development
of translational invariant features, that also gain a hierarchical structure where
neurons represent features at different levels of abstraction.

9.2.2 Internal Representation in Feedforward Networks

The pattern of interconnections in feedforward neural nets (FNN) is defined by
a Directed Acyclic Graph (DAG), so as the partial ordering property behind
DAGs is the counterpart of the forward data flow mechanism in forward
propagation of FNN.
A very interesting special case of the feedforward structure is that of multi-

layered networks, where the units are partitioned into ordered layers with no
internal ordering.
The layered structure dramatically simplifies the data flow propagation of the

input. When referring to Figure 9.3 we can see that the weights associated with
a layer can compactly be represented by a corresponding matrix, so as the
output turns out to be

Figure 9.3 Layered structure with two hidden layers. There is no ordering
relationship inside the layers.
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y ¼ σ W3σ W2σ W1xð Þð Þð Þ:
In general we have

x0 ¼ u

8l ¼ 1, . . . , : xl ¼ σ Wl�1xl�1ð Þ: (9.1)

Here, the initialization x0 ¼ u fires the forward propagation step. Of course, the
role of σ �ð Þ is crucial in the neural network behavior. The mentioned collapsing
to a single layer in case of linearity can be seen. In that case we have
σ �ð Þ≔ id �ð Þ and, therefore,

y ¼
YL
l¼1

Wℓ � x ¼ Wx,

where

W≔
YL
l¼1

Wℓ:

We can see that, in general, there is no matrix W3 such that

σ W2 σ W1 xð Þð Þ ¼ σ W3xð Þ,ðð
which corresponds with the additional computational power that is gained by
nonlinear hidden neurons. The neurons that are modeled by

y ¼ g w, b, xð Þ ¼ σ w0xþ bð Þ, (9.2)

are referred to as ridge neurons. Another classic computational scheme is
based on

y ¼ g w, b, xð Þ ¼ k
kx� wk

b

� �
(9.3)

which are called radial basis function neurons. Here, k is a single-dimensional
radial basis function (e.g., a Gaussian function).

In order to get an insight on the role of deep structures, we begin by
considering a cascade of two units. In the simple case in which b1 ¼ b2 ¼ 0
we have y ¼ σ w2σ w1xð Þð Þ. Furthermore, if σ ¼ id �ð Þ in addition to the collaps-
ing to linearity, we also gain commutativity, since y ¼ σ w2 σ w1xð Þð Þ ¼ð
σ w1 σ w2xð Þð Þ ¼ w1w2xð . Notice that this does not hold in general in the multidi-
mensional case. As we introduce nonlinearity, this collapsing property is typic-
ally lost, which leads to gain additional representational power. For example, if
one considers a chain of two rectifiers, it does not necessarily collapse into a
single rectifier. Here is an example which also nicely shows the links between
rectifiers and sigmoidal functions. Let y ¼ 1� 1� xð Þþ

� �
þ be a cascade of two

equal units with σ að Þ ¼ σ wxþ bð Þ ¼ 1� xð Þþ, where w ¼ �1 and b ¼ 1. We
can see that
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y ¼ 1� 1� xð Þþ
� �

þ

¼
0 if x < 0

x if 0 � x � 1

1 if þ 1 < x < ∞

8>><
>>:

This clearly indicates that the cascading of rectifiers is not a rectifier and that we
gain computational power.
In the case of polynomial functions that are nonlinear, again we do not have

layer collapsing. As an example, let us consider the y ¼ σ að Þ ¼ a2, where
a ¼ wx. We can see that the cascade of two units does not collapse, since we
have y ¼ ðw2 w1xð Þ2Þ2 ¼ w2

2w
4
1x

4 and there is no w3 2 R such that
8x 2: w2

3x
2 ¼ w2

2w
4
1x

4. Clearly, polynomial functions enrich significantly the
input. We can see that the cascade of two units of m degree corresponds with
polynomial function with a double degree.
For exponential functions y ¼ ea, like in the previous cases, we can see that

there is no w3 such that y ¼ ew2 � ew1x ¼ ew3x: This equation is in fact equivalent to
w2 � ew1x ¼ w3x. Similar conclusions can be drawn for the squash function
y xð Þ ¼ 1= 1þ e�xð Þ: Overall, this analysis indicates that the cascading of units
typically enlarges the space of functions, thus enriching the cognitive skills of
the machine.
The discussion on deep paths naturally leads us to explore the extreme case of

neural networks with infinite depth. For this to make sense, in general, we need
to provide a rule to describe how the weights change along the paths. A simple
rule is that of assuming that there is a layered structure that represents a motif
to be repeated. Interestingly, this is related to the computational structure of the
recurrent network

xtþ1 ¼ f w, utð Þ
ut ¼ xt

(9.4)

where u0≔u is the input that is fed at the beginning of the iteration. A special
case that has been the subject of in-depth investigation is the Hopfield neural
network. In that case, a single layer of neurons is used where σ að Þ ¼ sign að Þ,
matrix W is symmetric, and wi,i ¼ 0.
The discussion carried out so far has been mostly dominated by the idea of

learning agents which interact with the environment according to the
supervised-based learning protocol, which is based on imposing that the output
z of the neural network gets as close as possible to the target y, that is
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Most of the cognitive processes that we currently investigate in humans, how-
ever, do not rely on such a supervision which provides the target at any
stimulus.

A common cognitive skill which is observed in children, and also in other
animals, is their ability to learn repeating an input stimulus – think of sound
repeating. This suggests the construction of neural networks where the target
becomes the input itself so that the network is expected to minimize e x; f w; xð Þð Þ
that is z ¼ f w, xð Þ ¼ x. The encoding architecture extends matrix factorization
in linear algebra. In that case, we are given a matrix T and we want to discover
factorsW 1,W 2, so as T ¼ W 2W 1. The process of encoding consists of mapping
x 2 Rd to a lower dimension y, which is the number of hidden units. One would
like the network to return z ¼ f w, xð Þ ’ x, so as the output of the hidden
neurons can be regarded as a code of the input. Basically, the hidden layer
contains an internal representation of the input stimulus in a compressed form.

9.2.3 Depth Issues in Boolean Functions

In order to understand the representational properties for FNN, the analysis of
classic and-or Boolean circuits offers important insights. While in this chapter
we will focus on the relevant role played by the specific choice of function σ �ð Þ,
the study of linear units and linear threshold units discloses a number of
relevant properties of FNNs, since LTUs like the Heaviside function already
give rise to a rich computational behavior. Let us begin with the simple case of
AND function ^ (see Table 9.1). Now suppose we simply use the neuron
defined by f ^ x1, x2ð Þ ¼ σ w1x1 þ w2x2 þ bð Þ, where σ �ð Þ ¼ H �ð Þ is the
Heaviside function. The truth table requires the satisfaction of the four
conditions b < 0, w2 þ b < 0, w1 þ b < 0, and w1 þ w2 þ b > 0, where we
assume that T⇝1 and F⇝0. We can see that w1, w2, b½ � ¼ 1, 1, � 3

2

� �
is a

possible solution. Likewise, the ∨ Boolean function can be implemented by a
linear-threshold function. In particular, we can see that, in this case, one
solution is w1 ¼ w2 ¼ 1, b ¼ � 1

2.
At the dawn of the second connectionist wave, it was early recognized that

the nice linear-separability property that is gained for the ^ and ∨ is not shared
by the exclusive-or function

x1 � x2 ¼ ¬x1 ^ x2∨x1 ^ ¬x2: (9.5)
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Formally, this comes out when considering that, in order to respect the condi-
tions in the truth table, any candidate separation line needs to jointly satisfy
b < 0, w2 þ b > 0, w1 þ b > 0, and w1 þ w2 þ b < 0. Now, there is no satisfac-
tion of these constraints, since if we sum up the second and the third inequal-
ities, we get w1 þ w2 þ 2b > 0. Likewise, if we sum up the first and the fourth
inequalities, we get w1 þ w2 þ 2b < 0, so that we end up with a contradiction.
The impossibility of satisfying the truth table can also be seen when looking at
Figure 9.4, where we can see that no single line can separate the points
corresponding to the training set.
We can get an insight on the construction of functions that implements �

when considering classic representational properties of Boolean functions.
Notice that ¬x1 ^ x2 and x1 ^ ¬x2 can both be represented by LTU with the
Heaviside function, since we can use the same construction method as for ^.
Hence, � can be realized by using the canonical representation

x1 � x2 ¼ ¬x1 ^ x2ð Þ∨ x1 ^ ¬x2ð Þ,
where we only need and/or functions. Now, let us begin with the construction of
f ¬x1^x2

and f x1^¬x2
. When thinking of the ^ and ∨ realization, we can realize

that the solution is similar, since any minterm is linearly separable. In Figure 9.4
we can see the lines corresponding with the two minterms and the mapping of
each example onto the hidden layer representation. Clearly, both minterms are
linearly separable. Because of the I-Canonical expression of the XOR, the output
unit 5 acts as an OR which, again, is linearly separable. It is worth mentioning
that the solution given in Figure 9.4 can also be given a related interpretation in
terms of the II Canonical form. We have

Table 9.1 Classic Boolean functions: AND, OR, and XOR.
Notice that, unlike AND and OR, XOR is not linearly separable

x1 x2 x1 ^ x2 x1∨x2 x1 � x2

F F F F F
F T F T T
T F F T T
T T T T F

x1

x2

a b

cd
3

4

x3

x4

c

b,da

Figure 9.4 Linear separabilty is gained in the hidden layer representation in a
classic XOR feedforward network.
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x1 � x2 ¼ x1∨x2ð Þ ^ ¬x1∨¬x2ð Þ:
In this case, maxterm x1∨x2 is realized by unit 3, while maxterm ¬x1∨¬x2 by
unit 4. This time, the output neuron 5 acts as an AND.

In Figure 9.4, one can appreciate the crucial role of hidden units which
concur to construct a linearly separable representation of the inputs. As we
can see, d and b are mapped to the same point in the hidden layer, which is the
reason why we end up with a linearly separable representation. The logic
interpretation of the mapping is that the structure of the � function is properly
decomposed, so that the output neuron only carries out primitive operations
(^ and ∨, respectively). As a result, the neural architecture yields a function
which has an inherent compositionality that is gained by the two hidden units.
It is in fact this intermediate representation which enables the conquering of the
higher-order abstraction that is needed by �.

9.2.3.1 Universal nand Realization

First and second order canonical forms are not the only representations of
Boolean functions that can help expressing them by compositional structures.
In order to appreciate the range of different realizations, let us consider the
following example, that nicely shows two extreme types of representations.
Suppose we want to realize the function

f xð Þ ¼ x1 �x2 �x3 ¼ nand x1,x2,x3ð Þ:
Clearly this can be done by a single LTU. The ^ function is in fact linearly
separable and the property is clearly kept when flipping the truth of the output
to get the nand. It is easy to see that a single LTU realization is possible for any
dimension. Now, we can see the interplay between this shallow network and an
extreme opposite realization that is based on a deep net. We can provide a different
expression of the function by invoking De Morgan’s laws, so that we have

f xð Þ ¼ ¬^xi ¼∨
d

i¼1
¬xi:

The above equation can be given the deep recursive structure

yi ¼ yi�1∨¬xi,

where y2 ≔x1 �x2 and f xð Þ ¼ yd . Hence the same function can equivalently be
represented by a shallow architecture or by a deep network based on the
progressive accumulation of the truth by variable y. The realization of
Boolean functions can be based on the classic property stating that the nand
operator possesses universal computational power. For example, the xor func-
tion in two dimensions becomes

x1 � x2 ¼ x1 �x2 þ x1 �x2

¼ x1 �x2 þ x1 �x2

¼ x1 �x2 �x1 � x2:
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Hence, the xor function can only be expressed in terms of the nand operator as
follows

x1 � x2 ¼
¼ nand nand x1, �x2ð Þ,nand �x1,x2ð Þð Þ:

Interestingly, xi ¼ nand xi,xið Þ, so that we obtain the following full nand-
based representation.

x1�x2¼
¼nand nand x1,nand x2,x2ð Þ,ðð

nand nand x1,x1ð Þ,x2ð ÞÞ:
Since the nand can be represented by a single neuron we end up with the
conclusion that the adoption of the universal nand-based representation makes
it possible to express the exclusive-or function by an architecture with depth 3.
Notice that the canonical representation previously discussed leads to an archi-
tecture with depth 2. Moreover, we also need nand operators, which shows that
the circuital complexity of this implementation is higher than in the case of the
canonical-based representation.

9.2.3.2 Shallow versus Deep Realizations

The example on the xor function shows that we can have representations with
different depth, which suggests a better analysis of the shallow vs. deep dichotomy.
As we will see, shallow representations do not turn out to be very effective in many
interesting cognitive tasks of practical interest, especially those which exhibit a
significant structure and require a remarkable degree of abstraction.When looking
at Boolean functions, one can see that it is in fact the exponential growth of the
number of minterms (maxterms) which makes corresponding circuital representa-
tion hard. This is clearly strictly related to issues of intractability of the satisfiabil-
ity problem. However, there are some deep circuits that can naturally represent
some apparently complex tasks. For example, in case of xor there is a simple
extreme solution that is similar to that which we have seen for the multivariable
nand. Because of the associativity, for d � 2, we can express yd ¼ �d

i¼1xi as

y ið Þ ¼ y i � 1ð Þ � xi;

y 1ð Þ ¼ x 1ð Þ:
Now, let us consider Figure 9.5 and suppose that a stream of bits is applied at

node 1 by a forward connection, which is depicted on the figure. We notice that
in the network there is also another type of connection, namely the one which
links neuron 5 to neuron 4, that is indicated in gray. It is not a usual synaptic
connection, but it simply returns y5 delayed of the same time that synchronizes
the input stream. Basically,

y4 ið Þ ¼ y5 i � 1ð Þ:
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Vertex 5 is the one which returns the xor output. Its value, once properly
delayed, is fed to neuron 4, which along with the input xi is used to compute
y ið Þ. This computational scheme can also be expressed by the forward compu-
tation of the neural network in Figure 9.5. This deep network exhibits an
impressive computational advantage with respect to those coming from the
I and II canonical forms, which are in fact pretty flat – depth two. In general,
one needs half of the minterms and, consequently, the number of units grows
exponentially with d. On the opposite, in the case of the above deep network,
the number of units is only proportional to d. This strong circuital computa-
tional complexity difference between shallow and deep networks will be dis-
cussed intensively in this chapter. The xor function is a nice example to show
that circuit complexity issues are of crucial importance, since it clearly shows
that shallow realizations can break the border of polynomial bounds.

9.2.3.3 LTU-Based xor Realization

The realization of Boolean functions that we have discussed so far has been
driven by canonical forms of Boolean algebra (see e.g., I and II canonical forms
and NAND universal representation). However, when considering LTU-based
neurons instead of Boolean gates, a new way of thinking arises which is based
on processing with real-valued variables. As it will be shown, this opens the
doors to remarkably different realizations of Boolean functions. As an example,
we continue the discussion on multidimensional xor. For the sake of simplicity,
let us assume d ¼ 4, but the arguments that we use hold for any dimension.
Since the xor function corresponds with the parity of the corresponding input
string, we can construct pairs of neurons devoted to detect the presence of an
even number of 1 bits. In this case, two pairs of neurons are devoted to detect
the presence of 1 or 3 bits equal to 1, respectively. Now we construct a multi-
layer network with one hidden layer where each neuron can realize the � and �
relations, while the output neuron accumulates all the hidden values and fires

1

2 3

45

1 2

3

4

5 6

7

8 9

10

11 12

13

Figure 9.5 Deep realization of the xor function. In the right-hand side network
the inputs are units 1,2,3,4.
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when the accumulated value exceeds a threshold which corresponds with the
dimension d ¼ 4. Hence, the neurons are fired according to

X4
i¼1

xi � 1 ) x5 ¼ 1;
X4
i¼1

xi � 1 ) x6 ¼ 1;

X4
i¼1

xi � 3 ) x7 ¼ 1;
X4
i¼1

xi � 3 ) x8 ¼ 1;

X8
i¼5

xi � 3 ) x9 ¼ 1;

(9.6)

Now, let us analyze the incoming sequences depending on their parity.

• Parity is odd
This is possible in case the number of 1 is either 1 or 3. In the first case, from
inequalities 6 we can see that “corresponding neurons” 5 and 6 are fired, but
also neuron 8 is fired. Likewise, when the input string contains three bits at
1 then the associated neurons 7 and 8 are fired, but also neuron 5 is fired.
Hence in both cases

P8
i¼5xi ¼ 3 and, therefore, x9 ¼ 1.

• Parity is even
In case parity is even then we can see that

P8
i¼5xi ¼ 2, which holds either in

the case of zero bits or in the case of two bits at 1 in the input string. Hence,
x9 ¼ H 2� 3ð Þ ¼ 0.

Clearly, this can be generalized to the d-dimensional xor, where we need d
hidden units devoted to spot the odd numbers 2κ þ 1 � d. Again, in case of odd
parity, the pairs of neurons corresponding to the odd number contributes 2 to
the output, whereas all remaining pairs contribute 1. Finally, in case of even
parity only half of the hidden neurons are fired.
Hence, we conclude that there is a shallow depth 2 threshold architecture

which realizes the xor with O(d) neurons. While both the neural networks
depicted in Figure 9.5 and Figure 9.6 are efficient O(d) realizations of the xor,
there is, however, an important difference: the solution based on Figure 9.5 is

1 2 3 4

5 6 7 8

9

Figure 9.6 Shallow realization of the xor function. Unlike the solution based
on canonical representations of Boolean functions, this realization has circuit
complexity O(d).
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robust with respect to the change of the weights, whereas the computation
based on Figure 9.6 is clearly sensitive to any violation of the comparison
conditions. The last example on the xor realization indicates the circuital
superiority of LTU w.r.t. the logical gates. Intuitively, the additional efficiency
that arises when dealing with LTU realization is due to their higher degree of
expressiveness which comes from real-valued weights instead of Boolean vari-
ables. These remarkable different computational bounds on the circuital com-
plexity (from O(2d ) to O(d)) clearly show the importance of the internal
representation, which is the basis of the success of deep networks. This example
on the realization of xor also indicates that fundamental role of continuous-
based computational schemes. While computer architectures and algorithms
grew up under the framework of Boolean-like and logic-inspired computational
schemes, this simple example nicely supports the explosion of interest in
neural computation.

9.2.3.4 Symmetric Functions

The basic ideas behind the depth-2 construction proposed for the xor in
Figure 9.6, can be extended to the interesting class of symmetric functions.
Formally, a Boolean function f : 0, 1f gd ! 0, 1f g is said to be symmetric
provided that

f x1, . . . , xdð Þ ¼ f x 1ð Þ, . . . , x dð Þ
� �

,

where x 1ð Þ, . . . , x dð Þ
� �

is any of the d! permutations of x1, . . . , xdð Þ. The xor
and the equivalent function � are examples of symmetric functions. The idea
adopted for the implementation of xor by LTU-units can be extended to
this class of functions (Siu et al., 1995). As for the realization of parity, the
most remarkable result that we gain is that shallow LTU-based networks
exhibit a circuit complexity of O dð Þ, whereas realizations based on I and II
canonical forms of Boolean functions, in general, exhibit O 2d

� �
. It is worth

mentioning that amongst the complexity requirements of good realizations,
it is opportune to consider also the possible explosion of the weights of the
developed solution. The symmetry of pictures offers an appropriate example
to illustrate this issue. Symmetry can be formalized as an equality predicate
between Boolean words, and it will be denoted as simmd x, yð Þ. For
instance, suppose we want to check symmetry for the linear picture
111101 j 101111. If we split into x ¼ 111101 and y ¼ 111101, which are
constructed from the beginning and end of the string, then symmetry is
reduced to checking equality, as you can see in Figure 9.7. To face the
problem, we introduce the compd (comparison) function, that is defined
as follows:

compd x; yð Þ ¼ 1 if x � y
0 if x < y

�
(9.7)
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¼ H
Xd�1

i¼0

2i xi � yið Þ
 !

(9.8)

We can see that

simmd x; yð Þ ¼ compd x; yð Þ ^ compd y; xð Þ
Since ^ can be represented by a single LTU, a depth-2 neural network allows us
to compute symmetry. As we can see from Equation 9.8, however, this realiza-
tion does require an exponential increment of the weights of the neurons of the
hidden layer! However, we can circumvent this problem and compute
simmd x, yð Þ by the bitwise equality check

simmd x; yð Þ ¼ ^└d=2┘

i¼1
¬ xi � yið Þ (9.9)

For the realization, notice that xi � yi ¼ H xi � yið Þ þH yi � xið Þ � 1. Hence,
while xi � yi is a depth-2 circuit, since we do not need to carry out any
accumulations before the signal is forwarded to the ^ unit; we can in fact send
it directly to the unit so that simmd x, yð Þ is realized itself by a depth-2
network. Hence, we can compute the symmetry by the depth-2 network. Once
again, the circuital structure plays a crucial role in the computation.

9.2.4 Internal Representations of Real-Valued Functions

Real-valued functions share a few analogies with Boolean functions. There are
also remarkable differences which are intimately connected with their funda-
mentally different mathematical structure. Early studies by Lippman and Gold
(1987), who assumed to deal with hard-limiting LTU, provided interesting
insights on the internal representation of neural networks for classification
tasks. In Figure 9.8, a neural network with two inputs is expected to classify
the patterns of a nonconnected domain composed of two convex sets. At the
first hidden layers, neurons in 3,4,5 and 6,7,8 can develop connections such that
they can represent the two convex sets denoted by 9 and 10, respectively. These
convex sets are detected by the corresponding neurons in the second hidden
layer. At the output layer, unit 11 can act as a logical disjunction, thus
conferring the overall net the task of recognizing any point in the union of the
convex sets denoted by 9 and 10. Clearly, the construction shown for noncon-
nected convex sets can be used to realize any concave set.

compd(x y)

x, y

Figure 9.7 The axis symmetry of a given picture can be established by the
comparison of the portions cut by the symmetry axis.
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9.2.5 Some Insights on the Role of Depth

Now, we shed light on some interesting properties of deep networks which help
understanding and also some recent developments and experiments in the
framework of adversarial learning.

9.2.5.1 Equivalent Configurations

We begin studying nets with one hidden layer only and, particularly, the neural
net used for the XOR predicate. We can see that if we permute the hidden two
units then we get the same output, that is

f

⎛
⎜⎜⎝ 1 2

3 43

5

x

⎞
⎟⎟⎠ = f

⎛
⎜⎜⎝ 1 2

34 3

5

x

⎞
⎟⎟⎠ :

Here f returns the output of the network once we apply the generic x 2 X .
Clearly the permutation does not change the accumulation of the outputs on

1 2

3 4 5 6 7 8

9 10

11

x1

x2

3

456

7
8

9

10

Figure 9.8 Classification in R2 using a neural network with hard-limiting units.
The nonconnected domain X ¼ X 1 [X 2 is detected by a depth-3 neural
network, where at the second hidden layer the convex domainsX 1 andX 2 are
isolated. Then the or of the output unit represents the characteristic function of
X ¼ X 1 [X 2.
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units 5. This property holds regardless of the number of hidden units. LetI and
H denote the input and hidden layer. Then the forward propagation yields2

xi ¼ σ bi þ wi,jσ bj þ wj,κxκ
� �� �

Clearly, any permutation π Hð Þ yields the same result, since
P

j2H ¼Pj2π Hð Þ.
Basically, the output of the neural network is independent of the jH j! different
permutations of the neurons in the hidden layer. A network with as few as
20 hidden units, which is typically just a toy in most real-world experiments,
exhibits more than one trillion solutions! This is why there are often so many
different solutions with the same absolute minimum.
In case of deep nets, the number of S of equivalent configurations due to

permutation of units in the same layer pass from jH j! to
S ¼

Y
P

i
jH i j¼H

Hi! (9.10)

Because of symmetry

S ¼
Y

P
i
Hi¼H

Hi! � H=pð Þ!ð Þp � H! (9.11)

This property gives significant insights on the effect of increasing the depth of
neural networks. Basically, the distribution of the same number of hidden units
H in different layers has a strong effect on the number of different equivalent
configurations. It turns out that as the depth increases, we have a dramatic
reduction of the number of equivalent configurations, thus indicating the bias-
ing towards special functions in deep nets. Neural networks with one hidden
layer only, which have been massively used at the dawn of the connectionist
wave, rely on a canonical functional structure which exhibit universal approxi-
mation, but those shallow networks do not involve significant extraction of
features with high degree of abstraction.
Interestingly, the discussed permutation symmetry is not the only one that is

involved in layered networks. In case of odd neuron functions, like for the case
of σ �ð Þ ¼ tanh �ð Þ, we can see that

f

(
1 2

3 43

5
)

= f

(
1 2

3 43

5
)

where the gray level in the connections of the right-hand side network
indicates that the weights are the same as the corresponding weights of the
left-hand side network (black connections), with flipped signs. More precisely
w3,1⇝�w3,1,w3,2⇝�w3,2 and w5,3⇝�w5,3. Hence we have

2 In order to use more compact notation, we use Einstein’s convention of omitting the sum
operator whenever the corresponding index is not repeated on both sides of the equation.
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w5,3σ w3,1x1 þ w3,2x2ð Þ
⇝�w5,3σ �w3,1x1 � w3,2x2ð Þ:

In a neural net with one hidden layer of H units, the number of sign flips
corresponds with 2H . When considering Equation 9.10, the overall number of
configurations S becomes

S ¼
Yp
i¼1

2HiHi! (9.12)

This is huge even for small networks and, once again, it gives insights into the
successful behavior of gradient-based learning algorithms that are not typically
trapped in suboptimal solutions in real-world tasks.

9.2.5.2 Separation Surfaces

A deep network used for classification can be characterized by its separation
surface defined by the set

S ≔ x 2 X 2 Rd : f w, xð Þ ¼ 0
	 


: (9.13)

The separation surface depends on the architecture of the net as well as on the
neuron nonlinearity. A major difference arises when choosing ridge or radial-
basis function neurons. Let us consider neurons equipped with the Heaviside
function. We can get an insight on separation surface when considering two-
dimensional spaces. For choosing a number of hidden units h ¼ 1,2,3,4 the
following separation surfaces are generated

(
1 2

3 4

5

�
)

(
1 2

3 4 5

6

�
)

(
1 2

3 4 5 6

7

�
)

Depending on the value of h, there is a fundamental difference between the
case h ¼ 2, and h > 2. In the first case, the two hidden units can only generate
domains bounded by two separating lines, so the delimited domain cannot be
bounded. This is the case of the XOR network, where the domain is defined by
parallel separating lines. For h ¼ 3,4 the domain corresponding with positive
answers are those corresponding with the polytopes. For d ¼ 3, the first poly-
tope with this property is the tetrahedron, which has got four faces (h ¼ 4). In
general, for the boundedness to take place we need to satisfy
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h ¼jH j> d (9.14)

We can see that this is not a sufficient condition. An in-depth analysis on this
issue is given in Gori and Scarselli (1998). For example, while a neural network
with eight hidden units can generate the diamond-shaped bounded domain

the same eight hyperplanes in R3 can also be all parallel. For deep nets, the
conclusions drawn for one hidden layer nets are not remarkably different. One
can always regard the generic hidden layer as the input to the upper layer, so the
previous claims still hold.
When using ridge neurons, boundedness can be guaranteed by autoencoders.

The idea is that each class is modeled by a corresponding network, which is
expected to create a compact representation of the inputs. In this case an
autoencoder generates the separation surface

S ¼ x 2 X � Rd : kf w; xð Þ � xk ¼ ε
	 


where ε > 0 is an appropriate threshold. We can see that if the output neurons
of the auto-encoders are linear then the domain D, defined by the frontier S , is
bounded (Bianchini et al., 1995).

9.3 Convolutional Nets

The discussion on representational issues in the previous section has
provided evidence on the importance of abandoning shallow architectures in
favor of deep neural nets. The universal computational capabilities that come
with the canonical one-hidden-layer architecture turn out to be a mixed bless-
ing. The power of generality is gained by paying the explosive growth of the
number of hidden units. On the opposite for deep nets, it has been shown that
the number of equivalent configurations drops dramatically in favor of hier-
archical architectures that turn out to be more adequate to naturally express
most interesting cognitive tasks. Basically, the interest in cognition is not
uniformly focused on any possible tasks, but on those which can be experi-
mented in nature. Interestingly, the need to gain abstract concepts to optimize
the relationship of intelligent agents with the environment has led to the
development of highly structured representations whose interpretation can
better be achieved by deep nets. A recurrent important property that is dis-
covered in perceptual tasks is that of invariance. The underlying idea is that
different stimuli correspond with the same concepts. An object represented in
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the retina is the same regardless of its translation, rotation, and scale modifica-
tion. On the other hand, the supervised learning protocol taking place in
shallow networks promotes solutions where the discovery of feature invariance
is mostly missed, in favor of the development of multiple representations of the
same feature by different neurons. Neural networks which can incorporate
invariant features contribute to the development of models that are more suited
for the underlying cognitive task.

The most remarkable example of architectures which exhibit built-in (trans-
lational) invariance is that of convolutional neural networks. They have had a
special role in the revival of neural networks and the advent of deep networks as
a technique which revolutionize scientific domains and application fields
beyond the domain of computer vision for which it was originally conceived.
Historically, the family of convolutional neural networks is based on results
from the seminal works of D. H. Hubel and T. Wiesel from the mid-fifties to the
late seventies on mammalian visual cortex (Hubel & Wiesel, 1959, 1962, 1977).
They described the structure of the visual cortex organized in hierarchical layers
of simple cells and complex cells, building complex representations of the visual
information from first simple cell responses to specific oriented edges and
contrast areas then aggregated, combined, in complex cells. Such simple cells
(from the visual cortex) are activated by Gabor-like shape receptive fields (see
Figure 9.9).

Based on these results, the first attempt to build a neural network mimicking
these mechanisms dates back to studies by K. Fukushima with his cognitron
(Fukushima, 1975), and later his neocognitron (Fukushima, 1980). In the latter,
in order to make his network invariant to receptive field shifts, and thus
invariant to a translation of stimuli, he proposed a very important feature at

Figure 9.9 From Wikipedia, “Gabor filter-type receptive field typical for a
simple cell.
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the core of CNNs: a simple cell is a grid of neurons which all share the same set
of weights, but with their “receptive fields” processing the input at different
positions (as illustrated in Figure 9.10). To better understand this mechanism,
one simple cell of layer USL and one complex cell of layer UCL are extracted in
Figure 9.10. If this first simple cell in USL is sensitive to the receptive field (given
in Figure 9.9), then the activation of the resulting neuron in the corresponding
complex cell in UCL will be maximal. The weights on the connections are given
by the values in the receptive field (each pixel of Figure 9.9 actually defines a
weight). Thus, the input values in the considered region will be multiplied by the
aligned corresponding weights of the receptive field. Again, as explained in
Fukushima (1980, 2019), since all the neurons of this simple cell share the same
weights, the same oblique edge stimulus in USL but shifted will activate a
neuron with the same magnitude at another location of the complex cell grid
of neurons. And if there are several similar stimuli, they will activate all the
corresponding neurons in the complex cell similarly. This principle provides
shift invariance (or translation invariance) to the activation of a given receptive
field. If one looks at the receptive field as a filter, the spatial filtering of the input
operated by a simple cell is thus shift invariant. This is precisely, in signal
processing domain, the definition of the convolution operation of an input
(signal) by a kernel filter (i.e. the receptive field). Such a layer will thus be called
a convolutional layer.
Another important aspect of this network configuration is that between

consecutive layers of complex cells UCL and simple cells USLþ1, not all neurons
from the previous layer are connected to each neuron of the next layer. Only a
restricted subset of neurons from the previous layer (illustrated in Figure 9.11
by a rectangle) are involved in the computation of the corresponding neuron in
the next layer (i.e., the head of the cone). This step is the pooling (Fukushima,
1980, 2019): all the neurons in the gray rectangle are summarized into one
value. It can be the max of all neuron values in the rectangle area, or the
average, or any function associating all these neurons to one value.
Depending on the choice of this function, the following layer is going to be
sparser, or smoother, etc.

UCLUSL CL

Figure 9.10 0ne simple cell of layer USL and its corresponding complex cell
of layer UCL are displayed (the other simple and complex cells at the same
levels, or in the same layers, are aligned below as it can be partially seen on
the figure).
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The BackPropagation (BP) algorithm mentioned before, did not exist yet at
the time and K. Fukushima focused on self-organization map algorithms to
optimize the weights of the neocognitron network. This optimization process
has the advantage of being unsupervised. However, until now, optimizing deep
neural networks using supervised BP algorithm outperforms other strategies.

As aforementioned, Y. LeCun participated in the general effort of the com-
munity to conceive BP algorithm and to efficiently train neural networks, in
particular LeNet-5, the first CNN with BP and some other adaptations (LeCun
et al., 1989). This first CNN model outperformed all other methods for about
two decades on the task of digit recognition for the MNIST dataset. This first
CNN architecture took several processing steps from the neocognitron as can
be seen in Figure 9.12.

As in the original neocognitron, convolution layers and pooling layers (cor-
responding to subsampling on Figure 9.12) alternate in CNNs. The subsampling
step in most CNN architectures is a max pooling step (preserving only the max
value in the pooled area) which provides in addition sparsity on the resulting
feature map (see Figure 9.13).

Since 2012, AlexNet, the model designed by A. Krizhevsky and his colleagues
(Krizhevsky et al., 2012) to win the 2012 edition of the ImageNet – Large Scale
Visual Recognition Challenge (ILSVRC), CNN models have broken into many
other domains where convolution was not intuitively identified as a core mech-
anism: CNN in text data, CNN in graph structures, or to some extent CNN in
times series, etc.

Several remarkable features of CNNs can explain their impressive successes.
When using new optimization techniques, it became manageable to increase
drastically the architecture size, leading to ever increasing performances and in
particular models which even outperform human beings in the computer vision
task of recognizing a set of objects in a series of images. These models are
transferable from one domain to another, meaning that a CNN trained for a
given task (e.g., ImageNet classification, with categories such as bikini, tiger
shark, walking stick, basketball. . .) outperform nondeep learning methods on a
new domain, for instance brain tumor detection in medical images, even if the
nondeep learning methods have been carefully handcrafted for this latter

USL+1UCL SL 1

Figure 9.11 The neuron output in the rectangle area is summarized into
one neuron.
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Figure 9.12 Typical CNN architecture. Reproduced from Wikipedia.
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domain. This is even true when the two domains are different modalities: it is
more efficient to transform audio data into 2D images (e.g., spectrogram), then
to adapt a CNN pretrained on ImageNet for audio data classification, than
designing a nondeep learning method for the original 1D signal.

A final remarkable feature of the CNNs lies in closing the loop with the
origins of the methods: an artificial neuron is a simplistic representation of
related biological models. From D. Hubel and T. Wiesel, to K. Fukushima and
his neocognitron, to finally Y. LeCun and his LeNet, each new model has
increased the distance with biological reality: biological neurons are discrete
computational units while artificial ones are continuous computational units;
BP or a mechanism mimicking BP has not (yet) been identified in biology; and
the main difference lies in the resources required by CNNs to be efficient, such
as size of the training set, or amount of energy for training (this will be
discussed later).

However, as illustrated in Figure 9.14 with the filters learnt in the first
convolution layer of AlexNet using the ImageNet dataset, this first layer
extracts edges, contrasts, and textures in different orientations and scales.
These detectors look similar to the simple cells from the mammalian visual
cortex identified by Hubel and Wiesel (see Figure 9.9). This is consistent with
other CNN architectures. Figure 9.15 displays the filters trained on ImageNet
in the first convolutional layer of DenseNet-121 (Huang et al., 2017). The
same kind of edge and texture detectors are learnt, even if the intrinsic
convolutional architecture varies. In Lee et al. (2009), by considering another
variant of convolutional deep networks (Convolutional Deep Belief Networks, or
CDBN), the visualization of filters from deeper layers becomes possible. In
Figure 9.2, the first and the second convolutional layers, trained on natural
images, learn filters similar to the Gabor-like receptive field (as aforementioned
convolutional networks). In Figure 9.3, second and third convolutional layers,
trained on specific categories (face, cars, elephant, chairs), extract generic
abstract representation of these categories and gain abstraction going from
the input data towards the output prediction of the neural network (first: eyes,

Figure 9.13 Max pooling with a 2 	 2 filter corresponds to keep only the max
value in the 2	 2 area. In this example, the stride is equal to 2; thus between two
consecutive 2 	 2 areas the horizontal and vertical displacements are equal to 2.
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nose, then, faces). Several recent works attempt to compare representations
learned by DNN models, specifically CNNs, to biological neural representa-
tions (Kriegeskorte, 2015; Peterson et al., 2018) in the spirit of bridging the gap
between biological neural and artificial neural representations. Even if the

Figure 9.14 Filters from the first convolution layer learnt on the ImageNet
dataset with AlexNet model (Krizhevsky et al., 2012). Convolutional filters
seem to extract patterns such as edge detectors, contrast areas, and textures.
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models and the internal learning mechanisms are not biologically plausible, the
behavior of artificial neural architectures is similar to the behavior known of the
mammalian visual cortex. This could suggest that although a single artificial
neuron is not close to a biological model, the overall structure leads to an

Figure 9.15 Filters from the first convolution layer learnt on ImageNet dataset
with DenseNet-121 model (Huang et al., 2017). Convolutional filters seem to
extract patterns such as edge detectors, contrast areas, and textures.
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overall cognitive process that resembles what is known in the human
visual cortex.
Thanks to the largest annotated image dataset, ImageNet, and thanks to the

organization of ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), CNN-based models have improved over the years until even out-
performing human performances since 2015 (see Figure 9.16). These results
motivate the current intense research activity to build new neural architectures
(most often based on CNNs) for other perception domains such as olfaction/
smell (Dasgupta et al., 2017; Delahunt et al., 2018 ; Kell et al., 2018; Shen et al.,
2020; Yang et al., 2015).
Despite the impressive properties of CNNs illustrated in particular in image

classification, these methods have shown very important weaknesses:

• Requirements in training data: in order to train deep networks with huge
amounts of weights (AlexNet, in 2012, had 60 million parameters, VGG19
winner in 2014 had 140 million parameters, Inception V3 winner in 2015 had
about 25 million parameters, ResNet-152 winner in 2016 had about 60 million
parameters), the amount of annotated data has to be huge too. If transfer

Figure 9.16 Plot of the history of performances in the ImageNet Large Scale
Visual Recognition Challenge, taking the best result per team and up to a
maximum of ten entries per year. For reference, human performance for such a
challenge is around an error rate of 0.05–0.04 and thus models since
2015 outperform humans on average for this task.
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learning can provide a solution by extending an existing pretrained model to
the new target domain, this pretrained model itself has to be trained on a huge
training set beforehand. This cannot be applied when starting from scratch on
a new type of data. Thus, other solutions for learning with as few labeled
images as possible are currently under investigation, such as active learning
(Ducoffe & Precioso, 2018; Roy et al., 2018); zero-shot learning (Xian et al.,
2018; Zhang et al., 2017) or few-shot learning (Liu et al., 2018), etc.

• Requirements in energy: the execution of a single forward and backward
propagation iteration requires about 300 Watts for AlexNet and VGG19,
about 230 Watts for Inception V3 overall when accumulating CPU and GPU
power consumption (Li et al., 2016). This has to be compared with human
brain power reaching about 15 to 20 Watts.

• Complexity to design and to optimize such deep architectures: as mentioned
previously, LeNet-5 was designed in 1998 but the true breakthrough of CNN
architecture was achieved fourteen years later with AlexNet’s win at ILSVRC
ImageNet Challenge in 2012 because the optimization of AlexNet required
the combinations of many optimization and regularization tips and tricks to
be trained (i.e., Dropout, Rectified Linear Unit activation function). All the
following improvements of architectures (evolving towards deep networks)
with VGG16, VGG19, Inception V1/2/3, ResNet-18/50/101/152 and so on
have each required a year to converge to an efficient trained model, always
requiring new optimization and regularization tricks (Dauphin et al., 2014).
The evolution of the architectures was still a continuous process, since the
design of deep networks is a challenge itself. Training one candidate architec-
ture was so computationally expensive that automatic techniques have been
proposed to search for the best neural architecture. Two solutions may be
mentioned among many others: AdaNet (Cortes et al., 2017) and AutoML
(He et al., 2021). This field is currently a field of intense research to explore
the space of network architectures while reducing as much as possible the
computational load.

• Adversarial examples: these are surprising mistakes of all machine learning
algorithms, deep neural networks (Szegedy et al., 2014) but also other
methods such as Support Vector Machines (SVM) for instance (Tanay &
Griffin, 2016). However, regarding the outstanding performances of CNNs
for classification tasks (outperforming humans in many cases), adversarial
examples are more disturbing than for other ML methods (Elsayed et al.,
2018). By definition, a sample x̂ is called an adversarial example of x if, given
the network’s probabilities f θ xð Þ, given the sample x, such that the distortion
kx� x̂k � ε is low, then argmax fθ xð Þ 6¼ argmax fθ x̂ð Þ. Since “an image is
worth a thousand words,” here is an illustration.3

Many solutions have been tried on adversarial examples and the conclusions
are: these examples are not outliers. The model has a (very) high confidence in

3 Credits for the original image to user Wayne77 on wikimedia, licence CC-BY-SA-4.0
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Figure 9.17 Adversarial example generated for MobileNetV2. (A) is a
correctly classified image of “Giant Panda” with 96:01% confidence, (center)
perturbations, (B) adversarial example misclassified as “Sea Urchin” with
48:84% confidence.
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its predictions on these examples; integrating regularization constraints over the
network might cure the problem for a few samples, but other adversarial
examples will remain or will emerge for this new architecture. Finally, these
adversarial examples are “transferable,” which means that adversarial examples
for a given CNN will very likely be adversarial also for other CNN architec-
tures, even if there are small modifications in the model (Tramèr et al., 2017).
This adversarial example phenomenon suggests that most CNNs are finding
cues at too fine a scale to capture the shape cues (texture cues) that humans are
using for object recognition. Even GoogleNet Inception models, which inte-
grate specific modules (called inception modules) combining in one single layer
different sizes of kernels, and thus different scales of analysis, are sensitive to
adversarial examples. Even the Capsule Networks (Sabour et al., 2017) which
are intrinsically structured (the structure of the object is learnt with the pieces: a
face is two eyes, more or less always located similarly, a nose somewhere in
between, a mouth below. . .) are not robust to adversarial examples (Michels
et al., 2019).

This final question on adversarial examples is not yet solved and if it
represents a threat for many application fields, in particular critical systems,
security and safety, it also brings focus on some specific mathematical proper-
ties of deep networks, entailing a better knowledge of the theory behind and on
their behavior. In order to solve it automatically, I. Goodfellow et al.
(Goodfellow et al., 2014a) have proposed an approach based on two networks,
one generator in charge of generating adversarial examples, one discriminative

Figure 9.17 (cont.)
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in charge of discriminating true sample for adversarial ones. This technique
has not finally solved the problem of adversarial examples but produced a new
family of generative model approaches, with the Generative Adversarial
Networks (GANs).

9.4 DNNs with Adaptive Activation Functions

Until a few decades ago, neuroscientists agreed on the fact that the
neuroplasticity of the human brain, responsible for higher cognitive phenomena
like memory and learning, was to be found at the network level, in the pathways
of interconnections among neurons and, above all, in the plasticity of the
synapses (Fuchs & Flügge, 2014). Phenomena like Hebbian learning (Hebb,
1949) affect the synapses (either excitatory or inhibitory) by strengthening or
weakening them, depending on the history of activation of the presynaptic and
postsynaptic neurons. Accordingly, in artificial neural networks the focus has
long been on learning the “synaptic” connection weights wvu. Starting from the
1980s, several developments in neuroplasticity studies have brought to light
phenomena of nonsynaptic plasticity, including morphological and functional
modifications of the neuronal cells that occur in parallel with changes of the
synapses (Mozzachiodi & Byrne, 2010). Such modifications are mostly related
to the intrinsic capability of a neuron to adjust its own excitability (homeostatic
plasticity4), that is the function it realizes, in response to (and, in compensation
for) the activity of neural pathways embracing that neuron. In particular,
homeostatic scaling consists in a modification of the action potential of the
neuron such that “the neuron increases the strength of all excitatory connec-
tions in response to a prolonged drop in firing rates, and vice versa” (Turrigiano
& Nelson, 2000), substantially “scaling synaptic transmission in a multiplicative
manner by a negative feedback mechanism (. . .) while preserving relative syn-
aptic weight encoded in individual synapses and thus memory information”
(Siddoway et al., 2014).
At the same time, learning algorithms for artificial neural networks that

comprised the adaptation of the activation functions realized by the artificial
neurons began to flourish, leading to improved performances of the resulting
machines. The vast majority of these algorithms revolved around the idea that
the activation functions could be expressed in a parametric form, and that the
specific value of the corresponding parameters could be learned from the data.
Early attempts centered on the parameters b and σ of logistic sigmoids having
form f að Þ ¼ 1= 1þ exp � a� bð Þ=σð Þð Þ, where the bias b determines the loca-
tion of the sigmoid and σ affects its slope. In recent years, researchers have been
investigating several parameterized variants of the rectifier linear unit (ReLU)
activation function for DNNs in the form f að Þ ¼ λg að Þ, where g �ð Þ is a base

4 Hereafter “homeostatic plasticity” is used according to the meaning it has in neuroscience
(Turrigiano & Nelson, 2000).
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transformation (e.g., a hinge function, that is g að Þ ¼ max 0, að Þ) and λ is a real-
valued parameter that may be tuned empirically or adapted autonomously as
part of the DNN learning process. Prominent examples are the leaky ReLU
with adaptive slope λ (that is f að Þ ¼ λa if a � 0) (He et al., 2015) and its
stochastic variant (Xu et al., 2015), the exponential linear unit (ELU) (that is
a rectifier with f að Þ ¼ λ ea � 1ð Þ if a � 0) (Clevert et al., 2016), as well as the
scaled ELU (SELU) (Klambauer et al., 2017) where the ELU is multiplied by λ
regardless of a being positive or negative. It is seen that all these adaptive
activation functions are special cases of the general algorithm for learning λ
(originally presented by Trentin (1998)) that is covered in the present section.

Other parametric adaptive neurons have been proposed in the literature. In
the year 2000, Fiori (2000) presented an activation function fi �ð Þ in the form of
a sigmoid evaluated over a neuron-specific polynomial Pi �ð Þ in the variable ai
(the activation of i-th neuron), with stochastic adaptation of the coefficients of
the polynomials. In Dushkoff and Ptucha (2016) the output of any given
activation function f �ð Þ in a DNN is multiplied by a sigmoid evaluated over
a latent neuron-specific parameter and the latter, in turn, undergoes gradient-
based adaptation during the DNN training process. In Qian et al. (2018), the
adaptive parameters of several mixtures of activation functions are proposed
and investigated. Finally, other significant variants of adaptive parametric
activation functions are handed out by Agostinelli et al. (2015) and
Flennerhag et al. (2018).

Besides these parametric techniques, a few nonparametric approaches can be
found in the literature, as well. In Vecci et al. (1998) the activation functions of
shallow (one hidden layer) neural networks are defined as adaptive cubic splines
whose control points are modified during the learning process. In 2014 the
approach was extended to DNNs and multidimensional cubic splines (Solazzi
& Uncini, 2004). In the meantime, in 2011, a general, fully nonparametric
algorithm suitable to DNNs was first presented by Castelli and Trentin
(2011), and later (2014) analyzed in depth (Castelli & Trentin, 2014). The
algorithm relies on the idea of using recursively inner DNNs to realize the
activation functions for the outer (i.e., the original) DNN. Training involves a
backward propagation of the target outputs instead of backpropagating the
gradients of the loss function. More recently, kernel-based nonparametric
adaptive activation functions were independently put forward, see for instance
Marra et al. (2018) and Scardapane et al. (2019).

The following treatment is mostly based on Trentin (2001), that extends and
analyzes in detail the algorithm introduced in Trentin (1998). Besides being one
of the longest-established parametric algorithms for the adaptation of the
activation functions in shallow and multilayered networks of any depth, the
algorithm subsumes (implicitly or explicitly) all the adaptive neurons of form
f að Þ ¼ λg að Þ surveyed above. Moreover, the mechanism it actualizes turns out
to be the artificial counterpart of the homeostatic scaling, which consists in
“scaling synaptic transmission in a multiplicative manner” (Siddoway et al.,
2014). In fact, a larger value of λ is developed if the loss of function being
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extremized by the DNN learning algorithm calls for a larger output from the
neuron while the activation of the latter (i.e., the overall activity of the subnet-
work feeding the neuron) is too small, and vice versa, in a compensatory
fashion. Figures 9.18 and 9.19 show some instances of λ-specific logistic
(sigmoid) and ReLU activation functions, respectively. As shown in Trentin
(2001), the algorithm improves the learning and generalization capabilities of

Figure 9.18 Sigmoid activation functions f að Þ ¼ λg að Þ (where g að Þ ¼ 1
1þe�a )

resulting from different values of their amplitude λ.

Figure 9.19 ReLU activation functions f að Þ ¼ λg að Þ resulting from different
values of their slope λ.
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the DNN, it speeds up the DNN training, and it entails a spontaneous pruning
process of redundant neurons. Hereafter, the focus is on a generic feedforward
network having Lþ 1 layers. Layers are denoted by L 0, L 1, . . . , L L, where
L 0 is the input layer and L L is the output layer. The writing wi,j,l is used to
represent the weight of the connection between j-th neuron in layer L l�1 and
i-th neuron in layerL l. The activation of the latter neuron is denoted by ai,l, and
the corresponding output is written as oi,l. As usual, ai,l ¼

P
j2L l�1

wi,j,loj,l�1.
Neuron-specific activation functions fi,l �ð Þ are such that oi,l ¼ fi,l ai,lð Þ. It is
assumed that the activation function associated with the i-th neuron in layer
L l can be either in the form

fi,l ai,lð Þ ¼ λi,l~fi,l ai,lð Þ þ σi,l (9.15)

which could be the case of a leaky ReLU with adaptive slope (by letting
σi,l ¼ 0), or of a logistic sigmoid with learnable amplitude λi,l and offset (shift)
σi,l along the ordinate axis (σi,l in turn can be a constant or, more generally, a
function of λi,l); or in the form

fi,l ai,lð Þ ¼ ~fi,l ai,lð Þ (9.16)

that could be the case of ReLUs or plain linear activation functions, for
instance. Accordingly, in the following, the symbol ~fi,l ai,lð Þ will be used to
represent a function of ai,l that does not depend on λi,l. It is seen that any
activation function in the form of Equation 9.15 realizes an artificial homeo-
static scaling mechanism over the corresponding set of outgoing connection
weights. Two major cases are considered hereafter: (1) a layer-wise value λl is
shared among the neurons belonging to layer L l ; (2) individual, neuron-
specific λi,l are defined for each neuron of the network. Although the details
of the algorithms presented in the following sections assume differentiable
nonlinearities, it is straightforward to extend the approach to activation func-
tions whose derivatives may be undefined over proper subsets of R having null
measure, e.g., ReLUs or piecewise linear functions.

Note that the parametric adaptive activation function proposed by Jagtap
et al. (2020) reduces to the second case of the present algorithm when the form
of the activation function to be adapted belongs to the family of ReLU and its
variants, while it boils down to the traditional adaptive smoothness when
applied to logistic sigmoids. Similarly, the transformative adaptive activation
function introduced by Kunc and Kléma (2019), defined as
f að Þ ¼ α~f β

Pn
i�0wixi þ γ

� �þ δ, is in the form of Equation 9.15 (letting α ¼ λ
and δ ¼ σ ) once the nonlinearity ~f �ð Þ comprises the usual adaptive bias γ and
the connection weights have been (equivalently) redefined as βw1, . . . , βwn,
respectively. Again, a parametric activation function called bendable linear unit
(BLU) was evaluated and compared with others by Godfrey (2019). The BLU
has the following equation: f að Þ ¼ λð ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p � 1Þ þ a. Given that the last part

of the equation (the “ þa ”) can be realized via a plain simple linear perceptron,
the core of the BLU reduces to the parametric portion λð ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p � 1Þ which,
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once again, is just a special case of the present setup once ~f að Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p � 1.
Finally, Bodyanskiy et al. (2019) discuss a parametric leaky ReLU that relies on
multiplying the base function by the adaptive parameters λ1 (if a < 0) or by λ2
(if a � 0), respectively, that is still a variant of the present framework.

9.4.1 Case 1: Layer-Specific λm

As was pointed out in Section 9.2, DNNs develop higher and higher meta-
levels of abstraction of their input stimuli by means of the specialized internal
representations that are learned at the different layers of their architectures.
Each layer engenders a depiction of the DNN input, a depiction that is
intermediate between the raw stimulus and the corresponding DNN
response. In order to ensure a semantically and functionally coherent meta-
level of representation, any given intermediate layer of the network is
expected to realize a meaningful function of the current input stimulus by
building on the internal representation yielded by the preceding layers (i.e.,
any layer computes a function of the DNN input, obtained by composition
of the functions computed by layers located deeper down in the DNN
architecture). To this end, the aforementioned semantic and functional coher-
ence entails a homogeneous behavior of the activation functions associated to
the neurons belonging to a certain layer. This is (more or less implicitly) one
of the fundamental rationales behind using the same form of activation
function (e.g., sigmoid or ReLU) for all the neurons in a certain layer.
Qualitatively speaking, the argument can then be applied to parametric
neurons having adaptive amplitudes by requiring that a single, common
value of λ is learned layer-wise. Therefore, layer-specific parameters
λm,m ¼ 1, . . . ,L are studied first (along with the corresponding σm), i.e., λm
is shared among the neurons of layer L m for which Equation 9.15 holds.
Activation functions of diverse forms are allowed within any given layer, if
needed. Given the loss function C to be minimized5 (C is defined over the
supervised training set T ¼ x, yð Þ), the goal is developing an online rule to
learn λm, for each m. Gradient descent prescribes an iterative scheme of the
form λ0m ¼ λm þ Δλm, where λ0m is the new (adapted) value of the parameter,
and the amount of change Δλm is obtained as

Δλm ¼ �η
∂C
∂λm

(9.17)

where η 2 Rþ is the learning rate. The formal derivation of the algorithm that
relies on Equation 9.17 is presented in Appendix 9A. It is seen that the
application of the learning rule expressed by the equation results in the DNN
spontaneously learning activation functions that explicitly reflect the nature of

5 If C has to be maximized instead, the following calculations hold. Of course, the sign of the
learning rule shall be switched from “�” to “+”.
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the layer-wise internal representation of the input stimuli, depending on the
specific depth under consideration.

9.4.2 Case 2: Neuron-Specific λi,l

As observed at the beginning of the present section, homeostatic plasticity in
neuronal cells consists in neuron-specific morphological and functional modi-
fications of the very cell. Such modifications end up affecting simultaneously
the excitability status of all postsynaptic neurons that receive neurotransmit-
ter from the synapses located at the axon terminals of the presynaptic neuron
at hand. Roughly speaking, a grouping phenomenon takes place, insofar that
all the synapses stimulated by the action potential released by the presynaptic
neuron are jointly (and, proportionally) affected by changes in the potential
due to the homeostatic plasticity of that presynaptic cell. Accordingly, case
2 of the algorithm assumes that the activation function for any neuron i in
any layer L l of the DNN may be in the form of Equation 9.15 (that is,
having neuron-specific amplitude λi,l and offset σi,l). In fact, this realizes an
instance of what is usually known as a weight grouping mechanism, where all
the connection weights are scaled by an adaptive amount λi,l such that the
whole group of weights results globally in an improvement of the DNN
training criterion. It is seen that this model actualizes the aforementioned
homeostatic scaling phenomenon, as well. The presence of the adaptive λi,l in
the neuron-specific activation functions entails a spontaneous mechanism for
learning the relative importance of individual neurons within the DNN.
Large values of λi,l are expected of neurons contributing significantly to the
overall behavior of the network, while small values tend to neglect the actual
contribution of the corresponding neurons. The mechanism can be seen as an
emerging, learnable feature selection process that converges to focusing more
on the relevant features (both in the input vector and in the internal repre-
sentations realized by the intermediate layers of the DNN) and less on the
negligible ones. Bringing this line of reasoning to its extreme consequences,
an automatic “pruning” procedure emerges that modifies the architecture of
the DNN in parallel with learning the network parameters by simply remov-
ing from the DNN those unnecessary, redundant, or noisy neurons whose
amplitude λi,l progressively converges to zero as long as the DNN
training proceeds.

The algorithm revolves around the minimization of C via stochastic gradient
descent, according to rules of the form

Δλi,l ¼ �η
∂C
∂λi,l

(9.18)

defined for each l ¼ 1, . . . ,L and for each i 2 L l for which Equation 9.15 holds.
The learning algorithm revolving around the equation is presented in
Appendix 9B.
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9.4.3 Impact of Adaptive Activation Functions on the Learning
and Generalization Capabilities of DNNs

Why does the adoption of an adaptive λ yield improved learning and general-
ization capabilities over the use of fixed activation functions? Although a
formal answer to the question is beyond the scope of the present chapter,
some insight can be gained as follows. Consider a given weight w in the DNN,
a given amplitude λ, and focus on the quantity ~w ¼ λw. The latter can be seen
as a regular weight in a corresponding DNN with fixed amplitudes that
incorporates the λ’s directly into the connection weights. The following
equation holds true:

∂C
∂w

¼ ∂~w
∂w

∂C
∂~w

¼ λ
∂C
∂~w

and, defining W λð Þ to be the set of all weights in the DNN that are subject to a
given λ (i.e., all the weights exiting from units with amplitude λ):

∂C
∂λ

¼
X

w2W λð Þ

∂~w
∂λ

∂C
∂~w

¼
X

w2W λð Þ
w
∂C
∂~w

that shows that applying one of the proposed schemes to train the amplitude(s)
along with standard BP for weight updating implies two gradient descent steps
(with respect to each ~w) at each iteration, such that the adaptive λ may head
toward a minimum of the criterion function at double speed.
The presence of the adaptive λ within the plain BP training algorithm can also

be seen as a particular scheme of BP with adaptive learning rate (ALR), where
ALR updating is “modulated” by λ. In fact, the updating rule for weight w can
be written as follows:

Δw ¼ �η
∂C
∂w

¼ �η
∂~w
∂w

∂C
∂~w

¼ �ηλ
∂C
∂~w

which can be thought of as an instance of standard BP (over ~w) with ALR ηλ.
This perspective differs from traditional ALR schemes, since it realizes a
learning-rate-updating process that is modulated by a gradient-derived factor,
namely λ.
Finally, the behavior of the algorithms for learning λ can be interpreted as

particular weight grouping techniques (where a group is defined as the set of all
the connection weights that are affected by a certain λ). As shown in Trentin
(2001), this grouping perspective allows for a better understanding of the
rationale behind the improvements that are gained over standard BP with fixed
amplitudes. In fact, a model having higher Bayesian evidence is obtained as a
consequence of the grouping.
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9.5 Conclusion

This chapter has covered topics of deep learning in artificial neural
networks, putting an emphasis on the particular experimentalist perspective
that underlies implicitly this field of research. Deep learning was positioned in
the proper historical perspective, mentioning first nonneural machine learning
paradigms that have long been established as suitable models of hierarchies of
higher levels of representation of the input stimuli, and then pointing out the
milestones of the half-century-long path that led scientists to develop deeper
and deeper neural network architectures. Major paradigms were mentioned
(e.g., stacked autoencoders) or presented in detail (convolutional neural net-
works). Nowadays, the field has broadened to such an extent that an in-depth
survey of the state of the art would have required much more than a single
chapter (readers are referred to the textbook Deep Learning by Ian
Goodfellow, Yoshua Bengio, and Aaron Courville). The present authors
preferred to get deeper into some specific, fundamental issues, in particular
representational properties of deep architectures and homeostatic neuroplas-
ticity by means of adaptive activation functions. The topic has been inspired
by recent developments in neuroscience, and it has been the focus of many
studies throughout the last twenty years, resulting in improved DNN learning
and generalization capabilities.

For the years to come, the field is expected to develop further, having become
the hotspot of research in AI and allied sciences. Scientists worldwide are on
their way towards larger and deeper architectures, novel algorithms, all sorts of
practical techniques to improve and expedite the learning process, and (above
all) a number of significant real-life applications. The developments in DNN
research have been triggered by (and will continue to proceed jointly with) the
increase in computational power, an increase due to the advancements in
hardware technologies, in particular the advent and progress of GPUs (graphics
processing units). The alliance between GPUs and DNNs is here to stay, at least
for the next decade.

Appendix 9A Algorithm for Learning λm in DNNs

Implicitly, hereafter all the equations hold for any m ¼ 1, . . . ,L in the
DNN at hand. It is seen that

∂C
∂λm

¼ �
X
i2L L

yi � oi,Lð Þ ∂oi,L
∂λm

(9.19)

such that Equation 9.17 can be rewritten as

Δλm ¼ η
X
i2L L

yi � oi,Lð Þ ∂oi,L
∂λm

(9.20)
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The goal is now to introduce a general, compact form for ∂oi,L
∂λm

, not depending
upon the architecture of the DNN or the kind of activation functions. An
expansion function, defined in terms of auxiliary functions, is defined and used
to reach such a goal. Considering Equation 9.20, two distinct cases can be
distinguished:
Case 9.1: fi,L ai,Lð Þ ¼ λL~fi,L ai,Lð Þ þ σL. If m ¼ L then the derivative of oi,L

with respect to λm becomes

∂oi,L
∂λm

¼ ~fi,L ai,Lð Þ þ ∂σL
∂λm

(9.21)

whilst if m 6¼ L the following equation holds:

∂oi,L
∂λm

¼ λL~f
0
i,L ai,Lð Þ

X
j2L L�1

wi, j,L
∂oj,L�1

∂λm
(9.22)

Case 9.2: fi,L ai,Lð Þ ¼ ~fi,L ai,Lð Þ (the activation function does not depend on λm).
Again, if m ¼ L it is possible to write

∂oi,L
∂λm

¼ ∂~f i,L ai,Lð Þ
∂λm

¼ 0 (9.23)

and if m 6¼ L the following equation holds:

∂oi,L
∂λm

¼ ∂~fi,L ai,Lð Þ
∂ai,L

∂ai,L
∂λm

¼ ~f 0i,L ai,Lð Þ
X

j2L L�1

wi, j,L
∂oj,L�1

∂λm

(9.24)

Two auxiliary functions are defined, namely gk,l,m ak,lð Þ and hk,l,m ak,lð Þ, as follows.
First, gk, l,m ak, lð Þ ¼ ~fk, l ak, lð Þ þ ∂σl

∂λm
if fk, l ak, lð Þ ¼ λl~fk, l ak, lð Þ þ σl and m � l, and

gk,l,m ak,lð Þ ¼ 0 otherwise. As for hk,l,m ak,lð Þ, it is possible to proceed along these

lines: (1) if l ¼ m, then we let hk,l,m ak,lð Þ ¼ 0 ; (2) if fk, l ak, lð Þ ¼ λl~fk, l ak, lð Þ þ σl

and l 6¼ m, then hk, l,m ak, lð Þ ¼ λl~f
0
k, l ak, lð Þ ; (3) finally, if fk, l ak, lð Þ ¼ ~fk, l ak, lð Þ and

l 6¼ m then we let hk, l,m ak, lð Þ ¼ ~f 0k, l ak, lð Þ. It is now possible to rewrite Equations
9.21, 9.22, 9.23, and 9.24 in the common form

∂oi,L
∂λm

¼ gi,L,m ai,Lð Þ þ hi,L,m ai,Lð Þ �
X

j2L L�1

wi,j,L
∂oj,L�1

∂λm

Finally, the m-th expansion of neuron k in layer L l, for l ¼ 1, . . . ,L, is defined
as xk,l,m ak,lð Þ ¼ gk,l,m ak,lð Þ if l ¼ 1, and as xk,l,m ak,lð Þ ¼ gk,l,m ak,lð Þ þ hk,l,m ak,lð ÞP

n2L l�1
wk,n,lxn,l�1,m an,l�1ð Þ otherwise. The following theorem can now be

stated (it is shown to hold true by induction in Trentin (2001)).
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Theorem: ∂ok,l
∂λm

¼ xk,l,m ak,lð Þ for each l ¼ 1, . . . ,L, for each k 2 L l and for each
m ¼ 1, . . . ,L.

A corollary of the theorem is that Equation 9.20 can be reduced to

Δλm ¼ η
X
i2L L

yi � oi,Lð Þxi,L,m ai,Lð Þ (9.25)

which can be readily implemented by taking advantage of the recursive form of
the auxiliary and expansion functions.

Appendix 9B Algorithm for Learning λi,L in DNNs

In order to find an algorithmic solution to Equation 9.18, the neuron-
specific quantity δi,l is introduced and recursively defined as follows:

δi,l ¼ yi � oi,Lð Þf 0i,L ai,Lð Þ if l ¼ L, and δi,l ¼
P

j2L lþ1
wj,i,lþ1δj,lþ1

n o
f 0i,l ai,lð Þ if

l � L� 1. This notion encapsulates the familiar idea of backpropagating deltas
from the topmost to the lower layers of the DNN. Relying on this definition,
it is possible to prove by induction (see Trentin (2001)) that Equation 9.18

can be rewritten as Δλi, l ¼ η yi � oi,Lð Þ ~f i,L ai,Lð Þ þ ∂σi,L
∂λi,L

n o
if l ¼ L, and as

Δλi, l ¼ η
P

j2L lþ1
wj, i, lþ1δj, lþ1

n o
~f i, l ai, lð Þ þ ∂σi, l

∂λi, l

n o
otherwise.

It is noteworthy that the deltas are exactly those computed in the plain BP
algorithm for weight update. This means that the present algorithm can be
implemented by using the same quantities already available within the learning
procedure, at each step, if BP is used. As in BP, the process can be described as
backpropagating deltas downward the synaptic connections, multiplying their
values by the corresponding connection weights, until the desired neuron
is reached.
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10 Reinforcement Learning
Kenji Doya

10.1 Introduction

As a newborn or a novice sport player, one’s actions are initially
random or awkward, but with repeated experience one becomes able to achieve
goals more efficiently and more reliably. Animal behavioral studies have
described such processes of acquisition of behaviors by the concepts of reward
and punishment. A reward promotes the execution of, or reinforces, the action
that causes its delivery (Thorndike, 1898). A punishment can be considered as a
negative reward signal that reduces the repetition of an action that causes, or
reinforces an action that avoids its delivery. It is amazing how an animal can
acquire a variety of complex behaviors by linking its actions to consequent
positive and negative rewards, either spontaneously in nature or through
training by humans. This phenomenon has provided good motivation for
artificial intelligence researchers to seek computer algorithms that allow
machines to acquire a variety of functions simply from reward feedback signals
(Barto et al., 1983).
The products of such studies are collectively called reinforcement learning

and have been applied to a variety of control and optimization problems
(Sutton & Barto, 2018) (SB hereafter). Since the mid-nineties, neuroscientists
became aware of interesting parallels between the key signals used in
reinforcement learning algorithms and what they found in neural recording
and brain imaging data. The collaborations of theoreticians and experimental-
ists contributed to a better understanding of the functions of, most notably,
the neurotransmitter dopamine and the neural circuit of the basal ganglia
(Barto, 1995; Montague et al., 1995; Schultz et al., 1997). The success has now
interested psychiatrists, sociologists, and economists who are trying to under-
stand how humans make good (or bad) decisions in the real world (Doya,
2007; Glimcher & Fehr, 2013).
Reinforcement learning is one of the three major frameworks of machine

learning. One is supervised learning, which takes explicit target output signal
and minimizes the error between the learner’s output and the target output.
Another is unsupervised learning, which takes no target output but captures the
statistical features of the input signal, such as clustering and dimension reduction.
Reinforcement learning is positioned between supervised and unsupervised learn-
ing, by requiring scalar reward signal for a series of action outputs.
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This chapter will review the basic concepts of reinforcement learning theory
and current understanding of how reinforcement learning is realized in the
brain. Varieties of computational and cognitive models based on reinforcement
learning theory in humans and animals are introduced in Chapter 21 in
this handbook.

10.2 Markov Decision Process

The basic theory of reinforcement learning is developed for a Markov
decision process (MDP), as shown in Figure 10.1. An agent monitors the state s
of the environment and performs an action a. The environment feeds back a
scalar reward signal r and transits to a new state s0 according to a probability
distribution p r, s0js, að Þ. An agent can be an animal, a human, a robot, or a
software. For animal agents, reward can be food, water, or pain. In humans,
money or social fame can also be strong rewards.

The goal of the agent is to improve its action policy p ajsð Þ so that the received
reward is maximized in the long run. More specifically, the goodness of a policy
is evaluated by the expected cumulative future rewards

E rt þ γrtþ1 þ γ2rtþ2 þ . . .
� �

(10.1)

where E[ ] represents the expectation (average) regarding the stochasticity of the
environmental dynamics p r, s0js, að Þ combined with the agent’s policy p ajsð Þ.
The parameter γ is called the temporal discount factor and specifies how far into
the future the agent is concerned with; only immediate reward rt for γ ¼ 0 and
further into the future as γ increases closer to 1.

Under this framework, the aim of reinforcement learning can be formulated
as finding the optimal policy that maximizes the expected future rewards (1)
starting from any state. What makes reinforcement learning interesting (and
difficult) is that an action at does not only affect the immediate reward rt, but
also affects the next state stþ1, which can affect the future rewards rtþ1, rtþ2, and
so forth. Seen in another way, a given reward rt may not be due to it immedi-
ately preceding action at, but may also be due to the past actions at�1, at�2, and
so on. The problem of identifying which past actions at which states are respon-
sible for a given reward is known as the temporal credit assignment problem,
which is a major issue in reinforcement learning.

Figure 10.1 The interaction between the agent and the environment in
reinforcement learning.
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Another important problem in reinforcement learning is exploration. An
agent should try different actions at different states to find out which is
good or bad. As learning proceeds, the agent should take actions that are
more likely to deliver more reward. How to balance between trying some-
thing new and focusing on known good choice is called exploration-exploit-
ation trade-off.

10.2.1 Example: No Pain, No Gain

Figure 10.2 shows a simple example which was used in a functional MRI
study addressing the brain’s mechanism of temporal discounting (Tanaka
et al., 2004). It is an MDP with three states and two actions. Usually, the
action a ¼ 1 shifts the state to the left with a reward r ¼ 1, and the action
a ¼ 2 shifts the state to the right with a negative reward of r ¼ �1. However,
from the leftmost state s ¼ 1, the action a ¼ 1 jumps the state to the rightmost
s ¼ 3 with a large negative reward r ¼ �5, and from the rightmost state s ¼ 3,
the action a ¼ 2 jumps the state to the leftmost s ¼ 1 with a large positive
reward of r ¼ 5. Suppose you are at the middle state s ¼ 2, which action
would you take? If you simply follow a larger immediate reward, you would
take a ¼ 1 to get a positive reward, which moves you to s ¼ 1, and then take
a ¼ 2 to avoid the large negative reward, which moves you back to s ¼ 2.
Thus, you will end up cycling between s ¼ 1 and s ¼ 2 with no net gain.
A clever reader would take a ¼ 2 at s ¼ 1 and s ¼ 2 despite immediate losses
to reach s ¼ 3 and then take a ¼ 2 to get the larger reward. There are similar
cases in real life that require costly work in order to achieve a valuable goal,
such as publishing a paper or getting a PhD. Can a simple computational
agent solve this task?

state1 state2 state3

action2

action1

-1 -1

+1 +1

+5

-5

-5

+5

-1

+1 +1

-1

0.8

7.2

4.8
3.2

4.8
2.8

reward

Q(s,a)

A

B

C

Figure 10.2 (A) A simple three-state Markov decision process (MDP) that
requires going through immediate losses for long-term optimality (Tanaka
et al., 2004). (B) The reward function and (C) the optimal action value
function for this MDP (Doya, 2007).

352 kenji doya

https://doi.org/10.1017/9781108755610.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.013


10.2.2 Action Value Function

In order to evaluate the goodness of an action in a long run, a standard tool in
reinforcement learning is the action value function, which is defined as

Q s, að Þ ¼def E rt þ γrtþ1 þ γ2rtþ2 þ � � �jst ¼ s, at ¼ a
� �

(10.2)

The action value function Q s, að Þ evaluates how much future rewards the
agent will get by taking an action a at state s, and then following the present
policy. In psychology, it may be related to motivation or incentive to perform a
certain action at a certain situation.

Figures 10.2B and 10.2C compare the reward function and the action value
function for the task above. While the immediate reward is larger for a ¼ 1 at
s ¼ 2, the action value function is larger for a ¼ 2 by taking into account the
large reward that can be obtained by moving to s ¼ 3.

For an MDP with discrete states and actions, the action value function can be
stored in a table of states� actions, and its entries can be updated by a learning
algorithm. For continuous or a very large number of states or actions, a
function approximator like an artificial neural network is used for representing
the action value function (Mnih et al., 2015).

If the action value function has been learned for all the state-action pairs, the
optimal policy is to select an action that maximizes the action value function at
the present state:

a ¼ argmaxbQ s, bð Þ (10.3)

which is called greedy policy. During learning, however, a policy has to be
selected to promote exploration. A simple way is called ε-greedy policy, in which
a random action is selected with probability ε and otherwise a greedy policy
is taken.

Another common way of action selection using the action value function is
Boltzmann or softmax selection:

pðajsÞ ¼ eβQ s, að ÞP
be

βQ s, bð Þ (10.4)

where the action value function is regarded as a negative energy so that an
action of larger action value is taken with higher probability. The parameter β
is called an inverse temperature and controls the randomness of choice. With
β ¼ 0, the choice is totally random and with increased β, the actions with
higher action values are selected more frequently so that the choice becomes
greedier.

10.2.3 Sarsa and Q Learning

How can an agent learn the action value function? In general, after experiencing
sequences of state, action and reward, an average of discounted rewards
following each state-action pair, according to the definition in SB, Chapter 5,
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can be used as an estimate. This is called the Monte-Carlo method and is known
to not be very efficient, especially when the environment dynamics are stochas-
tic (SB, chapter 5). A more efficient way is to utilize the recursive relationship
across subsequent states and actions:

Q st, atð Þ ¼ E rt þ γQ stþ1, atþ1ð Þ½ � (10.5)

which derives from the exponential discounting of future rewards.
The deviation from this recursive relationship can be detected by the temporal

difference (TD) error:

δt ¼ rt þ γQ stþ1, atþ1ð Þ �Q st, atð Þ (10.6)

The action value function can then be updated as

Q st, atð Þ ∶¼ Q st, atð Þ þ αδt (10.7)

where α is the learning rate parameter. This is known as the Sarsa algorithm, as
it is based on the sequence of st, at, rt, stþ1, atþ1.
Another learning algorithm using the action value function is called

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) which uses a somewhat
different TD error

δt ¼ rt þ γmax
a

Q stþ1, að Þ �Q st, atð Þ (10.8)

instead of Equation 10.6. This means that a greedy policy is assumed from the
subsequent state, even if the agent actually uses a nongreedy exploratory policy.
This is called off-policy learning, while Sarsa is called on-policy learning.
A benefit of off-policy learning is that the optimal value function with a
deterministic policy can be learned while following a stochastic exploratory
policy. Drawbacks of off-policy learning are that the performance during
learning can be compromised by neglecting the effect of exploration and that
learning can be unstable when combined with a function approximator (see SB,
chapters 6 and 11).

10.2.4 Actor-Critic and State Value Function

Another class of reinforcement learning algorithm is called actor-critic archi-
tecture (Barto et al., 1983). The actor realizes some form of policy p ajs, θð Þ with
a parameter vector θ. The critic evaluates how well the actor’s policy is working.
More specifically, the critic predicts the expected future reward from each state
by following the present policy as the state value function:

V sð Þ ¼def E rt þ γrtþ1 þ γ2rtþ2 þ . . . st ¼ sj ��
(10.9)

For discrete states, the state value function can be stored in a vector, while a
function approximator is used for continuous or a large number of states (Silver
et al., 2016). In psychology, the state value function may be related to the
prospect or mood a given situation delivers.
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For learning the state value function, from the recursive relationship of
subsequent states

V stð Þ ¼ E rt þ γV stþ1ð Þ½ �, (10.10)

the TD error is defined as

δt ¼ rt þ γV stþ1ð Þ � V stð Þ (10.11)

A marked feature of the actor-critic is that the same TD error signal δt is used
for the learning of both the actor and the critic. Learning of the state value
function by the critic is realized by error-correction learning

V stð Þ ∶¼ V stð Þ þ αc δt (10.12)

where αc is the learning rate for the critic. As the critic learns the state value
function, the TD error becomes close to zero in average, but can vary
around zero if the environment or the policy is stochastic. Suppose δt turns
out to be positive, that means that the previous action resulted in a larger
immediate reward rt or a state with higher value V stþ1ð Þ than usually
expected. Then it is appropriate to reinforce the action at by increasing its
selection probability. A common way is to update the policy parameter
toward the gradient of the log probability multiplied with the TD error
(see SB, chapter 13):

θ≔ θ þ αaδt
∂
∂θ

log p at st, θj Þð (10.13)

where αa is the learning rate for the actor.
The TD error signal is considered as an effective reward signal that takes into

account a long-term effect of an action. Even when the primary reward rt is zero
or negative, a transition to a state with a higher value, represented as
γV stþ1ð Þ � V stð Þ in Equation 10.11, can serve as a positive reinforcement signal.
In other words, a state associated with a high state value can serve as a
conditioned reinforcer.

10.3 Model-Based Approaches

The basic reinforcement learning paradigm assumes that the agent has
no prior knowledge of the environment, namely, the reward and state transition
function p r, s0js, að Þ and learns a good policy from the sequence of experiences
of state, action, and reward using the action or state value function as a guide.
However, if the agent knows the reward and state transition function, either a
priori or by learning, a variety of strategies can be taken. Reinforcement
learning algorithms that utilize a state transition model p s0js, að Þ are called
model-based reinforcement learning, while those that do not use it, such as
Q-learning, Sarsa, and actor-critic, are called model-free reinforcement learn-
ing. This section reviews model-based approaches in reinforcement learning.
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10.3.1 Dynamic Programming

The theory of Dynamic Programming provides the ways for using the reward
and state transition functions to derive the optimal value function that an
optimal policy should satisfy (Bellman, 1952)(SB, chapter 4). The recursive
relationship of the state value function in Equation 10.10 can be expressed by
the reward and the transition functions as

V sð Þ ¼
X
a

pðajsÞ r s; að Þ þ γ
X
s0

p s0js; að ÞV s0ð Þ
" #

: (10.14)

This is called the Bellman equation for the policy p ajsð Þ. For an optimal policy,
the state value function satisfies

V sð Þ ¼ max
a

�
r s, að Þ þ γ

X
s0

pðs0js, aÞV s0ð Þ
�
: (10.15)

This is called the Bellman optimality equation and its solution V∗ sð Þ is called the
optimal state value function. Even though there can be multiple optimal policies,
the optimal value function is unique. Once the optimal state value function is
derived, an optimal policy is given by the action that maximizes the right-hand
side of Equation 10.15 for each state.
There are two major ways to derive the optimal state value function. Policy

iteration starts from an arbitrary policy, computes the state value function by
Equation 10.14, updates the policy so that it maximizes the right-hand side of
Equation 10.15, and repeats it until the policy does not change anymore. Value
iteration starts from an arbitrary estimate of the state value function, computes
the right-hand side of Equation 10.15, and repeats updating the state
value function.
The Bellman optimality equation is simultaneous nonlinear equations for the

number of the states and solving it can be quite hard as the number of the states
becomes large.

10.3.2 Action Planning

When the state transition dynamics is deterministic or near-deterministic,
searching for a sequence of actions that gives a large cumulative reward is a
realistic strategy. For a task that completes in a small number of steps, search-
ing till the end of a sequence is possible. In a task with many steps, the action
sequence search can be truncated by using an estimate of the state value
function. For example, the expected reward for a two-step transition can be
estimated as:

Q s0,a0,a1ð Þ¼ r s0,a0ð Þþγ
X
s1

pðs1js0,a0Þ r s1,a1ð Þþγ
X
s2

p s2js1,a1ð ÞV s2ð Þ
" #

:

(10.16)
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In complex tasks like the game of Go, computing the optimal state value
function for all possible states is intractable and searching through all possible
action sequences till the end of the game requires an enormous amount of time.
However, a good combination of an approximate value function and action
search using a state transition model, such as the Monte Carlo tree search
(MCTS) (Coulom, 2006)(see SB, chapter 8), can give practical solutions
(Silver et al., 2016, 2018)(see SB, chapter 16).

The prediction of the future states in model-based action planning may be
considered as the process of imagery or mental simulation.

10.3.3 Partially Observable Markov Decision Processes

The state transition model can be useful not only for planning future actions,
but also for estimating the present state from previous actions when the
sensory observation is subject to noise, delay, or occlusion. In the partially
observable Markov decision process (POMDP; see SB, chapter 17), the agent
receives stochastic observation of the environmental state as p ojsð Þ. A simple
solution to POMDP is to learn a policy based on observation p ajoð Þ, but that
is often suboptimal. When the agent has access to models of the sensory
observation and state transition, it is possible to utilize the dynamic
Bayesian framework to update the probabilistic estimate of the state. From
the previous estimate of the state probability p st�1ð Þ and the previous action
at�1, the prior probability for the present state is given by the state transition
model as

P
st�1

p stjst�1, at�1ð Þp st�1ð Þ. This can be combined with the likelihood
from the present observation p otjstð Þ as

pðstjot,at�1Þ / p otjstð Þ
X
st�1

p stjst�1, at�1ð Þp st�1ð Þ (10.17)

The posterior state probability p stjot, at�1ð Þ is called belief state and can be
iteratively used as the prior probability p stð Þ for computing the next belief state.

A standard way of action choice under sensory uncertainty is to average the
action values over possible statesX

s
p sð ÞQ s, að Þ (10.18)

and take the action that maximizes it.
Identification of an underlying state from noisy observations is a central issue

in sensory perception, or perceptual decision making, and human actions often
reflect uncertainty or confidence in the perceived state.

10.4 Reinforcement Learning for Artificial Intelligence

There can be multiple approaches in creating intelligent machines.
One is to analyze specific features of a given problem and come up with a
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domain-specific solution algorithm. Another is to mimic the skills of human
experts. The third approach is to let machines discover a good solution by
experience. Creating a machine that learns like a human has been a long-time
dream of artificial intelligence (AI) researchers. The classic example is Samuel’s
checker player, which included the idea of propagating the board score across
subsequent states (Samuel, 1959)(see SB, chapter 16). The modern form of TD
learning was presented in (Barto et al., 1983), which demonstrated its perform-
ance by simulation of the task of cart-pole balancing. Watkins clarified the link
between TD learning and dynamic programming and derived the Q-learning
algorithm (Watkins, 1989; Watkins & Dayan, 1992). The first practical demon-
stration of the strength of TD learning was TD-Gammon, which achieved
world champion level performance (Tesauro, 1994).

10.4.1 Deep Reinforcement Learning

The most recent advance in reinforcement learning, and AI in general, is
delivered by a combination of TD learning with deep neural networks. It has
been shown that a combination of TD learning with function approximation
can cause instability, because the update of the present value V stð Þ can affect its
target value V stþ1ð Þ as a side effect of generalization by the function approx-
imator (Boyan & Moore, 1995; Tsitsiklis & Roy, 1997). Researchers at
DeepMind discovered an approach to overcome this problem using two tech-
niques (Mnih et al., 2015).
One is to keep a copy of the value function approximator network, called the

target network for computing V stþ1ð Þ in the TD error Equation 10.11, and
update it only intermittently after the network for computing V stð Þ has been
updated upon many state transitions. This avoids the inflation of the target
value due to generalization over temporally adjacent states.
Another is to store the state-action-reward sequence in a memory and

update the value function by randomly sampling state-action-reward-state
experience from the memory, called experience replay. This avoids the diffi-
culty in learning from temporally correlated samples. The benefit of experience
replay, which has also been demonstrated in early works (Moore & Atkeson,
1993), was inspired by episodic memory mechanism of the hippocampus
(Hassabis et al., 2017).
The effectiveness of the combination was demonstrated by the Deep

Q-Network that takes the screen images of a computer game as the state input
and the action values for the joystick and button operation as the output.
The strength of combination of TD learning with deep neural network was

further demonstrated in the game of Go. In the original version of AlphaGo,
learning was initially guided by the play records of a human expert (Silver et al.,
2016). In the later versions, AlphaGo Zero (Silver et al., 2017), learning was
solely based on the program’s own simulated games. Furthermore, in Alpha
Zero (Silver et al., 2018), the same algorithm achieved superhuman perform-
ances in Go, Chess, and Shogi.
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10.4.2 Robotics

Creating a robot that can learn a variety of motor skills by trial and error has
also been a dream of robotics researchers. Early efforts included building a
robot that learns to walk or to stand up (Morimoto & Doya, 2001). Major
issues in applying reinforcement learning to robots are the need of continuous,
high-dimensional actions for fine movements and the time, cost, and danger
involved with trial and error in physical environments.

The actor-critic and other algorithms using parameterized policy are com-
monly used for continuous control (Peters & Schaal, 2008). Using a physics
simulator for early exploratory learning and then transferring to additional
learning in real environments (sim-to-real) is also a common practice.
Recently, the combination of deep learning with reinforcement learning is
making advances in vision-based control tasks, such as the manipulation of a
variety of objects (Gu et al., 2017).

10.5 Reinforcement Learning in the Brain

The concept of reinforcement learning originates from how animals
learn behaviors. The developments of reinforcement learning algorithms pro-
vided some plausible mechanisms of how they might be realized in the brain.
Indeed, in the last couple of decades, numerous advances have been made in the
brain’s mechanism of reinforcement learning.

10.5.1 Dopamine Coding of Temporal Difference Error

A breakthrough discovery regarding the brain’s mechanism of reinforcement
learning was that midbrain dopamine neurons respond to reward prediction
error (Schultz, 1998; Schultz et al., 1993). Schultz and colleagues recorded
dopamine neuron activities while monkeys performed tasks like reaching for
food or pressing a lever for juice (Figure 10.3). Before learning or when there
was no predictive cue, dopamine neurons responded to the reward. As the
animal learned to associate a sensory cue to the delivery of reward, dopamine
neurons started to respond to reward-predictive sensory cues and the response
for the predicted reward was diminished. When the reward was omitted after
learning, dopamine neuron firing was suppressed at the timing when reward
delivery was expected. These are interesting findings on their own, but most
exciting for those who are familiar with reinforcement learning theory because
it exactly matches what the TD error does.

Before learning, by assuming that the value function V sð Þ ¼ 0 for all states,
the TD signal δt in Equation 10.11 is equal to the reward r tð Þ. When a new state
stþ1 allows the agent to predict the forthcoming reward, V stþ1ð Þ becomes
positive and thus the TD error δt responds with a positive pulse even if the
reward rt ¼ 0. When the predicted reward is presented, the value V stþ1ð Þ goes
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down to the baseline, so that the temporal difference γV stþ1ð Þ � V stð Þ becomes
negative and cancels a positive reward rt.
This parallel between the dopamine neuron activities and the TD signal

inspired theoretical proposals that the dopamine neurons and their major
projection target, the striatum, may implement TD-type reinforcement learning
(Barto, 1995; Houk et al., 1995a; Montague et al., 1996; Schultz et al., 1997), as
depicted in Figure 10.4.

10.5.2 Dopamine-Dependent Synaptic Plasticity

The major projection target of midbrain dopamine neurons is the striatum, which
receives convergent inputs from the cerebral cortex. A remarkable anatomical
feature of the striatal neurons is that many of their synaptic spines receive both
cortical input and dopaminergic input (Freund et al., 1984). Jeff Wickens and
colleagues hypothesized that dopamine controls the plasticity of cortical synaptic
input to the striatal neurons and tested it in experiments (Reynolds et al., 2001;
Wickens et al., 1996). In the Hebbian learning rule, a synapse is strengthened
when a presynaptic input is followed by a postsynaptic neuron response, i.e.,
input � output. What Wickens and colleagues found was that the synaptic
connection was potentiated when the presynaptic and postsynaptic activation
was associated with increased dopamine input, following a three-term plasticity
rule of input � output � dopamine (Reynolds & Wickens, 2002).

Reward predicted
Reward occurs

No prediction

A B

Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error
in the prediction of reward?

 r(t)

�(t)

 V(t)

r(t)

�(t)

V(t)

r(t)

�(t)

V(t)

Figure 10.3 (A) The response of midbrain dopamine neurons to unpredicted
reward, reward-predictive stimulus, and omitted reward (Schultz et al., 1997).
(B) The dopamine neuron response coincides with the TD error signal in
these cases.

360 kenji doya

https://doi.org/10.1017/9781108755610.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.013


More recently, Yagishita and colleagues investigated the dopamine-
dependent synaptic plasticity using optical activation of presynaptic glutamate,
postsynaptic activation by intracellular electrode, and optogenetic stimulation
of dopamine terminals (Yagishita et al., 2014). In the striatal neurons expressing
D1 type receptors, pre-post stimulation followed by dopamine input within
about 1 second caused synaptic potentiation. In the striatal neuron expressing
D2 type receptors, which has a higher affinity (sensitivity) than D1 type recep-
tors, the suppression of dopamine release caused synaptic potentiation (Iino
et al., 2020).

10.5.3 Value and Action Coding in the Basal Ganglia

The TD error coding of the dopamine neurons and dopamine-dependent syn-
aptic plasticity in the striatum strongly suggest that the basal ganglia play a
major role in reinforcement learning in the brain (Houk et al., 1995b). The basal
ganglia form parallel loop circuits with the input from the cerebral cortex and
the output through the thalamus back to the cortex (Alexander & Crutcher,
1990). Given the dopamine-dependent synaptic plasticity, a specific hypothesis
is that the striatal neurons are involved in learning state or action value
functions (Figure 10.4). Samejima et al. showed in a free choice task that many
of the striatal neurons represent action-specific reward prediction (Samejima
et al., 2005).

In rodents, the cortico-basal ganglia loops are roughly divided into the motor
loop through the dorsolateral striatum, the prefrontal loop through the dor-
somedial striatum, and the limbic loop through the ventral striatum (Voorn
et al., 2004). Neural recording from the striatum of rats also showed action
value coding neurons in the dorsal striatum and state-value coding neurons in
the ventral striatum (Ito & Doya, 2015).

Cerebral cortex
state/action coding

Striatum
reward prediction

Pallidum
action selection

Dopamine neurons
TD signal

Thalamus

V(s) Q(s,a)

state action

Figure 10.4 The anatomical organization of the basal ganglia (left) and their
possible roles in reinforcement learning (right) (Doya, 1999, 2000).
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The striatum is composed of two compartments, the striosome projecting to
the midbrain dopamine neurons and the matrix (or patch) projecting to the
globus pallidus (Gerfen, 1992; Graybiel & Ragsdale, 1978). The globus pallidus
is composed of the internal segment (GPi) that projects to the thalamus and the
external segment (GPe) that projects to GPi both directly and through the
subthalamic nucleus (STN), which receive inputs from the cortex. The cortical
input through the basal ganglia has three pathways: the direct pathway through
the striatum to GPi; the indirect pathway through the striatum, GPe, and
subthalamic nucleus (STN) to GPi; and the hyperdirect pathway through STN
to GPi (Nambu et al., 2002). What is the reason for such multiple pathways?
Recently, genetically encoded calcium indicators (GECI) and optogenetic

manipulation enabled cell-type specific recording and manipulation of striatal
neurons. In rodent striatum, D1-receptor-expressing neurons project to the
direct pathway causing double inhibition, while D2-receptor-expressing
neurons project to the indirect pathway involving triple inhibition. They have
been hypothesized to be involved in action initiation and suppression
(Alexander & Crutcher, 1990; Delong, 1990), or learning from reward and
punishment (Frank et al., 2004; Hikida et al., 2010).
Optogenetic stimulation of D1-receptor-expressing, direct pathway neurons

in the dorsomedial striatum induced reinforcing effect, while stimulation of D2-
receptor-expressing, indirect pathway neurons induced aversive effect (Kravitz
et al., 2012). Intriguingly, measurement of population activities of D1 and D2
striatal neurons by fiber photometry showed that both populations are activated
at the onset of actions (Cui et al., 2013). This may be because the start of a new
action is often the end of the previous action. In a sequential lever press task of
repeating components (e.g., LLRR), optogenetic activation of D1 neurons
induced over repetition (e.g., LLLRR) while activation of D2 neurons induced
premature transition (e.g., LRR), suggesting that they are involved in sticking
and switching, respectively (Geddes et al., 2018).

10.5.4 Model-Free/Model-Based Action and Learning

Human and animal behaviors can be classified as goal-directed, depending on
the present needs, or habitual, responding routinely to given stimuli. These
behaviors are dissociated by a devaluation paradigm, in which the value of a
particular food is changed by satiation or poisoning. Balleine and colleagues
demonstrated that the prefrontal-dorsomedial striatal loop and the motor-
dorsolateral striatal loop are respectively involved in goal-directed and habitual
behaviors (Balleine et al., 2007). Daw and colleagues further postulated that
goal-directed and habitual behaviors are based on model-based predictive
search and model-free reactive choice (Daw et al., 2005). While model-based
strategies are often attributed to the prefrontal and the parietal cortex (Glascher
et al., 2010), functional MRI studies suggested the involvement of the basal
ganglia also (Daw et al., 2011) (Figure 10.5). Another study using multistep
action planning showed activation of not only the cortical areas but also the
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cerebellum and the basal ganglia (Fermin et al., 2016), which is consistent with
the view that the cerebellum predicts the resulting state of action candidates
using internal models acquired by supervised learning and that the basal ganglia
evaluates their goodness by the value function acquired by reinforcement
learning (Doya, 1999, 2000).

The dichotomy between model-free and model-based systems has some
resemblance to other dichotomies in psychology and cognitive science
(Dayan, 2009), such as procedural versus declarative, System 1 versus System
2 (Kahneman, 2011; Kahneman & Tversky, 1979), and unconscious and con-
scious (Bengio, 2017).

10.6 Conclusion

Reinforcement learning is a theoretical framework that has promoted
fruitful interactions across neuroscience, psychiatry, psychology, sociology, and

A B C

Figure 10.5 The “two-step task” used for dissociating model-free and model-
based learning (Daw et al., 2011). If a reward is acquired after a rare
transition in the first step, a model-free agent would repeat the same action,
while a model-based agent would choose another action to reach to the
rewarded state in the second step with a higher probability. Actual subjects tend
to be between the two.

Reinforcement Learning 363

https://doi.org/10.1017/9781108755610.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.013


economics. This is because the problem setup of reinforcement learning cap-
tures the basic features of animal and human behaviors.
There are presently several major challenges and limitations in reinforcement

learning algorithms. One is sample efficiency, meaning that learning requires a
lot of data. In tasks where simulators are available, a computer agent can have
limitless interactions with a stationary environment. The success of AlphaGo is
based on a huge number of game plays that any human player cannot experi-
ence in a lifetime (Silver et al., 2017). In real physical environments, such as
robot control or human interaction, taking actual experience can be time
consuming or costly, and the environment can keep changing so that slow
learners cannot catch up. Another challenge is representation learning.
Efficient reinforcement learning requires good representation of states and
actions. Deep reinforcement learning gives one solution to representation learn-
ing for reinforcement learning (Mnih et al., 2015), but that still suffers from
sample efficiency.
Development of robust and flexible reinforcement learning algorithms

may provide helpful models for understanding the sophisticated reinforce-
ment learning mechanisms in the brain. Also, understanding of how such
algorithms can fail in certain conditions may shed light on the complex
pathology of psychiatric disorders (Montague et al., 2012; Redish &
Gordon, 2016).
The basal ganglia are by no means the sole locus of reinforcement learning in

the brain. Even small brains of worms or flies should have the capability for
reinforcement learning (Bendesky et al., 2011; Yamagata et al., 2014). In the
vertebrate brain, the amygdala is also known to be critical for learning from
reward and punishment (Belova et al., 2007). Recent developmental study
revealed that the lateral amygdala neurons have the same origin as those of
the cortex, while the central amygdala neurons have their origin as basal
ganglia neurons (Soma et al., 2009). The amygdala is an evolutionarily older
brain structure than the basal ganglia; it may be considered as a prototype of
the cortico-basal ganglia circuit (Cassell et al., 1999). Reward-dependent activ-
ities are also found in a variety of cortical areas, such as the orbitofrontal cortex
(Schultz et al., 2000), the prefrontal cortex (Matsumoto et al., 2003; Watanabe,
1996), and the parietal cortex (Dorris & Glimcher, 2004; Platt & Glimcher,
1999; Sugrue et al., 2004). The computation of state, value, and action may not
happen step-wise in separate brain areas but may be realized by the dynamics of
the cortico-basal ganglia loop (Cisek, 2007).
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PART III

Computational Modeling of Basic
Cognitive Functionalities

Computational modeling has been applied to a wide range of cognitive func-
tionalities. This part describes modeling of some of the most fundamental and
the most important cognitive functionalities.

This part surveys and explores cognitive modeling research, in terms of
computational mechanisms and processes, of categorization, memory,
reasoning, decision making, learning, and so on. It describes some of the most
prominent models in the field. These computational models constitute signifi-
cant advances in cognitive sciences and shed light on corresponding empirical
phenomena and data.
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11 Computational Models
of Categorization
Kenneth J. Kurtz

11.1 Introduction

11.1.1 Categorization as a Core Cognitive Process

A fundamental goal in the study of cognitive science is to understand how
people form concepts from experience and use them to organize and apply
knowledge. In the psychological tradition of breaking down human cognition
into core functionalities, categorization is the process of identifying a target
stimulus as belonging to an established category (i.e., concept, kind, or class).
This is the bridge between knowledge about the world and systems of percep-
tion, action, and communication that interface with the world. In the study of
categorization, researchers seek primarily to explain: (1) how category know-
ledge is acquired from experience; and (2) how category membership decisions
get made. Due in part to the challenging nature of these focal questions,
categorization researchers have to a large extent left aside the before and after
questions like: how does raw sensory information get encoded in a form suitable
for categorization (see Austerweil & Griffiths, 2013; Goldstone, Schyns, &
Medin, 1997); and what are the connections and implications of categorizing
for other higher cognitive processes such as memory, language, reasoning (see
Markman & Ross, 2003; Murphy & Ross, 1994; Solomon, Lynch, & Medin,
1999)? Before categorization, it is broadly assumed that target stimuli are
represented in terms of attributes, features, or dimension values that serve as
the input to the categorization mechanism; and it is broadly assumed that after
a membership decision is made, one is prepared to make predictive inferences
beyond the available information (i.e., one can expect a stimulus categorized as
a dog to bark and to have internal organs without having to actually observe
these things) and take appropriate action (i.e., petting a dog). The search for
answers to the core questions about categorization has kept researchers occu-
pied for over fifty years, and the use of formal models has been central to
this enterprise.

11.1.2 Chapter Overview

The goal of this chapter is to provide an intuitive yet robust treatment of formal
models that serve as the essential manifestations of competing theoretical
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accounts of categorization. This is accomplished by providing: (1) a taxonomy
to help systematize the range of established approaches (see Figure 11.1);
(2) thorough explication and comparison of the design principles underlying
two major approaches; (3) treatment of the general enterprise of advancing
scientific understanding of categorization via computational modeling; and
(4) broad conclusions and analysis of the trajectory of the field. It does not fall
within the scope of the chapter to review the body of behavioral evidence on
categorization (see Murphy, 2002 for broad coverage of psychological theory
and evidence up until that date; and more concise treatments by Goldstone,
Kersten, & Carvalho, 2018; Kurtz, 2015; Medin, 1989; Ross, Taylor,
Middleton, & Nokes, 2008). While some effort is made to address the relative
explanatory success of the models, it is also not possible to provide a compre-
hensive assessment of how models fare relative to behavioral data. Further,
the chapter cannot address all models proposed nor can it report technical
details and variations of every model mentioned (see Pothos & Wills, 2011 for
treatments of a number of formal models of categorization in the words of
their designers).

11.1.3 The Psychology of Categorization

Categorization refers to the ubiquitous process of making sense of stimuli as
examples of known concepts and updating the representation of the concept to
reflect newly designated members. The key underlying assumptions in this area
of study are that the perceptual stimuli people experience are encoded in terms
of semantically laden elements (attributes, features, dimensions) and that
semantic memory holds a conceptual vocabulary of knowledge of the kinds of
things people can experience or think about in the world (e.g., chairs, dogs,
bicycles, baseballs, planets, pickles, pockets, dragons, etc.). Most attention has
been paid to object categories representing taxonomic natural and artificial
kinds, however abstract, situational, complex, and relational concepts all fall
within the purview of a fully realized psychological account of categorization
(see Barsalou, 1983; Gentner & Kurtz, 2005; Goldstone, 1994; Murphy &
Medin, 1985). As already noted, the process of encoding a complex percept as
a candidate for categorization and the process of construal of the item in light of
its assigned category have been much more lightly addressed by researchers,
while the process of assigning a stimulus to a category and updating that
category (learning) in order to inform future membership decisions have been
the focus of explanation. Even with this restricted explanatory scope, quite a bit
more has been done to simplify the explanatory goal. The dominant research
paradigm is small-scale, controlled laboratory studies that can be the subject of
formal modeling to capture the patterns of performance by human learners in
acquiring and applying category knowledge. In traditional artificial classifica-
tion learning tasks, researchers measure classification accuracy over a series of
trials (until a stopping criterion is reached) in which the learner’s task under
minimalist instruction is to assign each presented item to one of two possible
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classes (designated with arbitrary labels) and receive supervisory feedback.
Rather than complex, realistic stimuli, researchers tend to use artificial categor-
ies that are divorced from real-world knowledge and consist of simple images
that serve to convey values (often binary) on a small set of dimensions of
variation. The concepts formed are typically not put to any further test other
than classifying novel items in order to evaluate generalization ability. Notably,
rather than addressing the true categorization challenge of mapping from all
possible stimuli to all possible categories (i.e., “What is it?”), researchers typic-
ally employ a two-choice classification task (“Is it an A or a B?”) in a sharply
circumscribed and caricatured domain. The advantage of all these reductive
choices is that they are convenient (or perhaps even necessary) for progress in
this challenging area of scientific inquiry and particularly for testing models –
however, it is also important to bear in mind that there are significant risks
inherent in departing so heavily from an ecologically valid perspective
(Murphy, 2003, 2005).

11.2 Models of Human Category Learning

11.2.1 A Note on Mathematical versus Mechanistic Models

A number of formalisms have been developed that attempt to systematically
capture the degree of difficulty a learner faces in forming a new concept strictly
based on mathematical properties of the structure of the classification problem;
that is, independent of the processing and representational considerations asso-
ciated with mechanistic models of mind (see Jones & Love, 2011). One notable
example is an account derived in terms of logical or Boolean complexity
(Feldman, 2000; see also a Bayesian formulation of logical rule-learning for
categorization, Goodman, Tenenbaum, Feldman, & Griffiths, 2008). Other
researchers have achieved further progress by proposing mathematical formu-
lations in terms of an invariance measure (i.e., whether or not an item changes
category when a dimension value is changed; Vigo, 2009) and in terms of
entropy (i.e., informational complexity; Pape, Kurtz, & Sayama, 2015). It
remains to be seen whether such approaches capture something essential about
the nature of concept formation and whether that can either explain or be
explained by the psychology; the present chapter focuses on approaches that
are grounded in the explanation of human information processing.

11.2.2 Predicting Categories from Cues

In computational terms, a classification problem involves acquiring a mapping
between training items in an input space and the designated category label for
each item provided as corrective feedback in a supervised learning task. This
requires learning a logical or probabilistic form that acts like a mathematical
function for mapping from the cues that constitute an item (input) to a category
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prediction (output). An assumption of independence can be made such that the
impact of each cue in the function is uniform – i.e., when an item possesses a
particular attribute, it contributes to the classification decision as a truth value
for a logical expression or as a weighted regression-style predictor. A rule-based
classifier operates by identifying a logical rule that is expressed over attributes in
order to discriminate between the classes. For example, a classification problem
can be solved by a logical rule specifying all “A” items are red and all “B” items
are blue. This is readily extensible to multidimensional rules that employ logical
operators such as: AND, OR, XOR, NOT. This approach conforms to the
“classical view” of categorization (Katz & Fodor, 1963; Smith & Medin, 1981)
which states that concepts are definitions comprised of necessary and sufficient
features. The logical rules that are possible given a set of attributes and operators
define a hypothesis space that gets reduced each time a posited rule is falsified
by an observation (e.g., a blue item that is not in Category “B”). This approach
has been most fully realized in the RULEX model (Nosofsky, Palmeri, &
McKinley, 1994; see also Navarro, 2005) which generates hypotheses sequen-
tially starting from the simplest (unidimensional rules) to the more complex,
until a logical rule is found that is not negated by an observation. If no such rule
is found, then the model searches for rules that function successfully in conjunc-
tion with memorized exceptions; lower complexity rules with fewer memorized
exceptions are preferred. RULEX has been extended to continuous-valued
attributes (e.g., size, brightness, angle of orientation) where the rules act more
like boundaries in space than logical expressions (Nosofsky & Palmeri, 1998). In
broad terms this approach is reminiscent of the use of decision trees for classifi-
cation tasks in the machine-learning literature (e.g., Quinlan, 1986).
A very different approach, also based on independent cues, relies on statis-

tical regularities rather than rules as the basis for abstracting from training data
to induce a basis for successful categorization. A prototype approach is sensitive
to characteristic properties as well as defining ones (Rosch & Mervis, 1975) and
proposes that the critical thing to know about a category is not a strict definition
against which all members conform but instead an ability to extract the statis-
tical central tendency across known members (Hampton, 1981; Homa, Sterling,
& Trepel, 1981; Minda & Smith, 2001, 2002; Posner & Keele, 1968; Reed,
1972). A prototype can be an actual example that falls at the central tendency or
it can be a possible example in the input space that reflects the mean or modal
value of observed category members along each dimension. As an independent
cue approach, a prototype may have feature values or feature combinations
that are observed rarely or not at all depending on the characteristics of the
density distribution.
A prototype-based classifier (e.g., Shanks, 1991; see also Knapp & Anderson,

1984) can arise naturally from a simple neural network known as a linear
classifier which consists of a layer of input nodes that take on the values of
the cues (attributes of the stimulus to be categorized), a layer of output nodes
that correspond to the possible categories, and a set of synapse-like connection
weights between each cue and class that allow function approximation or
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estimation of an underlying model of the task via error-driven learning
(Rescorla & Wagner, 1972; Rosenblatt, 1958; Widrow & Hoff, 1960). This type
of learning is known as the delta rule:

Δwij ¼ lrate � Inputj � Targeti �Outputið Þ (11.1)

where, Outputi ¼
P

Inputjwij

The weights begin at small random initial values and are updated incremen-
tally to optimize task performance. The learned values of the weights of the
network divide the input space into classification regions based on proximity to
the central tendency of each category: any stimulus with values nearer to those
of the average “A” than the average “B” will be classified as a member of
category “A.” However, this learning system is based on finding a linear
boundary that optimally separates the classes, so it can deviate from a pure
prototype-based account by situating a boundary with sensitivity to the distri-
bution of examples rather than just their central tendency. A more direct
implementation of the prototype view explicitly encodes the mean or modal
values across the unique members of each category. As detailed below, this is a
reference point approach in that a prototype is explicitly stored as a set of
central values on each dimension for each category so an item can be classified
by determining its similarity to the central tendency of each category.

The independent cue-based approach, as discussed thus far, involves learn-
ing a predictive function in the form of a linear combination of the cues (or a
logical rule). These can be termed fixed cue-based approaches because the
features of the stimuli are the cues used to predict the category and this
remains unchanged during the learning process (see Figure 11.1 for visualiza-
tions of the taxonomy of formal modeling approaches presented in this
chapter). An alternative is a combined cue-based approach in which the
features themselves serve not only as individual cues but they are also grouped
into additional compound cues. Gluck and Bower (1988) proposed such an
account within a connectionist framework (though the approach is unusual
for invoking a preprocessing step of converting the stimulus into a more
complex input). The configural cue model (CCM) assumes that the input layer
includes nodes that stand for the presence of each possible feature value as
well as features that stand for each possible combination of feature values.
The combinations include pairwise combinations and n-wise combinations all
the way up to input nodes that code for the full set of features of each example.
Therefore, an item such as “001” would be represented by activating input
nodes for the hypotheses of “0—”, “-0-”, “—1”, “00-”, “0-1”, “-01”, and
“001”. The delta rule (see Equation 11.1) is used to adjust the weight between
each element of the preprocessed recoding of the stimulus and each class. The
elaborated initial recoding of the stimulus alters the behavior of the neural
network away from the prototype formation that would arise using only
singleton cues. For example, the CCM is sensitive to more about a category
than its central tendency and therefore surpasses prototype models by being
readily capable of acquiring nonlinearly separable (NLS) category structures
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as humans are (see Levering, Conaway, & Kurtz, 2020; Medin &
Schwanenflugel, 1981; Shepard, Hovland, & Jenkins, 1961). A classic example
of an NLS structure is the exclusive-OR function (A: “00”, “11” versus B:
“01”, “10”) which is impossible to solve with a single linear bound.
The first artificial neural networks capable of performing “hard” learning in

the form of NLS category structures and, in principle, computing arbitrarily

Figure 11.1 A taxonomy of approaches to modeling human category learning.
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complex function approximation were multilayer perceptrons (MLPs) charac-
terized by a hidden layer that recodes the input cues in a constructed multidi-
mensional space. This architecture is made effective by the use of the
backpropagation algorithm to solve the credit-assignment problem of adjusting
the weights for hidden layers lacking supervisory target signals (Rumelhart,
Hinton, & Williams, 1986). This is an example of a constructed cue-based
approach, as the neural network learns to make successful class predictions by
recoding the input into something new – a form of representation learning in
which the initial representation of an item’s cues projects to a point in a derived
multidimensional space. Each constructed dimension is a nonlinear function of
a weighted combination of the input dimensions with weights optimized to
reduce task error. An important property of the MLP is that it tends to position
each training item in a new multidimensional space so that the problem
becomes linearly separable from the representation at the hidden layer to the
class nodes at the output layer. The MLP architecture and learning rule trans-
formed what neural nets could compute, but never offered a viable model of
how humans learn categories. Specifically, the MLP is overly sensitive to the
linear separability constraint, broadly insensitive to the number of diagnostic
cues required to solve a classification problem, and vulnerable to catastrophic
forgetting (see Kruschke, 1993). Deep neural nets represent the latest leap in
computational firepower of this approach in the form of multiple hidden layers
that function effectively due to the benefits of faster processors, powerful
architectures such as convolutional neural nets, and a collection of innovations
regarding the activation function at the hidden layers and the basis for weight
initialization (see LeCun, Bengio, & Hinton, 2015). Applications of deep neural
nets to human category learning are just beginning to take shape (e.g.,
Battleday, Peterson, & Griffiths, 2020; Sanders & Nosofsky, 2020).

11.2.3 Reference Point Models

11.2.3.1 Exemplar Models

Rather than predicting categories directly from cues, categorization can be seen
as a matter of storing locations in the input space for each category such that
similarity to the reference point predicts category membership. Early advocates
of the exemplar view of category learning (Medin & Schaffer, 1978; see also
Brooks, 1978) challenged the idea that human category learning could be
explained as a matter of processing independent cues and instead claimed that
the impact of each attribute needed to be taken in the context of the other
attributes present. Does one experience a large, red square merely as a coinci-
dence of largeness, redness, and squareness or does the item as a whole take on
a role that matters psychologically? Medin and Schaffer (1978) developed the
context model based on the idea that the probability of membership in a
category depends on attention-weighted similarity to individual members of
the category and this similarity should be computed multiplicatively (rather
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than additively) across dimensions so that the impact of the degree of match on
each dimension varies depending on other matches. As such, according to the
exemplar view, the psychological representation of a category is the stored set of
experienced examples labeled as members and classification decisions are based
on similarity to those exemplars.
As an illustrative example, imagine learning to classify students as humanities

or science majors, and there is a group of students sitting around a table
wearing stickers (labeled training examples). Instead of learning to predict
student major from attributes, the learner could store each student’s attributes
and link this information with their category. This sounds like a system for
categorizing by rote memorization, however that would provide no ability to
generalize to new cases (which is the core functionality of categorization). The
actual mechanism underlying the exemplar view is recoding a target stimulus
based on similarity to each known case (i.e., each student at the table) and using
the level of similarity to each as evidence of membership in the category to
which that student belongs.
Relative to the cue-based approaches described above there are several

important differences to note. The first is positing a psychological construct
other than features and classes. This new psychological construct is the exem-
plar, and it changes learning from being about how features like red, large, and
square predict class membership, but about how a set of stored complete
configurations of features (a large, red square) predict class membership. The
exemplar functions psychologically as a unit above and beyond its feature
values by providing an intermediate representation between cues and classes.
This is akin to classifiers in machine learning that use basis functions or kernel
methods to transform the input based on proximity to reference points (Poggio
& Girosi, 1990; see also Jäkel, Schölkopf, & Wichmann, 2008, 2009).
It is clarifying to differentiate exemplar models from the CCM which

includes configural cues at the input layer corresponding to each possible
exemplar in the input space. The CCM captures the role of context by turning
each stimulus into an input representation that encodes the presence or absence
of each possible individual feature value, as well as each possible feature
combination and full-item specification. The exemplar approach differs in the
following ways: (1) it replaces an item’s featural encoding with a recoding at the
exemplar-level rather than supplementing the original feature encoding with
additional configural cues; (2) it addresses the role of intermediate level com-
pound cues (i.e., “00-”) through a selective attention mechanism for ignoring
irrelevant dimensions; and (3) it not only activates the exact match at the full
exemplar level, but also partially activates other similar exemplars. These
design features lead to a superior account of human category learning (e.g.,
Nosofsky et al., 1994).
Exemplar models have achieved recognition as the status quo in psycho-

logical explanation of human classification learning on the strength of highly
successful models developed several decades ago (ALCOVE: Kruschke, 1992;
GCM: Nosofsky, 1984, 1986). These two models generalize the context model
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of Medin and Schaffer (1978) in terms of stimulus generalization theory.
Specifically, the likelihood of category membership is determined as a function
of the inverse exponential distance in psychological space to each stored exem-
plar (Shepard 1957, 1987). This means that the clearest path to category
membership is being highly similar to one or more known members of a
category and sufficiently dissimilar to members of contrasting categories. In
addition, classification can be based on an accumulation of moderate levels
of similarity to the members of one category relative to others. The specific
behavior depends on a sensitivity parameter that specifies how sharply the
consequential region around each reference point falls off.

Shepard, Hovland, and Jenkins (1961) proposed that categories could be
represented as sets of labeled locations in psychological space based on obser-
vations (training items) and concluded from behavioral data that stimulus
generalization theory must be supplemented by a mechanism of selective atten-
tion and/or abstraction in order to account for human performance in classifi-
cation learning tasks. In the GCM (Nosofsky, 1984, 1986), a target stimulus is
classified by computing its inverse exponential similarity to stored category
members (see Equation 11.2) with selective attention applied (i.e., stretching
or shrinking dimensions) in order to supplement stimulus generalization theory
by weighting the impact of distance along each dimension:

actrefpt ¼ exp �sensitivity �
X
k

Wk Xstim,k � Xrefpt,k

�� ��r" #1=r

(11.2)

This yields an inverse exponential of the sum of the weighted distance on each
dimension (k) between the stimulus and reference point multiplied by a sensi-
tivity parameter and mediated by a parameter (r) for appropriate defaults on
the similarity metric (i.e., city-block for separable stimulus dimensions and
Euclidean distance for integral stimulus dimensions). An important associated
working hypothesis is that learners will tend to adapt attention weights toward
optimal classification performance.

Two further core design principles complete the canonical formulation of
exemplar models. One is that, lacking direct access to the actual psychological
representations of stimuli, researchers use techniques like multidimensional
scaling (Shepard, 1962) to estimate underlying representations in a metric
space that are consistent with aggregated human pairwise proximity judg-
ments such as similarity ratings (see Nosofsky, 1992). In practice, modelers
sometimes make the assumption that the psychological dimensions accord
with those intended by the experimenter in designing the stimuli. Secondly, the
accumulated evidence for each category is passed through a choice rule (Luce,
1963) to generate the probability of producing a response using a ratio
between an exponential function of the output evidence for one class and
the sum of that same computation for all possible classes (see Equation 11.3).
The outcome is mediated by a response-mapping free parameter (phi) that
controls how probable an “A” response is given the degree to which a target
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item is more similar to the “A” category (see Ashby & Maddox, 1993;
Nosofsky & Palmeri, 1997):

Prob Kð Þ ¼ exp phi � outputKð ÞP
k exp phi � outputkð Þ (11.3)

To illustrate this issue of response determinism, if only slight evidence favors
category “A”, the response could always be “A”, it could be near chance, or it
could fall somewhere in-between. The predictions of the GCM can be fit
directly to classification performance of human learners (aggregated or at the
individual level); additionally, exemplar accounts have been developed to pre-
dict temporal dynamics of the response process within each trial in a classifica-
tion task (Lamberts, 1998; Nosofsky & Palmeri, 1997). In sum, the set of design
principles underlying exemplar models results in a system that can capture a
range of psychological flexibility including: rule-like behavior using attention to
ignore irrelevant dimensions and strict sensitivity to produce an all-or-none
similarity match; rote memorization or exception learning via strict sensitivity
to full exemplars; and abstractive behavior via reduced sensitivity that can
blur the consequential regions around proximal exemplars belonging to the
same category.
The GCM predicts end-state classification performance for novel and

training items and can also make a priori predictions of the overall ease of
learning a classification problem (based on the extent to which the members of
one category are similar to members of the other), but it does not predict the
time-course of learning. ALCOVE (Kruschke, 1992) implements the exemplar
view as an adaptive network model with a localist hidden layer consisting of
exemplar nodes. ALCOVE uses trial-by-trial, error-driven learning to optimize
dimensional attention weights and association weights between each exemplar
and each class (by contrast, in the GCM the association weights are assigned in
accordance with the relative frequency of co-occurrence between each item and
each class). As a result, ALCOVE is able to predict the time-course of learning
as well as end-state performance. The activation of the exemplar-specific hidden
nodes (see Equation 11.2) is computed as an inverse exponential function of the
sum of the attentionally weighted distance on each dimension between the
stimulus and the stored exemplar multiplied by a sensitivity constant (free
parameter). The activation of the class nodes at the output layer of the network
is a linear function of the traditional connectionist net input (the dot product of
the association weights and exemplar node activations) and each association
weight is adjusted according to a traditional connectionist delta rule based on
the product of the association learning rate (free parameter), the difference
between the predicted and target values for the class node, and the activation
value of the exemplar node (see Equation 11.1.) A simple limiting mechanism is
used to adjust the association weights so that values of þ/–1 replace any output
activations exceeding that range (this humble teaching is used to avoid penaliz-
ing predicted values beyond the target). The attentional weights are adjusted in
accord with the backpropagation approach of proportional credit assignment
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to achieve gradient descent (Rumelhart et al., 1986) mediated by an attentional
learning rate parameter (see Kruschke, 1992 for details and derivation).

These exemplar models are a fixed item-based account in that the reference
points are derived directly from the training set and undergo no change during
learning from the initial estimated psychological representations of the items.
Under a more general formulation, ALCOVE can operate as a covering map
with reference points seeded across input space (i.e., picking out possible items
in input space as opposed to actual observations), but it remains a fixed
approach. ALCOVE has also served as a base model from which a number of
extensions have been implemented or proposed (Kruschke, 2008). For example,
it is possible to swap in different similarity metrics that accord with binary or n-
ary restrictions on stimulus dimension values and provide sensitivity to matches
versus mismatches (e.g., Lee & Navarro, 2002). It is possible to adjust the
dynamics of attentional shifting to allow rapid rather than incremental shifts,
particularly early in learning (Kruschke & Johansen, 1999). Further, it is
possible to incorporate alternatives to obervational (GCM) or error-driven
learning (ALCOVE) of association weights such as Bayesian updating
(Kruschke, 2006). Of particular note are hybrid approaches that use an exem-
plar similarity module in a learned gating mechanism (see Jacobs, Jordan,
Nowlan, & Hinton, 1991) along with a separate dedicated module for each
possible unidimensional rule (ATRIUM: Erickson & Kruschke, 1998); or that
combine an implicit (nonverbalizable) module that associates regions of input
space with classes via reinforcement learning and an explicit (verbalizable)
module based on hypothesis testing (COVIS: Ashby, Alfonso-Reese, Turken,
& Waldron, 1998). With respect to Shepard et al.’s seminal theoretical point,
the ATRIUM model supplements stimulus generalization theory with both
selective attention and abstraction (the latter in the form of the induction of
unidimensional logical rules). Another type of hybridization involves allocating
different classification modules to different parts of the overall classification
problem. For example, knowledge partitioning (e.g., Yang & Lewandowsky,
2004) suggests that contextual factors or content elements (stimulus dimensions)
can act as cues to trigger the activation of separate classification schemes for
different regions of input space (see also Jacobs et al., 1991). One version of this
idea proposed the explanatory potential of independent assignment of attention
weights for different regions of input space (Aha & Goldstone, 1992). These
approaches parallel the use of ensemble methods in machine learning wherein
multiple subclassifiers are brought to bear in either a divide-and-conquer or
voting mode to avoid the problem of trying to accommodate a complex
classification learning task with a single unitary function for mapping from
items to classes.

11.2.3.2 Abstractive Reference Point Models

Another influential single-system approach adds abstraction to stimulus gener-
alization (sometimes in combination with selective attention) by including the
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ability to situate a reference point at the centroid of a group of exemplars. These
can be called combined item-based accounts (see Figure 11.1). The prototype
approach is the canonical form of an abstractive reference point model, and it
can be implemented (e.g., Minda & Smith, 2002) in a manner that incorporates
design features of exemplar models (i.e., selective attention, Shepard-based
similarity with sensitivity, response mapping) and allows direct model compari-
son on the core issue of representing a category by its exemplars or by a
statistical summary. To achieve this, the exemplar nodes at the intermediate
layer of an adaptive network model are replaced with a single node per category
at the point in input space representing the central tendency across the observed
category members.
This opens the door to a broader range of abstractive possibilities in which a

subset, rather than all, category members is associated with a single reference
point. There are a number of models that follow the approach of incorporating
an intermediate degree of abstraction to a reference point approach at the level
of clusters which are collections of exemplars. Such approaches have as their
natural extremes a pure prototype mode in which all members of a category are
placed in a single cluster and a pure exemplar mode in which all clusters consist
of only one item. Intermediate possibilities include multiple prototypes or an
exception-based solution in which a category is well-characterized by an
abstraction except for a minority of individual items. The varying abstraction
model (VAM) is an extension of the GCM that allows for a process of optimiz-
ing the selection of sets of exemplars to be replaced by their centroid to serve as
a reference point (Vanpaemel & Storms, 2008; see also Rosseel, 2002).
A Bayesian approach known as the rational model of categorization (RMC)
has been proposed (Anderson, 1991; extended by Sanborn, Griffiths, &
Navarro, 2010) that has much of the character of a cluster-based reference
point account. Two major theoretical claims undergird this view: (1) category
labels are no different in status than features – all of which fall under the
common designation of things to be inferred based on prior probabilities and
the given data; and (2) the Bayesian approach makes a strong set of assump-
tions about the independence of features. On this view, the core constructs are
hypotheses based on groups or clusters of observed items. Based on the degree
to which each of these hypotheses are consistent with observed data, they
provide a weighted prediction about any unknowns (which could include class
membership although the category level receives no special status). The basic
mechanism of learning is the creation of clusters based on likeness as observa-
tions are made and the accrual of data on the likelihood of each feature and
class within each cluster. Classification decisions are made by evaluating the fit
of a stimulus to each cluster so that each cluster generates a prediction about
class membership (drawn from how many A examples vs. B examples are in the
cluster) weighted by the degree to which the stimulus has features consistent
with the members of the cluster. If each cluster contained only one member, the
approach closely mirrors the exemplar view; and if a cluster is assigned to all
members of each category, then the approach instantiates the prototype view.
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In practice, the RMC typically operates at an intermediate level between the
two. A mechanistic approach that implements a cluster-based approach without
a Bayesian formulation takes the form of an adaptive network model that
operates by allowing clusters to adjust (shifting the location of the centroid
accordingly) as the model makes correct predictions and using surprises (incor-
rect predictions) to dynamically create new clusters (SUSTAIN; Love,
Gureckis, & Medin, 2004). The SUSTAIN model includes a number of add-
itional distinctive design principles: (1) a unique selective attention mechanism
that is not error-driven; (2) cluster competition that drives the model to activate
only a single cluster in response to an input; and (3) architectural commitments
that allow the model to address a wider range of categorization tasks (such as
unsupervised learning and inference learning).

As has been discussed, the item-based approaches (just as the cue-based
approaches discussed initially) can be realized in fixed or combined manifest-
ations (see Figure 11.1). The fixed mode takes the items as the reference points
(exemplar view). The combination mode assigns sets of items into combinations
that produce a collective reference point that summarizes their central tendency
(cluster view). What would it mean to take a construction-driven item-based
approach within the reference point framework? Instead of using error-driven
learning to create new features, this would be using it to create new reference
points. SUSTAIN uses adaptive, error-driven learning to determine which
items combine into a cluster, but this is combining items not creating them. It
is possible to select reference points not just as combinations of training items,
but as any point in input space that does a good job of reducing error in class
prediction. On this view, the learner would start with a certain number of
randomly located reference points (similar to ALCOVE in covering map
mode), but the reference points would move in input space to improve perform-
ance. Instead of using error-driven learning to set the association and attention
weights, it could be used to locate the reference points. Kurtz and Silliman
(2019; in prep.) propose a model called WARP (weights as adaptive reference
points) that uses gradient descent (backpropagation) to situate reference points
for optimal task success by treating the incoming weights to each hidden node
as a reference point located in input space. Instead of determining activation by
invoking an explicit function based on geometric distance between the input
and a stored reference point, the similarity between an input and an implicit
reference point (the incoming weights to a hidden node) is inherent in comput-
ing the standard connectionist net input because multiplying the weights by the
input activations amounts to taking a dot product (i.e., vector similarity).

11.2.3.3 Reference Points in Review

For years, the essential debate in the field was whether exemplar representation
is sufficient to account for behavioral data on classification learning or whether
an explicitly abstractive component or alternative is required. Competing
models with design principles outside of the reference point framework (e.g.,
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Anderson, 1991; Ashby &Maddox, 2005; Gluck & Bower, 1988) were consider-
ably sidelined on account of an influential litmus test: fitting the “SHJ” ordering
for the ease of learning of six elemental types of category structures (Shepard
et al., 1961; replicated by Nosofsky, Gluck, Palmeri, & McKinley, 1994; revised
by Kurtz et al., 2013). One exception is the RULEX model (Nosofsky et al.,
1994) which does well in accounting for aggregate and individual classification
learning performance, although it is restricted to explaining two-choice categor-
ization tasks and is rarely promoted as a candidate for explaining human
categorization abilities beyond the traditional artificial classification learning
paradigm. Notably, the model’s successful prediction of easier learning of SHJ
Type II (XOR) relative to all others except Type I (unidimensional rule) does
not actually hold in human learners unless the instructions explicitly encourage
a search for rules to solve the classification problems (Kurtz et al., 2013). This is
also a challenging result for reference point models to explain since the mech-
anism for predicting slower Type II learning (reducing the use of selective
attention) forces an inaccurate prediction of slower Type I learning as well
(Kurtz et al., 2013).

11.2.4 The DIVA Model

11.2.4.1 Foundations of DIVA

The Divergent Autoencoder (DIVA) model (Kurtz, 2007, 2015) is a relative
newcomer that extends a longstanding connectionist architecture in a manner
akin to a constructed cue-based approach (see Figure 11.1) but that differs by
predicting the likelihood of the observed features with respect to each category
rather than predicting the categories directly. Recall how a prototype approach
could be formulated in connectionist terms by learning a set of weights that
function as a discriminative boundary to divide input space into regions
according to the closest category centroid. Imagine instead that the region
dedicated to each category is free-form: it can take any shape and can be
noncontiguous. Rather than being grounded structurally in the reference point
framework (i.e., a radial region with a fixed center from the training data), it is
grounded functionally: the areas of input space that project to a particular
category assignment depend on the results of optimizing a function (in the form
of the weights of a neural net) to yield low error on known category members.
To illustrate the intuition for such a functional orientation without an a priori
commitment to specific psychological constructs, imagine a contraption with a
set of adjustable dials that produces a graded outcome in response to each
input. The dials are initially at arbitrary positions, so the contraption produces
completely unsystematic outcomes. However, upon each observation of an item
that merits a strong response (i.e., a category member), the dials are adjusted to
make it more likely that the contraption produces a stronger response to future
observations similar to that one. Before long, the system reaches a point in “dial
space” that tends to elicit a strong response to the observed examples of a
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category and the system naturally extrapolates this solution to make coherent
generalized predictions about untrained regions of input space.

The autoencoder architecture (McClelland & Rumelhart, 1986) that serves as
the basis for DIVA is a feed-forward artificial neural network trained via the
back-propagation algorithm which generalizes the delta rule (see Equation
11.1) for multiple layer architectures (Rumelhart, Hinton, & Williams,
1986) – specifically, a hidden layer acts as a bottleneck for recoding inputs as
a form of representation learning akin to principal component analysis. In auto-
associative learning, the nodes at the output layer match the input features, so
the targets for learning come from the input values. The autoencoder is a
generative method in that it estimates a model that captures statistical regular-
ities across a set of examples in a psychologically compelling manner (see
Rumelhart, 1989). Instead of explicitly storing a training sample of category
members, the sample is used to infer the underlying basis of membership which
can be considered a theory of the data. So, if the autoencoder is trained on
members of a category, then it can make category membership evaluations
based on whether the features conform to expectations, i.e., whether or not the
model of the category “expects” the features to be what they are.

The key insight underlying the DIVA model is that classification tasks can be
learned by training a divergent autoencoder with separate channels that predict
each feature with respect to each category. Since the categories are learned
within the same task, the generative models for each category are not learned
independently – they share the same intermediate layer for recoding. On this
view, a psychological category representation is a generative model consisting
of a shared (task-wide) set of connection weights that recode the input in a form
that allows a subsequent set of weights (channel-specific for each category) to
optimally reconstruct the features of category members. The categorization
basis is the relative degree of success in reconstructing the stimulus via the
recoding/decoding procedure – the better the reconstruction, the greater the
likelihood of membership. Unlike other traditional connectionist architectures
(such as the MLP), DIVA matches up well with human category learning
(Conaway & Kurtz, 2017a; Kurtz, 2007, 2015) in terms of learning at human
speed (i.e., number of training blocks required) and successfully capturing
patterns of performance with free parameters for overall learning rate, number
of hidden nodes, and range of random weight initialization.

It is useful to consider that the task of each output node in DIVA (predicting
a feature with respect to a category) is actually an embedded MLP-style
classifier in which the number of classes is the number of distinct values that a
particular feature takes on in the training set. For example, in the case of SHJ
Type I learning, in which the items {101, 111, 001, and 011} are learned along
the same channel because they are members of the same category. Reducing the
error at each feature-predicting output node requires learning to correctly
predict the value of that feature for each of the known category members.
Therefore, the reconstruction task for the first output node is actually a two-
way classification problem discriminating the first two items (101 and 111) from
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the other two items (001 and 011). The nature of these parallel “dimensional
classifications” (Kurtz, 2007) allows one to predict why some learning tasks are
harder than others.
Consider once again Shepard et al.’s (1961) analysis that stimulus generaliza-

tion theory is insufficient to explain human category learning but requires
supplementation with an element of abstraction and/or attention. An alterna-
tive viewpoint would be to dispense with the commitment to stimulus general-
ization theory and instead explore the power of a more sophisticated approach
to abstraction. As examples, Fried and Holyoak (1984) explored incorporating
variability as well as central tendency and Ashby and Alfonso-Reese (1995)
explored the approach of category knowledge as density profiles capturing the
observed likelihood of features. DIVA represents a different path of inductively
learning a model that picks out which regions in input space are likely category
members by acquiring a multivariate distribution, i.e., statistical information not
just about what individual features are likely to occur or co-occur, but about
what overall sets or configurations of features are compatible with the under-
lying concept (see Rumelhart, 1980). In this way, DIVA’s channels act like a
filter: the coordinated weights of the recoding and decoding layers are opti-
mized to allow good members of the category to pass through while rejecting
poor candidates for the category that produce too much distortion (reconstruct-
ive error). The question of whether or not something belongs in a category
becomes: how collectively likely are the set of observed features with respect to
the category? Or put slightly differently: do these features go together or predict
one another with respect to the category? Exemplar models answer this question
essentially by asking: has something very much like this combination of features
been observed before under this category label? DIVA does not preserve the
individual cases as reference points but estimates a model that accounts for each
observation in the category. So when the set of features of a candidate dog are
evaluated, it is not whether they match a known dog or the average over known
dogs, but whether or not it is evaluated as consonant for those features to occur
together as a dog.
Three further important properties of the DIVA account are as follows: (1)

unlike the traditional view that construal and inference (i.e., going beyond the
available data) occurs after assigning category membership, DIVA uses the
process of feature prediction and construal as the basis for making a classifica-
tion decision; (2) unlike the traditional use of error-driven learning to adjust
item->class weights or feature->class weights, DIVA uses error-driven learning
to adjust the recoding and decoding weights that comprise knowledge of within-
category inter-feature relationships, so learning is not driven by classification
errors but by construal errors along the correct category channel; and (3) the
difficulty of a classification problem is driven not so much by between-category
confusability (as follows from stimulus generalization theory) but by within-
category coherence which can be operationalized in terms of the ease with
which each feature of a category member can be predicted from its
other features.
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After the initial introduction of DIVA (Kurtz, 2007), subsequent applica-
tions include an additional design principle that greatly improves the explana-
tory power of the model: a dimensional focusing mechanism applied after the
network has generated its output activations. DIVA employs a standard
choice rule (see Equation 11.3) although operating on the inverse sum-of-
squared error along each category channel as opposed to the activation of a
category node. With focusing, the diversity of the predictions for each feature
value across channels is used to weight the diagnostic value of that dimension
for classification: the more different the category-specific predictions, the
larger the focusing weight on that dimension. A free parameter (beta) deter-
mines the degree to which the focusing weights impact the response rule. With
focusing turned on (i.e., set to a nonzero value), DIVA predicts much more
rapid learning in cases where one dimension is a highly diagnostic predictor
while other dimensions are low- or nonpredictive. This works because the
similar degree of failure to accurately reconstruct the nonmeaningful dimen-
sions across channels makes them fall out of focus while the clear success of
one channel to reconstruct the predictive dimension in combination with a
robustly inaccurate prediction on the competing channel makes this dimen-
sion dominate the classification outcome.

11.3 Observations and Conclusions

11.3.1 Discussion of Modeling Human Category Learning

There is considerable agreement in the field that exemplar models (possibly
extending to include the family of reference point models that allow clusters of
exemplars) represent a success story or even a candidate to be a rare example of
a settled question in cognitive science; however there remain strong skeptics
who emphasize the restricted domain within which the exemplar operates
successfully (Murphy, 2016). Furthermore, despite it being the “home turf” of
exemplar and related models, a few recent studies have shown failures of the
approach to successfully predict human performance in the traditional artificial
classification learning paradigm. Human learners are able to extrapolate from
training observations to a global partitioning of the input space into coherent
categorical regions, but reference point models are strictly limited to generaliz-
ing based on proximity to the training items (note: setting the sensitivity
parameter to allow broad generalization can be useful in some cases but also
can undermine the explanatory power of the approach). Exemplar models can
produce such extrapolation when selective attention condenses irrelevant
dimensions, but not for diagnostic dimensions. In the partial XOR problem
(Conaway & Kurtz, 2017a), the input space is divided into quadrants with
examples of Category “B” in two diagonally opposite quadrants, examples of
Category “A” in one of the remaining quadrants, and the final quadrant left
empty during training. A common outcome in a generalization phase
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conducted after training was human learners predicting items in the untrained
quadrant to belong to Category “A” – which cannot be explained by exemplar
models (but is well predicted by DIVA). Along similar lines of breaking down
the core assumption of proximity-driven classification, Kurtz and Wetzel (2021)
tested learners after acquiring a category structure with items of strictly alter-
nating category membership along a line through a continuous low-dimensional
input space (A-B-A-B). Most learners generalized to the untrained region by
extending the global alternation pattern (A-B-A-B-A) as opposed to using
proximity to training items (A-B-A-B-B).
With the use of a “two diagonals” category structure (that looks like this: //)

based on a set of four “A” items positioned along one diagonal line in a 2D
continuous input space and another four “B” items along a parallel diagonal
line (akin to an information integration structure except with a small set of
clearly distinct training items; see Ashby & Maddox, 2005), Kurtz and
Conaway (under review) found that human learners more rapidly acquired
the standard diagonal structure than “mangled” diagonals in which some items
from the two diagonals had their labels interchanged. In model comparison
tests, DIVA succeeded while ALCOVE could not produce a differentiated
prediction because the category structures were matched in terms of the local
proximity relations among the training items. Further, in a generalization test
conducted after learning the diagonal structure, human learners tended to
classify items based on how closely they fit the underlying correlated dimensions
of the diagonal structure; while DIVA captured this pattern, the exemplar
account erroneously predicts all generalization items with the same profile in
terms of city-block distances to training items to be equivalent in classification
prediction. These phenomena all reflect human category learning as an abstrac-
tive process that involves inducing a model or theory of the data as opposed to
merely invoking labeled stored examples or cluster centroids as reference points
for proximity-based generalization. Just as the exemplar account represents an
advance by overcoming the assumption that features can be treated as inde-
pendent, it may be that the next step is to overcome the assumption that
exemplars can be treated as independent – instead the learning mechanism must
be sensitive to the differential role an exemplar plays in acquiring a category
depending on how it configures with other category members.
With regard to model evaluation, the broadest approach is to determine the

goodness of fit to aggregated human data using metrics like sum of squared
difference. Researchers increasingly bring to bear more nuanced approaches
such as fitting individual data (or profiles of learner types). In addition, models
are importantly evaluated in qualitative terms as to whether they can predict a
particular phenomenon or pattern of performance across category structures or
among the items in a category structure. For example, core evidence that has
separated the GCM, ALCOVE, SUSTAIN, RULEX, and DIVA from com-
peting accounts over the years comes from the SHJ (Shepard et al., 1961)
benchmark: the order of ease of learning for the six possible types of two-
way, balanced classifications of binary three-dimensional stimuli. The observed
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order of learning was: Type I (perfect unidimensional predictor) easiest to learn;
Type II (perfect exclusive-or regularity on two dimensions) somewhat harder;
Types III–V (weaker predictive regularities) harder yet and close to equal; and
Type VI (no predictive regularities) the most difficult (though see Kurtz et al.,
2013 for a revision to the core phenomenon). Nosofsky et al. (1994) found that
exemplar models were unique among the similarity-based competitors at that
time in the ability to fully capture the classic ordering as well as producing an
excellent quantitative fit.

There are a number of concerns that arise in judging the quantitative fit of a
model (see VanPaemel & Lee, 2012; Wills & Pothos, 2012). One is the question
of model complexity: are formal models so powerful that they can explain
anything and therefore do not deserve credit for good fits because they could
fit anything? The formal models of category learning are all based on a set of
explanatory design principles that address core claims about representation and
processing plus a set of free parameters that are optimized in the process of
fitting the model to behavioral data. One way to characterize model complexity
is in terms of the number of free parameters; techniques now exist to penalize
higher complexity for model comparison (e.g., Pitt, Myung, & Zhang, 2002).
Recognizing the challenges inherent in model evaluation, some researchers have
suggested the standard that a model ought to be able to succeed on a range of
test cases under the same parameterization (e.g., Love et al., 2004). While it can
be argued that a model’s success should be questioned if it only occurs in a very
particular region of its parameter space, the opposing view is that if a model
succeeds under any parameterization, then that success should be considered
representative of the model’s capability. A potential resolution comes from
considering the nature of the free parameters themselves. If a parameter has a
clearly defined role in the model that can be linked to a psychological factor in
the behavioral task, then such a parameter is best seen as a flexible design
principle of the model (for example, a parameter that controls the degree of
dimensional selective attention in a classification decision); by contrast, when
the impact of a free parameter is not systematically characterized or aligned
with human information processing, then considerable caution is appropriate in
interpretation. While not always put into practice, it is widely agreed that the
field should be valuing models that account for more and a wider range of
phenomena, as well as valuing the goal of minimizing the extent to which the
modeler makes choices about how the simulation is conducted that impact the
outcome (Goldstone et al., 2018; Wills & Pothos, 2012).

11.3.2 Conclusion

The take-home message from this chapter can be summarized somewhat suc-
cinctly. Categorization is ubiquitous and fundamental to cognition; it is also
multifaceted and complex. Focusing on the most elemental forms of category
structure and the most elemental forms of categorical processing have made this
challenging area of inquiry more accessible via controlled laboratory
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experimentation and formal modeling. The field has experienced a series of
theoretical divides within this restricted explanatory scope (i.e., rules/boundar-
ies vs. similarity; prototypes vs. exemplars; single system vs. multiple systems)
before settling into a period during which the exemplar view (perhaps including
its near neighbors that allow clusters of exemplars) achieved consensus as the
status quo account of traditional artificial classification learning; other con-
structs essentially hovered in the background or were brought to bear theoret-
ically to account for the broader scope of the kinds, roles, and uses of categories
(Goldstone, 1994; Kurtz, 2015; Markman & Ross, 2003; Murphy, 2002;
Solomon et al., 1999). This chapter provides indepth treatment of an explana-
tory alternative in the form of the DIVA model that challenges the use of items
or points in input space as the currency of categorization; instead contextual-
ization (Medin & Schaffer, 1978) is achieved through something more like
Rumelhart et al.’s (1986) notion of a multivariate distribution, a web of know-
ledge compactly coded in a set of weights optimized to reduce reconstructive
error and coherently generalize to the input space by capturing which sets of
features do or do not accord with a category.
The theoretical debates in the field and the tendency toward developing

multicomponent or hybrid accounts may reflect the fact that even after aban-
doning much semblance of an ecologically valid approach (i.e., learning the real
categories people learn under the real circumstances in which they learn them),
the artificial classification learning task does not seem to reflect a singular,
independent cognitive process (such as, for example, making an old/new recog-
nition judgment). Instead, each learner invokes to some extent elements of
object recognition, selective attention, episodic/recognition memory, implicit
learning, hypothesis generation and testing, language-based re-description of
features and items, imagery, motivation, etc. – basically an entire cognitive
psychology textbook of factors that are external to design principles at the core
of leading accounts of category learning and generalization. Along these lines, a
proposed extension of DIVA (Kurtz, Mason, & Wetzel, 2020) addresses the
notion that general cognitive mechanisms of reasoning (hypothesis testing) and
memory (old/new recognition and paired-associate learning) may play support-
ing roles in the traditional artificial classification learning paradigm used to
evaluate models. This hybrid approach shows explanatory promise by replacing
the focusing mechanism of DIVA with two modules in the form of adaptive
networks – one for rapid discovery of unidimensional logical rules and another
to recognize individual items and build up paired-associate learning between
these items and their labels. Other major directions for the field include
attempting to expand the scope of what models can explain in terms of complex
realistic stimuli (Nosofsky, Sanders, Gerdom, Douglas, & McDaniel, 2017) and
a broader range of the ways in which categories are learned and used, e.g.,
unsupervised, incidental/observational, inference tasks (see Austerweil, Liew,
Conaway, & Kurtz, under review; Gureckis & Love, 2003; Kemp, 2012; Kurtz,
2015; Markman & Ross, 2003; Pothos, Perlman, Bailey, Kurtz, Edwards,
Hines, & McDonnell, 2011). The emerging popularity of computational
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cognition as a research platform integrating the study of learning and intelli-
gence in minds and machines for the mutual benefit of cognitive science and AI
is an exciting development (e.g., Conaway & Kurtz, 2017b; Gureckis &
Markant, 2012; Lake, Salakhutdinov, & Tenenbaum, 2015; Roads & Love,
2020; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). In addition, the turn
toward cognitive neuroscience has seen the development of neurobiologically
oriented accounts that incorporate exemplar theory into a separate system view
(Ashby & Rosedahl, 2017), as well as the emergence of model-based neuroima-
ging techniques that look for evidence of how measured activation in the brain
corresponds to human behavior and model predictions (see Palmeri, Love, &
Turner, 2017; Zeithamova, Mack, Braunlich, et al., 2019).
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12 Computational Cognitive
Neuroscience Models
of Categorization
F. Gregory Ashby and Yi-Wen Wang

12.1 Introduction

Categorization is the process of assigning an object or event to a class
or group – typically one that is behaviorally relevant. It is a vitally important
skill that is required of all animals, because it allows nutrients and prey to be
approached and poisons and predators to be avoided. Interest in how humans
categorize dates back at least to Aristotle. For almost all of this long history,
theorizing was dominated by purely cognitive approaches. The past few
decades, however, have seen an explosion of new results that collectively are
beginning to paint a detailed picture of the neural mechanisms and pathways
that mediate human categorization. These results come from a wide variety of
sources, including human behavioral experiments, animal lesion studies,
single-cell recordings, neuroimaging experiments, and neuropsychological
patient studies. Lagging somewhat behind this avalanche of new data has
been the development of mathematical models that can account for the
traditional cognitive results as well as for these newer neuroscience results.
Even so, a number of such models have been proposed. This emerging new
field is called computational cognitive neuroscience (CCN; Ashby, 2018;
O’Reilly, Munakata, Frank, Hazy, et al., 2012). This chapter reviews CCN
models of categorization, with a focus on the COVIS model to demonstrate
some key properties that set CCN models apart from more traditional
cognitive approaches.

12.2 Learning Systems and Categorization Tasks

An enormous literature suggests that humans have multiple learning
and memory systems. For example, a Google Scholar search of publications
using the terms “memory systems” returns almost a million articles. Since, by
definition, learning requires that some trace of previous training episodes must
exist, one obvious hypothesis is that there are as many learning systems as there
are memory systems (Ashby & O’Brien, 2005). This complicates any review of
categorization models because different researchers have proposed models
of different category-learning systems. This can be confusing to an outsider
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because the models might share little in common, including the neural struc-
tures and pathways that they claim mediate category learning.

One way to discriminate among models is by attending to what type of
category-learning task they focus on, because different types of tasks are
thought to recruit different learning systems. And different learning systems
are mediated by different neural networks. Thus, models focusing on different
systems will bear little similarity to each other. On the other hand, different
neuroscience-based models of the same learning system should be highly similar
because all such models are constrained by the same neuroanatomy. For
example, an enormous body of evidence implicates the basal ganglia in proced-
ural learning. As a result, any model of procedural-learning-based categoriza-
tion must assign a prominent role to the basal ganglia, and since the gross
neuroanatomy of the basal ganglia is well known, all such models must have a
similar architecture. The primary difference among models of the same learning
system will likely be that some will include more detail about some neural
regions than others. Some of the more popular category-learning tasks are
briefly described in the remainder of this section (for more details, see, e.g.,
Ashby & Valentin, 2018).

12.2.1 Tasks That Depend on Declarative Memory

A number of different category-learning tasks depend on declarative memory.
Included in this list are rule-based (RB) tasks in which the optimal strategy is
some simple rule that can be described as a Boolean expression of the stimulus
values on a few stimulus dimensions. In the simplest example, only one dimen-
sion is relevant but in more complex RB tasks, the optimal strategy might be a
logical conjunction – for example, the optimal rule might be to give one
response if the stimulus is large on two dimensions, and otherwise to give the
contrasting response.

The most widely known example of an RB categorization task is the
Wisconsin Card Sorting Test (WCST; Heaton, 1981), which is a popular clinical
measure that is used to detect frontal dysfunction. The test uses a deck of cards
that differ in the shape, number, and color of displayed figures. On each trial,
the participant is shown a card and asked to assign it to one of two unknown
categories. Feedback is given after each response and the correct categorization
strategy is always a simple rule that depends on only one stimulus dimension.
After ten consecutive correct categorizations, the relevant dimension is changed
(without telling the participants).

Considerable evidence suggests that RB category learning depends on
working memory and selective attention (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Maddox, Filoteo, Hejl, et al., 2004; Waldron & Ashby, 2001;
Zeithamova & Maddox, 2006) – skills that are both thought to depend heavily
on the prefrontal cortex (PFC; e.g., Braver et al., 1997; Curtis & D’Esposito,
2003; Miller & Cohen, 2001). As a result, CCN models of RB category learning
will assign a prominent role to the PFC.
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Categorization tasks in which the categories have some coherent structure,
but in which one or more categories include a small number of exceptions, also
seem to recruit declarative memory (e.g., Davis, Love, & Preston, 2011).

12.2.2 Tasks That Depend on Procedural Memory

Information-integration (II) tasks are those in which accuracy is maximized
only if information from two or more incommensurable stimulus dimensions is
integrated at some predecisional stage (Ashby & Gott, 1988). In II tasks, similar
stimuli tend to be in the same category, but the optimal strategy has no Boolean
description. Evidence suggests that success in II tasks depends on procedural
learning that is mediated largely within the striatum (Ashby & Ennis, 2006;
Filoteo, Maddox, Salmon, & Song, 2005; Knowlton, Mangels, & Squire, 1996;
Nomura et al., 2007; Seger & Miller, 2010). In unstructured categorization
tasks, the stimuli are assigned to each contrasting category randomly, and thus
there is no rule- or similarity-based strategy for determining category member-
ship. Although intuition might suggest that unstructured categories are learned
via explicit memorization, there is now good evidence – from both behavioral
and neuroimaging experiments – that the feedback-based learning of unstruc-
tured categories also depends primarily on procedural memory (Crossley,
Madsen, & Ashby, 2012; Lopez-Paniagua & Seger, 2011; Seger & Cincotta,
2005; Seger, Peterson, Cincotta, Lopez-Paniagua, & Anderson, 2010).
Therefore, CCN models of II or unstructured category learning will assign a
prominent role to the basal ganglia.

12.2.3 Tasks That Depend on the Perceptual Representation
Memory System

In prototype-distortion tasks, the exemplars of each category are created by
randomly distorting a single category prototype. The most widely known
example uses a constellation of seven or nine dots as the category prototype,
and the other category members are created by randomly perturbing the spatial
location of each dot (Posner & Keele, 1968). Sometimes the dots are connected
by line segments to create polygon-like images.
Two different types of prototype distortion tasks are common – (A, B) and

(A, not A). In (A, B) tasks, two different prototype patterns are distorted to
create two coherent categories. In (A, not A) tasks, which are more popular,
there is only one prototype pattern that is distorted to create the exemplars of
Category A. In contrast, every member of the “not A” category is generated
independently (and randomly). Thus, all Category A exemplars are similar to the
prototype, and therefore also to each other, whereas the “not A” stimuli have no
coherent structure. A variety of evidence supports the hypothesis that learning in
(A, not A) prototype-distortion tasks is mediated primarily within the visual
cortex, via the perceptual representation memory system (e.g., Aizenstein et al.,
2000; Casale & Ashby, 2008; Reber & Squire, 1999; Reber, Stark, & Squire,
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1998). The idea is that accurate responding can be based solely on a feeling of
visual familiarity, which should be high on A trials and low on not-A trials.

12.2.4 Category Learning versus Automatic Categorization

Most categorization decisions made by adults are automatic. When we sit in a
chair, pick up a cup of coffee, or swerve to avoid a pothole, our actions are
almost always automatic. And there is now considerable evidence that categor-
ization decisions are mediated differently during initial learning and automati-
city (Ashby & Crossley, 2012). To note just one example, categorization
decisions that depend on working memory and executive attention during early
learning are immune to dual-task interference after extended practice (Hélie,
Waldschmidt, & Ashby, 2010; Schneider & Shiffrin, 1977). For this reason,
different models and theories are needed to account for category learning and
automatic categorization behaviors.

12.3 Computational Cognitive Neuroscience Models
of Categorization

Currently, there are no neuroscience-based theories or models that
attempt to account simultaneously for all types of categorization. In fact, the
majority of models are designed to account for categorization in only one type
of task. Even so, there are a few exceptions. One is provided by the COVIS
theory of category learning (Ashby et al., 1998; Ashby & Crossley, 2011;
Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 1999; Cantwell,
Crossley, & Ashby, 2015). Briefly, COVIS postulates two systems that compete
throughout learning – a frontal-based system that learns explicit rules and
depends on declarative memory systems and a basal ganglia-mediated proced-
ural-learning system. The procedural system is phylogenetically older. It can
learn a wide variety of category structures, but it learns in a slow incremental
fashion and is highly dependent on reliable and immediate feedback. In con-
trast, the declarative rule-learning system can learn a fairly small set of
category structures quickly – specifically, those structures in which the con-
trasting categories can be separated by simple explicit rules. Thus, COVIS
assumes that performance improvements in RB tasks are mediated by an
explicit, rule-learning system, whereas performance improvements in II and
unstructured tasks are mediated by a procedural-learning system. In addition,
COVIS has been extended to account for automatic categorization behaviors
that were acquired initially via procedural learning (Ashby et al., 2007) or via
explicit rule-based learning (Kovacs, Hélie, Tran, & Ashby, 2021). On the
other hand, COVIS is almost certainly incomplete because it ignores all other
types of category learning. For example, it provides no account of the kind of
perceptual learning thought to mediate performance improvements in (A, not
A) prototype-distortion tasks.
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Another model that attempts to account for diverse cognitive functions,
including categorization, within a single unified framework is called Leabra
(O’Reilly, Hazy, & Herd, 2016). Leabra was designed to account for tasks under
executive control, so it provides accounts of RB learning, and also perhaps,
prototype-distortion learning. But it makes no attempt to account for procedural
learning of the type thought to dominate in II tasks. Leabra uses the same set of
computational features, including recurrent connections, error-driven Hebbian
learning, within-layer inhibitory competition, and sparse distributed representa-
tions, for modeling activation within different cortical regions, including the
visual cortex (O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013), the medial tem-
poral lobes (Norman & O’Reilly, 2003), and the PFC (O’Reilly, Noelle, Braver,
& Cohen, 2002; Rougier & O’Reilly, 2002). Among the multiple tasks simulated
by Leabra, the most relevant for this review are the WCST and visual object
categorization, which will be discussed in later sections.

12.3.1 Declarative-Memory-Based Models of Categorization

12.3.1.1 COVIS

As mentioned earlier, COVIS assumes that performance in RB tasks is domin-
ated by a rule-learning system that uses declarative memory. The idea is that
this system generates and tests alternative categorization rules until satisfactory
performance is achieved, or until the participant gives up and decides that no
acceptable rule exists. For example, the initial rule may be to “respond A if the
object is large, and B if it is small.” This candidate rule is then held in working
memory while it is being tested. If feedback signals that this rule is incorrect,
then an alternative rule is selected, and executive attention must be switched
from the old to the new rule.
Figure 12.1 shows the neural structures that mediate performance in the

COVIS rule-learning system during a trial of an RB task. The key structures
in the model are the anterior cingulate cortex (ACC), the prefrontal cortex
(PFC), the head of the caudate nucleus, the medial dorsal nucleus of the
thalamus (MDN), and the hippocampus. There are three separate subnetworks
in this model – one that maintains candidate rules in working memory, tests
those rules, and mediates the switch from one rule to another; one that generates
or selects new candidate rules; and a third that consolidates memories of this
selection and testing process in a long-term store. Currently, there is no compu-
tational model of the entire network. There is a biologically detailed computa-
tional model of the working memory maintenance and rule-switching network
that was built from spiking neuron units like those described in Equations
12.2–12.5 below (Ashby, Ell, Valentin, & Casale, 2005). In contrast, the model
of rule selection and rule implementation is more abstract (Ashby et al., 1998),
whereas currently there is no computational model of the consolidation process.
The working memory maintenance and attentional switching network

includes all structures in Figure 12.1, except the ACC and hippocampus.
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The idea is that the long-term representation of each possible salient rule is
encoded in some neural network in sensory association cortex. These cortical
units send excitatory signals to working memory units in lateral PFC, which
send recurrent excitatory signals back to the same cortical units, thereby
forming a reverberating loop. At the same time, the PFC is part of a second
excitatory reverberating loop through the MDN (Alexander, DeLong, & Strick,
1986). These double reverberating loops maintain activation in the PFC
working memory units during the rule-testing procedure. However, the high
spontaneous activity that is characteristic of the GABAergic neurons in the
globus pallidus tonically inhibit the MDN, which prevents the closing of this
cortical-thalamic loop, leading to the loss of information from working
memory. To counteract this inhibition, the PFC excites medium spiny neurons
in the head of the caudate nucleus (Bennett & Wilson, 2000), which in turn
inhibit the pallidal neurons (since medium spiny neurons are GABAergic) that
are inhibiting the thalamus. Reducing the pallidal inhibition of the thalamus
allows reverberation in cortical-thalamic loops, and thereby facilitates working
memory maintenance. The computational version of this model successfully
accounts for many behavioral and single-neuron working memory-related phe-
nomena (Ashby et al., 2005).

The model of rule selection and rule implementation is more abstract, but is
also constrained by neuroscience. Specifically, when feedback convinces the

Figure 12.1 The COVIS declarative system.
Solid lines ending in arrows ¼ excitatory projections; dotted lines ¼ inhibitory
projections; solid lines ending in diamonds ¼ dopaminergic projections;
ACC ¼ anterior cingulate cortex; CD ¼ caudate nucleus; GP ¼ internal
segment of the globus pallidus; HC ¼ hippocampus; MDN ¼ medial dorsal
nucleus of the thalamus; PFC ¼ prefrontal cortex; VTA ¼ ventral
tegmental area.
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learner that the current categorization rule is incorrect, a new rule must be
selected and executive attention must be switched from the old rule to the new
rule. COVIS assumes that the ACC selects among alternative rules by enhan-
cing the activity of the specific PFC working memory unit that represents a
particular rule via the following algorithm (Ashby, Paul, & Maddox, 2011).
Denote the set of all possible explicit rules by R ¼ R1, R2, . . . , Rmf g.

Suppose rule Ri is used on trial n. If the response on trial n was correct, then
rule Ri is used again on trial nþ 1 with probability 1. If the response on trial n
was incorrect, then the probability of selecting rule Rk from the set R for use on
trial nþ 1 equals

Pnþ1 Rkð Þ ¼ Yn Rkð ÞPm
i¼1Yn Rið Þ , (12.1)

where Yn Rkð Þ represents the current weight of rule Rk, which depends on its
initial salience, its reinforcement history, and whether or not it was used on
trial n.
The decision criteria associated with each rule are learned via gradient

descent. The full model has six free parameters: σ2E (the variance of perceptual
and criterial noise), γ (the tendency to perseverate), λ (the tendency to select low
salience rules), ΔC (salience increment following positive feedback), ΔE (salience
decrement following negative feedback), and δ (gradient-descent learning rate).
Based on neuropsychological evidence, γ is assumed to decrease and λ to
increase as cortical dopamine levels rise (Ashby, Isen, & Turken, 1999). This
model has successfully accounted for learning in RB tasks, under a variety of
experimental conditions, including for example, with and without a simultan-
eous dual task (Ashby et al., 2011), under normal or positive affect (Hélie, Paul,
& Ashby, 2012b), and also in a variety of different neuropsychological patient
populations, including Parkinson’s disease (Hélie, Paul, & Ashby, 2012a) and
anorexia nervosa (Filoteo et al., 2014). For a complete description of the model,
see Ashby et al. (2011).
To perform well in RB tasks, participants must remember which rules they

have already tested and rejected, in order to avoid revisiting these failed rules.
As in many other models, COVIS assumes that the consolidation from
working memory to long-term declarative memory representations is medi-
ated by projections from the PFC to the hippocampus (e.g., Eichenbaum &
Cohen, 2001). If the task is simple enough, then working memory might be
sufficient to avoid these errors. Thus, COVIS predicts normal learning by
medial temporal lobe amnesiacs in simple RB tasks in which the correct rule
can be discovered before the list of rejected hypotheses is lost from working
memory. In more difficult RB tasks (e.g., with many alternative rules), the
search for the correct rule will exceed working memory capacity, so COVIS
predicts that in these cases medial temporal lobe amnesiacs will be impaired.
Much evidence supports the former prediction (Janowsky, Shimamura,
Kritchevsky, & Squire, 1989; Leng & Parkin, 1988), but the latter prediction
has not been rigorously tested. Even so, several studies have reported normal
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performance by amnesiacs on the first fifty trials of a difficult task, but
impaired performance later on (Hopkins, Myers, Shohamy, Grossman, &
Gluck, 2004; Knowlton et al., 1996). Temporal cortex has also been shown
to interact with PFC when rules are retrieved from long-term storage (for a
review, see Bunge, 2004).

In conclusion, the COVIS declarative system includes multiple subprocesses,
such as selecting a rule, focusing attention on the selected rule, storing the
rule in long-term memory, switching between rules, and adjusting the salience
of rules depending on the nature of the feedback. Neuroimaging and neuro-
psychological results have provided evidence for such multiple, distinct pro-
cesses in RB category learning, (Kehagia, Cools, Barker, & Robbins, 2009;
Monchi, Petrides, Petre, Worsley, & Dagher, 2001; Price, Filoteo, & Maddox,
2009; Tachibana et al., 2009). Furthermore, it is known that dopamine influ-
ences many of these subprocesses (Ashby & Casale, 2003; Cools, 2006; Cools,
Lewis, Clark, Barker, & Robbins, 2007; Frank & O’Reilly, 2006; Monchi et al.,
2004; Moustafa & Gluck, 2011; Price et al., 2009; Seamans & Yang, 2004).

12.3.1.2 Models of the Wisconsin Card Sorting Test

A number of models have been developed to account for results of experi-
ments with the WCST. Within this set, the more neurobiologically detailed
models were developed specifically to account for the impaired WCST per-
formance of a number of different special neuropsychological patient groups –
including schizophrenics, Parkinson’s disease patients, and patients with
Huntington’s disease. In general, these models are similar to the rule-learning
submodel of COVIS, except typically with more biological detail in certain
brain regions.

Monchi, Taylor, and Dagher (2000) proposed a COVIS-like model that
includes an extra reward-processing circuit in which reward-related signals
from the amygdala project to the nucleus accumbens (NAcc). The goal of this
work was to explain how dopamine imbalances cause suboptimal WCST
performance in Parkinson’s patients and schizophrenics. Monchi et al.
(2000) simulated impaired performance in schizophrenic patients by reducing
the gains in the NAcc, which caused rule-selection deficits within an ACC/
basal ganglia circuit, which in turn reduced PFC activation. In contrast, the
suboptimal performance of Parkinson’s patients was simulated by reducing
the synaptic strengths between PFC and the caudate nucleus, and between the
caudate and the internal segment of the globus pallidus. These decreases
reduced the cortical activity and impaired the encoding of features in
working memory.

Amos (2000) attempted to explain how perseverative and random errors in
the WCST might be caused by dopamine imbalances in the PFC and basal
ganglia of Parkinson’s, schizophrenic, and Huntington’s disease patients. His
model included a reward/punishment unit (presumably in the ventral tegmen-
tal area) that projected to inhibitory units in the PFC, which were reciprocally
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connected to the PFC rule units. By changing the simulated gains in the PFC
and basal ganglia, Amos (2000) inferred that perseverative errors were more
likely to be PFC dependent, whereas random errors were more likely basal
ganglia dependent.
Moustafa and Gluck (2011) developed a similar model with the goal of

accounting for on- and off-medication performance of Parkinson’s patients in
a task that was similar to the WCST, in the sense that it also required atten-
tional switches to a new stimulus dimension after a rule is learned. In this
model, dopamine neurons in the substantia nigra pars compacta and ventral
tegmental area (i.e., the critic) influenced activity in the PFC and striatum by
altering two types of dopamine input: tonic dopamine, which affected the gain
on activity, and phasic dopamine, which dynamically affected changes in
connection weights. They assumed that Parkinson’s disease reduces phasic
and tonic dopamine levels in PFC and the basal ganglia, and that the primary
effect of medication is to increase tonic dopamine levels, but that this increase
actually reduces the phasic dopamine signal.
All models considered so far assume that a representation of the stimulus is

compared to a representation of the current rule in PFC. In contrast to this,
Leabra assumes that the relevant perceptual representations are maintained in
posterior cortex, and that these representations are modulated by PFC
(O’Reilly et al., 2002; Rougier & O’Reilly, 2002). This view of PFC function
is supported by some recent studies suggesting that the PFC plays a mostly
modulatory role in working memory maintenance (see e.g., Sreenivasan, Curtis,
& D’Esposito, 2014 for a review). In Leabra, the mapping from stimulus to
response is mediated directly via weight-based associations between posterior
cortex and response output units, which receive top-down bias from PFC along
the selected dimension. The ventral tegmental area acts as a critic by sending
reward-prediction-error signals to the PFC, which have the effect of stabilizing
or destabilizing current PFC activity patterns.

12.3.2 Procedural-Memory-Based Models of Categorization

12.3.2.1 COVIS

The COVIS procedural-learning system incrementally learns arbitrary stimulus-
response associations via dopamine-mediated reinforcement learning. Procedural
learning is typically associated with motor learning (e.g., Willingham, 1998;
Willingham, Nissen, & Bullemer, 1989), and accordingly, the COVIS procedural
system assumes that II learning includes a strong motor component.

12.3.2.1.1 Architecture
Figure 12.2 shows the architecture of the COVIS procedural-learning system
(Ashby et al., 1998; Ashby & Crossley, 2011; Ashby &Waldron, 1999; Cantwell
et al., 2015). The key structure is the striatum, a major input region within the
basal ganglia that includes the caudate nucleus and the putamen. In primates,
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all of extrastriate visual cortex projects directly to the striatum, with a cortical-
striatal convergence ratio of approximately 10,000 to 1 (e.g., Wilson, 1995). The
model assumes that, through a procedural-learning process, each striatal
medium spiny neuron (MSN) associates an abstract motor program with a
large group of visual cortical neurons (i.e., all that project to it). Much evidence
supports the hypothesis that procedural learning is mediated within the basal
ganglia, and especially at cortical-striatal synapses, where synaptic plasticity is
thought to follow reinforcement learning rules (Ashby & Ennis, 2006; Houk,
Adams, & Barto, 1995; Mishkin, Malamut, & Bachevalier, 1984; Willingham,
1998). The COVIS procedural-learning system is a formal instantiation of
these ideas.

Note that the model includes two loops through the basal ganglia (Cantwell
et al., 2015). One loop projects from visual cortex through the body and tail
of the caudate nucleus and terminates in preSMA, and the second loop
projects from preSMA through the putamen and terminates in SMA. Because
this second loop terminates in premotor cortex, COVIS predicts that the asso-
ciations that are learned are between stimuli and abstract motor goals (e.g.,
press the button on the left). Both loops rely on reinforcement learning at

Figure 12.2 The neural architecture of the COVIS procedural category-
learning system.
CM/Pf ¼ centromedian and parafascicular nuclei of the thalamus; GPi ¼
internal segment of the globus pallidus; MSN ¼ medium spiny neuron of the
striatum; PreSMA ¼ presupplementary motor area; SMA ¼ supplementary
motor area; TAN ¼ tonically active neuron; VA ¼ ventral anterior nucleus of
the thalamus; VL¼ ventral lateral nucleus of the thalamus; SNPC ¼ substantia
nigra pars compacta.
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cortical-striatal synapses. The first loop learns which stimuli are associated with
the same response and the second loop learns what motor response is associated
with each of these stimulus clusters. With novel categories, both types of
learning are required. However, note that if we train subjects to make accurate
categorization responses and then switch the responses associated with the two
categories, then the category structures remain unchanged – only the response
mappings must be relearned. So COVIS predicts that reversing the locations of
the response keys will interfere with II performance, but that recovery from
such a reversal should be easier than learning novel categories – a prediction
that has been supported in several studies (Cantwell et al., 2015; Kruschke,
1996; Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010; Sanders, 1971; Wills,
Noury, Moberly, & Newport, 2006).1

12.3.2.1.2 Computational Details
The units in the COVIS procedural-learning model are based on the Izhikevich
(2003) spiking-neuron model. Let Vi tð Þ and Vj tð Þ denote the intracellular volt-
ages of a pre- and postsynaptic neuron, respectively, at time t. Then the
Izhikevich (2003) model assumes that the intracellular voltage of the post-
synaptic neuron on trial n is described by the following differential equations:

dVj tð Þ
dt

¼ wij nð Þf Vi tð Þ½ � þ βþ γ Vj tð Þ �Vr
� �

Vj tð Þ �Vt
� �� θUj tð Þ,

dUj tð Þ
dt

¼ λ Vj tð Þ �Vr
� ��ωUj tð Þ,

(12.2)

where β, γ, Vr, Vt, θ, λ, and ω are constants that are adjusted to produce
dynamical behavior that matches the neural population being modeled. Uj tð Þ
is an abstract regulatory term that is meant to describe slow recovery in the
postsynaptic neuron after an action potential is generated. Equation 12.2
produces the upstroke of an action potential via its own dynamics. To produce
the downstroke, Vj tð Þ is reset to V reset when it reaches Vpeak, and at the same
time, Uj tð Þ is reset to Uj tð Þ þU reset, where V reset, Vpeak, and U reset are free
parameters.
The model has many free parameters and therefore can fit a wide variety of

dynamical behavior. Izhikevich (2003) identified different sets of parameter
values that allow the model to mimic the spiking behavior of approximately
twenty different types of neurons, including one that mimics the firing proper-
ties of the MSNs shown in Figure 12.2, and another that mimics the regular
spiking neurons that are common in cortex. Furthermore, Ashby and Crossley
(2011) modified the Izhikevich model to account for the unusual dynamics of
the striatal cholinergic interneurons known as TANs (which produce a pro-
nounced pause in their high tonic firing rate following excitatory input). In all

1 In contrast, COVIS also predicts that such reversals should not impair initial RB performance,
since the COVIS declarative system does not assign a prominent role to any premotor or motor
regions of cortex (see Figure 12.1). Many of these same studies also supported this prediction.
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these cases, the parameters are fixed by fitting the model to single-unit recording
data from the neural population being modeled. Once set, the parameter values
that define the models of each individual neuron type then remain fixed
throughout all applications. Therefore, when testing the model against behav-
ioral or neuroimaging data, the models of each neuron type have zero
free parameters.

The function f Vi tð Þ½ � in Equation 12.2 models the input from the presynaptic
neuron i. In particular, it uses a simple model called the alpha function to mimic
the temporal delays of spike propagation and the temporal smearing that occurs
at the synapse (Rall, 1967). Specifically, the alpha function assumes that every
time the presynaptic neuron spikes, the following input is delivered to the
postsynaptic neuron (with spiking time t ¼ 0):

α tð Þ ¼ t
δ
exp

δ� t
δ

� �
, (12.3)

where δ is a constant. This function has a maximum value of 1.0 and it decays to
.01 at t ¼ 7:64δ. Thus, δ can be chosen to model any desired temporal delay.
Suppose the presynaptic neuron i produces N spikes that occur at times
t1, t2, . . . , tN . Then the function f in Equation 12.2 equals

f Vi tð Þ½ � ¼
XN
k¼1

α t� tkð Þ½ �þ, (12.4)

where

α t� tkð Þ½ �þ ¼ α t� tkð Þ if t > tk;

0 if t � tk:

�
(12.5)

12.3.2.1.3 Learning
COVIS assumes that the procedural learning in the striatum is facilitated by a
dopamine-mediated reward signal from the substantia nigra pars compacta
(SNpc). There is a large literature linking dopamine and reward, and many
researchers have argued that a primary function of dopamine is to serve as the
reward signal in reward-mediated learning (e.g., Houk et al., 1995; Wickens,
1993). The well-accepted theory is that positive feedback that follows successful
behaviors increases phasic dopamine levels in the striatum, which has the effect
of strengthening recently active synapses, whereas negative feedback causes
dopamine levels to fall below baseline, which has the effect of weakening
recently active synapses (e.g., Arbuthnott, Ingham, & Wickens, 2000;
Calabresi, Pisani, Mercuri, & Bernardi, 1996; Reynolds & Wickens, 2002). In
this way, the dopamine response to feedback serves as a teaching signal that
allows successful behaviors to increase in probability and unsuccessful behav-
iors to decrease in probability. These learning-related effects are modeled by the
wij nð Þ multiplier on f Vi tð Þ½ � in Equation 12.2. The value of this term is adjusted
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trial-by-trial according to standard models of dopamine-mediated synaptic
plasticity in the striatum. For a complete description of this approach to
CCN modeling, see Ashby (2018).
According to this account, synaptic plasticity requires that the visual trace of

the stimulus and the postsynaptic effects of dopamine overlap in time. More
specifically, synaptic plasticity in the striatum is strongest when the intracellular
signaling cascades, driven by NMDA receptor activation and dopamine D1
receptor activation, coincide (Lisman, Schulman, & Cline, 2002; Rudy, 2014).
The further apart in time these two cascades peak, the less effect dopamine will
have on synaptic plasticity. For example, Yagishita et al. (2014) reported that
synaptic plasticity was best (i.e., greatest increase in spine volume on striatal
MSNs) when dopamine neurons were stimulated 600 ms after MSNs. When the
dopamine neurons were stimulated before the MSNs or 5 seconds after the
MSNs, then no evidence of any plasticity was observed. Similar results have
been reported in II category learning. First, Worthy, Markman, and Maddox
(2013) reported that II learning is best with feedback delays of 500 milliseconds
and slightly worse with delays of 0 or 1000 milliseconds. Second, several studies
have reported that feedback delays of 2.5 seconds or longer impair II learning,
whereas delays as long as 10 seconds have no effect on RB category learning
(Dunn, Newell, & Kalish, 2012; Maddox, Ashby, & Bohil, 2003; Maddox &
Ing, 2005). Valentin, Maddox, and Ashby (2014) showed that the COVIS
procedural-learning system can accurately account for the effects of all these
feedback delays.

12.3.2.1.4 Context Sensitivity
Ashby and Crossley (2011) proposed that the striatal cholinergic interneurons
known as TANs (for tonically active neurons) serve as a context-sensitive gate
between cortex and the striatum (see also Crossley, Ashby, & Maddox, 2013,
2014; Crossley, Horvitz, Balsam, & Ashby, 2016). The idea, which is supported
by a wide variety of neuroscience evidence, is that the TANs tonically inhibit
cortical input to striatal output neurons (e.g., Apicella, Legallet, & Trouche,
1997; Matsumoto, Minamimoto, Graybiel, & Kimura, 2001; Pakhotin &
Bracci, 2007; Smith, Raju, Pare, & Sidibe, 2004). The TANs are driven by
neurons in the centremedian–parafascicular (CM-Pf ) nuclei of the thalamus,
which in turn are broadly tuned to features of the environment. In rewarding
environments, the TANs learn to pause to stimuli that predict reward, which
releases the cortical input to the striatum from inhibition. This allows striatal
output neurons to respond to excitatory cortical input, thereby facilitating
cortical-striatal plasticity. In this way, TAN pauses facilitate the learning and
expression of striatal-dependent behaviors. When rewards are no longer avail-
able, the TANs cease to pause, which prevents striatal-dependent responding
and protects striatal learning from decay.
Extending the COVIS procedural-learning system to include TANs allows

the model to account for many new phenomena – some of which have posed
difficult challenges for previous learning theories. One of these is that the
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reacquisition of an instrumental behavior after it has been extinguished is
considerably faster than during original acquisition (Ashby & Crossley, 2011).
The model accounts for this ubiquitous phenomenon because the withholding
of rewards during the extinction period causes the TANs to stop pausing to
sensory cues in the conditioning environment (since they are no longer associ-
ated with reward). This closes the gate between cortex and the striatum, which
prevents further weakening of the cortical-striatal synapses. When the rewards
are reintroduced, the TANs relearn to pause, and the behavior immediately
reappears because of the preserved synaptic strengths.

12.3.2.2 Exemplar Theory

Exemplar theory has been the most prominent cognitive theory of categoriza-
tion for more than thirty years. It assumes that categorization is a process of
learning about the exemplars that belong to the category (Estes, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986). When an unfamiliar stimulus is encountered,
its similarity is computed to the memory representation of every previously seen
exemplar from each potentially relevant category. Recently, Ashby and
Rosedahl (2017) showed that the exemplar model is mathematically equivalent
to a simplified version of the COVIS procedural-learning model (e.g., with only
one loop through the basal ganglia). In this neural version of exemplar theory,
category learning is mediated by synaptic plasticity at cortical-striatal synapses.
The neural version makes identical quantitative predictions to the cognitive
version of exemplar theory, yet it can account for many empirical phenomena
that are either incompatible with or outside the scope of the cognitive version.

The neural version also reinterprets the psychological assumptions associated
with exemplar theory. The cognitive version assumes that for every categoriza-
tion decision, people activate memory representations of every previously seen
category exemplar and that they compute the similarity of the presented stimu-
lus to all these stored memories. Categorization decisions are based on the sum
of all these similarities. In the neural version, the summed similarities are
encoded in the strength of the synapses between sensory cortex and the stria-
tum. So no memory representations are ever activated. Instead, the synaptic
strengths are shaped to be proportional to summed similarity by all the previous
training trials.

12.3.3 Perceptual-Learning-Based Models of Categorization

The prototype-distortion task was originally designed to study category learn-
ing (Posner & Keele, 1968), but the idea that the brain abstracts a wide variety
of perceptual information soon became a key component of many object
recognition theories (e.g., see Logothetis & Sheinberg, 1996). Therefore, models
that assume categorization depends on the representation of prototypes are
often tested with more complex stimuli, such as abstract objects (Riesenhuber
& Poggio, 1999), artificial creatures (Love & Gureckis, 2007; Riesenhuber &
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Poggio, 2002), and real-world scenes (Serre, Oliva, & Poggio, 2007). Prototype-
based models assume that categorization decisions are based on the distances
between the representations of the stimulus and the prototypes of each category,
and that categorization probability is inversely related to these distances. Thus,
the stimulus is most likely to be assigned to the category with the nearest
prototype. If distance is measured using the Euclidean metric, then this decision
strategy always produces piece-wise linear bounds and is equivalent to template
matching (Ashby & Gott, 1988). The models differ in how the prototypes are
formed and represented in the network.
One way to approach this problem is to start from neuroscientific observa-

tions. For example, based on single-unit recording results in primates,
Riesenhuber and Poggio (1999) proposed a model called HMAX that describes
visual processing in the ventral visual stream from V1 up through inferotem-
poral cortex (see also, Serre et al., 2007). At each stage, the level of abstraction
is increased. This is done by converging the projections of many units that
respond to similar stimuli onto the same unit at the next higher level, and
assuming that the response of each unit equals the maximum activation of all
input units. In this way, each level of abstraction can be viewed as a kind of
prototype. At a final stage, the object-tuned neurons in inferotemporal cortex
project to classification units in PFC, where the output of each unit equals a
linear combination of its inputs, with the coefficients adjusted via a supervised
learning process to maximize categorization accuracy (Serre et al., 2007). The
model is strictly feedforward, and has included as many as ten million units.
Parameters of the units are set to match physiological data – for example, to
create units that match the physiological responses of simple and complex cells.
Thus, in tests against behavioral data, the model has no free parameters. The
model has successfully accounted for single-unit recording results in primates
using categories constructed of abstract images (Riesenhuber & Poggio, 1999)
and creature-like images (Riesenhuber & Poggio, 2002), and also for the per-
formance of human observers classifying natural scenes (Serre et al., 2007).
Although Leabra was not proposed as a model of learning in prototype-

distortion tasks, its visual layers (V1 to inferotemporal cortex) can be viewed as
a simplified version of HMAX. Specifically, like HMAX, Leabra also includes
feedforward convergent projections in which the response of each unit equals
the maximum activation of all its input units (O’Reilly et al., 2013). However,
unlike HMAX, which is purely feedforward, Leabra also includes recurrent
projections from higher cortical regions, which help shape the response of lower
layers. Wyatte, Herd, Mingus, and O’Reilly (2012) argued that this property,
along with competitive inhibition, is especially important for forming robust
representations for ambiguous images, such as occluded objects. Despite these
differences, Leabra and HMAX offer similar interpretations of prototype-
distortion learning.
Another approach is to develop the model from behavioral observations, and

map components of the model to brain regions. For example, SUSTAIN was
originally proposed as a purely cognitive model (Love, Medin, & Gureckis,
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2004; see the chapter by John Kruschke in this handbook for more details) that
was later mapped onto a neural network that includes PFC, hippocampus, and
perirhinal cortex (Love & Gureckis, 2007). SUSTAIN assumes that each
category is represented as a collection of stimulus clusters. Each cluster begins
initially as a single stimulus that was unexpected, either because it was dissimi-
lar to previously seen stimuli or because it was associated with a response that
feedback indicates was incorrect. New stimuli are added to an existing cluster if
similarity is high, or else they form a new cluster if they are unexpected.
SUSTAIN is equivalent to a prototype model if each category is defined by a
single cluster, and to a multiple prototype model if categories are defined by
more than one cluster.

12.3.4 Models of Automatic Categorization

Two different but similar CCN models generalized COVIS to account for
automatic categorization behaviors. Ashby et al. (2007) proposed a model of
how procedurally learned behaviors eventually come to be executed automatic-
ally, and Kovacs et al. (2021) proposed a similar account for rule-guided
behaviors.2 In both models, automatic categorization responses are mediated
by direct projections from the visual areas that represent the stimulus to the
areas of premotor cortex that represent the motor goal (e.g., press the button
on the left). Figure 12.2 shows the role these cortical-cortical projections play
in the COVIS procedural-learning model. Both models of automaticity pro-
pose that, by themselves, the cortical-cortical projections are incapable of
category learning because synaptic plasticity in cortex follows Hebbian, rather
than reinforcement learning rules (Feldman, 2009). Although premotor cortex
is a target of midbrain dopamine neurons, unlike the basal ganglia, concen-
trations of dopamine active transporter (DAT) are negligible in cortex (e.g.,
Varrone & Halldin, 2014). For this reason, dopamine remains in cortical
synapses much longer than in striatal synapses. As a result, cortical dopamine
levels are likely to remain above baseline during an entire training session. This
means that all active synapses in cortex will get strengthened, even those
leading to incorrect responses and negative feedback. Ashby et al. (2007)
proposed that, during procedural learning, the basal ganglia play the critical
role of training the automatic cortical-cortical projections. The idea is that, via
dopamine-mediated reinforcement learning, the basal ganglia learn to activate
the correct post-synaptic targets in premotor cortex (e.g., SMA), which allows
the appropriate cortical-cortical synapses to be strengthened via Hebbian
learning. Once the cortical-cortical synapses have been built, the basal ganglia
are no longer required to produce the automatic behavior. The Kovacs et al.
(2021) model proposes a similar account for rule-guided behaviors, except that

2 These might be the only existing CCN models of automatic categorization. On the other hand,
there are several, closely related neuroscience-based models of automatic sequence production
(e.g., Chersi, Mirolli, Pezzulo, & Baldassarre, 2013; Helie, Roeder, Vucovich, Rünger, & Ashby,
2015).
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the PFC-centered rule-learning COVIS network trains the automatic cortical-
cortical projections.
Both models account for behavioral changes that occur as automaticity

develops (e.g., improvements in both accuracy and response time), but they
also account for a variety of neuroscience results that are problematic for other
theories of automaticity. For example, the Ashby et al. (2007) model correctly
predicts that inactivation of the globus pallidus (which essentially prevents the
basal ganglia from influencing the cortical motor and premotor areas) does not
disrupt the ability of monkeys to fluidly produce an over-learned motor
sequence (Desmurget & Turner, 2010), and that Parkinson’s disease patients,
who have significant striatal dysfunction and are impaired during early learning
in some RB and II tasks, are relatively normal in executing automatic behaviors
(Asmus, Huber, Gasser, & Schöls, 2008). As another example, the Kovacs et al.
(2021) model correctly predicts that, after automaticity has developed, rule-
sensitive neurons in premotor cortex fire before rule-sensitive neurons in PFC
(Wallis & Miller, 2003).
The data from many single-unit recording studies that examined neural

responses during categorization were collected after the animals were trained
on the task for weeks or months, and thus, after it is likely that automaticity had
already developed. As a result, the models proposed to account for these data
typically focus on cortical activations and do not address the neural changes
that might have occurred as automaticity develops. For example, the HMAX
model does not specify the neural mechanisms that mediate feedback-based
learning in any regions of the model (Serre et al., 2007). As another example,
Engel, Chaisangmongkon, Freedman, and Wang (2015) proposed a purely
cortical model of how motion categories are learned that included middle
temporal (MT) and lateral intraparietal (LIP) areas. The model assumed that
plasticity in this circuit is mediated by a trial-by-trial reward-prediction-error
(RPE) signal that is encoded in the phasic activity of dopamine neurons. The
low concentrations of DAT in cortex however, suggest that changes in cortical
dopamine concentrations are likely to be too sluggish to track trial-by-trial
RPEs (Varrone & Halldin, 2014). So one possibility is that the basal ganglia or
the PFC provide this cortical teaching signal, rather than the dopamine neurons
per se (e.g., as described by Ashby et al., 2007 and Kovacs et al., 2021).

12.4 Discussion

Computational cognitive neuroscience modeling requires extensive
knowledge about the brain regions and neural circuits that mediate the behavior
under study. It is an example of what Marr (1982) called implementational
modeling, and in any field, as more knowledge is acquired, there is usually a
natural progression in modeling approaches down the Marr hierarchy, from
computational to algorithmic (often called process models in psychology) to
implementational. So neurobiologically detailed models can only appear in a
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field after many years of research. They also usually have the disadvantage of
being analytically intractable, and they therefore require extensive computer
simulations to test. Even so, CCN models have a number of attractive proper-
ties that make them invaluable tools of scientific inquiry.

First, CCN models have the potential to account for a wide variety of data.
In addition to traditional response accuracy and response time data, CCN
models also can be tested against a wide variety of neuroscience data, including
single-unit recordings, fMRI BOLD responses, and EEG recordings. In add-
ition, they can make predictions about how transcranial magnetic stimulation,
neuropsychological disease, or pharmacological intervention affect behavior.

Second, CCN models are less mathematically flexible than their computa-
tional or algorithmic counterparts (Ashby, 2018). As a result, their weaknesses
are more quickly exposed, which hastens the model development process.
Mathematical inflexibility is built into CCN models via the architectural and
process constraints supplied by the relevant neuroscience literature. For
example, consider a model that includes cortical and striatal units. The equa-
tions describing each unit will be characterized by a number of free parameters
and there will be other parameters that describe the strength of the cortical-
striatal synapses. But because the projections from cortex to striatum are
excitatory and one way, changing the values of any of these parameters can
only have a very limited effect on the behavior of the model – namely, any
condition that causes cortical units to increase their firing rate must also cause
striatal units to increase their firing rate. In other words, this is a parameter-free
a priori prediction of such models: for all parameter values, increasing cortical
activation can never reduce striatal activation. CCN models typically make
many such a priori predictions that can readily be tested. For example, primar-
ily because of a priori predictions of CCN models, we now know that feedback
delays interfere with II learning more than with RB learning, and that a dual-
task that recruits working memory interferes with RB learning more than II
learning (for a review and a description of many other examples, see Ashby &
Valentin, 2017). Furthermore, it is possible that these phenomena might not yet
be known without the CCN models that inspired these experiments.

Third, CCN models can easily be extended by adding more structure and/or
biological detail. As an example, consider the COVIS procedural-learning
model that is described in Figure 12.2. The original version included only one
loop through the striatum, rather than the two loops shown in Figure 12.2, and
it lacked cholinergic interneurons in the striatum (i.e., the TANs) and cortical-
cortical projections between visual and premotor cortices. These features were
all added in later applications. Because each step in model development was
true to the underlying neuroanatomy, adding new structure did not require
changing the older, simpler version of the model in any way. And adding these
new structures allowed the model to account for an enormous number of new
empirical phenomena.

An obvious extension of this same principle is that if two different CCN
models are both faithful to the known neuroanatomy, and the two models
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focus on different, but overlapping neural networks, then it should be possible
to connect them in a straightforward, plug-and-play fashion. Cantwell,
Riesenhuber, Roeder, and Ashby (2017) illustrated this principle. The
COVIS procedural-learning model had always included a grossly oversimpli-
fied model of visual cortex and the HMAX model of Riesenhuber and Poggio
(1999, 2002) had always oversimplified early category learning. To overcome
both of these limitations, Cantwell et al. (2017) replaced the COVIS model of
visual cortex with HMAX. HMAX uses bitmap images of the stimulus as
input and outputs a 4,075 � 1 vector that is presumed to model activation in
visual area V2 or V4. Cantwell et al. (2017) simply connected each of these
outputs to a unique synapse on each striatal MSN of the COVIS procedural-
learning model. Except for some simple scaling of these outputs, no other
changes were made to either model. The new HMAX/COVIS model provided
impressively good fits to human category-learning data from two qualitatively
different experiments that used different types of category structures and
different types of visual stimuli and it did this using bitmap images of the
stimuli as inputs, rather than the abstract stimulus representations used in
previous applications of COVIS.

12.5 Conclusions

Before the 1990s, almost nothing was known about the neural networks
and processes that mediate human categorization. The cognitive neuroscience
revolution ushered in a new era in which many results dramatically increased
understanding of the neural bases of human categorization. As a result, models
grounded in neuroscience are becoming increasingly popular. Collectively,
these models have already made profound contributions to understanding of
human categorization – by widening the empirical domain of categorization
research, and by motivating experiments that might not otherwise have been
run. Furthermore, this trend should increase in the future, as methods for
studying the functioning human brain improve and the neuroscience database
grows.
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13 Models of Inductive Reasoning
Brett K. Hayes

13.1 Introduction

Inductive inference involves extrapolating from existing observations
and knowledge to new observations and events. It is a fundamental cognitive
capability that allows people to make predictions about the environment that
can help to maximize material and social rewards and avoid harm. Much of the
reasoning that people do in everyday life could be described as a form of
induction. Predicting the next round of basketball results, deciding on the most
suitable applicant for a job, or inferring whether your children will like a new
brand of ice cream, all involve induction.
An understanding of this process is central to accounts of human reasoning,

word learning, categorization, and decision-making. Inductive reasoning has
also long been a central topic in philosophy (e.g., Carnap, 1968) as well as in
artificial intelligence and computer science (e.g., Collins & Michalski, 1989;
Sun, 1995; Sun & Zhang, 2006). Given the broad scope of inductive inference, it
should come as no surprise that there are overlaps between computational
models of induction and those covered in other chapters in this handbook (in
particular, see Chapters 11, 14 and 15 in this handbook). The central focus of
this chapter, however, will be on models that have come about through the
study of property induction. This paradigm, introduced by Rips (1975), typically
involves learning about samples of evidence (e.g., a set of people, animals, or
objects) that share some novel property, and then making an inference about
whether the property generalizes to novel instances. Four decades of research
using this approach has taught much about the conditions under which prop-
erty generalization occurs (see Feeney, 2017; Hayes & Heit, 2018 for reviews).
There remains, however, lively debate about the cognitive processes that under-
pin such generalization.
The main goal of this chapter is to review the major computational models of

property induction, examine model explanations of benchmark phenomena,
and assess the extent to which models have generated new insights into induct-
ive processes. Reflecting recent developments in the field, special emphasis is
given to Bayesian models of induction. The later sections reflect on how recent
work has advanced understanding of the inductive process, as well as the
challenges for future model development. The final section examines the impli-
cations of models of induction for related cognitive tasks.
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This chapter uses the terminology originally developed for verbal studies of
property induction, where the sample of objects whose properties are already
known are referred to as premises and the things one is making inferences about
are referred to as conclusions.1 In describing specific inductive arguments,
premises are shown above a solid line and the conclusion that needs to be
evaluated is shown below the line.

13.2 Benchmark Phenomena

Induction models aim to explain key regularities in the way that people
make property inferences. Many benchmark phenomena were uncovered in
seminal work by Rips (1975), Osherson, Smith, Wilkie, López, and Shafir
(1990), and Nisbett, Krantz, Jepson, and Kunda (1983), and have been repli-
cated across a range of stimulus domains, tasks, and populations. Here are four
particularly robust findings.

1. Premise-conclusion similarity. The likelihood that a novel property will be
generalized increases with the similarity between premise and conclusion
items. For example, a property shared by robins and sparrows is more likely
to be generalized to crows than to penguins.

2. Premise typicality. Premise items viewed as more typical or representative
are more likely to promote property generalization to general conclusion
categories. For example, a property of wolves is more likely to be generalized
to other mammals than a property of dolphins.

3. Premise monotonicity (sample size). The likelihood that a novel property will be
generalized to other items from the same category increases with the number of
premise items known to share the property. For example, a property shared by
chimps, bonobos, orangutans, and gorillas is more likely to be generalized to
other apes than a property shared by just chimps and gorillas.

4. Premise diversity. Properties shared by dissimilar members of a superordin-
ate category are more likely to be generalized than properties shared by
similar members. For example, a property of lions and cows is more likely to
be generalized to other animals than a property of lions and tigers.

In each case, it is assumed that the learner has some knowledge about the
premise and conclusion categories but knows little about the to-be-generalized
property. Note also that each phenomenon involves only positive evidence (i.e.,
instances that have the target property). These are simplifying assumptions,
useful for the development of the first formal models of induction, which are
reviewed in the next section. Later sections will examine how induction models
fare when faced with more complex inferences.

1 In this literature, the premise items are often also referred to as the inductive base and conclusion
items referred to as the target. Throughout the chapter the terms property and feature are
used interchangeably.
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13.3 Similarity-Based Models

13.3.1 Similarity-Coverage Model

The similarity-coverage model of induction proposed by Osherson et al. (1990)
has proven to be one of the most influential in the field. This model explains the
four benchmark inductive phenomena, together with a range of other findings,
using two core processes. The “similarity” component reflects the level of
similarity between premise categories and the conclusion category. The “cover-
age” component reflects the similarity between the premise categories and
members of the lowest level category that includes both premises and conclu-
sions. Formally, the similarity component is computed as the maximal similar-
ity between premise categories CAT(P1) to CAT(Pn), and a conclusion category
CAT (C). Coverage is computed as the mean similarity of premise categories to
members of the lowest level category that includes both premises and conclu-
sions. For any individual, “argument strength” or the likelihood that a property
of the premises will be generalized to the conclusion, can be expressed as a
linear weighted combination of similarity and coverage (Equation 13.1).

α SIMS CAT P1ð Þ . . .CAT Pnð Þ; CAT Cð Þð Þ
þ 1� αð ÞSIMS CAT P1ð Þ . . .CAT Pnð Þ; CAT P1ð Þ . . .CAT Pnð Þ; CAT Cð Þ½ �ð Þ

(13.1)

The parameter α is assumed to vary between 0 and 1, and represents individual
differences in the weights attached to the similarity and coverage components.
Premise-conclusion similarity effects are attributed to the similarity compon-

ent of the model. In the earlier example, the maximal similarity of robins and
sparrows to crows will be higher than their maximal similarity to penguins. The
other three phenomena are primarily due to the coverage component. The
typicality effect arises because typical instances will be similar to more instances
from a superordinate that includes premise and conclusion items, than atypical
instances. Hence, a typical premise like sparrows will have higher levels of
coverage of the category birds than penguins.
As premise diversity increases, or as the number of premise categories

increases, this will also increase the mean similarity between premises and
members of an inclusive superordinate category. In the earlier diversity
example, lions and tigers only have high similarity to a relatively small number
of mammals. By comparison, the diverse premises lions and cows are similar
to many instances of mammals, increasing their overall coverage. Likewise,
coverage increases as more premises are added, resulting in the premise
monotonicity effect.
Note that the model predicts that premise monotonicity will only be observed

when the added premises belong to the same superordinate as the conclusion.
Discovering that peacocks have a property as well as chimps and orangutans can
lead to “nonmonotonicity” with a reduction in generalization of the property to
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other apes. The additional peacock premise means that a much broader
category needs to be considered to include all premises and the conclusion
(e.g., “animals”), leading to lower coverage.

The similarity-coverage model has had considerable success in explaining a
range of induction phenomena (Osherson et al., 1990). One concern however, is
that little rationale is provided for some of the model’s core assumptions. Why
do learners spontaneously search for the most specific category that encom-
passes premises and conclusions to compute coverage? Is this a strategy that is
learned or is it hard-wired into the cognitive architecture? Addressing such
assumptions has become an important issue in recent induction models (see
Section 13.5).

A second concern is that some aspects of coverage computation are under-
specified. It seems safe to assume that only a sample of the members of broad
categories like mammals is considered when computing coverage, but exactly
how this sample is generated is not explained.

Perhaps most seriously, even though the notion of “similarity” is the core of
similarity-coverage, the model includes no formal description of how similarity
between premise and conclusion items should be computed. Instead Osherson
et al., (1990) derived estimates of similarity functions from empirical similarity
ratings. In this respect, the model treats similarity as a fixed property derived
from object or category comparisons. As detailed in later sections, this has
turned out to be a major limitation in the explanatory scope of the similarity-
coverage model.

13.3.2 Feature-Based Induction

Sloman’s (1993) feature-based induction (FBI) model offers a more principled
method for computing the similarity between premises and conclusions in
inductive problems. This model was implemented as a connectionist network
in which premise and conclusion items are represented by vectors of features.
When presented with a set of premises that share some novel property p, the
network encodes input unit weights that correspond to features that are shared
by the premises. Argument strength or the generalization of p then depends on
the overlap between the features of the premises and conclusion items.

The details of the generalization process are captured in Equation 13.2. This
equation describes argument strength as the activation of the unit that corres-
ponds to novel property ap given premises P1 to Pn and the conclusion C.

ap C, P1 . . . ::Pnð Þ ¼ W P1 . . . . . .Pnð Þ �A Cð Þ
A Cð Þj j2

(13.2)

The numerator is the dot product of the vectors that represent the features
that are shared by the premises W(P1. . .Pn) and the vector representing the
features of the conclusion A(C). The dot product is a measure of the overlap
between these vectors. In calculating this overlap, as premises are added, more
weight is given to nonredundant features, i.e. premise features that overlap with
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the conclusion but were not associated with earlier premises. In the denomin-
ator, the vertical bars represent the length of the conclusion vector, referred to
as the “magnitude” of the conclusion. Hence, argument strength is proportional
to the overlap between the features of premises and conclusion and inversely
proportional to the amount already known about the features of the conclusion.
Consideration of conclusion magnitude in determining argument strength is a

particularly novel aspect of this model. This captures the intuition that when
faced with two arguments with a similar level of overlap between premise and
conclusion features, property generalization will be stronger when the conclu-
sion category has fewer known distinctive or salient features. To illustrate,
consider Arguments 13.Ia and 13.Ib below. According to Sloman (1993), collies
and horses have a similar level of feature overlap to collies and Persian cats, so
that the arguments have similar numerators in Equation 13.2. However, it is
assumed that most people know more about the distinctive features of horses
than Persian cats, meaning that the magnitude of the conclusion vector for
Argument 13.Ia is larger than Argument 13.Ib. This leads to the prediction,
confirmed by Sloman (1993), that Argument 13.Ib is perceived as stronger.

Collies have property p
Horses have property p

(13.Ia)

Collies have property p
Persian cats have property p

(13.Ib)

A key difference between the FBI model and the similarity-coverage model is
that FBI does not require the learner to access knowledge about hierarchical
category relations. FBI treats specific and general categories in exactly the same
way, decomposing them into feature vectors. Nevertheless, the feature-based
model can account for many of the same inductive phenomena as similarity
coverage. Premise-conclusion similarity arises because of both the numerator
and denominator components of FBI. For example, premise items robins and
sparrows have more features in common with the conclusion category crows
than penguins. Moreover, the more distinctive conclusion penguins will have a
higher magnitude than crows. In FBI, premise diversity and premise mono-
tonicity effects are both explained by increases in the overlap between nonre-
dundant features of premise and conclusion items. This overlap will generally
increase as premises are added or when dissimilar (diverse) premises are pre-
sented. Likewise, more typical premises like wolves will share more features in
common with superordinates like mammals than will atypical premises, leading
to stronger inductive generalization.
Under some circumstances, the predictions of the FBI model diverge from

similarity-coverage. The FBI model, for example, predicts an effect of inclusion
similarity. This can be illustrated in Arguments 13.IIa and 13.IIb.

Birds have property p
Robins have property p

(13.IIa)
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Birds have property p
Penguins have property p

(13.IIb)

According to similarity-coverage both arguments should be judged as per-
fectly strong because the premise category birds is the same as the lowest-level
category that includes both premises and conclusions (i.e. perfect coverage).
FBI however predicts that there will be greater feature overlap between premise
and category features in 13.IIa than 13.IIb, and that the conclusion in IIb will
have higher magnitude. Hence, the model predicts that IIa should be viewed as
a stronger argument, a prediction supported by empirical ratings of argument
strength (Sloman, 1993, 1998).

A problematic issue for the FBI model is that it predicts that adding premises
to an argument can only have a monotonic effect on inductive argument
strength (i.e. strength increases or remains the same). As mentioned earlier
however, Osherson et al. (1990) reported cases of nonmonotonicity where an
added premise reduced property generalization. More recent work, discussed in
detail later on (e.g., Medin, Coley, Storms, & Hayes, 2003; Ransom, Perfors, &
Navarro, 2016), has found further evidence of nonmonotonic induction.
Sloman (1993) suggests ways that FBI could be revised to account for such
findings but these modifications are largely ad-hoc and have yet to be imple-
mented in a revised model.

13.4 Relevance, Property Knowledge, and Flexible Similarity

Although similarity-coverage and FBI account for an impressive range of
phenomena, both models rely on a “static” conception of similarity; comparisons
between a given set of premise and conclusion items yield fixed similarity values.
Many however, have suggested that assessments of similarity are dynamic,
depending on the goals of the learner and the context in which comparisons
between premises and conclusions are made (e.g., Goodman, 1972; Murphy &
Medin, 1985). Ample evidence with property induction tasks supports this view.

One factor that can alter the way that similarity is computed in induction is
knowledge about the properties being generalized. Heit and Rubinstein (1994),
for example, compared ratings of the strength of arguments like those below.

Giraffes have cells with small amounts of zinc
Bats have cells with small amounts of zinc

(13.IIIa)

Sparrows have cells with small amounts of zinc
Bats have cells with small amounts of zinc

(13.IIIb)

Giraffes frequently travel for hours without stopping
Bats frequently travel for hours without stopping

(13.IIIc)

Sparrows frequently travel for hours without stopping
Bats frequently travel for hours without stopping

(13.IIId)
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Arguments like 13.IIIa were rated as stronger than 13.IIIb. An anatomical
property of giraffes was judged more likely to generalize to bats than an
anatomical property of sparrows. Arguments 13.IIIc and 13.IIId contain the
same premises and conclusions but involve a behavioral property. Here,
strength ratings were reversed, with stronger generalization from sparrows to
bats than from giraffes to bats. These and related findings (e.g., Shafto, Coley,
& Baldwin, 2007) are clearly problematic for models with static notions of
similarity. They suggest that different kinds of properties shift attention to
different types of similarity (e.g., anatomical vs. behavioral) in induction. One
might object that such findings only apply to cases where familiar properties are
used. Even when abstract properties are used however, learners infer what these
properties are likely to be (Coley & Vasilyeva, 2010; Feeney & Heit, 2011) and
generalize accordingly.
Inductive inferences are also often driven by considerations that are not easily

captured by any kind of straightforward similarity computation. Bright and
Feeney (2014), for example, found that people were more likely to generalize a
disease property from flies to frogs than from flies to ants, even though the latter
items are more similar taxonomically. This, together with a range of other
findings (e.g., Hayes & Thompson, 2007; Rehder, 2009; Shafto, Kemp,
Bonawitz, Coley, & Tenenbaum, 2008), suggests that people often prefer to
generalize based on causal relations between premises and conclusions rather
than overall similarity.

13.4.1 Relevance Theory and Key Relevance Phenomena

Such findings have stimulated the development of approaches that move
beyond static notions of similarity. One of the most influential approaches is
relevance theory (Medin et al., 2003). To date, relevance theory has not been
fully implemented as a formal model (although see the model developed by
Blok, Medin, & Osherson, 2007 which shares some assumptions with relevance
theory). Nevertheless, it deserves some consideration here because, (a) it led to
the discovery of several new inductive phenomena that have subsequently
become benchmarks for theory testing, and (b) it influenced the development
of formal Bayesian and connectionist models.
Relevance theory suggests that when a property is associated with a prem-

ise, learners consider why this particular premise is relevant to the conclusion.
When the property is unfamiliar, properties of premise and conclusion items
that are highly distinctive (in an information-theoretic sense) are seen as
candidates for guiding inductive generalization. For example, given the prem-
ise that “skunks have property p” and the conclusion “zebras have property
p,” the learner may infer that the property is “striped.” Comparisons between
premises can also suggest relevant relations for induction. Learning that polar
bears and penguins share a property, suggests that it is associated with living in
a cold climate. Learning that grass and horses share a property, suggests that it
may be something transmitted via the food chain. These examples highlight
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that induction is not limited to consideration of taxonomic relations; thematic
or causal relations are often more distinctive and hence more likely to
guide inferences.

The relevance framework led to discovery of several novel phenomena that
challenge many key assumptions of similarity-based models and set empirical
benchmarks for more recent models. One notable finding was that the premise
monotonicity effect can be reversed when premises share a distinctive feature
that is not shared by a conclusion category. This nonmonotonicity effect is
illustrated in Arguments 13.IVa and 13.IVb.

Brown Bears have property X1
Buffalo have property X1

(13.IVa)

Brown Bears, Polar Bears, Black Bears and Grizzly Bears have property X1
Buffalo have property X1

(13.IVb)

Although argument 13.IVb has more premises with the property, people were
less likely to generalize this property to the conclusion than in 13.IVa. It
appears these additional premises led people to conclude that the property
was something distinctively connected with bears. Likewise, Medin et al.
(2003) found that the effects of premise diversity can be reversed by reinforcing
distinctive relations between premises. For example, a property of penguins and
polar bears was less likely to be generalized to other mammals than a property
of polar bears and antelopes, even though the former premises were judged as
more diverse. Another important finding was “conjunction fallacy by property
reinforcement” (Feeney, Shafto, & Dunning, 2007; Medin et al., 2003), illus-
trated below. People are more likely to generalize a property from a single
premise category to multiple conclusion categories that share a distinctive
relation with the premises (13.Va) than to individual conclusion categories
(13.Vb–c).

People from the Andes have Property J41
People from the Himalayas and People from the Alps have Property J41

(13.Va)

People from the Andes have Property J41
People from the Himalayas have Property J41

(13.Vb)

People from the Andes have Property J41
People from the Alps have Property J41

(13.Vc)

Parallel effects were found for inductive arguments involving causal relations.
For example, Medin et al. (2003) found that a property of sparrows and cats
(causally linked via a food chain), was judged less likely to generalize to other
animals than a property of cats and rhinos, despite the greater diversity of the
first pair.
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It is possible that nonmonotonicity and nondiversity effects could be accom-
modated by adding selective attention mechanisms to the similarity-coverage
and FBI models. Selective attention to distinctive features could lead to system-
atic changes in the way people compute the similarity of premises and conclu-
sions (e.g., Heit & Feeney, 2005). It is harder to see however, how such a
mechanism could explain conjunction fallacies. More significantly, similarity-
coverage and FBI do not contain any core principles that would explain why
learners would search for and attend to distinctive relations.

13.5 Bayesian Induction Models

It is not an overstatement to say that recent theoretical progress in the
field of inductive reasoning has been dominated by Bayesian models. One of the
reasons these models are attractive is because they offer considerable flexibility
in how people make property inferences from a given set of premises or sample
of evidence. This section outlines a number of specific Bayesian accounts and
examines how they have advanced understanding of inductive inference (see
also Chapter 3 in this handbook).
Heit (1998, 2000) proposed a Bayesian approach in which induction is

conceived of as a process of learning which categories do or do not possess a
property. The learner approaches the property induction task with a prior
distribution of possible hypotheses p(h0) about how far a property p extends
(e.g., only sparrows have property p, all birds have property p, all animals have
property p). The exhaustive and mutually exclusive set of hypotheses is denoted
by H. The learner also has some theory about the world that specifies the
likelihood of observing some evidence x (e.g., a premise category that has the
property) if hypothesis h were true. The likelihood is expressed as p(x|h).
Observing a sample of evidence leads to revision of prior beliefs about the
probabilities of competing hypotheses about property extension, p(h|x),
increasing beliefs in some but weakening others. The process of belief updating
follows Bayes’ rule (Equation 13.3). The resulting posterior beliefs guide sub-
jective judgments about the strength of an inductive argument.

p hjxð Þ ¼ p xjhð Þp hð ÞP
h02Hp xjh0ð Þp h0ð Þ (13.3)

An influential refinement of this approach was proposed by Tenenbaum and
Griffiths (2001), who suggested that the form of the likelihood function is
determined by the beliefs about the process by which the observed evidence x
was generated (also see Sanjana & Tenenbaum, 2003). One possibility is that
the observed evidence (e.g., sparrows have p) originated via random selection;
i.e., the example was chosen randomly from a set containing instances that
have the property as well as instances that do not. Such weak sampling is
consistent with early Bayesian approaches to induction in cognitive science
(e.g., Anderson, 1991; Heit, 1998) and machine learning (Mitchell, 1997).
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Tenenbaum and Griffiths (2001), however, argue that in many learning con-
texts people are likely to assume strong sampling; x is sampled from the more
restricted set of things that have the property (i.e., positive instances). In some
cases (e.g., Shafto, Goodman, & Frank, 2012), even stronger assumptions are
warranted. The instance may have been selected by a helpful agent or teacher
to guide the learner’s inferences (referred to as “pedagogical” or “helpful”
sampling).

Tenenbaum and Griffiths (2001) formalize weak sampling by assuming that
the likelihood simply reflects whether a specific hypothesis is consistent with the
observed example:

p xjhð Þ ¼ 1 if x 2 h

0 otherwise

�
(13.4)

Under strong sampling, the likelihood function is such that each observation
or premise added to the sample provides more information about the true
extension of a property than under weak sampling. If one assumes a uniform
probability distribution over the members of h, then:

p xjhð Þ ¼
1
hj jn if x1, x2 . . . . . . xn 2 h

0 otherwise

8<
: (13.5)

Here |h| indicates the specificity or scope of a hypothesis and n is the number
of observed examples or premises. An important implication of Equation 13.5 is
that under strong sampling, as premise items with the target property are
observed, “smaller” or more specific hypotheses (e.g., small birds have p, birds
have p) will generally receive higher probabilities than more general hypotheses
(e.g., animals have p). The effect of this “size principle” increases exponentially
with the number of observed instances.

13.5.1 Bayesian Explanations of Inductive Phenomena

It follows from the size principle that as one observes more instances of a
category that share a property, belief in the hypothesis that the property is
shared by all category members should increase. In other words, this aspect of
the Bayesian models predicts the effects of premise monotonicity. It also follows
that increasing the number of observed category members with a property
should reduce belief that the property generalizes to other, more distant cat-
egories. This provides a ready explanation of the nonmonotonicity effects
reported by Medin et al. (2003). Observing that many types of bears have a
property increases belief that the property is shared by all bears, but reduces
belief that it is shared by buffalos and other animals. This “tightening” of
inductive inferences with additional positive instances has been firmly estab-
lished in a range of property induction studies (Navarro, Dry, & Lee, 2012;
Ransom et al., 2016; Xie, Hayes, & Navarro, 2018). It has also been found in
other tasks that involve evidence-based inferences including word learning
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(Xu & Tenenbaum, 2007) and judgments about object similarity (Navarro &
Perfors, 2010).
This Bayesian model also predicts the benchmark effect of premise diversity

(Hayes, Navarro, Stephens, Ransom, & Dilevski, 2019). However, the Bayesian
explanation of this effect differs from that provided by models like similarity-
coverage. These previous accounts emphasized the impact of observing a
diverse set of evidence on property generalization. The Bayesian account how-
ever emphasizes the role of nondiverse evidence in constraining hypotheses
about how far a property generalizes (Hayes, Navarro, et al., 2019).
Observing that many similar instances (i.e., a nondiverse set) share a property,
increases the likelihood that the property does not generalize very far beyond
those instances.
Bayesian induction models have also led to the discovery of novel empirical

phenomena. Because this approach focuses on how observations are used to
evaluate rival hypotheses, it makes predictions about the effects of negative
evidence (instances that do not have a property) as well as positive evidence.
For example, Voorspoels, Navarro, Perfors, Ransom, and Storms (2015) pre-
sented learners with positive premises (e.g., learning that Mozart’s music elicits
alpha waves) and then asked them to evaluate the strength of a conclusion (e.g.,
Nirvana’s music elicits alpha waves). Subsequent presentation of negative
evidence (e.g., waterfalls do not elicit alpha waves) led to an increase in belief
in the original conclusion (cf. Lee, Lovibond, Hayes, & Navarro, 2019).

13.5.2 The Role of Sampling Assumptions

A crucial prediction of the Bayesian account is that learners will make differ-
ent kinds of inferences from the same set of observations depending on beliefs
about how the information was sampled. This has been confirmed in studies
where learners are presented with a common set of observations but given
cover stories that imply either strong or weak (random) sampling (e.g., Hayes,
Navarro, et al., 2019; Navarro et al., 2012; Ransom et al., 2016; Voorspoels
et al., 2015). These studies reveal that benchmark phenomena such as premise
monotonicity (Ransom et al., 2016) and diversity (Hayes, Navarro, et al.,
2019), depend on an assumption of strong sampling. When learners believe
that premise items were selected randomly, such effects are weakened
or eliminated.
Of course, in practice, learners may be uncertain about the exact nature of the

data generating process. They may view some observations as having been
selected via strong sampling while other observations appear to have been
generated randomly. Such cases can be accommodated by a mixture model
(Navarro et al., 2012), illustrated in Equation 13.6. Here θ denotes the prob-
ability that a given observation is strongly sampled and 1� θ is the probability
that the observation is weakly sampled. / is the set of all possible stimuli and
/j j counts its size. When θ ¼ 0 this model is equivalent to weak sampling; when
θ ¼ 1 the model is equivalent to strong sampling. For intermediate values of θ,
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the model reflects a mixture of beliefs, with only some proportion θ of the
observations believed to have been strongly sampled.

p xjh, θð Þ ¼ 1� θð Þ 1
/j j þ θ

1
hj j if x 2 h

0 otherwise

8<
: (13.6)

The mixture model can capture variability in beliefs about sampling assump-
tions across different induction tasks or scenarios, and between individuals
presented with the same scenario. Applications of the mixture model reveal
that some form of strong sampling is the default assumption in most experi-
mental contexts – learners rarely assume that the observations presented to
them have been generated via a random process (Hayes, Navarro, et al., 2019;
Ransom et al., 2016). Notably though, within a given experimental context,
assumptions about strong sampling can vary across items and between individ-
uals (e.g., Navarro et al., 2012).

13.5.3 Inferences with Censored Samples

Bayesian models of induction have been extended to deal with situations where
the sample of evidence available to the learner is subject to selective sampling or
“censorship.” In these cases, only some types of evidence can be observed while
other evidence is systematically excluded. Such selective sampling could occur
in situations where an agent “cherry picks” the data to influence the learner’s
inferences. For example, those who want to deny the existence of climate
change may select sub-sets of temperature records to suggest a “pause” in
warming trends. Selective samples of evidence can also arise through the
strategies that learners use to search for information (Le Mens & Denrell,
2011) or simply because environmental constraints prevent one from obtaining
large, representative samples (Hogarth, Lejarraga, & Soyer, 2015).

A handful of studies have examined whether learners incorporate informa-
tion about selective sampling into their property inferences (e.g., Hayes,
Banner, Forrester, & Navarro, 2019; Lawson & Kalish, 2009). In these studies,
learners see a common training sample of instances that have a property (e.g.,
ten small birds with plaxium blood) and are asked to infer whether the property
generalizes to test items that vary in similarity to the sample. Crucially, different
groups are given alternative “sampling frames” or explanations of how
instances in the training sample were selected. For example, in a category frame
condition, learners are told that due to time/resource constraints, only a single
type of animal (e.g., small birds) could have been observed in the sample (i.e.
there was no opportunity to observe other animals). In a property frame condi-
tion, learners are told that the sample was selected because they were the first
instances found to possess the target property (e.g., a screening test showed that
they were “plaxium positive”). In the category frame condition, the absence of
animals other than small birds is attributable to the selection mechanism, so the
hypothesis that other animals share the novel property remains viable. In the
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property frame condition, the absence of instances outside the single category of
small birds is more informative – suggesting that the property does not general-
ize beyond that category.
Hayes et al. (2019) formalized these predictions into a Bayesian framework

where the posterior probability of a hypothesis h about property extension is a
joint function of the prior probability of the hypothesis, the likelihood given the
observations and a survivor function S(x) which determines what types of
observations can be observed.

p hj x, Sð Þ / S xð Þp xjhð Þp hð Þ (13.7)

Hayes et al. (2019) found that property inferences were generally consistent
with the key prediction of this model – learners were less likely to generalize a
novel property beyond the sample category when sampling was constrained by
a property frame as compared to a category frame (see Figure 13.1).
Consistent with Bayesian model predictions, this “sampling frames” effect
was moderated by a number of other factors. For example, the divergence in
generalization gradients between category and property frame conditions
shown in Figure 13.1 increased when learners observed more instances in
the training sample.

Figure 13.1 Illustration of the sampling frames effect (adapted from Hayes,
Banner, & Navarro, 2017). All participants are presented with the same
training sample (small birds that have a novel property plaxium). Category
and property sampling groups are given different explanations of how the
sample was selected. Those in the property sampling condition subsequently
showed narrower generalization of the property to novel test items.
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Given that outside the laboratory observing selectively biased or restricted
samples is likely to be the norm rather than the exception, the model
proposed by Hayes et al. (2019) has the potential for broad application.
Future work is required however to examine how well the model accounts
for inductive inference when evidence samples are subject to other types of
selection mechanisms (e.g., data truncation where only quantitative proper-
ties above/below some threshold can be observed – see Feiler, Tong, and
Larrick, 2012 for an example).

13.5.4 Structured Bayesian Models

Adding sampling assumptions to Bayesian models has greatly increased their
ability to explain the complexity and flexibility of human induction. There are
some types of phenomena however, that are unlikely to be explained by
variations in sampling assumptions alone. The different patterns of induction
that arise when induction involves causal rather than taxonomic relations (e.g.,
Bright & Feeney, 2014; Hayes & Thompson, 2007; Medin et al., 2003) is
one example.

Such phenomena are addressed by Bayesian models that focus on how people
apply different prior beliefs about the relations that are most relevant for
property induction in different learning contexts. In particular, Kemp and
Tenenbaum (2009) outlined a Bayesian framework based on different types of
structured statistical models. This class of models employs a Bayesian belief
updating mechanism that has much in common with other models (e.g.,
Tenenbaum & Griffiths, 2001). A key innovation is that learners apply different
structural representations S about the relevant relations between objects and
object properties depending on the type of property being generalized.

This idea is illustrated in the top panel of Figure 13.2 with biological (animal)
categories. When the target property is a structural biological feature (e.g., “has
plaxium blood”) learners represent object relations in terms of a taxonomic or
hierarchical tree structure. When the property is associated with some physical
property (e.g., weight), object relations are organized according to a low
dimensional similarity space. When the property is causal, object relations are
organized within a directed graph. Beliefs about the relevant stochastic process
for transmitting properties from one object to another, T, also vary according to
property type. In the taxonomic case, the process is “diffusion,” where it is
expected that the property will be smoothly distributed over the tree structure.
Hence, for any pair of adjacent category members (e.g., gazelles and giraffes in
Figure 13.2) it is likely that both will share the property or neither will have it.
For quantitative properties, a “drift” process captures the expectation that
categories towards one end of the dimension are more likely to have the
property. Hence, discovering that gazelles are heavy enough to trigger a trap
implies that this property generalizes to other animals that lie above it on the
weight dimension. In the causal case, properties are generalized via a domain-
specific causal process (e.g., predation). In the Figure 13.2 example, discovering
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that gazelles have a disease implies that the disease could be passed on to first-
order predators (e.g., cheetahs) and in turn to second-order predators (e.g.,
hyenas). In each case, the prior distribution of object properties or features f
is given by p(f |S,T).
The addition of the structured priors means that different patterns of induct-

ive generalization can result from the same set of premise and conclusion
categories depending on the nature of the property being generalized. For
example, as shown in Figure 13.2, learning that a gazelle has some biological
property (e.g., plaxium blood) should increase the likelihood that it is shared by
adjacent items in the taxonomic tree (e.g., giraffe). However, learning that a
gazelle passes the threshold of being “heavy enough to trigger pit traps” should
increase the likelihood that this property is shared by other items that have a
higher value on the weight dimension. In the case of properties that are causally
transmitted (e.g., disease), learning that a gazelle has the property should
increase the likelihood that known predators have the property.
The predictions of the structured Bayesian model were tested against taxo-

nomic induction data from Osherson et al. (1990) and Smith, López, and
Osherson (1992), threshold induction data from Blok et al. (2007), and causal
induction data from Shafto et al. (2008). The model’s overall performance was
impressive (mean correlation with the data r ¼ 0.91). The complete structured

Figure 13.2 Examples of three structured statistical models for property
induction (adapted from Kemp & Tenenbaum, 2009). Each model deals with
generalization of a different type of property. Each assumes a different
structure S and a stochastic process T to generate a prior distribution
p(f|S, T), on properties. The bottom row shows properties (f) with high prior
probability according to each model (filled circles). The inductive task is to
make inferences about the extension of a novel property that has so far only
been observed in a single premise category (gray circle).
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Bayesian model provided a better fit to the three data sets than the similarity-
coverage model and simplified versions of the model that included only a single
type of structured representation.

The structured representation model therefore seems like a prime candidate
for future theoretical and empirical work. One limitation is that the model
currently assumes random sampling of premise items, and hence cannot explain
nonmonotonicity effects. This may be relatively easy to address by adding
likelihood functions that reflect strong sampling like those surveyed earlier.
A more fundamental challenge is to explain how people learn different struc-
tured representations, and how they recognize which representation to apply
when faced with a new induction problem. Kemp and Tenenbaum (2009)
outline a hierarchical Bayesian extension of their approach that deals with
learning and recognizing structured representations, but this model has not
yet been fully implemented or tested.

13.5.5 Bayesian Induction Models: Normative or Descriptive?

Marr’s (1982) influential framework for organizing theories of information
processing, suggests that theorizing can take place at three distinct levels. The
computational level of analysis represents an abstract and normative solution to
information processing problems. The algorithmic level specifies the cognitive
processes needed to execute the solution. The implementation level specifies the
neural “hardware” required to implement the algorithm. Bayesian models, like
those reviewed here, have often been cast as computational solutions – provid-
ing a normative or “rational” standard against which human inference can be
judged. One problem with viewing Bayesian models in this way is that they can
become overly flexible – by selection of appropriate priors and likelihoods, the
Bayesian framework can provide an account of virtually any pattern of
observed behavior (Bowers & Davis, 2012; Cassey, Hawkins, Donkin, &
Brown, 2016).

This review however suggests that the application of Bayesian models to
property induction has been more nuanced. It is true that these models typically
begin with a high-level “normative” description (e.g., Equation 13.7 for the
sampling frames problem). When applied to specific induction tasks however,
such models have often incorporated more “algorithmic” assumptions about
how people process information. For example, the key role of sampling
assumptions in these models implies that learners are engaged in effortful
interpretation of the social and environmental mechanisms that generate obser-
vations. This has led some to argue that the sorts of Bayesian models reviewed
in this chapter sit somewhere between Marr’s computational and algorithmic
levels (Griffiths, Lieder, & Goodman, 2015) or that they should be regarded as
descriptive rather than normative theories (McKenzie, 2003; Tauber, Navarro,
Perfors, & Steyvers, 2017).

Such an argument seems reasonable. However, there is much work to be
done to flesh out the algorithmic details of Bayesian induction models. Given
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the potentially large number of specific hypotheses that could be considered for
even the simplest induction problem, it is clear that learners rely on some form
of approximation of Bayesian probabilistic calculations. The details of these
approximations however are still a matter of some debate (cf. Gershman &
Beck, 2018; Sanborn & Chater, 2016; Shi, Griffiths, Feldman, & Sanborn,
2010). A related challenge is incorporating human limitations in computation,
attention, and memory into the processes of retrieving priors, considering
sampling processes, and revising beliefs as new observations are made (e.g.,
Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Sanborn & Chater, 2016). In
other words, while Bayesian models have advanced understanding of the prin-
ciples by which people can combine existing beliefs with new observations in
induction, the details of this learning and inference process have yet to
be specified.

13.6 Connectionist Models of Semantic Cognition

This chapter has already dealt with one type of connectionist model of
induction – Sloman’s (1993) FBI. This section discusses a connectionist frame-
work with considerably greater scope (see also Chapter 2 in this handbook).
Rogers and McClelland (2004, 2014) describe a connectionist approach to
semantic cognition that can explain a range of induction phenomena including
shifts in generalization patterns across different learning contexts (e.g., Heit &
Rubenstein, 1994; Medin et al., 2003). Part of their model is illustrated in
Figure 13.3. This is a feedforward network consisting of input layers, correspond-
ing to objects and their relations, a representation layer, a hidden unit layer, and
an output layer. The units in the input layers project to multiple units in the
intermediate layers through weighted connections, and units in the hidden layer
project to multiple output units. Note that the relation layer contains units that
respond to a variety of possible object relations including structural relations
(“HAS”, “IS”), behavioral relations (“CAN”), and taxonomic relations (“IS A”).
The network is trained by presenting correct pairings of conceptual input

(e.g., “an oak HAS”) and output (e.g., “bark”, “roots”). In this training
example, the input units, “oak” and “HAS” are activated and this activity is
fed forward through hidden units to output units. Output unit activation is then
compared to the correct output (i.e., activation of “bark” and “roots” should be
1 and activation of other units should be 0). Connection weights are adjusted by
exposure to training exemplars to reduce the error between the correct and
obtained activations (see Rogers & McClelland, 2004, for details of the leaning
algorithms applied to unit weights). Error back-propagates through the net-
work, so that changes in unit weights will spread beyond the given input to
affect related conceptual representations. For example, if the network predicts
incorrectly that “an oak HAS petals,” the changes in activation weights due to
the error will affect representation units for pines as well as oaks (this back-
propagation process is not illustrated in Figure 13.3).
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Before training, activation weights in the network are small and randomly
distributed. Rogers and McClelland (2004) showed that, after extensive
training, their network could learn to differentiate the properties of different
animals and grouped together animals with similar properties in something
approaching a taxonomic tree. Crucially, once trained, the network can make
inferences about the generalization of novel properties. In many cases, these
mimic the inferences of human reasoners. For example, when taught that “a
robin CAN queem,” the model predicts that this novel property is likely to be

Figure 13.3 Illustration of a connectionist network that can learn taxonomic
structures and make inductive inferences (adapted fromMcClelland & Rogers,
2003). Inputs (items, relations) are presented on the left and network
activation propagates from left to right. Network activation is illustrated for
two item-relation pairs (an oak HAS...; a robin CAN...;).
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shared by similar birds. The model can also simulate changes in patterns of
induction due to knowledge about different types of properties (e.g., biological
vs. behavioral properties in Arguments IIIa–IIId). This can arise because the
network is sensitive to patterns of “coherent covariation” between objects,
conceptual domains, relations and observed properties. For example, the model
learns that taxonomically similar objects share many biological features,
whereas behavioral features often covary with different factors such as preda-
tion or habitat.
Rogers and McClelland (2004) suggest a similar explanation for why causal

features have high salience in property induction – this is the result of the strong
covariation between observed surface or structural features and underlying
causes. For example, features such as wings, feathers, and hollow bones fre-
quently co-occur because they all reflect part of the evolved ability to fly. Hence,
the priority given to causal relations in induction simply reflects prior experi-
ence that such relations are highly predictive of many other features.
Connectionist models are interesting because they explain many aspects of

induction that appear to rely on high-level conceptual knowledge without
assuming explicit representation of such knowledge. The absence of such repre-
sentations, however, means the networks can only revise their “knowledge”
about conceptual relations via extensive experience and feedback with individ-
ual instances. Hence, they have difficulty in explaining why patterns of
inductive inference can shift dramatically when different explanations are given
for the origins of a set of training instances (e.g., selected randomly vs. selected
by a helpful agent), or when different structured relations are invoked for a
given set of premises and conclusions (cf. Figure 13.2). Having explicit repre-
sentations of relations between objects has other benefits over the connectionist
approach, in that such representations support knowledge transfer. For
example, if you are told that panthers are located in the same part of the
taxonomic tree as cheetahs and lions, you can readily make inferences about
the property of this instance without further learning.

13.7 Challenges and New Frontiers for Induction Models

13.7.1 Individual and Developmental Differences

A key theme in this review is the flexibility of the inductive process. Patterns of
property generalization can change depending on the knowledge domain, the
nature of the property being generalized, and one’s beliefs about how the
inductive premises were generated. Given this flexibility, it is surprising that
little attention has been paid to individual differences in inductive inference.
There is some evidence that such differences do exist. Feeney (2007), for
example, observed that sensitivity to premise diversity and monotonicity was
correlated with general cognitive ability. Navarro et al. (2012) reported consid-
erable individual variation in the θ parameter that reflects belief in strong
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sampling. The origins of these differences and their stability over time and
across tasks however, remain unknown.

A related issue is developmental change in inductive processes. Starting with
the seminal work of Carey (1985) and Gelman and Markman (1986), there has
been extensive study of how property induction develops over early- and mid-
childhood (see Fisher, 2015 for a review). There have been some attempts to
apply models such as similarity-coverage (e.g., López, Gelman, Gutheil, &
Smith, 1992) and Bayesian approaches (e.g., Bonawitz & Shafto, 2016) to
children’s induction. However, more work is needed to specify how key pro-
cessing parameters in these models change with development.

13.7.2 Extending Models of Inductive Reasoning to Other
Cognitive Domains

An exciting possibility is that models of induction could be extended to explain
other forms of inference and decision-making. Kemp and Jern (2013) analyzed
the structure of a variety of inference problems, highlighting the commonalities
between property induction and other tasks such as categorization (e.g.,
Hendrickson, Perfors, Navarro, & Ransom, 2019) and category construction
(e.g., Medin, Wattenmaker, & Hampson, 1987). Kemp and Jern’s taxonomy
suggests that the models reviewed in this chapter can provide insight into the
cognitive mechanisms that underlie these tasks.

An extension of some computational models of induction to other task
domains has already begun. One recent advance is the development of more
general reasoning models that encompass induction as well as other forms of
reasoning. Traditionally, a hard distinction has been drawn between inductive
reasoning and deductive reasoning. The goal of deduction is to infer whether an
inference is deductively valid or necessarily follows from given premises. For
example, knowing that mammals have enzyme X, and that horses are mammals,
it necessarily follows that horses must also have this enzyme. Responses to such
deductive problems are often thought to be due to a slow analytic processing
system that differs qualitatively from the processes involved in probabilistic
reasoning and inductive inference (Evans & Stanovich, 2013; Handley &
Trippas, 2015). This distinction has often been maintained in formal models
and computer simulations that incorporate separate modules for reasoning via
logical rules and for inductive reasoning (e.g., Sun, 1995; Sun & Zhang, 2006).

A number of lines of work however have begun to challenge these
approaches. In an extensive program of theory and research, Oaksford and
Chater (2007, 2013) proposed that both deduction and induction are driven by a
Bayesian process of assessing the conditional probability of a conclusion given
the argument premises. Others have used a signal-detection framework to
examine whether both induction and deduction can be explained using a single
dimension for evaluating argument strength (e.g., Heit & Rotello, 2010;
Stephens, Dunn, & Hayes; 2018). Stephens et al. (2018), for example, developed
a model that assumes people use a single process for assessing the strength of
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arguments in inductive and deductive reasoning tasks, but that the decision
criteria for responding can differ across tasks. This model can account for much
of the data that has previously been seen as supporting the notion of separate
processing systems (Hayes, Stephens, Ngo, & Dunn, 2018; Hayes, Wei, Dunn,
& Stephens, 2019; Stephens, Matzke, & Hayes, 2019).
The potential reach of induction models is further highlighted by the finding

that inductive principles operate when people generalize learned fear responses.
Dunsmoor and Murphy (2014), for example, showed that fear generalization
following pairing of stimuli belonging to natural categories (e.g., birds) with
electric shock, depends on the typicality of those stimuli. Lee, et al. (2019) go
further, showing that a Bayesian model incorporating strong sampling assump-
tions, can explain patterns of human fear generalization.

13.8 Conclusion

This review highlights the progress that has been made in computa-
tional modeling of the processes that drive inductive reasoning, over the past
three decades. There have been important advances in both the formal com-
plexity and the explanatory scope of such models. One caveat is that much of
this work has focused on demonstrating that a given model provides a good
account of the induction data rather than carrying out systematic comparisons
between a candidate model and its rivals (but see Kemp & Tenenbaum, 2009 for
a notable exception). As induction models proliferate, there will be greater need
for explicit model comparisons that take account of differences in computa-
tional complexity and flexibility. The most important principle for deciding on
the best model of induction, however, will be not whether it accounts for known
phenomena but whether it can generate and explain novel (and preferably
counterintuitive) patterns of inductive inference.
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14 Analogy and Similarity
John E. Hummel and Leonidas A. A. Doumas

14.1 Introduction

Analogy plays a central role in both our most basic and our most
impressive cognitive abilities, from understanding how to operate the coffee
maker in a hotel room, to understanding why mathematical logic can never
provide a complete understanding of all mathematical truths. Analogical think-
ing comes so naturally that it is tempting to assume that it must be a simple
process. But the ease with which one makes analogies belies the power and
complexity of analogical thinking.

This chapter reviews the literature on human analogical thinking with a
focus on attempts to understand analogy-making at an algorithmic level. It
starts by reviewing what analogy is. Next, it discusses various models of
analogical thinking with an eye to their ability to capture the core hallmarks
of analogical thought. Along the way, it comments on how a model’s assump-
tions about mental representation manifest themselves as predictions about
similarity. It ends by summarizing the core components of analogical thought
and their implications for accounts of the human cognitive architecture
more broadly.

14.2 What Is Analogy?

The term “analogy” is used to refer to at least three related cognitive
capacities of increasing sophistication.

14.2.1 “This Is Like That”

At its most basic, “analogy” is simply similarity. For example, “the hands of a
clock are like the hands of a person because they can both point,” is an analogy
between a clock and a person; and referring to the hands of a clock as “hands”
is to use human hands as a metaphor for the “pointing” parts of a clock. This
chapter focuses on analogy, but for excellent discussions of metaphor and its
relation to analogy, see Lakoff & Johnson (1980), Lakoff (1987), Bowdle &
Gentner (2005), and Holyoak (2019).

Analogies vary in their depth. To say that “a cherry is like a fire engine
because both are red” is an analogy. But to say that “erosion is like a clock
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because it can tell you the age of a rock” is a more interesting analogy based on
erosion’s capacity to mark the passage of time. It is based on the shared relation
between time and a clock, on the one hand, and time and erosion on the other.
As this example suggests, a “good” analogy is more than simple featural
similarity, so the term “analogy” is typically reserved for similarities that are
based on shared relations.

14.2.2 Proportional Analogies

Accordingly, another common use of “analogy” is synonymous with “shared
relations.” It is in this sense that proportional analogies of the familiar A:B::C:x
variety are analogies. For example, the correct completion of “worm:soil::bird:
x” is “nest” because worm and soil stand in the same relation (lives-in) as bird
and nest. Analogies of this kind are common on standardized tests, and for
many people, they are what comes to mind first when someone says “analogy.”
But although such problems are called “analogies” because they are based on
relational similarities, they fall far short of the full power of human
analogical thinking.

14.2.3 System Analogies

At least among students of analogical thinking, the most common use of
“analogy” refers, not just to proportional analogies (like worm:soil::bird:nest),
but to collections of correspondences (i.e., mappings) between entire systems of
relations (Gentner, 1983; Gick & Holyoak, 1980, 1983). Such system analogies
reveal the generative power of relational thinking, and are the primary focus of
this chapter. A now classic example of a system analogy is Gick and Holyoak’s
(1980) “fortress/tumor” analogy. In this example, a person is told about a
general who wishes to capture a heavily guarded fortress in the center of a
town. The general has a large army, but the roads leading to the fortress have
been laid with mines, so that if the general sends all his troops down any single
road, they will set off the mines, destroying the town. The general’s solution is
to divide his troops into smaller groups and send them down multiple roads
simultaneously to converge on the fortress. Having seen this story, the problem-
solver is later given a problem about a doctor who needs to destroy a cancerous
tumor in a patient. The doctor has a device that can project a beam of radiation
strong enough to destroy the tumor but projecting the beam directly at the
tumor with the intensity needed to destroy it would also destroy the healthy
tissue surrounding it. The problem facing the doctor is analogous to the one
facing the general, making it possible to solve the doctor’s tumor/radiation
problem by analogy to the general’s fortress/army problem: just as the general
divides his forces to converge on the fortress from multiple directions at once,
the solution is for the doctor to divide the beam and project it onto the tumor
from multiple directions at once.
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In this analogy, the doctor corresponds (maps) to the general, the tumor
maps to the fortress, the healthy tissue to the town, and the radiation to the
army. These mappings are defined, not by the literal similarity of the corres-
ponding objects (a tumor shares few features with a fortress), but by the system
of common relations in which they are engaged: the tumor, like the fortress, is
an object that needs to be conquered, but which is surrounded by a vulnerable
object that needs to be protected. Making the correct analogy between these
systems entails discovering how objects and relations in one situation map to
objects and relations in the other. Having discovered these mappings, the
reasoner can then analogically extend the source (here, the general story) onto
the target (the doctor story) to infer that the solution is for the doctor to divide
the radiation beam to converge on the tumor.

Some of the most important relations in this example – e.g., surround () and
converge-on () – are nearly identical across the source and target problems, but
others are not. For instance, the general’s relation to the fortress is not identical
to the doctor’s relation to the tumor. (The general wants to occupy the fortress,
but the doctor wants to destroy the tumor.) Analogies tend to be based on
systems of similar (but not necessarily identical) relations engaged in similar
higher-order relations, such as cause () and in-order-to (), that take other rela-
tions as arguments (Hummel & Holyoak, 1997; see also Falkenhainer et al.,
1989; Gentner, 1983; Gick & Holyoak, 1980, 1983; Holyoak & Thagard, 1995).
Moreover, the mappings in question all mutually constrain one another. For
example, if surround (town, fortress) analogically maps to surround (healthy-
tissue, tumor), then the town must also map to the healthy tissue and the fortress
to the tumor (the constraint of parallel connectivity; see Holyoak & Thagard,
1989); if the town maps to the healthy tissue, then it cannot also map to the
tumor (the constraint of one-to-one mapping). And if the town maps to the
healthy tissue in the context of the surround relation, then it must also do so in
the context of all the other relations in which these objects are engaged.

The process of discovering these analogical mappings is the most cognitively
demanding aspect of analogical reasoning because it depends on both working
memory and the reasoner’s understanding of the underlying relations (Halford,
1992; Halford et al., 1998 Hummel & Holyoak, 1997). Importantly, this map-
ping process is completely absent in proportional analogies (Morrison et al.,
2004): in order to answer “nest” in response to the problem “worm:soil::bird:x,”
the problem solver need only (1) use “worm:soil” to retrieve the relation lives-in
from memory, and then (2) use lives-in (bird, x) to retrieve “nest” from memory.
In other words, a proportional analogy is a test of relational knowledge, but
because it is based on only a single relation, it does not require the problem
solver to compute a system mapping. Accordingly, proportional analogies do
not support analogical inference (e.g., the analogical completion nest supports
no additional inferences about birds). In this sense, proportional analogies are a
degenerate case of analogy that neither require the most difficult part of
analogical reasoning nor exploit its full inferential power.
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14.2.4 Analogy as a Core Cognitive Capacity

System analogies are enormously powerful sources of inductive inference (see
Doumas et al., 2022; Gentner, 1983; Gick & Holyoak, 1980; Holyoak &
Thagard, 1995; Hummel & Holyoak, 2003) – so powerful that they have led
some researchers to refer to analogy as “the core of cognition” (e.g., Gentner,
1983; Hofstadter & Sander, 2013; Holyoak & Thagard, 1995; Hummel &
Holyoak, 1997, 2003). This bold characterization is perhaps slightly overstated,
but it is not far from the mark: Many of the most important cognitive func-
tions – including categorization, problem solving, schema induction, rule use,
rule learning, and perhaps even language learning – are either special cases of,
or share fundamental cognitive operations with, analogical thinking. And a
great deal of cognitive development can be modeled as the development of the
ability to engage in these operations (Doumas et al., 2008; Gentner, 2003;
Halford et al., 1998).
Analogy is a powerful source of inductive inferences because analogical

inferences are driven by the relational roles that objects (and relations) play
within a system mapping, rather than simply the literal features of the objects
(or even individual relations), themselves. In the previous fortress/tumor ana-
logy, the reasoner infers that the doctor should divide the radiation beams to
converge on the tumor, not because “beams” share features with “army,” but
because the two objects play corresponding roles in their respective situations.
It is difficult to overstate the importance of this point: analogical inferences are

based on the relational roles to which objects are bound, rather than on the features
of the objects themselves. As a result, analogical inferences apply equally well to
any object that happens to be bound to those roles. This is generalization on
steroids. To appreciate the inductive power of role-based generalization, it is
instructive to contrast it with feature-based associative generalization, for
example as performed by typical neural networks (including “deep” neural nets).
After a neural network has been trained on a set of input-output mappings (e.g.,
labels for images of objects), its ability to generalize to new inputs (e.g., new
images) depends entirely on the shared features1 between the new inputs and the
trained inputs (see, e.g., Bowers, 2017; Malhotra et al., 2020). If some new input
consists of features that were either absent in training or were present but
associated with a different response than the one now required, then the network
will respond incorrectly to the new input. That is, generalization (and thus
inference) in an associative system is based entirely on the feature overlap
between trained mappings and test mappings.
By contrast, role-based inferences are, in the limit, independent of the fea-

tures of the objects in question (Hummel & Holyoak, 2003). As long as the
reasoner can discover the correct analogical mappings, she will make the correct

1 These “features” may be complex, but they are features in the sense that (a) they are simply
statistical patterns over the raw inputs as learned by exposure to the input-output mappings, and
(b) unlike explicit predicates they cannot take arguments.
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inferences, regardless of the featural overlap between the objects in question.2

This kind of role-based inference also characterizes reasoning based on schemas
and abstract rules (e.g., as in mathematical and scientific reasoning; Hummel &
Holyoak, 2003; Penn et al., 2008). In human cognition, role-based reasoning
runs the gamut from the mundane (“will these leftovers fit into that container?”)
to the sublime (e.g., the analogy between natural languages and second-order
logic that inspired Goedel’s First Incompleteness Theorem; Hummel et al.,
2014). Role-based reasoning is so commonplace in human thinking that it is
tempting to take it for granted, but it is likely the major factor distinguishing
human cognitive abilities from those of their closest primate cousins (Penn
et al., 2008). And it depends, at base, on the ability to represent an open-
ended vocabulary of relations as explicit entities – that is, as predicates – and
bind arbitrary arguments to them (Doumas et al., 2008; Gentner, 1983;
Hummel, 2010, 2011; Hummel & Holyoak, 2003).

14.2.5 Analogy as Representation

There is a deeper sense in which analogy is a core component of cognition.
Holland et al. (1986) describe what it means for a system, R, to represent some
other system, W. The most obvious kind of representation is an isomorphism: R
is isomorphic with W if and only if, for every state, wi, of W there is a
corresponding state, ri, of R, and for every transformation, ti

w(wi) ➔ wj, on
W there is a corresponding transformation, ti

r(ri) ➔ rj on R. Perhaps the
clearest example of an isomorphism is the relation between the integers (W)
and the Arabic numerals (R): every finite integer can be represented as a finite
expression over the Arabic numerals, and every arithmetic transformation over
the integers (e.g., addition, subtraction, multiplication, etc.) can be represented
by a corresponding transformation over the Arabic numerals.

Rarely, however, is any R fully isomorphic with the world, W, it represents.
For example, the data structures in a flight simulator need not represent details
such as hair color of the pilot or the fabric on the passenger seats, as such details
are not relevant to the functions performed by the algorithm. Such a represen-
tation is a homomorph of itsW, a representation that specifies all and only those
aspects of W that are relevant to the task (Holland et al., 1986). For “real-
world” problems of the kind faced by living organisms, homomorphs are more
useful than true isomorphs. Accordingly, one way to characterize the goal of
induction is to develop mental representations of the world that are as close as
possible to homomorphs of the aspects of W that are relevant to whatever task
(s) the organism must perform (Holland et al., 1986).

In practice, however, mental representations are rarely true homomorphs.
Instead, they may specify some details that are not strictly relevant to the task
and fail to specify some information that is relevant to the task (e.g., as when

2 Her ability to discover these mappings may be influenced by the objects’ similarity (see Hummel
& Holyoak, 1997), but if she gets the mappings right, then her inferences will not be.
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the math student is struggling to understand how to solve a particular kind of
arithmetic problem; see, e.g., Ross, 1987). Such representations are quasi-
homomorphs – q-morphs – of the worlds they represent (Holland et al., 1986).
Most or all human mental representations are q-morphs (Holland et al.,

1986), and an analogy from a familiar source problem to a novel target
problem is a q-morph of the target in terms of the source: when a reasoner
solves the doctor problem by analogy to the general problem, she is using the
general problem as a representation of the doctor problem. And she is doing so
in much the same sense that she uses, say, the Arabic numerals as a represen-
tation of the integers: in each case, the target (the doctor story or the arith-
metic problem) is a q-morph of the source (the general story or the rules of
arithmetic). Accordingly, many have argued that the cognitive operations
necessary for analogical reasoning are the same fundamental operations
necessary for any kind of schema- or rule-based reasoning (Gentner, 1983;
Hofstadter & Sander, 2013; Holyoak & Thagard, 1995; Hummel & Holyoak,
1997, 2003; Penn at al., 2008).
From this perspective, the bar for models of analogical reasoning becomes

very high: in the limit, “analogical reasoning” is synonymous with “symbolic
thought.”

14.3 Models of Analogy

The power of analogical thinking, and related processes such as schema
induction, has not escaped the notice of cognitive scientists, making analogical
reasoning a holy grail of sorts for computational modelers and AI researchers.
Models of analogical thinking take many forms, but for the purposes of expos-
ition, this chapter divides them into two broad categories: associative and
symbolic.

14.3.1 Associative Models of Analogy

Associative models include traditional connectionist models, such as “deep”
neural networks (“deep nets”), and other statistical approaches such as support
vector machines. These models are defined by two key assumptions: first, all
knowledge – visual images, objects, concepts, beliefs, etc. – are represented as
vectors (equivalently, lists of features); and second, all computations are carried
out as operations on these vectors. For example, in the case of a deep net, every
task (e.g., visual object recognition) is construed as a mapping (effectively, a
lookup table), from input vectors (e.g., visual images) to output vectors (e.g.,
object labels), with any number of “hidden” vectors between the inputs and
outputs. On this account, the goal of learning is to discover a set of numerical
connection weights for mapping inputs to outputs. Relations, on this account,
are represented implicitly either as connections in the resulting networks or
(equivalently) as mappings/transformations between vectors.
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14.3.1.1 Parallelogram Models

Parallelogram models of analogy (e.g., Ehresman &Wessel, 1978; Rumelhart &
Abrahamson, 1973) exploit the geometry of vectors in vector spaces to provide
an account of proportional analogies. Concepts are represented as vectors in a
high-dimensional vector space (see Mikolov et al., 2013; Pennington et al.,
2014), and relations between concepts are captured in terms of the distance, r,
and direction, θ, between them. For example, the vector representing the
concept man would be a specific distance and direction from the vector repre-
senting woman, and the vector [r, θ] is the relation between the concepts woman
and man. On this account of relations, the distance and direction from woman
to man should be similar to the distance and direction from, say, queen to king
or from wife to husband. The four points, woman, man, queen, and king, would
thus form a parallelogram, so solving a four-term analogy problem of the form
A:B::C:x entails (a) finding the given points A, B and C, in the vector space, and
then finding the value of the missing x term by completing the parallelogram
and observing which object resides in the missing corner, x.

As an account of proportional (i.e., four-term) analogy, the parallelogram
approach has met with mixed success (see Chen et al., 2017). But it is not clear
how or whether this approach could be generalized to account for system
analogies. Given any two points, a and b, there can be only one [r, θ] relating
them. That is, the parallelogram account implies there can be only one relation
between any two concepts. However, for the purposes of system analogy,
concepts must be able to stand in an open-ended number of relations to one
another: the king may be taller than the queen; he is probably married to the
queen; he may love the queen; he may have her beheaded, etc. Analogical
reasoning depends on the ability to bind any king and any queen to any of
these relations, or to any other relations, as necessary. A related limitation of
the parallelogram account is that it does not represent even the one relation
between a and b explicitly. Instead, the relation is implicit in r and θ.

14.3.1.2 Connectionist Models

Related to the parallelogram approach to proportional analogies are various
connectionist models of analogy (e.g., Leech et al., 2008; McClelland & Rogers
2003; see also Lu et al., 2012). Like parallelogram models, these models assume
that concepts are represented as vectors. But rather than representing relations
as spatial relations [r, θ] between points, many connectionist models of propor-
tional analogy represent relations as matrices of connections between input and
output vectors.

Consider the Leech et al. (2008) model of proportional analogies. This model
represents entities, A, B, C, and D, as activation vectors in a connectionist
network. The units representing these vectors communicate with one another
via a collection of hidden units, along with the connections between the hidden
units and the input/output units. During training, the model is given three of the
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four terms (A. . .C), and its task, trained by back propagation, is to activate the
units representing the fourth term, (D). With enough training, the model can
learn to produce the correct D in response to various A. . .C. And being a
distributed connectionist model, it naturally generalizes to new input-output
mappings (i.e., new proportional analogies) to the extent that they share fea-
tures with trained analogies. However, the model can only compute propor-
tional analogies based on the single (implicitly represented) trained relation
between A and B. It is unable to compute system mappings, and it is corres-
pondingly unable to use those mappings to make analogical inferences. Even its
performance on proportional analogies falls short of the human ability to make
such analogies (as elaborated shortly in the context of Hofstadter and
Mitchell’s, 1994, CopyCat model).
More recent associative models have leveraged the power of proportional

analogy and related tasks such as Ravens Progressive Matrices to structure
training sets for associative models and to discover implicit representations of
relations and rules in those training sets (e.g., Hill et al., 2019; Hu et al., 2020;
Peyre et al., 2019; Santoro et al., 2017; Zhou, 2019). These approaches are
promising, and it remains to be seen how much traction associative models
can get by solving, and exploiting, proportional analogies based on implicit
representations of relations. To date, however, models in this tradition remain
limited to proportional analogies, and have yet to solve analogies based on
system mappings, or to use system mappings to drive complex analogical
inferences.
However, connectionist approaches are not necessarily limited to propor-

tional analogies. Holyoak and Thagard’s (1989) ACME is a connectionist
model that solves system analogies. Recall that a system analogy consists of a
collection of mappings between the objects and relations composing competing
systems of knowledge (as in the doctor/general analogy of Gick & Holyoak,
1980). ACME represents all the potential correspondences in a system mapping
as units in a connectionist network. For example, in the doctor/general analogy,
any object in the doctor story (e.g., the doctor, the tumor, etc.) could potentially
map to any object in the general story (i.e., the general, the fortress, etc.). The
same goes for the relations in the stories, and the propositions formed by
combining relations with their arguments. Each potential correspondence is
represented as a node in a parallel constraint satisfaction network, with connec-
tions implementing the constraints between the potential mappings.
Inconsistent mappings, such as the mapping from doctor to general vs. the
mapping from doctor to fortress, inhibit one another, while consistent map-
pings, such as the mapping from doctor to general and the mapping from
destroy (doctor, tumor) to capture (general, fortress), excite one another.
ACME captures the major constraints on system mapping at Marr’s (1982)

computational theory level of analysis, but it does so at the expense of the
representation and algorithm level (Hummel &Holyoak, 1997). ACME computes
system mappings by massively parallel constraint satisfaction, simultaneously
considering all possible mappings and all the constraints among them at once.
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This kind of massively parallel computation vastly exceeds the finite capacity of
human working memory. Unlike ACME, people compute system mappings
incrementally, one or two propositions at a time, with mappings discovered
earlier in the process constraining the mappings discovered later (Hummel &
Holyoak, 1997; Kubose et al., 2002).

Connectionist models have also been applied to schema induction, a problem
closely related to analogical reasoning (Holyoak & Thagard, 1995; Hummel &
Holyoak, 2003). A schema is a generalized conceptual structure covering a
domain of knowledge. Schemas are explicitly relational in that they express
relations between the concept and other concepts (e.g., isa (bird, animal)), or
between the internal components of the concept itself (e.g., has (bird, wings) and
enable (wings, fly (bird))). Whereas reasoning by analogy is reasoning from a
specific example (e.g., from the general problem to the doctor problem),
reasoning with schemas is reasoning from an abstraction over multiple
examples (e.g., a generalized “convergence” schema covering both the general
and doctor problems).

A well-known connectionist model of schema induction was proposed by
St. John (1992; St. John & McClelland, 1990; see also Rabovsky et al., 2018).
This model was trained on 250,000 examples of each of four kinds of situations
(e.g., driving to a destination, going to a restaurant, etc.), for a total of one
million training examples. Given part of a schematized situation as input (e.g.,
“Bill has a Jeep. Bill wants to go to the beach.”), the model’s task is to produce
the rest of the schema as output (in this case, “Bill drives his Jeep to the beach”).

After training with the million examples, the model was tested for its ability
to generalize to new cases. The most important tests involved introducing
people, places, and objects trained in one set of schemas to a problem that fit
with a different schema. For example, “John,” “Civic,” and “airport” might
have appeared in various training examples, but never in the “driving schema.”
These objects would be recombined to create a test (“driving schema”) example
such as, “John has a Civic. John wants to go to the airport.” The natural
response to such an example is obviously “John drives his Civic to the airport.”
By contrast, the model’s response to this example was “Bill drives his Jeep to the
beach,” the closest associative approximation. In the words of St. John,
“Developing a representation to handle role binding proved to be difficult for
the model” (1992, p. 294).

This result clearly illustrates the strengths and limitations of associative
models of relational processes such as analogy-making and schema induction.
Associative models, such as models trained by back propagation, learn associ-
ations – i.e., statistical relations – between trained features. That is all they
learn. Accordingly, any task that can be performed on the basis of such
associations lends itself naturally to such an approach; and any task that does
not depend on feature statistics does not. Because they are based on relations
rather than simple features, analogy and other forms of relational thinking,
such as rule- and schema-based reasoning, and schema induction, do not
(Doumas et al., 2008; Hummel & Holyoak, 2003; Penn et al., 2008).
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Accordingly, to date, symbolic models of analogical thinking have proved
much more successful, especially as accounts of system mapping, than
associative models.

14.3.2 Symbolic Models of Analogy

A key difference between symbolic and associative systems is that the former,
but not the latter, permit variable binding (aka “dynamic binding”; see Hummel
& Biedeman, 1992; Hummel & Holyoak, 1997, 2003): the ability to bind a
representation of a variable (or equivalently, a relational role) to a representa-
tion of its value (argument) without altering the representation of either.3 In a
symbol system, such as a programming language, “variable binding” (or “role
binding”) means being able to bind a variable, such as x, to different values,
such as 2 or 3, without losing track of the fact that it is still x, and the ability to
bind a value, such as 2, to different variables, such as x and y, without losing
track of the fact that it is still 2. The same problem arises in representing
propositions such as “Bill owns a Jeep”: to specify that Bill owns the Jeep, it
is necessary to bind Bill to the owner role and Jeep to the owned role. But if the
Jeep somehow took ownership of Bill, then one would need to rebind the same
representations of Bill, Jeep, owner, and owned to form the proposition “the
Jeep owns Bill.”
Variable binding is a capacity one takes for granted in symbol systems, but it is

nontrivial to achieve in associative architectures. The reason is that variable
binding requires two representational degrees of freedom. One degree of freedom
specifies which values and variables are involved in an expression (e.g., x, y, 2,
and 3), and the second specifies how they go together to form complete expres-
sions (e.g., “right now, x ¼ 2 and y ¼ 3” vs. “right now, x ¼ 3 and y ¼ 2”).
Associative systems have only one representational degree of freedom (namely,
the values of vector elements), so the only way to represent a binding like “x¼ 2”
(or “Bill is the owner”) is to use conjunctive coding, in which representational
units (vector elements) correspond, not to individual variables (e.g., x or owner)
or values (2 or Bill), but only to specific variable-value conjunctions, such as x¼ 2
or x ¼ 3. The problem with this approach is that it is forced to trade off the
ability to represent a binding (e.g., “right now, x is 2”) with the ability to
represent the variables and values independently of one another (e.g., to know
that “x” in “x ¼ 2” is the same thing as “x” in “x ¼ 3”): To the extent that the
binding is unambiguous (as in a conjunctive code), the variables and values will
necessarily be lost in the conjunctive representation (i.e., the unit for “x ¼ 2” will
have no overlap with the unit for “x ¼ 3”); and to the extent that the variables
and their values are represented independently (e.g., with one unit for x and
another for 2), the binding will be lost (Hummel & Biederman, 1992; Hummel &
Holyoak, 1997, 2003). This problem is not ameliorated by sophisticated

3 In general, variable binding is necessary but not sufficient to achieve symbolic computation (see,
e.g., Doumas et al., 2008; Hummel & Holyoak, 2003).
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conjunctive codes such as tensor products or holographic reduced representa-
tions (see Doumas & Hummel, 2005; Hummel, 2010, 2011). Accordingly, the
question, “can an associative model account for analogical reasoning?” becomes
the question, “is it possible to engage in analogical reasoning without the
capacity for variable binding?” The preceding review suggests that the answer
to this question is likely No: analogical reasoning requires symbolic – that is,
explicitly relational – representations.

14.3.2.1 Copycat

CopyCat (Hofstadter & Mitchell, 1994) is a symbolic model proportional
analogy. The heart of the model is a set of rewrite rules (e.g., “this kind of
thing can be replaced with that kind of thing”) and conditions for deciding
which rules to apply to which problems. Whereas most proportional analogies
test knowledge of familiar relations among familiar objects (as in “worm:soil::
bird:x”), CopyCat solves an open-ended class of proportional analogies based
on more abstract relations, such as “123:ABC::456:x.” In this case, the most
obvious answer is “DEF,” but CopyCat was also tested for its performance on
more difficult problems, including problems that have more than one accept-
able answer. The model does an impressive job generating answers to these
kinds of novel proportional analogies, and its performance often seems quite
clever and creative. The reason for the model’s success on such problems is that
it consists of rules over variables that express abstract relations between things
(e.g., “for any x such that. . .”), rather than simply connection weights that
express statistical relations among specific features.

14.3.2.2 SME

One of the most influential models of analogy and related forms of reasoning is
Forbus, Gentner and colleagues’ Structure Mapping Engine (Falkenhainer
et al., 1989). SME represents systems of propositions as labeled graphs and
performs analogical mapping as a form of graph-matching. Like Holyoak and
Thagard’s (1989) ACME, SME is best conceived as a model at the computa-
tional theory level of analysis, and like CopyCat, it is a symbolic model that
operates on variablized representations of relations and their arguments.
Because it uses symbolic knowledge structures and symbolic operations over
those structures, SME has been applied successfully to a very broad range of
analogy-like tasks, including memory retrieval and analogical mapping (Forbus
et al., 1995) and even Raven’s Progressive Matrices (Lovett & Forbus, 2017). In
contrast to associative models of proportional analogy, SME is capable of a
wide range of tasks requiring system mapping (for a review, see Forbus &
Hinrichs, 2017). One limitation of SME is that, because it is based on massively
parallel graph-matching, it is inconsistent with the limits on human working
memory capacity (Hummel & Holyoak, 1997). In addition, its labled graph
representations have difficulty capturing the semantic content of the
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propositions it represents (Doumas & Hummel, 2005). Nonetheless its broad
success solving families of analogy-related tasks underscores the importance of
symbolic knowledge structures in these tasks.

14.3.2.3 LISA/DORA

Another influential symbolic model of analogy is the LISA model (Hummel &
Holyoak, 1997, 2003; Knowlton et al., 2012), and the DORA generalization of
LISA (Doumas et al., 2008, 2022). Like SME, LISA/DORA is based on
knowledge representations that are rendered symbolic by virtue of their ability
to solve the variable binding problem. But unlike SME, LISA’s representations
of objects and relational roles are distributed like the representations postulated
in many associative models (i.e., representing a single entity, like Bill, as a
pattern of activation over many units, such as human, adult, male, etc., that
capture its similarity to other entities). The resulting system is an attempt to
specify how symbolic representations and processes can arise from more basic
neuron-like representations and processes.

14.3.2.3.1 Knowledge Representation
LISA’s knowledge representations are based on a hierarchy of distributed
semantic units and localist token units that capture both the semantic features
of objects and relational roles and their composition into complete propositions
(see Figure 14.1). At the bottom of the hierarchy, semantic units (bottom of
Figure 14.1) represent objects and relational roles in a distributed fashion. For
example, the general in Gick & Holyoak’s (1980) analogy might be represented
by features such as human, adult, male, military (among others) and the doctor
might be represented as human, adult, female, medical, etc. Similarly, the roles
of the wants-to relation – wanter and wanted – would be represented by semantic
units capturing their semantic content (e.g., desire, goal, etc.). A complete
analog is represented by the collection of token units that collectively represent
the objects, roles, role-bindings, and propositions composing it (layers 2. . .4 in
Figure 14.1). Localist object and predicate units represent tokens of objects and
relational roles and share bidirectional excitatory connections with the corres-
ponding semantic units. Sub-proposition (SP) units (layer three in Figure 14.1)
conjunctively bind relational roles to their arguments (which can either be
objects, as in Figure 14.1a, or complete propositions, as in Figure 14.1b).
Finally, sets of SPs are linked into complete propositions by localist proposition
(P) units (layer four in Figure 14.1).
Within an analog, an object, role, or proposition is represented by a single

token across all propositions in which it appears. For example, the same token
represents the general in both has (general, forces) and want (general, capture
(general, fortress)). Separate analogs do not share token units, but all analogs
are connected to the same distributed semantic units: whereas token units repre-
sent tokens of objects, roles, or propositions within an analog, semantic units
represent the types to which those tokens refer (Hummel & Holyoak, 1997).
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The hierarchy of tokens serves as LISA/DORA’s long-term memory (LTM)
and represents bindings of features into relational roles and objects, of roles to
arguments, and of role-argument pairs into multi-place propositions conjunct-
ively, with a separate unit for each binding. When a proposition becomes active
(i.e., enters working memory; WM), LISA/DORA also represents these bind-
ings dynamically, using systematic synchrony and asynchrony of firing
(Hummel & Holyoak, 1992, 1997, 2003; see also Doumas et al., 2008). When
a P unit becomes active, it excites the SPs to which it is connected. Separate SPs
inhibit one another, causing them to oscillate out of phase with one another.
For example, if the P unit for has (general, forces) becomes active, the SP for
has-agentþgeneral will oscillate out of phase with had-objectþforces. Each SP
excites the role and argument units below itself, so when has-agentþgeneral
fires, the role unit has-agent fires in synchrony with the object unit general (and
out of synchrony with had-object and forces), and when had-objectþforces fires,
had-object fires in synchrony with forces (and out of synchrony with has-agent
and general). Role and object units activate the semantic units to which they are
connected. The resulting patterns of activation on the semantic units represent
roles and their arguments in a distributed fashion and simultaneously capture
the bindings of roles to fillers in the synchrony of firing. DORA works in the
same way, except that in DORA, roles and fillers also fire out of synchrony with
one another. As a result, DORA can represent bindings dynamically at any

want (general, capture (general, fortress)) want (doctor, destroy (doctor, tumor))

capture (general, fortress) destroy (doctor, tumor)

Semantic units:

(a) General Problem (b) Doctor Problem

Figure 14.1 Illustration of knowledge representation in LISA/DORA. (a)
A fragment of the representation of the General problem (Gick & Holyoak,
1980). (b) A fragment of the representation of the Doctor problem. Small
circles depict semantic units (shared by all analogs), large circles depict object
units (g ¼ “general,” f ¼ “fortress,” d ¼ “doctor,” t ¼ “tumor). Triangles
depict predicate units (want1 and want2 are the agent and patient roles of the
want relation; capt1 and capt2 are the roles of capture; and dest1 and dest2 are
the roles of destroy). Rectangles depict SP units, and ovals depict P units.
See text for additional details.
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level of the token hierarchy, a property that is useful for discovering new
relations (see Doumas et al., 2008).
As a result of these dynamics, the semantic units represent propositions, such

as has (general, forces), in a manner that is simultaneously distributed and
symbolic. LISA/DORA can combine and recombine the same distributed
semantic units into an open-ended number of propositions without altering
the representation of any of the constituent roles or objects.
The resulting representations support the algorithmic components of ana-

logical reasoning – memory retrieval, mapping, inference, and schema induc-
tion – as a natural consequence (Hummel & Holyoak, 2003), and provide an
account of how representations of relations can be acquired via experience
(Doumas et al., 2008). Together, LISA and DORA account for over 100 major
phenomena in the domains of relational reasoning including retrieval and
mapping (Hummel & Holyoak, 1997; Kubose et al., 2002), analogical inference
and schema induction (Hummel & Holyoak, 2003), the cross-domain transfer
(Doumas et al., 2022) effects of cognitive development (Doumas et al., 2008;
Hummel & Holyoak, 1997), normal ageing (Viskontas et al., 2004), and fronto-
temporal dementia (Morrison et al., 2004). Moreover, the components of LISA/
DORA’s algorithm correspond well to specific brain regions in frontal, tem-
poral, and parietal cortex (Knowlton et al., 2012).

14.3.2.3.2 Memory Retrieval
Given a novel target problem (such as the doctor problem of Gick & Holyoak,
1980), LISA retrieves potential source analogs (such as the general problem)
from LTM as a form of guided pattern recognition (Hummel & Holyoak,
1997): One at a time, propositions in the target become active, generating
synchronized and desynchronized pattens of activation on the semantic units,
which activate similar propositions, along with the analogs containing them, in
LTM. This process provides a surprisingly complete account of the data on
analog retrieval (see Hummel & Holyoak, 1997).

14.3.2.3.3 Analogical Mapping
LISA/DORA computes analogical mappings by augmenting its retrieval algo-
rithm with a Hebbian learning algorithm for discovering which structures in the
target tend to activate, that is map to, which in the source. The resulting
mappings are represented as mapping connections between corresponding units,
and permit correspondences learned early in mapping to influence the corres-
pondences learned later. Because LISA’s mapping algorithm is based on its
retrieval algorithm, which is naturally tolerant of partial semantic matches due
to LISA’s distributed representations of roles and objects, LISA is capable of
mapping similar but nonidentical relations in the service of system mapping.
The only difference between retrieval and mapping is that LISA is allowed to
learn and use mapping connections during mapping, but not during retrieval.
This single difference allows LISA to capture a wide range of phenomena from
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the literature on both memory retrieval and analogical mapping (e.g., Hummel
& Holyoak, 1997).

14.3.2.3.4 Analogical Inference
Just as mapping in LISA is simply retrieval augmented with the capacity to
learn mapping connections, analogical inference is simply mapping augmented
with a kind of self-supervised learning (Hummel & Holyoak, 2003). LISA’s
mapping algorithm honors a 1:1 mapping constraint: whenever the mapping
connection from some unit d in analog D to some unit r in analog R grows more
positive (representing evidence that d maps to r), the connections from d to all
other units, s !¼ r in R, grow more negative (representing evidence that d does
not map to any s !¼ r in R), and the connections to r from all units e !¼ d in D
also grow more negative (see Figure 14.2a). The inhibition from units e !¼ d in
D gives rise to an important constraint that LISA exploits in the service of
analogical inference.

Consider a situation in which every unit r in Rmaps to some d in D, but there
remain units in D that do not map to any r in R (Figure 14.2b). This kind of
situation can arise whenever D is a source analog (e.g., the general story from
Gick & Holyoak, 1980) that the reasoner is using to reason about a target, R
(e.g., the doctor story): since the reasoner knows more about the source than the

capt1

capt2

want1

want2

divide1

divide2

D R

dest1

dest2

want1

want2

divide1

(a)

capt1

capt2

want1

want2

divide1

divide2

D R

dest1

dest2

want1

want2
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capt1

capt2

want1

want2

divide1

divide2

D R
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dest2

want1

want2

(c)

Figure 14.2 Illustration of LISA’s self-supervised learning algorithm.
(a) When want1 in D (the general problem) maps to want1 in R (the doctor
problem), LISA learns an excitatory mapping connection between them
(heavy solid line) and each unit learns an inhibitory mapping connection to all
other predicate units in the other analog (light dashed lines). (b) Every
predicate in R maps to some predicate in D, but no predicate in R maps to
divide1 in D. Therefore, when divide1 fires in D it inhibits all predicate units in
R via learned inhibitory mapping connections (heavy dashed lines). Inhibited
units in R are depicted with a diagonal fill. (c) In response to this uniform
inhibition of predicate units in R, LISA recruits a new predicate unit in R to
correspond to the active predicate unit (here, divide1) in D.
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target, there will likely be known facts in D (the source) that have no corres-
ponding facts in R (the target). For example, in the general/doctor analogy, the
reasoner knows that the general divided his forces to attack the fortress, but she
is not told that the doctor can divide her forces (the radiation beam) to attack
the tumor. As such, the divide predicate is likely to be part of the reasoner’s
initial representation of D but not of R. If LISA discovers the analogical
mappings from predicates in D to all the known predicates in R, then the units
representing the roles of the divide predicate in D will map to nothing in R, but
they will have learned inhibitory (i.e., negative) mapping connections to all the
predicates in R (Figure 14.2b). Therefore, when LISA activates the proposition
divide (general, forces) in D, the units representing the divider and divided roles
of the divide predicate will inhibit all the predicate units in R.
This kind of universal mapping-based inhibition signals that no existing

units in R (here, predicate units, but the same logic also applies to objects,
SPs, and P units) correspond to whatever is currently active in D. In
response to this kind of universal inhibition, LISA recruits a new unit in R
to correspond to any unmatched unit in D. In the current example, LISA
will recruit units in R to correspond to divider and divided in D
(Figure 14.2c). Although not shown in the figure, it would also recruit new
SPs to correspond to dividerþgeneral and dividedþforces and a new P unit to
correspond to divide (general, forces).
Newly recruited units in any analog R connect themselves to other units in R,

and to semantic units, by simple Hebbian learning: units that are active together
learn excitatory connections. As a result, the new predicate units in R learn
connections to active semantic units and come to represent divider and divided.
Because general (in D) maps to doctor (in R) and forces maps to radiation,
doctor will be active when the newly recruited divider role is active, and
radiation will be active when divided is active. The newly recruited SPs will
learn connections to divider and doctor and to divided and radiation, respect-
ively, and both will learn connections to the newly recruited P unit. As a result,
the newly inferred structures in R will encode the proposition divide (doctor,
radiation): LISA will have analogically inferred that the doctor should divide
the radiation beam, just as the general divided his forces. Hummel and Holyoak
(2003) demonstrated that this algorithm accounts for numerous phenomena in
the literature on analogical inference.

14.3.2.3.5 Schema Induction
In contrast to associative learning algorithms, which may require hundreds or
thousands of training examples to learn an input-output mapping, people can
learn a generalized schema from as few as two examples. For example, exposed to
the doctor/general analogy, many of Gick and Holyoak’s (1983) subjects learned
a more general convergence schema for reasoning about classes of problems like
the doctor and general. Schema induction happens as a natural consequence of
analogical mapping and inference. At the same time, additional examples allow
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people to refine schemas by helping them to discover which elements of a
situation remain universal across examples (see Doumas et al., 2008).

LISA/DORA is likewise capable of inducing a schema from as few as two
examples, and of refining its schemas with additional examples (Doumas et al.,
2008; Hummel & Holyoak, 2003). LISA/DORA’s schema induction algorithm
is its self-supervised learning algorithm augmented with a simple algorithm for
intersection discovery – discovering what two situations (e.g., analogs) have in
common. Hummel and Holyoak (2003) demonstrated that this algorithm
accounts for many findings in the schema induction literature. It also provides
an account of both relation-discovery in adults and numerous findings in
cognitive development (Doumas et al., 2008; Morrison et al., 2011; Rabagliati
et al., 2017; Sandhofer & Doumas, 2008; Son et al., 2010).

The algorithm also makes novel predictions about differences between fea-
ture- and relation-based learning, which have been verified experimentally (e.g.,
Jung & Hummel, 2015a, 2015b; Kittur et al., 2004, 2006). For example,
although people have no difficulty learning feature-based categories with a
probabilistic (i.e., family resemblance) structure in which no single feature
predicts category membership, relational category learning fails catastrophic-
ally with probabilistic structures. The reason is that whereas feature-based
categories can be learned associatively, and associative learning is well-suited
to learning probabilistic categories, intersection discovery of the kind required
for relational learning results in the empty set unless at least one relation
remains deterministically present across all category members.

14.3.2.3.6 Extensions
The core components of LISA/DORA’s algorithm for analogical reasoning,
and for inductive inference more broadly, have also been extended to simulate
aspects of explanation (Hummel et al., 2008, 2014), pattern recognition
(Hummel & Biederman, 1992; Kogut et al., 2011), deductive reasoning
(Licato et al., 2012), and collaborative reasoning (Lin et al., 2012).

14.4 Analogy, Knowledge Representation, and Similarity

Models of analogy are rarely put forth as models of similarity, but any
model of analogy is necessarily a model of knowledge representation, and any
model of knowledge representation is a model of similarity.

Similarity is both fundamental and complicated. On the one hand, it is a core
capacity of any nervous system: neurons are believed to compute a measure of
the similarity between what they expect, as embodied in their synapses, and
what they’re getting, as embodied in the inputs arriving over those synapses. In
this sense, a theory of similarity is practically a theory of everything perceptual,
cognitive, and neural. But similarity is not monolithic. Although a retinal
ganglion cell computes the similarity between its input and its preferred input,
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there is no guarantee that the way it does so is the same as the way one answers
a question such as “How similar is China to North Korea?”
A great deal has been written about similarity, but for the purposes of this

chapter, the handful of phenomena demonstrated by Tversky (1977) put the
strongest constraints on models of analogical thinking. The punchline from
these studies is that many explicit similarity judgments are inconsistent with the
assumption, core to associative models of cognition, that concepts can be
represented as patterns of activation (vectors) in an associative network.
According to associative models, knowledge representations are patterns of

activation – vectors in a metric space. If the similarity of two concepts is taken
to be inversely proportional to the distance between the vectors representing
them (a standard assumption that is true of most connectionist models; see e.g.,
Cunningham & Shepard, 1974), then concepts represented as vectors in a metric
space necessarily obey the metric axioms of minimality, symmetry, and the
triangle inequality. Minimality states that the minimum distance in a space is
the distance between a vector and itself, which is zero, and equal for all vectors.
This axiom implies that every vector (concept) is exactly as similar to itself as
every other concept is. Symmetry states that the distance, d(i, j), from vector i to
vector j is equal to the distance, d(j, i), from j to i. This axiom implies that
concept i will always be exactly as similar to concept j as j is to i. The triangle
inequality states that the distance from i to j must be less than or equal to the
distance from i to k plus the distance from k to j: d(i,j) <¼ d(i,k) þ d(k,j). This
axiom implies that concept i can be no more different from concept j than the
sum of i’s difference from k and k’s difference from j. Because these axioms are
true in any metric space, they are necessarily true of any vector-based model of
mental representation, that is, any associative model whose similarity metric is
inversely proportional to vector distance, including the vast majority of trad-
itional connectionist models.
If a representational system fails to satisfy these axioms, then that failure

suggests the system cannot be straightforwardly modeled as any simple vector
space. In brief, human similarity judgments do not satisfy any of the metric
axioms (see Tversky, 1977), which implies that concepts cannot be straightfor-
wardly modeled as simple vectors. At least explicit similarity judgments seem to
be based on something more symbolic than simple associations. At the same
time, however, vector-based representations provide a good account of similar-
ity at the level smaller than the level of whole concepts (e.g., at the level of
ganglion cells, and probably well above that). These considerations suggest that
a representation that combines the advantages of both distributed (i.e., vector-
based) representations of basic elements (such as objects and relational roles)
with a capacity to bind those representations into symbolic structures, might
provide a platform for modeling explicit similarity judgments.
Taylor and Hummel (2009) pursued this idea by turning the algorithm LISA

uses to evaluate the quality of an analogical mapping (Hummel & Holyoak,
2003) into a model of explicit similarity judgments. The basic idea is that people
should find things similar to the degree that they are analogous (e.g., as
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measured by LISA’s mapping quality algorithm). But at the same time, analo-
gous things should be judged even more similar to the extent that they express
similar relations among similar objects: even though our solar system is similar
to an atom in its abstract structure, it is even more similar to other solar
systems, with their own stars and planets. Taylor and Hummel augmented
LISA’s mapping quality algorithm to incorporate the featural (i.e., vector-
based) similarity of corresponding objects and relational roles. They showed
that the resulting algorithm accounts both for the violations of the metric
axioms (as demonstrated by Tversky, 1977) and numerous other findings in
the similarity literature (see Taylor & Hummel, 2009).

14.5 Conclusion

“Analogy” has many meanings, from “similarity” to “relational simi-
larity” to “system mapping.” At its most basic, it is noticing that a cherry is like
a fire engine because both are red. At a more sophisticated level, it is noticing
that a worm stands in the same relation to the soil as a bird does to a nest, the
basis of proportional analogies, which appear so often on standardized tests.
And at its best, analogy and its core algorithmic components form the basis of
much or all symbolic thought, from language, to mathematics, science,
and engineering.

Given the importance of analogy in human thinking, it is no surprise that
numerous modelers have attempted to account for its operation. These attempts
run the gamut, from associative models of proportional analogy and schema
induction to symbolic models of analogical mapping, inference, and schema
induction, as well as other kinds of relational thought, including Raven’s
progressive matrices and abstract proportional analogies that afford creative
responses. Analogy is perhaps especially important for modelers in various
associative traditions because the core algorithmic components of analogical
thinking – most notably the need to represent relations explicitly and the
resulting need to solve the variable binding problem – continue to pose serious
challenges for these approaches.

Acknowledgments

Preparation of this chapter was supported by AFOSR Grant AF-
FA9550–12-1-003.

References

Bowdle, B. F., & Gentner, D. (2005). The career of metaphor. Psychological Review,
112, 193–216.

Analogy and Similarity 469

https://doi.org/10.1017/9781108755610.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.018


Bowers, J. S. (2017). Parallel distributed processing theory in the age of deep networks.
Trends in Cognitive Sciences, 21(12), 950–961.

Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Evaluating vector-space models of
analogy. In Proceedings of the 39th Annual Conference of the Cognitive Science
Society.

Cunningham, J., & Shepard, R. (1974). Monotone mapping of similarities into a general
metric space. Journal of Mathematical Psychology, 11, 335–363.

Doumas, L. A., & Hummel, J. E. (2005). Approaches to modeling human mental
representations: what works, what doesn’t and why. In K. J. Holyoak, &
R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning
(pp. 73–94). Cambridge: Cambridge University Press.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery
and predication of relational concepts. Psychological Review, 115(1), 1–43.

Doumas, L. A. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2022). A theory of
relation learning and cross-domain generalization. Psychological Review
(advance online publication). https://doi.org/10.1037/rev0000346

Ehresman, D., & Wessel, D. L. (1978). Report: Perception of Timbral Analogies. Paris:
Centre Georges Pompidou.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine:
algorithm and examples. Artificial Intelligence, 41, 1–63.

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC: a model of similarity-based
retrieval. Cognitive Science, 19, 141–205.

Forbus, K. D., & Hinrichs,T. R. (2017). Analogy and qualitative representations in the
companion cognitive architecture. AI Magazine, 2017, 34–42.

Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive
Science, 7, 155–170.

Gentner, D. (2003). Why we’re so smart. In D. Gentner & S. Goldin-Meadow (Eds.),
Language in Mind: Advances in the Study of Language and Thought (pp.
195–235). Cambridge, MA: MIT Press.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive
Psychology, 12, 306–355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer.
Cognitive Psychology, 15, 1–38.

Halford, G. S. (1992). Analogical reasoning and conceptual complexity in cognitive
development. Human Development, 35, 193–217.

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by
relational complexity: implications for comparative, developmental, and cog-
nitive psychology. Brain and Behavioral Sciences, 21, 803–864.

Hill, F., Santoro, A., Barrett, D. G., Morcos, A. S., & Lillicrap, T. (2019). Learning
to make analogies by contrasting abstract relational structure.
arXiv:1902.00120

Hofstadter, D. R., & Mitchell, M. (1994). An overview of the Copycat project. In K. J.
Holyoak & J. A. Barnden (Eds.), Advances in Connectionist and Neural
Computation Theory, Vol. 2: Analogical Connections (pp. 31–112). Norwood,
NJ: Erlbaum.

Hofstadter, D., & Sander, E. (2013). Surfaces and Essences: Analogy as the Fuel and Fire
of Thinking. New York, NY: Basic Books.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction:
Processes of Inference, Learning, and Discovery. Cambridge, MA. MIT Press.

470 john e. hummel and leonidas a. a. doumas

https://doi.org/10.1017/9781108755610.018 Published online by Cambridge University Press

https://doi.org/10.1037/rev0000346
https://doi.org/10.1037/rev0000346
https://doi.org/10.1037/rev0000346
https://doi.org/10.1017/9781108755610.018


Holyoak, K. J. (2019). The Spider’s Thread: Metaphor in Mind, Brain and Poetry.
Cambridge, MA: MIT Press.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction.
Cognitive Science, 13, 295–355.

Holyoak, K. J., & Thagard, P. (1995). Mental Leaps: Analogy in Creative Thought.
Cambridge, MA: MIT Press.

Hu, S., Ma, Y., Liu, X., Wei, Y., & Bai, S. (2020). Hierarchical rule induction network
for abstract visual reasoning. arXiv:2002.06838.

Hummel, J. E. (2010). Symbolic vs. associative learning. Cognitive Science, 34, 958–965.
Hummel, J. E. (2011). Getting symbols out of a neural architecture. Connection Science,

23, 109–118.
Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape

recognition. Psychological Review, 99, 480–517.
Hummel, J. E., & Holyoak, K. J. (1992). Indirect analogical mapping. In Proceedings of

the 14th Annual Conference of the Cognitive Science Society (pp. 516–521).
Hillsdale, NJ: Erlbaum.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: a
theory of analogical access and mapping. Psychological Review, 104, 427–466.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational
inference and generalization. Psychological Review, 110, 220–264.

Hummel, J. E., Landy, D. H., & Devnich, D. (2008). Toward a process model of
explanation with implications for the type-token problem. In Naturally
Inspired AI: Papers from the AAAI Fall Symposium. Technical Report FS-08-
06, 79-86.

Hummel, J. E., Licato, J., & Bringsjord, S. (2014). Analogy, explanation, and proof.
Frontiers in Human Neuroscience (online). http://journal.frontiersin.org/
Journal/10.3389/fnhum.2014.00867/abstract

Jung, W., & Hummel, J. E., (2015a). Making probabilistic relational categories learn-
able. Cognitive Science, 39, 1259–1291. https://doi.org/10.1111/cogs.12199

Jung, W., & Hummel, J. E. (2015b). Revisiting Wittgenstein’s puzzle: hierarchical
encoding and comparison facilitate learning of probabilistic relational categor-
ies. Frontiers in Psychology, 6, 110. https://doi.org/10.3389/fpsyg.2015.00110

Kittur, A., Hummel, J. E., & Holyoak, K, J. (2004). Feature- vs. relation-defined
categories: probab(alistical)ly not the same. In Proceedings of the 26th Annual
Conference of the Cognitive Science Society (pp. 696–701).

Kittur, A., Hummel, J. E., & Holyoak, K. J. (2006). Ideals aren’t always typical:
dissociating goodness-of-exemplar from typicality judgments. In Proceedings
of the 28th Annual Conference of the Cognitive Science Society.

Knowlton, B. J., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2012).
A neurocomputational system for relational reasoning. Trends in Cognitive
Sciences, 17, 373–381.

Kogut, P., Gordon, J., Morgenthaler, D., et al. (2011). Recognizing geospatial patterns
with biologically-inspired relational reasoning. In Second International
Conference on Biologically Inspired Cognitive Architectures (BICA 2011).

Kubose, T. T., Holyoak, K. J., & Hummel, J. E. (2002). The role of textual coherence in
incremental analogical mapping. Journal of Memory and Language, 47,
407–435.

Lakoff, G. (1987). Women, Fire and Dangerous Things: What Categories Reveal About
the Mind. Chicago, IL: University of Chicago Press.

Analogy and Similarity 471

https://doi.org/10.1017/9781108755610.018 Published online by Cambridge University Press

http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00867/abstract
https://doi.org/10.1111/cogs.12199
https://doi.org/10.1111/cogs.12199
https://doi.org/10.1111/cogs.12199
https://doi.org/10.1111/cogs.12199
https://doi.org/10.3389/fpsyg.2015.00110
https://doi.org/10.3389/fpsyg.2015.00110
https://doi.org/10.3389/fpsyg.2015.00110
https://doi.org/10.3389/fpsyg.2015.00110
https://doi.org/10.3389/fpsyg.2015.00110
https://doi.org/10.1017/9781108755610.018


Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago, IL: University of
Chicago Press.

Leech, R., Mareschal, D., & Cooper, R.P. (2008). Analogy as relational priming: a
developmental and computational perspective on the origins of a complex
cognitive skill. Behavioral and Brain Sciences, 31(4), 378–414.

Licato, J., Bringsjord, S., & Hummel, J. E. (2012). Exploring the role of analogico-
deductive reasoning in the balance-beam task. In Rethinking Cognitive
Development: Proceedings of the 42nd Annual Meeting of the Jean Piaget
Society.

Lin, T. -J., Anderson, R. C., Hummel, J. E., et al. (2012). Children’s use of analogy
during Collaborative Reasoning. Child Development, 83, 1429–1443.

Lovett, A., & Forbus, K. (2017). Modeling visual problem solving as analogical
reasoning. Psychological Review, 124(1), 60–90.

Lu, H., Chen, D., & Holyoak, K. J., (2012). Bayesian analogy with relational trans-
formations. Psychological Review, 119, 617–648.

Malhotra, G., Evans, B., & Bowers, J. (2020). Hiding a plane behind a pixel: shape-bias
in CNNs and the benefit of building in biological constraints. Vision Research,
174, 57–78.

Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive Psychology,
37(3), 243–282.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. New York, NY: W.H. Freeman.

McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach
to semantic cognition. Nature Reviews Neuroscience, 4(4), 310–322.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In M. I.
Jordan, Y. LeCun, & S. A. Solla (Eds.), Advances in Neural Information
Processing Systems (pp. 3111–3119). Cambridge, MA: MIT Press.

Morrison, R. G., Doumas, L. A., & Richland, L. E. (2011). A computational account of
children’s analogical reasoning: balancing inhibitory control in working
memory and relational representation. Developmental Science, 14(3), 516–529.

Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., et al. (2004). A neurocomputational
model of analogical reasoning and its breakdown in frontotemporal lobar
degeneration. Journal of Cognitive Neuroscience, 16, 260–271.

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: explaining the
discontinuity between human and nonhuman minds. Behavioral and Brain
Sciences, 31(2), 109–130.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: global vectors for word
representation. Empirical Methods in Natural Language Processing, 14,
1532–1543.

Peyre, J., Laptev, I., Schmid, C., & Sivic, J. (2019). Detecting unseen visual relations
using analogies. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 1981–1990).

Rabagliati, H., Doumas, L. A., & Bemis, D. K. (2017). Representing composed mean-
ings through temporal binding. Cognition, 162, 61–72.

Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling the N400 brain
potential as change in a probabilistic representation of meaning. Nature
Human Behavior, 2(9), 693–705.

472 john e. hummel and leonidas a. a. doumas

https://doi.org/10.1017/9781108755610.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.018


Ross, B. (1987). This is like that: the use of earlier problems and the separation of
similarity effects. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 13, 629–639.

Rumelhart, D. E., & Abrahamson, A. A. (1973). A model for analogical reasoning.
Cognitive Psychology, 5(1), 1–28.

Sandhofer, C. M., & Doumas, L. A. (2008). Order of presentation effects in learning
color categories. Journal of Cognition and Development, 9(2), 194–221.

Santoro, A., Raposo, D., Barrett, D. G., et al. (2017). A simple neural network module
for relational reasoning. In M. I. Jordan, Y. LeCun, & S. A. Solla (Eds.),
Advances in Neural Information Processing Systems (pp. 4967–4976).
Cambridge, MA: MIT Press.

Son, J. Y., Doumas, L. A., & Goldstone, R. L. (2010). When do words promote
analogical transfer? The Journal of Problem Solving, 3(1), 4.

St. John, M. F. (1992). The Story Gestalt: a model of knowledge-intensive processes in
text comprehension. Cognitive Science, 16, 271–302.

St. John, M. F., & McClelland, J. L. (1990). Learning and applying contextual con-
straints in sentence comprehension. Artificial Intelligence, 46, 217–257.

Taylor, E. G., & Hummel, J. E. (2009). Finding similarity in a model of relational
reasoning. Cognitive Systems Research, 10, 229–239.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.
Viskontas, I., Morrison, R., Holyoak, K. J., Hummel, J. E., & Knowlton, B. J. (2004).

Relational integration, inhibition, and analogical reasoning in older adults.
Psychology and Aging, 19, 581–591.

Zhou, L., Cui, P., Yang, S., Zhu, W., & Tian, Q. (2019). Learning to learn image
classifiers with visual analogy. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 11497–11506).

Analogy and Similarity 473

https://doi.org/10.1017/9781108755610.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.018


15 Mental Models and Algorithms
of Deduction
Philip N. Johnson-Laird and Sangeet S. Khemlani

15.1 Introduction

Pose the following problem to a smart eight-year-old:

All machines can break down.
Alexa is a machine.
What follows?

and the child is likely to reply:

Alexa can break down.

So, as experiments confirm, human beings unschooled in logic are able to make
deductions. Yet, this easy deduction defeats Alexa, Siri, and other virtual
assistants. To build machines that reason, students of reasoning need to know
the answers to three questions: (1) Which deductions do human reasoners
make? (2) How do they make them? And (3) How can computers simulate
them? The goal of this chapter is to describe the main efforts to simulate human
deduction. It aims to provide its own intellectual life-support system so readers
can understand it without having to consult anything else. It proceeds from the
main approach to human reasoning that has led to computational simulations –
the theory of mental models, a remote descendant from logic that is no longer
compatible with its classical branch, the predicate calculus. Here and through-
out this chapter, the term “orthodox logic” refers to this calculus, whose basic
principles are presented below. The “model theory” refers to the most recent
version of the theory of mental models (e.g., Khemlani, Byrne, & Johnson-
Laird, 2018). And the term “assertion” does double duty: it refers both to a
declarative sentence and to the proposition – which can be true or false – that
the sentence expresses depending on its context.
Theories of thinking have a crucial though often neglected goal: they need to

explain their own creation. So, theories of reasoning must explain themselves.
They cannot depend solely on the sort of machine learning embodied in current
programs in artificial intelligence (AI). Because language leads to reasoning,
and because people can verbalize their thoughts, theories of their reasoning
must explain how people understand discourse. Their simulations call for
explicit grammar, lexicon, and parser; a module that simulates the mental
representations humans compute when they comprehend language and
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thought; and a reasoning engine to make deductions and other inferences.
Three main sorts of theory of the deductive component of the engine exist:
those that depend on mental models of the world (e.g., Khemlani et al., 2018),
those that depend on a “mental logic” of rules from a logical calculus (e.g.,
Rips, 1994), and those that depend on the probability calculus (e.g., Oaksford &
Chater, 2020). The latter theories aim to account only for which inferences
individuals make, not how they make them.

The chapter accordingly deals with these topics:

• The basic concepts of logic and deduction.
• Mental logic and its critical differences from human deductions.
• The first algorithmic account of human reasoning.
• The algorithms that underlie model-based reasoning.
• Simulations of spatial reasoning.
• Simulations of reasoning about properties.
• Simulations of probabilistic reasoning.

Why should cognitive scientists simulate human reasoning? The chapter con-
cludes with an answer to this question.

15.2 Basic Concepts in Logic and Deduction

Deduction has two goals: to yield valid inferences and to assess con-
sistency. An inference from premises to a conclusion is valid provided that the
conclusion is true in every case in which the premises are true (Jeffrey, 1981,
p. 1). A set of assertions is consistent provided they can all be true at the same
time. Validity and consistency are independent of any logic, and interdependent
on one another. An inference is valid if the negation of its conclusion is not
consistent with its premises; and a set of assertions is consistent if there is no
valid deduction of the negation of one of the assertions from the others. Logics
depend on the concept of validity: the rules and axioms of a logic determine
which inferences are valid. Orthodox logic, for instance, allows for valid infer-
ences from inconsistent premises; indeed, any conclusion whatsoever follows
from them. In daily life, reasoners do not draw deductions from inconsistencies.
Hence, a rider is necessary for everyday validity: people draw deductions from
consistent information. Naive individuals – the term refers to those with no
training in logic or cognate disciplines – can make deductions that are valid in
orthodox logic. No procedure can decide whether or not an inference is valid in
this logic, that is, if the inference is valid, then it can be proved, but if it is
invalid, no algorithm can be guaranteed to prove its invalidity. Orthodox logic
contains the sentential calculus, i.e., a more rudimentary system that deals only
with connections between sentences or clauses. The sentential calculus handles
deductions that depend on negation, and simplified versions of such sentential
connectives as if, or, and and. It is computationally intractable (and so the more
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complex predicate calculus is too) in that as the number of different assertions
in inferences increases, the amount of time and memory needed to establish
validity increase even faster – to the point that deductions soon exceed the
capacity of any finite device, such as the human brain (Cook, 1971).
A logic has three parts. Its first part is a grammar that specifies all and only

those assertions to which the logic applies. Its second part is its proof theory,
which consists of formal rules of inference, perhaps supplemented with axioms,
that allow proofs that derive conclusions from premises. A typical formal rule
of inference is:

If A then B.
A.
Therefore, B.

where the capital letters A and B denote assertions, which can be compounds
containing further connectives, or else atoms that do not. A typical axiom (or
postulate) is:

For any x, and any y, if x is on the left of y then y is on the right of x,

where the variables refer in a consistent way to entities in a spatial domain. An
example of a formal proof is as follows, where the first two assertions are
premises:

1. If Pat is on the right of Viv then they are opposite Ross.
2. Viv is on the left of Pat.
3. Therefore, Pat is on the right of Viv. (from line 2 and the axiom above)
4. Therefore, they are opposite Ross. (from lines 1 and 3, and the formal

rule above).

The third part of a logic is its semantics, which defines the meanings of logical
terms and allows assessments of the validity of inferences. Orthodox logic
defines the meanings of connectives, such as its analogs of if and or, as true or
false depending on the truth values of the clauses that they connect. The
material conditional of logic, if A then B, concerns four cases, depending on
whether each of A and B is true or false. And orthodox logic defines the material
conditional as false only in case A is true and B is false. In any other case, it is
true. (The four cases can be spelt out explicitly in a “truth table.”) So, unlike
everyday conditionals, If A then B in logic is true whenever A is false. And it is
true in case B is true.
To apply orthodox logic to a set of sentences, the first task is to recover their

logical forms in order to match them to formal rules of inference, such as the
rule above. This task is trivial when sentences are unambiguous, as in the case of
a grammar that yields only their logical forms. But, for natural language, the
task is extraordinarily difficult – to the point that no algorithm exists to carry it
out. Natural language can yield ambiguous sentences, and content and context
have a massive effect on the assertion that a sentence makes. Logical forms in
natural language depend on meanings, e.g., the phrase, “Take the cookie and
you’ll get smacked,” conveys a conditional assertion, If A then B, not a
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conjunction, A and B. But, when a reasoner has represented the meanings of
assertions, those representations can be the basis of reasoning, and logical forms
become superfluous.

A natural language has a mental lexicon of the meanings of words, and a
grammar with rules that also account for how the meaning of an assertion is
composed from the meanings of its grammatical parts, which in turn are
composed from the meanings of their parts, and so on . . . down to the meanings
of words or morphemes. A parser uses semantic principles attached to the
syntactical rules to carry out this process of composition. Its results can be
ambiguous. The simulations of deduction described below contain elementary
versions of each of these components: a lexicon, a grammar, and a parser.

15.3 Mental Logic and Deduction

Early psychologists of reasoning took for granted that reasoners rely
on orthodox logic (e.g., Beth & Piaget, 1966), and they sought to understand
how the mind formulates that logic. Naive reasoners have no awareness of
axioms. So, theorists converged on the hypothesis of unconscious rules of
inference akin to those in the proof theory for the sentential calculus (e.g.,
Braine, 1978; Johnson-Laird, 1975; Osherson, 1974–1976). Rips (1994)
described a mental logic close to orthodox logic, and he implemented the
theory in a computer program called PSYCOP (for the psychology of proof ).
Its inputs were logical forms – so it evaded the problem of recovering them
from natural language – and it relied on two sorts of rules of inference. One
sort, such as the rule above: If A then B; A; therefore, B, allows a person to
reason forwards from premises to reach a conclusion. In contrast, a formal
rule, such as:

A.
Therefore, A or B, or both.

where B can be any assertion whatsoever, can be applied to its own conclusion.
In which case, it yields, for instance:

Therefore, (A or B, or both) or C, or both.

It can apply to this conclusion too, and so on in an infinite chain of deductions.
PSYCOP curbs the rule. It is relegated to the second set of rules that can be used
only to reason backwards from a given conclusion towards the premises. Even
though the theory did not allow individuals to infer their own conclusions (cf.
the opening example of an inference), it was the high point of accounts of
human deduction based on mental logic.

One premonition of problems to come concerned the following rule, which
holds in logic for the material conditional:

It is not the case that if A then B.
Therefore, A and not B.
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PSYCOP excluded this rule, because it included only those that “the indi-
vidual recognizes as intuitively sound” (Ibid. p. 104). In fact, most people do
not accept this rule, and take the denial of the conditional to be: If A then
not B.
What has become clear since PSYCOP is that the idea that everyday deduc-

tions depend on orthodox logic has several fatal impediments. The first is that
the logic allows infinitely many valid conclusions to follow from any set of
premises (e.g., the chain of inferences introducing or above).
The second impediment is that given any premises, even self-contradictory

ones, orthodox logic never implies that a valid conclusion should be retracted.
Consider, for instance, the following premises:

The Prime Minister lied to the Queen.
If the Prime Minister lied to the Queen then he resigned.

Both logic and common sense suggest the conclusion:

The Prime Minister resigned.

But suppose that did not happen. Orthodox logic and common sense now part
company. Logic says nothing. The fact contradicts the conclusion, but in logic a
self-contradiction implies any conclusions whatsoever. Hence, orthodox logic is
monotonic, because with more premises, more conclusions follow. It never
requires a conclusion to be retracted, not even one that facts contradict.
Common sense says, on the contrary: give up the conclusion, think again about
the premises, and try to find an explanation that reconciles the inconsistency.
Everyday reasoning is therefore nonmonotonic (or “defeasible”): more premises
can lead to the retraction of earlier conclusions and to the revision of premises.
Some theorists propose that nonmonotonic logics – systems designed to handle
the withdrawal of conclusions – underlie human reasoning (Stenning & Van
Lambalgen, 2012), and defeasibility is built into the model theory (Johnson-
Laird, Girotto, & Legrenzi, 2004).
The third problem concerns the consistency of a set of assertions, that is,

whether they can all be true at the same time. People tend to reject inconsistent
assertions if they notice the inconsistency: at least one of them must be false.
Logic has rules for proving conclusions, but it is not obvious at once how to use
them to assess the consistency of a set of assertions. In fact, a general method is:
if the negation of one assertion in the set follows from the other assertions, then
the set is inconsistent. Otherwise, after an exhaustive but fruitless search for a
proof, the set is consistent. The procedure seems implausible in everyday life.
And experiments show that contrary to its prediction, consistency is not harder
to deduce than inconsistency – it can even be easier (e.g., Johnson-Laird et al.,
2000). How people decide whether or not assertions are consistent has a simple
procedure: just determine whether or not the assertions have a model.
Meanwhile, the implausibility of orthodox logic for reasoning in daily life
may explain why it has not led to a simulation of deductions from everyday
assertions as opposed to their logical forms.
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15.4 The First Algorithmic Theory of Human Reasoning

The first algorithm designed to simulate an element of human
reasoning was a step towards a plausible general theory. The algorithm was
formulated to explain a striking phenomenon of how people test hypotheses.
Wason (1968) devised a task that examines the potential evidence that naive
individuals select to test the truth or falsity of a general hypothesis, such as:

If people have cholera then they are infected with a bacterium

or its equivalent:

All people who have cholera are infected with a bacterium.

There are two sensible ways to test the hypothesis. One way is to examine a
sample of people who have cholera and check whether they are all infected with
a bacterium. Another way, albeit less practical, is to test a sample of people who
are not infected with a bacterium and check whether any of them have cholera.
Each method rests on the principle that a person with cholera who is not
infected with a bacterium is a counterexample that establishes the falsity of
the hypothesis. Popper (1959) argued that potential falsifiability distinguishes a
science, such as astronomy, from a nonscience, such as astrology. Wason
therefore designed his “selection task” to test whether naive individuals grasp
the importance of counterexamples.

In the original version of the task (Wason, 1968), the experimenter lays four
cards out in front of a participant:

E K 2 3

The participant knows that each card has a letter on one side and a number on
the other side. The task is to select all and only those cards to turn over to
determine the truth or falsity of the general hypothesis:

If there is a vowel on one side of a card then there is an even number on the
other side.

Most people select the E card alone, many select both the E and 2 cards, and a
few select the three cards E, 2, and 3. What’s striking is how few people select
the two cards: E and 3. Yet, they are the only two cards needed to evaluate the
hypothesis. The K card is irrelevant, as people realize, because whatever is on its
other side cannot refute the hypothesis. But, so too is the 2 card, for the same
reason. Yet, the 3 card is crucial: if there is an A on its other side, it is a
counterexample to the hypothesis, and thereby falsifies it.

The failure to select a potential counterexample shocked psychologists and
philosophers (see Ragni, Kola, & Johnson-Laird, 2018, for the history).
Defenders of human rationality argued that the task was a trick, that it was
overcomplicated, and that it was impossible for human reasoners to be irrational.
Yet, this claim is like arguing that it is impossible to break the rules of bridge,
because, if you do, you are no longer playing bridge (Ramsey, 1990, p. 7).
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Johnson-Laird and Wason (1970a) published a theory and an algorithm for
how people carry out the selection task. The algorithm was in a flowchart, not a
program, because computers were not accessible to psychologists in those days.
It assumed that individuals used the meaning of the hypothesis to guide their
selection of evidence. It implemented Wason’s idea of two processes in
reasoning: a reliance on intuition, now known as “system 1,” and, somewhat
rarer, a switch to deliberation, now known as “system 2.” So, the theory was an
instance of what nowadays is called a “dual process” account (see also Sun,
2016, for an architectural account of dual process theories). The alternative
theories of the selection task – and there are at least sixteen of them – focus on
what is computed rather than how.
The algorithm works as follows (see Ragni et al., 2018): it first makes a list

of those items of potential evidence to which the hypothesis refers. If the
general conditional, if p then q, is taken to imply its converse, if q then p, then
both p and q are listed as potential evidence. Otherwise, only p is on the list.
With no insight into the role of counterexamples, the algorithm selects the
items on the list. But, with partial insight, it adds any further item that could
verify the hypothesis. So, if q is not on the list, it is selected now, because it
could verify the hypothesis. But, if there are no such further items, the
algorithm adds any item that could falsify the hypothesis. So, if q is already
on the list, the simulation adds not-q because it can falsify the hypothesis,
yielding the selection of three items: p, q, and not-q. With insight into falsifi-
cation from the outset, the algorithm selects only items that are potential
counterexamples to the hypothesis, i.e., p and not-q.
A recent computer simulation used probabilistic parameters governing the

interpretation of the conditional and whether insight occurs. A meta-analysis of
228 experiments corroborated the algorithm’s principal predictions: the selec-
tion of an item is dependent on other selections rather than independent of
them, the selections tend to be the four predicted sets of items listed above, and
manipulations such as the use of hypotheses about everyday matters enhance
the selection of potential counterexamples. Only one other theory was consist-
ent with these predictions, and it was ruled out by its inability to predict the
selection of the three cards, p, q, and not-q, other than by guesswork. Yet, this
selection was the most frequent in one study (Wason, 1969). The simulation fit
the data from the experiments well. Its code and that of all the model-based
programs referred to in this article are available at www.modeltheory.org/
models/.
Science and the selection task rely on general hypotheses. Their interpretation

in logic as material conditionals has several implausible consequences. One of
them is that a conditional, such as:

If anything is a quark then it forms composite particles

is equivalent to its contrapositive:

If anything does not form composite particles then it is not a quark.
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The equivalence yields a well-known “paradox” of confirmation (Hempel,
1945). For example, a duck-billed platypus corroborates the hypothesis about
quarks, because a platypus does not form composite particles and is not a
quark. But, matters are still worse, because if quarks do not exist, then the
general hypothesis about them is bound to be true. Its truth is vacuous, because
it can be false only in case a quark exists – and does not form composite
particles. The mental model theory of reasoning was formulated to solve such
puzzles as the paradox of confirmation.

15.5 The Algorithms That Underlie Model-Based Reasoning

The model theory asserts that people do not use logical rules to reason,
but instead envisage the possibilities compatible with the meanings of premises.
They build mental models that represent these possibilities. The crucial distin-
guishing characteristic of a mental model is that it is iconic, that is, it has the
same structure as what it represents. The human reasoning engine operates on
the principle that a conclusion follows from the premises provided that they
have no model that is a counterexample. What complicates reasoning are the
meanings of assertions. Consider the following weather report:

It’s rainy or cold, or both.

From this disjunction, people make the following deductions (Hinterecker,
Knauff, & Johnson-Laird, 2016):

It is possible that it’s rainy.
It is possible that it’s cold.
It is possible that it’s rainy and cold.

The disjunction refers to a conjunction of these three exhaustive possibilities,
and rules out as impossible the case in which it is not rainy and not cold. Each
possibility holds in default of knowledge to the contrary. So, if a discovery
reveals that it isn’t rainy, then this fact eliminates two of the possibilities above,
and it follows that it’s cold, because that’s the only possibility. But, if in fact it
isn’t cold either, then the disjunction is false: the facts have ruled out all the
possibilities to which it refers. In short, the model theory’s semantics for
sentential connectives is that they refer to exhaustive conjunctions of possibil-
ities that each hold by default. However, because a conjunction, and, refers to
just one possibility, it asserts a fact.

The semantics ensures that the model theory is nonmonotonic. And it has a
striking consequence: none of the inferences above is valid in orthodox logic.
The relevant logic has to deal with possibilities – it is a modal logic, of which
there are infinitely many distinct sorts (e.g., Hughes & Cresswell, 1996).
A persistent misconception of the model theory is that it has the same semantics
as logic (e.g., Oaksford & Chater, 2020, p. 123). To understand how they differ,
consider the first conclusion above: it is possible that the weather is rainy.
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For most people, the inference is obviously valid. But, here is a counterexample:
suppose that it is impossible that it is rainy, but it is cold. The disjunctive
premise that it’s rainy or cold or both is true, but the conclusion that it is possible
that it’s rainy is false – in fact, it is impossible. And so the inference is invalid in
all normal modal logics. In the model theory, the inferences are valid by default,
i.e., new information can overturn them. Sentential connectives therefore have a
default semantics: reasoning in daily life is nonmonotonic. Table 15.1 illustrates
algorithms for model-based reasoning: it shows how computational implemen-
tations make use of this semantics to build and reason with models.
The model theory postulates a default semantics for conditionals too. An

assertion such as:

If it’s rainy then it’s cold

asserts that it is possible that it’s rainy, which in turn presupposes that it is
possible that it isn’t rainy (Johnson-Laird & Ragni, 2019). So, the conditional
can be paraphrased as:

It is possible that it’s rainy and that it’s cold, and it is possible that it’s
not rainy.

This paraphrase unpacks into an exhaustive conjunction of three default
possibilities:

It is possible that it’s rainy and that it’s cold.
It is possible that it’s not rainy and that it’s not cold.
It is possible that it’s not rainy and that it’s cold.

Individuals make these inferences, which are listed in the order in which
children make them as the capacity of their working memories increases (see,
e.g., Barrouillet & Lecas, 1999). Conditionals presuppose the possibility that
their if-clauses do not hold, and the key point about presuppositions is that they
are true for both the affirmation of an assertion and its negation, e.g., it has
stopped raining presupposes that it was raining, and so too does it has not
stopped raining. The negation of the conditional above is therefore:

If it’s rainy then it is not cold.

In a program simulating sentential reasoning, the intuitive system 1 represents
possibilities using mentalmodels in which each model of a possibility represents
only those clauses in the conditional that hold in that possibility. The mental
models of a conditional, If A then B, are:

A B
. . .

The first model represents the default possibility of A and B, and the second
model allows for other possibilities such as those in which not-A holds. (If either
A or B is itself a compound assertion then its semantics is taken into account in
building the models.) In contrast, the deliberative system 2 represents the
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Table 15.1 Seven basic functions that underlie model-based reasoning illustrated for spatial reasoning: the name of the function, its input, its
output, and pseudo-code for its algorithm. The appropriate function is called as a result of a procedure that checks which referents in a premise
already occur in at least one model. Spatial models have three deictic axes: left-right, above-below, and front-behind. Algorithms refer to
additional functions not included in the table, e.g., RETRIEVE, ADD, and COMBINE, whose operations are self-explanatory

Function Input Output Algorithm

1. START a mental model Premise:
d is to the right of e

Spatial model:
e d

1. RETRIEVE subject (d) and object (e) of premise.
2. RETRIEVE semantics of spatial relation.
3. ADD tokens to a model to satisfy semantics.
4. RETURN model.

2. UPDATE a mental model by
adding a referent

Model & premise:
e d
d is to the left of f

Spatial model:
e d f

1. IF subject (d) not in model:
2. ADD subject to model according to semantics.
3. ELSE IF object (f) not in model
4. ADD object to model according to semantics.
5. RETURN model.

3. UPDATE a mental model by
adding a relation

Model & premise:
e d
e is larger than d

Spatial model
e d

1. MODIFY subject and object to satisfy semantics
of relation.

2. VALIDATE(model, premise)

4. VALIDATE that an assertion
holds in a model

Model & assertion:
e d
d is to the right of e

Truth value:
True

1. IF subject (d) and object (e) satisfy relation in model.
2. IF system 1 enabled:
3. RETURN True.
4. ELSE IF system 2 enabled:
5. SEARCH(model, assertion) for counterexample.
6. ELSE
7. IF system 1 enabled:
8. RETURN False.
9. ELSE IF system 2 enabled:
10. SEARCH (model, assertion) for example.
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Table 15.1 (cont.)

Function Input Output Algorithm

5. CONJOIN two models
according to a relation
between referents in each
of them

2 models & premise
1: e d
2: f g
f is above d

Spatial model:
f g

e d

1. IF subject (f) occurs in model 1 and object (d)
occurs in model 2 OR subject occurs in model
2 and object occurs in model 1:

2. COMBINE models 1 and 2 according to relation
(or its converse) to make a new model; ADD
new axis to model if necessary.

3. RETURN new model.

6. SEARCH for a
counterexample to a
conclusion

Model & conclusion:
d e f
f is to the right of e

Spatial model &
evaluation
d f e
Conclusion is
possible

1. FOR each R in a set of revisions to model, where R
satisfies premises:

2. IF R satisfies conclusion:
3. RETURN R and conclusion is possible
4. ELSE
5. RETURN model and conclusion is necessary

7. SEARCH for an example of a
conclusion

Model & conclusion
d e f
f is to the left of e

Spatial model &
evaluation
d e f
Conclusion is
impossible

1. FOR each R in a set of revisions to model, where R
satisfies premises:

2. IF R satisfies assertion:
3. RETURN R model and conclusion is possible
4. ELSE
5. RETURN model and conclusion is impossible
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conditional by fleshing out mental models into fully explicitmodels representing
all the assertion’s clauses in each model, using negation (symbolized as “¬”) to
represent their falsity in the possibility. So, the fully explicit models of the
conditional are as follows, where the possibilities of not-A are presuppositions,
and each default possibility in the conjunction is shown on a separate line:

A B
¬ A ¬ B
¬ A B

The program takes the meanings of negation (not) and of conjunction (and) to
be fundamental, and it uses these meanings to define all the other connectives.
For instance, an exclusive disjunction, Either A or else B but not both, is defined
for system 2 as the following conjunction of two default possibilities:

A ¬ B
¬ A B

Since sentential connections can be embedded, as in, A and (C or D or both),
the system operates recursively. For instance, B above might denote the models
for the assertion, C or D or both.

The meaning of negation refers to the complement of the set of models for the
assertion that is negated. For example, the complement of the following set of
models (for the biconditional assertion if and only if A then B):

A B
¬ A ¬ B

is:

A ¬ B
¬ A B

So, a set and its complement exhaust all the possible combinations of the items
and their negations. But, negation ignores presuppositions, because they hold
for the negated assertions too. Hence, the negation of a conditional, If A then B,
yields the models:

A ¬ B
¬ A ¬ B
¬ A B

And they are the models of the conditional: If A then not B.
Conjunction is needed for compound premises, because it is part of the

meaning of each connective. It is also needed to conjoin the models for one
premise with those for another premise (see Table 15.1 for an example of how
spatial models can be combined).

We illustrate how conjunction operates for models of compound assertions.
It begins with two sets of models, such as:
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A B
¬ A ¬ B

and:

B ¬ C
¬ B C

It then forms their pairwise conjunctions – but if a model from one set contains
an element, such as B, and a model from the other set contains its negation, ¬B,
it would be a self-contradiction, and so it does not return a model and moves on
to the next pairwise conjunction. The conjunction of the two sets of models
above proceeds as follows:

A B and B ¬ C yields A B ¬C.
A B and ¬ B C do not conjoin because B contradicts ¬B.

¬ A ¬ B and B ¬ C do not conjoin because ¬B contradicts B.
¬ A ¬ B and ¬ B C yields ¬A ¬B C.

The result is therefore the conjunction of these two models of default possibilities:

A B ¬ C
¬ A ¬ B C

The semantics of negation and conjunction suffice to capture the meaning of the
basic sentential connectives. Table 15.2 describes the semantics for the mental
models of system 1 and for the fully explicit models of system 2.

Table 15.2 The semantics of compound assertions depending on sentential
connectives (in systems 1 and 2), where A and B stand for atomic or compound
assertions. Each assertion yields a conjunction (“and”) of models of default
possibilities, which are each shown in a separate row. Each row shows a model,
which is, in turn, a conjunction of models of clauses or their negations (“¬”), or a
mental model with no explicit content (“. . .”)

Assertion

Semantics for
mental models
in system 1

Semantics for fully
explicit models
in system 2

If A then B. A B
. . .

A B
¬A ¬B
¬A B

If and only if A then B. A B
. . .

A B
¬A ¬B

A or B or both. A
B

A B

A ¬B
¬A B
A B

A or else B but not both. A
B

A ¬B
¬A B
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Recent computational models contain several refinements that are needed to
simulate human reasoning (Khemlani et al., 2018; Khemlani & Johnson-Laird,
2022). They include:

• A component that uses a knowledge-base to modulate the interpretation of
compound assertions by blocking possibilities.

• A defeasible (i.e., nonmonotonic) component that retracts a conclusion in the
face of a contradictory fact, withdraws a premise to restore consistency, and
seeks a causal explanation in the knowledge-base to resolve the original
inconsistency.

• A component that simulates the verification of assertions and that can con-
struct counterfactual assertions, which describe events that were once possible
but that did not occur (see, e.g., Byrne, 2005).

All of the computational models implement the model theory’s general prin-
ciples about deductive conclusions, which follow in default of knowledge to the
contrary:

• If a conclusion holds in all the models of the premises then it is necessary
given the premises.

• If it holds in most of the models of the premises then it is probable.
• If it holds in some model of the premises then it is possible.
• If it holds in none of the models of the premises then it is impossible.

Likewise, a set of assertions is consistent if they have a model, and inconsistent
if a model cannot be built from the premises (i.e., a situation in which the
program constructs an empty model). The principal components for simulating
deduction are illustrated for spatial reasoning in Table 15.1.

A major and unexpected consequence of the original simulations of the
model theory is that intuitive reasoning based on models led to the discovery
of many compelling illusions, which only deliberation with fully explicit models
can correct (Khemlani & Johnson-Laird, 2017). Here is an example based on
two exclusive disjunctions:

Either there’s fog or else there’s snow.
Either there isn’t fog or else there’s snow.
Can both of these assertions be true at the same time?

The mental models of the two disjunctions are respectively:

fog
snow

and:

¬ fog
snow

A model of snow is common to both disjunctions, and so individuals should
respond, “yes, the two assertions can both be true.” However, the fully explicit
models of the two disjunctions are:
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fog ¬ snow
¬ fog snow

and:

¬ fog ¬ snow
fog snow

No possibility is common to these two sets of models: for one disjunction it
snows without fog, and for the other disjunction it snows with fog. Their
conjunction yields an empty model. Most people judge that the two disjunctions
can both be true, but these fully explicit models show that doing so is wrong.
The model theory elucidates the earlier description of the “paradox” of

confirmation. A conditional hypothesis, If A then B, calls for two conditions
to hold for it to be true. First, there must be an instance in which A and B hold,
because the other possibilities to which conditional refers also hold for its
negation, if A then not B. Second, there must be no instances in which A and
not B hold, because they refute the conditional. The hypothesis about quarks
therefore demands the existence of quarks that form composites, and the
nonexistence of quarks that do not form composites. So, a duck-billed platypus
is irrelevant to the truth or falsity of the hypothesis.

15.6 Deductions of Spatial Relations

The inferences in the previous section concern relations between
clauses, but many sorts of deduction depend on relations within them. These
relations can occur in scenes, diagrams, and descriptions, and people can make
deductions from any of these sources. Deductions from descriptions of temporal
relations are complicated, because they depend on several distinct features of
language – tense and aspect, connectives such as “before” and “during” (e.g.,
Kelly, Khemlani, & Johnson-Laird, 2020), and the temporal consequences of
different sorts of verb (Schaeken, Johnson-Laird, & d’Ydewalle, 1996).
Likewise, when individuals make deductions from descriptions of algorithms
that carry out permutations of a sequence of entities, they rely on kinematic
models in which spatial relations change over time (see Khemlani et al., 2013).
Simple but representative cases of relational deductions concern spatial

layouts. Consider this inference (from Johnson-Laird, 1975):

The black ball is directly beyond the cue ball.
The green ball is on the right of the cue ball, and there is a red ball between them.
So, if I move so that the red ball is between me and the black ball, then the cue
ball is to the left.

The deduction is deictic in that it depends on the speaker’s point of view. It also
depends on deictic interpretations of phrases such as “on the right.” It is
possible to frame axioms that capture their logical properties, and to use logic
to make such deductions. But, the evidence is overwhelming that naive
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individuals base their inferences instead on mental models of spatial layouts
(Byrne & Johnson-Laird, 1989; Knauff, 2013; Ragni & Knauff, 2013; Tversky,
1993). These authors have developed simulations for deictic spatial deductions.

The first model-based algorithm of spatial deductions illustrates the principal
functions that simulations need in order to use models to make inferences. Its
parser constructs a representation of the meaning of each premise. For the premise:

The triangle is on the right of the circle

it constructs a semantics that specifies which axis is incremented in order to
locate the triangle in relation to the circle, i.e., keep adding 1 to the value on the
left-right axis of the location of the circle, and hold its values on the front-back
and up-down axes constant. The code representing this semantics is used in all
the main functions for constructing and manipulating models (see Table 15.1).

What happens in the simulation depends on the current context, i.e., on
which entities, if any, are already represented in a model. This context can elicit
any one of seven basic procedures, which are typical for deductions in general.
Three of them occur in the processes of system 1:

1. Start a new model. The procedure inserts an item representing a referent into
a new model.

2. Update a model with a new referent. The procedure puts an item representing
the new referent into the model according to its relation to a referent
already there.

3. Update a model with a new relation. The procedure puts it into the model
provided that it is consistent. Otherwise, it returns the empty model, but
system 2 calls procedure (7) below.

4. Validate whether an assertion about a relation between referents is true or
false in existing models. System 1 returns the truth value. If it is true, system
2 calls procedure (6) below, which searches for a model that is a counter-
example to the assertion; if it is false, system 2 calls procedure (7) below,
which searches for an example of the assertion.

The remaining three procedures depend on access to more than one model, and
therefore occur only in system 2:

5. Combine two existing models into one according to a relation holding
between a referent in one model and a referent in another model.

6. Search for a counterexample, i.e., a model in which an assertion is false. If the
search fails then the assertion follows as necessary from the previous prem-
ises. If the search succeeds then the assertion follows only as a possibility.

7. Search for an example, i.e., a model in which the assertion is true. If the
search fails then the assertion is inconsistent with the previous assertions,
and it is retracted. In some simulations, this result elicits a defeasible com-
ponent that amends the premises and searches for a causal explanation that
resolves the inconsistency (see, e.g., Johnson-Laird et al., 2004). If it succeeds
then the assertion follows as a possibility.
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Table 15.1 provides examples of how these procedures operate for spatial
reasoning.
One point bears emphasis. The simulation of system 2’s searches for counter-

examples and examples works because the system has access to the representa-
tions of the semantics of a premise. Without this access, it would be impossible
for the system to keep track of whether or not an alternative model still
represents the premises. When a description is consistent with more than one
layout, system 1 builds whichever model requires the least work.
This idea lies at the heart of PRISM, a more recent model-based simulation

of two-dimensional spatial deductions (Ragni & Knauff, 2013). It implements
such reasoning using principles similar to those of the earlier algorithm,
e.g., its initial preferred mental models are constructed without disturbing
the arrangement of entities already in the model. But, PRISM introduces
several innovations. The most important is that its prediction of the difficulty
of an inference reflects, not the search for an alternative model, but the
number of operations required to construct it, which depends on local trans-
formations of the initial model. Those models that call for a longer sequence
of these transformations are therefore likely to be overlooked. The source
code of both simulations can be found on the model theory’s website (https://
modeltheory.org/models/).
The spatial algorithms have no need for postulates to capture logical postu-

lates of relations, such as the transitivity of the deictic sense of “on the right of,”
because they are emergent properties from the use of meanings to construct
models. Hence, a model of these two assertions:

The triangle is on the right of the circle.
The circle is on the right of the square.

yields the transitive conclusion:

The triangle is on the right of the square.

No model of the premises is a counterexample to it, and so it follows necessarily.
This emergence of logical properties has a further advantage in that it

accounts for a different sort of spatial reasoning – deductions that depend on
the intrinsic parts of entities (see Miller & Johnson-Laird, 1976, section 6.1.3).
Consider these assertions:

Matthew is on Mark’s right.
Mark is on Luke’s right.
Luke is on John’s right.

They can refer to the deictic positions of the four individuals from the speaker’s
point of view, but they can also refer to their positions in terms of the intrinsic
right-hand sides of human beings. A model of these spatial relations depends,
first, on locating Mark, then using his bodily orientation to establish the
intrinsic axes that specify his right-hand side. The same sort of simulation to
the deictic ones above can then insert a representation of Matthew on the lateral
plane passing through the right-hand side of Mark. So, if the four individuals
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are seated down one side of a rectangular table (as in Leonardo’s Last Supper)
then the transitive conclusion, Matthew is on John’s right, follows. But, if they
are seated around a circular table, transitivity depends on the size of the table,
and on how close they are sitting to one another, e.g., Matthew could be sitting
opposite John, or even on his left-hand side. These vagaries reflect those of the
different situations (Johnson-Laird, 1983, p. 261), and no known simulations of
this sort of spatial inference exist.

15.7 Deductions with Quantifiers

Quantifiers are phrases such as, all musicians, some painters, and no
sculptors. The most complex inferences depend on quantifiers, and the
mReasoner program simulates several sorts of quantified deductions (see
Khemlani & Johnson-Laird, 2022, and the model theory’s website for the
program). The simulation treats quantified assertions as relations between sets –
an idea that goes back to Boole (1854) and that was adopted early in the
development of the model theory, because it is the only way that models can
have the same structure as the situations that they represent (Johnson-Laird,
1983, p. 137 et seq.). So, the meaning of the assertion:

Some musicians are painters

is that individuals exist common to both sets. This semantics generalizes to
quantifiers that cannot be defined in orthodox predicate logic, such as: “more
than half the musicians.” Table 15.3 presents a representative set of quantifiers
and their set-theoretic meanings, which a computational model implements. Its
intuitive system works with a single model at a time. It can construct various
models of a given assertion in order to accommodate differences in reasoning
between individuals and within individuals from one occasion to another.
A typical model of the quantified assertion above is:

Table 15.3 Representative quantified assertions, and their set-theoretic meanings in
formal notations and informal paraphrases, where A and B denote sets of entities

Quantified
assertions

Set-theoretic
meanings Informal paraphrases

All A are B. A � B Set A is included in set B.
Some A are B. A \ B 6¼ ∅ Intersection of A and B is not empty.
No A is a B. A \ B ¼ ∅ Intersection of A and B is empty.
Some A are not B. A – B 6¼ ∅ Set of As that are not Bs is not empty.
Most A are B. | A \ B | > | A - B | Cardinality of intersection of A and B is

greater than that of As that are not Bs.
More than half of
As are Bs.

| A \ B | > | A | / 2 Cardinality of intersection of A and B is
greater than that of half of As.
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musician painter
musician painter
musician

painter

Each row represents a different possible individual who exists in default of
knowledge to the contrary. If neither individual of the sort represented in the
first two rows exists then the assertion is false.
The simulation elucidates how individuals draw immediate inferences from

one quantified assertion to another, such as the inference from All A are B to the
intuitive conclusion All B are A, which is possible but not necessary, and to the
deliberative conclusion, Some B are A, which is necessary granted that A’s exist.
As in the spatial algorithm, the simulation can add information from a subse-
quent assertion to update a model (see Table 15.1). Hence, the following
premises are those for a syllogism, that Aristotle was the first to study, and that
has had a long influence on logic and on psychological studies of deduction:

Some musicians are painters.
All painters are imaginative.

The second premise updates the model above of the first premise to yield the
following typical model:

musician painter imaginative
musician painter imaginative
musician

painter imaginative

The intuitive system 1 relies on heuristics in order to scan the model in order to
draw a conclusion. One heuristic reflects the order in which the model is
constructed, and another reflects the traditional idea that a negative premise
calls for a negative conclusion, and a premise with “some” calls for a conclusion
with “some.” As a result, system 1 delivers this conclusion from the model
above: some musicians are imaginative.
The deliberations of system 2 can search for an alternative model of the

premises, and if they find one, they can attempt to formulate a new conclusion
that satisfies all the current models of the premises. This search relies on the
sorts of operation that individuals used when they reasoned with different cut-
out shapes to represent different individuals, e.g., their most frequent operation
was to add a new sort of individual to a model, albeit one consistent with the
premises (see Bucciarelli & Johnson-Laird, 1999, Experiment 3). The resulting
simulation gives a more accurate account of syllogistic reasoning than other
rival theories (Khemlani & Johnson-Laird, 2022, and for descriptions of these
theories, see Khemlani & Johnson-Laird, 2012). It also allows for deductions
about possible sorts of individual, e.g.:

It is possible that only musicians who are painters are imaginative.

No complete simulation of reasoning with quantifiers exists. And the com-
pletion of the present account needs a solution to the recursive structure of
quantifiers, as in these examples:
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Every one of more than three of the seven girls . . .
Most of the teachers of all the children of some of the employees . . .

It needs an account of multiple quantifiers in an assertion (Johnson-Laird, 2006,
chapter 11), as in the following sequence of two deductions:

Chuck loves Di.
Everyone loves anyone who loves someone.
So, everyone loves Chuck.
So, everyone loves everyone.

It needs an account of quantified properties, whose analysis in logic calls for the
“second order” predicate logic (see Jeffrey, 1981, chapter 7):

Some member of the Royal family has all the desirable properties of a princess.
One desirable property of a princess is to be beautiful.
So, some member of the Royal family is beautiful.

Finally, it needs an account of inferences hinging on connectives and quanti-
fiers, e.g.,:

Either Chuck loves Di or he doesn’t.
Everyone loves anyone who loves someone.
So, either everyone loves everyone or no-one loves anyone.

The conclusion follows of necessity from the premises, but the inference is
difficult because it depends on the repeated updating of models of the premises.
For example, if Chuck loves Di, then everyone loves Chuck. The second premise
above can be used again to update the model of this situation in order to
represent that everyone loves everyone (see Cherubini & Johnson-Laird, 2004).

15.8 Deductions of Probabilities

Some psychologists argue that deductions depend, not on logic, but on
probabilities – an approach called the “new paradigm” (see, e.g., Oaksford &
Chater, 2020). One crux is the new paradigm’s treatment of the probability of
conditionals. It takes the probability of If A then B to equal the conditional
probability of B given A, an equality that philosophers sometimes refer to as “the
Equation.” For the model theory, the probability of a conditional should also fit
the Equation, provided individuals bear in mind that cases of not-A are presup-
positions. As described in Section 15.5, a conditional, if A then B, presupposes the
possibility of not-A, which therefore holds for the negation of the conditional. It
follows that the probability of the conditional is the proportion of cases of A in
which B occurs, because cases of not-A are irrelevant. Unlike the new paradigm,
however, the model theory postulates that probabilities underlie inferences only
when tasks implicate them, and evidence corroborates this assumption.
Individuals deduce different conclusions from: If the wine is Italian then it is red
than from If the wine is Italian then it is probably red (Goodwin, 2014).

A long-standing puzzle, which the new paradigm does not solve, is how
people deduce numerical probabilities from assertions that make no reference
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to them. One way is “extensional” (Tversky & Kahneman, 1983). They assume
in default of knowledge to the contrary that each model represents an equi-
probable possibility, and deduce the probability from the proportion of models
of these exhaustive possibilities in which the event occurs, or from the sum of
the frequencies of each of these possibilities (Johnson-Laird et al., 1999). For
example, the assertion:

There is a box in which there is at least a red marble, or else there is a green
marble and there is a blue marble, but not all three marbles

has the following two mental models of what is in the box:

red
green blue

On the assumption that the two models are equiprobable, they yield a probabil-
ity of ½ that the box contains a green and a blue marble, and a probability of
zero that it contains a red and a green marble. An experiment corroborated
these predictions. However, the fully explicit models of the assertion are:

red green ¬blue
red ¬green blue
red ¬green ¬blue

¬red green blue

They show that the two previous probabilities should both be ¼. So, as other
findings corroborated, mental models predict deductions of extensional prob-
abilities, and granted that models are equiprobable, system 2 yields valid
deductions of them. These predictions follow from a computational simulation
(https://modeltheory.org/models).
No extensional method is feasible to deduce the probability of a unique event,

such as:

Biden is re-elected President of the US.

A big mystery about such inferences, which people are happy to make, is where
the numbers come from and what determines their magnitudes. A theory and a
computer implementation of it solve the mystery (Khemlani, Lotstein, &
Johnson-Laird, 2015). The program deduces the probability of a unique event
in the same way as an extensional deduction except that the models it uses are not
of the event, but of evidence pertinent to it. The first step of inferring, say, the
probability of Biden’s re-election is to call to mind relevant evidence, such as:

Most incumbent US Presidents who run again are reelected.

Individuals build a single mental model of such incumbents to represent this
belief:

incumbent reelected
incumbent reelected
incumbent reelected
incumbent
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The first three rows represent incumbents who are reelected, but the last row
represents an incumbent who is not reelected. The numbers of individuals in
the model are not fixed, and can be modified during an inference, or even
tagged with deduced numerical values from other evidence, provided that they
do not contravene the meaning of the assertion. Because Biden is an incum-
bent, the model can be sampled to yield a representation of the probability of
his reelection. The intuitive system 1 constructs a representation of this
probability. It is “prenumerical” because it represents a magnitude in the
same way as infants and nonnumerate adults do (see, e.g., Carey, 2009). The
following diagram depicts the representation, in which for convenience
the main axis is from left to right:

|������ |

The left vertical represents impossibility, the right vertical represents certainty,
and the proportional length of the line between them represents a probability. It
can be translated into a description such as: “The reelection of Biden is very
likely: it is highly possible.”

Individuals are likely to consider other evidence, such as:

Presidents tend not to be reelected during periods of high inflation.

The probability inferred from this evidence has to be combined with the
previous probability. Most people do not know the correct way to form the
conjunction of two probabilities. According to the model theory, they seek an
intuitive compromise, and so the simulation sets up a pointer, ^, to represent the
probability based on the second piece of evidence within the representation of
the first probability:

|��^��� |

The simulation then shifts the pointer and the right-hand end of the line towards
one another. The two meet at a point corresponding to their rough average. It
represents the compromise probability of the event. The theory postulates that
intuition uses the same procedure to deduce the probability of a disjunction
from the probabilities of its two clauses.

In contrast, the deliberative system 2 can map analog magnitudes represent-
ing probabilities into numerical values. The major impediment to the rationality
of system 2 is ignorance. Individuals who have not mastered the probability
calculus do not know how to compute the probability of compounds, such as
conjunctions, disjunctions, or conditional probabilities. They can grasp that the
probability of the conjunction of two independent events is their product, that
the probability of a disjunction of inconsistent events is the sum of their
probabilities, and that the conditional probability of A given B is the subset
of the possibilities of B in which A occurs. The algorithm embodies these
principles, and experimental results have corroborated the errors in estimates
that often violate the principles of the probability calculus (Byrne & Johnson-
Laird, 2019; Khemlani et al., 2015).
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15.9 Conclusions

Psychological theories of deductive reasoning can take too much for
granted, so that what they predict about a particular inference is often
difficult to figure out (Johnson-Laird, 1983, p. 6). They may not predict
anything. It is too easy to construct psychological theories if they concern
only what conclusions people make and not how they make them. For
instance, the existence of over a dozen theories of syllogistic reasoning is
embarrassing for cognitive science (see Khemlani, 2021). Few of them have
computational simulations. Simulations of the model theory yielded surpris-
ing predictions about human rationality, such as inferences that are cognitive
illusions (see Section 15.5).
An account solely of what the mind computes can be embarrassing in another

way. Its computer implementation may reveal its intractability. For instance,
several theories extend Ramsey’s (1990, p. 155) idea of how to determine the
credibility of a conditional: granted that its if-clause is consistent with a stock of
knowledge, assess the likelihood of its then-clause in that same stock. Yet, a
check of whether the if-clause is consistent with a set, say, of ten beliefs takes far
too long to be realistic. In the worst case, it can take 210 assessments. A viable
theory of deduction must explain how humans overcome such intractability.
Hence, a prophylactic for all these problems is to ensure that a theory accounts
for human mental processes too, and to develop a simulation of them. The
preceding account shows how to base such simulations on mental models to
capture people’s intuitive mistakes, biases, and default assumptions, as well as
their ability to overcome their intuitions.
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16 Computational Models
of Decision Making
Joseph G. Johnson and Jerome R. Busemeyer

Computational models used to be the new kids in town for the field of decision
making (Busemeyer & Johnson, 2008), but this situation has dramatically
changed during the past decade. Computational modeling of decision making
has grown tremendously during this time interval, and these models have begun
to take a central position in the field (Oppenheimer & Kelso, 2015; Wedell,
2015). This chapter provides an overview of several computational approaches
to modeling decision behavior. It also provides an in-depth examination of
arguably the most well-studied approach, relying on a sequential sampling
framework, which can explain many common decision paradoxes used as a
sort of litmus test for decision-making theories. First, it should be noted that the
study of decision making is quite broad, and this can often lead to some
confusion in generalizing results or applying models. The focus of the models
presented in this chapter will be on preferential decision making (one chooses
what one likes), in contrast to inferential decision making (one predicts what is
correct) or problem-solving.

16.1 Introduction

Contemporary behavioral decision-making research typically credits
the work of von Neuman and Morgenstern (1944) with the formalization of
modern notions of decision theory. They proposed a set of axioms which,
collectively, implied the maximization of expected value, or utility, as a rational
prescription for decision making among options with probabilistic outcomes.
Similar notions have been applied to multiattribute options (such as consumer
goods), where utility is defined as a weighted combination of the attribute
values (Keeney & Raiffa, 1993). While these notions of decision making have
a strong normative foundation, empirical work calls into question the actual
maintenance of such axioms in human behavior. Psychologists, economists, and
others have documented several robust violations of preference axioms, where
human choices seemed to indicate inconsistent preference among options
depending on situational factors beyond the normative implications of utility
theory. For example, in the domain of risky decision making, violations of the
independence axiom have been found such as the famous Allais (1953) paradox,
where adding $1 million to two options reversed choice proportions between

499

https://doi.org/10.1017/9781108755610.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.020


them. Formally, preference between gamble A mixed with C and gamble
B mixed with C should not depend on the common consequence C because it
cancels out, but in fact preferences do change (see also Kahneman & Tversky,
1979). A collection of effects such as these have been used to classify utility-
based models and thus serve as a set of historical benchmarks by which to test
the newer computational models.
In the domain of consumer preferences, violations of what are considered

rational choice principles can be induced by adding options to choice sets to
produce what are called choice context effects. Again, preferences seem to
change among a pair of options depending on the presence of additional infor-
mation, here in the form of the constellation of options in the choice set.
Specifically, these include a similarity effect and compromise effect that violate
a principle known as independence of irrelevant alternatives (Tversky, 1977).
A similarity effect occurs when option A is chosen more frequently than B in a
binary choice, but adding option C, which is similar but competitive with A,
“steals” choice share from A so that B is chosen more frequently than A.
A compromise effect occurs when the additional option makes B appear as a
compromise, but again reverses the choice frequencies (Simonson, 1989).
A third effect, which violates a different principle called regularity (Huber,
Payne, & Puto, 1982), is an attraction effect occurring when the added option
is similar but dominated by one of the two existing options, which reverses
binary choices but opposite the similarity effect.
Finally, decades of research illustrated that simply the manner by which one

asks people what they prefer could influence relative preference among options.
For example, when asked to choose directly between two options, people would
select one over the other, but also assign a lower price to it compared to the
other (Lichtenstein & Slovic, 1971; Lindman, 1971). Which indicates a “true
preference” here, the one selected or the one deemed to be worth more?
Furthermore, whether the price solicited is from the perspective of a buyer,
seller, or neutral party also affects preference orderings among a set of options
(e.g. Birnbaum & Stegner, 1979), which cannot be accounted for if utility is the
sole metric of decision preferences.
These findings present serious challenges to the basic foundations of the

utility-based approaches (see Rieskamp, Busemeyer, & Mellers, 2006, for a
summary of why). Some research, such as the highly influential prospect theory
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) and that by
Birnbaum (e.g. Birnbaum, 2008), seek to allow for subjective evaluation of
the components of utility (e.g. diminishing marginal valuation, nonlinear
weighting of probabilities) in order to reconcile experimental findings with the
utility-based approach, with some degree of success. However, it quickly
became apparent that no degree of modifying assumptions in utility theories
would adequately account for individual behavior in many situations, even if it
served as a useful aggregate model of behavior.
Coinciding with the mounting collection of descriptive shortcomings in this

algebraic approach to study individual decision behavior, there were two
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important historical trends in behavioral research that served to produce
contemporary computational models of decision making. First, cognitive
psychology saw a shift away from behaviorism towards information-
processing theories to understand human cognition. For example, rather than
assuming that individuals adhere to some estimation of expected utility, or
even just act as if they do, the field began to focus on what strategies they
might actually be using. This led to alternative approaches that were success-
ful in accounting for many of the trends identified in experiments that chal-
lenged the algebraic models. An early, simple instance that explains some
context effects above was Tversky’s (1972) elimination-by-aspects model that
proposed individuals sequentially consider attributes until a decision is made.
A second element that proved critical for the rise of current computational
models was the development of new techniques for gaining insight into the
cognitive processes proposed by new theories. While choice outcomes were
sufficient for testing axioms and predictions of utility-based theories, the
newer process-based models made additional predictions about task behaviors
such as information search. Thus, researchers also began to use novel process-
tracing techniques in the lab to try and verify these processing claims, such as
by seeing which attributes they queried, collecting “think aloud” descriptions
from participants during the task, and recording response times (Payne, 1976;
Payne & Braunstein, 1978).

16.2 Computational Models in Decision Making

In general, computational models of decision making are differenti-
ated from other (especially algebraic, utility-based) approaches by the reliance
on formal, procedural steps or equations that reflect cognitive processes and
are amenable to formal programming, simulation, or other predictive means.
Following Johnson and Frame (2019), this chapter conceptualizes a computa-
tional model as articulating (1) a set of structural elements; (2) formal proced-
ures defining how each element operates; and (3) a set of parameters that
governs any important variables in the procedural steps. For example, an
elimination-by-aspects model such as Tversky’s (1972) specifies (1) a compari-
son structure that proceeds in a feature-wise fashion; (2) a set of equations
governing the (stochastic) selection and comparison of features; and (3) a set
of parameters including the selection probabilities across features, and the
comparative threshold for determining a sufficient difference for “elimin-
ation.” In contrast, algebraic models specify a single element, “choose max-
imum value,” where the utility equations represent some implicit calculation
rather than actual procedural steps. This also leads to different interpretations
of some concepts across the two approaches. For example, the notion of
“weighting” serves as a multiplier to adjust feature values in utility models,
but an actual process of differential attention to features during deliberation
in computational models.
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16.2.1 Collections of Heuristics and Strategies

Some of the earliest approaches to developing formal process models began
with Tversky’s (1972) elimination-by-aspects model described above, or the set
of heuristics described by Thorngate (1980), such as counting the number of
“better than average” outcomes or attributes. Gigerenzer and colleagues (see
Gigerenzer & Gaissmeier, 2011, for a review) continued work in this tradition,
focusing on simple strategies that work well by virtue of their match to particu-
lar tasks or environments and providing empirical support for such. As the
number of plausible strategies grows, it becomes increasingly important to
specify how to determine which candidate strategy is employed in a specific
case. Beach and Mitchell (1978) proposed a typology for a variety of decision
strategies as well as a cost-benefit mechanism for selecting among them. Payne,
Bettman, and Johnson (1988, 1993) developed this notion further to include
several specific algorithms which they compared using simulations as well as
empirical tests including process-tracing data. Rieskamp and Otto (2006) pro-
posed a model based on learning strategy performance based on feedback, and
Lieder and Griffiths (2017) expanded this notion to describe strategy selection
as a reinforcement learning process that allows individuals to make rational
speed-accuracy tradeoffs. While there does seem to be intuitive appeal in
identifying distinct strategies, especially if there are mechanisms to select among
them, it can also be difficult to have confidence that all candidate strategies are
considered. That is, any approach that assumes a “collection of strategies”must
ensure that each possible member of the collection has been identified and fully
specified. Discriminating among them can be especially difficult when they lead
to similar predictions on multiple measures.

16.2.2 Cognitive Architectures

Some have proposed more general notions of cognitive operations that drive
higher-order processes, including decision making. One popular example of a
cognitive architecture is the use of formal systems such as ACT-R (Anderson,
1996; Marewski & Mehlhorn, 2011), SOAR (Laird, 2012) or Clarion (Sun,
2016). Their use of “production rules” is similar to other approaches as well,
such as Payne et al.’s (1993) use of “elementary information processing units” to
describe strategy complexity (effort). Gonzalez and her colleagues (Lejarraga,
Dutt, & Gonzalez, 2012) have developed an instance-based learning (IBL)
approach to considering decision-making behavior. This assumes that past
decisions are stored in “instances” which contain information about the options
and situation (task factors), the choice that was made, and the outcome of that
choice. When similar situations are encountered, the relevant stored instances
are activated to a degree that is based on the frequency and recency of their
previous use. The outcomes of the decisions for each option across all the
similar instances are “blended” to produce a single value associated with each
outcome, from which the greatest is chosen for the current situation.
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Afterwards, this current situation, the choice, and outcome from its selection
then become the next instance stored in memory for subsequent decisions. IBL
models are very good at describing dynamic decisions and those that are
repeated or based on multiple trials, and more generally encapsulating the role
of memory in decision making.

16.2.3 Connectionist and Neural Models

Connectionist models of decision making take advantage of notions similar to
those in IBL, such as activation and learning, but typically have a more
concerted emphasis on the neural dynamics to model decision making with
biologically plausible elements. One of the earliest neurally inspired models of
value-based decision making was by Grossberg and Gutowski (1987). They
presented a dynamic theory of affective evaluation based on an opponent
processing network called a gated dipole neural circuit. This neural circuit
was used to provide an explanation for the probability weighting and value
functions of Kahneman and Tversky’s (1979) prospect theory. More recently,
Usher and McClelland (2001, 2004) developed a connectionist decision model
based on neural dynamics that has been shown to account for many of the
context effects among consumer goods presented earlier (Busemeyer et al.,
2019; Wollschläger & Diederich, 2019). A different connectionist approach,
the Parallel Constraint Satisfaction (PCS) models, have also been successfully
applied to a wide range of behavioral decision phenomena (see Glöckner &
Betsch, 2008; Glöckner, Hilbig, & Jekel, 2014). These models assume bidirec-
tional influences between information and decision options through spreading
activation among weighted connections. The activation and stability of the
model is determined by neurally inspired dynamic equations. Such models can
uniquely account for the reciprocal influence of choice options on information
search processes, which can change behavior during a decision task in a way not
specified with other approaches. Colas (2017) presented a comparison of eight
neurally inspired models that vary across different properties, and reviews
evidence to suggest that these offer a better account both of choice and decision
time than standard cognitive models.

16.2.4 Sequential Sampling Models

Sequential sampling models have a long and successful tradition in cognitive
science, including domains from perceptual discrimination (Link & Heath,
1975) to probabilistic inferences (Wallsten & Barton 1982) to categorization
(Nosofsky & Palmeri, 1997) to recognition memory (Ratcliff, 1978). They have
also enjoyed a considerable interest in decision neuroscience and neuroeco-
nomics (e.g., Busemeyer et al., 2019; Krajbich, Armel, & Rangel, 2010; Smith
& Ratcliff, 2004; Turner, van Maanen, & Forstmann, 2015). In general, these
models assume features are sequentially considered, producing changing evalu-
ations of each option reflected in an overall preference state. A response
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inhibition threshold determines what sufficient level of preference for one
option (over another) is required before a choice is made. Each of these basic
structural elements can be instantiated with different types of procedural steps,
such as stochastic vs. ordered feature selection, or decreasing vs. constant
response thresholds. This chapter makes the necessary distinction between
perceptual decision tasks where such models have been applied in computa-
tional neuroscience and those in preferential choice, or value-based decision
making that are the focus here. Section 16.3 introduces in detail the most
developed sequential sampling model in this domain.

16.3 A Detailed Example: Decision Field Theory

The goals of this section are twofold: to introduce the reader to one
specific computational modeling approach in detail, and to underscore the
advantages that computational models such as this one have over more trad-
itional algebraic models. One particularly noteworthy feature about the sequen-
tial sampling approach described in this section is that it represents a single,
consistent set of processing principles to represent cognition and behavior. This
provides a nice cognitive framework within which one can explore different
conceptualizations – or procedural steps – in order to create a family of models
based on what is learned empirically.

16.3.1 Decision Field Theory (Binary Choice)

Decision field theory (DFT) was initially formulated as a deterministic dynam-
ical system by Townsend & Busemeyer (1989). Later it was reformulated as a
stochastic (Markov) process by Busemeyer & Townsend (1992), and then it was
applied to decision making under uncertainty as an alternative to utility-based
approaches by Busemeyer & Townsend (1993). Assume that each of two
actions, X and Y (say, clothing choices), are defined by some set of outcomes
associated with each possible state of nature (say, weather conditions). An
example is shown in Table 16.1 with four states of nature. In general, DFT is
based on the assumption that over the course of making a choice between
two uncertain actions, the decision agent (mentally) imagines or samples these
states of nature, and a pair of outcomes is sampled corresponding to each
sampled state.

Table 16.1 Two actions (rows) with outcomes (cells) determined by one
of four states of nature (columns)

Action State 1 State 2 State 3 State 4

X x1 x2 x3 x4
Y y1 y2 y3 y4
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The probability of sampling an outcome for an action is determined by the
probability that a state occurs; so if State 1 is very likely to occur then x1 and y1
are very likely to be sampled. The pair of outcomes are evaluated to produce
affective reactions towards the options, and these evaluations are compared to
produce a relative evaluation. Over time these relative evaluations accumulate
to determine some overall balance of preference strength, called a preference
state, towards X over Y (or vice versa). Figure 16.1 shows how this preference
state can be plotted over time, where upward (downward) segments of the plot
indicate moments where relative evaluations of the associated state of nature
favor X (Y). The sampling and accumulation process may begin with some

Figure 16.1 Illustration of the sequential sampling process. The preference
state is shown discretely as shaded circles to the left of the vertical axis, and
plotted over time to create the trajectory in the central figure. Positive
(negative) values indicate preference for option X (Y), which is chosen when
the preference state reaches þP* (�P*). Increments indicate momentary
evaluations V(t) favoring X, decrements indicate momentary evaluations
favoring Y; brief segments of each are illustrated through the dark solid and
dashed lines, respectively. The mean rate of preference change is shown by the
dotted line (μ), with variability given by σ. Inset shows an example where the
mean rate may change over the course of a decision, at times indicated by
shaded circles, where d1 and d3 indicate mean preference for X, and d2 indicates
mean preference for Y.
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initial preference (or neutral) and continues until the cumulative preference is
sufficiently strong to make a choice. Using these simple assumptions, this
process becomes mathematically tractable (Diederich & Busemeyer, 2003),
and mathematical derivations from the process can then be related to the
utility-based approaches that preceded it. A fuller discussion of derivations
from the theory and other issues are covered by Busemeyer and Diederich
(2002); this chapter provides enough detail to allow for application of
the theory.

16.3.1.1 Model Specification

Generally, the DFT approach can be conceptualized in terms of its basic
processing principles: sequential sampling, relative evaluation, preference accu-
mulation, and stopping threshold. There are a number of ways to achieve a
formalization of these basic concepts. One such way is the simple stochastic
difference equation:

P tð Þ ¼ β �P t� τð Þ þ V tð Þ: (16.1)

Here, preference accumulation is achieved by setting the preference at time t
equal to a weighted (by β) combination of the previous preference state P(t�τ),
where τ indicates some arbitrarily small time unit, and the current input V(t).
The current input is a comparison V(t) ¼ [VX(t) – VY(t)] of the value of X based
on the currently sampled state of nature, VX(t), with the corresponding value of
Y, VY(t). This formulation suggests that positive values of V(t) and thus P(t)
indicate preference for X, and negative values indicate preference for Y, as in
Figure 16.1. The decision is achieved by dictating a choice for X whenever
P(t)� P*> 0 or a choice for Y whenever P(t)� –P*< 0. The subjective values of
each option, Vi(t), at each moment are determined by which states of nature
(or gamble outcomes in empirical tasks) xi and yi are sampled at that moment,
and their difference produces the relative evaluation. The self-feedback coeffi-
cient β determines how the comparisons are accumulated, which can produce
positive or negative recency accumulation effects. Additional assumptions can
be made about the procedures of the accumulation process to incorporate other
psychological mechanisms that affect the relative evaluations such as approach-
avoidance gradients, but these are not discussed in detail here (see Busemeyer &
Townsend, 1993).
Using Markov theory, the dynamic system above can be formalized in a

manner that allows for analytic solutions (see Busemeyer & Townsend, 1992;
Diederich & Busemeyer, 2003). Throughout, one can consider the discrete states
and responses of the corresponding system (Figure 16.2), or a plot of these
states over time (Figure 16.1). Consider two possible decision states, þP* and
–P*, representing “sufficient preference to choose X” and “sufficient preference
to choose Y,” corresponding to �P* above and in Figure 16.1. These states are
separated by a fine-grain, equally spaced sequence of n intermediate preference
states si representing the possible values of P(t) on a finite graded scale in
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preference from –P* to þP*. These states represent the possible position along
the preference axis in Figure 16.1 (and are shown to the left of this axis), and are
reproduced in the “Choice” row of Figure 16.2. States very near the middle of
this scale (sm, where m ¼ (n þ 1)/2 for an odd number of states) would indicate
relative indifference or equality between the two options, P(t) � 0; see the state
shaded black in Figures 16.1 and 16.2. Mathematically, collect the probabilities
Ti,j of stepping from any intermediate state i to any other intermediate state j,
either towards þP* and choice of X (when j > i) or towards –P* and choice of
Y (when j< i) in an n � n square transition matrix T. The diagonal values at Ti,i

represent the probability of dwelling in each state, rather than sampling new
evaluations (often these are set to zero). Furthermore, DFT is based on the
assumption that each sample produces a single step up or down, meaning that
only transitions to adjacent states are possible (rather than taking two steps at
once, etc.). This means that Ti,j ¼ 0 for all j 6¼ i�1; for simplicity label the

Figure 16.2 Comparison of models based on Decision Field Theory. DFT
principles used to represent various decision-making processes. Prediction
model (top) provides sampled states of nature to either the choice or
comparison model (middle two). The choice model produces binary choices,
and the comparison model is used in the sequential value-matching (SVM) to
inform a matching model (bottom) that is used to generate numeric responses.
Downward arrows represent possible model outputs; gray represents an
example and stripes indicate overt/final responses. Each of the models in
Section 16.3 can be represented in this common framework by properly
defining states (shaded circles) and possible outputs (downward arrows). All
models assume transitions among adjacent states only (connecting lines/arrows
between circles).
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probability of a step up towards þP* as Ti,iþ1 ¼ pi and the probability of a step
down towards –P* as Ti,i-1 ¼ qi; see Figure 16.2.

Ultimately, a choice response is made at some moment, the probability of
which is contained in a diagonal response matrix R. This has elements Ri,i

representing the probability of stepping to a decision state (choice of X or Y)
from intermediate state i. To maintain a true random walk assumption of steps
only to adjacent states, then choices are only made from the first intermediate
state (the most extreme preference for Y) by taking a step down to select
Y (R1,1 ¼ q1), or from the last state (strongest X preference) with a step up to
select X (Rn,n ¼ pn), meaning Ri,i ¼ 0 for all i 6¼ 1,n. This is illustrated in
Figure 16.2 with downward arrows only in the first and last Choice states,
corresponding to �P* (see also the dashed “goal” lines for the trajectory in
Figure 16.1). Finally, define P0 as a column vector containing the probability of
starting in each state; then the predictions are generated easily from (Busemeyer
& Townsend, 1992; Diederich & Busemeyer, 2003):

P ¼ P0
0 I� Tð Þ�1R (16.2)

N ¼ ðP0
0 I� Tð Þ�2RÞ:=P (16.3)

Equation 16.2 produces a choice probability vector P with the probability of
choosing Y as the first element P1 and the probability of choosing X as the last
element Pn. Conceptually, when recognizing that these matrix products repre-
sent multiplicative (joint) probabilities, then the outputs (in P of Equation 16.2)
can be read as the chance of starting in a particular state (via P0) and making
transitions through the intermediate states (via T) and into the associated
response state (via R). Equation 16.3 provides the average number N of steps
required to produce each response in the corresponding vector N (N1 for
choosing Y and Nn for choosing X with only two options). This can easily be
converted into predictions regarding mean decision time by multiplying by the
time unit τ in Equation 16.1. (In all equations in the current chapter, the
operation ./ indicates element-wise division and I denotes a square identity
matrix of appropriate dimensionality.)
To connect Equation 16.1 to Equations 16.2 and 16.3, it is necessary to

specify how the options’ outcomes affect the probability of taking a step in
each direction (pi, qi). These transition probabilities (stored in Ti,j) conceptually
represent the likelihood of sampling each pair of outcomes {xi, yi} across
options at any moment, but can be summarized in T by a simple expectation.
Recall the assumption that at each moment a state of nature is sampled,
producing a pair of outcomes (Table 16.1), and these outcomes are compared
to produce an evaluative difference (see Equation 16.1). The distribution of
these possible differences, based on any number of states and their probabilities,
can be represented by a mean, μ, and standard deviation, σ, illustrated in
Figure 16.1 as the mean slope of the preference trajectory and the variability
around this slope, respectively. Together, these form a ratio d ¼ μ=σ, much like
a discriminability index such as d’ in signal detection theory or Cohen’s d for
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effect size. Then, the probability of taking a step up or down can be considered
consistent across the intermediate states and, by using the same time unit τ to
scale values, is given by a simple adjustment from equal (0.5) probabilities of
each transition:

pi ¼ Pr Step up towards Y½ 	 ¼ 0:5þ 0:5 � √τ � d, for all i (16.4a)

qi ¼ Pr Step down towards X½ 	 ¼ 0:5� 0:5 � √τ � d, for all i (16.4b)

With these values to substitute for all Ti,j, assumptions must next be made
about where the process starts, and when it ends. For new choices with no
previous experience, it is assumed by default that there is no initial bias towards
either option. This is achieved by starting in the middle of the states, such as a
value of one at the middle state sm in P0 (shaded black in Figures 16.1 and 16.2),
all else zero, or some very narrow distribution around this. However, if there is
past experience with the choices, then this could introduce a bias based on
experience into the values of P0. The overall strength of preference that needs to
accumulate before making a decision, P∗, is controlled by the length of the
chain, or the number of intermediate states n, as a parameter (shown as n ¼ 21
in Figures 16.1 and 16.2). This collection of assumptions allows for the simple
(mathematical) reduction to a Markov process described in Equations
16.2–16.4 to provide convenient analytic solutions without the need for simula-
tion and has led to a simple, tractable, plausible account for a wide range of
empirical choice behaviors.

16.3.1.2. Decision Field Theory Accounts for Choice Paradoxes

When introduced, DFT was significant in providing a dynamic, probabilistic
alternative that proposed specific details about the decision process, and thus
made predictions for decision times, choice variability, and several properties
that utility-based approaches do not (Busemeyer & Townsend, 1993; Rieskamp,
Busemeyer, & Mellers, 2006). Furthermore, the dynamic and stochastic nature
of the model allowed it to uniquely account for other empirical phenomena
including speed-accuracy tradeoffs, serial position effects, preference reversals
under time pressure, and the inverse relation between choice probability and
response time (see Busemeyer & Townsend, 1993). Subsequent work surveyed
below was successful in expanding DFT’s processing principles to different
applications and even multiple levels of the decision process, with a common
underlying interpretation.

16.3.2 Multiple Attributes

Originally, DFT was designed for choices between two uncertain actions by
assuming a sampling of states and the corresponding pair of outcomes.
A similar idea can be used for a choice between two consumer products
described by multiple attributes (Roe, Busemeyer, & Townsend, 2001). The
states of nature in Table 16.1 are simply replaced by attributes (e.g., quality,
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cost, reliability, attractiveness). In this case, the decision agent samples an
attribute at each moment and compares the values of the options on the
attribute that is sampled. The probability of sampling an attribute is determined
by the importance weight of an attribute, rather than a state of nature’s
probability. The similarity between option values on attributes affects the
correlation between the sampled values for each option. This correlation affects
the standard deviation of differences that enter into the d parameter of the
model: positive correlations produce small standard deviation of differences,
and negative correlations produce large standard deviation of differences. This
correlation then provides a simple way to account for similarity effects on
choice discussed in the introduction (Roe et al., 2001; Tversky, 1977).
Diederich (1997; Diederich & Trueblood, 2018) expanded upon this attribute

switching approach by introducing versions of the model that formalized dif-
ferent possibilities for how multiple attributes are sampled and processed.
Rather than switching attributes on each sample (as proposed by Roe et al.,
2001), Diederich’s multi-stage model assumes the decision agent dwells on an
attribute for a longer sequence of samples, and then switches to a new attribute.
The d parameter of the model changes depending on the attribute that is being
considered for each extended time period. This is illustrated in the inset to
Figure 16.1, where one attribute leads to accumulation according to d1 that
favors X, followed by a second attribute that produces evaluations in favor of
Y described by d2, followed by a third attribute that provides (stronger,
d3 > d1) evaluations for X; note that the time spent on each attribute differs
as well. Predictions from this model can be estimated in much the same way as
the original DFT as presented in the previous section, with the necessary
adjustments based on the sampling assumptions that are made. In this notation,
each attribute would produce a distinct transition matrix T (and R) with
probabilities determined by the parameter d, which in turn is determined by
the relative advantage of each option on a particular attribute. Then, these
attribute-specific T and R matrices can be utilized according to the order of
attribute processing, such as by setting the preference state at the conclusion of
processing one attribute as the initial state (P0) for the processing of the next
attribute (gray circles in Figure 16.1 inset), and so on. While these alternative
forms may complicate the mathematical derivations slightly, the model remains
conceptually the same – retaining the same processing principles while making
different assumptions about the procedures by which the attributes are sampled.
The models developed by Diederich have been shown to uniquely account for
several additional decision-making phenomena, such as changes in preference
as a function of time constraints, and changes from intuitive to deliberative
processing (Diederich & Trueblood, 2018).

16.3.3 Multiple Alternatives

Both the original DFT and the multi-attribute generalizations are specified for a
choice between two options, but this approach was also subsequently extended
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to allow for any number n > 2 of options. The resulting multi-alternative multi-
attribute decision field theory (MDFT; Roe et al., 2001) is most easily presented
as a stochastic dynamic system of equations that requires simulation to derive
predictions.1 Essentially, Equation 16.1 is again used. However, the following
changes are made: the single dimensional P(t) used for two alternatives in
Equation 16.1 is replaced with a n � 1 vector, P tð Þ, of preference states with
one state for each action; the single scalar β for two alternatives is now replaced
with a n � n connection matrix β connecting each pair of alternatives; and the
single dimension input V(t) for two alternatives is replaced with a n � 1 vector
of inputs V(t). For n alternatives, each input for an action is based off a relative
comparison across all other options: the second term in Equation 16.1 changes
from VX tð Þ � VY tð Þ for two options to Vi tð Þ �

P
j 6¼iVj tð Þ= n� 1ð Þ for n options,

so that X is compared to the average value of the other options, rather than to
the value of a single other option Y. Again, however, the model is conceptually
the same: involving the accumulation of relative advantages for each option as
shifting attention leads to the sampling of different states of nature, outcomes,
or attributes. In fact, when n ¼ 2, the model reduces to the original DFT.

Multi-attribute decision field theory was influential in providing the first
common explanation for the collection of context effects on choice mentioned
in the introduction (see Busemeyer et al., 2019; Wollschläger & Diederich,
2019). This was largely accomplished through the use of the n � n connection
matrix β in MDFT. As with the original β coefficient in DFT, the diagonal
elements of the matrix β in MDFT produce self-feedback loops that determine
the accumulation for each option; however, the new off-diagonal elements of β
are negative “lateral inhibitory” connections that produce competition among
alternatives. The lateral inhibition between a pair of options is assumed to be
positively related to the similarity between them, where similar options produce
greater competition. Hotaling, Busemeyer, and Li (2010) provide an explicit
distance formula for computing the connection matrix β (see also Berkowitsch,
Scheibehenne, & Rieskamp, 2014). The lateral inhibitory connections are crit-
ical to account for the context effects on choice raised earlier.

16.3.4 Process Model for Decision Weights

Decision field theory initially assumed that the probability of attending to each
state of nature in Table 16.1 was specified by an attention “weight,” a function
of the probability of occurrence. This attention weight corresponds to the
decision weight used in utility models, such as prospect theory, that transforms
the objectively stated probabilities into subjective weights that enter the utility
calculations. Johnson and Busemeyer (2016) introduced a “front end” to DFT
to provide a process explanation for this attention weighting function rather

1 Mallahi-Kalai and Diederich (2019) introduced a different (geometric) model based on the same
sequential sampling principles that extends to any number of outcomes and introduces new
elements such as rejection thresholds.
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than assuming some abstract, albeit convenient, algebraic transformations (see
Gonzalez & Wu, 1999, for a comparison of such weighting functions). Johnson
and Busemeyer (2016) showed how a Markov process, relying on Equations
16.2 and 16.3 above, could also be used to represent this attention-switching
process to produce decision weights for use in driving the choice processes in
DFT. This is illustrated at the top of Figure 16.2 as the “Prediction”model that
provides inputs to the “Choice” model.
Much like the choice model, this weighting model can be formulated as a

simple Markov process. Specifically, Johnson and Busemeyer (2016) define a
Markov chain for each choice option k. Unlike the choice model, where states
indicated intermediate preference, here the states represent individual features
or outcomes, ordered such that s1 represents the lowest-valued outcome and sn
represents the highest-valued (Figure 16.2 shows n ¼ 4 outcomes for each
option X and Y, as in Table 16.1). Whenever considering an outcome, the
decision-maker might predict that outcome would occur, which would result in
the current sample to determine Vk(t) for the DFT choice process (gray arrows
in Figure 16.2, arbitrarily suggesting x2 and y4 as the current predictions).

2 This
occurs with a probability equal to the objective probability of the outcome,
denoted oi for the probability of outcome xi. Since this can occur for each and
every outcome, the diagonal response matrix R is not constrained as in the DFT
choice model where responses can only occur form the endpoint states; rather,
each Ri,i ¼ oi. To define the transitions across outcomes in T, they allow for
“dwelling” on an outcome (i.e., remaining in the current state for consecutive
time increments). Define α as the dwell probability and compute Ti,i ¼ α(1–oi),
or the joint probability of dwelling on outcome i when not predicting it. Finally,
they retain the random walk assumption of steps only to adjacent states, and
further assume that steps up (to consider the next higher outcome) or down (to
the next lower) are equally likely. This partitions the remaining probability
equally such that Ti,j ¼ (1–α)(1–oi)/2, except for the lowest outcome for which
T1,2 ¼ (1–α)(1–o1) and the highest outcome for which TN,N-1 ¼ (1–α)(1–oN),
since there is only one direction to step in these cases. Finally, the values in P0

represent the probability of first considering each outcome (rather than the
probability of some beginning preference state between options in the Choice
layer of DFT).
With these redefinitions of the matrices, Equation 16.2 can be used to

calculate the probability of attending to each outcome at each moment in
DFT, and Equation 16.3 produces the number of steps required to do so.
Note that the time required for this attention model to select an outcome sample
can also be generated by specifying a time unit τa, and this sampling time
produces the amount of the time step, τ, in the DFT choice model. Johnson
and Busemeyer (2016) showed how this model can account for the preference

2 This is intended to show the flexibility of the model, that the same state need not be predicted for
X and Y; see Diederich and Busemeyer (1999) and Johnson and Busemeyer (2016) for a
discussion of correlated outcomes in the context of sequential sampling.
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reversals discussed in the introduction, such as those that are driven by terms
that should “cancel out” in utility theories as reported by Allais (1953).
Furthermore, the model also accounts for effects about which utility-based
models do not make clear predictions, such as increased weighting due to
perceptual salience (e.g., Shah & Oppenheimer, 2007; Weber & Kirsner,
1997), idiosyncratic weighting of affect-rich or emotionally laden outcomes
(Rottenstreich & Hsee, 2001), or differences in revealed preferences when
outcomes are correlated across options (Diederich & Busemeyer, 1999).

The attention weighting model was developed to account for all the well-
known risky decision-making paradoxes. An alternative simple way to extend
DFT to account for these paradoxes was presented by Bhatia (2014). The basic
idea is to allow a stochastic error in event sampling: there is a probability π of
attending to events according to the objective probabilities, but with some
probability 1�π, the decision-maker gets distracted, and attends to events at
random. This simple stochastic error mechanism can also account for common-
ratio, common-consequence, reflection, and event-splitting effects. Bhatia
(2013) also proposed a model called the Associative Accumulation (AA) model
that is similar to MDFT, but specifies how attention shifts more specifically
based on the association of an attribute or outcome computed as a weighted
sum of the attribute’s value across all options. This model is more complex, and
even binary choice probabilities and decision times must be simulated.

16.3.5 Continuous Response Models

The sequential sampling models described up to this point are applicable only
to tasks involving discrete choice, but many tasks require other approximately
continuous response types that can be used to infer preferences among options.
As mentioned in the introduction, one might be asked to state a price for a
single option, and these prices elicited over a range of options could be used to
infer a preference ordering among them. Johnson and Busemeyer (2005)
developed the sequential value-matching (SVM) model to describe this process
shown in the last two rows of Figure 16.2, which is again based on the common
framework introduced for DFT. Essentially, this model assumes that a pricing
response is generated by sequentially comparing candidate prices C to the
option in question X until a price is considered to be relatively equal to the
option. A version of the DFT choice model is recruited to make the price-option
comparisons, with one of three results. Either the price is considered too high
and the next lowest price is considered, the price is considered too low and the
next highest price is considered, or the price is determined to be equivalent and
reported as the response. Once again, the Markov model representation in
Equations 16.2 and 16.3 can be naturally extended to this situation. In fact,
there are assumed to be two separate Markov chains operating in tandem to
produce the pricing response, as follows (see Figure 16.2).

One Markov model in the SVM (the “Comparison” layer in Figure 16.2)
represents the process that compares a given candidate price C to the focal
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option X. The key structural change in the SVM from the comparison process
in DFT is that a response can now occur from the middle state, sm, to indicate
the relative equivalence of the candidate price and the focal option. To do so,
Johnson and Busemeyer (2005) specify some probability π that the current price
is reported each time the preference accumulation process between the price and
the option enters the neutral state (black circle in Figure 16.2). Formally, this
means Rm ¼ π, a free parameter, rather than zero as in the choice model. The
other elements of R remain the same (R1,1 ¼ q1 and Rn,n ¼ pn as before, all else
zero). The transition probabilities in T are developed in the same manner but no
longer represent the comparison between outcomes sampled from each of two
choice options. Rather, they now represent a comparison between the current
candidate price, which is a constant, and the sequentially sampled outcomes xi
of the focal option. An exception occurs for transitions out of the middle
(indifference) state sm since it now contains π probability of producing a
response rather than a transition to another intermediate state, so that Tm,mþ1

¼ (1–π)pm and Tm,m-1 ¼ (1–π)qm. Then, Equation 16.2 can be used to derive the
probability of preferring the option X (contained in Pn), the probability of
preferring the candidate C (contained in P1), and the probability of indifference
between the two (contained in Pm). These probabilities completely populate the
matrix elements of the secondMarkov model in the SVM, and are represented in
the “Comparison” layer of Figure 16.2 by the downward white arrow on the
right, the downward white arrow on the left, and the downward striped arrow in
the middle, respectively. Note that only the indifference output produces an
overt response.
The second Markov model in the SVM (“Matching” layer in Figure 16.2)

represents the sequential consideration of n different candidate prices, where
the states represent different candidates Ci and the desired response is
selection of one of these as the reported price. Because any candidate price
can be reported, all the (diagonal) elements in R are now used. These are
simply defined by the corresponding probability of indifference for the
associated price in the comparison layer. That is, the probability of respond-
ing with candidate i in the matching layer, Ri,i, is equal to Pm (the probabil-
ity of indifference) obtained when candidate i is input to the comparison
layer, or Pm|Ci. Transition probabilities in T now represent the probability of
incrementing the candidate price at Ti,iþ1, and the probability of decrement-
ing the price at Ti,i-1, which are similarly defined by comparison layer
outputs Pn|Ci (probability to choose gamble given candidate Ci) and P1|Ci

(probability to choose sure thing price given candidate Ci) respectively. In
other words, if a candidate price i is considered “too high,” it should lead to
preference of the price over the option and suggests the candidate price
should be decremented in an attempt to find a more equivalent value to
report. Similar logic holds if the price is considered “too low” leading to
preference for the option over the price, and a resulting increment in price.
In either case, the next price is considered, and the process continues. In
Figure 16.2, this relates the downward white arrow on the right (left) of the
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“Comparison” layer to a movement to the next price to the right (left) in the
“Matching” layer. Finally, given a distribution over initial values in P0

indicating the probability of first considering each of the candidate prices,
Equation 16.2 can once again determine the probability distribution over
reported prices, and Equation 16.3 can determine the number of compari-
sons necessary to do so.

Johnson and Busemeyer (2005) showed how the SVM was the first model to
account for the most robust preference reversals between choice and pricing
such as mentioned in the introduction, as well as between different types of
pricing responses (e.g., buying vs. selling prices). Furthermore, the SVM
uniquely predicts other trends such as skew in the pricing distributions and
the positive correlation between the variance of the focal option and the
distribution of reported prices (Bostic, Herrnstein, & Luce, 1990; Kvam &
Busemeyer, 2019). Kvam and Busemeyer (2019) have extended and generalized
the SVM to derive entire joint distributions for prices and response times, which
they also confirm with new empirical tests. Bhatia and Pleskac (2019) have also
extended the sequential sampling framework to derive predictions for other
continuous response measures, such as rating scales.

16.4 Other Sequential Sampling Models

Many new computational models of preferential choice have appeared
since DFT and its descendants. They all share the idea that each option is
associated with an accumulator, denoted Pi(t) for the preference state of option
i accumulated up to time t, and a stopping rule which terminates the process as
soon as one option crosses a threshold, denoted P*. Thus, compared to trad-
itional models such as utility-based approaches, these are all more alike than
they are different. However, they do make a variety of different assumptions
about exactly how these procedures are implemented, leading to distinct but
related models.

Usher and McClelland (2004; see also Tsetsos, Usher, & Chater, 2010)
proposed a Leaky Competing Accumulator (LCA) model for preferential
choice. This model is fairly similar to MDFT, but with some critical exceptions.
First, unlike MDFT, preference states can never go negative (because they
interpret the state as neural firing rate), which introduces a nonlinearity into
the dynamics. Second, contrary to MDFT’s assumption that lateral inhibition is
distant dependent, the LCA model assumes that lateral inhibition is constant
across connections. Together, these assumptions prevent the model from
accounting for some context effects without adding some new mechanism –

loss aversion, originally proposed by Tversky and Simonson (1993), which is
not assumed by MDFT. LCA uses a stochastic difference equation like MDFT
(again, an n-dimensional version of Equation 16.1). Like MDFT, the LCA
model assumes that attention switches from one attribute to another. However,
at each time step, a comparison is made between all pairs of options on the
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selected attribute. These new assumptions make the model more complex, and
computer simulation is always needed, even for binary choices.
Stewart & Simpson (2008), and later Noguchi and Stewart (2018), proposed a

decision-by-sampling model (DBS, or MDBS for multiple alternatives) that
also uses a sequential sampling process for choice. In this model, counters are
assigned to each option and are incremented whenever favorable comparisons
are made between an option and a comparison value. The comparison value
could come from the local context (values on the attribute within the presented
choice set) or from long-term memory (values experienced previously in the
situation). Another important feature of the DBS model concerns the stopping
rule: most of the models use a satisficing type of self-terminating rule: stop as
soon as a preference state exceeds the threshold P*. Instead, the DBS model
uses the “next best” stopping rule: stop as soon as the first ranked (maximum)
preference state exceeds the second ranked preference state by a threshold P*.
Markov chain methods have been developed to compute the predictions of
the model (see Noguchi & Stewart, 2018). Otter, Allenby, and Zandt (2008)
proposed a different type of counter model called a Poisson race (PR) model
that builds on the earlier horse race modeling ideas of Marley and Colonius
(1992) and Townsend and Ashby (1983). They assumed that favorable evalu-
ations for an option occurred at times distributed according to a Poisson
process with a rate based on its utility computed from its attribute values.
A nice feature of this model is that it provides straightforward mathematical
solutions for the multi-alternative choice and decision time distributions for
self-terminating tasks.
Krajbich, Armel, & Rangel (2010; also see Krajbich & Rangel, 2011, and

Krajbich, Lu, Camerer, & Rangel, 2012) proposed an Attention-Drift Diffusion
(ADD) model as a modification of Ratcliff’s (see Ratcliff, Smith, Brown, &
McKoon, 2016) drift diffusion model. Essentially this model is also based on
the vector version of Equation 16.1 with β ¼ 1. The modification was designed
to account for attention biases produced by attending (e.g., looking at) an
option during the choice process, and as such the ADD model describes
alternative attention switching rather than attribute-based switching as in
MDFT and LCA. Similar to the DBS model, the ADD model uses the “next
best” stopping rule to determine the choice threshold P*. Currently, this model
must be simulated, even for binary choice, because of the changes in drift.3

Trueblood, Brown, and Heathcote (2014) proposed a Multiple Linear
Ballistic Accumulation model (MLBA), which is very different than the previ-
ous stochastic accumulation models. According to this model, each action i
corresponds to an accumulator, the accumulators race in parallel, and the first
to reach threshold P* is chosen. However, once a starting position, Pi(0), and
speed (denoted di) of the accumulator is selected for each action, deterministic
integration of the slope over time is assumed. Thus, the time to reach threshold

3 However, Diederich’s (2003) multi-stage model could be used to obtain mathematically
derived predictions.
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for each action is simply the distance over rate, and the action with this shortest
time is chosen. The most important processing occurs in the MLBA up front
during the coding of the speed, di, which embodies the utility mapping and
weighting (based on action similarity; see Trueblood et al., 2014, for details).
An advantage of the ballistic nature of MLBA is that mathematical formulas
are available for computing multiple alternative choice and decision times.

As the previous paragraphs (and sections) illustrate, the basic notion of
“accumulation to threshold” models, typically instantiated by the sequential
sampling of information over time (with the exception of MLBA), is a very
popular approach to the computational modeling of preferential decision
making. The proliferation of these models also implores decision researchers
to compare them to determine which are the most psychologically plausible and
account best for empirical data. Fortunately, there have already been multiple
attempts to do just that. Busemeyer et al. (2019) recently presented a compari-
son of these models with respect to qualitative and quantitative accounts of
findings in the preferential choice literature. Much more work is needed along
these lines, and not all possible comparisons have been made. However, the best
summary so far, at least for choice tasks, is that the MDBS model provides the
most comprehensive qualitative account but the MLBA seems to provide the
best quantitative account. Turner, Schley, Muller, and Tsetsos (2018) have
argued that some combinations of the mechanisms proposed in these models
produce the best overall account. They focused not on just comparing the
complete models but also in trying to tease apart which individual structural
elements and procedural steps seemed to be responsible for successful perform-
ance. Unfortunately, none of these comparisons has produced a clear and
unequivocal “winner,” and the most comprehensive have been largely focused
on the investigation of context effects created by adding options to the choice
set. Further comparisons are warranted, and it may be that model similarities
require the use of additional dependent variables, beyond choices and response
times, to be diagnostic. To lead the way, this chapter concludes with a descrip-
tion of how multiple measures can help inform and diagnose the set of cognitive
processes assumed by any specific computational model.

16.5 Beyond Choices: Accounting for Other Decision Variables

The computational models in the previous section were described
primarily by their predictions for different actions or choice options, such as
those patterns that lead to context effects, preference reversals, etc. The model-
ing approaches above have also been commonly compared by their ability to
predict mean decision times, or entire response time distributions (see Fific,
Houpt, & Rieskamp, 2019 for the use of response times in decision research).
Finally, the same modeling approaches described here have been applied
to continuously scaled responses (Johnson & Busemeyer, 2005; Kvam &
Busemeyer, 2019) as well as to processes that produce confidence ratings
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(Pleskac & Busemeyer, 2010). These are all measurements of the outcome of a
process, rather than measuring anything inherent about the process itself. Such
measures were sufficient to compare the utility-based algebraic models of the
past, since they could be falsified based on preference orderings obtained
through choices. However, a useful evolution in the field of decision research
that accompanied the rise of computational models is that of process-tracing
methodologies to test them (e.g. Payne, 1976; see Schulte-Mecklenbeck et al.,
2017 for a historical review). These techniques, such as eye-tracking and
recording response movements discussed in this section, have afforded better
resolution in trying to identify the mechanisms responsible for producing vari-
ous choice phenomena. Along with rapid increase in the accessibility of other
measures such as neural data, there are now a great deal of additional variables
through which one can evaluate the variety of models such as those discussed in
the previous section.
Eye-tracking has been used extensively to monitor information search pro-

cesses, which can inform the sampling order of computational models. For
example, Fiedler and Glöckner (2012) examined the number and order of visual
fixations to compare seven different models, including DFT and PCS models
introduced in this chapter – in fact, these two were clearly the most successful.
Stewart, Hermens, and Matthews (2016) perform similar comparisons across
five models (including DFT, PCS, and DBS) on a number of very specific
properties including fixations as well as transitions, and find in favor of the
PCS and DBS models in particular. Krajbich and colleagues (e.g., Krajbich,
Armel, & Rangel, 2010) have provided evidence using eye-tracking across a
number of studies for the attentional components in their update of the drift
diffusion model. Glöckner, Heinan, Johnson, and Raab (2012) predict final
responses in an applied (handball) task simply by using eye-tracking data to
“hard wire” the attention sequence leading to preference accumulation in a
DFT-like model as well as an equally successful PCS implementation.
Response tracking can be used to witness the evolution of the ultimate

outcome over the course of each decision trial. This can be achieved by
physically separating response options, such as selection boxes in opposite
corners of a computer monitor, and tracking the movement of the response
indicator (e.g., mouse cursor, finger pointing) from a neutral point (e.g., the
screen midpoint) over the course of a trial. Then, different measures can be
calculated on these continuous trajectories to represent constructs such as
vacillation, conflict, and indecision over time (see Kieslich et al., 2019, for a
practical tutorial, and Cheng & Gonzalez-Vallejo, 2017, for a conceptual
framework). For example, Koop and Johnson (2013) show increased curvature
or response competition when choosing a safe loss over a riskier one, but also
towards a riskier gain over a safer gain, which corroborates the traditional
notions of risk-seeking for losses and risk aversion for gains based on choice
data alone.
Koop and Johnson (2013) combine these two process-tracing techniques to

“hard wire” an accumulation model like those discussed in this chapter with an
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attentional input (e.g., outcomes sampled in Table 16.1, or inputs to V(t) in
Equation 16.1) driven exclusively by eye-movements recorded during the task.
They designed choices between two gambles, each with some probability of a
positive outcome, else zero. These options were placed in the corners of the
screen (see Figure 16.3) and as participants considered the choices, their eye
fixations to the four areas of interest (probability and outcome of each gamble)
were recorded. These fixations served as direct attentional inputs to a simple
accumulation model, in place of assumptions which typically need to be made
about parameters and procedures (e.g., random sampling) in order to derive
predictions from most models. The effect of each fixation (say, to $80 in
Figure 16.3) produces changes in the relative advantage of each option

Figure 16.3 Using process tracing data to inform models. Illustration of how a
response-tracking procedure can be used to draw inferences about momentary
preferences. Dashed trajectory is similar to that in Figure 16.1, rotated ninety
degrees counter-clockwise. Solid line indicates mouse trajectory when moving
from start box on an experimental trial (located at the black circle, presuming
indifference) to selection of one of the response options (here, gambles)
located in boxes in the corner of the screen. Model predictions produce dashed
trajectories which can be compared to mouse trajectories.
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represented by the value of d in Equation 16.4a/b and Figure 16.1. These in turn
generate predictions for segments of each choice trial – such as the dashed lines
in Figure 16.3. For example, the path from A to B in Figure 16.3 might reflect a
shift in preference towards the right option (Y) based on visual fixation to
information (i.e., a probability value), suggesting d < 1 or –P(t) in other
notations. From B to C, there is a longer-lasting segment sampling information
(i.e., outcome values) that favor the left option.
Critically, Koop and Johnson (2013) also recorded the responses as individ-

uals performed each trial (such as the solid line in Figure 16.3). A selection was
made starting from the bottom center by moving the computer mouse to the
corresponding option. If this online response trajectory reflects the underlying
sampling about the process (dashed lines), perhaps the former could be cap-
tured as a proxy for the latter. Collecting both the attention and response data
allowed them to compare the model predictions generated from the attentional
data to the relative position of the response indicator toward the associated
options over the course of each trial. Specifically, they correlated the predicted
preference P(t) after each segment with the horizontal value of the cursor
position at each moment, across trials and participants. The sequential sam-
pling approach was successful in directly relating the attentional inputs to the
accumulation of preference in this way, explaining two-thirds of the response
variability by the predicted preference state.
Finally, significant advances have been made recently in relating real-time

neural process data to computational decision models. Much of this has been
rooted in similar work applying accumulation models to neural spike train data
from primates in cognitive neuroscience (see Gold & Shadlen, 2007, for a
review). Some work has also extended to humans by employing the same
concepts applied to more global electrical activity, such as in EEG. Frame
(2019) provides an excellent summary of the recent progress made in this
endeavor. For example, Frame, Thomas, and Johnson (2018) show how the
EEG signals from the motor cortex provide some convergent validity for the
response tracking paradigm employed by Koop and Johnson (2013).

16.6 Conclusion

This chapter provided an overview of several approaches to the com-
putational modeling of decision making (Section 16.2), as well as some histor-
ical context for the development of these approaches (Section 16.1).
Furthermore, the detailed examples in Section 16.3 showed how a family of
specific models could be completely formalized, based on a common set of core
structural elements (see especially Figure 16.2). The different models presented
in Section 16.3 provide process-based explanations rather than algebraic equa-
tions (utility maximization) for choice, attention and decision weighting
(vs. probability weighting functions), and response mode effects (vs. assumed
monotonic mappings via utility). It is these direct reflections of proposed
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psychological processes that allow computational models to account for effects
that utility models cannot. Furthermore, Section 16.4 covered several recent
models that propose alternative processes in some ways, but produce the same
basic effects (although to varying degrees). It seems that such models will
continue to flourish, requiring more sophisticated means for testing among
them, as illustrated in Section 16.5.

Computational models of decision making are quite successful, and concep-
tually allow a better understanding of the cognitive processes underlying
observable effects. They may seem more complex on first glance but often have
similar or fewer parameters than comparable algebraic models. Furthermore,
the areas where these models have been successfully applied continues to
expand, including applications of decision field theory to athlete decision
making (Johnson, 2005), operator control problems (Gao & Lee, 2006), social
learning (Lee & Son, 2020) and more. Yechiam, Busemeyer, Stout, and Bechara
(2005) used neurophysiological tests to interpret individual differences among
clinical populations in computational decision model parameters. Thus, not
only can these models provide new explanations for effects that have challenged
traditional models, but offer a new lens through which to explore many psy-
chological phenomena as well.
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17 Computational Models
of Skill Acquisition
Stellan Ohlsson

17.1 Introduction

Daily life is a sequence of tasks: cook breakfast; drive to work; make
phone calls; use a word processor; take an order from a customer; operate a
steel lathe or diagnose a patient; plan a charity event; play tennis; shop for
groceries; cook dinner; load the dishwasher; tutor children in arithmetic; make a
cup of tea; and set the alarm for the next morning. The number of distinct tasks
a person learns to perform in his or her lifetime is certainly in the hundreds,
probably in the thousands.

The English language does not provide an entirely satisfactory way to refer to
the knowledge that supports task performance. The phrase know-how has
entered the popular lexicon but is stylistically unbearable. The philosopher
Gilbert Ryle (1968/1949) famously distinguished knowing how from knowing
that. Psychometricians talk about cogntive abilities (Carroll, 1993) while artifi-
cial intelligence researchers talk about procedural knowledge (Winograd, 1975);
both terms are somewhat misleading or awkward. The alternative term prac-
tical knowledge resonates with other relevant usages, such as the verb to
practice, the anthropologist’s concept of a (cultural) practice, the philosopher’s
concept of practical inference, and the common sense distinction theory versus
practice. In this chapter, the term “practical knowledge” refers to what a person
knows about how to perform tasks, achieve desired outcomes or reach goals,
while “declarative knowledge” refers to what a person believes to be true about
the world.

How is practical knowledge acquired? How can a person – or some other
intelligent agent, if any – bootstrap himself or herself from being unable to
perform the target task to mastery? The purpose of this chapter is to organize
the stock of current answers to this question in a way that facilitates overview,
comparisons, and future use. Four distinctions constrain the scope of
the review.

The first constraint is a focus on cognitive as opposed to sensori-motor skills.
The distinguishing feature of a cognitive skill is that the physical characteristics
of the relevant actions (amplitude, force, moment, speed, torque, etc.) are not
essential for successful task performance. Compare tennis with chess in this
respect. The success of a tennis serve is a function of the exact movement of the
player’s racket, but a chess move is the same move, from the point of view of
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chess, whether it is executed by moving the relevant piece by hand, foot, or
mouth, physically very different movements. The equivalence class of move-
ments that count as making chess move so-and-so abstracts over the physical
characteristics of those movements, and its success, as a chess move, is not a
function of those characteristics. Many skills have both cognitive and sensori-
motor components – a tennis player must think strategically as well as swing the
racket – but most of the models discussed in this chapter were proposed as
explanations for how the cognitive component is acquired.
A second constraint is a focus on computational models. It is possible and

useful to reason informally about skill acquisition, but the criterion for inclu-
sion in this review is that a model has been implemented as a running computer
program and that there is at least one publication that reports results of such
runs. Models that have been proposed as explanations for human learning are
given more attention than models intended primarily as contributions to artifi-
cial intelligence. This chaper is primarily a review of theoretical concepts and
hypotheses. Select empirical studies are referenced but there is no attempt to
pass judgment on the empirical adequacy of the different models.
The unit of analysis is the individual learning mechanism. A learning mech-

anism is specified by one or more triggering conditions, i.e., conditions under
which it will execute, and by the change that occurs under those conditions. As a
didactic example, consider the classical concept of association: If two concepts
are active simultaneously, a memory link is created between them. The trigger-
ing condition is in this case the simultaneous occurrence of the two concepts in
(what is now called) working memory; the change is the creation of the new link
between them. The learning mechanisms considered in this chapter are consid-
erably more complicated, but they can nevertheless be described in terms of
triggering conditions and the changes they trigger.
A model might include one or more learning mechanisms. It seems highly

unlikely that all phenomena associated with the acquisition of cognitive
skills can be explained by a single cognitive mechanism. Observable changes
in behavior in the course of skill practice are better understood as composite
outcomes of multiple interacting mechanisms (Anderson et al., 2019;
Ohlsson, 2011, chapter 6). The multiple-mechanism view has a long history
(Gagne, 1970).
Improvements in a skill cannot grow out of thin air, so a learning mechanism

presumably draws upon some hitherto unheeded or underutilized information.
It is plausible that different mechanisms operate on different types of infor-
mation: learning from instruction is not the same process as learning from error.
In general, each learning mechanism takes a specific type of information
as input.
Given the view outlined in the preceeding paragraphs, to explain skill acqui-

sition is to specify one or more learning mechanisms, each mechanism consist-
ing of a set of triggering conditions and some change process; to model these
within some cognitive system or architecture (see Chapter 8 in this handbook);
and to demonstrate, by running the model, that the outcome of the interactions
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among the learning mechanisms mimic the observable changes in human
behavior during skill practice. This formulation of the skill acquisition problem
is the product of a century of scientific progress.

17.2 History

In William James’s (1890) comprehensive summary of the principles
of psychology, there is a chapter on habit formation but no chapter titled
“learning” (James, 1890, Volumes 1 and 2). Systematic empirical research on
the acquisition of cognitive (as opposed to sensori-motor) skills began with
Edward Thorndike’s Ph.D. thesis, begun in 1896 under James at Harvard
University but issued a few years later from Teachers College at Columbia
University. Thorndike (1898) investigated how various species of animals
learned to escape from cages with nonobvious door opening mechanisms.
He plotted the time it took individual animals to claw, peck, or push them-
selves out of his problem boxes as a function of trial number. Hermann
Ebbinghaus (1964/1885) had already published curves for the memorization
and forgetting of lists of syllables, but Thorndike was the first researcher to
plot what is now called practice curves for complex skills. He formulated the
Law of Effect which says that the probability that a learner will perform a
particular action is increased if the action is followed by a positive outcome (a
“satisfier” in Thorndike’s terminology) and decreased if followed by a nega-
tive outcome (“annoyer”; Thorndike, 1927). Thorndike’s somewhat idiosyn-
cratic terminology was later replaced by the terms positive and negative
reinforcement (see Chapter 10 in this handbook).

Learning became the major theme of the behaviorist movement, convention-
ally dated as beginning with Watson’s (1913) article, “Psychology as the behav-
iorist views it.” During the 1913–1955 period, experimental psychology and
learning theory became almost synonymous in the United States, but the
dominant experimental paradigms for the study of learning were the memoriza-
tion of lists of letters, syllables, or words (which is not a good example of a
cognitive skill), and training rats to navigate very simple mazes. Woodworth’s
(1938) attempt to replicate James’s comprehensive summary from fifty years
earlier included a chapter on practice and skill but he could only find a mere
twenty-seven studies of complex skills like archery, telegraphy, and typing (pp.
156–175). The negatively accelerated shape of the practice curve was already
well documented (pp. 170–173; Stevens & Savin, 1962). This has turned out to
be an enduring finding (Lane, 1987; Nerb, Ritter, & Krems, 1999; Newell &
Rosenbloom, 1981). The idea that skill acquisition goes through successive
phases or stages was proposed, and it, too, turned out to be an enduring
contribution (Ackerman, 1990; Fitts, 1964; Kim, Ritter, & Koubek, 2013;
Newell & Rosenbloom, 1981; Tenison, Fincham, & Anderson, 2016).

During World War II, academic psychologists in Britain and the US were
prompted by the war effort to move away from list learning and maze running
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and to focus on complex skills (Gardner, 1985). The war posed novel problems,
such as how to train anti-aircraft gunners. A second transforming influence was
that psychologists worked alongside engineers, scientists, and mathematicians
who were in the process of inventing novel information technologies. Work on
code breaking and other information processing problems demonstrated that
information can be measured and processed in objective and systematic ways,
making it possible both to build artificial information processing systems and to
view humans and animals as instances of such systems.
After the war, Norbert Weiner at the Massachusetts Institute of Technology

envisioned an interdisciplinary science – to be called cybernetics – which was to
study complex information-based systems, encompassing humans, machines,
and animals, in terms of feedback. The key idea was that “. . . when we desire a
motion to follow a general pattern, the difference between this pattern and the
actually performed motion is used as a new input to cause the part regulated to
move in such a way as to bring its motion closer to that given by the pattern”
(Weiner, 1948, p. 13). The feedback loop replaced the stimulus-response reflex
of the behaviorist era as the central concept of cognitive psychology in Miller,
Galanter, and Pribram’s (1960) sketch of what is now called the cognitive
architecture. The concept of feedback remains influential, but a variety of
factors, including Wiener’s focus on continuous feedback, reduced the impact
of the cybernetic movement (Conway & Siegelman, 2005).
It was soon overtaken by the digital approach, variously called complex

information processing and, eventually, artificial intelligence, launched by
Newell, Shaw, and Simon (1958) with an article describing the Logic
Theorist, the first symbol processing computer program that performed a task,
logical deduction, that requires intelligence when done by people. The program
formalized the notion of heuristic search, another enduring concept.
Significantly, the article was published in Psychological Review rather than an
engineering journal, and the authors offered speculations on the relation
between their program and human reasoning. The article thus simultaneously
established the two fields of artificial intelligence and cognitive modeling
(Crevier, 1993).
Paradoxically, the success of the digital symbol manipulating approach

suppressed the study of learning. In the period 1958–1979, only a few cognitive
psychologists studied the effects of practice or other phenomena related to the
acquisition of complex cognitive skills (Welford, 1968). Modeling human per-
formance with the crude programming tools available at the time was difficult.
A simulation of a complex behavior – any complex behavior – was recognized
as an achievement in and of itself, even if the simulation did not account for the
acquisition of that behavior.
The era of computational skill acquisition models was inaugurated with a

Psychological Review article by Anzai and Simon (1979). They described a
computer program that modeled the successive strategy changes of a person
who solved the Tower of Hanoi problem multiple times. Their article demon-
strated the feasibility of simulating the acquisition and not only the execution of
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cognitive skills. It was closely followed by the initial version of J. R. Anderson’s
ACT-R model. Anderson, Kline, and Beasley (1978, 1979) laid out a design for
a cognitive architecture with multiple learning mechanisms, later published in
Anderson (1982, 1983, 1987). The acronym has changed over time, from ACT,
to ACT*, and to ACT-R; see Chapter 8 in this handbook.

The following three decades saw an unprecedented explosion of theoretical
work on models of skill acquisition (Polk & Seifert, 2002). Many early models
were cast as so-called production systems; a.k.a. rule-based systems (Anderson,
1993; Buchanan & Mitchell, 1978; Davis & King, 1977; Neches, Langley, &
Klahr, 1987; Newell, 1972, 1973; Newell & Simon, 1972; Waterman & Hayes-
Roth, 1978). In this framework, practical knowledge is represented in sets of
production rules, where each rule is a knowledge structure of the form if the
current goal is G, and the current situation is S, then consider performing action
A, where G, S, and A are symbol structures. Rules can be expressed in a semi-
formal notation that resembles pseudocode for a computer program, but is
nevertheless comprehensible to a human reader:

Goal, Situation ¼¼> Action

A production system executes a set of rules through a cyclic process: match the
G and S components against the current goal and the current situation (as
represented in working memory); enter all matching rules into a conflict set;
select a rule by resolving the conflict; and execute (the action of ) the selected
rule. The action alters the state of the system, and the cycle repeats until the
learner’s goal has been reached. Implementation of large rule-based systems
depends on the availability of algorithms for fast matching of rule conditions to
the learner’s current situation. The so-called Rete pattern matcher made the
early rule-based models possible (Forgy, 1982). McDermott and Forgy (1978)
initiated a search for a principled way of specifying the conflict resolution
algorithm, but researchers did not settle on a single algorithm.

The rule representation suggests that practical knowledge can only change in
a few tightly circumscribed ways: add a new rule; delete a rule; add or delete
tests on the current state of the learner’s task; and replace variables with
constants, or vice versa. A complex cognitive skill is the cumulative product
of many such basic changes, each triggered by the relevant rules. Other types of
knowledge representations (constraints; goal-subgoal hierarchies; Horn clauses;
mental models; schemas; semantic networks; etc.) also suggest short lists of
basic changes. The insight that the choice of knowledge representation gener-
ates a rich but disciplined set of hypotheses about basic changes promised rapid
progress. In the eighties and nineties, researchers responded to this opportunity
by fanning out across the hypothesis space in search of small sets of learning
mechanisms that generate behavior that closely matches human learning. This
process is ongoing.

Rules, schemas, goal hierarchies, etc. are symbolic knowledge representa-
tions. They share fundamental characteristics with logic formulas and sen-
tences in natural languages: They are structured, with well-defined grammars
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that support effective parsing. For example, formal notations for rules include
markers that separate the goal situation and action components from each
other. Like a sentence in a natural language, a symbolic representation refers
to objects and events in the learner’s environment. Most important, symbolic
representations are local (modular). A single sentence in a natural language is
meaningful (i.e., it can be understood by itself, in isolation from other sen-
tences). Similarly, a single rule constitutes a meaningful component of a skill.
“When it rains, bring an umbrella” is meaningful even though it does not
explain the purpose of the umbrella, nor specify what to do when the sun
is out.
The expressiveness and power of rules and other symbolic representations is

increased if they are augmented with theoretical quantities. For example, a rule
might be associated with an activation level that estimates its relevance for the
current state of the learner. A rule might also be associated with a strength, a
quantity that measures how frequently a rule has been executed in the past.
Other models use a utility variable to quantify the expected gain of executing a
rule in a particular situation (Anderson, 2007). There are no principled con-
straints on how many such variables a theoretician can introduce into his or her
model, but skill acquisition modelers tacitly agree that a handful of mental
variables is a virtue but a multitude is a sin. One reason is that as the number of
hypothesized variables grows, a model becomes more complex. The function of
each variable – how it impacts the operation of the cognitive system – has to be
specified. Also, each variable poses the challenge of specifying how the initial
value associated with a particular knowledge structure is to be determined, and
when and how that value is to be updated. In the 2000–2020 period, most
models included both symbolic and quantitative knowledge representations
(e.g., Altmann & Trafton, 2002).
Models that learn by updating theoretical quantities associated with symbolic

representations are conceptually distinct from connectionist models. The latter
emerged in the 1980s (Rumelhart, McClelland, & the PDP Research Group,
1986). Connectionist models do not conceptualize learning as a process of
building symbolic knowledge structures. Instead, a connectionist model
assumes the prior existence of a network of nodes connected by links; neither
the nodes nor the links are interpretable by themselves. Unlike the case of
semantic networks, individual nodes in connectionist networks do not refer to
objects and events in the environment, and individual links do not represent
relational concepts. Knowledge is distributed across the network as a whole,
and all learning is done by adjusting the strengths of the links in response to the
outcomes of actions. The heart of a connectionist model is its updating func-
tion, with particular functions (e.g., backpropagation) being subject to deep
mathematical analysis. Connectionist models were initially seen as strong alter-
natives to symbolic models. Over time, cognitive psychologists have found the
lack of interpretation of what is learned unsatisfactory when the goal is to
explain human learning. Although there are a few hybrid models that combine
symbolic and connectionist learning (Schneider & Chein, 2003; Sun, Slusarz, &
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Terry, 2005), the latter has its greatest impact in machine learning research.
A review of connectionism is available in Chapter 2 in this handbook.

The following three sections review the symbolic learning mechanisms that
have been proposed since Anzai and Simon’s 1979 article. The sections corres-
pond approximately to the phases of skill acquisition proposed by Fitts (1964).
The emphasis is on the symbolic computations. Quantitative learning mechan-
isms are only discussed to the extent that they are needed to understand how the
symbolic computations work. The chapter ends with a brief discussion of
potential future advances in this field.

17.3 How Does Skill Practice Begin?

The three phases of skill acquisition sketched by Woodworth (1938)
and articulated further by Fitts (1964) and others (Kim, Ritter, & Koubek,
2013) provide a useful framework for thinking about skill acquisition. At the
outset of practice, the learner’s main problem is how to get started, how to
construct an initial skill for the target task. Once the learner is acting vis-à-vis
the task, the challenge is to improve the initial skill until the task has been fully
mastered. Finally, in the long run, the challenge is to optimize the skill. Each
phase provides different sources of information and hence affords different
learning mechanisms. This section reviews learning mechanisms that primarily
operate in the first phase, while the following two sections focus on the second
and third phases. Learning mechanisms are distinguished on the basis of the
source or type of information they draw upon, their triggering conditions, and
the types of changes they compute in the learner’s representation of the
target skill.

The grouping of learning mechanisms by phase should not be interpreted as a
claim that the phases are created by a big switch in the head that turns
mechanisms on and off. All learning mechanisms operate continuously and in
parallel, but the types of information they require as input might vary in
abundance and accessibility over time. Some types of information become less
accessible, frequent, or useful as learning progresses, while other types of infor-
mation increase, producing a gradual shift in the relative frequency with which
the different learning mechanisms are triggered, and hence in the character of
the changes that occur in each successive phase (Ohlsson, 2011, pp. 199–204).
The final behavior – the fast, accurate, smooth, and nearly effortless expert
performance – is the aggregate outcome of the mechanisms operating in all
three phases.

For present purposes, the first phase is defined as starting when the learner
encounters the task and as ending when the learner completes the task correctly
for the first time. The learning mechanisms that dominate this phase are
answers to the question, how can skill practice begin? How does a learner know
what to do before he or she has learned what to do? There are at least three
principled approaches to this paradox, corresponding to three distinct sources
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of information that can be available at the outset of practice: instructions, prior
skills, and someone else’s solution.

17.3.1 Operationalize Advice

Unfamiliar tasks often come with written or spoken recipes for what to
do, variously referred to as advice or instruction; in linguistic terminology,
exhortations. Dispensing advice is a large part of what coaches and tutors do.
Written sources of advice include cookbooks, manuals for electronic devices,
instruction sheets for some-assembly-required furniture, and software manuals.
Exhortations are presumably understood via the common discourse compre-
hension processes studied in psycholinguistics (word recognition, mental lexi-
con look-up, disambiguation, syntactic parsing, implicit inferences and so on
(Graesser, Millis, & Graesser, 2011)), but people cannot follow complex
instructions without hesitation, backtracking, errors, and repeated rehearsals
even when those instructions are understood, so additional processes are
required to translate the output of discourse comprehension into executable
practical knowledge.
In McCarthy’s (1959, 1963)1 early design for an advice taker system, reasoning

about exhortations and actions was assimilated to logical deduction via axioms
that define nonlogical operators like can and do. Instructions are propositional
grist for the deductive mill; no special process needed (see also Simon, 1972). This
reasoning from first principles approach continues in the field of logic program-
ming (Amir & Maynard-Zhang, 2004; Giunchiglia et al., 2004) but remains
largely unexplored by psychologists modeling human cognition (but see, e.g.,
Hagert, Waern, & Tärnlund, 1982, and Chapter 5 in this handbook).
The Advice Taker model described by Mostow (1983) and Hayes-Roth,

Klahr, and Mostow (1981) was designed to operationalize exhortations by
transforming them into executable plans. In the context of the game of hearts,
a novice might be told if you can’t take all the points in a round, take as few as
possible. If the learner does not yet know how to take few points, he or she has
to refer to the definitions of take, few, and points to expand the advice into an
action he or she knows how to do, e.g., play a low card. This amounts to a top-
down search through all alternative transformations allowed by concept defin-
itions, background knowledge, and so on. Mostow (1983) reports using a
repertoire of approximately 200 transformation rules to find a 100-step expan-
sion of the advice avoid taking points into the executable action play a low card
(given a particular state of knowledge about the game).
The proceduralization mechanism proposed by Anderson (1982, 1983) oper-

ationalizes declarative knowledge through interpretative production rules,

1 The two papers referenced here were reprinted as sections 7.1 and 7.2, respectively, of a chapter
titled “Programs with common sense” in Minsky (1968). N.B. that the chapter with that same
title in Lifschitz (1990) corresponds to section 7.1, i.e., to McCarthy (1959), but leaves out the
content in McCarthy (1963).
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which match parts of declarative representations and create new production
rules. To illustrate the flavor of the approach, consider the following didactive
example (not identical to any of the author’s own examples): if you want to
achieve G and memory contains the proposition “if S, then G,” then form the
new production rule: if you want to achieve G, then set the subgoal to achieve S.
Execution of this interpretative rule has two important consequences: it
incorporates the declarative knowledge if S, then G into the learner’s practical
knowledge, and it eliminates the need to retrieve if S, then G from memory.
Neves and Anderson (1981) demonstrated how a collection of interpretative
rules can produce executable rules for plane geometry from a standard text-
book page. This mechanism was at one point called “knowledge compilation”
(Anderson, 1986).

A more recent version of this idea, called production compilation, learns from
instructions in a radar operator task (Taatgen, 2005). The model described by
Anderson et al., (2019) uses a set of thirty-one interpretative rules to translate
instructions for how to play the Space Fortress game into executable production
rules. Nonlogical operators, transformation rules, and interpretative rules have
to be general across domains to serve their purpose, so they share the difficult
question of their origin. New approaches to rule-based language processing
continue to be invented (Dougass & Anderson, 2008).

A contrasting approach is employed in Instructo-Soar (Huffman & Laird,
1995). An exhortation is operationalized by constructing an explanation for
why it is good advice. The system conducts an internal search (look-ahead)
from the current situation (or a hypothetical situation specified in the condi-
tional part of an exhortation like, if the red light is flashing, then sound the
alarm) until it finds a path to the relevant goal that includes the recommended
step. Soar’s chunking mechanism – a form of explanation-based learning2 – is
then applied to create a new rule (or rules) that can generate that path in the
future without search. This technique allows Instructo-Soar to acquire complex
actions as well as other types of knowledge from task instructions. Instructo-
Soar is equipped with a natural language front end and receives instructions in
English. A simpler translation of instructions into rules was implemented in the
Instructable Production System (Rychener, 1983; Rychener & Newell, 1978).

Doane et al. (2000) have described a system, UNICOM, that learns to use the
Unix operating system from instructions. The model is based on the
construction-integration model of discourse comprehension proposed by
Kintsch (1998). General background knowledge and knowledge of the current
state of the world are represented as propositions, and plan elements – internal

2 Explanation-based learning, henceforth EBL, is a machine-learning technique that compresses a
deductive proof or a sequence of rule executions into a single knowledge structure that connects
the premises and the conclusion. The key aspect of the technique is that it aligns variable bindings
in the successive steps in such a way as to identify which constants can be replaced by variables.
That is, it produces a motivated, conservative generalization of the compressed structure. What
kind of learning EBL implements depends on context, origin of its input, and the use made of its
output (De Jong, 2012).
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representations of executable actions – are represented in terms of their precon-
ditions and outcomes. All of these are linked in an associative network on the
basis of overlap of predicates. Links can be excitatory or inhibitory. In each
cycle of operation, a standard network algorithm is used to compute the current
activation level of each node (proposition or plan element). The plan element
with the highest activation level is chosen for execution. Its outcome is recorded
in the network, and the cycle starts over. Learning occurs by incorporating
verbal prompts, e.g., you will need to use the arrow symbol “�” that redirects the
output from a command to a file, into the associative network. This alters the set
of connections, hence the outcome of the construction-integration process, and,
ultimately, which plan element is executed. This model has been used to
simulate the effect of instructions on jet pilots during training.
There are other applications of the network concept to the problem of

learning from instructions. The CAP2 network model described by Schneider
and Oliver (1991) and Schneider and Chein (2003) is instructable in the related
sense that a symbolic representation of the target skill can inform and speed up
learning in a connectionist network, an example of a hybrid model.
The proposed mechanisms capture the complexity of learning from instruc-

tions, but the psychological validity of the details of each mechanism is open to
question. Also, these mechanisms do not model learning from all types of
instruction. They apply primarily to initial instructions, as opposed to coaching
or tutoring in the context of ongoing task behavior. For example, they do not
model learning from feedback, because they do not relate what is said (by the
instructor) to what was just done (by the learner); see the next section. Models
of learning from initial instructions are potentially useful in educational
research (Ohlsson, 1992; Ohlsson, Ernst, & Rees, 1992; VanLehn, Ohlsson, &
Nason, 1994).

17.3.2 Transfer Prior Knowledge

Initial rules for an unfamiliar task can be generated by adapting previously
learned skills, or components of skills. That is, the problem of how skill practice
gets under way can be subsumed under the problem of transfer of training.
There are four principled ideas about how learners utilize this source of infor-
mation: identical elements, re-use, analogy, and subsumption.

17.3.2.1 Identity

If the unfamiliar task is identical in some respects to an already familiar task,
then components of the previously learned skill might apply to the unfamiliar
task without change (the identical elements hypothesis; Thorndike, 1911,
pp. 243–245). This hypothesis comes for free in a rule-based system, because
rules are automatically considered whenever they match the learner’s current
situation. Kieras and Bovair (1986), Singley and Anderson (1989), and Pirolli
and Recker (1994) report success in predicting the magnitude of transfer effects
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by counting the number of rules shared between two cognitive skills. However,
the identical rule hypothesis predicts that positive transfer effects are necessarily
symmetrical in magnitude, a dubious prediction (Ohlsson, 2006).

17.3.2.2 Re-use

Identity is a maximally strict criterion for the re-use of practical knowledge.
A related idea is to regard previously learned skill elements as primitive
building blocks that can be combined into new, more complex skill compon-
ents, which, in turn, are combined into yet more complex skill components,
until the entire action sequence is integrated (Salvucci, 2013; Taatgen, 2013).
The idea of re-usable, pre-existing components was applied by Ritter, Jones,
and Baxter (1998).

17.3.2.3 Analogy

The hypothesis of analogical transfer assumes a mapping process that identifies
structural similarities between the task at hand and some already mastered task.
The mapping is used to construct a strategy for performing the unfamiliar task,
using the familiar one as a template. For example, consider a situation
described by Block A is on the table, Block B is on the table, and Block C is
on top of Block B. If the goal is to put Block C on Block A, then the successful
action sequence is to grasp C, lift C up,move C sideways, and put C down. When
the learner encounters a second situation in which Box R is inside Box X, Box
S is inside Box X, Box T is inside Box S, and the goal is to put T inside R, the
mapping

{table ➔ Box X, on top of ➔ inside, Block A ➔ Box R, etc.}

leads to the analogous solution grasp T, take T out of X, move T sideways, and
put T inside R. The two analogues are not similar in the perceptual sense, but
they share the same relational structure.

There are multiple ways to implement the two processes of analogical map-
ping and inference. The structure mapping principle proposed by Gentner
(1983) and implemented in the Structure Mapping Engine (Falkenheiner,
Forbus, & Gentner, 1989) says that higher-order relations should weigh more
in choosing a mapping than lower-order relations and perceptual features.
Holyoak and co-workers (1985; Holyoak & Thagard, 1989a, 1994; Spellman
& Holyoak, 1996) emphasized pragmatic factors, i.e., which mapping seems
best from the point of view of the learner’s current purpose. The mapping
processes by Keane, Ledgeway, and Duff (1994) and Wilson et al., (2001) are
designed to minimize cognitive load, the former by satisfying a variety of
constraints, e.g., map only objects of the same type, and the latter by only
mapping a single pair of propositions at a time, while the path-mapping process
proposed by Salvucci and Anderson (2001) pursues flexibility by separating a
low-level, object-to-object mapping process from the higher-order, acquired
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and hence potentially domain-specific processes that use it. Mapping processes
can be implemented as connectionist networks (Holyoak & Thagard, 1989b;
Hummel & Holyoak, 1997, 2003). Anderson (1989), Anderson and Thompson
(1989), Salvucci & Anderson, 1998, and Kokinov and Petrov (2001) have
emphasized the need to integrate analogical reasoning with other cognitive
functions. VanLehn (1998) modeled the use of analogies in problem solving.
The distinction between different types of analogical inferences is of particu-

lar interest from the point of view of human skill acquisition. In some models,
an analogical mapping is used to construct a solution path for the target
problem, as in the didactic block/box example above. Carbonell (1983, 1986;
Veloso & Carbonell, 1993) have proposed a derivational analogy mechanism of
this sort. The learner infers a solution to the target problem, a sequence of
actions, but no method, so this conservative process will only affect behavior on
the current task. In other models, an analogical mapping is used to infer a
solution method, or a part of a method such as a production rule (Anderson &
Thompson, 1989; Blessing & Anderson, 1996; Pirolli, 1986, 1991). In this case,
the learner gains new practical knowledge which applies to the target task but
which might also apply to future tasks.
In yet another variant of transfer, the Eureka system by Jones and Langley

(2005) uses analogical mapping to infer how a fully specified, past problem-
solving step can be applied to the current situation. The Cascade model
(VanLehn & Jones, 1993) uses a closely related mechanism. Although this
application of analogy – analogical operator retrieval – is a part of the perform-
ance mechanism rather than a learning mechanism, it allows past steps, deriv-
ations or problem-solving episodes, even if completely specific, to affect
future behavior.

17.3.2.4 Subsumption

Some prior cognitive skills transfer to the target task because they are general
enough to subsume the unfamiliar task at hand. The idea of wide applicability
through abstraction or generality goes back to antiquity, but takes a rather
different form with respect to practical than declarative knowledge. General or
weak methodsmake few assumptions about the task to which they are applied, so
the learner does not need to know much about the task to use them (Newell,
1990; Newell & Simon, 1972). By the same token, such methods do not provide
strong guidance. Different weak methods structure search in different ways. Hill
climbing (take only steps that improve the current situation), backward search
(identify what the last step before achieving the current goal would have to be and
pose its requirements as subgoals, then iterate) and means-ends analysis (identify
differences between the current state and the goal and think of ways to reduce
each one) are the most well-known weak methods. For example, Elio and
Scharf’s (1990) EUREKA model initially solves physics problems via means-
ends analysis, but accumulates problem-solving experiences into problem sche-
mas that gradually come to direct future problem-solving efforts.
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People might also possess a repertoire of more specific but still weak heuris-
tics such as if you want to figure out how to use an unfamiliar device, push buttons
at random and see what happens, and if you want to know how to get to location
X, ask someone. Weak methods and heuristics are not learning mechanisms –
they do not create new practical knowledge – but they serve to generate task-
relevant actions. The actions produce new information about the task, which in
turn can be used by a variety of learning mechanisms; see next section. When
weak methods dominate initial task behavior, skill acquisition is a process of
specialization, because it transforms those methods into domain-specific heuris-
tics and strategies. This is a widely adopted principle (Anderson, 1987; Jones,
Ritter & Wood, 2000; Langley, 1985; Ohlsson, 1996; Rosenbloom, Laird, &
Newell, 1993; Sun, Slusarz, & Terry, 2005; VanLehn, 1999; VanLehn & Jones,
1993). It is an important insight because common sense suggests that learning
proceeds in the opposite direction, from concrete actions to more abstract
competencies.

There is no reason to doubt the psychological reality of either of these
transfer relations – identity, re-use, analogy, and subsumption – but there are
different ways to exploit each one. Re-use, analogy, and subsumption relax the
strict criterion of identity. They make prior skills more widely applicable by
allowing for some differences between past and current tasks. The different
models differ with respect to which differences are allowed. Transfer is a central
concept in both cognitive psychology and machine learning. Publications of
transfer models do not always specify clearly whether a model is intended as a
contributioin to one field or the other, or both.

17.3.3 Study Someone Else’s Solution

A third source of information on which to base initial behavior vis-à-vis an
unfamiliar task is a solution provided by someone else. In an educational
setting, a teacher or helpful textbook author might provide a written represen-
tation of a correct solution, a so-called solved example. To learn from a solved
example, the learner has to study the successive steps and infer how each step
was generated. There are three key challenges in learning from solved examples:
the example might be incomplete, suppressing some (presumed obvious) steps
for the sake of conciseness. Also, a solved example might not explain why each
step is the correct step where it occurs, forcing the learner to guess the correct
conditions on the actions. Finally, because a solved example is specific (by
definition of “example”), there is the issue how, and how far, to generalize
each step.

The Sierra model (VanLehn, 1983, 1987) learned procedures from sequences
of solved examples, organized into lessons, in the domain of place-value arith-
metic. The examples were parsed both top-down and bottom-up. Various
constraints were applied to choose a possible way to close the gap, especially
the one-subprocedure per lesson constraint (VanLehn, 1987). Sierra produced a
set of initial (“core”) procedures that were not guaranteed to be complete and
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hence might generate impasses when executed, necessitating further learning.
The main purpose of Sierra was to explain, in conjunction with Repair Theory
(see below), the origin of errors in children’s arithmetic.
The Cascade model (VanLehn, 1999; VanLehn & Jones, 1993; VanLehn,

Jones, & Chi, 1992) learns from solved examples in the domain of physics. The
model studies examples consisting of sequences of lines. It attempts to derive
each line, using its domain-specific knowledge. If the derivation succeeds, it
stores the derivation itself; because Cascade uses analogies with past derivations
to guide search for new ones, stored derivations can affect future processing. If
the derivation fails, the system engages background knowledge that can be of
various types but is likely to be overly general. If the derivation succeeds using
overly general knowledge, the system applies an EBL technique called explan-
ation-based learning of correctness to create a specialized version. Once it has
proven its worth, the new rule is added to the learner’s domain-specific know-
ledge. Finally, if Cascade cannot derive the line even with its general know-
ledge, it stores the line itself in a form that facilitates future use by analogy.
(Cascade also learns while solving problems; see below.) Reimann, Schult, and
Wichman (1993) described a closely related model of learning to solve physics
problems via solved examples, using both rules and cases. The X system
described by Pirolli (1986, 1991) uses analogies to solved examples to guide
initial problem solving rather than overly general background knowledge and it
uses the knowledge compilation mechanism of the ACT-R model rather than
EBL to cache the solution for future use, but its principled approach to initial
learning is similar.
In some instructional settings, it is common for a coach or tutor to demon-

strate the correct solution, i.e., to perform the task while the pupil is observing.
Learning from demonstrations poses all the same problems as learning from
solved examples (except possibly incompleteness), plus the problems of visual
perception and learning under real-time constraints. Having to explain vision as
well as learning is not a simplification. There is no computational model that
learns cognitive skills by observing real-time demonstrations. Donald (1991)
has made the interesting suggestion that mimicry was the first representational
system to appear in hominid evolution, and that remnants of it can still be seen
in the play of children.

17.3.4 Discussion

Each of the four principled answers to the question of how a learner can start
practicing – follow instructions, adapt prior skills to the new situation, re-use
components of previously learned skills, and study someone else’s solution –

can be implemented in multiple ways. All four modes of learning have a high
degree of psychological plausibility, but the validity of the exact processing
details of the competing mechanisms is difficult to ascertain. All four modes of
learning are likely to produce initial skills that are incorrect, suboptimal, or
incomplete. Details might be lost in the operationalization of verbal recipes;
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identical elements might be incomplete; analogies might not be exact; search by
weak methods might not find the shortest path; and solved examples and real-
time demonstrations can be misunderstood. Instruction, previously learned
skills, and solved examples are sources of initial skills but those initial skills
are likely to require fine tuning by other learning mechanisms.

17.4 How Are Partially Mastered Skills Improved?

For present purposes, the second phase of skill acquisition begins with
the first correct performance and ends with mastery, i.e., reliably correct per-
formance. The learning mechanisms that are responsible for improvement
during this phase answer the question, how can an initial, incomplete, and
perhaps erroneous skill improve in the course of practice? While the mechanisms
that dominate the first phase necessarily draw upon information sources avail-
able before action begins, the mechanisms that dominate this phase capitalize
on the information that is generated by acting vis-à-vis the target task. The
latter includes information to the effect that the learner is on the right track
(positive feedback). An important subtype of positive feedback is subgoal satis-
faction. The discovery that a subgoal has been achieved is very similar to the
reception of positive feedback from the environment in its implications for
learning – the main difference is whether the information originates internally
or externally. The two will be discussed together. The environment can also
produce information to the effect that an action was incorrect, inappropriate, or
unproductive in some way (negative feedback). Feedback is both a triggering
event and a source of information, but learning from the two types of feedback
requires different processes. Another important type of trigger is the occurrence
of an impasse, a situation in which the cognitive system cannot resolve what to
do next. In machine learning research, learning on the basis of feedback is
supervised learning (Osisanwo et al., 2017).

17.4.1 Operationalize Positive Feedback

Learning from positive feedback is not as straightforward as Thorndike (1927)
presupposed when he formulated the (first half of ) the Law of Effect. The
theoretical question is what is learned. If the learner takes a correct step
knowing that it is correct, there is nothing to learn, it seems. Yet, positive
feedback facilitates human learning, presumably because many steps generated
by initial rules are tentative and positive feedback reduces uncertainty about
their correctness (Mitrovic, Ohlsson, & Barrow, 2013).

17.4.1.1 Increase Rule Strength

The simplest mechanism for uncertainty reduction is described in the first half
of Thorndike’s Law of Effect: increase the strength of the rule that generated
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the feedback-producing action. Variants of this strengthening idea are incorpor-
ated into a wide range of computational models.
The EUREKA model described by Jones and Langley (2005) stores past

problem-solving steps, fully instantiated, in a semantic network memory. When
faced with a decision as to what to do in a current situation S, the model spreads
activation across the network to retrieve a set of past steps that are relevant
for S. A step is selected for execution based on degree of similarity to the current
situation. (When a problem is encountered a second time, the exact same step
that led to success last time is presumably maximally similar and hence guaran-
teed to be selected for execution.) Finally, analogical mapping between the past
step and S is used to apply the step to S. As experience accumulates, the
knowledge base of past steps grows. Positive and negative feedback are used
to adjust the strengths of the relevant network links, which in turn alters the
outcome of future retrieval processes. In the GIPS model, Jones and VanLehn
(1994) interpreted positive feedback as evidence in favor of the hypothesis that
the action was the right one under the circumstances, and increased the prob-
ability of that hypothesis with a probabilistic concept-learning algorithm, a
different concept of strengthening.
There are multiple implementation issues: by what function is the strength

increment to be calculated? How is the strength increment propagated back-
wards through the solution path, if the feedback-producing outcome required
multiple steps? How is the strength increment to be propagated upwards in a
goal hierarchy? Should a higher-order goal be strengthened more, less, or by the
same amount as a lower-order goal (Corrigan-Halpern & Ohlsson, 2002)? In the
machine learning community, this bundle of questions is called the credit
assignment problem (Grefenstette, 1988).
Strengthening increases the probability that the feedback-producing skill

component will be executed in every situation in which it can, in principle,
apply. But a rule that is useful in some class of situations {S} is not necessarily
useful in some other class of situations {S0}. The purpose of learning must be to
separate these two classes of situations, something strengthening does
not accomplish.

17.4.1.2 Create a Rule

Positive feedback following a tentative action A, performed in some situation S,
can trigger the bottom-up creation of a new rule that recommends that action in
future encounters with the same situation. The simplicity of early formulations
hid the complexity of deciding to which class of situations the feedback refers.
The theoretical problem is that the situation S is history by the time the
feedback arrives, and will never recur. The purpose thus cannot be to create a
rule that executes A in S, but in situations like S. But if doing A in S leads to the
attainment of goal G, what is the class {S} of situations in which A will have
this happy outcome? If I see a movie by director X and lead actor Y at theater
Z, and I enjoy the movie, what is the conclusion? It takes more than syntactic
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induction to realize that see more movies by director X is a more sensible
conclusion than see more movies at theater Z. A mechanism for creating a
new rule following success must provide for some level of generality. Few
models have resolved this problem.

One solution is to create a specific rule by using the entire situation S as its
condition, and then rely on other learning mechanisms to generalize it when
more information becomes available. This is the solution used in the Clarion
system (Sun, Merril, & Peterson, 2001; Sun, Slusarz, & Terry, 2005), which is a
hybrid model with both symbolic and connectionist learning mechanisms.
Actions can be chosen on the basis of a quantitative measure called a Q-value,
computed by a connectionist network. When an action chosen in this way is
rewarded with a positive outcome, and there is no symbolic rule that would
have proposed that action in that situation, the system creates a new rule with
the current state as the condition on that action. (If such a rule already exists,
the rule is generalized; see below.) The opposite solution is to create a max-
imally general rule and rely on other learning mechanisms to restrict its appli-
cation. This solution has received less attention (but see Bhatnagar & Mostow,
1994, and Ohlsson, 1987a).

The more common solution is to generalize the specific step conservatively,
usually by replacing (some) constants with variables. An early model of this sort
was described by Larkin (1981) and Larkin et al. (1980). It responded to
successful derivations of physics equations by creating new rules that could
duplicate the derivations. Particular values of physical magnitudes were
replaced with variables, on what basis was not stated. Lewis (1988) combined
analogy from existing productions and explanation-based generalization to
create new rules in response to positive outcomes.

Later systems have used some version of EBL to contract derivations or
search paths into single rules and to provide a judicious level of generality. This
principle is at the center of the Soar system (Laird, 2012; Laird & Newell, 1993;
Newell, 1990; Rosenbloom, Laird, & Newell, 1993). Soar carries out all activ-
ities through problem space search. When the goal that gave rise to a problem
space is reached, Soar retrieves the search path that led to it and applies an
EBL-like mechanism called chunking (Ritter & Bibby, 2001, 2008; Newell &
Rosenbloom, 1981; Rosenbloom & Newell, 1986, 1987). The result is a rule of
grounded generality that can re-generate the positive outcome without search.
This chunking mechanism turns out to combine smoothly with other mechan-
isms (Nason & Laird, 2005; Sterns & Laird, 2018). The theme of searching until
you find and then using EBL or some related technique to cache the successful
path with an eye toward future use recurs in otherwise different models (e.g.,
VanLehn, 1999).

17.4.1.3 Generalize a Rule

When a rule already exists and generates a positive outcome, a possible
response is to generalize that rule. If it applies in a larger set of situations, it
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might generate more positive outcomes. In the Clarion model (Sun, Merril, &
Peterson, 2001; Sun, Slusarz, & Terry, 2005), when an action proposed by a
rule generates positive feedback, the rule is generalized. Curiously, this is done
by adding a condition element, a value on some dimension describing the
current situation, to the rule. In a pattern-matching architecture, adding a
condition element restricts the range of situations in which a rule matches, but
Clarion counts the number of matches, so one more condition element pro-
vides one more chance of scoring a match, giving the rule more chances
to apply.
If multiple rule applications and their consequences – an execution history –

are stored in memory, rule generalization can be carried out inductively. In the
initial version of ACT-R, a collection of specific rules (or rule instances) that all
recommended the same action and produced positive feedback can serve as
input to an inductive mechanism that extracts what the rules have in common
and creates a new rule that encodes only the common features (Anderson, 1983;
Anderson, Kline & Beasley, 1979). However, inductive, commonalities-
extracting mechanisms that operate upon syntactic similarities have never been
shown to be powerful. Life is full of inconsequential similarities and differences,
so getting to what matters usually requires analysis (but see Holland et al., 1986,
for a contrasting view).
Lenat (1983) made the intriguing observation that heuristics of intermediate

generality appear to be less useful than either very specific or very general
heuristics. For example, the specific heuristic, to turn on the printer in Dr.
Ohlsson’s office, lean as far towards the far wall as you can and reach into the
gap between the wall and the printer with your left arm and push the button that is
located towards the back of the printer, is useful because it provides very specific
guidance, while the general heuristic, to turn on any electric device, push its
power button, is useful because it is so widely applicable. The intermediate
heuristic, if you want to turn on a printer, push its power button, provides neither
advantage. An inductive rule generalization mechanism is likely to produce
rules of this intermediate generality.

17.4.2 Operationalize Negative Feedback

A significant proportion of the information generated by tentative action comes
in the form of errors, failures, and undesirable outcomes. There are multiple
mechanisms for making use of such information. The basic response is to avoid
repeating the action that generated the negative feedback. More precisely, the
problem of learning from negative feedback can be stated as follows: If rule
R recommends action A in situation S, and A turns out to be incorrect,
inappropriate or unproductive vis-à-vis the current goal, then what is the
indicated revision of R? The objective of the revision is not so much to prevent
the offending rule from executing in S, or situations like S, but to prevent it
from generating similar errors in the future.
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17.4.2.1 Reduce Strength

The simplest response to failure is described in the second half of Thorndike’s
Law of Effect: decrease the strength of the feedback-producing rule. As a
consequence, that rule will have a lower probability of being executed. Like
strengthening, this weakening mechanism is a common component of cogni-
tive models (e.g., Jones & Langley, 2005). As with strengthening, there are
multiple issues: by what function should the strength values be adjusted
downwards, and how should the strength decrement be propagated back-
wards through prior steps or upwards through the goal hierarchy (Corrigan-
Halpern & Ohlsson, 2002)? In the machine-learning community, this is called
the credit assignment problem.

Weakening lowers the probability that the rule will execute in any future
situation. The purpose of learning from negative feedback is to discriminate
between those situations in which the rule is useful from those in which it is
inappropriate, and a strength decrement is not an effective way to accomplish
this. Jones and VanLehn (1994) interpreted negative feedback as evidence
against the hypothesis that the action was the right one under the circum-
stances, and reduced the probability of that hypothesis with a probabilistic
concept-learning algorithm, a very different concept of strength reduction.

17.4.2.2 Specialize

Ohlsson (1993, 1996, 2006; see also Ohlsson, Ernst, & Rees, 1992; Ohlsson &
Rees, 1991a,b) has described constraint-based rule specialization, a mechanism
for learning from a single error. It presupposes that the learner has sufficient
(declarative) background knowledge, expressed in terms of constraints, to judge
the outcomes of his or her actions as correct or incorrect. A constraint is a
binary pair <R, C> of conditions, the first determining when the constraint is
relevant and the second determining whether it is satisfied. When an action
violates a constraint, i.e., creates a situation in which the relevance condition is
satisfied but the satisfaction condition is not, the violation is to create a more
restricted version of the offending rule. The constraint-based rule specialization
mechanism identifies the weakest set of conditions that will prevent the rule
from violating the same constraint in the future. For example, if the rule is if the
goal is G and the situation is S, then do A, and it turns out that doing A in
S violated some constraint <R, C>, then the constraint-based mechanism
specializes the rule by creating two new rules, one that includes the new condi-
tion not-R (do not recommend A when the constraint applies) and one that
includes the condition C (recommend A only when the constraint is guaranteed
to be satisfied); see Ohlsson and Rees (1991a) for formal description of the
algorithm. The purpose of constraint-based specialization is not primarily to
prevent the rule from executing in the current situation or in situations like it,
but to prevent it from violating the same constraint in the future. The algorithm
is related to EBL as applied to learning from errors, but does not require the
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combinatorial process of constructing an explanation of the negative outcome.
(The Cascade system – VanLehn, 1999 – also learns special cases of overly
general rules but in the service of learning from positive or successful steps; see
previous section.)
The Clarion model (Sun, Merril, & Peterson, 2001; Sun, Slusarz, & Terry,

2005) contains a different specialization mechanism: if an action is executed and
followed by negative feedback, and there is a rule that proposed that action in
that situation, then the application of that rule is restricted. This is done by
removing a value, i.e., a measure on some dimension used to describe the
current situation. In the context of Clarion, this decreases the number of
possible matches and hence restricts the range of situations in which the rule
will be the strongest candidate.
A rather different conception of specialization underpins systems that

respond to negative feedback by learning critics, rules that vote against per-
forming an action during conflict resolution. The ability to encode missteps into
critics removes the need to specialize overly general rules, because their rash
proposals are weeded out during conflict resolution (Ohlsson, 1987a). This idea
has been explored more extensively in machine-learning research (Bhatnager &
Mostow, 1994), where critics are sometimes called censors or censor rules
(Bharadwaj & Jain, 1992; Jain & Bharadwaj, 1998; Winston, 1986).
The above mechanisms improve practical knowledge by making it more

specific and thereby restricting its application, in direct contrast to the idea that
practical knowledge becomes more general and more abstract over time. The
latter view is common among lay people and among researchers in the fields of
educational and developmental psychology, in part, perhaps, as a legacy of Jean
Piaget’s claim that cognitive development progresses from concrete sensori-
motor schemas to formal logical operations. “Representations are literally built
from sensory-motor interactions” (Fischer, 1980, p. 481).

17.4.2.3 Discriminate

Some learning mechanisms draw simultaneously on both positive and negative
feedback. Restle (1955) and other mathematical psychologists captured dis-
crimination within the behaviorist framework, but their equations received less
attention after the emergence of the symbolic computational framework. There
are multiple computational implementations of discrimination. Langley (1983,
1987) described SAGE, a system that included a discrimination mechanism that
assumes that the applications of a production rule, including any positive and
negative feedback, are recorded in memory. Once memory contains some
instances that were followed by positive and some by negative feedback, the
two sets of rule applications can be compared to identify features that differen-
tiate them. One or more new rules are created using the discriminating features
as additional conditions on the original rule. A very similar mechanism was
included in the 1983 version of the ACT-R theory (Anderson, 1983). A rather
different mechanism for making use of an execution history that records both
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successful and unsuccessful actions, based on quantitative concept learning
methods, was incorporated into the GIPS system described by Jones and
VanLehn (1994).

Implementation of a discrimination mechanism raises at least the following
issues: what information should be stored for each rule application? The instan-
tiated rule? The entire state of working memory? How many examples of
negative and positive outcomes are needed before it is worth searching for
discriminating features? By what criterion are the discriminating features to
be identified? Which new rules are created? All possible ones? If not, then how
are the new rules selected?

17.4.3 Intermission: Learning at Impasses

Impasses are execution states in which the learner’s cognitive system cannot
resolve what to do next. An impasse is a sign that the current method for the
target task is incomplete in some way, so impasses should trigger learning
(VanLehn, 1998). The mere occurrence of an impasse is not in and of itself
informative, so the question is how the inability to proceed can be turned into
an opportunity to improve. The general answer is that some method must be
found that resolves the impasse and enables problem solving to continue;
learning occurs when the latter produces a positive outcome. Different models
differ in how they resolve the impasse as well as in how they learn from a
subsequent successful step.

In Repair Theory (Brown & VanLehn, 1980; VanLehn, 1983, 1990), the
cognitive system has access to a short list of repairs, processes it can execute
when it does not know what action to take next. VanLehn (1990, p. 57)
described five repairs: pass over the current step (No-op); return to a previous
execution state and do something different (Back-up); give up and go to the next
problem (Quit); revise the execution state (technically, the arguments in the top
goal) so as to avoid the impasse (Refocus); and relax the criteria on the
application of the current step (Force). Although applications of a repair can
be saved for future use (VanLehn, 1990, p. 43, p. 188), repairs are not learning
mechanisms. They enable task-relevant behavior to continue in the face of an
impasse, and they are in that respect similar to weak methods. The purpose of
Repair Theory was to explain, in combination with the Sierra model of induc-
tion from solved examples (see above), the emergence of children’s incorrect
subtraction procedures.

The previously mentioned Cascade model (VanLehn, 1999; VanLehn &
Jones, 1993; VanLehn, Jones, & Chi, 1992) of learning from solved examples
also learns at impasses when solving physics problems. If a subgoal cannot be
achieved with the learner’s current strategy, he or she brings to bear back-
ground knowledge that might be overly general. If the knowledge allows the
impasse to be resolved and if a positive outcome eventually results, then a new,
domain-specific rule is created using explanation-based learning of correctness.
The new rule is added tentatively to the model’s domain knowledge until further
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evidence is available as to its appropriateness or usefulness. The new domain
rule is a special case of the overly general rule, so this is yet another case of
specialization. If an impasse cannot be resolved even by engaging general
background knowledge, the system uses a version of analogy to continue
problem solving (not unlike applying a repair; see above), but does not learn
a new rule. Similarly, Pirolli’s (1986, 1991) X model responded to impasses
through analogies with available examples. If an analogy was successful in
resolving an impasse, the resolution was stored as rules for future use.
In the Soar system (Newell, 1990; Rosenbloom, Laird, & Newell, 1993;

Rosenbloom &Newell, 1986, 1987), an impasse causes the creation of a subgoal
that poses the resolution of the impasse as a problem in its own right. That
subgoal is pursued by searching the relevant problem space, bringing to bear
whatever knowledge might be relevant and otherwise falling back on weak
methods. When the search satisfies the subgoal, the problem-solving process is
captured in one or more production rules through chunking, an EBL-like
mechanism that compresses the successful search path into a single rule of
appropriate generality. Another model, Icarus, that engages in problem solving
in response to an impasse has been described by Langley and Choi (2006). This
model uses a variant of backward chaining to resolve a situation in which no
existing skill is sufficient to reach the current subgoal. When the solution has
been found, it is stored for future use.
These models differ in how they resolve an impasse: call upon repairs; apply

weak methods like search and backward chaining; reason from general back-
ground knowledge; and use analogy to past problem-solving experiences. These
mechanisms are not learning mechanisms; they do not change the current skill.
Their function is to allow task-oriented behavior to continue. Once the impasse
is resolved and problem solving resumes, learning occurs at the next positive
outcome via the same learning mechanisms that are used to learn from other
positive outcomes.

17.5 Beyond Correctness: Optimization

The third phase of skill acquisition begins when the learner exhibits
reliably successful performance and lasts as long as the learner keeps perform-
ing the task. During this phase, the performance becomes more streamlined.
Long after the error rate has moved close to zero, time to solution keeps
decreasing, possible throughout the learner’s entire life time. (Crossman,
1959, is the classical example.) The learning mechanisms operating during this
phase are answers to the question: how can an already mastered skill undergo
further improvement? What is changing, once the method for the target task
generates correct answers or successful solutions? Even a method that consist-
ently delivers desirable outcomes might contain inefficient, redundant, or
unnecessary steps. Eliminating those can lead to speed-up and other improve-
ments in the skill. Changes of this sort might shorten or simplify the learner’s
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overt behavior (optimization at the knowledge level), or simplify the mental
code for generating that behavior (optimization at the computational level).
The information used by learning mechanisms that operate primarily in the
third phase include execution histories and quantitative properties of
the environment.

17.5.1 Optimization at the Knowledge Level

The skill a learner acquires in the course of practice might be correct but
inefficient. Over time, he or she might discover or invent a shorter sequence of
actions that accomplish the same goal. This type of change is usually referred to
as shortcut detection, strategy discovery, or strategy shift. The challenge is to
explain what drives the learner to find a shorter solution when he or she cannot
know ahead of time whether one exists, and when there is no negative feedback
(because his or her current strategy leads to correct answers).

A well-documented example of such short-cut detection is the so-called
SUM-to-MIN transition in the context of simple mental arithmetic. Problems
like 5 þ 3 ¼ ? is at a certain age solved by counting out loud, one, two, three,
four, five, six, seven, eight – so eight is the answer. After considerable practice
children discover that the first five steps are unnecessary and reduce their
solutions to the more economical MIN-strategy, in which the child chooses
the larger addend and counts up: five, six, seven, eight – eight. This amounts to
discovering that it is unnecessary to count out the larger addend. This does not
change answers to counting requests, but it does change the sequence of
cognitive operations required to generate those answers.

Neches (1987) described seven different types of optimization mechanisms
in the context of his HPM model, including deleting redundant steps,
replacing a subprocedure, and reordering steps. He showed that they collect-
ively suffice to produce the SUM-to-MIN transformation. Jones and
VanLehn (1994) modeled the same short-cut discovery in their GIPS model.
Each condition on a GIPS action is associated with two quantitative variables,
sufficiency and necessity. Conflict resolution uses these values to compute the
odds that the action is worth selecting, and the action with the highest odds
wins. The two variables are updated on the basis of successes and failures with
a probabilistic concept learning algorithm. A closely related model, the
Strategy Choice and Discovery Simulation (SCADS), was proposed by
Shrager and Siegler (1998; see also Siegler & Araya, 2005). SCADS has
limited attentional resources, so at the outset of practice, it merely executes
its given strategy. Once the answers to some problems can be retrieved from
memory and hence require less attention, some attention is allocated to
strategy change processes that (a) inspect the execution trace and deletes
redundant steps, and (b) evaluates the efficiency of different orders of execu-
tion of the steps in the current strategy and identifies the more efficient one
(p. 408). These two change mechanisms turn out to be sufficient to discover
the MIN strategy.
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Another strategy shift that results in different overt behavior transforms the
novice’s laborious problem solving through means-ends analysis or backward
chaining into the expert’s forward-inference process that develops the know-
ledge about a problem until the desired answer can be found, perhaps without
ever setting any subgoals. The ABLE model of physics problem solving by
Larkin (1981) simulated this transformation in the domain of physics. Elio
and Scharf (1990) achieved the same effect, also in the domain of physics, with
sophisticated indexing of successful problem-solving episodes in memory.
Their AXE model created problem-solving schemas and used positive and
negative outcomes to adjust the level of generality of the schemas. Over time,
it relied increasingly on the forward-inferencing schemas and less on means-
ends analysis.
Anderson (1982, 1983) explained the transition from backward chaining to

forward inferencing as well as the transition from serial to parallel search in the
Sternberg short-term memory task by showing that rule composition (see
below) can squeeze elements out of rules, thus eliminating the need to retrieve
those elements from memory. In contrast, Koedinger and Anderson (1990)
attributed the forward-inferencing behavior of geometry experts to a repertoire
of diagram chunks that allow experts to quickly identify possible inferences in a
geometric diagram, thus seemingly arriving at conclusions before they derive
them, but Koedinger and Anderson did not model the acquisition of those
diagram chunks. Taking a different tack, Blessing and Anderson (1996) argued
that rule-level analogies suffice to discover strategic short-cuts.
Another empirically documented strategy discovery is the invention, by some

individuals, of the pyramid recursion strategy of Tower of Hanoi. Unlike the
MIN-to-SUM and backward-to-forward transitions, the transition from
moving single discs to moving pyramids or stacks of discs requires an increase
in the complexity of internal processing in order to simplify overt behavior.
Ruiz and Newell (1993) modeled this strategy discovery in the Soar system by
adding special productions that (a) notice subpyramids and (b) reason about
spatial arrangements like stacks of objects, but without postulating any other
learning mechanisms than Soar’s standard impasse-driven chunking mechan-
ism. Ritter and Bibby (2001) and Paik et al. (2005) describe closely related
applications of this mechanism.
A different approach to short-cut detection is to assume that the mind

reasons from declarative background knowledge to new production rules that
may represent short-cuts (Ohlsson, 1987b). For example, if the current strategy
contains a production rule that matches goal G and produces some partial
result B, and there is in memory a general implication A1 & A2 implies B, then it
makes sense to create the new rule, if you want G and you have A1, set the
subgoal to get A2, as well as, if you want G and you have both A1 and A2, infer B.
The first rule encodes a backward-chaining subgoaling step – get the prerequis-
ites for the target conclusion – and the second new rule is akin to the result of
the proceduralization process discussed previously. This and two other mech-
anisms for reasoning about a set of rules on the basis of general if-then
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propositions were implemented in a model called PSS3, which reduced the
simulated time for performing a simple spatial reasoning task by two orders
of magnitude. Some of these learning mechanisms require that production rules
can test for properties of other production rules – the mental code, not merely
traces of executions – a psychologically problematic assumption.

In some task domains, task performance can be simplified by retrieving
answers from long-term memory. If a person answers the same question cor-
rectly over and over again, he or she will eventually encode the answer into
long-term memory and hence not need to perform any other processing than
retrieving it from memory. In a well-defined domain such as arithmetic, the
balance between computing and retrieving might shift over time in favor of
retrieval. A shift from, for example, 60 percent of answers being computed and
40 percent retrieved, to 40 percent computed and 60 percent retrieved might
have a strong effect on the mean response time.

A shift towards memory-based responding is central to the instance-based
model by Logan (1998) and the series of models of children’s strategy choices in
arithmetic described by Siegler and associates: the distribution of associations
model (Siegler & Shrager, 1984); the Adaptive Strategy Choice Model or
ASCM (Siegler & Shipley, 1995;); and the Simulation of Choice and
Discovery of Strategies or SCADS model (Shrager & Siegler, 1998). All three
models implement the idea that associations between questions and answers are
gradually strengthened until the learner can respond solely on the basis of
memory retrieval, without having to perform any symbolic computations.

The psychological reality of instance memorization and gradual shifts
towards memory-based responding is hardly in doubt (e.g., the multiplication
table). But this type of learning cannot be important in all task domains. For
example, it does not apply to buying a house because few people buy the same
house multiple times. Fu and Gray (2004) argue that there are general condi-
tions that prevent optimization.

17.5.2 Optimization at the Computational Level

Not every problem space contains a short-cut. But even when there is no shorter
action sequence that accomplishes the learner’s goal, he or she might be able to
reduce the mental load required to generate the relevant action sequence. In this
case, overt behavior does not change but the learner produces that behavior
with fewer or less capacity-demanding cognitive operations.

An optimization mechanism, rule composition, was included in the original
ACT-R model (Anderson, 1983; Lewis, 1987; Neves & Anderson, 1981). This
mechanism requires a less extensive access to the execution trace than short-cut
detection; it need only keep track of the temporal sequence of rule executions. If
two rules are repeatedly executed in sequence, then a new rule is created that
performs the same work as the two rules. To illustrate the flavor of this type of
change, imagine that G, S1 ¼¼> A1 and G, S2 ¼¼> A2 are two rules that
repeatedly execute in sequence. A plausible new rule would be G, S1 ¼¼> A1;
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A2, which is executed in a single production system cycle. Given that A2 is
always performed after A1, there is no need to evaluate the state of the world
after A1. A full specification of this contraction mechanism needs to take
interactions between the action of the first rule and the conditions of the second
rule into account. In ACT-R, composition worked in concert with procedur-
alization. The combination of the two mechanisms was once referred to as
knowledge compilation (Anderson, 1986) but this label is no longer used.
The composition mechanism evolved into the related production compilation

mechanism (Taatgen, 2002, 2005; Taatgen & Anderson, 2002; Taatgen & Lee,
2003). The triggering condition for this learning mechanism is also that two
rules repeatedly execute in temporal sequence, and, as in rule composition, it
creates a single new rule. The resulting rule is specialized by incorporating the
results of retrievals of declarative information into the resulting rule. The
combination process eliminates memory retrieval requests in the first rule and
tests on retrieved elements in the second rule. For example, if the two rules if
calling X, then retrieve his area code and if calling X and his area code is
remembered to be Y, then dial Y are executed in the course of calling a guy
called John with area code 412, production compilation will create the new rule
If calling John, then dial 412. Because there can only be a single request on
memory in any one ACT-R production rule, eliminating such requests saves
production system cycles. However, there is more to combining rules than mere
speed-up. Anderson (1986) argued that knowledge compilation can mimic the
effects of other learning mechanisms such as discrimination and generalization,
and produce qualitatively new practical knowledge. In the same vein, Taatgen
and Anderson (2002) modeled the learning of the correct form of the past tense
of verbs using nothing but production compilation. The effects of optimization
by contraction are more complicated than they first appear and deserve
further study.
The issues involved in designing a rule combination mechanism include the

following: What is the triggering criterion? How many times do the two rules
have to execute in sequence for there to be sufficient reason to compose them?
Does the new rule replace the previous rules or is it added to them? Are there
counterindications? If the learner’s execution history for the relevant rules also
contains situations in which the two rules did not execute in sequence, should
the rules nevertheless be combined?

17.5.3 Exploit the Statistics of the Task

As a learner becomes familiar with a particular task environment, he or she
accumulates information about its quantitative and statistical properties. For
example, the members of a tribe of foraging hunter-gatherers might have
implicit but nevertheless accurate estimates of the average distance between
food sources and the probability of discovering a new food source in a given
amount of time, e.g., before the sun sets or before winter sets in (Simon, 1956).
Quantitative information of this sort was abundant in the environments in
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which human beings evolved (How often have such and such an animal been
sighted recently? How many days of rain in a row should we expect? How high up
the banks will the river flood?), so it is plausible that they evolved cognitive
mechanisms to exploit it. A contemporary descendant might use such mechan-
isms to estimate the expected travel time to the airport or the probability that a
sports team will win its next game.

The behaviorist learning theories of the 1895–1955 era were the first psycho-
logical theories to focus on the learner’s use of quantitative regularities in the
environment, especially event frequencies, intuitive correlations, and amount of
reinforcement. Theories of this sort were proposed by E. Thorndike, E. R.
Guthrie, C. L. Hull, E. C. Tolman, B. F. Skinner, and others; Hilgard and
Bower (1966) is the classical review. These theorists conceptualized the effect of
environmental events in cause-effect and motivational terms: each event
impacts the learner and the effect of multiple events is the sum of their impacts.
The strength of the disposition to perform an action could not yet be seen as an
estimate of the relative frequency of environmental events like positive and
negative feedback because before World War II the learner was not yet seen as
an information processor.

Mathematical psychologists in the 1945–1975 period discovered and investi-
gated several types of quantitative properties of the environment (see, e.g., Bush
& Mosteller, 1951; Neimark & Estes, 1967). For example, in a standard
laboratory paradigm called probability matching, subjects are presented with a
long sequence of binary choices (e.g., left, right) and given right-wrong feedback
on each. The relative frequencies of trials on which “left” or “right” is the
correct response is varied between groups. Over time, the relative frequencies of
the subjects’ responses begin to match the relative frequencies of the feedback,
so if “left” is the correct response 80 percent of the time, then the subject tends
to say “left” 80 percent of the time. In the absence of other sources of infor-
mation, probability matching provides a lower hit rate than choosing the
response that is most often followed by positive feedback. Other well docu-
mented sensitivities to event frequencies include word frequency effects, proto-
type effects in classification, the impact of co-occurrences on causal reasoning,
the role of estimated outcome probabilities in decision making and many more.
Models of this sort are proposed as models of implicit learning or statistical
learning (Christiansen, 2019).

How do mental estimates of environmental magnitudes help optimize a
cognitive skill in the long run? Consider the following everyday example:
Many of the operations one does during word processing causes a dialogue
window to appear with a request for confirmation of the operation, e.g., does
one really intend to shut down this computer, print this file, etc. After using the
same computer and the same software for several years, a person knows exactly
where on the computer screen the dialogue box and hence the confirmation
button will appear. Before the computer presents the dialogue box, he or she
might already have moved the cursor to that position, so there is zero time lag
between the appearance of the button and the click. (See Gray & Boehm-Davis,
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2000, for other examples of such micro-strategies.) This extreme adaptation to
the task environment is a case of computational optimization (clicking fast and
clicking slow are equally correct) and it depends crucially on having sufficient
experience for the estimates of the button coordinates to become stable and
accurate. Other environmental quantities affect processing in other ways, opti-
mizing memory retrieval, conflict resolution, goal setting, attention allocation,
and so on. As practice progresses, the internal estimates of the relevant environ-
mental quantities become more accurate and less noisy and thus enable fine
tuning of the relevant processes. Capturing the statistical structure of the task
environment is likely to be responsible for a significant proportion of the speed-
up that accompanies practice in the long run.
An alternative use of the statistics of the environment is to accumulate

information about the utility, i.e., the amount of gain to be expected from
performing a given action (rule) in a particular situation (Anderson, 2007).
This alternative view conceptualizes what is learned in terms of (positive or
negative) reinforcement (Cooper, Ruh, & Mareschal, 2014; Nason & Laird,
2005). In this case, what is acquired during skill practice is not (only) knowledge
about the environment. What is learned also includes how much the learner
should expect to gain by performing such and such an action in such-and-such a
context (Gray, Schoelles, & Sims, 2005). Psychological models and machine-
learning systems that learn on the basis of reinforcement (see, e.g., Taylor &
Stone, 2009) bring the theory of skill acquisition full circle back to Thorndike’s
(1927) formulation. With hindsight, his Law of Efffect is more a statement
about the learner’s motivation to act in a certain way than a statement about
the accumulation of knowledge about the environment.

17.5.4 Discussion

Cognitive psychologists discuss the long-term consequences of practice in terms
of two concepts that in certain respects are each other’s opposites: automaticity
and expertise. The essential characteristics of automaticity include rigidity in
execution and a high probability of being triggered when the relevant stimuli
are present (Schneider & Chein, 2003). The consequences include capture errors
(Reason, 1990), Einstellung effects (Luchins & Luchins, 1959) and negative
transfer (Woltz, Gardner, & Bell, 2000). But experts exhibit a high degree of
awareness, flexibility, and ability to adapt to novel situations (Ericsson et al.,
2006). Which view is correct? If someone practices four hours a day, six days a
week, for ten years, is the end result a rigid robot or a flexible expert?
Both end states are well documented, so the question is which factors deter-

mine which end state will be realized in any one case of skill acquisition.
Ericsson, Krampe, and Tesch-Rober (1993) have proposed that experts engage
in deliberate practice, but they have not offered a computational model of how
deliberate practice might differ from mere repetitive activity in terms of the
cognitive processes involved. Deliberate practice is undertaken with the intent
to improve, but how does that affect the operation of the relevant learning
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mechanisms? Salomon and Perkins (1989) summarized studies that indicate that
the variability of practice is the key, with greater variability creating more
flexible skills. Another hypothesis, popular among educational researchers, is
that flexibility is a side effect of conceptual understanding. To explain the
difference between automaticity and expertise, a model cannot postulate two
sets of learning mechanisms, one that produces rigidity and one that leads to
flexibility. The theoretical challenge is to show how one and the same learning
mechanism (or set of mechanisms) can produce either automaticity or expertise,
depending on the properties of the training problems (complexity, variability,
etc.), the learner, the learning scenario, and other factors.

17.6 Conclusion

Contemporary research on the acquisition of cognitive skills builds on
a century of cumulative scientific progress. The computer models proposed
since Anzai and Simon’s (1979) article are better articulated, more precise,
and more explanatory than the verbal formulations and mathematical equa-
tions that preceded them. They address a growing range of theoretical questions
and empirical findings. The computational modeling of cognitive skill acquisi-
tion is, in the terminology of philosophers, a progressive research paradigm.

The main empirical phenomenon to be accounted for by a model of skill
acquisition is the fact that practice – repeated attempts to execute a not-yet-
mastered skill – almost always leads to improved performance. The improve-
ment takes multiple forms. One important practice effect is speed-up, a decrease
in the time it takes a person to perform the target task. To account for the
amount and time course of speed-up is widely believed to be an important
theoretical problem. The desire to explain speed-up is, in part, driven by the
finding that it follows a negatively accelerated curve that conforms rather
precisely to either a power law curve or an exponential curve. There is no
intuitive reason why this should be the case. Common sense would suggest that
speed-up can take diverse forms, depending on the nature of the target task, the
characteristics of the learner, the circumstances of practice, and other factors.
Why, for example, isn’t speed-up linear with amount of practice? A clear
explanation of why speed-up is negatively accelerated would be a victory for
cognitive science.

The first decades of computational modeling were animated, in part, by the
belief that such a widely observed empirical phenomenon as the speed-up curve
would turn out to be a signature of a particular type of change mechanism. By
reverse engineering the appearance of negatively accelerated speed-up,
researchers expected to gain some fundamental insight into how the human
mind speeds up a task performance in the course of practice. This expectation
has not been fulfilled. It turns out that almost any symbol processing mechan-
ism that is capable of speeding up the execution of a skill will generate a
negatively accelerated curve (see, e.g., Anderson, 1982; Logan, 1998; Nerb,
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Ritter, & Krems, 1999; Newell & Rosenbloom, 1981; Ohlsson, 1996; Shrager,
Hogg, & Huberman, 1988). Consequently, the phenomenon does not constrain
the space of possible skill acquisition models as much as researchers
originally hoped.
In short, forty years of research on the cognitive mechanisms behind speed-

up have been inconclusive. No single model or mechanism has emerged as
clearly superior to all others in explaining how speed-up works, why it follows
a negatively accelerated curve, and why empirical learning curves exhibit the
mathematcal properties they do. Instead of a single superior model, the field
has produced a repertoire of plausible learning models, operating in different
ways and utilizing different types of information. These include, but might not
be limited to, the nine types of models reviewed in this chapter and the nine
associated information types: direct instruction; prior skills; solved examples
and demonstrations; positive feedback (including subgoal satisfaction); nega-
tive feedback; general declarative knowledge; memory of past problem solu-
tions; execution histories; and the statistical properties of the environment.
For each type of information, there is at least one computational mechanism
that can utilize that type of information to produce negatively accelerated
speed-up.
Where does this outcome leave the modeling of skill acquisition? It is

implausible that the amazing ability of human beings to acquire new cognitive
skills can be explained by a single cognitive mechanism. It is more plausible that
the observable changes in behavior during practice is the aggregate outcome of
multiple interactive learning mechanisms. A key question for future modeling
efforts is how to identify the repertoire of learning mechanisms that provides the
best fit to human data. The nine modes of learning reviewed in this chapter
constitute an attempt to specify that repertoire. Pursuing this theoretical goal
implies a shift in focus, away from the study of single mechanisms to exploring
the interactions among the mechanisms. At the time of writing, there is no
sustained effort to conduct such a research program (but see Ohlsson, 2011,
chapters 6–8; Ohlsson & Jewett, 1997; and Choi & Ohlsson, 2011, for modest
pilot efforts).
The computational modeling of skill acquisition might instead advance along

other dimensions. Although the nature of speed-up has attracted more attention
from modelers than any other empirical phenomenon, skills undergo other
types of changes as well during practice. One alternative direction is to study
errors, their origin, nature, consequences, and eventual disappearance. The
inverse of error rate is accuracy. Although variations in error rate/accuracy
can have serious consequences in practical contexts, they have received little
attention from modelers (but see Ohlsson, 2011, chapters 6–8).
Some of the questions asked about speed-up are also relevant for accuracy: if

accuracy (error rate) is plotted as a function of amount of practice, what is the
shape of the resulting learning curve? There are only a few computational
models that explain errors, or that make strong predictions on the basis of the
detection and correction of errors. The available evidence, such as it is, indicates
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that, as practice progresses, the number of errors committed in each training
trial decreases and the rate of this change is also negatively accelerated
(Ohlsson, 2011, chapters 6–8). At the time of writing, there is no sustained
research program devoted to the study of the origin, nature, consequences, and
disappearance of errors in the context of skill acquisition.

A second alternative to the study of speed-up is to approach skill acquisition
from the point of view of the quality of the learner’s performance. This concept
is not applicable in every task domain, but it is necessary in others. For
example, consider the task of assembling a do-it-yourself piece of furniture,
where all the parts are available at the outset and the parts only fit together in
one way. It is not clear what counts as increased quality of performance in a
task with these characterisics. All improvement is due to speed and accuracy.
On the other hand, an artistic performance by a ballerina or piano player
presupposes minimal levels of timing and accuracy, and the purpose of practice
is precisely to increase the quality of the performance. Future models of skill
acquisition will no doubt throw more light on the relation between speed,
accuracy, and quality of skilled performances.
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18 Computational Models
of Episodic Memory
Per B. Sederberg and Kevin P. Darby

18.1 Introduction

Episodic memory is the ability to remember information about experi-
enced events that occurred at a specific time and place. Rather than acting
independently from other cognitive processes, episodic memory interacts closely
with, and is largely dependent on, other forms of memory, such as semantic and
working memory, and other processes, such as attention and decision making.
Thus, episodic memory sits at the crossroads of many aspects of higher-level
cognition and, not surprisingly, computational models of episodic memory
typically incorporate numerous interacting processes to capture the full range
of observed behaviors.

The primary benefit of episodic memory is that it allows us to draw on past
experience to guide behavior in the present. As such, it is unclear how to assess
episodic memory without some measure of behavior, and the given task at
hand will determine the range of behaviors observed and reveal different
aspects of the underlying episodic memory processes. While the scale of
episodic memory can last a lifetime, most laboratory-based experiments must
operate on much smaller timescales (usually lasting under an hour).
Nevertheless, over a century of laboratory-based memory experiments
(Ebbinghaus, 1885; Müller & Pilzecker, 1900) have provided significant con-
straint on theories of episodic memory.

The general structure for laboratory-based memory tasks involves having
participants study a list of items (such as words or images), followed either
immediately or after some delay by testing the participants on the information
they have studied. Successful episodic memory entails identifying both what
they studied and when they studied it, with at least enough detail to distinguish
one study event from another (or one that did not happen at all). In order to
retrieve an episodic memory, the participant receives a cue in order to target a
specific event, yet the aspects of the event the participant needs to retrieve
depend on the task. For example, a participant may be asked to recall items,
where the task is to generate (e.g., say out loud) as many items as possible,
either in any order (free recall) or in a specific order (serial recall). Alternately,
in a recognition task, participants may be given an item cue and asked to
indicate whether it is an old (studied target) item or a new (nonstudied lure)
item. Depending on how the items are originally studied, there can be variants
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of recall and recognition that test the formation of associations within pairs of
items. For example, the participant may study pairs of items and later be asked
to either produce the item that was paired with a given cue during study (cued
recall), or to identify whether given pairs are intact (i.e., a pair presented during
study) or recombined (i.e., a new pairing of items studied in different pairs;
associative recognition).
The primary goal of computational models of episodic memory is to pro-

vide an explicit mechanistic explanation for the wide range of behaviors
observed across the different task variants and experimental manipulations.
In the sections below, a general framework is provided for building and
evaluating mechanistic process models of episodic memory. Detailed
examples of four dominant models of episodic memory are then provided,
two applied to recognition tasks and two applied to recall tasks, including a
discussion of relevant shortcomings and extensions of each model. Pervasive
theoretical discussion points include how people represent the content of
experience and the nature of the associations formed between those
representations during encoding, as well as how the representations and
associations interact to guide the retrieval process.

18.2 Modeling Framework

Researchers have applied computational models as a tool to better
understand the cognitive and neural mechanisms underlying episodic memory
performance, yet one challenge facing the field is how best to characterize,
compare, and learn from alternative theories, especially those that operate at
different levels of specificity. One organizing framework for computational
models of episodic memory (and, for that matter, all of cognition) involves
specifying three interacting components: representations, associations, and
dynamics. Representations refers to how elements of experience, such as a
word or its context on a memory list, are coded in the neural (or abstract)
system. Associations refers to how these representations are linked, providing
a means to transform and recover representations (see Kahana, Howard, &
Polyn, 2008 for an overview of associative processes in episodic memory).
Dynamics refers to how the representations and associations change during
the cognitive process of interest, potentially transforming experience (input)
into behavior (output). Critically, these three components are all critical
components of most models regardless of their level of specificity, from a
detailed biophysical neural network to a more abstract mathematical model.
Thus, identifying these three interacting components allows for transfer of
understanding between models, even at different levels of implementational
specificity. Each component is reviewed in more detail below, followed by
concrete examples of how each has been specified in various computational
models of episodic memory.
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18.2.1 Representations

Any model of episodic memory must represent the content of experience, and
specify how the representations are maintained through time. Given that the
brain likely represents information by means of patterns of neural activation, a
common modeling approach is to represent such patterns as vectors, where the
overlap between two vectors defines the similarity between the information they
represent. The overlap between vectors could be calculated in different ways,
including a normalized cosine similarity or a simple dot product, which for two
vectors of equal lengths is a scalar equal to the sum of the product of the values
at each vector position. At its most extreme simplification, items on a study list
can be represented with orthogonal (i.e., nonoverlapping) “one-shot” vectors,
where all the values in each vector are zero except for a single active feature.
Other models extend this approach to represent individual items with simultan-
eously active features. Consequently, active features may overlap across items
to instantiate similarity between items along different dimensions, such as
semantic, phonological, or orthographic characteristics. Importantly, features
need not represent only the items studied, but can also account for other aspects
of the individual’s experience, driven by either internal or external factors, such
as the present environment. While feature vectors are obviously a simplification
relative to firing patterns over thousands of neurons in a brain region, especially
when taking into account the complex biophysical properties of each of those
neurons, they are analogous to mean firing rates of subsets of neurons coding
for specific features and can often achieve quite similar performance to larger-
scale, more biologically plausible models and, as will be seen throughout this
chapter, can reproduce memory behavior quite well (Morton & Polyn, 2016;
Norman & O’Reilly, 2003).

A second key modeling decision with regard to representations is the
specification of how they remain active through time. The brain has the ability
to maintain patterns of neural activation over short periods of time, even in
the absence of direct input, though practical constraints define the nature of
this active maintenance. Because representing information as distributed pat-
terns of neural firing involves a significant energy expenditure (Harris,
Jolivert, & Attwell, 2012; Lennie, 2003; Levy & Baxter, 1996), and because
the size of the brain is limited, active maintenance of representations has a
capacity limit, a hallmark of working or short-term memory (Cowan, 2001).
Although limited in capacity, activation-based memories typically have high
fidelity with efficient access suitable for conscious manipulation of informa-
tion (Baddeley & Hitch, 1974; Brady, Konkle, Gill, Oliva, & Alvarez, 2013;
Urgolites & Wood, 2013).

There has been considerable debate in the field with regard to the nature of
activation-based representations in episodic memory models. One popular
approach, originally proposed by Atkinson & Shiffrin (1968) and formalized
in the Search of Associative Memory model (SAM; Raaijmakers & Shiffrin,
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1981), is that item representations are stored in a temporary fixed-length buffer
with near-perfect fidelity and accessibility. Owing to its limited capacity, often
just three or four items, when the buffer is full and a new item is experienced,
one item must drop out of the buffer to make room. An alternative theory of
active maintenance proposes that representations decay, either as a function of
time or when new information activates. The primary distinction between this
decay mechanism and a buffer is simply that instead of losing access to items
once they are removed from conscious processing, the representations remain
active, though to a lesser extent relative to more recently experienced infor-
mation (Howard & Kahana, 2002a). Finally, although many models adopt a
single decay rate for item features, information need not decay at the same rate,
with some features decaying slowly (or not decaying at all), and others decaying
quickly once they are no longer driven by external factors (Polyn, Norman, &
Kahana, 2009a).

18.2.2 Associations

Given that it is not possible to maintain active representations of all experience
throughout one’s lifetime, it is critical to be able to store representations of an
episode to be recovered later and help guide behavior. The key feature of
episodic memory that sets it apart from more general semantic memory or
statistical learning is that it supports the ability to retrieve a specific event from
the past, not just an amalgamation of similar events. Thus, associating or
binding different elements of an event together helps keep memories for specific
experiences distinct from other memories. For example, episodic memory
allows one to have a rich memory for a particular dinner with one’s spouse at
a restaurant. Forming associations between different elements of this experience
help the memory remain distinct from memories of similar experiences, includ-
ing dinners with the same spouse and dinners at the same restaurant.
Many models of episodic memory assume that associations are formed, at

least implicitly, between representations by modifying synaptic weights between
the neurons (or units representing populations of neurons) that form those
representations. Typically, synaptic connections between neurons that are
active together will be strengthened, while those that are not coactive may be
weakened, in a process known as Hebbian learning (Hebb, 1949). This weight-
based memory provides long-term storage of experiences; however the job is not
done when the associations are formed. To be useful, the synaptic weights must
support recovery and reactivation of representations at a later date when
relevant for the task at hand. For example, in recognition memory tasks, the
recovered representation should support the decision of whether they saw the
item on the list, not just that they have seen that item before in their life. In
recall tasks, however, the cue is more general (e.g., recall the items you studied
recently) and the recovered representations will be the items, themselves. What
information can be recovered will depend on what elements have been associ-
ated, such as whether items have been associated directly with other items or
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with contextual information. Thus, what features are associated is equally
important as how they are bound together, a point returned to when specific
models of recognition and recall are discussed below.

18.2.3 Dynamics

The final piece of a model specification are the dynamics of the representations
and associations as the cognitive process unfolds. This has already been touched
on to some extent above, with mechanisms for the maintenance of representa-
tions through time and the modification of associations between these repre-
sentations. Here, the focus is on translating these latent constructs into
behavior. For models of episodic memory, this often entails determining a
memory strength by calculating the feature-level match between the retrieval
cue and representations retrieved from the stored associations, then performing
a task-based decision on those memory strength values to generate a response in
the form of an old/new choice for recognition memory tasks, or an individual
word for recall tasks. In most cases, these decisions are not fully deterministic
and making a choice involves a sampling process that, computationally, turns
the memory strengths into probability distributions over the possible choices.

One standard approach to turning a set of memory strengths into a probabil-
istic choice is via a Luce choice or softmax rule. Here, the probability of
choosing a response is determined by the memory strength of that response
option in competition with the strengths of all response options. These choice
rules can determine the probability of making a variety of memory-related
decisions, such as recalling a particular word or responding whether an item
is an old target item as opposed to a new lure item. Section 18.3.4 (on models of
free recall) below provides two examples of models that make use of probabil-
istic retrieval rules.

Another way to simulate responses in computational models of episodic
memory is a Bayesian odds ratio of the likelihood that an item is old versus
new (Dennis & Humphreys, 2001; McClelland & Chappell, 1998; Shiffrin &
Steyvers, 1997). If the odds ratio is greater than 1.0, then the optimal strategy is
for the model to produce an “old” response, whereas if it is less than 1.0, the
simulated response would be “new,” although different thresholds can be
applied to give rise to biases in responses (Criss, Malmberg, & Shiffrin, 2011;
McClelland & Chappell, 1998). One requirement of the odds ratio decision rule
is that the model must have some way of calculating the likelihoods of a match
between each feature in memory given the probe features, which can take on a
variety of forms depending on the feature representations in the model. Two
examples of this approach are provided in Section 18.3.3 when discussing
computational models of recognition memory below.

Although the probability of making a particular response or recalling a
particular item are both critical aspects of validating episodic memory models,
an additional important behavioral feature is the time it takes to make a
response. A popular and neurally plausible way to integrate reaction times
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(RTs) into memory models is through sequential sampling models (SSMs;
Ratcliff, 1978; Usher & McClelland, 2001; Usher, Olami, & McClelland,
2002). Although models within this framework vary to some extent in imple-
mentation, they share the basic idea that decision making relies on the
accumulation of evidence over time until a threshold is reached. The response
option that first crosses the threshold would be considered the model’s response,
and the time to reach the threshold corresponds to the RT. Evidence accumu-
lation is based, at least in part, on a “drift rate,” corresponding to the strength
of evidence at any given time. Thus, a straightforward way to couple memory
and decision-making models is to map memory strength to the drift rate of an
SSM. Interestingly, the diffusion decision model was originally developed as a
model of recognition memory (Ratcliff, 1978), although more recently SSMs
have been primarily associated with decision making (Miletic & van Maanen,
2019; Ratcliff, Voskuilen, & Teodorescu, 2018; van Ravenzwaaij, Brown,
Marley, & Heathcote, 2020). Nevertheless, a number of recent episodic memory
models have made use of SSMs for memory-guided decisions in both recall and
recognition tasks (Darby & Sederberg, 2022; Lohnas, Polyn, & Kahana, 2015;
Polyn, Norman, & Kahana, 2009a; Sederberg, Gershman, Polyn, & Norman,
2011; Sederberg, Howard, & Kahana, 2008).

18.3 Models of Episodic Memory

Now that the basic building blocks of most episodic memory models
have been reviewed, it is possible to turn to examples of models designed to
explain key phenomena observed in two of the primary methods of testing
episodic memory: recognition and free recall. Simple, but complete, examples
will serve to illustrate the process of developing and fitting computational
models of episodic memory to actual data, including the model comparison
process that can support conclusions about proposed mechanisms. These
models outlined below could be extended (and in some cases already have been)
to other episodic memory tasks, such as cued recall, serial recall, and associative
recognition, and to a wide range of additional episodic memory effects,
although because simple recognition and free recall tasks are two of the most
widely used paradigms in episodic memory research, they are focused upon in
the modeling examples below. The reader is encouraged to refer back to the
modeling framework section to evaluate these models’ specification of their
representations, associations, and dynamics, including key places they diverge.
The mathematical equations governing some of the processes instantiated in the
models are provided below. The notation of the equations is kept as consistent
as possible with prior work, although all vectors and matrices are presented in
bold font for clarity. All code for the models and analyses is available at https://
github.com/compmem/EpiMemChapter, which may serve as a launching point
for anyone interested in applying computational models of episodic memory to
their own work.
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18.3.1 Context

A discussion of a key component of many models of episodic memory has thus
far been largely postponed: what features of an experience must be stored to
facilitate retrieving its details at a later time. While many models posit that the
primary content of an experience, e.g., the items of a study list, are bound
together in some way, researchers also generally agree that episodic memories
contain other information that further identifies the location, time, and other
features that define the situational state of the individual, such as their task,
mood, or goal (Anacker & Hen, 2017; Bower, 1981; Dudukovic & Wagner,
2007; Lee, Kravitz, & Baker, 2013). It is these defining features that many
researchers refer to as the context of the experience and there is a long experi-
mental history exploring the role context plays in shaping episodic encoding
and retrieval (Godden & Baddeley, 1965; Polyn, Norman, & Kahana, 2009a;
S. M. Smith & Vela, 2001; Staudigl & Hanslmayr, 2013).

Still, a formal definition of context, as well as what role context should play in
a model of episodic memory, remains a matter of considerable debate. One
aspect of context is clear, that it operates over many time scales, with features
that change over seconds, minutes, hours, days, and beyond. That said, embra-
cing the notion that context operates at multiple scales blurs the line between
items and context, such that what researchers often define as items are really
just the features of experience that change at a faster time scale (Manning,
Norman, & Kahana, 2015). However, a model may not need to represent all
those time scales to capture any one task or dataset of interest. Thus, models
instantiate context in different ways. In some, context can be a single unit, while
in others it may manifest as a vector of features. Contextual features can change
with time (Estes, 1955) or with new input (like a buffer), or be static through the
duration of a list.

Regardless of whether recent information, including both items and other
temporal and situational information, is maintained in a buffer or whether it
decays gradually, these representations can be thought of as comprising the
context of the episode at hand. One distinction between some models becomes
whether information is bound between this context and the most recently
experienced item or whether the context is updated with the most recent infor-
mation and then bound to itself via auto-associations. As with many
dichotomies in science, the answer researchers may find in the long run is likely
to be that it’s a combination of both. In fact, different sub-regions of the
hippocampus support pattern completion or differentiation and prediction,
suggesting it may be possible to form associations that could do both (Gold
& Kesner, 2005; Horner, Bisby, Bush, Lin, & Burgess, 2015; Molitor, Sherrill,
Morton, Miller, & Preston, 2021; Rolls, 2013).

As you will see with the episodic memory models described in detail below,
each takes a different approach to representing context and the role it plays in
shaping associative processes at encoding and retrieval. Perhaps more than any
other modeling decision, context determines the behaviors an episodic memory
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model is able to reproduce, often providing great constraint on the field’s
theoretical understanding of the range of results seen in recognition and
recall tasks.

18.3.2 Fitting Computational Models of Memory

In order to evaluate a model, it is necessary to fit it to data. Most models have
free parameters that govern their various representational, associative, and
decision processes, allowing it to generate a range of behaviors. The fitting
process involves finding the parameter values that generate data that most
closely resemble the observed data of interest. More often than not, episodic
memory models are fit to summary statistics of the actual behavior, especially
when fitting recall-based tasks (Brown, Neath, & Chater, 2007; Glenberg &
Swanson, 1986; Howard & Kahana, 2002a; Kahana, 1996). The danger is that
summary statistics are not guaranteed to be sufficient for capturing the intri-
cacies of the trial-level data and can ignore potentially valuable information in
trial-level performance, such as the specific order of recalls and the amount of
time between each recall (Laming, 2010; Murdock & Okada, 1970; Turner &
Van Zandt, 2012). In addition to this concern, often memory models have
been fit via frequentist approaches to estimate a single set of parameter values
for a participant or an entire dataset. Recently, however, there has been a push
in the field to adopt Bayesian approaches to fitting models because they
arguably provide a better means of quantifying uncertainty in the parameter
estimates and a more principled means of model comparison (Farrell, 2010;
Socher et al., 2009; Turner, Sederberg, Brown, & Steyvers, 2013).
Nevertheless, this can be a daunting task given that most memory models
do not have tractable likelihood functions, and require likelihood estimation
approaches such as approximate Bayesian computation (Turner & Sederberg,
2012) or probability density approximation (Turner & Sederberg, 2014),
which can entail significant computational burden. In sticking with the desire
to move the field in this direction, the examples below each make use of
Bayesian fitting approaches that can serve as guides for those who desire to
fit episodic memory models to their own data.

18.3.3 Models of Recognition

As mentioned above, in recognition memory tasks, participants typically study
a list of items such as words or images, and in a later test phase are asked to
identify whether presented items are “old” targets that were presented in the
study list, or “new” lures. Analyses of recognition experiments often focus on
participants’ hit rate of correct “old” responses to targets, and false alarm rate
of incorrect “old” responses to lures.
A long history of empirical work on recognition memory has found that hit

and false alarm rates may be modulated by a wide variety of experimental
manipulations (see Malmberg, 2008 for a review). Often, manipulations lead to
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higher hit rates as well as lower false alarm rates (or lower hit rates and higher
false alarm rates), a phenomenon known as the mirror effect (Glanzer &
Adams, 1985, 1990). Two examples of these phenomena are the word frequency
effect and the list length effect. The word frequency effect refers to the
phenomenon whereby low frequency words, i.e., those that occur rarely in
common speaking or text, typically lead to better recognition performance,
with both higher hit rates and lower false alarms compared to more common,
high frequency words (Glanzer & Bowles, 1976). Importantly, recognition
memory is often found to be worse for more common or typical stimuli
compared to more unusual stimuli across a wide variety of domains
(Deffenbacher, Johanson, Vetter, & O’Toole, 2000; Light, Kayra-Stuart, &
Hollander, 1979; Mullennix et al., 2011; Schmidt, 1996; D. A. Smith &
Graesser, 1981), suggesting a general phenomenon not specific to words. The
list length effect is the finding of worse recognition performance as the length of
the study list increases (Bowles & Glanzer, 1983; Strong, 1912). However, this
effect is controversial. Some researchers believe it is due to confounds that were
not properly controlled in many studies, including differences in retention
intervals (i.e., the length of time between when an item is studied and tested;
Dennis & Humphreys, 2001; Dennis, Lee, & Kinnell, 2008; Kinnell & Dennis,
2011), and others suggest that the list length effect, or lack thereof, does not help
discriminate between models of recognition (Annis, Lenes, Westfall, Criss, &
Malmberg, 2015).

Computational modeling efforts have attempted to account for these and
other recognition phenomena, as discussed below. A key point of debate
regarding models of recognition memory is whether the primary source of
variability in performance is item noise or context noise (Cho & Neely, 2013;
Dennis & Humphreys, 2001; Dennis, Lee, & Kinnell, 2008; Fox, Dennis, &
Osth, 2020). Proponents of the item noise theory hypothesize that recognition
is a process of comparing a tested item to memories of all items encoded
during study, such that recognition memory failures are primarily due to noise
from other items on the list. For example, imagine trying to remember if you
saw your friend Mike at a party last night. According to item noise theory,
interference would arise from having seen other people at the party, some of
whom may have physical or personality-related similarities with Mike.
Context noise models, by contrast, stipulate that noise at retrieval is driven
not by other items, but by other contexts in which the tested item has been
experienced. In the example above, context noise theory would emphasize the
role of interference from having seen Mike in other contexts before, such as
when you had dinner with Mike a few weeks before or saw him at a different
party last year. Both item noise and context noise models may be considered
global matching models, in that memory strength is calculated by comparing a
memory cue to all stored memory representations (Clark & Gronlund, 1996;
Osth & Dennis, 2020).

Two specific models of recognition memory are now discussed: the retrieving
effectively from memory (REM) model (Shiffrin & Steyvers, 1997), which is an
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item noise model, and the bind cue decide model of episodic memory
(BCDMEM; Dennis & Humphreys, 2001), which is a context noise model.
Both models have been successful at capturing a wide range of recognition
memory data and have been highly influential in the field. It must be noted that
there are a variety of other models of recognition that, due to space constraints,
are not covered in this chapter, including the theory of distributed associative
memory (TODAM; Murdock, 1982, 1997), the Matrix model (Humphreys,
Bain, & Pike, 1989), ACT-R (Anderson, Bothell, Lebiere, & Matessa, 1998),
and MINERVA 2 (Hintzman, 1984). These models make many similar
assumptions as to the underlying computational mechanisms supporting epi-
sodic memory, but differ in one or more representational, associative, or
decision-making processes.

18.3.3.1 REM

REM is an item noise model that applies a Bayesian odds ratio approach to
simulate performance. In this model, items are encoded during study, and at test
each cue is compared to all stored item representations to calculate a global
match signal. An overview of the model is presented in Figure 18.1.

I

I I I

I I II

Figure 18.1 Overview of the retrieving effectively from memory (REM)
model. This schematic illustrates the retrieval process for three cues (one per
column). Each column shows the representation of the cue above the memory
storage matrix. Some features for each studied item were not encoded, resulting
in a value of 0, whereas the other features were either correctly (dark gray) or
incorrectly encoded (light gray). The image corresponding to each target cue is
highlighted by a rectangle. Some features of images that do not correspond to
the cue nevertheless match the cue’s features (dark gray), which produces
noise. For each image j, the match between feature values with the cue is
calculated as λj (bottom left of each column). These λj similarity values are
averaged to find the odds ratio ϕ (bottom right). ϕ values above 1.0 result in an
“old” response; otherwise the response is “new.” Note that the y-axis is clipped
at 5.0 for each bar graph, so the matching item has a higher λj than is visible.
The values in this figure were generated with the following REM model
parameters: u ¼ 0.6, c ¼ 0.6, g ¼ 0.4.
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Each item is represented by a vector of features V, which are probabilistically
activated to different positive integer values according to a geometric distribu-
tion, resulting in more features with low values than high values:

P V ¼ i½ � ¼ g 1� gð Þi�1, i ¼ 1, . . . ,∞, (18.1)

where g controls the diagnosticity of stimuli, such that increasing g results in a
greater proportion of low feature values (e.g. 1s and 2s) that are shared across
items, which make different memory representations less discriminable.
Importantly, higher feature values do not imply stronger or more active fea-
tures, but simply indicate that the feature value is less common, thereby
increasing discriminability between different items.

During study, an “image” of each item is stored by imperfectly encoding each
of its features. The probability that a feature will be encoded at all (correctly or
incorrectly) is controlled by parameter u, and the probability that an encoded
feature will be accurately copied from the stimulus is controlled by parameter c.
If a feature is incorrectly encoded, its value is sampled randomly from the
geometric distribution controlled by g. If a feature is not encoded at all, its
value is zero.

At retrieval, an item cue is compared to each stored image. The extent to
which the features of an item cue match the features stored in each image, the
likelihood of an “old” response increases, whereas the extent to which the
features mismatch increases the likelihood of a “new” response. Specifically,
an item presented at test is compared to each memory image j:

λj ¼ 1� cð Þnjq
Y∞
i¼1

cþ 1� cð Þg 1� gð Þi�1

g 1� gð Þi�1

" #nijm

: (18.2)

In this equation, njq signifies the number of nonzero feature values that are
mismatching between the probe and image j, whereas nijm is the number of
nonzero matching features values and i is an image feature value. λj represents
the similarity between the cue and image j.

The similarity λj
� �

of the cue to each image j is averaged to calculate the
global match:

ϕ ¼ 1
n

Xn
j¼1

λj: (18.3)

This equation represents an odds ratio between the probability that an item is
old compared to the probability that it is new (see Shiffrin & Steyvers, 1997 for
details on this correspondence). If ϕ is above 1.0, the model simulates an “old”
response; otherwise, it simulates a “new” response.

18.3.3.2 BCDMEM

BCDMEM is a context noise model that, like REM, applies an odds ratio
approach to simulate recognition decisions. BCDMEM differs from REM,

Computational Models of Episodic Memory 577

https://doi.org/10.1017/9781108755610.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.022


however, by comparing retrieved contextual information instead of items dir-
ectly to measure global match. Here, the context of a study episode is compared
to contexts previously associated with an item cue. For items that appeared in
the study list, the study list context will be at least partially included in this
retrieved context vector. All tested items, regardless of whether they appeared
on the study list, will retrieve an amalgamation of contexts that had been
associated with the item prior to the experiment. An overview of this model is
presented in Figure 18.2.
In this model, each item consists of a vector representation with a single

activated node. Each context is a vector of binary feature values with a length v,
which is typically set to 200. In contrast to the item representations, more than
one node may be activated in context representations.
The study context vector is composed of features that are activated with

probability s, which determines the sparsity of the list context and is typically set
to 0.02. During study, each item is successfully associated with each activated
node of the study context with probability r, which functions as a learning rate.
Therefore, an item cue can retrieve the study list context, but the retrieval may
be incomplete, such that some context features that were active during the study
list may not be reactivated when cued by every studied item.

I I I II

Figure 18.2 Overview of the bind cue decide model of episodic memory
(BCDMEM). The list context vector is presented at the top of the figure, with
nonactivated features in white and activated features in black. This list context
is imperfectly reinstated by the observer at the start of the test phase, as
indicated by the missing features in the vectors above each test item. The
reinstated context is compared to a vector of contexts that have been retrieved
for a given test item. This process is illustrated for two old targets and one novel
foil. Each column shows the reinstated and retrieved contexts for a particular
item. The left-side bar plot below these vectors for each column shows the
number of features that are inactive for both reinstated and retrieved contexts
ðn00 Þ , the number that are inactive for the reinstated context but active for
retrieved context n01ð Þ , and so forth. These numbers are used to help calculate
ϕ, the odds that the item is old, which is shown on the right side for each item.
If ϕ > 1 , the model makes an “old” response, and otherwise makes a “new”
response. Note that the y-axis is clipped at 5.0 for the ϕ bar plot. The values in
this figure were generated with the following BCDMEM model parameters:
p ¼ :3 , d ¼ :1 , r ¼ :75 , and s ¼ :3 . Rein. ¼ reinstated context; Ret. ¼
retrieved contexts.
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In order to probe memory in the test phase, the study list context is reinstated.
However, this reinstatement process is imperfect, and features that were acti-
vated during study may become inactivated with probability d. For each tested
item, this reinstated context is compared to retrieved contexts that had been
previously associated with the item. The retrieved context is a combination of
encoded features from the study list context that were successfully associated
with the item cue, and features from pre-experimental contexts. The retrieved
pre-experimental contexts for each item are filled with features activated with
probability p, which controls the amount of context noise: if p is high, then all
tested items, whether they were presented during study or not, will retrieve
many features, increasing the probability that features activated in reinstated
context will also be activated in retrieved context, regardless of whether the item
was studied. A studied item may be missed due to contextual features that were
either not encoded (i.e., not associated with the item during study when r < 1),
or not reinstated (when d > 0). At the same time, a nonstudied item may be
falsely recognized due to features that overlap by chance between the reinstated
study context and the retrieved context (when p > 0).

The extent to which the reinstated and retrieved contexts match determines
the likelihood that the item was studied on the list. This calculation depends in
part on a direct comparison of how many features were active or inactive in the
context reinstated from the study list versus those that were retrieved from
the cue. Specifically, some number of features could be inactive in both the
reinstated and retrieved context vectors n00ð Þ, some number could be active in
both vectors n11ð Þ, some could be active for the reinstated but not the retrieved
contexts vector n10ð Þ, and some could be inactive for the reinstated but active
for the retrieved contexts n01ð Þ. These counts of matching and mismatching
features are taken into consideration when calculating the odds ratio ϕ, which
determines the odds that an item is a target divided by the odds that the item is
novel (see Dennis & Humphreys, 2001 for a detailed explanation of how the
equation constitutes an odds ratio):

ϕ ¼ ϕ00 ϕ11 ϕ10 ϕ01, (18.4)

where ϕ00 ¼ 1�sþds 1�rð Þ
1�sþds

h in00
, ϕ11 ¼ rþp�rp

p

h in11
, ϕ10 ¼ 1� rð Þn10 , and ϕ01 ¼

p 1�sð Þþds rþp�rpð Þ
p 1�sð Þþdsp

h in01
. If ϕ > 1, the model simulates an “old” response; otherwise

a “new” response is made.

18.3.3.3 Example and Discussion

To aid the reader’s understanding of these two models, an example implemen-
tation and fit of both BCDMEM and REM to an existing dataset is provided
below (Kinnell & Dennis, 2012). This dataset was analyzed with these models
previously by applying a hierarchical Bayesian model-fitting approach
(Turner, Sederberg, Brown, & Steyvers, 2013), which found evidence that
BCDMEM was better able to account for the findings. The current modeling
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results closely align with the findings of that study, such that a detailed
discussion of model fit is foregone here. Instead, the experimental paradigm
and model-fitting procedure are briefly summarized, and then the best-fitting
parameter values are used to generate simulated data to illustrate model
predictions relevant to two recognition memory phenomena – word frequency
and list length effects – in an effort to help the reader better understand the
mechanisms of these models and ways in which they are similar, as well as
differences between them.
The data analyzed below (Kinnell & Dennis, 2012, Experiments 2–4) were

collected to assess whether the list length effect might differ depending on
stimulus type. In a between-subject manipulation, some participants studied
and were tested on recognition memory for photographs of scenes, whereas
others were presented with faces, and still others were presented with fractals.
Regardless of stimulus type, each participant completed two study lists: a
“short” list of twenty items and a “long” list of eighty items. Following both
types of list, participants were tested with twenty studied target items and
twenty novel foils.
Kinnell & Dennis (2012) found no effects of list length on hit rates for any

stimulus condition, although there was an increase in false alarms for the
fractals and faces conditions following the longer list. Despite these differences
between stimulus conditions, for the purposes of illustrating mechanisms of the
models the following simulations collapse across these conditions, such that the
model predictions are presented from all participants simultaneously.
REM and BCDMEM were fit to the observed data of each participant

independently with a Bayesian model-fitting procedure. The full detail of this
procedure is outside the scope of this chapter, but, in brief, differential evolution
with Markov chain Monte Carlo (DE-MCMC; Turner & Sederberg, 2012) was
applied in conjunction with a probability density approximation technique
(Turner & Sederberg, 2014) to approximate the likelihood of each participant’s
observed data given a parameter proposal. Following prior work (Turner,
Sederberg, Brown, & Steyvers, 2013), values of the u, c, and g parameters were
estimated for REM, and the p, d, and r parameters were estimated for
BCDMEM. In what follows, the parameter values that best fit each partici-
pant’s data are used to simulate model predictions relevant to list length and
word frequency effects.

18.3.3.3.1 The List Length Effect
Although REM and BCDMEM have both been successful at explaining many
aspects of recognition memory (Dennis & Humphreys, 2001; Shiffrin &
Steyvers, 1997), one empirical phenomenon that could potentially help discrim-
inate between them is the list length effect (i.e., the finding of decreased hits and
increased false alarms following longer study lists). REM naturally predicts
reduced memory performance for longer study lists. This is because longer
study lists introduce more noise between the items by providing more oppor-
tunities for stored item features to match a tested item’s features by chance, even
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if the item was not presented at study. By contrast, BCDMEM does not predict
the existence of list length effects in recognition memory, as item representa-
tions are stored and retrieved independently of one another.

This is illustrated by generating hit and false alarm rates across a variety of
list lengths for each participant with their best-fitting parameter estimates. In
addition to the twenty- and eighty-item lists that were part of the experiment,
data for forty-, 160-, 320-, and 640-item lists were simulated to illustrate a more
complete set of predictions for both models. The results of this simulation,
shown in Figure 18.3 along with the observed data used to fit the models,
illustrate how REM predicts decreased hit rates and increased false alarms for
longer lists, whereas no change is predicted by BCDMEM. Note, however, that
the observed data indicate a list length effect on the false alarm rate, but not on
the hit rate, a pattern not accounted for by either model.

18.3.3.3.2 The Word Frequency Effect
Although the dataset to which the models were fit (Kinnell & Dennis, 2012) did
not include a word frequency manipulation, it is possible to simulate how REM
and BCDMEM are both able to explain the word frequency effect, although
they do so in different ways. As discussed above, the word frequency effect is the
finding of reduced recognition performance for high frequency words compared
to low frequency words. REM can explain this effect by modulating the g
parameter, such that higher g values emulate high frequency words with fea-
tures that are shared by more item representations, whereas lower g values
emulate low-frequency words with features that are less common. Because
more distinctive items are less easily confused with other items on a study list,
less common words result in stronger recognition performance. Similarly,
BCDMEM is able to explain word frequency effects by modulating the p
parameter, such that high values of p correspond to high frequency words that
have been experienced in more contexts, making retrieved contexts less discri-
minable and recognition memory less accurate.

I I

I

Figure 18.3 Observed and simulated hit and false alarm rates as a function
of study list length. Error bars indicate within-subject-corrected
confidence intervals.
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The effects of modulating the values of g and p for REM and BCDMEM,
respectively, are demonstrated in Figure 18.4. The values of the other
parameters for each model were held constant (again using the best-fitting
parameter values for each participant). For REM, increasing g between values
of .05 and .5 resulted in a strong mirror effect, symmetrically decreasing hit
rates and increasing false alarm rates. A similar pattern was found by modulat-
ing p in BCDMEM, although the effect was less symmetric, as the false alarms
increased more than the hit rate fell. Interestingly, increasing p still further
would result in activation of the majority of retrieved context’s units for every
item, which would result in false alarm rates well above chance.

18.3.3.4 Beyond Item Versus Context Noise

Although both REM and BCDMEM are able to provide a reasonably good fit
to the observed data presented by Kinnell and Dennis (2012), as shown in
Figure 18.3, Turner and colleagues (2013) found that BCDMEM was better
able to account for the data overall in a formal model comparison. It should
be noted, however, that neither model was able to simultaneously account for
the findings of a list length effect on false alarm rates, but not on hit rates. This
is because REM predicts a mirror effect whereby a greater list length results in
increased false alarm rates as well as decreased hit rates, whereas BCDMEM
is unable to predict a list length effect at all. Kinnell & Dennis (2012)
acknowledged that the list length effect on false alarm rates may indicate an
effect of item noise, suggesting that context noise may not be able to fully
account for recognition memory performance. Indeed, other work has sug-
gested that recognition is likely the result of both item-driven and context-
driven sources of noise (Criss & Shiffrin, 2004). Interestingly, while some
modeling work has suggested that noise from context and pre-experimental
experience is much more prevalent than item noise when modeling perform-
ance on different lists separately (Osth & Dennis, 2015), when taking into

I

Figure 18.4 Simulated hit and false alarm rates as a function of changes in
word-frequency-related parameters, holding other parameters constant. Error
bars indicate within-subject-corrected confidence intervals.
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account proactive interference effects from items in prior lists, item noise is
likely much more influential (Criss, Malmberg, & Shiffrin, 2011; Fox, Dennis,
& Osth, 2020).

It is therefore almost certainly overly simplistic to expect item or context
sources of noise to solely account for variability in recognition memory per-
formance. It must be emphasized, then, that memory for items and the contexts
in which they have been experienced likely interact in interesting ways that are
still not fully understood. To that end, while BCDMEM has not seen as much
active development (though its overlap with retrieved context theories covered
below suggests the basic idea has been an area of significant focus), a great deal
of work has extended the REM model to other kinds of tasks, including
associative recognition (Xu & Malmberg, 2007), cued recall (Diller, Nobel, &
Shiffrin, 2001), implicit memory (Schooler, Shiffrin, & Raaijmakers, 2001),
judgments of frequency (Malmberg, Holden, & Shiffren, 2004), and lexical
decision making (Wagenmakers et al., 2004). The continued success of these
models suggests they capture important representational and associative pro-
cesses at the core of episodic memory, yet in this simple form, they lack the
ability to perform the complex memory search required in less constrained
tasks, such as free recall.

18.3.4 Models of Free Recall

Unlike in item recognition, where the participant is provided an item as a cue
and must simply decide whether they studied it earlier, in free recall the
participant is instructed to recall as many items from the study list as possible,
in any order that they like, without additional memory cues. Although the lack
of item-level cues and the unconstrained order of participant responses adds
significant complexity to the task, it has also given rise to rich patterns of data
that provide significant constraint on theories of episodic memory.

The most basic analysis of free recall data reveals a contrast with recognition.
While there is considerable debate with regard to whether there are list length
effects in recognition, there are modest, but clear, list length effects in free recall,
with longer lists giving rise to a lower proportion of correctly recalled words
(Murdock, 1962). Word frequency effects also tend to have a reverse effect on
recall relative to recognition, with lists of high frequency words recalled better
than lists of low frequency words (Hall, 1954). Both these effects likely emerge
due to varying levels of competition between recalled and nonrecalled items
during the retrieval process.

Some of the more canonical findings of episodic memory emerge when
analyzing recalls with respect to the order in which the items were studied
on the list. The first are primacy and recency, which refer to higher recalls of
items near the beginning of the list and near the end of the list, respectively.
Both of these effects can be attenuated by reducing rehearsal during encoding
and maintenance of the list, respectively (Howard & Kahana, 1999).
Specifically, many theories posit that at least some of the primacy effect is
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due to the added rehearsals afforded to items early on the list (Laming, 2010).
Approaches that limit the ability of rehearsal, such as incidental encoding or
fast presentation rates, can significantly reduce the magnitude of the primacy
effect (Bruce & Papay, 1970; Howard & Kahana, 1999; Marshall & Werder,
1972; Modigliani & Hedges, 1987). Similarly, the strong recency effect
observed in immediate free recall (IFR), where recall can begin right at the
conclusion of the study list, can be attenuated with a filled delay following the
study list in delayed free recall (DFR). This delay often consists of a series of
simple math problems that prevent rehearsal and inhibit active maintenance
of the most recent words without introducing new information that could
directly interfere with the studied items. The dominant theory, which is
explored more below, was that the pronounced recency effect was due to
recall from a short-term store of recently experienced items and that the
math distractor would serve to remove items from that buffer, thereby attenu-
ating the recency effect (Atkinson & Shiffrin, 1968).
Going one step further and tracking the order of recalls reveals details of the

associations that guide the memory search process. Kahana (1996) demon-
strated that if you plot the probability of retrieving an item relative to the
serial position of the just-recalled item, a contiguity effect emerges, whereby
participants show an increased probability of transitioning between items
from nearby serial positions. This contiguity effect exhibits a forward asym-
metry, such that transitions are more likely to go from earlier serial positions
to later serial positions. Temporal contiguity is positively correlated with
overall probability of recall, indicating that associating nearby items during
an experience is indeed a hallmark of the episodic memory process (Healey,
Long, & Kahana, 2019; Sederberg, Miller, Howard, & Kahana, 2010). By
analyzing recall transitions, researchers have also revealed contiguity effects
for other features of experience, including the semantic relationship between
the items (Howard & Kahana, 2002b; Sirotin, Kimball, & Kahana, 2005), the
category membership of the items (Bousfield, 1953; Morton et al., 2013), the
emotional valence of the items (Long, Danoff, & Kahana, 2015; Talmi,
Lohnas, & Daw, 2019; Talmi & Moscovitch, 2004), the tasks used to study
the items (Polyn, Norman, & Kahana, 2009b), and even the spatial proximity
of the items in the world (Miller et al., 2013). Thus, it is clear that relationships
between items, as well as the contexts in which they are experienced, shape the
recall dynamics.
Below, two popular models of free recall are explored in detail – the search of

associative memory (SAM) model, and the temporal context model (TCM).
These models are emphasized due to their influence on the field and their
differing approaches to memory storage and retrieval, as discussed below. As
with recognition, however, it is important to note that other models of free
recall have been developed that include alternative assumptions with regard to
some aspects of the underlying cognitive processes, including the model of
Farrell (2012) and ACT-R (Anderson, Bothell, Lebiere, & Matessa, 1998),
although the latter draws significant inspiration from SAM.

584 per b. sederberg and kevin p. darby

https://doi.org/10.1017/9781108755610.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.022


18.3.4.1 Search of Associative Memory (SAM)

A description of one of the most influential episodic memory models – Search of
Associative Memory (SAM; Raaijmakers & Shiffrin, 1981) – is now provided.
SAM is a dual-store model based on the original theory by Atkinson & Shiffrin
(1968) that provides an explicit theory for how short-term and long-term stores
interact during encoding and how they provide separate pathways for recall
during retrieval.

18.3.4.1.1 Encoding
An overview of the encoding process in SAM is presented in Figure 18.5.
During encoding, items, represented by single units in a feature vector, enter a
short-term store (STS), and while they are in the STS they strengthen associ-
ations in a long-term store (LTS). SAM posits that active maintenance of item
representations in the STS occurs in the form of a buffer with the number of
items r. While the original formulation of SAM typically fixed r to be four
items, variability in the buffer size across participants (and even lists) is
required to fit to trial-level data. Thus, an approach similar to others adopted
in the past (Kimball, Smith, & Kahana, 2007; Sirotin, Kimball, & Kahana,
2005) is adopted, whereby the buffer size is drawn from a truncated normal
distribution for each list (the values of which are rounded to become integers),
with the mean centered at four items, with a range between one and eight

I

Figure 18.5 Overview of the encoding process in SAM. This figure illustrates
the encoding processes for the first five items of a study list. As each item is
presented, it enters the buffer. The activations of items in the buffer for each of
the item presentations are presented in the top row, with the activation of each
newly presented item highlighted by a bold dashed line. After the maximum
size of the buffer is reached (in this case three items), an item must be dropped
from the buffer to make room for the newest item. In the second row of plots,
the state of the associative matrix M is shown after it has been updated with
new associations between all the items in the buffer along with the list context
feature. The items currently in the buffer are presented in the vertical array on
the left side of each M matrix, and the same items along with the list context
unit are presented in the horizontal line above each matrix.
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items. As items are presented on a study list one at a time, they enter the
buffer. When an item is presented and the buffer is full, an item drops out of
the buffer, as illustrated in the bottom row of Figure 18.5. The simulation
below follows the original formulation that items drop out of the buffer with
equal probability, however, Kahana (1996) found that an alternative drop-out
rule originally proposed by Phillips, Shiffrin, & Atkinson (1967) provided a
better fit to free recall data. For the Phillips rule, items drop out with higher
probability if they have been in the buffer longer, to a degree determined by an
additional model parameter.
While items are in the buffer, they strengthen associations in the LTS,

both to a fixed list context unit, and to the other items in the buffer. This
process is illustrated in the bottom row of Figure 18.5. With each new item
entering the buffer, the context–item associations are strengthened by a
parameter a, while the item–item associations between all items in the buffer
with each other are increased by a parameter b, and associations between
items and themselves are incremented by a parameter c. In more recent
formulations of SAM, the b parameter was split into a forward association
strength b1 and reverse association strength b2, which is typically set to half
of b1 to account for the forward asymmetry in the contiguity effect (Kahana,
1996). Finally, for any pair of items that did not share time together in the
buffer, the strength matrix is set to a minimum association strength d. By the
end of encoding, items from the first few serial positions are bound most
strongly to the list context, and items that shared time in the buffer together
are bound together, but with a forward asymmetry (e.g., “Dragon” predicts
“Barley” more than “Barley” predicts “Dragon.”)

18.3.4.1.2 Retrieval
Free recall in SAM unfolds via a two-stage process. First, any items remaining
in the STS buffer are recalled. In this example implementation, these items are
retrieved in random order, although other versions of SAM have proposed
different approaches based on the time the remaining items have been in the
buffer (Kahana, 1996; Phillips, Shiffrin, & Atkinson, 1967; Sirotin, Kimball, &
Kahana, 2005). Recency is due to the items still in the buffer after encoding
having immediate access for retrieval. In DFR, the math problems remove
items from the buffer at the same rate as presenting new items, therefore, a
filled distraction interval will typically remove all the items from the buffer,
eliminating the recency effect.
After any remaining buffer items have been recalled, the second retrieval

stage begins based on the strengths read out from the associations in the LTS,
which is illustrated in Figure 18.6. The first source of the items’ strengths comes
from their association with the context unit. In addition, if an item was just
recalled, the memory strengths for all items are incremented to the extent they
were associated with the just-recalled item for Lmax retrieval attempts, before
falling back to cuing with just context. Retrieval from LTS is, itself, a two-stage
process. First, an item must be sampled as a candidate for recall from all list
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items, regardless of whether or not it has already been recalled. Then a subse-
quent processing step accesses information about the sampled item to determine
whether it will be recovered (i.e., recalled). Once the item strengths are calcu-
lated via either the context or context and item cues, an item i is sampled with a
probability based on the strengths S of all the items j:

psamplei
¼ SiPN

j¼1Sj
: (18.5)

This Luce choice rule will select one of the items from the list with probability
determined by its relative strength, regardless of whether or not it has been
recalled before (this gives rise to competition between recalled and nonrecalled
items). Once an item is sampled, it must be recovered to be recalled. Items that
have already been recalled, or failed to be recalled with the current retrieval cue,
cannot be recovered and give rise to a retrieval failure. Otherwise, a sampled
item is recovered based on a probability determined by its strength Sið Þ:

precover ¼ 1� e�Si : (18.6)

If an item is recovered, it is recalled and the association matrix is updated via
what is called output encoding. Here, the association between the recalled item
and context is incremented by an amount e, the association between the item
and itself is incremented by g, and, if there was an item recalled previously, then
the association between the previous and just-recalled item is incremented
asymmetrically with f1 from the last to the current item and f2 from the current
item to the previously recalled item (as with the b parameter, f2 is typically set to
one half the value of f1). Every recovery failure increments a counter for the
number of retrieval attempts the participant will make before they give up and
stop recalling, which is determined by the parameter K maxð Þ.

Update 
strengths

Sample Recover

yes

no

# fail > Kmax

yes
Done

Figure 18.6 Overview of the sample and recovery process in SAM and TCM.
An item is selected probabilistically for sampling based on memory strength,
represented here as a roulette wheel. Once an item has been sampled, as
indicated by the arrow, the probability of recovering it is determined by an
exponential function. If the item is recovered, a recall is made and the memory
strengths are updated to restart the sampling process. If recovery fails, the
sampling process begins anew unless the number of failed attempts has
exceeded K max , in which case recall terminates.

Computational Models of Episodic Memory 587

https://doi.org/10.1017/9781108755610.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.022


The number of retrieval attempts largely determines the total number of
recalls a participant will make. The primacy effect arises from the fact that
items in the beginning of the list spend more time in the buffer because they do
not begin to drop out until the buffer is full. Consequently, the associations
between the early list items to each other and with the context unit are
stronger than for items presented later in the list. Contiguity arises due to
the item–item associations formed while they were in the buffer together.
Finally, recency results from direct readout from the buffer, which, as dis-
cussed below, becomes an issue when trying to account for long-term recency
effects (Bjork & Whitten, 1974).
If math distractors serve to attenuate the recency effect by reducing the ability

to maintain and rehearse items in the buffer, as discussed above in the Models
of Free Recall section, what then should happen if math problems are added
before and after each word at study? According to SAM, the math distractor
should prevent items from being in the buffer together and both the recency and
contiguity effects should reduce to the extent the math distractor eliminates
items from the buffer. However, Bjork and Whitten (1974) found that adding
distractors before each item and after the entire study list, in a paradigm called
continual-distractor free recall (CDFR), exhibited a robust recency effect rela-
tive to standard DFR with the delay only after the final study item. Howard &
Kahana (1999) further demonstrated that in addition to this long-term recency
effect, the contiguity effect is largely intact in CDFR, as well. In fact, recency
and contiguity effects persist over even longer timescales. Robust across-list
recency and contiguity effects occur when participants are asked to recall words
from any of the lists they studied in a single session (Howard, Youker, &
Venkatadass, 2008). These findings pose a significant problem for SAM and
related dual-store models.

18.3.4.2 Temporal Context Model

While there have been attempts to explain short- and long-term recency and
contiguity effects with two separate mechanisms (Davelaar, Goshen-
Gottstein, Ashkenazi, Haarmann, & Usher, 2005), a second class of model
emerged emphasizing the role of context in giving rise to both the short- and
long-term effects (Howard & Kahana, 2002a). The temporal context model
(TCM) draws on a long history of drifting context theories (Estes, 1955;
Mensink & Raaijmakers, 1988), but with two key distinctions. The first is
that instead of context changing randomly as a function of time, it updates to
reflect changes in one’s experience, including the presentation of items on the
study list. Second, and perhaps most importantly, previous states of context
can be reinstated and used as a cue for subsequent memory retrievals.
Specifically, recalling an item updates context with a combination of that item
and the contexts associated with that item at retrieval. Note this is not unlike
the recognition process in BCDMEM outlined above, in which contexts
associated with a given item are reactivated and compared as an integral
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aspect of memory retrieval. This suggests that comparison of retrieved context
can serve as a mechanism for generating memory strength for recognition
decisions, as well as guiding recall. Furthermore, retrieved context provides a
mechanistic explanation for how episodic memory supports what is often
described as “mental time travel” (Tulving, 1985, 1993), whereby remember-
ing a past event in your life, such as your tenth birthday party, involves
reinstating the temporal context of that event, transporting your neural state
back to that time and place, which in turn will help fill in all the situational
details of that experience.

As will be demonstrated below, TCM provides an explanation of the patterns
of recency and contiguity effects across IFR, DFR, and CDFR conditions
(Sederberg, Howard, & Kahana, 2008), which SAM struggles to explain.
Specifically, TCM posits that temporal context drifts gradually, such that the
contextual state used for retrieval at the start of testing is more similar to what
the state of context had been later in the study phase than earlier in the phase.
This relative difference in contextual similarity results in a recency effect, and
because the relative change in context between item presentations is the same
for IFR and CDFR, a strong recency effect is predicted in both conditions.
However, the absolute activation of the items in CDFR is lower than in IFR,
due to contextual drift during distraction periods, resulting in lower strengths
and lower recall performance overall in CDFR. Similarly, contiguity effects
remain across delay conditions due to the relative differences in contextual
states for items that were closer together in the list. However, as the buffer in
SAM is emptied across delay intervals it is unable to account for these patterns
across conditions.

18.3.4.2.1 Encoding
In TCM, context is a recency-weighted running average of experience that
updates with each new input. Thus, as illustrated across the top of
Figure 18.7, context drifts during encoding as items are presented, with the
current state of context ti�1 decaying to make room for the new information:

ti ¼ ρti�1 þ tIN : (18.7)

Here, ρ determines the drift rate and tIN is the vector of input features at time i.
The standard approach is to normalize both the input tIN and the resulting
context vector ti , so they are always unit length. Thus, context includes the
items presented up until that point on the list, but also included are additional
features that make up the situational context the participant is experiencing,
including the task they are performing and the testing room they are in. For
simplicity, it is assumed that these latter features do not change over the course
of a single list and act as a list context unit that simply maintains the same
activation level in context determined by a parameter λ. This approach is quite
similar to that of Polyn, Norman, & Kahana (2009a), who included additional
context features for encoding tasks that drifted at a different rate than the item-
level features.
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When an item fi is presented, before it updates context, a Hebbian associ-
ation is formed between the prevailing state of context and the item via an outer
product, scaled by learning rate α:

M ¼ M þ pi þ αð ÞfitTi�1, (18.8)

where the T operator indicates a transpose. Additionally, pi ¼ ϕρei�1 is an
attention-based primacy gradient that boosts encoding for items early in the list,
scaled by parameter ϕ and the drift rate ρ by decreasing amounts for each item
presentation i (Sederberg et al., 2006). Thus, the association allows the current
state of context to predict what items are expected to occur in that context.
Critically, this association is bidirectional, such that once bound to a context,
an item can retrieve that context by probing the association matrix from the other
direction. Once bound to the state of context when it was presented, the item
combines with its retrieved context to determine the input to update context:

tIN ¼ βfi þ 1� βð ÞfiTM , (18.9)

where β determines the trade-off between the item and retrieved context for
updating context. Note that new items have not been associated with previous

I

Figure 18.7 Overview of the encoding process in TCM. These plots show the
state of temporal context and associative learning as the first five items of a
study list are presented to the model. The activations of features in context
(including pre-experimental and list context features) are presented in the top
row of the figure. The activations of newly presented features are outlined by
bold dashed lines. Previously encoded features exponentially decay as new
items enter into context, with the exception of the list context unit which stays
activated at a constant level. The second row of images shows the associative
learning process for each newly presented item. The state of the associative
matrix M is shown in the large square figure in each column. M is updated
on every trial with an outer product between the incoming item (presented in
the left vertical array) and the state of context before it has been updated with
the new item (presented in the horizontal array above M , with the level of
transparency corresponding to the amount of activation for each feature in
context). The arrows between the first and second rows indicate that the
context bound to items on trial i was updated on trial i � 1.
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states of context, so when items are first studied no contextual states will be
retrieved, simplifying Equation 18.9 to tIN ¼ βfi . Finally, each math distractor
causes context to drift in an orthogonal direction from the current state of
context, making it less similar to all the items on the study list, by updating
context with a new item vector in accordance with Equation 18.7, with a
separate rate parameter ρdist replacing ρ.

18.3.4.2.2 Retrieval
Although TCM variants have applied a number of different retrieval rules to
generate recalls, this demonstration employs the same sample and recovery rule
from SAM outlined above, which allows for a direct comparison of the repre-
sentational and associative aspects of the two models. While following the same
approach, TCM is able to simplify the retrieval process relative to SAM
because the memory strength is calculated the same way each time instead of
sometimes being driven by the buffer, sometimes cued by item and context, and
sometimes cued by context alone. In TCM, memory strength for all items s is
determined by a weighted combination of a direct-readout of the current
context (ti, which is similar to the buffer in SAM) and the items retrieved by
cuing with the context through the context-to-item associations learned during
encoding via a dot product:

s ¼ Mti þ γti: (18.10)

The learning rate α and context readout strength γ allow for the trade-off
between relying on activation-based information maintained in context and
weight-based information stored in the association matrix. Before going into
the same sampling and recovery rule as outlined above for SAM, the TCM
strengths are scaled to the power of τ, which serves to modulate the sensitivity to
the relative activation levels of all the items, such that differences between
activation may be suppressed or heightened depending on the value of τ.

If an item is sampled and successfully recovered, then it is recalled and it
becomes a cue to update context via a new tIN. Unlike in SAM, this version of
TCM has no output encoding, but context does update at a different rate ρret
than during encoding. If an item was sampled and not recovered, it can no
longer be recovered with this same context cue and the failure count is incre-
mented. Just as with SAM, once the model has made Kmax recovery failures the
retrieval stops.

As with SAM, the number of retrieval attempts largely determines the overall
level of recall, yet the associations learned during encoding can shape what
items are recalled and in what order. Unlike in SAM, where primacy is due to
extended rehearsal and strengthening of early list items in the buffer, TCM
implements primacy based on an attention gradient that decreases as a function
of item presentation (Sederberg et al., 2006; Sederberg, Howard, & Kahana,
2008). Context mediates all recency effects because the test context overlaps
more with recently presented items than those from earlier on the study list.
Contiguity emerges as a direct consequence of context reinstatement. While an
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individual item in context provides a forward asymmetric cue for items that
occurred after it, the reinstated context provides a symmetric cue (see Howard
& Kahana (2002a) for discussion of this point). The two combine to create the
canonical contiguity effect observed in most free recall studies. Given that recall
is a competitive process and context decays exponentially, the same context-
based recency and contiguity effects remain even when there are long delays
between studying the items.

18.3.4.3 Example and Discussion

The variants of SAM and TCM described above were fit to free recall data from
the Penn Electrophysiology of Encoding and Retrieval Study (PEERS) dataset
(http://memory.psych.upenn.edu/Penn_Electrophysiology_of_Encoding_and_
Retrieval_Study). Data were analyzed from forty-two participants who per-
formed seventy-two to ninety-six lists of immediate, delayed, and continual
distractor free recall with a sixteen second math distractor task. The word lists
were designed to minimize pre-existing associations between words, such that it
was not necessary to model semantic similarity between the words to capture
the general behavioral effects. The key challenge to the models is to produce the
behavioral patterns observed in all three variants of free recall without allowing
parameters to change between conditions. Although it is beyond the scope of
this chapter to describe the fitting procedure in detail, this example employs an
analytical likelihood approach for fitting both SAM and TCM, which, for the
first time to their knowledge, allowed for fitting these models with the same
retrieval rule to trial-level data without simulation. The data from each subject
were fit independently with DE-MCMC to obtain MAP estimates (Turner,
Sederberg, Brown, & Steyvers, 2013), and then model comparison was per-
formed with Bayes factor approximated with the Bayesian information
criterion (BIC).
As can be seen in Figure 18.8, in order to fit the long-term recency effect seen

in the CDFR serial position curve, SAM tended to over-estimate recency in the
DFR condition. SAM also underestimated the recall probability in IFR and
DFR for the nonrecency items. TCM underestimated the recency effect in IFR,
and both models overestimated performance for the mid-list items in CDFR.
The real distinction between the two models arises when plotting the
conditional response probability (CRP) curves for the three conditions
(Figure 18.9). Whereas TCM generates CRP curves that match the strong
contiguity with forward asymmetry observed in all three free recall conditions,
SAM underestimates all three. SAM would normally predict a flat CRP in
CDFR, but the best-fitting parameters did not empty the buffer due to the
distractor, which gave rise to the overestimation of the recency effect for DFR
and maintenance of a small CRP in the CDFR condition. It’s also clear that
this version of SAM, where contiguity arises only from items sharing time in the
buffer, is unable to reproduce the magnitude of the contiguity effect in these
data (which are from very high-performing, well-practiced participants).
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A model comparison between these fits very strongly favors TCM over SAM
for every participant (log(estimated Bayes Factor) > 17), likely driven primarily
by the better ability to capture the contiguity effect in the order of recalls. It is
possible that SAM’s ability to capture CRP effects would be improved by
adding a τ parameter modulating the sensitivity to differences between retrieval
strengths, as was implemented in TCM, but not in SAM, in order to remain as
close to prior work as possible. Another possibility is that adding in additional
mechanisms to SAM that mimic the drifting context in TCM, or adding new
mechanisms for how items are associated in the buffer, would improve SAM’s
fit to the CRP, but with these standard implementations of the two models there
is clear support for retrieved context guiding the memory search process.

18.3.4.4 Extensions of SAM

Researchers have added numerous extensions to SAM to explain far more than
primacy and recency in free recall. The first enhancement was a context fluctu-
ation mechanism, inspired by stimulus sampling theory (Estes, 1955), to capture
time-dependent interference and forgetting effects, including retroactive inter-
ference, proactive interference, and spontaneous recovery (Mensink &
Raaijmakers, 1988). This same contextual fluctuation mechanism, which serves

I I I

Figure 18.8 Observed and model-generated probability of recall as a function
of the item serial position in the study list. The error bands represent
bootstrapped 95 percent confidence intervals.
CDFR ¼ continual distractor free recall; DFR ¼ delayed free recall;
IFR ¼ immediate free recall; SAM ¼ search of associative memory model;
TCM ¼ temporal context model.

I
I

Figure 18.9 Observed and model-generated conditional response probability
curves. The error bands represent bootstrapped 95 percent confidence intervals.
CDFR ¼ continual distractor free recall; DFR ¼ delayed free recall; IFR ¼
immediate free recall; SAM ¼ search of associative memory model; TCM ¼
temporal context model.
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as a precursor to the temporal context model, was also able to provide an
account of the spacing effect (Raaijmakers, 2003). Also, a merging of SAM
with item representations from REM was able to explain interactions between
the spacing effect and the list strength effect (Malmberg & Shiffrin, 2005). Soon
after these advances, Sirotin, Kimball, & Kahana (2005) added pre-existing
semantic relationships between items as a source of strength guiding memory
search and retrieval, which enabled SAM to produce semantic clustering effects.
Kimball, Smith, & Kahana (2007) further demonstrated that this semantic
association mechanism could capture false memory effects seen in the Deese-
Roediger-McDermott paradigm (Deese, 1959a, 1959b; Roediger &
McDermott, 1995). After three decades of advances, development of SAM
slowed as models based on retrieved context theory began to show promise in
explaining some elusive patterns of episodic memory performance.

18.3.4.5 Extensions of TCM

The last twenty years have seen rapid development of models based on the
retrieved context theory that is at the core of TCM. Beginning with Sederberg,
Howard, & Kahana (2008), many TCM variants have incorporated sequential
sampling decision rules that are able to capture observed patterns in inter-
response times in free recall, including both slowing as a function of output
position (Murdock & Okada, 1970) and contiguity, with faster transitions to
words from nearby serial positions to the just-recalled word (Kahana, 1996).
For example, Polyn, Norman, & Kahana (2009a) developed the context main-
tenance and retrieval (CMR) model that, in addition to an SSM-based decision
rule, incorporated other features into context, such as encoding tasks and word
categories, and also explored how information can remain in context for
different timescales. Related work by Lohnas, Polyn, & Kahana (2015)
extended CMR to data spanning multiple lists, accounting for the recency effect
seen in prior list intrusions, as well as the buildup and release of proactive
interference. When targeting one out of a number of lists, it is also necessary to
reject spurious retrievals, thus this new version of CMR included a recognition
component similar to the context match process in BCDMEM to reject items if
they are not recognized to be on the target list. Other work incorporated a
similar context match process to fit recognition data, and, combined with
drifting list context features, was able to capture human reconsolidation results,
including errors introduced from a reminder prior to studying new information
(Sederberg, Gershman, Polyn, & Norman, 2011).
Like SAM, semantic associations between items have also been incorpor-

ated into models based on the TCM framework, providing excellent fits to
semantic contiguity and category clustering effects. Morton & Polyn (2016)
tested a variety of semantic models to guide the trial-level recall dynamics and
found the best performing approach entailed providing a linear mapping from
the word association spaces (WAS; Steyvers, Shiffrin, & Nelson, 2005) to pre-
experimental association matrices in CMR. Follow-up work has employed
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machine learning and joint modeling to link the moment-to-moment context-
ual reinstatement and updates in category representations in CMR to neural
data during the encoding and retrieval processes (Morton & Polyn,
Submitted). Other computational theories have blurred the lines between
episodic and semantic memory, demonstrating that it is possible to construct
semantic representations by slowly averaging over learned predictions from
TCM as it traverses large text corpora one word at a time (Howard, Shankar,
& Jagadisan, 2011).

Finally, recent work has explored modifications to the Hebbian learning rule.
Gershman, Moore, Todd, Norman, & Sederberg (2012) demonstrated the
equivalence of the temporal context model of episodic memory with a
prediction-error learning rule and the successor representation model of
reinforcement learning (Momennejad et al., 2017), thereby merging frameworks
in two fields governing learning and behavior across species. Darby &
Sederberg (2022) applied a similar prediction-error learning rule to fit differ-
ences in performance on a continuous associative recognition memory task
between young and older adults. Siefke, Smith, & Sederberg (2019) found that
TCM could capture temporal distinctiveness effects, where memory is boosted
for information that stands out relative to the recent information, by modulat-
ing both the learning rate and the contextual drift rate based on the amount of
context change caused by incoming information. Together, these new learning
rules show promise for extending retrieved context theory to capture an even
wider array of findings in episodic memory and related processes.

18.3.5 Neurally Plausible Models of Episodic Memory

This chapter has focused on models that provide abstract implementations of
computations hypothesized to underlie episodic memory that do not attempt to
directly instantiate neural processes or map them to specific anatomical regions
of the brain. However, a great deal of modeling work has drawn on results from
neuroscience to develop more neurophysiologically plausible models of episodic
memory. Brief discussions are provided below of neurally plausible representa-
tions of temporal context and neural network models of episodic memory.

18.3.5.1 Neurally Plausible Representations of Context

Many episodic memory models assume that the brain represents dynamic
contextual information that can help target and reconstruct rich details of
past events, as well as construct projections of what future events may occur.
Yet, the implementation of this context is typically quite simplified relative to
the multiple scales over which experience unfolds throughout one’s lifetime.
Contrary to the single temporal scale captured by the exponentially decaying
context in TCM, there is growing evidence that the brain represents experience
over a continuum of temporal scales (Gravina & Sederberg, 2017). For
example, multivariate neural analyses reveal mental context integrating over
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experience with a hierarchy of temporal receptive fields (Honey et al., 2012),
which can be harnessed to guide memory retrieval for real-world experience
(Baldassano et al., 2017; Nielson, Smith, Sreekumar, Dennis, & Sederberg,
2015). The question is how these temporal receptive fields are implemented in
the brain and incorporated into a computational framework.
Recent work by Marc Howard and colleagues proposes that the brain

maintains a representation of what events happened, along with when they
occurred, by storing a Laplace transform of experience (Howard et al., 2014;
Shankar & Howard, 2012, 2013). Rather than temporal context with a single
decay rate, according to this theory, representations of experience are stored
in populations of leaky integrators that decay with a spectrum of time con-
stants. A linear transformation of these leaky integrators can estimate the
inverse Laplace transform (Post, 1930), which reconstructs not just what
features were active, but approximates when they were active in the past.
Importantly, this Timing from Inverse Laplace Transform (TILT) representa-
tion is scale invariant, in that the fidelity of its estimate decreases with the log
of the time into the past, creating temporal receptive fields that can integrate
over the past, providing a log-compressed timeline of experience (see
Figure 18.10). While there is now widespread evidence in support of the neural
correlate of the Laplace transform in the form of “temporal context cells”
(Bright et al., 2020; Tsao et al., 2018), and support for the neural correlate of
the inverse Laplace transform in the form of “time cells” (Eichenbaum, 2014;
MacDonald, LePage, Eden, & Eichenbaum, 2012), thus far, few have
attempted to incorporate TILT into retrieved context models of episodic
memory as a scale-invariant representation of temporal context (Howard,
Shankar, Aue, & Criss, 2015). It is quite possible that such efforts will prove
critical to capturing episodic memory for real-world events outside of well-
controlled laboratory-based tasks.

Figure 18.10 Timing from Inverse Laplace Transform (TILT) representation.
Top: Step functions indicate the serial presentation of a list of items, relative to
the current moment, indicated by the single vertical dashed line with the past
going to the left. Bottom: Curves represent the TILT representation of when
the same items were presented. Note that the items presented most recently are
more highly activated and have greater temporal precision than items presented
further into the past.
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18.3.5.2 Neural Network Models of Episodic Memory

Decades of neurocognitive work has suggested that episodic memory is supported
by the hippocampus and other medial temporal lobe structures, as well as inter-
actions between these regions and the neocortex (Burgess, Maguire, & O’Keefe,
2002; Davachi, 2006; Davachi, Mitchell, & Wagner, 2003; Davachi & Preston,
2014; Preston & Eichenbaum, 2013; Preston, Shrager, Dudukovic, & Gabrieli,
2004; Schlichting & Preston, 2017). Drawing on these findings, a number of
computational models have been proposed to explain the neural processes
underlying episodic memory (Byrne, Becker, & Burgess, 2007; Kesner &
Rolls, 2015; Levy, 1996). One particularly influential theory is the
complementary learning systems (CLS) framework (Norman & O’Reilly,
2003). The CLS model was designed to provide an explanation of how the
brain accomplishes two conflicting goals: retaining episodic memory for specific
experiences, while also extracting regularities across experiences in support of
generalization (McClelland, McNaughton, & O’Reilly, 1995). In brief, the CLS
framework posits that the hippocampus (particularly the dentate gyrus and
CA3 subregions) rapidly creates sparse representations of specific episodes,
resulting in relatively little overlap between representations. This is analogous
to how more abstract models like TCM implement orthogonal representations
of different items. At the same time, the CLS framework allows for more
semantic or gist-like memory extracted across different, but related, experi-
ences. This process can be enhanced when the hippocampus slowly “trains” the
neocortex to extract generalities by reactivating hippocampal memories during
periods of reduced memory encoding such as sleep, slowly modifying synaptic
weights between cortical neurons (Kumaran, Hassabis, & McClelland, 2016).
The division of labor allows the brain to retain specific episodic memories, as
well as generalized memories extracted from those experiences.

Although the CLS model posits that episodic learning occurs rapidly in the
hippocampus, whereas cortically based semantic or statistical learning occurs
much more slowly, empirical work has demonstrated that the latter form of
learning can occur within minutes (Fiser & Aslin, 2001; Saffran, Aslin, &
Newport, 1996), and that such learning can be linked to the hippocampus
(Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014). To accom-
modate these findings, the CLS framework has been extended to allow inter-
actions between subfields within the hippocampus itself to support rapid
learning of both episodic and semantic memory (Schapiro, Turk-Browne,
Botvinick, & Norman, 2017). According to this variant of the model,
statistical learning of regularities across experiences can be performed by the
monosynaptic pathway between the CA1 subfield of the hippocampus and
entorhinal cortex, whereas episodic memory of specific experiences is performed
by the trisynaptic pathway between entorhinal cortex and CA1, the dentate
gyrus and CA3 of the hippocampus.

Critically, although sparse, nonoverlapping representations of events are
formed in the hippocampus, allowing memories for specific episodes to be
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maintained, the representations of similar experiences contain overlap in
cortical regions, such that a stimulus will propagate activation to representa-
tions of similar stimuli. This spreading activation process could affect episodic
memory retrieval in a number of important ways. First, a long-standing
debate in the episodic memory field is whether memory retrieval is a single
or dual source process (Wixted, 2007; Yonelinas, 2002). Specifically, global
matching models such as REM and BCDMEM, as well as signal detection
frameworks, assume that recognition memory is based on a single, graded
source of memory strength often referred to as familiarity. By contrast, dual-
process accounts hypothesize that recognition depends on a general familiar-
ity signal in addition to recollection of specific details. Whereas it has proven
difficult to adjudicate between these theories by behavioral data alone, there
seems to be a clear dichotomy between neural signals that track familiarity
and recollection processes (Curran, 2000; Curran & Cleary, 2003; S. M.
Daselaar, Fleck, & Cabeza, 2006; Sander M. Daselaar, Fleck, Dobbins,
Madden, & Cabeza, 2006; Ranganath & Ritchey, 2012). Based on this
neural evidence, the CLS framework attributes familiarity to activation of
units in stimulus representations corresponding to the perirhinal cortex,
whereas recollection is attributed to a process of calculating the extent to
which patterns retrieved by the hippocampus both match and mismatch the
memory cue (Norman & O’Reilly, 2003).
A second feature of spreading activation of gist-like representations could be

to serve as a means for retrieving a general schema or context that could guide
behavior. For example, going to a new restaurant will activate restaurant-
related schema based on memories for similar experiences, which will help
guide behavior in this novel environment. New experiences such as this may
be gradually assimilated into existing schemas through interactions between the
hippocampus and prefrontal cortex in a process of memory consolidation
(Preston & Eichenbaum, 2013).
More generally, these neurally inspired models begin to map the represen-

tations and computational processes hypothesized to support episodic
memory to populations of neurons in specific brain regions. This comes with
two important benefits. The first is that neural models are constrained by the
anatomy, connectivity, and physiology of the brain regions involved. For
example, even though the behavioral consequence of forming an association
may be similar to more abstract models, neurally plausible learning rules may
take into account the firing properties of individual neurons and limit synaptic
modification by the relative timing of neuronal spikes and the specific types of
neurons in the brain region of interest (Caporale & Dan, 2008). The second is
that neural network models can function as immediate proxies to test the
consequence of damage to specific brain regions. This capability is particu-
larly relevant as the field seeks mechanistic explanations for the memory loss
due to Alzheimer’s and related dementias (Meeter & Murre, 2004; Murre,
Graham, & Hodges, 2001).
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18.4 Conclusion

Computational models of episodic memory characterize the processes
underlying recognition and recall behaviors in conjunction with other founda-
tional cognitive processes like attention and decision making. Different models
vary widely in the representations, associations, and dynamics that combine to
generate observed patterns of episodic memory behavior.

This chapter focused on models of item recognition and free recall. To
supplement this discussion, two models of recognition and two models of
recall were presented in detail. The two recognition models differ primarily in
their assumptions about where noise in recognition memory comes from:
according to REM, noise comes from other items on a memory list, whereas
according to BCDMEM noise comes from previous experiences or contexts
associated with a given item. With these two models, data were simulated from
model parameters fit to observed data to illustrate how they account for word
frequency effects in recognition memory, as well as differences in model predic-
tions of list length effects. Although these models differ in their sources of noise,
it is very likely the case that recognition memory is affected by memory for
other items as well as other contexts (Criss & Shiffrin, 2004; Fox, Dennis, &
Osth, 2020; Osth & Dennis, 2015).

The recall models further highlighted the critical role of context in governing
the behaviors an episodic memory model can reproduce. SAM is a dual-store
model with a short-term storage in the form of a buffer that can hold a limited
number of items, and long-term storage of associations between items, as well
as between the items and a list context unit. TCM replaces the buffer with a
decaying temporal context vector, but its key distinction is that items are not
bound directly to each other, but are bound to and can retrieve the temporal
contexts in which they are presented. In the free recall data presented here,
TCM provided a substantially better fit for every participant. That said, these
are only basic implementations of these two models and researchers have
extended both to capture a wide range of findings in episodic memory.

Computational models have made substantial progress in helping to uncover
the mechanisms underlying episodic memory. Although there is still much work
to be done, models like REM, BCDMEM, SAM, and TCM have helped the
field understand how the mind encodes, stores, and retrieves information about
items and contextual states in the effort to leverage past experience to guide
actions in the present and plan for the future. Although this chapter focused on
relatively abstract models of recognition and recall, many models have taken a
more biologically based approach to understand episodic memory, such as the
complementary learning systems theory of how the hippocampus and neocortex
interact to form episodic memories (McClelland, 1994; McClelland,
McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003). In addition, more
abstract computational models of episodic memory and cognition in general
have taken steps in recent years to become more aligned with neural data
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through the joint-modeling framework, which seeks to constrain cognitive
model parameter estimates through links to neural measures (Kragel,
Morton, & Polyn, 2015; Palestro et al., 2018; Turner, Sederberg, Brown, &
Steyvers, 2013). As these joint-modeling approaches gain further adoption, they
will foster more direct links between cognitive mechanisms inferred from
models of episodic memory behavior and their underlying neural processes.
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19 Computational Neuroscience
Models of Working Memory
Thomas E. Hazy, Michael J. Frank,
and Randall C. O’Reilly

19.1 Introduction

Originally coined by Newell and Simon (1956) in the context of computer
science, the termworkingmemory (WM)was introduced into Cognitive Psychology
by Miller, Galanter, and Pribram (1960), who used it for the idea of holding goals
and subgoals in mind in the service of planning and executing complex behaviors
(Cowan, 2017). Since then the usage of the term has evolved in complex and
nuanced ways such that Cowan (2017) could distinguish nine separate definitions
currently in use by various researchers. For the work described in this chapter, the
definition attributed to Miller et al. (1960) will be adopted (Table 19.1).

Broadly speaking, there are two levels of computational working memory
models: abstract cognitive-level models, and neurobiologically based models,
the latter of which are the primary focus of this chapter. These models are based
on the discovery of persistent delay-period neuronal activity in the prefrontal
cortex of nonhuman primates, in a variety of delayed-response tasks (e.g.,
Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster & Alexander, 1971;
Kubota & Niki, 1971). A central idea behind most of these models is that neural
activity can be sustained through mutual excitation, where populations of inter-
connected neurons send each other excitatory activity in a self-perpetuating
fashion (also described as reverberant or recurrent activity). Computationally,
this corresponds to a stable attractor in a dynamical system: a state that remains
constant over time once the system enters the vicinity of that state (known as the
attractor basin) (see Barak & Tsodyks, 2014; Wang, 2001, for reviews). This
mechanism of working memory can be more specifically described as robust
active maintenance, which is distinct from a more transitory form of continued
neural activity in posterior cortex that can persist for a few hundreds of millisec-
onds, but is quickly overwritten by new stimuli (e.g., distracters).

Acronym/Term Definition

Table 19.1 Glossary

WM Working Memory: As used here, the set of cognitive processess
used for holding goals and subgoals in mind in the service of
planning and executing complex behaviors (after G. A. Miller
et al., 1960 as attributed by Cowan, 2017).
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Table 19.1 (cont.)

1-2-AX A hierarchical form of the AX-CPT in which the target sequence
(AX vs. BY) is signaled by outer-loop cues (1 or 2).

ACT-R Adaptive Control of Thought – Rational: A highly influential
production system-based model of cognition developed by John
Anderson and colleagues.

AX-CPT A-then-X Continuous Performance Task: Subjects observe
sequences of letters and have to respond correctly for the target
sequence of an ‘A’ followed by and ‘X’.

BG Basal Ganglia: A set of subcortical nuclei involved in modulating
frontal cortical function including motor activity and executive
function.

BPTT Back Propagation Through Time: An extension of the
backpropagation algorithm to RNNs. The dominant learning
algorithm used in connectionism and deep learning (Rumelhart,
Hinton, & Williams, 1986).

Connectionism A very successful and highly influential approach to
behavioral and, especially, cognitive modeling in psychology
that emerged in the 1980s and emphasized learning in neural
networks.

Deep Learning A general term for a growing number of neural network-based
machine learning models that share the feature of having many
different layers stacked hierarchically.

ID/ED Intradimensial/Extradimensional: A dynamic categorization, task
switching task in which a block’s operational rule switches either
within a dimension (e.g., red vs. green) or extradimensionally
(color vs. shape).

LSTM Long Short-Term Memory: A highly influential recurrent neural
network model developed by Juergen Schmidhuber and
colleagues that introduced the idea of gating maintenance so as to
protect it over long time periods.

ML Machine Learning: A branch of computer science that deals with
various forms of statistical learning.
Roughly equivalent to artificial intelligence (AI).

N-back A continuous performance task in which subjects must indicate
when a currently displayed stimulus matches with one presented
n-steps back. Typically 1 < n < 5.

PBWM Prefrontal Cortex and Basal Ganglia Working Memory: A neural
network-based model of WM maintenance and updating that
emphasized the role of the basal ganglia in gating items into
active maintenance and updating them as appropriate (Hazy,
Frank, & O’Reilly, 2007; O’Reilly & Frank, 2006).

Production
System

A computer program typically used to provide a form of artificial
intelligence. It is characterized by a set of productions or rules that
pair states (IF part of the rule) with actions to be executed
(THEN part of the rule).

PVLV Primary Value, Learned Value:A neurobiologically informed and
constrained alternative to the temporal difference (TD) algorithm
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Functionally, the ability to robustly maintain activity over time must also be
complemented by an ability to rapidly update to encode new information into
working memory, when such information is transiently present in the sensory
input. These two demands are mutually contradictory, and the concept of
gating has been introduced as a way to dynamically switch between robust
maintenance versus rapid updating. The long-short-term-memory (LSTM)
model (Hochreiter & Schmidhuber, 1997) introduced an abstract algorithm
for multiple forms of gating (maintenance gating of new information into
working memory, and output gating of maintained information from working
memory), and various neurobiological mechanisms have been proposed to
support gating, including the neuromodulator dopamine (Braver & Cohen,
2000; Durstewitz, Seamans, & Sejnowski, 2000; Seamans & Yang, 2004) and
the basal ganglia (Dayan, 2007, 2008; Frank, Loughry, & O’Reilly, 2001; Frank
& O’Reilly, 2006; Todd, Niv, & Cohen, 2008).

The neurobiologically based approach has embraced empirical data from
multiple species and levels of analysis to inform and constrain the models. At a
systems and cognitive level of analysis, this work emphasizes the importance of
working memory as a core component of higher cognitive function, including

Table 19.1 (cont.)

for generating reward prediction error (RPE) signals used to train
the rest of a given network model.

RL Reinforcement Learning: A branch of machine learning in which
actions are learned by trial and error based only on scalar-valued
feedback, i.e., good or bad.

RNN Recurrent Neural Network: A category of neural network in
which some subpopulation of the units feedback to excite
themselves on sequential timesteps.

RPE Reward Prediction Error: An error signal generated as the
difference between actual received reward versus that that has
come to be expected.

SRN Simple Recurrent Network: A simple form of RNN that involves
a direct copy of information from the prior time step to
contextualize the current time step.

TD Temporal Differences: The dominant RL algorithm for
generating reward prediction error (RPE) signals used to train
models.

Vector
Rotation

A term used to describe the quantification of the changes in neural
population activity that treats each unit as a single dimension in
the high dimensional space corresponding to all recorded units.
Thus, as the population activity changes over time it can be
described as rotating in this high dimensional space.

WCST Wisconsin Card Sort Task: Subjects match cards according to
color or shape as defined by implicit rules that change periodically
without instruction.
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attention, cognitive control, decision-making, goal-directed behavior, and
executive function (Baddeley, 1986; Baddeley & Hitch, 1974; Engle, Tuholski,
Laughlin, & Conway, 1999; Friedman et al., 2006; Miyake et al., 2000).
Machine learning algorithms (e.g., LSTM) are also an important source of
inspiration for understanding the functional properties of such models, and
learning more generally plays an important role in some of this work, to
understand how complex cognitive functions can emerge from simpler
neural machinery.
Sustained neural activity is essential for higher-level cognitive function, to

enable consistent plans or goals to drive processing over the duration necessary
to achieve desired outcomes. Mechanistically, actively firing neurons in the
prefrontal cortex can drive a top-down biasing of neurons in domain-specific
posterior cortical areas, to focus their processing on task-relevant information
(E. K. Miller & Cohen, 2001; O’Reilly, Braver, & Cohen, 1999). This is also
known as task-based attention. The specific ability to maintain stable activity in
the face of potentially distracting stimuli or thoughts has been an important
feature of working memory in the cognitive literature (Baddeley & Hitch, 1974;
Miyake & Shah, 1999), for example in the case of complex working memory
span tasks, that require maintaining selected information in the face of ongoing
complex cognitive processing.
The ability to plan or evaluate different possible future courses of action

critically depends on this ability to maintain internal representations of these
plans without the support of external stimuli. Indeed, based on the comparative
development of frontal areas across species, the core working memory ability
likely evolved to maintain affective goal states to guide behavior toward those
goals, in frontal areas that correspond to ventral and medial areas in the
primate brain (V. J. Brown & Bowman, 2002; Öngür & Price, 2000; O’Reilly,
Russin, & Herd, 2019; Uylings, Groenewegen, & Kolb, 2003).
Table 19.2 includes specific examples of tasks and phenomena that have

been modeled with this approach. For example, the PBWM model incorpor-
ates biologically based mechanisms of frontal robust active maintenance,
basal ganglia gating mechanisms, and learning mechanisms based on phasic
dopamine, and can simulate a wide range of commonly studied working
memory tasks including the 1-2-AX and phonological loop (O’Reilly &
Frank, 2006), ID/ED dynamic categorization (O’Reilly, Noelle, Braver, &
Cohen, 2002), WCST (Rougier & O‘Reilly, 2002), N-back (e.g., Chatham
et al., 2011), task switching, the Stroop task (Herd et al., 2014), hierarchical
rule learning (Badre & Frank, 2012), and the reference-back-2 task (Rac-
Lubashevsky & Frank, 2020).
This review of the field of neurobiologically based working memory models

focuses on the following central, open questions that characterize many of the
important differences across existing models:

• From the gating perspective, what is the nature and scale of the neural
substrate that is subject to gating modulation? The potential range here might
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extend from the gating of individual neurons at the most fine-grained end of
the scale to the en-masse gating of the entire PFC by a global gating mechan-
ism (e.g., the neuromodulator dopamine).

• What kinds of qualitatively different gating dynamics exist in the brain, and
what are their respective neural substrates? Possibilities include: input gating
(allowing sensory / bottom-up activation into prefrontal cortex), maintenance
gating (updating new information into active maintenance), forget gating
(removing, resetting active maintenance), and output gating (output of infor-
mation from active maintenance).

• What is the temporal relationship between gating events and the maintenance
period? For example, the gating of an item into robust maintenance could be
a punctate event with the gate opening only transiently at the start, and then
closing again. Alternatively, the gate could persist in an open state through-
out the maintenance period, playing a critical role in sustaining the active
maintenance.

• How static vs. dynamic are working memory representations over the
maintenance period? Evidence for both relatively static, boxcar-like sustained
activity, as well as various waxing-and-waning patterns of delay-period activ-
ity have been reported.

• What is the nature and source of working memory capacity limitations? Is
capacity limited by something like a small number of discrete slots (Cowan,
2001; G. A. Miller, 1956), or is it more like a single shared resource (e.g., Ma,
Husain, & Bays, 2014)?

• Can working memory representations provide a substrate for a form of
content addressable memory in service of variable binding and transfer?

These questions also have numerous mutual interdependencies, such that a
comprehensive theory needs to consider all of the issues interactively. Each of
the above questions will be revisited in the General Discussion section that
follows the model descriptions.

Although the focus is on the neurobiologically oriented models here, there is
an extensive literature on more abstract models that target human-level cogni-
tive function specifically, and account for a range of behavioral data regarding
the nature and limits to working memory capacity and the modalities involved
(e.g., Logie, 2018; Oberauer et al., 2018a, 2018b; Vandierendonck, 2018). For
additional background and reviews, interested readers are referred to other
sources to learn about them (e.g., Adams, Nguyen, & Cowan, 2018; Burgess
& Hitch, 2005). In addition, readers are encouraged to look at Oberauer et al.
(2018a) for a compilation of benchmark human behavioral phenomena drawn
from a wide swath of working memory tasks that a panel of researchers have
deemed important for proposed models to address. These benchmarks consti-
tute a kind of “psychophysics” of working memory: many different ways of
probing the basic process of encoding and retrieving information over a rela-
tively short interval, including: serial recall, free recall, complex span tasks,
visual change detection, recognition, memory updating, and n-back.

Computational Neuroscience Models of Working Memory 615

https://doi.org/10.1017/9781108755610.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.023


The overall organization for the remainder of the chapter is as follows. First,
the theoretical Background for many of the issues introduced here will be
provided in the following section. Then, models at different points on the
spectrum articulated above are reviewed, considering how they might inform
an understanding of the role of gating and whether there are qualitatively
different forms of working memory systems or not. Finally, a synthetic sum-
mary of the basic ideas will be provided including a return to the motivating
questions listed earlier.

19.2 Background

The most central phenomenon for all neurobiological models of
working memory is the sustained delay period firing of neurons in the
prefrontal cortex (PFC) (e.g., Fuster & Alexander, 1971; Goldman-Rakic,
1995; Kubota & Niki, 1971; E. K. Miller & Desimone, 1994; Sommer &
Wurtz, 2000). This phenomenon has been the subject of extensive computa-
tional modeling research, at multiple levels of analysis. The core ability for
neural circuits to maintain a signal through the enduring firing of neurons has
been extensively investigated through many variations on attractor networks
(see Barak & Tsodyks, 2014; Wang, 2001, for reviews). Specifically, neurons can
maintain information over time through active firing sustained by a pattern of
mutual reciprocal excitation (you pat my back and I’ll pat yours, essentially).
Although brief periods of self-sustained activity can be seen across much of the
neocortex, the PFC seems clearly specialized in this regard (e.g., Funahashi
et al., 1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995; Kubota & Niki,
1971; Miller, Erickson, & Desimone, 1996; Wang et al., 2013). Thus, a critical
question is: are there specialized neural mechanisms in the PFC that explain
this ability?
Figure 19.1 from Arnsten, Wang, and Paspalas (2012) shows a widely

accepted framework for how these reverberant attractor dynamics operate
within a standard oculomotor delayed response task to maintain the cue
location during the delay period, enabling a delayed saccade to the cued
location (J. W. Brown, Bullock, & Grossberg, 2004, developed an early
system-level model with this structure, as discussed later). Specifically, a
specialized population of deep layer 3 pyramidal neurons within the
prefrontal cortex has been identified, which has extensive lateral, mutually
excitatory (recurrent) connectivity (Kritzer & Goldman-Rakic, 1995; Wang
et al., 2006). This pattern of connectivity has undergone a prominent evolu-
tionary expansion in primates (Elston, 2003; Wang et al., 2013), and has a
high concentration of N-methyl-D-aspartate (NMDA) receptors which are
important for stabilizing this reverberatory activity and contribute to its
continued informational specificity. These receptors have a switch-like bi-
stability, such that when they are activated they drive sustained excitatory
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currents that reinforce the activity of already-activated neurons. There are
also important complementary bistable inhibitory GABA-B channels that
prevent previously inactive neurons from becoming activated, which greatly
enhances the robustness and stability of the attractor states (Sanders, Berends,
Major, Goldman, & Lisman, 2013).

Several studies have shown that NMDA receptor blockade impairs working
memory performance in multiple species (Krystal et al., 2005; Moghaddam &
Adams, 1998; Roberts et al., 2010). A particularly elegant study by Wang et al.
(2013) showed that the targeted administration of antagonists to NMDA, but
not AMPA, in deep layer 3 pyramidal cells blocked persistent activity in
monkey PFC and impaired performance on a spatial working memory task.
These authors also showed that the NMDA receptors involved were phenotyp-
ically specialized to express high levels of the NR2B subunit.

The laminar specialization shown in Figure 19.1 makes sense according to
standard patterns of cortical connectivity. Sensory inputs activate superficial
layers directly and via layer 4, which then projects up to the superficial layers,
and the subcortical output from the PFC arises from the deep layers, with the
large layer 5b output neurons providing direct motor-level output (i.e., their
axons constitute the pyramidal tract projections to the spinal cord). These layer
5b neurons also project to the basal ganglia and other subcortical targets. There
is also a population of layer 6 corticothalamic (CT) neurons that project to the
thalamus, which will be discussed below. In addition to driving output
responses, the layer 5b output neurons also transmit both sensory input and
sustained active maintenance signals, as revealed by the unambiguous recording
of all of these firing patterns in identified layer 5b neurons (Sommer & Wurtz,
2000). This can arise from different patterns of projections from layer 2 and 3
neurons into layer 5b, and can be computationally useful in enabling all aspects
of the PFC activity to be available to subcortical systems.

The issue of gating can be seen directly in the activation patterns illustrated in
Figure 19.1. Specifically, what causes the layer 5b output neurons to only fire at
the moment when a response should be initiated, and not sooner during the
delay period? Furthermore, if the superficial layer neurons were always capable
of updating the state of the layer 3 delay cells, irrelevant distracters would thus
interrupt the working memory system, but a defining characteristic of working
memory is its robustness in the face of such distractions. These questions are
addressed in abstract, algorithmic terms by the LSTM model (Hochreiter &
Schmidhuber, 1997), which has a maintenance gate that learns when to allow
new information into working memory, and an output gate that learns when to
allow information out of the working memory system. Both of these gates
operate as a simple multiplicative factor on a precisely balanced, linear working
memory cell that can perfectly maintain information indefinitely over time until
further gated.

Thus, from a neurobiological perspective, a central question concerns the
nature of possible neural mechanisms that could support these forms of gating.
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One early set of proposals focused on the neuromodulator dopamine, which
affects virtually all aspects of the PFC circuitry, including NMDA and GABA-
B receptors (Braver & Cohen, 2000; Durstewitz et al., 2000; Seamans & Yang,
2004). Specifically, transient changes in dopamine firing, driven by its synergis-
tic role in reinforcement learning, could modulate the stability of activity
dynamics in PFC, switching between robust maintenance and a more labile
state where rapid updating is possible. However, such a mechanism would likely
affect all of PFC at a time, due to the widespread nature of dopamine innerv-
ation, and the relative homogeneity of dopamine cell firing, making it difficult
to selectively update some information while robustly maintaining other states.

Figure 19.1 Detailed mapping of a standard oculomotor delayed response task
onto patterns of neural activity across different lamina within the dorsolateral
prefrontal cortex (dlPFC). Superficial layer (II) neurons receive bottom-up
sensory inputs encoding the cued location for a delayed visual saccade, in this
case, the red light at 90 degrees to the left of the central yellow fixation point.
Specialized deep layer III neurons with extensive lateral recurrent connectivity,
expressing both NMDA and GABA-B channels, provide the reverberant
attractor dynamics to sustain the cue location over the delay period, during
which time the animal must maintain central fixation. When the fixation
cross disappears, the animal is allowed to respond, and deep layer V output
neurons drive the motor response, to saccade to the previously cued target
location. All aspects of this task are typically trained through reinforcement-
based learning in a shaped fashion, such that the animal learns that reward only
occurs when all steps are correctly performed. Figure adapted from Arnsten
et al., (2012).
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For hierarchical motor control and various standard working memory tasks,
this ability to selectively update is essential.

Motivated by data on the extensive interconnectivity and functional rele-
vance of the basal ganglia (BG) for frontal function (G. Alexander, DeLong, &
Strick, 1986; R. G. Brown & Marsden, 1990; Graybiel, 1995; Middleton &
Strick, 2000; Mink, 1996), a number of models have advanced the idea that the
BG are well-positioned to provide this more selective gating function (Beiser &
Houk, 1998; J. W. Brown et al., 2004; Dayan, 2007, 2008; Dominey & Arbib,
1992; Frank, 2005; Frank et al., 2001; Gruber, Dayan, Gutkin, & Solla, 2006;
Houk, 2005; O’Reilly & Frank, 2006; Todd et al., 2008). Other work has
directly addressed BG gating from a theoretical and empirical perspective
(Chatham, Frank, & Badre, 2014; Dahlin, Neely, Larsson, Backman, &
Nyberg, 2008; Voytek & Knight, 2010). Specifically, there are numerous
parallel loops of circuitry between the frontal cortex and BG that could provide
a more selective, focal gating signal, and the essential function of the BG is
widely thought to be to disinhibit excitatory corticothalamic loops in frontal
cortex. In the motor domain, this disinhibition is thought to drive the initiation
of overt motor actions (Mink, 1996). Thus, by analogy, BG gating in higher-
level PFC areas could drive the initiation of cognitive-level actions, including
the updating of working memory representations.

With the above providing a relatively well-established foundation, the next
section will motivate some of the more unresolved questions that different
neurobiologically based computational models have explored, which will then
be reviewed in greater detail in the remainder of the chapter.

19.2.1 The Nature of (BG) Gating and PFC Representations

The nature of working memory gating at many different levels of analysis
represents a huge space of unresolved questions, including the most basic
question of whether gating is really even present in the first place. Some of
these questions were highlighted in the introduction, including: the granularity
over which gating might operate; which of the different kinds of gating
(maintenance, output, and others) might be active, and via which neural
mechanisms; and how might gating dynamics relate to maintenance
activation?

At the abstract computational level of analysis, there is an influential set of
papers that showed how some working-memory-like abilities could emerge in
a basic type of recurrent neural network (RNN) without any form of gating
mechanism (Botvinick & Plaut, 2004, 2006). Interestingly, these models
focused on well-learned types of behavior, including highly practiced task
performance and immediate serial recall (e.g., repeating a phone number or
other information you’ve just been told), and they took hundreds of thousands
of trials to learn. These models also lacked any strong form of specialized
active maintenance mechanism, and instead learned to shape dynamically
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unfolding patterns of neural activity over time to systematically encode the
relevant temporal structure.
To help situate these models within a larger functional taxonomy, the well-

established dichotomy between controlled and automatic (habitual) processing
in human behavior (Cohen, Dunbar, & McClelland, 1990; O’Reilly, Nair,
Russin, & Herd, 2020; Shiffrin & Schneider, 1977) is particularly relevant.
Controlled processing is specifically required in cases of novel or difficult
cognitive tasks that require sustained attention and, typically, multiple cogni-
tive steps. Paradigmatic examples include mental arithmetic, planning moves in
a game of chess, and evaluating multiple potential aspects of a difficult decision-
making problem. By contrast, automatic processing occurs for well-learned,
often single-step cognitive operations, for example reading printed words. The
widely studied Stroop task demonstrates this distinction very clearly, where
automatic word reading is unaffected by irrelevant ink colors, but less well-
practiced color naming is strongly affected by conflicting color words (Dunbar
& MacLeod, 1984; Stroop, 1935).
Thus, one could argue that the highly trained, fine-grained, nongated dynam-

ics of recurrent neural networks capture the faster time-scale, automatized
forms of behavior and cognition associated with well-learned tasks, which are
thought to be supported by cortical networks in the parietal and lower-order
frontal motor areas. In contrast, controlled processing may require strongly
gated, more discrete, longer-time-scale dynamics supported by BG- / PFC-
based models. The working memory contents in this latter case reflect plans,
goals, and other more sustained forms of information, associated with dorso-
lateral PFC (dlPFC) and ventromedial PFC (vmPFC) areas. One can think of
these controlled processing roles of the BG / PFC circuitry as longer-time-scale
“outer loops” of cognitive function involved in maintaining and selecting task
plans and goals, that organize the sequential order of actions and cognition over
longer periods of time. Within these outer loops, “inner loops” of more auto-
matic, well-learned cognitive steps and actions take place.
Thus, instead of representing a challenge to the importance of gating and

specialized active maintenance mechanisms, the basic RNN models help to
delineate the specific domain of relevance for these mechanisms, within the
higher-level cognitive control / executive function domain, which is where at
least some of these models have been specifically targeted.
Within the space of models with gating mechanisms, the question of repre-

sentational granularity is of central importance. On one end of the spectrum is
the LSTM model, which is typically used with each individual working
memory unit having its own dedicated set of gating units. This produces a
very fine-grained, diverse, and dynamic set of memory signals updating sep-
arately in many different ways over time. By contrast, the more biological
models based on the constraints dictated by the BG / PFC system require a
significantly more coarse-grained form of gating. Specifically, as reviewed
below, biological data establish that there are orders of magnitude fewer
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gating neurons in the output nuclei of the BG, relative to neurons of the
frontal cortex, meaning that relatively large aggregates of frontal neurons
should share gating signals.

At the most coarse-grained end of the spectrum, the widely used ACT-R
computational modeling frame-work (Anderson & Lebiere, 1998; Stocco,
Lebiere, & Anderson, 2010) features the BG as the central bottleneck that
drives the sequence of production firing steps, according to the classical produc-
tion system model of higher-level cognitive function. A production in this
framework represents a single automatic inner-loop step of processing, such
as adding together two single-digit numbers, retrieving a fact from declarative
memory, or focusing attention on a particular element in a visual input display.
Critically ACT-R requires that only a single such production can fire at any
given time, producing a very coarse-grained form of gating (at least in the
temporal domain), compared to models where many different gating signals
can fire in parallel.

Interestingly, there is a nice convergence between the abstract, cognitive-level
ACT-R framework and the more biologically based BG-gating models (Jilk,
Lebiere, O’Reilly, & Anderson, 2008), even though they were derived from very
different starting points. The principle of BG-gating of PFC active maintenance
is the hub that connects these frameworks most directly. Remarkably, based
on purely behavioral considerations, the ACT-R framework converged on a
production firing constraint of no-faster-than 50 msec, which directly matches
the intrinsic oscillatory mode of the BG circuit (Bogacz, 2013; Courtemanche,
Fujii, & Graybiel, 2003; Schmidt et al., 2019).

Another important angle on the representational question is in terms of how
dynamic and high-dimensional working memory representations are over time
and representational space? Several electrophysiological studies support the
notion of mixed selectivity coding, where individual neurons have complex,
high-dimensional response profiles relative to relevant task variables (Fusi,
Miller, & Rigotti, 2016; Mante, Sussillo, Shenoy, & Newsome, 2013). The high
dimensional aspects of mixed selectivity are recognized to be useful for flexibility
in solving arbitrary tasks, but they come at the expense of generalizing to new
stimuli within a dimension. On the other hand, a long history of studies also
supports a more discrete, lower-dimensional organization, with more discrete,
“square wave” style temporal dynamics (Funahashi et al., 1989; Fuster &
Alexander, 1971; Goldman-Rakic, 1995; Kubota & Niki, 1971; Sommer &
Wurtz, 2000). These different temporal dynamics may interact with the represen-
tational organization of information as well, with more fluid, high-dimensional,
mixed-selectivity coding associated with the more automatic processing, inner-
loop end of the spectrum, and more discrete, square-wave dynamics associated
with the more controlled, outer-loop end of the spectrum.

Ultimately, the computational models can only serve to raise and focus
questions, and further empirical studies are required to more definitively answer
these questions. For example, does the proposed distinction between more
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continuous, fine-grained, dynamical models and the more discrete, broader-
scale gated models fit with direct contrasts between different levels of PFC and
posterior cortex? Or, is it possible there is only one of these two types of
mechanisms operating in the brain, supporting the whole scope of relevant
time-scales and modes of cognitive function? And more specifically, for gating
operating through the BG, how is this gating organized relative to
representational content and neural structure, under the strong biological con-
straints that there are many fewer gating neurons in the BG relative to PFC
neurons. Is there evidence for separate gating signals for different chunks of
PFC, and what is the organization of these chunks if so?
At a more detailed, biological level, there are a number of questions about the

neural mechanisms that could subserve different forms of gating (maintenance,
output, etc.). Based on the laminar organization of PFC (Figure 19.1),
maintenance gating should preferentially affect the specialized deep layer 3
neurons (Wang et al., 2013), while output gating ultimately needs to affect the
subcortically projecting layer 5b output neurons (e.g., Brown et al., 2004; Harris
& Shepherd, 2015; Larkum, Petro, Sachdev, & Muckli, 2018; Ramaswamy &
Markram, 2015; Sommer & Wurtz, 2000). Interestingly, there are two different
types of thalamic afferents to cortex, core vs. matrix, which may differentially
impact these cortical layers (Clascá, Rubio-Garrido, & Jabaudon, 2012; Jones,
1998a, 1998b, 2007; Phillips et al., 2019), and could thus be involved in both
forms of gating. Specifically, core-type thalamic projections target the central
layers, including 3 and 4, while matrix-type preferentially target layer 1 where the
apical tufts of pyramidal cells from layers 2, 3, and 5b reside, the thick tufts of
subcortically projecting layer 5b being particularly prominent (Harris &
Shepherd, 2015; Larkum et al., 2018; Ramaswamy & Markram, 2015).
Furthermore, most areas of the frontal cortex receive input from at least two

different thalamic nuclei, and both core- and matrix-type thalamic relay cells,
with medial dorsal (MD) nucleus prominently sending core-type projections
(Giguere & Goldman-Rakic, 1988), but also having matrix-type cells (Münkle,
Waldvogel, & Faull, 2000; Phillips et al., 2019). On the other hand, certain
ventral thalamic areas (VM, VA) predominantly send matrix-type (Kuramoto
et al., 2009, 2015), while VL mostly sends core-type (Kuramoto et al., 2009). In
addition, the basal ganglia output nuclei target the matrix-type ventral thalamic
areas more densely and uniformly as compared to the more patchily covered
MD (Ilinsky, Jouandet, & Goldman-Rakic, 1985; Kuramoto et al., 2009, 2015;
Tanibuchi, Kitano, & Jinnai, 2009a).
Putting these biological data points together, the resulting hypothesis would be

that BG-mediated effects on frontal cortex may be predominantly on the output-
gating side (matrix type, targeting 5b output neurons), while corticothalamic
pathways independent of the BG, predominantly via the MD, may drive PFC
maintenance gating (core type, targeting layer 3). This is consistent with a
growing body of empirical evidence supporting a role for the MD nucleus in
both the maintenance (Tanibuchi, Kitano, & Jinnai, 2009b; Watanabe &
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Funahashi, 2012; Watanabe, Takeda, & Funahashi, 2009; Wyder, Massoglia, &
Stanford, 2004) and updating (Rikhye, Gilra, & Halassa, 2018) of sustained PFC
activity. While this idea remains relatively unexplored computationally, it never-
theless shows how neurobiologically based models can usefully incorporate
anatomical data to inform an understanding of the nature of the computations.
It is also important to emphasize that output gating in one PFC area could then
directly influence maintenance in other areas, and that the BG-driven gating
could still result in sustained neural firing in targeted PFC areas, so it will likely
require more detailed implemented computational models to really sort through
the full implications and unique signatures of these different types of gating.
Ideally, the predictions of such models could then be tested empirically, at which
point some more definitive level of understanding could be established.

19.2.2 Learning Mechanisms

Another central question for the working memory system is how it ends up
being “intelligent” enough to function as one of the core systems of generalized
fluid intelligence, as cognitive-level theories and psychometric data suggest
(Engle et al., 1999; Friedman et al., 2006; Miyake et al., 2000). Without a clear
answer to this question, the PFC / BG working memory system ends up as a
kind of unexplained homunculus – a “little person” inside the head that makes
humans smart (Hazy, Frank, & O’Reilly, 2006; Hazy et al., 2007). One clear
answer to this question is that the system learns how to strategically control the
maintenance and updating of working memory over the protracted timecourse
of PFC functional development.

As such, one of the intriguing features of the dopamine-based gating
hypothesis (Braver & Cohen, 2000) was that it built the gating dynamics
directly on top of an emerging understanding of phasic dopamine signaling
in reinforcement learning (RL) (Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997), thus providing a direct connection to
learning. Subsequent models based on BG gating also retained this connection
to dopamine-based RL (Hazy et al., 2006, 2007; O’Reilly & Frank, 2006),
operating directly within the BG where dopamine receptors are the most
dense, and extensive evidence supports a critical role for dopamine in shaping
learning in a manner directly compatible with these models (Collins & Frank,
2014; Frank, 2005; Frank & O’Reilly, 2006; Gerfen & Surmeier, 2011;
Moustafa, Sherman, & Frank, 2008).

These biologically motivated uses of dopamine-based RL are broadly con-
sistent with current machine-learning approaches that combine RL with deep
learning networks (i.e., Deep RL), which have proven successful at learning to
succeed at a variety of different competitive games including Atari video games,
chess, and Go (e.g., Mnih et al., 2015). However, the LSTM gating model upon
which Deep RL is based still relies on a form of error backpropagation that
is difficult to reconcile with known biology (unlike simpler forms of
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backpropagation which do have a reasonable biological mapping; O’Reilly,
1996; Whittington & Bogacz, 2019). Overall, the direct connection between
dopamine and motivated, goal-driven learning may be synergistic with the task-
driven function of the PFC more generally, and together with its known
biological basis, suggests it may be the more likely form of learning in
these systems.
Also, the combination of RL with selectively updatable, actively maintained

working memory representations can be exploited to produce a sort of inductive
bias to use those representations in a way that can be co-opted under new task
conditions, resulting in a form of out-of-distribution generalization or learning
transfer (Bhandari & Badre, 2018; Collins & Frank, 2013, 2016; Frank &
Badre, 2012; Kriete, Noelle, Cohen, & O’Reilly, 2013; Rougier, Noelle,
Braver, Cohen, & O’Reilly, 2005; A. Williams & Phillips, 2020). Thus, there
may be some connection with human-level symbolic-like processing abilities
and these underlying neural systems (O’Reilly et al., 2014).

19.2.3 Activity-Silent Working Memory

Finally, although the focus here is mostly on the neural mechanism of sustained
neural firing, considerable work has shown that the broad functionality attrib-
uted to working memory can also be supported by other neural mechanisms.
For example, Braver and colleagues have championed the distinction between
proactive vs. reactive cognitive control in which the former corresponds to
sustained neural firing to span a temporal delay while the latter involves the
temporary offline storage, e.g., in the hippocampus, and its retrieval later at the
time in which the information is actually needed (e.g., Braver, Paxton, Locke, &
Barch, 2009).
More recently, the potentially related idea of activity-silent working memory

has gained considerable traction, based on the observation that neural activity
is often quite variable during the delay interval, and sometimes seemingly even
nonexistent (Stokes, 2015). Thus, perhaps temporary strengthening of recurrent
synapses involved in WM could be contributing, consistent with the role of
long-acting, intrinsic cellular mechanisms (e.g., O’Reilly & Frank, 2006; Wang,
2001), specifically the recruitment of NMDA receptors shown to be critical for
stabilizing reverberatory activity. It has also been proposed that activity-silent
working memory reflects an optimization that PFC can use if it can get away
with it, but not if manipulation of longer maintenance is needed (Masse, Yang,
Song, Wang, & Freedman, 2019), which is consistent with the broader idea that
the more demanding form of working memory supporting executive function
may require sustained active maintenance, but more automatized forms
may not.
Next, the following section will delve deeper into the ideas and questions

raised here and in the Introduction, starting with a more detailed discussion of
the abstract machine-learning level computational models, and then working
down to more biologically based models.
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Table 19.2 Working memory models covered

Model Salient features Key results

Active maintenance – persistent cortical activity

Attractor-based Corticocortical
reverberant activity

Long time constants of NMDARs enable
persistent activity (Wang, 2001)

Specialized NR2B NMDAR subunits
critical to robust maintenance (Wang
et al., 2013) (Nassar, Helmers, & Frank,
2018)

Corticothalamocortical
reverberatory activity

Mouse ALM (Guo et al., 2017)

Gating-relevant (machine learning)

AlphaStar (Deep
Mind)

Deep RL, DCNN Defeated human players at Starcraft II
(Vinyals et al., 2019)

Botvinick-Plaut SRN þ BPTT Immediate serial recall (Botvinick & Plaut,
2006)

Deep Q-Network Deep RL Learned to play a large suite of Atari games
(Mnih et al., 2015)

LSTM Multiple forms of fine-
grained gating

(Hochreiter & Schmidhuber, 1997)
(Gers, Schmidhuber, & Cummins, 2000;
Schmidhuber, Gers, & Eck, 2002)

Open AI Five Deep RL (includes LSTM) Team of five cooperating artificial agents
defeated tournament-level human teams in
Dota2 (https://openai.com/five)

Combined Deep RL with
supervised learning with
sensory feedback signals

Learned facile manipulation using human-
like robotic hand (Dactyl) (https://openai
.com/blog/learning-dexterity/)

BG-Based Gating

Beiser-Houk i – Maintenance gating:
reverberant

Sequence learning (Beiser & Houk, 1998)

corticothalamocortical
activity
ii – Transient disinhibition
of thalamic relay cells
switches them into a
persistently active up state

Dominey-Arbib i – Maintenance gating:
persistent suppression of
BG output permits
sustained
corticothalamocortical
reverberant activity

i - Memory-guided saccades (Dominey &
Arbib, 1992)

ii – Input gating – BG
selects between two
presented potential targets

ii – Visuomotor discrimination for selective
saccades (Arbib & Dominey, 1995;
Dominey, Arbib, & Joseph, 1995)
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19.3 Recurrent Neural Networks, LSTM, and the Deep
Learning Revolution

The machine learning / AI version of the classic attractor model
of working memory involves recurrent neural network (RNN) models, which
have some form of recurrent (reciprocal) connectivity, in contrast to the more
predominant, simpler forms of neural networks that are purely feedforward. The
simple recurrent network (SRN) (Cleeremans, Servan-Schreiber, & McClelland,

Table 19.2 (cont.)

Model Salient features Key results

FROST i – Explicitly excludes a
role for BG in the initiation
of maintenance gating
ii – Attentional, cortically
initiated maintenance
feeds back to BG that then
helps support it

Memory-guided action selection (Ashby,
Ell, Valentin, & Casale, 2005)

Attentional effects on working memory
capacity

Gruber et al. Phasic dopamine trigger
mechanism affects the
bistability of cells in both
BG and cortex

Initiation of WM maintenance; prevention
of drift for WM representations in
continuous space (Gruber et al., 2006)

PBWM i – Intrinsic cellular
maintenance mechanisms
triggered by BG gating
signals
ii – Phasic dopamine
signals train BG gating
signals based on correct/
incorrect outputs

1-2-AX, Phono loop (Hazy et al., 2007;
O’Reilly & Frank, 2006), WCST (Rougier
& O’Reilly, 2002), N-back Chatham et al.
(2011) task switching, the Stroop task (Herd
et al., 2014), reference-back-2 task (Rac-
Lubashevsky & Frank, 2020), and more. . .

Schroll et al. Increased STN activity in
response to salient stimuli
transiently suppresses the
thalamus and terminates
reverberant
corticothalamocortical
activity

WM memoranda updating (Schroll, Vitay,
& Hamker, 2012)

TELOS i – Division of labor
between superficial cortical
layers for maintenance
versus deep for output

Output gating by BG of memory-guided
saccades trained by RL (J. W. Brown et al.,
2004)

ii – BG gating of
maintenance signals in
superficial cortical layers
to deep layers for output
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1989; Elman, 1990; Jordan, 1986) is a particularly simple version, based on a
feedforward backpropagation network in which a copy of a layer’s activation
vector after each timestep is fed back into the network on the following timestep
as an additional input, most typically involving the hidden layer feeding back into
itself (Figure 19.2). This t � 1 activation vector is input by a weight matrix that
connects each t � 1 unit with all of the hidden units at timestep t; that is, there is
an all-to-all projection from a hidden layer to itself, offset by one timestep.

Thus, a hidden layer’s previous activity state provides a continually updated
and integrated temporal context input to itself at every timestep. Then, the
recurrent weights conveying the t � 1 information are updated after every
timestep along with all the other network weights according to the standard
backpropagation algorithm (Rumelhart et al., 1986). More recently, there is
some indication that thalamocortical circuits in the posterior cortex might
support something very similar to the SRN, which would be consistent with a
more short-term role (O’Reilly, Russin, Zolfaghar, & Rohrlich, 2020).

Whereas learning in the SRN is limited to looking back a single timestep, a
more general, powerful learning algorithm was also developed, known as back-
propagation through time (BPTT) (R. J. Williams & Zipser, 1992), which can be
understood as an “unrolling” of the multiple iteration timesteps of network
processing constituting a particular sequence into an equivalent “spatialized”
network to which standard back-propagation can be applied (Figure 19.3), with
the critical factor being that in calculating the gradient-based contribution to
the output error the recurrently connected hidden layer now has two descendent
layers contributing to the calculation: the output layer on the current timestep
as well as the hidden layer on the subsequent one. Although only a tiny part of
the full BPTT algorithm as described in the Goodfellow, Bengio, and Courville
(2016) text, Equation 19.1 shows how the BPTT computation of the gradient
for a recurrently connected hidden layer depends on two descendent layers:

rh tð ÞL ¼ ∂h tþ1ð Þ

∂h tð Þ

 !T

rh tþ1ð ÞL
� �þ ∂o tð Þ

∂h tð Þ

� �T

ro tð ÞLð Þ (19.1)

Context
copy

learn
t-1

Input

Hidden

Output

t

Figure 19.2 The simple recurrent network (SRN). The context layer holds a
copy of the prior (t�1) hidden layer activation state, and the current hidden
layer has learnable synaptic weights that can adapt to incorporate this temporal
context as needed to help learn the current input / output mapping. However,
anything that is not needed on the current or few subsequent time steps will be
rapidly forgotten: the system has a very limited effective memory span.
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where rh tð ÞL and ro tð ÞL are the per timestep gradient contributions to the loss
(error) function, L, of the hidden, h, and output, o, layers, respectively; and

∂h tþ1ð Þ

∂h tð Þ

� �T
and ∂o tð Þ

∂h tð Þ

� �T
are matrices of partial derivatives of the unit-by-unit

changes in activity of descendent layers h tþ1ð Þ and o tð Þ, respectively, with respect

to the hidden layer activity on the reference timestep h tð Þ. For further details on
BPTT as well as the standard back-propagation algorithm itself, interested
readers are referred to the excellent text by Goodfellow et al. (2016), and/or a
very informative tutorial-level treatment by Werbos (1990), one of the original
inventors of the back-propagation algorithm (Werbos, 1974).
The BPTT procedure can be combined with the SRN context copying

method, and the combination can be quite powerful. Two important applica-
tions of this combined model (Botvinick & Plaut, 2004, 2006) provide a good
illustration of the potential abilities of the more dynamic form of working
memory, as explored next.

19.3.1 The Botvinick-Plaut RNN Model

The key contribution of the Botvinick and Plaut (2004) RNN model was to show
that extensive backpropagation training enabled the model to develop a struc-
tured, hierarchical encoding of a well-learned task (preparing a cup of instant
coffee or tea), which was robust to disruption in the sequence of events, and
behaved similarly to humans overall. This model thus overcame the major
limitation of a purely sequential chaining approach to sequence learning, which
is that chaining is catastrophically brittle to any sort of disruption in the
processing of a sequence, because every timestep is completely dependent on
the state resulting from the prior one. Specifically, the extensive training enabled
hierarchically organized cross-step contingencies to be learned, overcoming the
short-time-scale working memory properties of the SRN mechanism.

copy

learn

Input

Hidden

Output

t

Input

Hidden

Output

t - 1

Input

Hidden

Output

t + 1

copy

learn...

Figure 19.3 “Unrolling” an SRN for back-propagation through time (BPTT).
As in the simple SRN a copy of the hidden layer activation state is saved at the
end of each timestep that sends learning weights to the current hidden layer that
can adapt to incorporate this temporal context as needed to help learn the
current input / output mapping. All of these weights are then adapted after each
timestep by the usual gradient descent back-propagation algorithm. Because of
the veridical representation of each timestep’s context the effective memory
span of the system is extended.
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Subsequently, Botvinick and Plaut (2006) addressed the working memory
domain more directly by adapting their model to reproduce many of the patterns
of errors made by normal and impaired participants in a serial recall task in which
four to-be-remembered items were presented in sequence (encoding stage) and the
network was required to reproduce the items in the same order during a decoding
stage. Like the coffee-making results, the core finding was that the network was
again robust to disruption, having learned representations that captured aspects
of the hierarchical nature of the task on its own. Figure 19.4 shows how the hidden
layer activation vector in this model evolves over the course of four encoding
timesteps followed by four decoding timesteps. At each time point, the hidden
layer population vector changes so as to best match its efferent weights to the
output layer such that the output units decode the proper item in sequence.

What is responsible for this behavior? The answer is learning and the power of
distributed representations (Hinton, McClelland, & Rumelhart, 1986). Consider
the first recall timestep (second circled 1 starting from the left in Figure 19.4)

Figure 19.4 How RNNs convey information over time to make it available
when needed. Data associated with four items are shown (circled numbers
1–4). Data points reflect a similarity measure between the population activity
vector in the hidden layer and the corresponding weights that connect the
hidden layer to the output. Following memorandum 1 as an example, note the
high similarity value on the first (encoding) trial in which the network must
output the identity of that item. However, on the next trial, the similarity drops
precipitously when the second item is encoded (and output). Subsequently, the
similarity measure for the first item gradually rises over further encoding trials
until it again becomes highest on the fifth trial, which is the first decoding trial
and the first item needs to be output again. One can think of the activity vector
in the hidden layer as rotating over the sequence of trials such that each item to
be recalled takes turns being the best match to the output weights. Figure from
Botvinick & Plaut, 2006, figure 5.
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during the training process. The context layer’s population vector copied over
from the previous timestep will correspond most to just-encoded stimulus 4. If the
network’s output on this timestep is wrong, the recurrent weights from the
context to the current hidden layer will be weakened so that next time around a
different output might be made. If correct, the recurrent weights will be
strengthened, in particular, those weights coming from the context layer units
that overlap with the activation vector that most corresponds to stimulus 1.
Gradually, based on changes in the recurrent weights from the context layer

(hidden at t-1), the current hidden activation vector will come to approach that
corresponding to outputting stimulus 1. In this way, the population vector of the
hidden layer comes to change systematically over subsequent timesteps in a way
that allows for correct sequential outputs. This systematic change in the popula-
tion vector activity is sometimes called “vector rotation” (see Table 19.1). Thus,
this evolution of the population vector along a trajectory that exposes representa-
tions only at the appropriate time is reminiscent of the dynamic population vector
trajectories described in activity-silent and/or dynamically evolving working
memory representations (e.g., Stokes, 2015; Stokes et al., 2013).
These models may best describe an implicit form of memory where the

relevant information is deeply embedded in complex neural dynamics, which
might be difficult for other systems to access in more generalizable, flexible
ways. Furthermore, such dynamic temporally evolving representations would
not appear to be ideal for broadcasting a sustained plan of action, or desired
goal state, over a relatively long period of time, to guide coordinated behavior
across a wide range of different brain areas toward carrying out plans and
achieving goals. Indeed, most theories of conscious awareness emphasize that
sustained stable activity over relatively long time periods (tens to hundreds of
milliseconds) is a necessary property (Lamme, 2006; Seth, Dienes, Cleeremans,
Overgaard, & Pessoa, 2008), consistent with this overall idea that the kinds of
memory associated with these rapidly rotating high-dimensional activity states
would likely not be consciously accessible. This is consistent with the overall
suggestion that the form of working memory supporting controlled processing
is distinct from that supporting highly automated sequential behavior.

19.3.2 Long Short-Term Memory and Gating

Despite capturing many aspects of human behavior, the SRN / BPTT models
remained strongly limited on their ability to span longer temporal delays,
because each additional step back in time, which is equivalent to adding an
additional hidden layer in the BPTT framework (Figure 19.3), results in another
step of exponential decay of both the activations and the backpropagated
learning signals (i.e., the “vanishing gradient” problem; Goodfellow et al.,
2016). They also had difficulty filtering out the effects of distracters, and
selectively updating to encode infrequent relevant items from a sequential
stream. Furthermore, whatever flexibility and robustness they were able to
exhibit required extensive training, and even then was relatively limited. To
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directly solve these problems, Schmidhuber and colleagues introduced dynamic,
learned gating mechanisms in the long short-term memory (LSTM) model
(Gers et al., 2000; Hochreiter & Schmidhuber, 1997; Schmidhuber et al., 2002).

The fundamental functional element in LSTM is the memory cell (the rect-
angular box in Figure 19.5). At the core of the memory cell is the constant error
carousel (CEC), which is effectively a unit having a linear activation function
and a fixed self-recurrent connection of weight 1.0 (the circle with a diagonal
chord at middle-bottom of the rectangle), which enables it to store activity
states in veridical form over a potentially indefinite number of timesteps. By
itself, however, the CEC would be constantly bouncing around under the
influence of every input signal into it, and therefore the LSTM model added
learnable gating units that preserve the CEC’s current state when the gate is
closed, and allow it to rapidly update when the gate is open. Thus, the CEC
state Scj is updated at each timestep according to the following equation:

Scj tð Þ ¼ Scj t� 1ð Þ þ g netcj
�

tð ÞÞyinj tð Þ (19.2)

where Scj tð Þ is the CEC’s activity state at timestep t; g netcj tð Þ
� �

is a nonlinear,
squashing activation function with codomain 0 to 1; and yinj tð Þ is the activation of
the input gate function inj (left circle beneath the rectangle with S-shape inside).

Furthermore, an output gate unit (right circle with S-shape) determines when
the CEC activation is communicated to other neurons. Thus, the output of the
memory cell, ycj , is computed at each timestep as follows:

ycj tð Þ ¼ youtj tð Þh scj
�

tð ÞÞ (19.3)

where ycj tð Þ is the memory cell’s output at each timestep; youtj tð Þ is the activity
of the output gate unit outj; and h scj tð Þ

� �
is a nonlinear function of the CEC’s

current state value, scj .
With these gates in place, the LSTM can lock in and hold information for

indefinitely long time periods, and learn to drive outputs at precise points in the
future. Hochreiter and Schmidhuber (1997) adapted a real-time variant of the
BPTT logic described by Robinson and Fallside (1987) for learning when to open
and close these gates, as a function of overall task error. Critically, the input and
output gates not only gate access in and out of the CEC state, they also serve to

Figure 19.5 The LSTM memory cell (rectangle) with constant error carousel
(CEC; circle with diagonal chord). See main text for explanation. From
Hochreiter & Schmidhuber, 1997, figure 1.
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filter learning by gating the access of back-propagating error signals to the input
wcji
� �

and output wicj
� �

weights of the whole memory cell (Figure 19.5), thereby
shielding them from changing when the gate is closed.
Each LSTM memory cell is typically used as a single unit would be in a

standard network, receiving full weighted synaptic inputs from lower layers, and
sending outputs to higher layers. Although the original LSTM paper envisioned
the possibility of multiple CEC memory cells (and CECs) per set of gates, in
practice this is rarely if ever used. As such, typical LSTMmodels exhibit similar
kinds of complex, high-dimensional, rotation-like dynamics as the RNNs inves-
tigated by Botvinick and Plaut (2004, 2006), but with the significant advantage
of being naturally biased to maintain information over time (instead of having
to be explicitly trained to do so), and having the ability via gating of maintaining
information in a relatively protected manner over long time intervals.
Schmidhuber and colleagues later added a forget gate (not included in

Figure 19.5) to deal with an important problem that arises under conditions
of continuous performance in which events (timesteps) are not grouped into
discrete trials. The problem they identified was that their storage cells/carousels
became saturated without the intermittent clearing (resetting to 0) that generally
happens programmatically between discrete trials. Adding a forget gate unit
allows the network to learn to clear storage cells adaptively (Gers et al., 2000).
These forget gates are standard on most current LSTM implementations, and
highlight the critical point that forgetting is really as important as remembering,
from a signal-to-noise perspective: it is important to remove old, irrelevant
information so that new, relevant information can naturally drive processing.

19.3.3 Deep Reinforcement Learning

With the explosion of deep learning over the last decade, it has turned out that the
LSTM has become a workhorse for networks having a predictive, temporal
contingency component. These are often still trained by traditional supervised
backpropagation, but recently many deep learning researchers have started to
train these LSTM-based deep networks with a version of RL such that it is only
reward signals that are backpropagated in order to train the gating units control-
ling the LSTM units. This triple merger of deep convolutional neural networks,
LSTMs, and reinforcement learning has become known as deep reinforcement
learning and has spawned many impressive successes just in the last few years.
For example, Deep Q-Network, a Deep RL model, learned to play a large

suite of Atari games in an end-to-end fashion, using only on-screen pixels as
input and points from the game serving as a reward function (Mnih et al., 2015).
However, the model was fairly brittle – e.g., if you move the paddle just two
pixels in breakout, it fails to adapt (Kansky et al., 2017). Also, in 2017 a team of
five cooperating artificial agents (Open AI Five) trained by deep RL defeated
tournament-level human teams in a modified version of the Dota 2 virtual game
(https://openai.com/five/). And, using the same algorithms as Open AI Five, a
different team combined deep RL with supervised learning on the sensory side
(a deep convolutional neural network) to train a robotic hand (Dactyl) to
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manipulate a block in an impressively human-like way (https://openai.com/
blog/learning-dexterity/). Finally, in 2019, DeepMind’s AlphaStar used a com-
bination of deep RL and supervised learning in a deep convolutional neural
network to win at Starcraft II.

In summary, the LSTM model strongly suggests that dynamic gating of
working memory has key computational benefits, but current LSTM models
retain the more implicit form of dynamic, high-dimensional temporal dynamics
of nongated RNNs, and both are likely better models of implicit, highly
automated task performance. A key limitation of these automated-task level
models is their relative inflexibility, which contrasts strongly with the defining
features of cognitive control and executive function, which is more closely
associated with working memory in the cognitive neuroscience literature.
Models of this latter domain will be examined next.

19.4 Gating: Models of Selective Updating

The computational-level insights about the benefits of dynamic, learn-
able gating in the LSTM algorithm converge with considerable biological data
supporting the idea that the basal ganglia (BG) provides dynamic, learnable
gating for PFC working memory activity. It has long been recognized that what
most distinguishes the frontal cortex from more posterior areas is the additional
involvement of the BG in modulating cortical activity. For motor cortex, this is
reflected in the BG’s generally accepted role in the selective gating of motor
actions (e.g., Mink, 1996) and there is now a modern consensus that the BG are
critically and analogously involved in cognitive functioning (R. G. Brown &
Marsden, 1990; Dahlin et al., 2008; Frank, 2005; Frank & O’Reilly, 2006;
Graybiel, 1995; Gruber et al., 2006; Houk, 2005; Middleton & Strick, 2000;
Rac-Lubashevsky & Frank, 2020; Voytek & Knight, 2010).

Specifically, it has long been suggested that the same basic gating-like mech-
anisms operational in motor control may have been adapted during evolution
to support cognitive functioning as well (e.g., Beiser & Houk, 1998; Middleton
& Strick, 2000; Wickens, Alexander, & Miller, 1991) and there is now consider-
able empirical evidence suggesting that specific gating decisions made by the
BG via thalamus can perform a maintenance gating function (Basso & Wurtz,
2002; Cole, Bagic, Kass, & Schneider, 2010; Hikosaka & Wurtz, 1983; McNab
& Klingberg, 2008; Monchi, Petrides, Strafella, Worsley, & Doyon, 2006;
Nyberg et al., 2009; Rikhye et al., 2018; Stelzel, Basten, Montag, Reuter, &
Fiebach, 2010; Yehene, Meiran, & Soroker, 2008). This has led to a series of
computational models based on the interaction of the PFC and BG, some of
which will be reviewed here with a focus on the mechanisms each proposes with
regard to working memory gating.

As noted in the introduction, these BG-based models tend to focus on longer
time scales of action selection and cognitive control, with the general idea that
the BG functions at a longer outer-loop time scale to help select the next course
of action, and support the cognitive control and executive functions needed to
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organize behavior over these longer time scales. These ideas are consistent with
the striking data from severe cases of Parkinsonism and other BG disorders,
which result in a catatonic state with little to no voluntary, self-initiated action,
as depicted in the movie Awakenings (starring Robert De Niro and Robin
Williams). Thus, it is likely that these models describe entirely different phe-
nomena compared to the automatic, habitual inner-loop level behavior charac-
terized by the RNN models described above.

19.4.1 The PBWM Framework

The PBWM (prefrontal-cortex, basal-ganglia working memory) model was
directly inspired by LSTM gating, combined with the extant BG biological
data (Frank et al., 2001; Hazy et al., 2007; O’Reilly, 2006; O’Reilly & Frank,
2006) (Figure 19.6). PBWM assumes the basic sustained firing of PFC neurons
as described above (supported by both recurrent excitatory loops and intrinsic
mechanisms including NMDA channels), and shows how the BG disinhibition
of PFC can drive the rapid updating of these sustained working memory
representations. Specifically, as illustrated in Figure 19.7:

• Firing in the direct orGo pathway of the BGwill disinhibit a select subset of one
or a few of the excitatory thalamocortical loops in corresponding areas of PFC
(called stripes), and this disinhibition should provide a sufficient jolt of extra
excitation to open NMDA receptors, and trigger robust active maintenance.
This notion of Go-gating for working memory updating is consistent with the
characteristically sparse and episodic nature of much of BG signaling
(G. E. Alexander, 1987; Kimura, Kato, & Shimazaki, 1990; Plenz & Wickens,
2010), and with the idea that BG is specifically engaged at the initiation of action.

• The NoGo pathway serves to oppose the Go pathway in the process of
deciding whether to update individual stripes (Collins & Frank, 2014;
Frank et al., 2001; O’Reilly, 2006; O’Reilly & Frank, 2006). In the PBWM

Sensory Input Motor Output

PFC: Context,
Goals, etc

BG: Gating
(Actor)

PVLV: DA
(Critic)

Posterior Cortex:
I/O Mapping

(modulation)

(gating)

Figure 19.6 The basic PBWM framework illustrating the roles of the basal
ganglia and PFC in working memory. Processed information from posterior
areas can be loaded into PFC for active maintenance under the control of
gating by the BG. Maintained information can in turn be used to bias
processing in posterior areas. Learning in the BG uses phasic DA signals
computed by the PVLV system (Mollick, Hazy, Krueger et al., 2020;
O’Reilly, Frank, Hazy et al., 2007).
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model, if the NoGo pathway wins out in the competition between these two
pathways, ongoing active maintenance continues in the associated PFC areas.
This is in contrast to other possible models where the NoGo is seen as more
directly inhibiting activity in the cortex (e.g., Arbib & Dominey, 1995; Ashby
et al., 2005; Dominey et al., 1995; Dominey & Arbib, 1992; Mink, 1996;
Schroll et al., 2012). In computational simulations, the ability of NoGo firing
to protect ongoing active maintenance has proved valuable. Nevertheless, this
is not a fully settled issue, and remains an important question for ongoing
research. For example, D2 activity in the BG has been shown to suppress
specific actions, induce NoGo learning, and affect updating and distractibility
(Collins & Frank, 2014; Frank & O’Reilly, 2006; Hikida, Kimura, Wada,
Funabiki, & Nakanishi, 2010; Kravitz, Tye, & Kreitzer, 2012; Yttri &
Dudman, 2016; Zalocusky et al., 2016).

• Phasic dopamine signals generated by reward prediction errors serve to
reinforce Go / NoGo decisions based on the relative value of reward outcomes.

• By enabling selective updating of different stripes where information can be
encoded, a powerful form of role-filler variable binding (O’Reilly, 2006) and
further levels of indirection (Kriete, Mingus, Wyatte, Herd, and O’Reilly,
2011) can be achieved, supporting systematic structure-sensitive cognitive
processing (O’Reilly et al., 2014; Rougier et al., 2005).

A major focus of work in developing the PBWM model has been on how more
biologically realistic learning mechanisms might be able to train the BG to learn

Figure 19.7 PBWM framework illustrating the roles of Go and NoGo
pathways in the basal ganglia in the updating of working memory. (A) When
NoGo dominates in the BG, gating is prevented and information is maintained
in PFC. (B)When a Go is computed, the gate is opened and new information is
loaded into PFC and then maintained.
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to gate at appropriate points in time, to support effective cognitive function.
Thus, instead of relying on the biologically implausible BPTT algorithm as
described above, PBWM uses well-established biological mechanisms of learn-
ing based on phasic dopamine neuromodulation. Specifically, reward-related
phasic dopamine signaling provides an appropriate training signal for both
the Go and NoGo pathways of the BG by virtue of the differential expression
of dopamine D1 vs. D2 receptors in the two pathways, respectively (Frank,
2005; O’Reilly & Frank, 2006) (Figure 19.7). This directly implements
Thorndike’s Law of Effect logic: if gating leads to a better-than-expected
outcome, reinforce that gating, and conversely, if gating leads to a worse-
than-expected outcome, punish that gating.
A critical ongoing issue with this form of learning is the need to span

potentially long temporal gaps between gating and subsequent outcomes (i.e.,
the temporal credit assignment problem). Whereas earlier versions of PBWM
used a CS-like learning mechanism based on the working memory activity
patterns themselves, more recent versions have explored the use of longer-
lasting synaptic tags (Redondo &Morris, 2011), which can be initially activated
by the gating activity but then modulated and effected by subsequent phasic
dopamine signals. This produces an overall learning dynamic similar to the
ACT-R version of reinforcement learning, which applies its reinforcement
signal at the time of an outcome uniformly to all production firing (since the
last outcome) leading up to that outcome (Stocco et al., 2010).
By incorporating a biologically based model of phasic dopamine signaling

(PVLV model; Primary Value and Learned Value; Mollick et al., 2020;
O’Reilly, Frank, Hazy, & Watz, 2007), PBWM has shown that many complex
working memory tasks (including those with arbitrary numbers of intervening
distractors) can be learned from trial-and-error experience using such a gating
mechanism. These include the 1-2-AX and phonological loop (O’Reilly &
Frank, 2006), ID/ED dynamic categorization (O’Reilly et al., 2002), WCST
(Rougier & O‘Reilly, 2002), N-back (e.g., Chatham et al., 2011), task switching,
the Stroop task (Herd et al., 2014), hierarchical rule learning (Badre & Frank,
2012), and the reference-back-2 task (Rac-Lubashevsky & Frank, 2020).
In the original PBWM models, it was hypothesized that anatomical structures

known as stripes (Levitt, Lewis, Yoshioka, & Lund, 1993) could be separately,
selectively gateable regions, comprised of aggregates of cortical mini-columns,
and correspond roughly to the hypercolumns described generally across a variety
of different cortical areas (Mountcastle, 1997). However, it is not clear if this
correspondence is strongly supported by extant data or not, as the relevant
experiments have not been done. Nevertheless, there is some suggestive evidence
of at least some degree of neighborhood consistency in the form of systematically
ordered iso-coding microcolumns described by Rao, Williams, and Goldman-
Rakic (1999), i.e., the equivalent of the mini-columns referred to above.
Another potential form of organization involves a distinction between

neurons that fire well in advance of a later motor action (i.e., preparatory firing),
versus those that fire at the time of the action (i.e., output or action firing).
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Different PFC neurons appear to be specialized according to these two different
time domains, with an anatomical organization at least in the frontal eye fields
(Sommer & Wurtz, 2000). More recent versions of the PBWM model have
incorporated this distinction between preparatory (maintenance) gating, and
output gating, which also maps well onto these distinct types of gating in the
LSTM framework (Figure 19.8) (O’Reilly, Hazy, & Herd, 2016; O’Reilly,
Munakata, Frank, Hazy, & Contributors, 2012). There are different learning
and activation dynamics demands associated with these different forms of
gating in the BG, which further supports the idea that they are supported by
distinct subcircuits within the overall system. Finally, there is a growing body of
empirical data and theoretical analysis supporting the basic idea of a kind of
maintenance vs. output organization in humans (e.g., Badre & Frank, 2012;
Chatham & Badre, 2015; Chatham et al., 2014; Collins & Frank, 2013; Frank &
Badre, 2012; Gayet, Paffen, & Van der Stigchel, 2013; Haith, Pakpoor, &
Krakauer, 2016; Huang, Hazy, Herd, & O’Reilly, 2013; Kriete et al., 2013;
van Moorselaar, Theeuwes, & Olivers, 2014).

Maintenance stripe Output stripe

Action outputsSNr/GPi

A - Maintenance, pre-Output

V
V

IV

A - Maintenance, pre-Output

VI
Vb

IV

MD VA/VL

Maintenance stripe Output stripe

Action outputsSNr/GPi

B - Output gating

VI
Vb

IV

MD VA/VL

Figure 19.8 Proposed division of labor between maintenance-specialized stripes
and corresponding output-specialized stripes. (A) Maintenance stripe (left) in
maintenance mode, with corticothalamocortical reverberant activity shown.
Information from that stripe projects via layer Vb pyramidals to a thalamic
relay cell for the corresponding output stripe (Type 2 corticothalamic
projection; see text), but the BG gate is closed from tonic GPi/SNr inhibition
so nothing happens yet (B) Output gate opens due to Go signal-generated
disinhibition of SNr/GPi output, triggering burst firing in the thalamic relay
cell, which in turn activates the corresponding cortical stripe representation for
the appropriate output. Projection from output stripe’s layer Vb pyramidal
cells then activates cortical and subcortical action/output areas, completing a
handoff from maintenance to output.
Note: input stage of processing not relevant so left out.
Key: MD ¼ mediodorsal nucleus of the thalamus; VA, VL ¼ ventral anterior,
ventral lateral thalamic (motor) nuclei.
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In summary, PBWM captures the following core hypotheses in a biologically
based framework that, while significantly less computationally powerful than
the full BPTT of LSTM, is nevertheless capable of learning executive function
tasks that depend on sustained working memory:

• The basal ganglia gates active maintenance in the PFC, with phasic Go-
pathway firing driving a rapid updating to encode new information, and
opposing NoGo-pathway firing blocking this update and supporting con-
tinued maintenance (and not inhibiting it).

• This gating can be learned through phasic dopamine neuromodulation, via
opposing effects of dopamine D1 and D2 receptors.

• BG gating affects many PFC neurons at once (those within the same
“stripes”), and conversely there are many separable such stripes controlled
by distinct BG gating signals (i.e., they are independently gatable), raising the
important question as how these PFC neurons might be organized relative to
their shared and distinct gating signals.

• There is evidence for separable maintenance vs. output gating, which have
different learning and dynamic requirements in the PBWM model – more
work could be done to investigate these issues empirically.

In the remainder of this section, various other models will be reviewed in the
context of overall working memory and motor / cognitive control tasks, which
have proposed different hypotheses about how the gating dynamics function.
For example, in the PBWM framework, BG gating works as a kind of spring-
loaded gate in the sense that it serves only to initiate the maintenance process by
a brief period of opening. The obvious alternative is for the BG to participate in
the ongoing maintenance process by being the kind of gate that can stay open,
in this case throughout the delay period. Several models have adopted versions
of this idea for maintenance gating.

19.4.2 Dominey-Arbib Model of Volitional Saccades

Over a series of papers, Dominey and Arbib described a computational model
of the saccade system that prominently included a working memory component
for memory-guided saccades (Arbib & Dominey, 1995; Dominey et al., 1995;
Dominey & Arbib, 1992). Based on then-extant electrophysiological data from
primate frontal eye fields like that shown later in Figure 19.12, the Dominey-
Arbib model included separate collections of memory-for-target and saccade-
generating units (among a total of four unit types). Dominey and Arbib
proposed a gating mechanism controlled by persistent suppression of BG
output that acted permissively at the thalamus to sustain a corticothalamocor-
tical loop of reverberant activity in their memory-coding cells over the delay
period, a form of maintenance gating. Saccades were prevented during the delay
by continued fixation and then permissively triggered by the removal of the
fixation stimulus at the end of the delay; thus, there was no distinct sense of
output gating.
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For a separate paradigm of visuomotor discrimination, in which subjects had
to select between two simultaneously presented targets, Dominey and Arbib
described a form of input gating performed by the BG that contributes to the
selection between two targets (Arbib & Dominey, 1995; Dominey et al., 1995).
Thus, the Dominey-Arbib model can be said to include versions of input and
maintenance gating as defined here, but not output gating. The model is silent
as to the cortical organization that might underlie the division-of-labor between
these two kinds of processing.

19.4.3 FROST Model of Ashby et al.

An approach similar to that of Dominey and Arbib was taken by Ashby et al.
(2005) in their FROST model (FROntal cortex, Striatum, and Thalamus). With
regard to maintenance gating, an interesting and seemingly unique aspect of the
FROST model is that it explicitly excludes a role for the BG in the initiation of
maintenance gating, only its persistence. Citing data from Hikosaka,
Sakamoto, and Usui (1989) showing sustained firing in striatal cells that starts
only after the offset of the to-be-remembered stimulus, the authors propose that
the role of the BG is to allow maintenance activity already started in the cortex
to recruit a loop of corticothalamocortical reverberant activity by activating
striatal cells and thus disinhibiting the thalamus. No other kind of gating is
mentioned, including output gating.

Another distinguishing feature of the FROST model is that Ashby et al.
(2005) explicitly attribute a role for selective attention in the cortical initiation of
active maintenance and are able to account for attentional effects as well as
individual differences in the pattern of measured working memory capacity
reported by Cowan, Nugent, Elliott, Ponomarev, and Saults (1999). Figure 19.9
shows empirical results at the top (A) and FROST model results below (B) with
the higher group of curves in each graph reflecting attentional effects and each
individual curve a subject with differing measured working memory spans.

19.4.4 Schroll et al.’s Model of BG

Informed by considerable neurobiological detail regarding the BG, Schroll et al.
(2012) developed a comprehensive model of BG function (Figure 19.10). Like the
previous models in this section, their model implements maintenance gating as
persistent activity in the striatum that permits continued reverberation of the
corticothalamocortical loop. The subthalamic nucleus (STN) in their model exerts
a strong excitatory tone on the output nuclei of the BG (GPi and SNr) and also
itself receives widespread excitatory inputs frommuch of frontal cortex. The onset
of a new relevant stimulus transiently increases STN, and therefore GPi and SNr,
activity in a relatively global manner, thus transiently suppressing the thalamus
and breaking the positive feedback loop of reverberatory corticothalamocortical
activity, effectively clearing the current contents of working memory. This allows
an updated memorandum to be stored. Because the input from STN to GPi and
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SNr is known to be relatively global, it is not clear, however, how this mechanism
might be able to discriminate between to-be-stored items versus distracters.
Similarly, it is not clear how such a mechanismmight be able to selectively update
only one out of perhaps three or four currently maintained items.

19.4.5 Beiser-Houk Model of Sequence Learning

Two influential models have embraced something like a hybrid of the punctate
and sustained versions of maintenance gating and may suggest some ways in

Figure 19.9 Results from the FROST model showing it captures the effects of
attention and individual differences in working memory capacity as reported by
Cowan et al., 1999. (A) Empirical results. (B) Model results. From Ashby,
Ell, Valentin et al., 2005.
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which the two approaches might be synthesized. The sequence-production model
of Beiser and Houk (1998) exploits unique biophysical characteristics of thalamic
relay cells, which exhibit burst firing in response to BG-mediated disinhibition,
which in turn activates the corticothalamocortical reverberatory activity.
Although striatal activity was only transient so as to initiate maintenance-gating
in their simulations, they also described instances in which sustained firing
throughout the delay also followed the initial maintenance-triggering activity.
Although not directly relevant for their model, this could provide a bridge to the
sustained activity models described above. In addition, this model was able to
reproduce a significant number of sequences, based purely on random initial
connectivity without any learning, suggesting that these burst-firing dynamics
may provide a useful general-purpose sequencing mechanism.

19.4.6 Gruber et al.’s Model of Dopamine-Modulated Gating

The model of Gruber et al. (2006) also primarily relies on a trigger-like form of
maintenance gating by the BG, but also had a follow-on permissive role over

Figure 19.10 The model of Schroll, Vitay, & Hamker, 2012. See main text for
explanation. From Schroll, Vitay & Hamker, 2012, figure 5.
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the full maintenance period. In this model, phasic dopamine affects the
bistability characteristics of cells in both cortex and striatum, triggering an
upstate among MSNs which in turn triggers a variably stable attractor state
in the cortex. A small amount of persistent striatal activity could stabilize
cortical representations even in a continuous space by holding open the gate
at the thalamus for the initialized spatial location, thereby preventing noise-
induced drift that is otherwise problematic for continuous line-attractor models.

19.4.7 Brown, Bullock, and Grossberg TELOS Model

Informed by the same kind of monkey electrophysiological data as had guided
Dominey and Arbib’s work (e.g., see Figure 19.12), J. W. Brown et al. (2004)

Figure 9.11 The model of Beiser & Houk, 1998. Three cortical-basal
ganglionic loops are shown corresponding to three items (A,B,C). Active
maintenance is a result of reverberatory activity in the corticothalamocortical
recurrent loop (T–R), triggered by disinhibition at the thalamic relay cell (T)
from a corresponding GPi cell. From Beiser & Houk, 1998, figure 2.
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developed a detailed model (TELOS) to account for the results from many
different saccade paradigms, in particular addressing the tension between vol-
untary (top-down generated) and involuntary (bottom-up) saccades. Most

Figure 19.12 Layer 5 projecting cells of FEF showing heterogeneous firing
patterns suggesting different roles for input vs. output processing. Histograms
and activity rate curves for individual cells recorded from the frontal eye fields
(FEF) during a visually guided and memory-guided saccade. (A) Schematic
for both tasks. (B) Delay period cell. Histogram (background dots) and curve
of activity rate for an individual cell recorded in the frontal eye fields (FEF)
during a delayed saccade task. The target stimulus is only on briefly at the
beginning of the trial. This cell maintained its activity during the delay so as to
enable other cells to generate a correct saccade at the end of the trial. (C)
Visual only cells. (D) Movement only cells. (E) Visuomovement cells showing
activity during both the visual and movement time epochs. From Sommer and
Wurtz (2000, figure 2).
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relevant to the issue of working memory and maintenance gating are two
aspects of the authors’ treatment of the memory-guided saccade case:

• J. W. Brown et al. (2004) explicitly mapped the categories of FEF cells
exhibiting differential patterns of responses to the cortical laminae of the
FEF: input-responsive to middle cortical laminae (roughly layer 4);
memory-coding to superficial laminae (2, 3, 5a); and saccade-generating to
layer 5b specifically. Thus, their story about delayed responding was that the
superficial layers maintained a memory of the target location over the delay,
while the large subcortically projecting pyramidal cells of layer 5b were
activated at the appropriate time to generate the saccade (see Figure 19.12
for a diagram).

• In terms of BG-mediated gating, TELOS seems to have been the first neuro-
biologically informed model to describe a form of output gating in which the
BG served to open a gate that allowed the layer 5b cells to get active at
the appropriate time to generate the saccade. Both input processing and the
initiation and maintenance of sustained firing during the delay were treated as
more-or-less automatic processes without involvement of the BG.

Thus, while the models discussed earlier in this section have included a role
for the BG in some form for maintenance gating (Dominey-Arbib also included
input gating), TELOS included only a role for BG in output gating.
With regard to the authors’ mapping of maintenance to the superficial

cortical laminae and output to the deep 5b cells, an apparent problem with this
account is that the data from Sommer and Wurtz (2000) (Figure 19.12)
unequivocally demonstrated that all varieties of activity signals, including
memory-cell signals, are transmitted to the superior colliculus during the
delay and these signals can only be coming from subcortically projecting layer
5b pyramidal cells. Given that a TELOS-like laminar specialization is consist-
ent with considerable other data as discussed in Section 19.2, it will be import-
ant to reconcile these two seemingly contradictory data sets with it being likely
that some combination of both interlaminar and intercolumnar divisions-of-
labor are involved.
It is now well established that layer 5b pyramidals are not homogeneous and

can be subdivided into multiple subtypes according to both morphology (Fries,
1984; Leichnetz, Spencer, Hardy, & Astruc, 1981) and, critically, differing
subcortical targets (Economo et al., 2018; Harris & Shepherd, 2015; Hattox &
Nelson, 2007; Ramaswamy & Markram, 2015; Winnubst et al., 2019). Thus,
the functional effects of output gating depend on which of the 5b subtypes are
getting gated and their corresponding subcortical targets. Although not directly
addressed as such in this context by J. W. Brown et al. (2004), their model does
adopt a functional distinction between 5a and 5b subtypes (which are also
morphologically distinct), both of which are likely to project to the superior
colliculus, but only 5b is hypothesized to be output-gated by the BG. Thus, a
straightforward reconciliation is to suggest that the 5a neurons convey input
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and maintenance signals from other lamina in an ungated fashion, while the 5b
are output-gated by the BG, to drive overt responses such as saccades.

This account is consistent with several details from Sommer and Wurtz
(2000) and earlier anatomical data (Fries, 1984; Leichnetz et al., 1981), suggest-
ing a diversity of morphologies within layer 5 cells that project to the colliculus,
and that the movement cells specifically identified by Sommer and Wurtz (2000)
were indeed the largest and fastest conducting cells, consistent with the 5b
profile. Furthermore, although Sommer and Wurtz (2000) identified a topo-
graphic bias in the locations of motor output vs. other cell types at the most
extreme lateral edge of the FEF, there was substantial intermingling of these
cell types throughout most of the extent of the FEF, consistent with the laminar
specialization model, and not a stronger topographic segregation of cells across
different regions of FEF.

19.4.8 Embracing Diversity

In summary, a diverse range of different ideas have been explored across many
different neurobiologically oriented models developed by several different
research groups, but at least there is a general consensus around the idea that
frontal cortex is critical for active maintenance of working memory states over
time, and that the basal ganglia likely plays some kind of role in driving a
gating-like modulation of these frontal activity states. As discussed earlier,
there is evidence that multiple different thalamic circuits may modulate the
PFC, with potentially different characteristic patterns of connectivity and
targets, in addition to differential patterns of connectivity with the BG.
There are a growing number of empirical studies using advanced neuroscience
techniques to determine the properties and functions of these circuits, the
results of which should directly inform the further development of computa-
tional models. Thus, the field may be poised for a new wave of “second
generation” models that incorporate this new data, and may end up adopting
different subsets of the overall mechanisms across the existing set of models
reviewed above.

19.5 General Discussion

This chapter reviewed some of the seminal computational models of
working memory in the context of higher cognitive function overall. In particu-
lar, the development of LSTMs was used to motivate the computational
requirements for maintenance and output gating. The authors’ own gating-
focused PBWM framework was also highlighted and compared with several
other models through the lens of basal ganglia-mediated gating. Below are
summarized some of the tentative conclusions that might be drawn with regard
to the motivating questions presented in the Introduction.
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19.5.1 Representational Scale of Independently Gatable Units

All of the neurobiologically motivated models reviewed in this chapter employ,
at least implicitly, some version of separate channels for separate items,
although the PBWM framework is perhaps the most explicit by mapping these
channels onto the biological feature of “stripes.” Interestingly, the adoption of
the LSTM framework by the AI community has evolved in such a way that
gating functions at the individual unit level, which is at the extreme fine-grained
end of the granularity scale. It would nevertheless be interesting to more
systematically explore this gating granularity dimension in these models,
because it likely has not yet been explored, and the biological constraints
strongly suggest that, at least for BG-mediated gating, there are many PFC
neurons per gating signal.
The relevant biological data is as follows. Originally, G. Alexander et al.

(1986) described five largely independent, closed loops connecting specific
regions of frontal cortex with themselves and running through the BG. Since
then, numerous studies have established that the connectivity between the
cortex and the BG has both closed loop and open loop qualities (e.g., Haber,
2003; Haber & Knutson, 2010; Joel & Weiner, 2000), and that the closed
loop aspect can be observed at a much more fine-grained level than the
original five loops (Ferry, Öngür, An, & Price, 2000; Flaherty & Graybiel,
1993a, 1993b; Graybiel, Flaherty, & Gimenez-Amaya, 1991; Haber, 2003),
including in humans (Choi, Yeo, & Buckner, 2012; Jung et al., 2014; Pauli,
O’Reilly, Yarkoni, & Wager, 2016). This raises the critical question of just
how fine-grained this closed loop connectivity might be, because that could
serve as a kind of lower bound on the neuroanatomical and representational
scope of individually BG-gateable units in terms of working memory
updating.
The strongest constraint comes from the fact that there are many fewer

neurons in the output pathway of the BG, the GPi / SNr, than in the corres-
ponding areas of frontal cortex that are affected by BG gating signals.
A reasonable, perhaps conservative, estimate is that roughly five billion (35
percent) of the fourteen billion pyramidal cells in the human brain reside in the
frontal cortex (Pakkenberg & Gundersen, 1997). Meanwhile, a reasonable,
possibly generous, estimate for the total number of cells in the output nuclei
(GPi and SNr) of the BG is approximately 740,000 in humans (GPi: 352,000;
SNr (nondopamine): 288,000) (Hardman et al., 2002). Thus, there are
approximately 6,750 frontal pyramidal cells downstream for each BG output
cell. Furthermore, because each isocoding minicolumn has seventy or so
pyramidal cells, this implies that there are on the order of 100 cortical mini-
columns downstream for each BG output cell, a ratio that is likely to be a
lower bound. Based on this back-of-the-envelope calculation, as well as the
known thalamocortical connectivity patterns, it seems clear that the gating of
individual pyramidal cells, or even individual minicolumns, is virtually
impossible.
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19.5.2 Working Memory Capacity Limitations

Another possible source of constraints on the scope of working memory gating
and overall representational organization comes from studies attempting to deter-
mine the origin and nature of capacity limitations in working memory. George
Miller (1956) famously showed that working memory appears to be limited to
holding only seven plus-or-minus two items at a time. Does that magic number
somehow reveal how many independently gatable working memory states there
are? If so, it would suggest a much coarser-grained form of gating than the most
fine-grained end of the spectrum possible according to the GPi / SNr bottleneck,
which is certainly a possibility: many individual GPi / SNr neurons could work
together to drive gating for larger swaths of PFC. However, further research
suggests that this capacity constraint can apply separately to many different
representational domains (verbal vs. visual vs. numerical vs. spatial etc.) and is
actually more like four items than seven (Cowan, 2001, 2011; Luck&Vogel, 1997,
2013; Zhang & Luck, 2008) as, for example, when digit span is tested with
unpredictable reporting points, where rehearsal and chunking strategies are less
able to contribute to performance (Cowan, 2001). More recently, it has been
recognized that differences in measured memory span may also be complicated
by a variable contribution of rapid learning effects (Cowan, 2019).

It is difficult to know how many such representational domains there are, but
for example, if there were seventy GPi / SNr neurons per gating unit, and four
gating units per domain, that would amount to a total of approximately 2,640
different such domains, which might be a reasonable number considering the
entire scope of information coded by the frontal cortex. Again, these are just
rough order-of-magnitude calculations, and it is unlikely that the brain would
be crisply organized in this way (i.e., there is likely to be partial overlap and
different subsets activated in different situations, etc.).

In contrast to this more “slot-based” analysis, a body of research has found
that the precision of memory varies as a function of the memory load and
similarity between visual stimuli (Bays, Catalao, & Husain, 2009; Bays &
Husain, 2008; Ma et al., 2014; Wilken & Ma, 2004), and that increased preci-
sion for one item comes at the expense of other co-maintained representations
(Gorgoraptis, Catalao, Bays, & Husain, 2011; Pertzov, Bays, Joseph, & Husain,
2013). Thus, this view holds that, instead of a fixed number of slots, working
memory capacity might be better conceived as a single shared resource that can
be flexibly allocated between multiple items (e.g., Ma et al., 2014).

The attractor model, augmented with lateral inhibitory connections, can
potentially reconcile this slots vs. resources debate (e.g., Fukuda, Vogel,
Mayr, & Awh, 2010; Nassar et al., 2018; Wei, Wang, & Wang, 2012). Wei
et al. (2012) showed how the representation of multiple items in a shared neural
population exhibits characteristics of both continuous resource sharing and
discretized items in that only a limited number of “bump attractors” can co-
exist in a single population without colliding (merging), and that the strength
and fidelity of each bump representation is diminished the more items there are
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that are retained. Nassar et al. (2018) showed that by adding a center-surround
pattern of lateral excitation-inhibition to the Wei et al. (2012) network they
could further account for additional aspects of the precision vs. recall tradeoff
by positing a chunking-like mechanism that serves to combine features of
similar value across items (e.g., treating various shades of red as a single feature
value) and that the benefits of such a representational strategy seemed to
asymptote at a partitioning of the feature space of about four categories.
It would seem at least theoretically possible that discrete gating slots might

make different predictions from these attractor models, and that some particu-
lar combination of these two models might provide a more comprehensive
account – this would be a good target for future research.

19.5.3 Variable Binding and Transfer

The combination of reinforcement learning with selectively updatable, actively
maintained working memory representations enables a form of role-filler style
variable binding that supports flexible working memory function. Information
can be encoded into different functionally defined “slots” of working memory,
and then retrieved according to the relevant functional category, independent
(at least to some extent) of the detailed content (O’Reilly, 2006). In addition, the
combination can be exploited to produce a sort of inductive bias to use those
representations in a way that can be co-opted under new task conditions, a form
of out-of- distribution generalization or learning transfer. Examples of this kind
of learning transfer are Bhandari and Badre (2018); Collins and Frank (2013);
Frank and Badre (2012); Kriete et al. (2013); Rougier et al. (2005); A. Williams
and Phillips (2020).
The Stocco et al. (2010) model of the BG, based on the ACT-R architecture,

provides a particularly powerful form of flexible BG gating that supports the
arbitrary routing of information from one part of the brain to another, like a
systembus in a standard computer architecture. However, an important constraint
on such amodel is the very small size of theGPi / SNr bottleneck throughwhich all
BG output flows – it is not clear if there is sufficient capacity there to directly route
much detailed content through the BG itself. Instead, it may make more sense to
think of the BG as selecting the relevant brain areas through indirect effects of
gating on the frontal cortex, which in turn can provide top-down attentional gain
modulation on the relevant brain areas, and then the information is routed
through much higher capacity corticocortical pathways between these areas.
Nevertheless, the principle that the BG may be important for flexible, controlled
processing is much more consistent with a wide range of data compared to the
older notion that it is the locus of habitual responding (O’Reilly, Nair, et al., 2020).

19.5.4 Nature and Kinds of Gating

Across many neurobiologically oriented models developed by several different
research groups, there has emerged a remarkable consensus that the BG plays
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some kind of role in gating activity in the PFC, even while there is considerable
diversity in ideas for exactly what this role is, among the set of functionally
defined types of gating supported by the abstract LSTM model (Gers et al.,
2000; Hochreiter & Schmidhuber, 1997). Some argue that it is important for
maintenance gating of new information into PFC, while others argue for a more
specific role in output-gating of information out of working memory, while yet
others advocate both roles. As discussed above, a wide range of neuroscience
data can be brought to bear on addressing this question, and while definitive
answers are not yet available, there is some indication that the BG is likely to be
more specifically involved in output-gating, via matrix-type thalamic projec-
tions, versus maintenance gating, which is supported by core-type thalamic
pathways. Hopefully, the considerable empirical work going on in this area
will soon provide more definitive answers to these important questions.

Another ongoing question concerns the degree to which the BG gating
signal functions in a more punctate way to initiate a corresponding effect in
the PFC, versus participating in a more sustaining regulation of cortical
activity throughout the delay period. There seems to be strong empirical
evidence for both punctate and sustained maintenance signals in the
striatum and BG output nuclei. At this point it seems the most likely case is
that there are multiple BG-mediated contributions, including a punctate
initiating event, an ongoing permissive component that supports ongoing
corticothalamocortical reverberatory activity, and possibly even a punctate
terminating or clearing event in some cases.

19.5.5 Static versus Dynamic Working Memory Representations

There seems to be compelling evidence for both boxcar-like sustained activity as
well as various waxing-and-waning patterns of activity during working memory
delay periods. Thus, it is hard to avoid the conclusion that both patterns of
activity must contribute to working memory-like processing. Assuming this to
be the case, an important challenge for future work will be to better characterize
the circumstances under which different activity patterns tend to predominate in
order to better understand the contributions of each. One obvious contribution
to the apparently conflicting stories is that the sustained activity story is gener-
ally older and comes from single-cell recording data, while the dynamic, vari-
able activity story is generally based on much more recent data and comes from
population-based recording data. Thus, at least some of the difference in the
two stories is likely a matter of methodologies and researcher emphasis.

One intriguing possibility is that the sustained activity may be more prevalent
during the early stages of learning any particular task when controlled process-
ing is thought to be most necessary, while the less metabolically costly, dynamic
trajectory pattern may become increasingly prevalent as learning proceeds and
performance transitions to a more automatic mode of processing, perhaps
approaching something like that captured by RNN models such as described
by Botvinick and Plaut (2006).
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19.6 Conclusion

The last several decades have seen a great deal of progress in under-
standing the neurobiological mechanisms underlying working memory and
there is now extensive evidence in support of the basic idea that the PFC and
BG function as an integrated system with the BG performing something like a
gating function for controlling cognition as well as motor action, including
determining when working memory is updated in PFC. In particular, the BG
seems to participate in initiating and/or maintaining a robust form of persistent
activity in the PFC as well as in controlling downstream access to working
memory contents via the similar process of output gating. Nonetheless, much of
the story remains to be worked out including many of the specific details
involved and how the transition from controlled to automatic processing may
evolve over repeated experience through continuous learning.
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20 Neurocomputational Models
of Cognitive Control
Debbie M. Yee and Todd S. Braver

20.1 Introduction

Cognitive control, the ability to flexibly and selectively process infor-
mation in the service of high-level goals, is an important cognitive process
essential to daily function (Cohen, 2017; Engle & Kane, 2004). For example,
a driver approaching a traffic light at a four-way intersection must decide the
appropriate action (e.g., whether to go, stop, turn, or wait) depending on the
context (e.g., the color of the traffic light, the presence of other cars) to reach
their final destination. Likewise, the decision is critically dependent on the
driver’s goal regarding their final destination. In some cases, the driver might
reach a familiar intersection but go in a novel direction, such as turning to head
to a store, rather than going straight as they would normally do to return home.
As this example illustrates, individuals must regularly decide, in a coherent and
continuous manner, when and how much of their cognitive resources to allocate
to select behaviorally relevant actions. An important assumption is that such
actions are taken in order to optimize performance and achieve behavioral
goals. Yet, a critical issue brought up by this everyday life situation is that
even healthy young adults sometimes fail to act according to their behavioral
goals (e.g., going straight according to the driver’s normal route rather than
turning at the intersection, even if the driver originally had the goal to go
to the store). The presence of such cognitive control failures (sometimes
also termed “action errors”), as well as the successful engagement of cognitive
control, are part of the key phenomena that must be understood, in order to
have a complete characterization of how control mechanisms are implemented
in human brains.
Researchers have spent decades investigating the mechanisms underpinning

cognitive control (Braver & Cohen, 2001; Egner, 2017; Norman & Shallice,
1986), based on the general consensus that elucidating the architecture of
control will be crucial for understanding human intelligence (Chen et al.,
2019; Cole et al., 2012; Minai, 2015), higher cognitive functioning (Ranti
et al., 2015), and decision making (Dixon & Christoff, 2012; Kool et al.,
2017). Moreover, since impairments in cognitive control are thought to be a
core feature of many neuropsychiatric disorders and clinical conditions (Barch
et al., 2018; Barch & Ceaser, 2012; Yee & Braver, 2020), understanding its
mechanistic basis is of strong translational value (Friedman & Robbins, 2021).
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Despite the burgeoning research in this domain over the past few decades
(Botvinick & Cohen, 2014; Gratton et al., 2018), much remains to be under-
stood regarding the computational and neural mechanisms of cognitive control.

This chapter highlights several influential computational models that have
made significant inroads towards elucidating core mechanisms of cognitive
control. The objective of this chapter is to succinctly review the significant
progress the field has made towards understanding cognitive control, and
additionally emphasize future strategic directions necessary to further develop
greater mechanistic understanding of this psychological construct. The models
described in the present chapter are divided into two key dimensions of cogni-
tive control: (1) models that comprise the representation, updating, and learning
of task sets, and (2) models that comprise the evaluation and allocation of
cognitive control based on assessments of demand.

The first section focuses on neural network models that characterize how
attention directs internal representations of task information to: guide the
appropriate goal-directed thoughts or actions in a given context (e.g., a task
set); appropriately update the relevant task set when the context changes; and
account for how such task sets might be learned in the first place. These models
formally operationalize an important fundamental tradeoff between controlled
versus automatic processing (Norman & Shallice, 1986; Posner & Snyder, 1975;
Shiffrin & Schneider, 1977). In other words, individuals must regularly decide
between whether to recruit and direct cognitive resources to deliberately per-
form a demanding task, or instead, to engage habitual and less effortful pro-
cesses and actions that require fewer attentional resources, but which also are
less flexible (Cohen et al., 1990; Schneider & Chein, 2003). This tradeoff has
been most prominent in task situations in which these habitual or automatic
processes conflict with goal-relevant processing, and further, in situations
requiring a switch from one task to another (vs. repeating the same task). In
the latter situation, the notion of a task set is often invoked to characterize the
mechanisms needed to bias attention in a goal-directed manner. Here, we focus
on neural network models that have also linked the activation, updating, and
learning of task sets to the functioning of the prefrontal cortex (PFC).

The second section focuses on models that generate predictions about the
evaluation and allocation of cognitive control demand to subserve behavioral
goals. A common feature of these models is that they particularly emphasize the
computational role of the dorsal anterior cingulate cortex (dACC) as a key
neural substrate involved in these functions. The section first highlights the
conflict monitoring hypothesis of cognitive control, a classical computational
model characterizing the role of the dACC in detecting conflicts in information
processing, in order to signal when top-down control is required (Botvinick
et al., 2001). Next, more recent computational frameworks are featured that
incorporate motivational value (e.g., expected utility, the cost of control). The
present chapter focuses on two recent prominent accounts: (1) a model that
suggests that cognitive control recruitment in dACC is driven by a prediction
error signal triggered by mismatches between actions and outcomes (Alexander
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& Brown, 2014; Vassena et al., 2019), and (2) another model that suggests
dACC performs a cost–benefit analysis between expected payoff and cognitive
effort to determine the optimal allocation of cognitive control (Shenhav et al.,
2016, 2017). The concluding section of the chapter points to several open
questions and future directions highlighting new frontiers in this field, for which
advances are needed to develop a more precise understanding into the
computational mechanisms of cognitive control.
An important acknowledgment is that this chapter is not intended to com-

prehensively cover all of the excellent computational modeling work on cogni-
tive control (for additional reviews, see Alexander & Brown, 2010; Botvinick &
Cohen, 2014; O’Reilly et al., 2010; Vassena, Holroyd, et al., 2017; Verguts,
2017; Yee & Braver, 2020). Instead, the goal is to provide a road map to the
relevant literature, highlighting several classic and contemporary models that
best tackle challenging computational problems reflecting core mechanistic
principles integral to cognitive control function (i.e., recruitment, allocation,
and deployment of cognitive control in the service of goal-directed tasks) and
illustrate some of the current directions within which the field is headed. While
the models covered in the present chapter are admittedly biased towards
systems or network-level models, other computational models ranging from
those involving production system architectures (Anderson, 1996), to those
focusing on working memory, with associated updating and gating mechanisms
(Braver et al., 1999; Chatham et al., 2011; Kriete et al., 2013; O’Reilly & Frank,
2006), to neural circuit and neural network models from the computational
neuroscience tradition (Gu et al., 2015; Wang, 2013) are also pertinent to this
domain. Nevertheless, as the present chapter highlights prominent models that
emphasize several core principles of the neural information processing and
computation central to cognitive control, it should still provide a useful intro-
duction and overview of the key foundational issues and unanswered questions
within this domain.

20.2 Attention and Cognitive Control: How Does Attention
Modulate the Representation and Learning of Task Sets?

20.2.1 A Neural Network Model of the Stroop Task: Controlled
and Automatic Processes in Task Sets

A core tenet of cognitive control is the distinction between controlled and
automatic processing; these two processes have been historically juxtaposed
(Norman & Shallice, 1986; Schneider & Chein, 2003; Shiffrin & Schneider,
1977). Automaticity refers to the capacity of a cognitive system to streamline
well-practiced behavior so that task-relevant actions can be executed with
minimal effort (Blais et al., 2012; Logan, 1989). As a complement to
automatic behavior, cognitive control refers to the effortful biasing or filtering
of sensorimotor information in the service of task-relevant or goal-directed
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behaviors (Miller, 2000). It is generally hypothesized that top-down attention
arises out of the neuronal activity shift guided by cognitive control, and it is
typically assumed to be the product of biasing representations (such as
intentions, rules, goals, and task demands) housed within the PFC, that com-
pete with perceptually based representations in the posterior cortex (Ardid
et al., 2007; Brass et al., 2005; Deco & Rolls, 2003; Desimone & Duncan,
1995; Miller & Cohen, 2001). Thus, cognitive control is the mechanism that
guides the entire cognitive system and orchestrates thinking and acting, and
top-down attention is interpreted as its main emergent consequence.

Computational models are best positioned to describe how top-down atten-
tional control is engaged during the processing and pursuit of task-relevant goals
(e.g., a task set), as these models can produce possible mechanistic explanations
for the consequences of such engagement. A foundational model from the neural
network tradition (also referred to as “parallel-distributed-processing” or “con-
nectionist” models (O’Reilly et al., 2016; Rumelhart, Hinton, et al., 1986); see
also Chapter 2 in this handbook) illustrates the mechanisms by which attentional
control is recruited during performance of the classic Stroop interference task
(Cohen et al., 1990). Importantly, the Stroop task represents a paradigmatic
example of the relationship and contrast between automaticity and cognitive
control (MacLeod, 1991; Stroop, 1935). The basic paradigm (although there
have been many different variants since) involves the processing of colored word
stimuli and selectively attending to either the word name or ink color. Attention
is thought to be more critical for color naming than word reading because the
latter skill is so highly over-learned and practiced for most literate adults. The
role of attention is especially critical for color naming in incongruent trials, in
which there is a direct conflict between the ink color and the color indicated by
the word name (e.g., the word GREEN in red ink). In such a case, cognitive
control over attention must enable preferential processing of the weaker task set
(e.g., color naming) over a competing and stronger but goal-irrelevant task set
(e.g., word reading). Examples of stimuli in these competing task sets are
illustrated in Figure 20.1a.

The original model put forth by Cohen et al. (1990) provided a highly
influential framework for understanding the mechanisms of cognitive control
and attention in the Stroop task. In particular, the model illustrated very simple
principles of biased competition, in that the attentional mechanism was simply
another source of input that served to strengthen the activation of hidden layer
units, leading to a shift in the outcome of competition within a response layer
(see Figure 20.1b). According to this model, information is presented as a
pattern of activation over units in the lowest level, which then propagates
upward to activation at higher levels, where a behavioral response is generated.
Notably, although the original model was a simple feedforward network, later
models have used a fully bidirectional architecture that includes more natural
lateral inhibitory mechanisms (Cohen et al., 1998; Cohen & Huston, 1994).
Specifically, the model uses a standard connectionist activation framework (see
Figure 20.1b) in which the activation aj of each unit j at time t is a logistic
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function of the net input (which introduces nonlinearity into processing, a
critical transformation then helps constrain the activation of the units between
0 and 1):

aj ¼ logistic cj tð Þ
� � ¼ 1

1� e�cj tð Þ
(20.1)

The net input cj(t) from every unit i into unit j is first computed as the sum of
the input activation multiplied by the weight wij from each unit i to unit j:

cj tð Þ ¼
X
i

ai tð Þ � wij (20.2)

This raw net input cj(t) is then transformed into a “cascade” form (McClelland,
1979) to simulate continuous time dynamics, where the activation of a unit aj(t)
is a running average of net input over time and τ is a constant that determines

a

c d

RED

Congruent Trial
(more automatic)

GREEN

Incongruent Trial
(more controlled)

b output activation

input activation

aj

aj
aj

a1

a2

a3

w1j

w2j

w3j

cj

Figure 20.1 (A) Example trial of a Stroop task. A congruent trial consists of a
color word with the same ink color (e.g., RED in red ink), whereas an
incongruent trial consists of a color word with a different ink color (e.g.,
GREEN in red ink). (B) Example node in a neural network model. (C) Cohen
et al.’s model (1990) of the Stroop task. This model provides a minimal
account of top-down attentional biasing effects emerging from PFC-based
task-set representations. (D) Gilbert and Shallice’s (2002) model of task-
switching. This model is built upon and extends earlier connectionist models of
the Stroop task. Figures 20.1c and 20.1d are adapted from De Pisapia et al.,
2008 with permission from Cambridge University Press.
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how slowly or quickly the unit’s activation will change over time (i.e., speed of
processing). As already noted in the first equation, this time-averaged net input
to a unit aj(t) is passed through a logistic function before the activation value is
calculated.

aj tð Þ ¼ cj tð Þ ¼ τ � cj tð Þ þ 1� τð Þ � cj t� 1ð Þ (20.3)

A central feature of this model is that attentional demand is an emergent
property in the network model that arises because of the asymmetry of weights
in the word-reading vs. color-naming task pathways that represent distinct task
sets (see Figure 20.1c). This asymmetry arises during a training phase with the
backpropagation learning algorithm, in which the network receives greater
practice in word reading than color naming (to reflect the asymmetry of such
learning in human experience). Crucially, weight strength in these pathways is
proportional to the training experience. The key attentional mechanism arises
from top-down biasing effects from the PFC (Cohen et al., 1996) that have a
sensitizing effect on the hidden layer activation, such that input to the color-
naming pathway is more sensitive to stimulus input and can effectively compete
with activation arising from the word-reading pathway. The magnitude of the
attentional effects depends on the size of the weights from the task demand units
to the hidden layer, which is computed as a cascading net input defined in the
previous equation.

An important core principle behind this model is that the attentional system
does not directly enable task-processing but rather only modulates the efficacy
of performance (Norman & Shallice, 1986). In other words, each word-reading
and color-naming pathway can operate independently and produce task-
appropriate responses in the absence of attentional signals. However, when
both word-reading and color-naming pathways are simultaneously engaged,
the competition between the two dimensions, which occurs at the level of
overlapping response representations, is what produces the demand for the
intervention of attentional control (Feng et al., 2014). This demand for atten-
tion is most acute when performing color naming under competitive conditions
because of the weaker strength of the color pathway. Thus, in the absence of
attentional modulation, the word-reading pathway will dominate processing
competition at the response layer. However, in the presence of attentional
modulation, the color-naming pathway can successfully compete and provide
stronger input into the response layer from the color-naming hidden layer.
Succinctly put, top-down attentional control can bias the color pathway to be
more sensitive to color stimuli, shifting the outcome of the competition such
that the color dimension successfully drives the response. Crucially, this top-
down biasing does not contain any special property – these higher-level units
are conceptually identical to the other units in the network, thus characterizing
attention as a general emergent property that arises from competing task
demand representations within the neural network.

Tasks such as the Stroop reveal a relevant important theoretical question
regarding the role of attentional biasing effects in cognitive control. In
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particular, it is evident that attention does not only operate at the level of
perceptual features (e.g., red vs. green colors) or task-relevant dimensions (color
naming vs. word reading), but can also influence the activation of an entire
pathway involved in a task set over a competing pathway for a different task set
(e.g., correctly perceiving the stimulus and discerning the required behavioral
response in the Stroop task). One of the most significant contributions from the
Stroop model is that it formalizes the notion of a task-set representation, which
has been central to subsequent theories of prefrontal cortex (PFC) function
(Domenech & Koechlin, 2015; Friedman & Robbins, 2021; Miller & Cohen,
2001; Sakai, 2008). Although much empirical evidence over the past few
decades supports the functional role of the dorsolateral prefrontal cortex
(dlPFC) in task-set representation (Bengtsson et al., 2008; Cole et al., 2016;
Reverberi et al., 2012; Rougier et al., 2005), there remains much ongoing debate
regarding when and how the evaluation of cognitive control interacts with the
cognitive and neural processes underlying task-set representation (see Section
20.2.2 for greater detail), or understanding of situations that elicit overexertion
of cognitive control (Bustamante et al., 2021). Nevertheless, a popular
approach that researchers have adopted to investigate this question has been
to utilize multi-tasking paradigms, which critically involve switching between
different tasks. This switching component between task sets, which is high-
lighted in the next model, is an important novel extension of the original
Stroop model that enables precise characterization of how attention modulates
not only the information processing of individual, goal-directed tasks, but also
when and how task representations are successfully updated when the relevant
context changes.

20.2.2 A Neural Network Model of Task-Set Switching

Another core computational issue of cognitive control relates to multitasking
situations, which require updating, or switching among task sets in order to
achieve multiple competing behavioral goals. Understanding how individuals
rapidly alternate between multiple tasks in succession (e.g., unpredictable task
changes that require changes in attentional demand or behavioral responses) is
significant, as this process appears to approximate well the real-world demands
of everyday cognition (e.g., rapidly switching from navigating through web-
pages to responding to email). A notable feature of multitasking in cognitive
control tasks is that it poses heavy attentional demands and is associated with
reliable and robust switching costs (e.g., in a trial where the task just switched,
compared to just repeated, performance is slower and produces more errors). In
other words, the intrinsic cost of switching from one task set (the cognitive
operations to perform a task) to another task set can be quantified in both
reaction time and error rate (Monsell, 2003; Rogers & Monsell, 1995; Wylie &
Allport, 2000).
An influential theoretical account by Gilbert and Shallice utilizes the PDP

framework inspired by earlier models of the Stroop task (Cohen et al., 1990;
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Cohen & Huston, 1994) to formalize attentional control in task switching
(Gilbert & Shallice, 2002). This network model contains two separate input
and output layers for words and colors, as well as a task demand layer with
separate units for the color-naming and word-reading tasks (see Figure 20.1d).
These task-demand units receive both top-down attentional effects and
bottom-up connections from the input layers and response layer, the latter
which facilitate associative learning and item-specific priming based on past
experiences. Importantly, task switching is implemented by shifting activation
levels of the relevant task demand unit (e.g., when the color-naming task
demand unit is activated, the unit simultaneously sends excitatory activation
to output units in the color-naming pathway as well as inhibitory activation to
output units in the word-naming pathway). Lateral inhibition between task
pathways enables top-down excitatory input to bias the outcome of represen-
tational competition, and task-demand units receive top-down control input,
specifying the task to execute in that particular trial. However, a key feature of
the model is that the state of the task demand units persists after the end of a
trial and into the beginning of the subsequent trial. Critically, it is this mech-
anism that provides the basis of task-set competition and switch costs in
performance. To be more specific, when control input is provided to the task
demand unit to be performed on that trial, if the task has just switched from the
previous trial, then an extended period of competition arises as the old task
demand unit must be inhibited before the current task demand unit can reach
full strength.

In terms of the updating algorithm, a similar approach to the original Stroop
model is implemented. In particular, the activation level (net input) of each unit
in the model is computed by the weighted sum of all incoming top-down and
bottom-up connection inputs. On each cycle, each unit’s change in activation
level aj(t þ 1) is updated according to the difference between current activation
aj(t) and a maximum or minimum value allowed, a constant τ, and net input
cj(t), as laid out in the following equations:

if net input cj tð Þ is positive : aj tþ 1ð Þ ¼ τ � cj tð Þ � max � aj tð Þ
� �

if net input cj tð Þis negative : aj tþ 1ð Þ ¼ τ � cj tð Þ � aj tð Þ � min
� �

(

(20.4)

According to this formulation, τ represents the step size (establishing the
speed of the activation update in each cycle or processing speed), cj(t) is the
net input of each unit, max is the maximum activation value allowed, and min
is the minimum activation value. Additionally, on each cycle, after random
Gaussian noise is also added to the activation values of each unit, activation
levels of each unit outside the maximum and minimum are reset to the
relevant extreme.

A second important attentional mechanism in this model is the bottom-up
activation of task-set representations from task stimuli features. The model
implements a Hebbian (i.e., activity-dependent) learning mechanism, which is
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represented by the wij, which represents weights between the stimuli input i and
task demand unit j, multiplied by the learning rate lrate:

wij ¼ lrate � aj � ai (20.5)

Notably, this equation reveals that the weights are calculated at the end of each
trial and only affect the model’s behavior in the subsequent trial (the previous
weights of the connections between the two units are not considered, in contrast to
standard Hebbian rule where weights are accumulated across trials). This feature
is important, as the modified Hebbian mechanism enables the model to learn
associations between active task-set representations and the stimulus features
present on a task trial. Thus, if such features are presented again on the subsequent
trial, they can “prime” previously associated task-set representations. Moreover,
although this mechanism implies that activation of relevant task-set representa-
tions occurs similarly on every trial, the switch cost is an emergent property of both
the increased competition between the new task-set representation and the residual
activation from the previously engaged task-set representation (and such
competition would not be present on a task-repeat trial), as well as from the
potential associations between features of the previously performed item being
associated with a currently inactive task, on a task-switch trial (e.g., previous trial
N-1: word reading with BLUE in green font, current trial N: color naming with
BLUE in red font). Although these findings of associative priming effects have
been well-established in the literature, subsequent work has also found that such
effects can be quite long-lasting and item-specific (Waszak et al., 2003), suggesting
the presence of distinct associative or episodic retrieval mechanisms that may not
be captured in this model of task-switching.
The Gilbert and Shallice (2002) model provided a useful starting point for

understanding some of the core issues underlying computational mechanisms of
task-switching. Relevant to cognitive control, this model was able to account
for a wide range of phenomena observed within a task-switching version of the
Stroop task – including the temporal dynamics of switch costs effects as well as
associative priming effects. A crucial similarity to Cohen et al.’s (1990) model
was that this bi-directional and interactive model utilized biased competition to
account for task-related attention, thus revealing attention as a fully emergent
process that arises from activation both from task-demand inputs and effects
emanating from the input level. However, this model left many open questions
relating to understanding the coding schemes for such task-demand representa-
tions, understanding how task-sets are updated, or how preparation may bias
task representations and performance (Sohn & Anderson, 2001). Some later
models attempted to build on the basic computational framework developed by
Gilbert & Shallice to clarify temporal and higher-order mechanisms of task
switching, including sequential effects related to congruency and the so-called
backward inhibition effect (Altmann & Gray, 2008; Brown et al., 2007;
Reynolds et al., 2006), as well as a Hebbian-learning-based instantiation of
how cognitive control may be recruited to facilitate behavioral adaptation in
task-switching (Verguts & Notebaert, 2008, 2009).
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Another class of models has attempted to expand the scope of attentional
control by addressing the relationship between attention and working
memory. Cohen, Braver, and colleagues developed a model that integrated
top-down biasing with the well-established active maintenance functions of
PFC, and also attempted to more thoroughly capture both the facilitation and
inhibition effects of attention (Braver & Cohen, 2001; O’Reilly et al., 1999).
According to this model, the PFC adapts the behavior of the entire cognitive
system to the task demands via the active maintenance of goal-related context
representations (Braver, 2012). Thus, top-down attentional effects could
emerge following a delay interposed after the presentation of a contextual
cue. Moreover, these models hypothesize that dopamine provides a key mod-
ulatory input to stabilize active maintenance processes (via tonic activation in
PFC), and to enable appropriate updating of PFC representations (Braver
et al., 2001; Braver & Cohen, 2000; Cohen et al., 2002). A recent modeling
effort examined both switch-specific mechanisms related to updating, as well
as those related to the biasing effects of PFC, to account for individual
differences and the relationship between these and performance in both
task-switching and Stroop-like tasks (Herd et al., 2014). Many of these pro-
posed neurocomputational frameworks also make predictions regarding the
pivotal role of dopamine in modulating working memory and cognitive con-
trol (Cohen et al., 2002; Durstewitz & Seamans, 2002; Hazy et al., 2007;
O’Reilly, 2006), which has been supported by neural evidence (D’Ardenne
et al., 2012; Ott & Nieder, 2019). Nevertheless, the precise computational
mechanisms by which dopamine modulates cognitive control function still
remain elusive (Cools, 2016; Westbrook & Braver, 2016).

20.2.3. Structure Learning: How Are Task Sets Learned and Clustered?

A relevant computational question concerning task sets relates to
understanding the mechanism by which novel task sets are learned or general-
ized in the first place. This question is important, and seems to involve a
complex interaction between cognitive control and reinforcement learning
(Botvinick et al., 2009; Dayan, 2012). Indeed, in daily life, humans are fre-
quently faced with the challenge of learning a new set of actions that are needed
to complete a specific task, although the neural computations that underlie how
cognitive control is deployed when learning new task-sets or generalizing
existing ones are less understood (Botvinick et al., 2009; Dayan, 2012).

In particular, a unique challenge of learning task sets is discerning when task-
set rules learned in one context can be applied to a novel context (i.e., whether
they generalize) or instead require a new task-set rule to be constructed. For
example, when searching for the restroom at a shopping mall, one may learn a
rule to look for signs that contain the text “Bathroom” with arrows pointing to
a particular location. However, although this task-set rule may be pertinent
when navigating malls in the United States, the same strategy may not be
effective when searching for a restroom in other countries (e.g., United
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Kingdom), since the signs may read “W.C.” instead of “Bathroom.” Broadly,
creating a set of behavioral tools that are not tied to the context in which they
were learned is essential, as this strategy enables flexible and efficient learning of
task-set rules that can be generalized to novel contexts. The main motivating
computational question is the following: in a new context requiring
representation of tasks and task-set rules, is it more effective and efficient to
generalize from an existing task-set representation (presumably stably encoded
in long-term memory), or to instead build a new representation that is more
optimized for the current context?
A recent computational model developed to approximate how individuals

create, build, and cluster task-set structures is the context task set (C-TS)
model (Collins & Frank, 2013). Specifically, the model is designed to accom-
plish three goals: (1) create representations of task sets and their parameters
dissociated from the context with which they were previously associated; (2)
infer at each trial or time point whether a task set should be clustered with
similar abstract task sets to guide action selection; and (3) discover hidden
task-set structures not already contained in the repertoire. A key element of
the model is to characterize the mechanisms by which context – here defined as
a higher-order factor associated with a lower-level stimulus – drives the
learning of tasksets. When the model is exposed to a novel context, the
likelihood of selecting an existing task set is based on the popularity of that
task set, i.e., its relevance across multiple other contexts (see Figure 20.2a for a
conceptual visualization). Conversely, the probability of creating a new task
set is set to be inversely proportional to a parameter indicating conservative-
ness, i.e., the prior probability that the stimulus–action relationship would be
governed by an existing rule rather than a new one. Further, if a new task set is
created, the model must learn the predicted reward outcomes following action
selection in response to the current stimulus, as well as determine if the task set
is valid for the given context. If a selected action leads to a rewarding
outcome, the model then updates the parameters to strengthen the association
between the current context and a specific task set. Thus, the C-TS model
provides a computational account of task-set learning and clustering that not
only feasibly links multiple contexts to the same task set, but also discerns
when to build a new task set to accommodate a novel context. This process
has since been dubbed ‘structure learning.’
The structure learning process has been simulated in a biologically plausible

neural network model, which hypothesizes that task sets are learned and/or
generalized via gating mechanisms of motor and cognitive actions, and
reinforcement learning signals that sculpt corticostriatal circuits (see
Chapter 19 in this handbook for implementational details of how models, such
as C-TS, learn to utilize working memory gating mechanisms). Specifically, the
model contains two nested corticostriatal loops, which formalize how higher-
and lower-level task-set structures and stimulus–action relationships are learned
analogously within a distributed brain network involving interactions between
prefrontal cortex (PFC) and basal ganglia (see Figure 20.2b). These two
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corticostriatal circuits are arranged hierarchically with independent gating
mechanisms, capitalizing on the rostro-caudal organization of hierarchical
cognitive control in the prefrontal cortex (Frank & Badre, 2012). The higher-
order loop involves anterior regions of PFC and striatum, which learn to gate
an abstract task set and cluster contexts associated with the same task set. The
lower-order loop between posterior PFC and striatum also projects to the
subthalamic nucleus (STN), which provides the capability of gating motor
responses based on the selected task set and perceptual stimulus. Thus, the
execution of viable motor responses is constrained by task-set selection.
Moreover, conflict that occurs at the level of task-set selection delays the
motor response, thus preventing premature action selection until a valid task
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Figure 20.2 The context-task-set (C-TS) model by Collins and Frank (2013).
This model was developed to approximate how humans create, build, and
cluster task-set structures. A key aspect of the C-TS model is that states are
determined hierarchically, such that an input dimension that acts as higher-
order context (C) will indicate a task set (TS) and other dimensions to act
upon lower-level stimuli (S) to determine the appropriate motor actions to
perform. (A) A dissociation between learning and test phase is illustrated, with
the color context determining a latent task set that facilitates learning of shape
stimulus–action associations in the learning phase (e.g., C1 is associated with
TS1). In the test phase, C3 maps onto the same stimulus–action association as
C1 (i.e., C3 is clustered with C1), whereas C4 is assigned to a novel task set.
The model algorithm utilizes a reinforcement learning framework to learn the
task-set parameters, as well as a Dirichlet process to determine the clustering
contexts (i.e., whether a task set should be transferred to an existing TS or
form a new TS). (B) A neural network implementation of the C-TS model,
using two-loop corticostriatal gating. The two loops are nested hierarchically,
such that one loop learns to gate an abstract task set (e.g., cluster task sets that
are similar or form new task sets when necessary), whereas the other loop
learns to gate a motor action response, conditioned on the task set and
perceptual stimulus. The inclusion of both loops accomplishes two important
objectives: (1) to constrain motor actions until a task set is selected, and (2) to
allow conflict at the level of task-set selection to delay responding in the motor
loop, preventing premature action selection until a valid task set is selected.
Adapted from Yee & Braver (2020) with permission from MIT Press.
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set is verified. Such a mechanism is useful for explaining increased reaction
times for switch trials in the case of task switching, as coactivation of the PFC
during switch trials leads to greater STN activation, which then prevents action
in the motor loop until the conflict is resolved.
In addition to the neural network implementation, it is worth noting that the

C-TS model was more formally analyzed through the higher-level abstract
model, that utilized the reinforcement learning framework, in conjunction with
nonparametric Bayesian generative processes (i.e., the Dirichlet process mixture
framework; Blei et al., 2010). This abstract model was used to explicitly charac-
terize the algorithm that C-TS employs to create, learn, and cluster task-set
structure, as well as to demonstrate improved performance and generalization
when multiple contextual states are indicative of previously acquired task-sets.
Critically, the specific interactions between neural network model components
could be analytically captured in terms of the dynamics of reinforcement learn-
ing regarding the value of task sets, and the Bayesian generative processes
governing when new task sets would be created. For example, in the neural
network model, the tendency to activate (learn) a new PFC state or reuse an
existing one was related to the connectivity structure from context inputs to the
PFC, but could also be captured in the more abstract model in terms of a free
parameter (alpha) in the Bayesian generative process that governs how and when
new task sets are spawned. While the details of the Bayesian implementation of
the C-TS are beyond the scope of the current chapter, a more in-depth explan-
ation is provided in Collins & Frank (2013) see also Chapter 3 in this handbook
for a more detailed primer of Bayesian approaches, as they have been utilized to
characterize higher-order cognition.
Together, both the neural network and Bayesian/reinforcement learning C-

TS models generate similar predictions about how task sets are learned and
generalized in human behavior, and neural evidence has found support for
hierarchically structured expectations of transfer and clustering of task sets
(Collins et al., 2014; Collins & Frank, 2016). Importantly, the C-TS model
demonstrates how and why humans have a bias towards structure learning even
when it is costly, because such learning enables longer-term benefits in general-
ization and overall flexibility in novel situations (Collins, 2017). A unique
strength of using both neural network and algorithmic approaches is their joint
utility for providing complementary insight into the interaction between cogni-
tive control and learning processes, formalizing a theoretical account that
approximates the learning and generalization of task sets, a key component of
cognitive control.

20.3 Conflict Monitoring, Mental Effort, and Surprise:
How Is the Demand for Cognitive Control Evaluated?

Another important core computational challenge in cognitive control
relates to how the current demand for control is evaluated, and the form by
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which this evaluative signal is transmitted to support task goals. In other words,
how does the brain determine which situations or task conditions require the
recruitment of additional mental resources (i.e., increasing capacity beyond
what is currently available) to successfully pursue task goals, and what is the
necessary relevant information that underlies this evaluation? It is well appreci-
ated that the recruitment of cognitive control is costly (Kool & Botvinick, 2014;
Westbrook & Braver, 2015), and more recently, some theoretical frameworks
have attempted to formalize how humans optimize the allocation of “mental
effort” or “cognitive effort” (both terms are often used interchangeably) to
minimize costs and maximize benefits (Shenhav et al., 2017). Nevertheless,
much remains to be understood about how the intrinsic cost of cognitive control
is computed, and computational modeling approaches are helpful in providing
a mechanistic framework to account for why and how demand is increased
during cognitive control tasks.

An important prerequisite for building a computational solution is under-
standing the experimental conditions that require greater recruitment of cogni-
tive control, and identifying relevant empirical measures that quantify increased
mental effort. A plethora of work has identified tasks with behavioral measures
that demonstrate selective recruitment of cognitive control (Braver & Ruge,
2006; Ridderinkhof et al., 2004). For example, in the Stroop task, cognitive
control is required to override the prepotent response to read a word in order to
perform the correct task of reading the color ink of the word. In the N-back,
cognitive control is required to respond selectively to N-back matches (e.g., in a
2-back task, a target response should be given only if the current stimulus
matches the one presented two slides ago) rather than based on simple
familiarity. In the stop-signal (or change signal) task, cognitive control is
required to cancel an already initiated behavioral response if a stop signal (or
change cue) is presented. In the Erikson flanker task, cognitive control is
required to respond selectively to a centrally presented stimulus and ignore
the flanker stimuli, particularly when these are distracting and incongruent with
the central stimulus. Critically, these tasks contain experimental conditions that
reliably increase cognitive control demands in a transient, trial-by-trial manner
(i.e., the cognitive system monitors ongoing responses and adjusts to the level of
cognitive control needed on the current trial). Likewise, they are indexed by
specific behavioral measures that reflect this enhanced cognitive control
demand (e.g., Stroop interference effect, stop-signal reaction time).

Such canonical control tasks consistently co-activate the frontoparietal net-
work (Dixon et al., 2018; Niendam et al., 2012) which contain dorsolateral
prefrontal cortex (dlPFC) and the dorsomedial PFC (Duverne & Koechlin,
2017; Egner & Hirsch, 2005) – with the latter brain region spanning the
dorsal anterior cingulate cortex (dACC) and pre-supplementary motor area
(pre-SMA) (Duncan, 2010; Duncan & Owen, 2000). As mentioned previously,
the dlPFC is generally hypothesized to play a primary role in actively main-
taining, updating, and learning task-set representations associated with specific
goals, and the associated actions (or behavioral rules) needed to achieve them.
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Conversely, the dACC is generally hypothesized to signal when more control is
required and should be implemented by the dlPFC to accomplish these goals. It
is generally accepted that the interaction between these two regions is important
for dynamically adjusting cognitive control (Kouneiher et al., 2009;
MacDonald et al., 2000). Many have argued that the dACC itself serves as an
important locus of cognitive control (Holroyd et al., 2004; Kerns, 2004),
although much controversy still remains over the computational role of the
dACC in terms of what information is represented, and how it is signaled to
dlPFC during the recruitment and allocation of cognitive control in
behavioral tasks.
Over the last few decades, various theoretical accounts have arisen to

describe dACC’s computational role in cognitive control, with postulated func-
tionality including the detection of error signals (Gehring et al., 1993; Holroyd
et al., 2005), reinforcement learning (Holroyd & Coles, 2002), error likelihood
(Brown & Braver, 2005; Carter et al., 1998), attention and task preparation
(Aarts & Roelofs, 2011; Luks et al., 2002), volatility (Behrens et al., 2007),
surprise (Vassena et al., 2020), and meta-learning (Khamassi et al., 2015;
Modirrousta & Fellows, 2008; Silvetti et al., 2018). Although there have been
attempts to empirically validate and compare various competing hypotheses of
dACC function (Vassena, Holroyd, et al., 2017), there still lacks consensus
regarding the veridical account of the precise information represented within
and computed by dACC that engenders the increased cognitive control alloca-
tion necessary for the successful execution of mentally demanding tasks. In
recent years, some theoretical frameworks have attempted to reconcile and
unify these divergent perspectives in a computationally tractable manner. The
present chapter highlights one classical computational model – the conflict
monitoring hypothesis – as well as two more recent computational models,
the Prediction Response-Outcome (PRO) model and the Expected Value of
Control (EVC).

20.3.1 Conflict Monitoring and Cognitive Control

The conflict monitoring hypothesis of cognitive control posits that the dACC
plays a central role in evaluating current levels of conflict, and this information
is passed along to centers responsible for control (e.g., dlPFC), triggering an
adjustment in the strength of their influence in processing (Botvinick et al.,
2001, 2004). In other words, the model specifies the conflict monitoring system
as a unifying mechanistic explanation for how the level of cognitive control is
modulated in response to the detection and prevention of conflict, via a simple
dACC–dlPFC feedback loop (sometimes referred to as the conflict-control
loop; Carter & Veen, 2007). The conflict monitoring model has been imple-
mented as an extension of other neural networks, to highlight how cognitive
control demands can be evaluated within the context of various task contexts,
such as underdetermined responding (e.g., verbal fluency tasks), error commis-
sion, and response override conditions, of which the Stroop task is a notable
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example. To streamline the discussion and highlight the continuity with the
previous models, this present chapter only focuses on the conflict-monitoring
account of the Stroop.

In the model simulation of the Stroop task, a single conflict-monitoring unit
was added to the existing model of the Stroop from Cohen and colleagues
(1990), described in Section 20.2.1. Although there are notably numerous
potential implementations of conflict (Berlyne, 1957), Botvinick and colleagues
adopted the Hopfield energy measure to quantify conflict of information pro-
cessing in a recurrent neural network (Hopfield, 1982), which is defined as

Conflict ¼ �
XN
i¼1

XN
j¼1

aiajwij (20.6)

Where a indicates unit activity and i and j are indexed over all competing units
in the set of interest (see Rumelhart, Smolensky, et al., 1986 for more detail on
related measures). In this model, conflict arises when a single pair of mutually
inhibitory (incompatible) units are both active (when both are inactive, energy
is zero, consistent with the absence of conflict). The particular value of energy
depends on the activation of the two units and is largest when both units are
maximally active and thus strongly in conflict. Crucially, this implementation of
conflict does not involve any additional parameters, thus preserving the zero-
parameter nature of the simulations.

In the simulation of the Stroop task, the network includes all the units from
the base model: including input units for display color (ink color) and word
identity and a task demand layer, with units for “color naming” and “word
reading,” which serves to bias activation in the model to modulate response
activation. The conflict monitoring unit is the crucial novel addition, and this
unit takes inputs from the response layer, which takes on the activation level
equal to the energy in the current cycle of processing (see Figure 20.3). Model
simulations revealed that activation of the conflict monitoring unit was higher
in incongruent conditions compared to congruent or neutral conditions, reflect-
ing the occurrence of crosstalk between word and color inputs. Importantly, the
intersection between the two pathways causes conflict between the response
units, thus increasing the activity of the conflict monitoring unit. As such,
cognitive control is implemented through the color-naming and word-reading
units, as these units will bias information flow throughout the system in accord-
ance with the task demands.

According to this model, the amount of top-down control allocated (or
adjusted) across trials is based upon the amount of energy (E) from previously
experienced conflict, which is converted into a control value (C), according to
the following equation:

C tþ 1ð Þ ¼ λC tð Þ þ 1� λð Þ αE tð Þ þ βð Þ (20.7)

Where t indexes trials, and α and β are scaling parameters. λ is limited to values
between zero and one, so that the control signal is based upon the exponentially
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weighted average of conflict over multiple preceding trials. In other words, the
control value is adjusted from its initial state in proportion to the degree of
conflict occurring in the previous trial. Additional simulations validated that
trial-type frequency effects in the Stroop task (i.e., sequential adaptation effects)
were linked to this conflict monitoring mechanism, and the model revealed that
a higher frequency of incongruent stimuli was associated with an augmented
control signal, whereas a lower frequency of incongruent trials was associated
with a weaker control signal (thus allowing the word input to have a stronger
impact on processing). Thus, these simulations in tandem suggest conflict
monitoring serves as a key mechanism driving the evaluation and deployment
of cognitive control.
The conflict model also makes clear neural predictions. Specifically, increased

interference between the color-naming and word-reading units increases energy
in the conflict-monitoring unit (i.e., “greater conflict”), suggesting that conflict
might serve as an indicator of insufficient control. In other words, if dACC
activation were to reflect conflict detection, then dACC activity during
incongruent trials in the Stroop task should vary inversely with the strength
of control. A spate of human neuroimaging studies have found converging
evidence in support of the conflict monitoring hypothesis (Bench et al., 1993;
Carter & Veen, 2007; Ridderinkhof et al., 2004; Sheth et al., 2012; Veen &
Carter, 2002; Yeung et al., 2004). However, studies of patients with dACC

Red Green

Conflict Monitoring

Red Green Neutral Red Green Neutral

Response

Display (Ink) Color Word

Color Word

Task Demand

conflict detection
control adjustment

Figure 20.3 Neural network implantation of conflict monitoring in the Stroop
task from Botvinick and colleagues (2001, 2004). The base model (shown
in black) reveals word-reading and color-naming pathways converge on a
response layer, with a task unit that biases the pathway towards one pathway
or another. If a conflict is detected in the response layer, then the conflict
monitoring unit becomes active and subsequently modulates the activity of
the task units.
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lesions and nonhuman primates have revealed some discrepancies with the
hypothesis (Cole et al., 2009; Yeung, 2013), which may potentially arise from
methodological or neuroanatomical differences. Although these discordant
findings perhaps reveal more open questions than answers regarding the
specificity and validity of the conflict monitoring hypothesis, such controversy
also engenders a promising avenue ripe for future investigation.

Finally, it is worth mentioning that the original model focused primarily on
conflicts in information processing. In light of this influential framework, others
have since hypothesized that affective conflict (and reward) may also play a
central role in modulating cognitive control (Dreisbach & Fischer, 2012;
Steenbergen, 2014). This idea has sparked much debate over whether conflict
signals in dACC might serve as an aversive signal to drive reinforcement
learning of behavioral strategies to minimize cognitive effort (Botvinick, 2007;
Dreisbach & Fischer, 2015). Additionally, it remains to be seen whether
response conflict captured by the model or similar neural mechanisms can
characterize other types of conflict (e.g., stimulus conflict, decision-conflict;
(Melcher & Gruber, 2009; Milham & Banich, 2005; Roelofs et al., 2006;
Venkatraman et al., 2009)). Even though there are many current debates
regarding the specificity of conflict monitoring as a selective key mechanism
underpinning cognitive control, this model has provided a significant, influen-
tial framework that enables clear testing regarding the neurocomputational
mechanisms of cognitive control. Moreover, the debate over the specificity of
the conflict monitoring mechanism has inspired the development of more recent
computational accounts that aim to encompass more comprehensive mechan-
isms of dACC function, as described in the next sections.

20.3.2 Prediction Response-Outcome: A Prediction Error Model
of Control

The prediction response-outcome (PRO) model is another influential model
that characterizes mechanisms of evaluation and allocation of cognitive control,
but is distinguished from the conflict monitoring model, in that it is strongly
influenced by actor–critic architectures from the reinforcement learning (RL)
literature. Specifically, the PRO contains two key components that characterize
how the dACC (or medial frontal cortex, more broadly) evaluates the likely
outcomes of actions that are triggered by stimulus input from the environment,
even before those actions are performed (Alexander & Brown, 2011, 2014;
Brown, 2013). The first Outcome Representation component (the “actor”) learns
to predict the various possible outcomes of a planned action (e.g., the expected
reward or punishment, or other forms of performance feedback), regardless of
whether these outcomes are good or bad (i.e., response–outcome learning). The
second Outcome Prediction component (the “critic”) detects discrepancies
between actual and predicted outcomes, and this prediction error signal (i.e.,
actual outcomes – expected outcomes) is used to update and refine subsequent
outcome predictions. In contrast to typical actor–critic architectures where the
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critic trains the actor, the critic in the PRO indirectly influences the actor’s
policy, by modulating the learning rate of predictions of response–outcome
conjunctions. Moreover, a key aspect of this model is that it includes a predic-
tion error signal, which can indicate “negative surprise,” or when an expected
outcome does not occur. Interestingly, this form of negative surprise signal can
indicate not only when an expected outcome does not occur, but also when the
response is slower than expected or when the correct action is more ambiguous
(e.g., trials associated with high response conflict).
In terms of implementation, the PRO model is based on standard RL

models and incorporates a temporal difference (TD) learning mechanism
(Sutton & Barto, 1998). Specifically, the “Outcome Representation” compon-
ent of the PRO model learns the predictions of multiple possible response–
outcome conjunctions using a vector-valued error signal Si as a function of
incoming task stimuli Dj,t (a vector representing the current task stimuli) and
WS (a weight matrix which maintains predictions of response–outcome con-
junctions). More explicitly, Si,t represents an outcome prediction signal that is
proportional to the conditional probability of a particular response–outcome
conjunction, given the current trial conditions as estimated from a particular
stimulus:

Si,t ¼
X
j

Dj,t �WS
ij,t (20.8)

Here, prediction weights are updated incrementally and determined by the
difference between Oi,t (vector of actual response–outcome conjunctions) and
Si,t (vector of predicted response-outcome conjunctions), scaled by a neuromo-
dulatory gating signal G (1 or 0) and learning rate parameter Ai,t. Notably, the
learning rate is comprised of a baseline learning rate α normalized by positive
and negative surprise ( ωP

i,t and ωN
i,t, respectively).

WS
ijk,tþ1 ¼Wijk,t þ Ai,t Oi,t � Si,tð ÞGtDj (20.9)

Ai,t ¼ α

1þ ωP
i,t þ ωN

i,t

� � (20.10)

In parallel, the “Outcome Prediction” component of the PRO model learns
a complementary timed prediction of when an outcome is expected to occur
(predicted value of current and future outcomes), and this timed prediction
signal V peaks at the time of the expected outcome. Importantly, this signal
provides a key mechanism for detecting not only when expected outcomes fail
to occur, but also for updating outcome predictions S. In other words, this
temporal difference (TD) prediction error δ represents the discrepancy
between reward prediction on successive time steps t and t þ 1, and the actual
level of reward ri. Here, ri refers to the response and outcome combination
observed on the current time step t, and γ is the temporal discount factor
(0 < γ < 1; γ ¼ .95 in most simulations) that describes how the value of
delayed rewards is reduced. Finally, this generalized TD error specifies all of
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the variables as vector quantities, allowing for estimation of a vector-valued
TD model that learns to predict the likelihood of a given response–outcome
conjunction at a given time.

δi,t ¼ ri,t þ γVi,tþ1 � Vi,t (20.11)

Due to the temporal feature of the PRO model, the representation of task-
related stimuli over time is modeled as a tapped delay chain X (Montague et al.,
1996), meaning that the pattern of activity across multiple units (indexed by j)
tracks the number model iterations (or “time”) elapsed since the task-related
stimulus was presented. This value prediction signal V is proportional to the
tapped delay units ( j corresponsds to the delay unit corresponding to the time
elapsed in onset of stimulus k) and Uijk is the learned prediction weight
associated with index outcomes i, tapped-delay units j, and stimulus identity
k. While the illustration of these tapped-delay units in Figure 20.4 is simplified
in favor of highlighting the crucial PRO model features, greater detail of how
these tapped delay representations are implemented in the PRO model can be
found in Alexander & Brown (2011).

Vi,t ¼
X
j,k

X jk,t �Uijk,t (20.12)

Prediction Error

Predicted 
Response/Outcome

Vi,t

Stimulus
k

>><>>

i,t

Stimulus 
Representation

Observed
Response/Outcome

Sj,t ri,t

ERROR

Feedback

Vi,t+1

t
N

t
P

Unexpected
non-occurence

Unexpected
occurence

Figure 20.4 The prediction response–outcome (PRO) model architecture
(adapted from Alexander & Brown, 2015 and Vassena et al., 2017), which
generates predictions about response–outcome conjunctions in proportion to
the likelihood of occurrence. The stimuli and feedback are environmental inputs
that modulate the model. The circles inside the box represent units that code for
neural activity. The stimulus representations encode the environmental stimuli,
which then modulate the coding of predicted states (i.e., the mapping between
stimuli and predicted outcomes). The outcome units encode the feedback.
Critically, the comparison between prediction units and outcome units produces
an error signal that is used to update the outcome prediction unit.
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The prediction weights are updated according to a learning rate parameter α
that is multiplied by the prediction error signal and eligibility trace X , and U is
constrained by U > 0.

Uijk,tþ1 ¼ Uij,t þ αδi,tX jk (20.13)

Xjk,tþ1 ¼ Xjk,t þ 0:95Xjk,t (20.14)

The PRO model postulates that separate neural signals within the ACC
represent outcome prediction and prediction error (negative surprise), respect-
ively. In particular, the model suggests that the prediction signal should reliably
increase immediately prior to when the most likely outcome will occur (i.e., a pre-
response anticipatory signal). The negative surprise signal, on the other hand, will
reliably activate after the action that produces an unpredicted outcome has
occurred (i.e., a post-response evaluative signal). Critically, these hypotheses were
tested in simulations of multiple tasks (e.g., change signal task, Erikson-flanker),
as well as across different types of neural data (e.g., fMRI BOLD activity, ERP,
monkey single unit neurophysiology). This validation of the PRO model across
such a wide range of neural data demonstrates that it provides a useful generaliz-
able computational algorithm (i.e., prediction error) by which the dACC can
signal an increased need for cognitive control in demanding tasks.
Recent efforts have been made to extend the PRO model, with a particular

focus on reward and effort as important modulators of cognitive control
(Vassena et al., 2019), as well as the incorporation of a hierarchy of error
representations (Alexander & Brown, 2015). In particular, Vassena and col-
leagues (2019) suggested that increased effort allocation on task performance
may be promoted by presenting reward information first, consistent with theories
that suggest that reward incentives adaptively enhance mental effort when indi-
viduals can proactively incorporate expected outcomes when deciding to allocate
control (Yee & Braver, 2018). In other words, they argue that dACC may be
involved with the monitoring of motivationally relevant variables (e.g., reward,
effort) by coding expectations and discrepancies from such expectations
(Vassena, Deraeve, et al., 2017). Consistent with their hypothesis, they recently
found evidence for such a “surprise” signal in the mid-cingulate cortex during a
value-based decision-making task under time pressure, with dACC activity cor-
relating with unsigned feedback prediction error (i.e., both positive and negative
surprise), consistent with the standard calculations of reinforcement-learning-
related prediction errors instantiated by the PRO model (Vassena et al., 2020)

20.3.3 Expected Value of Control: Integrating the Costs and Benefits
of Control

Another prominent neurocomputational account that features mental effort as
a component of cognitive control demand is the Expected Value of Control
(EVC) model (Shenhav et al., 2013). Though the EVC model has recently
gained significant traction as an extension of the original conflict monitoring
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model, it is theoretically distinct from prior models as it posits a motivational
account for cognitive control allocation. The central tenet of the EVC model is
the characterization of cognitive control demands in terms of a cost–benefit
analysis, in which the expected payoffs of engaging cognitive control are
computed relative to the cognitive effort required for engagement, in order to
determine an optimal policy of cognitive control allocation (Shenhav et al.,
2017). Specially, Shenhav and colleagues (2013) hypothesize that dACC inte-
grates signals relevant to EVC and specifies such signals to downstream brain
regions (e.g., dlPFC) to determine the intensity of control that would maximize
this quantity (Shenhav et al., 2016). In other words, dACC signals should
influence both the specific content of control (e.g., what task should be per-
formed or what parameters should be adjusted), as well as the balance between
controlled and automatic processing, accounting for the inherent cost of a
control signal with a specified intensity. The explicit incorporation of the
intrinsic cost of control is a strength of the EVC model, as such computations
can potentially explain evidence demonstrating that dACC tracks aversive
control demands (Fritz & Dreisbach, 2013; Spunt et al., 2012; Vermeylen
et al., 2020), preferences for performing tasks (McGuire & Botvinick, 2010),
and the devaluation of rewards in cognitively and physically effortful tasks
(Cavanagh et al., 2014; Chong et al., 2017; Croxson et al., 2009; Westbrook
et al., 2019). Thus, according to EVC, dACC activity during performance
monitoring should predict subsequent adjustments in cognitive control.

Formally, estimates of EVC require two key pieces of information: (1) the
current state (i.e., current task demands, processing capacity, motivational
state), and (2) the value of potential outcomes that may occur given a potential
control signal (i.e., integrating likelihood of occurrence and anticipated worth).
The control signal can be defined as an array variable that contains both the
identity (e.g., task rule) and intensity (e.g., the vigor of response). Determining
the expected value of each control signal requires the integration of both the
overall payoff expected from engaging a given control signal (e.g., accounting
for both positive and negative outcomes from performing the corresponding
task) and the intrinsic cost of engaging control itself, the latter of which scales
the intensity of the signal required (see Figure 20.5).

These two components can be formalized in the following equation, with
the expected value of control variable (EVC) computed as a function of the
specific control signal (signal) and the current situation across environmental
conditions and internal factors (e.g., motivational state, task difficulty). This
EVC value is equivalent to the summed value of the probability of receiving a
payoff for outcome O weighted by the expected likelihood of that outcome
across all possible control signals i, subtracting the intrinsic cost of exerting
that control signal.

EVC signal; stateð Þ ¼
X
i

Pr Oijsignal; stateð Þ � Value Oið Þ
" #

� Cost signalð Þ
(20.15)
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The Value of the outcome is defined recursively as follows, with the sum of
the immediate reward Rt taking on either positive or negative values (e.g.,
monetary gains or losses), and the maximization of EVC over all feasible
control signals i, scaled by a discounted factor γ between zero and 1.
Crucially, this discount factor weights the extent to which the value function
incorporates the associated reward of predictable future events.

a

b

Figure 20.5 Expected value of control (EVC) model by Shenhav et al. (2013,
2016). (A) The EVC model predicts that shifts in control intensity should be
modulated by the presence of task incentives and task difficulty. The lower
downward concave curves closest to the x-axis represent the maximization of
the EVC, which depends on the expected payoffs (higher concave curves) and
costs (exponential curve) for candidate control signals. According to the
model, increases in task incentives modulate the expected payoff curve, which,
when integrated with the cost information, will shift signal intensity that
maximizes EVC. Conversely, increases in task difficulty will reduce the
expected payoff for a given control signal intensity and also shift the EVC-
maximizing control signal intensity to reflect the reduction in the probability
of a correct response. Adapted with permission from Cell Press. (B) Schematic
of dACC and candidate neural mechanisms involved in the evaluation,
monitoring, and regulation of cognitive control. Adapted with permission from
Springer Nature.
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Value Oð Þ ¼ Rt Oð Þ þ γ � maxi EVC signali,Oið Þ½ � (20.16)

The intrinsic cost of control is presumed to be a monotonic function of control-
signal intensity, which involves the identification of a signal identity and intensity
(or a set of these) that will yield the greatest payoff. According to EVC, the
control system accomplishes this by comparing EVC across candidate control
signals and selecting the optimum. Once specified, the optimal control signal
(signal*) is then implemented and maintained by dlPFC mechanisms responsible
for regulating cognitive control (e.g., active maintenance process and control
signals that bias processing to support task performance). This signal* is main-
tained until a change in the current state indicates that the previously specified
control signal is no longer optimal, and a new signal* should be specified.

signal�  maxi EVC signali; stateð Þ½ � (20.17)

Recent work has focused on simulations that validate the EVC model’s ability
to capture behavior and neural measures of cognitive control allocation (Frömer
et al., 2021; Grahek et al., 2020; Lieder et al., 2018; Masís et al., 2021; Musslick
et al., 2015, 2019). Specifically, in this work a normative implementation of the
EVC is used to simulate an agent that generates an optimal control signal based
upon an internal representation of the task environment, along with reward or
reinforcement feedback based upon its task performance. Notably, the model can
account for a variety of classic phenomena in cognitive control tasks but also
yields new predictions for experiments involving cognitive control tasks that can
be empirically tested. Other work has focused on further characterizing the extent
to which EVC can generate explicit quantitative predictions regarding how
motivational factors influence behavioral and neural measures of cognitive con-
trol allocation, including (but not limited to) individual differences in sensitivity
to motivational incentives and intrinsic costs (Grahek et al., 2020; Leng et al.,
2021; Musslick et al., 2019), the efficacy of exerting cognitive control (Frömer
et al., 2021), and the extent to which dACC encodes the expected value of control
(Yee, Crawford, et al., 2021; Yee, Leng, et al., 2022).

20.4 Unresolved Issues and Future Directions

Although the computational models and algorithms reviewed in this
chapter have made significant inroads towards understanding core mechanisms
underpinning the recruitment, allocation, and deployment of control, many
open questions remain regarding the computational primitives of cognitive
control. That is, what is the nature and representation of control processes
and control signals both in cognition and the brain? Two perspectives have
primarily dominated the landscape, with some arguing for a process-oriented
view of cognitive control and others arguing for a more representational view
(Freund et al., 2021; Wood & Grafman, 2003).

Those who have argued in favor of the representational view of cognitive
control have relied on experimental work supporting the role of PFC in

Neurocomputational Models of Cognitive Control 687

https://doi.org/10.1017/9781108755610.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.024


representing abstract task-spaces and task rules that are generalizable to novel
tasks (Collins & Frank, 2016; Rougier et al., 2005). However, what is less clear
the extent to which task-set representations are generated to be specific to a
particular task versus utilized as a more general-purpose mechanism (i.e., can
be utilized for multiple types of tasks) that are flexibly configured based upon
the task demands. In particular, Duncan and colleagues have proposed that a
multiple demand (MD) system dynamically adjusts neural coding to attended
information in the frontoparietal cortex (Duncan, 2010, 2013; Woolgar et al.,
2011). In parallel, others have argued that the mixed selectivity of neurons or
voxels, within brain regions such as dlPFC, is used to rapidly reconfigure task
rules and their conjunctions, which serves as an important mechanism under-
pinning the flexibility of higher-order cognition (Badre et al., 2021; Fusi et al.,
2016; Rigotti et al., 2013). In other words, they argue that task-relevant dimen-
sions are encoded in a distributed manner through mixed selectivity neurons,
which facilitate a clear computational advantage for expressing high-
dimensional neural representations in complex goal-directed tasks. However,
despite growing enthusiasm for this dimensional approach towards task repre-
sentation, empirical data is still required to validate these hypotheses.
Conversely, others have focused on developing process-based models that

aim to characterize computational signals or processes that can represent and
perform a variety of tasks (Yang et al., 2019; Flesch et al., 2022). In particular,
neuroscience approaches based on recurrent neural networks (RNNs) have
gained significant traction in providing an understanding of how complex task
representations might develop. For example, one recent effort has demon-
strated that RNNs can be used to identify compositional representations of
tasks in state space (e.g., task clusters), a crucial feature necessary for cognitive
flexibility in adapting task rules from one to another (Yang et al., 2019).
Critically, such an approach abolishes the need for a topographic or systematic
representation of task rules and focuses on a mathematical framework that
more closely mirrors the neurobiology underpinning how multiple cognitive
tasks can be learned and represented.
Another future direction relates to more formally incorporating mechanisms

by which different types of neuromodulators interact with and modulate cogni-
tive control. The dopamine and noradrenaline systems have long been theorized
to play a central role in modulating attention and cognitive control (Aston-
Jones & Cohen, 2005; Fröbose & Cools, 2018; Servan-Schreiber et al., 1990).
Recent empirical work has shown that dopamine appears to play a key role in
modulating the value of work or mental effort (Hamid et al., 2016; Westbrook
et al., 2020). Additionally, norepinephrine has been suggested as a learning
signal that modulates attention and attentional control (Dayan & Yu, 2009;
Unsworth & Robison, 2017; Yu & Dayan, 2005). However, formalization of
how these neurotransmitters (and others, such as serotonin) modulate cognitive
control is not fully specified. One possibility is that such neurotransmitters may
play a key role in meta-control (Boureau et al., 2015; Eppinger et al., 2021), or
serve as meta-parameters that modulate cognitive control, though much more
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work is needed in this domain (Doya, 2002; Wang et al., 2018). Nevertheless,
the modeling of neuromodulators in cognitive control is considered uncharted
territory within this domain; as such it provides a ripe opportunity for
future investigation.

Finally, the present chapter highlights the need for a more rigorous evalu-
ation and validation of extant models of cognitive control processes. Recent
efforts have focused on utilizing Bayesian approaches as a principled
computational framework to characterize cognitive control (see Chapter 3 in
this handbook, for greater detail on Bayesian modeling approaches), with a
particular focus on the bounded rationality that arises from capacity limitations
in the cognitive resources that can be allocated for cognitive processes (Lieder
et al., 2018; Lieder & Griffiths, 2019; Musslick & Cohen, 2020). A critical
premise of this class of resource-rational algorithms is that the utilization of
the mind’s computational architecture incurs a cost, such that a tradeoff must
be optimized between the cost of computational resources against the expected
utility of accurately and effectively utilizing computational resources. Such
general-form models that account for the capacity of cognitive processes may
perhaps be a promising avenue for characterizing not only cognitive control,
but also other cognitive systems (Gershman et al., 2010; Momennejad et al.,
2017; Nassar & Frank, 2016; Tervo et al., 2016). Future computational work in
this domain should strive towards exploring and investigating the boundary
conditions of such normative approaches for cognitive control. This may in
turn facilitate a clearer understanding of how cognitive control interacts with
other cognitive and motivational/affective systems to adaptively accomplish
behavioral task goals.

20.5 Conclusion

This chapter has reviewed key theoretical frameworks and associated
computational models developed by researchers trying to understand the
mechanisms of cognitive control. A broad division is drawn between models
addressing (1) the mechanisms by which attention modulates goal-driven and
task-oriented behaviors, including the updating, learning, and generalizability
of task-set structures, and (2) the evaluation of cognitive control necessary for
mental effort and optimized task performance. The models described in this
chapter touch upon essential core mechanisms of cognitive control, which
reflect the ability to utilize information to deliberately act and behave in the
service of task goals. Although tremendous progress has been made over the
last thirty years to develop mechanistically precise and normative accounts in
this domain, many open questions remain regarding the enigmatic functions
underpinning cognitive control function. The use of formal mathematical and
computational models will be essential to further validate or falsify theoretical
hypotheses that decompose complex cognitive behaviors into their most basic,
fundamental elements.
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21 Computational Models
of Animal and Human
Associative Learning
Evan J. Livesey

21.1 Introduction

Associative learning is one of the simplest and yet most powerful forms
of behavioral and cognitive change, one that is brought about by experiencing
events in the world and their relationship to one another. It enables organisms
to anticipate future events based on their current circumstances, capitalizing on
predictive environmental cues in order to enhance positive (and mitigate nega-
tive) outcomes. As a psychological discipline, the study of associative learning is
a comparative science, which has developed from behaviorist roots in instru-
mental and Pavlovian conditioning. Contemporary associative learning theory,
however, makes use of cognitive assumptions, for instance invoking internal
mental processes such as attention. Indeed, its goals are often to understand
cognitive processes, such as how memories are formed and retrieved, and how
association-formation may influence preferences, judgments, and beliefs as well
as behavior. However, the study of associative learning still retains some core
behaviorist values, especially in seeking to explain complex behavior in rela-
tively simple terms. The study of associative learning has long been accompan-
ied by attempts to quantify behavioral and mental processes with formal
computational models. This chapter provides a selective review of some of the
major themes of this computational approach.

Associative learning theories assume that organisms obtain and use know-
ledge about the predictive relationships between events in associative networks,
which consist of mental representations of these events and the associations that
link them. In the terms of Pavlovian conditioning, these events may include a
neutral conditioned stimulus (CS; e.g., a tone or a light) that is paired with a
motivationally significant unconditioned stimulus (US; e.g., delivery of food or
electric shock); by virtue of the statistical relationship between them, the CS
comes to elicit anticipatory behavior in expectation of the US (e.g., salivating in
anticipation of food; freezing in anticipation of shock). In instrumental condi-
tioning, the critical events may include a combination of antecedent conditions
(discriminative stimuli), the actions of the learner, and the reinforcing and
punishing consequences of those actions (e.g., learning that when a light is
illuminated, pressing a lever will result in delivery of food). The development
of associative learning theories has paralleled innovations in reinforcement
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learning (e.g. Sutton and Barto, 1998); the two fields have overlapping aims and
are in many ways interdependent. While this chapter will touch on issues to do
with reinforcement and instrumental conditioning, Chapters 10 and 22 in this
handbook address computational models of reinforcement learning in detail.
In most instances, this chapter will adopt the general terms of cues and

outcomes to refer broadly to circumstances in which a cue (which may be an
external or internal stimulus, or an action) predicts the impending occurrence or
omission of an outcome. Within this framework, associative learning can
usually be considered as an instance of supervised learning, where the presence
or absence of the outcome serves as a teaching signal for the learner. Through
experiencing the co-occurrence of cues and outcomes, organisms are thought to
learn the associations between these events so that the presence of a predictive
cue generates an expectation of the outcome via activation or retrieval of its
representation. Consistent with the associationist tradition (e.g. Hume, 1741/
1978), one stimulus brings to mind the other and thus informs subsequent
behavior by generating an expectation that the outcome will occur.
Alongside models that focus on association formation as a psychological

mechanism, theorists have also applied rational models, whose goal is to
provide a formal description of the task that the learner faces under a given
set of circumstances and derive the optimal computational rules by which the
learner’s behavior should abide. Recent rational models formulated around
Bayesian inference (e.g., the Kalman filter; Dayan, Kakade, & Montague,
2000; Sutton, 1992; see Gershman, 2015) have been influential for understand-
ing several of the behavioral problems covered in this chapter, and they can be
seen as being complementary to the aims of mechanistic models of association
formation. While this chapter does not provide a comprehensive review of these
rational models, they will feature in several places as they help to understand
the functions that psychological mechanisms could serve.
The behavioral problems to which associative learning models are usually

applied are often questions about the way behavior generalizes from past
instances of learning to new situations. Why, after witnessing a traumatic event,
do other social contexts trigger an intense emotional reaction? Why does a
child’s misbehavior intensify in the presence of some people and not in the
presence of others? Why is it that cues previously associated with drug taking
attract the user’s attention so strongly? What aspects of the environment control
learned behaviors? How do events in the environment compete for learning and
attention and how does one use these experiences to draw inferences about
cause and effect?
This chapter provides an overview of some major empirical problems and

computational solutions that have preoccupied researchers over the last fifty
years, concentrating on phenomena that have inspired the development of
several different computational approaches. There are broad, recurring
theoretical questions that are important for constructing models of associative
learning:
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1. What psychological factors influence whether (and how quickly)
associations form?

2. What is the nature of the stimulus representations that support learning?
3. How are mental associations translated into behavior?

The sections below are organized around several conceptual innovations and
debates relating to these questions, that have played a central role in theory
development over several decades.

21.2 The Role of Prediction and Prediction Error

Perhaps the most influential idea in associative learning over the last
half-century has been the proposal that prediction error is a key determinant of
learning. That is, associations change to the extent that experienced events
differ from those that are predicted; if an outcome is fully and accurately
anticipated then no learning occurs. This idea was first incorporated as a means
of accounting for the negatively accelerated learning curve, the finding that
rapid changes in conditioned behavior are observed across early learning trials
but diminish as training proceeds (e.g., see Harris, 2011; Kehoe et al., 2008 for
recent examples). It was originally instantiated in terms of the updating of
individual stimuli based on their own individual error term (e.g., Bush &
Mosteller, 1951). A generalized form of this early prediction error rule is shown
in Equation 21.1, components of which will be seen repeatedly throughout this
chapter. According to this rule, when cue A is presented on a conditioning trial,
the associative change (i.e., amount of learning) undergone by cue A (denoted
ΔVA) is given by:

ΔVA ¼ αAβ λ � VAð Þ (21.1)

In Equation 21.1, VA represents the strength of the association between a
mental representation of cue A and a representation of an outcome (referred
to as the associative strength of cue A), and defines the extent or magnitude of
the learner’s prediction of the outcome given the presence of cue A. αA is a
parameter that reflects the physical salience of cue A; β is a learning rate
parameter that reflects the salience or intensity of the outcome presented on
that trial; and λ reflects the reinforcing value of the outcome that was actually
observed following the cue (that is, its ability to sustain learning based on its
motivational and/or sensory properties). In this equation the error term (λ – VA)
represents the discrepancy between the observed magnitude of the outcome (λ)
and the learner’s prediction of the magnitude of that outcome (VA); that is, the
degree to which the outcome was surprising. This error term acts as a means of
limiting learning to the extent that the outcome is already predicted by A. In
this way the value given to λ reflects the maximum level of learning that the
outcome is able to sustain for cue A. The use of prediction error to gate learning
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allows the learning rule in Equation 21.1 to account for negatively accelerated
learning: on initial pairings of A with an outcome, the outcome is unexpected
(VA is small and prediction error is large) and hence changes in associative
strength are substantial; but as learning proceeds and the outcome becomes
increasingly well predicted (VA approaches λ), the error term will reduce and
hence changes in associative strength will diminish such that the strength of
anticipatory behavior plateaus to a stable asymptote.
Equation 21.1 implements what can be termed an individual error term, in

that only the prediction formed on the basis of cue A itself is factored into the
amount learned about A. Consequently, on this account if two cues A and B are
presented together and paired with an outcome, learning about each cue will
occur largely independently of learning about the other. This turns out to be an
important limitation of the individual error-term model. As a simple illustra-
tion, imagine that when cue A is presented, there is a 20 percent chance that the
outcome will follow. This partial reinforcement schedule is typically sufficient
to permit associative learning between the cue and outcome provided the
probability of the outcome is lower when the cue is absent (for instance, maybe
the outcome never occurs in the absence of the cue). But what about a situation
in which the probability of the outcome is the same even when the cue is not
present? In this case, even though the probability of the outcome in the presence
of the cue is positive, the cue conveys no additional information about the
occurrence of the outcome; the likelihood of the outcome can be surmised from
the experimental context alone. Indeed under these conditions, animals usually
show little evidence of learning about the cue (Rescorla, 1967). What if the
probability of the outcome is actually higher in the absence of A? Now cue
A has an inhibitory relationship with the outcome, suggesting that it may signal
its prevention. To provide an accurate account of associative learning, a model
must provide an explanation for how the learner tracks statistical contingency
as it appears that both humans and other animals readily do so (Rescorla, 1968;
Shanks, 1987).
This sensitivity to contingency and several learning phenomena discussed

later indicate that interactions occur between environmental signals that are
present at the same time, suggesting that cues may compete for associative
learning. This has led theorists to adopt a summed error term, in which learning
is determined by the aggregate prediction of an outcome, summed across all of
the stimuli that are present. The archetypal (summed) prediction error learning
rule was proposed by Rescorla and Wagner (1972; Wagner and Rescorla, 1972),
shown in Equation 21.2.

ΔVA ¼ αAβ λ �
X

Vi

� �
(21.2)

Here, ΣVi represents the simple arithmetic sum of the associative strengths of all
cues i present, with the experimental context often assumed to constitute an
additional cue in its own right. Consequently learning about cue A (ΔVA) on a
given trial is influenced not only by the prediction made by cue A, but also by

706 evan j. livesey

https://doi.org/10.1017/9781108755610.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.025


the predictions made by all other simultaneously presented cues. The Rescorla–
Wagner model is formally equivalent to other similar learning rules developed
in other disciplines (e.g., Widrow & Hoff, 1960) and prediction error models of
this nature have dominated computational thinking around associative learning
and cognate disciplines in recent decades (e.g., Gluck & Bower, 1988; Sutton &
Barto, 1981). It has both inspired and been supported by studies investigating
neurophysiological evidence of prediction error signaling (e.g., Fletcher et al.,
2001; Schultz et al., 1997; Tobler et al., 2006; Waelti et al., 2001).

Why would this summed error term be advantageous for tracking cue-
outcome contingency? Learning about the relationship between the context
and the outcome, represented as the associative strength of the context, contrib-
utes to the prediction error that constrains learning about A. Imagine a single
conditioning trial in which the experimental context and cue A are present,
accompanied by the outcome. If the associative strength of the context is low
then ΣV (which is equal to VA þ Vcontext) will also be relatively low and the
summed error term (λ – ΣV) will be relatively high, allowing learning to A to
proceed so that the learner comes to expect the outcome when presented with A.
In contrast, if the associative strength of the context is relatively high – as might
be the case if the outcome occurs frequently in the presence of the context
alone – then ΣV will be higher and the error term lower, accordingly. Thus
learning about A on such trials will be limited; the context association effect-
ively takes a larger proportion of the associative strength that the outcome can
support. In this sense, learning is competitive. This mechanism allows the
associative strength attributed to one cue to track the information value pro-
vided by that cue – the extent to which the cue uniquely predicts the presence or
absence of an outcome – rather than merely tracking their relationship in
isolation. Like other prediction error models, it is a stochastic gradient descent
algorithm applied to minimize the square of the error term, in this case the
function (λ – ΣV)2 (e.g., see Rumelhart et al., 1986). Given enough trials, the
learning rule estimates the partial correlation between each cue and
the outcome.

21.2.1 Cue Competition

The development of the Rescorla–Wagner model is intrinsically linked with the
study of cue competition phenomena, a class of effects in which cues are learned
about in compound (i.e., presented together on the same trials) in a way that
limits the extent to which at least one of those cues comes to elicit conditioned
responses, or decreases the extent to which the cue is judged to be related to an
outcome with which it has co-occurred. A canonical demonstration of cue
competition is provided by Kamin’s (1968) blocking effect. Imagine that cue
X has been paired with the outcome previously such that in the presence of X,
the subject displays strong conditioned behavior. Now if cue X and a novel cue
A are presented together, and the outcome occurs, what will the subject learn
about cue A? It turns out that in many circumstances, the subject appears to
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learn relatively little about cue A; when it is later presented on its own, A is
ineffective at eliciting anticipatory behavior. Prior learning about cue X is said
to have blocked the association between A and the outcome. Blocking is usually
assessed relative to a control condition in which two cues are paired with the
outcome in compound, but neither has been paired with the outcome previ-
ously. The summed error term of the Rescorla–Wagner rule allows the model to
account for blocking: prior training with cue X means that, when cues X and
A are later simultaneously paired with the outcome, the outcome is already well
predicted by the presence of X (the summed error term λ – ΣV ¼ λ – [VX þ VA]
is small) and hence there will be little learning about cue A.
This summed error prediction model attributes blocking to competition at the

time of encoding associations to explain competitive learning effects.
Alternative accounts, including some computational approaches, have focused
on competition and comparison at the time of retrieval to explain cue competi-
tion. One prominent associative account to take this approach is the compara-
tor hypothesis (Miller & Matzel, 1988) which assumes that the initial learning is
not competitive and instead that the complexities of associative learning are
largely due to competing retrieval mechanisms. Miller and Matzel initially
proposed that the behavior elicited by a cue is determined by comparing its
associative strength with that of a comparator stimulus, which they defined as
the stimulus that is most strongly associated with the cue itself. The model has
since undergone several modifications such that comparison occurs between the
cue and all stimuli with which it is associated, and the ability of comparator
stimuli to influence behavior is in turn influenced by their associations with
other stimuli (Denniston, Savastano, &Miller, 2001; Stout &Miller, 2007). The
model has been applied to a variety of phenomena, and its explanation of
blocking is instructive as an example. Like other associative models, the
response elicited by A is a function of VAO, the association between A and
the outcome. However, the comparator hypothesis assumes that in generating a
response to A, the weighted product of VAX (the association between A and X)
and VXO (the association between X and the outcome) is subtracted from VAO,
thus reducing predicted responding to A (Stout & Miller, 2007). According to
the comparator theory, the reason responding to the blocked cue A is low is not
because the association between A and the outcome is weak but because the
stimulus with which A is most strongly associated (cue X) has a stronger
association with the outcome.
The blocking effect and its nuances continue to stoke controversy as a test

bed in human cognition (Livesey et al., 2019; Lovibond et al., 2003) and animal
learning (e.g., Beckers et al., 2006; Haselgrove, 2010; Maes et al., 2016; Soto,
2018). For example, a similar reduction in the efficacy of the blocked cue is
sometimes observed even when the single-cue training, pairing cue X and the
outcome, occurs after the compound training (e.g., Shanks, 1985; Urushihara &
Miller, 2010). This backwards blocking effect, although it is less frequently
observed (and arguably far less reliably so) than the standard blocking effect,
poses a challenge for the prediction error account which assumes blocking is a
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deficit in acquiring the association in the first place and does not anticipate
retrospective changes in the associative strength of the blocked cue (at least not
without additional assumptions allowing learning about a cue in its absence, see
Aitken & Dickinson, 2005; Dickinson & Burke, 1996; Van Hamme &
Wasserman, 1994). Some of the clearest evidence of backward blocking in
humans comes from learning tasks that invite deductive reasoning that the
blocked cue must not contribute to the outcome because the probability and/
or magnitude of the outcome in the presence of A and X is the same as it is for
A alone (e.g., Lovibond et al., 2003). This has led some researchers to conclude
that blocking may be the result of quite different inferential processes in some
(or possibly all) instances where it has been observed (Mitchell et al., 2009).
Although it has been studied extensively, blocking is still not well understood.
However, along with other related cue competition effects, its place in shaping
associative learning theory is clear.

As the example of blocking shows, an important feature of the Rescorla–
Wagner model is that it predicts that redundant cues will end up with little-to-
no association with the outcome even if they are paired with an outcome.
Another seminal demonstration of this property of associative learning was
referred to as relative validity by Wagner, Logan, Haberlandt, and Price (1968),
who showed that the predictive validity of the other cues present during
conditioning can limit learning to a target cue. In their experiments, one group
was given a compound, call it BY, that led to the outcome while a second
compound of two cues, BZ, led to no outcome. Mastering this discrimination
between BYþ and BZ– trials may entail learning that Y reliably predicts the
outcome and Z predicts its absence, but what is learned about the redundant
cue B? A control group were given the same number of outcome presentations
but distributed across both compounds (BYþ/– and BZþ/–) so that B, Y, and
Z were all partially reinforced. When testing B by itself, evidence of learning
was consistently lower in the experimental group than the control despite being
paired with the outcome the same number of times in each group.

The relative validity design, and its underlying theoretical logic, recur in
several other cue competition phenomena that are notable because they are
not easily explained by the Rescorla–Wagner model and have been a source of
contemporary theoretic debates. One, which has come to be known as the
redundancy effect, is the observation that the redundant cue in blocking usually
displays more evidence of learning than the redundant cue in relative validity
(A > B in the examples above) whereas the Rescorla–Wagner model predicts
precisely the opposite (Pearce, Dopson, Haselgrove, & Esber, 2012). The inverse
base-rate effect (Medin & Edelson, 1988) describes a similar situation in which a
common compound, AB, leads to one outcome and a rare compound, AC,
leads to a different outcome. In this case B and C are perfect predictors of a
common and rare outcome, respectively. When asked to predict what will
happen in the presence of BC, learners typically choose the rare outcome,
whereas the Rescorla–Wagner model would predict they should either choose
the common outcome more often or show no preference (see Don, Worthy, &
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Livesey, 2021 for a review; Medin & Edelson, 1988). The partial (but clearly
incomplete) account of cue competition provided by prediction error models
has led to alternative approaches, including several that invoke selective atten-
tion as a key contributor to cue competition.

21.3 Attention

The models discussed in the previous section use prediction error to
gate learning by assuming that the outcome must be surprising in order for
learning to occur. However, other accounts specify a different (potentially
complementary) role for prediction error in modulating attention. Selective
attention refers to the perceptual and cognitive processes that enable one to
prioritize some stimuli over others for further processing. Just as it has in other
areas of psychology, selective attention has played an important role in associa-
tive learning, with theories based on stimulus selection dating back at least as
far as Lashley (1929). Attention-based models of learning assume that selective
attention changes according to the learning history of events previously encoun-
tered by the learner, and these changes in selective attention then alter what is
learned about stimuli in future. Hence the relationship between attention and
learning is proposed to be truly interactive: learning influences attention, which
in turn influences subsequent learning. However, debate continues about the
manner in which changes in attention occur and the functions that they serve.
Two major traditions have emerged in studies of animal learning since cue
competition and contingency learning became key foci for learning theories.
While they were first developed as competitors for the Rescorla–Wagner model,
they each take inspiration from prediction error mechanisms and can be seen to
have complementary functions.

21.3.1 The Predictiveness Principle

One approach, typified by the model proposed by Mackintosh (1975), has come
to be known as the predictiveness principle. According to this principle, stimuli
that have predicted meaningful outcomes in the past will receive privileged
attention in the future such that any new learning to these stimuli occurs faster.
Sutherland and Mackintosh (1971) developed this hypothesis in relation to
discrimination learning, providing an explanation for why learning one
discrimination can have positive or negative effects for learning a subsequent
discrimination, depending on whether the same types of stimuli were relevant or
irrelevant. The principle was subsequently applied by Mackintosh (1975) to cue
competition phenomena such as blocking. Mackintosh’s account adopted a
simple learning rule with an individual error term like the one shown in
Equation 21.1 but, in addition, he made assumptions about how attention to
each cue would change as a consequence of experiencing prediction error.
Specifically, Mackintosh identified attention with the parameter α, which
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represents the rate of learning about (or associability of ) the cue. On
Mackintosh’s account, cues that receive greater attention have a higher associ-
ability; they are faster to change their associative strength or enter into new
associations. This relationship between associability and prediction error can be
described in the following generic form:

ΔαA > 0 if λ � VAj j < λ � Vothersj j
ΔαA < 0 if λ � VAj j � λ � Vothersj j (21.3)

Vothers represents the predictions made by all cues other than A that are
currently presented. According to this account, if A is a better predictor of
the observed magnitude of the outcome (λ) than are other presented cues, then
the individual error term λ – VA will be smaller than λ – Vothers. In this case,
attention to A is enhanced the next time the learner encounters A. But if A is a
poorer predictor of the outcome than other cues present (i.e., if A has a larger
individual error term) then A will lose attention. This can be applied to
blocking; when first encountering the combination of two cues X and A,
followed by the outcome, X has already been conditioned and thus predicts
the outcome well. Because A is a poor predictor relative to X, αA decreases, thus
making it more difficult for A to acquire an association with the outcome.
Similar principles are expressed in a range of contemporary attention-based
models applied to animal conditioning and human associative and category
learning (e.g., see Don, Beesley, & Livesey, 2019; Kruschke, 2001; Paskewitz &
Jones, 2020). As a general theoretical class, models that incorporate attention
changes based on the predictiveness principle anticipate many cue competition
phenomena that cannot be adequately explained by the Rescorla–Wagner
model. These include several modulatory effects of blocking (e.g., Dickinson,
Hall, & Mackintosh, 1976; Le Pelley, Oakshott, & McLaren, 2005; Mackintosh
& Turner, 1971), the learned predictiveness effect (Le Pelley & McLaren, 2003;
Lochman & Wills, 2003; see Le Pelley et al., 2016 for a review), and the inverse
base-rate effect (Medin & Edelson, 1988).

21.3.2 The Uncertainty Principle

The predictiveness principle used in these models can be thought of as serving
an exploitative function; the learner is capitalizing on what it has learned about
predictive relationships to attend to signals in its environment that are likely to
be predictive in the future (i.e., cues that provide useful information about what
happens next), and to ignore signals that are likely to be unreliable predictors or
completely irrelevant to the occurrence of meaningful outcomes. However there
is another very different function that learned attention could potentially serve.
In situations where the outcome is not predicted consistently, it may be benefi-
cial to explore more of the possible contingent relationships in the environment
rather than to focus on those that have been predictive in the past. Pearce and
Hall (1980) argued, for instance, that the attention paid to a cue should be
proportional to the prediction error that is encountered in its presence. Ignoring
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some of the nuances of their model, attention to a cue A on trial n (αA
n ) follows

the following equation:

αA
n ¼ λn�1 � VT

n�1
�� �� (21.4)

In this equation, VT refers to the aggregate associative strength present on the
trial, essentially equivalent to ΣV in the Rescorla–Wagner model, but calculated
a little differently because excitatory and inhibitory relationships are dealt with
separately in the model. According to this equation, as prediction error reduces,
so too does attention. But if a surprising outcome occurs on a given trial, or if
an expected outcome is omitted, then attention to the cues present on that trial
will abrubtly increase again. Pearce and Hall conceded that, in practice, these
changes may be less abrupt than occurring in a single trial and suggested that
the process may involve averaging of the prediction error experienced over a
number of trials. But in essence, the model predicts that surprising events, or
uncertainty about the likelihood of an outcome, is responsible for driving up
attention to cues in future learning episodes.
Pearce and Hall’s approach can be seen as embodying an uncertainty

principle, in proposing that cues whose consequences are currently uncertain
will receive attentional priority. The functional argument for this mechanism is
that if the presence of a cue already allows an accurate prediction of consequent
events to be made – that is, if the cue has a small prediction error – then it makes
little sense to devote limited resources to further learning about that cue. By
contrast, if a cue does not (yet) allow an accurate prediction to be made – if the
learner encounters a large prediction error – then attentional resources should
be devoted to further learning about that cue in an attempt to establish its true
predictive significance. In addition, the learning produced by a sudden change in
the underlying relationship between a cue and outcome will benefit from the
relationship being updated faster (higher α) as this means predictions based on
the cue will be “corrected” faster. When the associability of a cue is high, only a
relatively brief and recent portion of its learning history will affect predictions
made on the basis of the cue (e.g., see Behrens et al., 2007).
The functional merit of this proposal was described formally by Dayan et al.

(2000), applying a rational model of learning to ask how adjusting attention
may be optimal even when one disregards the issue of resource limitations on
learning. However, Dayan et al., like others, note an important distinction
between uncertainty and unreliability. That is, in the case of uncertainty, there
is valid information to be learned because the relationship between a cue and an
outcome is unknown, therefore investing greater attention in a cue is rational.
However, if a cue is known to be unreliable – that is, if the learner can be
confident that the cue is uninformative with respect to a certain outcome or
class of outcomes – then giving that cue weight when it comes to making
predictions, or investing more attention to that cue when it comes to learning,
will be counterproductive. The learner should only invest resources in learning
about a cue if there is something meaningful to be learned. In addition, when a
cue conveys valid information about a probabilistic relationship with an
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outcome – for instance when a cue is followed by an outcome 50 percent of the
time but the outcome is still more likely in the presence of the cue than in its
absence – slow learning may actually be beneficial. Probabilistic relationships of
this nature necessarily entail some uncertainty (i.e., prediction error), however
estimating a stable probabilistic relationship is easier when associability is low
because the associations do not adjust radically when the outcome is presented
or omitted on a single trial (Behrens et al., 2007).

The two accounts of the relationship between learning and attention
described here – the predictiveness principle and the uncertainty principle –

may seem incompatible: the former anticipates greatest attention to cues whose
consequences are well predicted, the latter anticipates greatest attention to cues
whose consequences are uncertain. Empirical evidence exists in support of both
approaches, both in studies of animal learning (see Le Pelley, 2004; Pearce &
Mackintosh, 2010), and human learning (see Le Pelley et al., 2016) – though
evidence for the uncertainty principle is somewhat rarer in humans. In light of
this evidence, attempts have been made to reconcile the two mechanisms within
a single model (Esber & Haselgrove, 2011; George & Pearce, 2012; Le Pelley,
2004; Pearce & Mackintosh, 2010). As it transpires, while the mechanisms may
seem incompatible, they can be made to work in harmony.

21.3.3 Attention as a Stimulus Normalizer

Cognitive theories often conceive of attention as a mechanism that is resource-
limited; one can only attend to a finite set of stimuli or locations, for instance.
The question of how attention most effectively serves the function of distribut-
ing limited resources is thus an important consideration, though as Dayan et al.
(2000) point out, it is by no means the only rational basis for changes in stimulus
processing. While the Mackintosh and Pearce–Hall models were developed
with the processing constraints of organisms explicitly in mind, these models
do not, in fact, place formal limits on attention to cues that appear together.
For instance, according to the Mackinotsh model, if on a given trial cue
A appears by itself, or with one, two, or twenty competing cues, the attention
paid to A (its α value) remains the same. It is only through the process of
experiencing prediction error (and thus determining relative predictiveness of
the cues) that attention is competitively updated for the next time A is encoun-
tered. In contrast, attention has also been used in associative learning as a
computational mechanism for gating learning about multiple stimuli presented
simultaneously, effectively using competition for attention as a means of under-
standing how stimulus processing changes when cues occur individually versus
in combination with others. The assumption here is that regardless whether
attention changes as a consequence of learning, it may still influence the way
cues can be learned about at a given time. A key example of this approach is the
model developed by Harris (2006) and its subsequent real-time instantiations
(Harris & Livesey, 2010; Thorwart, Livesey, & Harris, 2012). Briefly, the model
uses the concept of an attention buffer, which enhances processing of (and gates
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learning about) the most salient components of the stimuli that the learner
experiences. When a stimulus is presented on its own, more components of that
stimulus are buffered. In contrast, when presented in compound with other
stimuli that compete for attention, fewer components of each stimulus are
buffered. Thus, rather than outlining ways in which attention changes as a
consequence of learning, these models focus on how attention might change the
nature of the stimulus representation on which learning operates. This is but
one example of a broader theoretical discussion about stimulus representation
that has dominated computational modeling of associative learning for
several decades.

21.4 Stimulus Representation

The comparative nature of associative learning research requires a
consideration of behavior analysis across nonhuman species and, in keeping
with the behaviorist tradition, theorists are usually conservative in making
assumptions about internal processes. Heyes (2012) aptly described this theor-
etical approach as one that uses thin mental representations. With the provision
of only a few simple mechanisms – basic excitatory and inhibitory links that
enable the representation of a perceived stimulus to activate representations of
other stimuli experienced in the past – associative networks can come to predict
remarkably complex behavior (the debate over whether monkeys possess meta-
cognitive abilities serves as a pertinent example; see Le Pelley, 2012).
Nevertheless, even these simple mechanisms require mental representation in
some form. One issue that has dominated theoretical debate is whether stimuli
are represented in a distributed or unitary fashion when they engage in learning.

21.4.1 Elemental Learning

Some models assume that representations of individual stimuli comprise collec-
tions of smaller components each of which can enter into association formation,
meaning that learning is distributed over many elements (e.g., Atkinson &
Estes, 1963; Estes, 1950). Influential theories such as Wagner’s (1981)
Sometimes Opponent Processes (SOP) model have used elemental stimulus
representation coupled with simple assumptions about activation states in
memory, to provide a comprehensive account of complex learning phenomena.
Indeed, most of the models discussed so far are consistent with this approach
but simplify it for convenience, regarding the discrete stimulus as the unit of
representation. In this fashion cues A and B might each form an independent
associative link with an outcome, as too might the context, represented as
another unit. When presented in compound, the prediction of the outcome is
assumed to be a function of the sum of these associative strengths. For example,
the ΣV in the Rescorla–Wagner model is the algebraic sum of associative
strengths across all stimuli present on that trial, and this determines both the
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strength of learned behavior and the prediction error that modulates new
learning. However Rescorla and Wagner (1972) acknowledged that this simple
representational scheme was insufficient to explain certain phenomena, particu-
larly those where the outcome experienced in the presence of multiple cues was
not predictable from the sum of the individual cues. The focus here will be on a
canonical example known as negative patterning (Pavlov, 1927).

In a patterning discrimination, two cues are presented to the learner, indi-
vidually and also in compound. The consequences associated with the cues
when they are presented individually are different to the consequences when
presented in compound. In the case of negative patterning, the two cues are
followed by the outcome only when they occur individually and not when they
occur together (Aþ / Bþ / AB–). It is not uncommon in the initial stages of
learning such a discrimination for anticipatory behavior to be stronger in the
presence of the AB compound than in the presence of each individual cue
(A and B), and this summation effect has been observed in both humans
(Thorwart et al., 2017) and other animals (Bellingham, Gillette-Bellingham, &
Kehoe, 1985). With further training, however, conditioned responding on the
individual-cue trials begins to outstrip responding on the compound trials, as
the subject learns the discrimination. Complex discriminations like negative
patterning tend to be more difficult than discriminations that have a linear
solution (e.g., one in which the outcome associated with any compound can be
predicted based on the learning histories of the individual cues involved). For
instance, a biconditional discrimination (e.g., ABþ / BC– / CDþ / DA–), in
which compounds of cues predict the presence or absence of an outcome but no
single cue is informative on its own, is typically more difficult than a unicondi-
tional or component discrimination (e.g., ABþ / BC– / CD– / DAþ) with the
same cue complexity but with cues (A and C) that clearly predict the presence
and absence of the outcome (Livesey et al., 2019; Saavedra, 1975).

Solving negative patterning poses a problem for models based on the simple
principle that individual associations are summative (i.e., predictions are based
on aggregating associative strengths across stimulus elements). This principle in
isolation predicts that responding to AB should always be higher than to A and
B individually. Several solutions have been offered to salvage this principle.
Whitlow and Wagner (1972) proposed the involvement of a unique cue, which
is an additional element that forms part of the representation of the compound
of A and B only when they occur together. Adding this unique cue effectively
renders negative patterning a discrimination between Aþ / Bþ and ABX–,
where X represents the unique cue formed by the co-occurrence of A and
B. Using the Rescorla–Wagner rule to solve this discrimination then results in
the unique cue X acquiring strong inhibitory associative strength, while the
individual cues A and B each acquire some excitatory strength. This approach
assumes that the representation of the compound is more than the sum of its
parts. An alternative solution is to assume that the two stimuli A and B share
some elements in common and that when they occur in compound these
common elements are not represented twice, thus the representation of the
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compound is less than the sum of its parts (Rescorla, 1972). Adding such a
common element, Y, effectively makes negative patterning a discrimination
between AYþ / BYþ and ABY–. Using the Rescorla–Wagner rule to solve
this discrimination results in the common element Y acquiring strong excitatory
associative strength, while the individual cues A and B each acquire some
inhibitory strength, enough to suppress prediction of the outcome when they
occur together (see Livesey et al., 2011).
The point here is that changes that reduce or increase the representation of

the stimulus compound (relative to the sum of the representations of the
individual stimuli) enable elemental learning rules to solve complex discrimin-
ations. Other variants of these approaches are found in a range of more
contemporary elemental learning models (Harris, 2006; McLaren &
Mackintosh, 2002; Wagner, 2003). Many of these models deal with stimulus
representation at a more molecular and distributed level, and specify processes
by which the elements of a stimulus are inhibited (Thorwart & Lachnit, 2020;
Wagner & Brandon, 2001), replaced (Wagner, 2003), enhanced, or a combin-
ation of all three (Livesey & McLaren, 2011; McLaren & Mackintosh, 2002) by
the presence and concurrent representation of other stimuli. Variations of a
strictly summative approach to stimulus representation thus enable elemental
models of learning to account for a range of difficult learning problems that
have no simple linear solution. Often it is the relative difficulty of such
discriminations (for instance whether negative patterning is easier than a bicon-
ditional discrimination; Harris et al., 2008; Harris & Livesey, 2008) that forms
the key test of a model relative to empirical evidence.

21.4.2 Configural Learning

In contrast to this elemental approach to learning, the configural approach
models learning as the formation of a single associative link between the
configuration of all stimuli present, and the outcome. This approach has been
used effectively in the model developed by Pearce (1987, 1994, 2002). According
to Pearce’s model, stimulus elements activate a single unit representing the
configuration of all elements present, and it is this unit alone that enters into
association formation with the outcome on a given trial. Predictions about
impending outcomes are made on the basis of generalized associative strength
from previously learned configurations, depending on their similarity with the
current configuration, with similarity between two configurations x and y
(expressed as xsy) in turn being determined by the proportion of stimulus
elements that the x and y configurations share in common. While Pearce used
several variants of this similarity rule across his versions of the model, Kinder
and Lachnit (2003) suggested a generalized form that follows Equation 21.5:

xsy ¼
ncffiffiffiffiffi

nx
p � ffiffiffiffiffi

ny
p

 !d

(21.5)
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In this equation, nx, ny, and nc respectively denote the number of stimulus
elements that comprise configurations x and y and the number of stimulus
elements shared in common between these configurations. The parameter d
determines how quickly generalization decreases as the proportion of shared
elements decreases; the equation is equivalent to Pearce’s (1987) original model
when d ¼ 2. This similarity rule is critical for generalized conditioned behavior
but also for moderating new learning. The Pearce model uses a prediction error
learning rule akin to Rescorla–Wagner except that the prediction is based on a
sum of the associative strengths of the configurations weighted according to
their similarity with the current configuration. For instance, in the negative
patterning example discussed above, the prediction generated on an AB
compound trial is equal to VAB þ (AsAB. VA) þ (BsAB. VB).

Pearce’s configural model learns complex discriminations like negative pat-
terning and the biconditional discrimination effectively (in fact, the model tends
to underestimate the difficulty of such discriminations relative to simpler
learning discriminations). A more difficult challenge for this approach has been
to account for evidence that predictions based on individual cues do sum
together, at least to a degree. Behavioral summation refers to the observation
that the learned behavior elicited by a combination of conditioned stimuli is
greater than the level elicited by each individual stimulus. Although summation
tends to be incomplete – it is rare for two cues to elicit twice as much responding
as each cue individually – there is nonetheless widespread evidence for partial
summation (Kehoe, Horne, & Macrae, 1994; Thein, Westbrook & Harris,
2008). This is difficult to account for according to Pearce’s model; for instance,
after two stimuli A and B are conditioned, if a compound AB is presented then
it is assumed that there will be some generalization of conditioned responding
from the A configuration and from the B configuration, however the AB
compound will simply be too different from either of these previously experi-
enced configurations to sustain a level of responding that is higher than when
either of the cues is presented individually. One solution to this problem is to
assume that the context is an important component of the stimulus elements on
which similarity is computed; since A, B, and AB trials share the same context,
this increases their similarity and allows the model to predict a modest level of
summation. Another solution suggested by the general form of the similarity
rule expressed in Equation 21.5 is to allow the d parameter to vary freely across
different experimental conditions, allowing the model to predict greater gener-
alization as d decreases.

Another issue with the similarity rule proposed in Equation 21.5 is that it
predicts that generalization will be symmetrical across two configurations
x and y. Although symmetrical generalization, for instance from ABþ to
A and from Aþ to AB is observed in some circumstances, there are certainly
instances in which this property is not observed (e.g., Bouton et al., 2012).
Similarly, a feature positive discrimination, one in which a unique feature
predicts the presence of the outcome (e.g., ABþ / A–), is typically learned faster
than a feature negative discrimination in which the unique feature signals the
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absence of the outcome (AB– / Aþ) (e.g., Lotz et al., 2012). Inman and Pearce
(2018) also noted that in discriminations based on magnitude, learning occurs
faster and more effectively if the stimulus that signals the presence of the
outcome (Sþ) is greater in magnitude than the stimulus that signals the absence
of the outcome (S–). By making the assumption that a more intense stimulus is
represented across a greater number of elements than a less intense stimulus
(e.g., a louder sound activates a larger population of neurons than a soft sound;
Relkin & Doucet, 1997), Inman and Pearce argue that these two widely repli-
cated results may well be related; both involve asymmetries in generalization in
which the stimulus represented by more elements (AB, larger magnitude S)
generalizes less to the stimulus represented by fewer elements (A, smaller
magnitude S) than vice versa. When A is paired with the outcome, learning
generalizes to AB relatively strongly, making discrimination between the two
difficult. When AB is paired with the outcome, learning generalizes to
A relatively weakly, making the discrimination easier. Inman and Pearce there-
fore proposed an asymmetrical similarity rule that can be described by the
following equation – determining generalization between the previously trained
compound x to the current compound y – to allow their configural approach to
capture this asymmetry:

xsy ¼
nc
nx

� �
� nc

ny

� �d

(21.6)

A variety of empirical evidence, in animal and human associative learning, has
been used to support elemental and configural accounts of learning. While these
studies do provide tests of adequacy of specific models, some have argued that
they are unlikely to demonstrate that the elemental or configural approach is,
overall, better (Ghirlanda, 2015). Instead, the two approaches could be viewed
as being complementary in terms of their aims. Configural models may provide
a functional understanding of how psychological similarity between past and
present circumstances affects generalization whereas elemental models provide
a way to take inspiration from (and contribute to the understanding of )
distributed neural processes. Alternatively, some theorists have suggested that
organisms possess systems for both elemental and configural stimulus represen-
tation and some degree of flexibility in shifting between these modes (e.g.,
Delamater et al., 1999; Kehoe, 1988, 1998; Melchers, Shanks, & Lachnit,
2008; Schmajuk and DiCarlo, 1992; Schmajuk et al., 1998).

21.4.3 Shared Elements and Generalization

Debates about the nature of stimulus representation naturally revolve around
the extent to which learning generalizes from one instance to another, and
conversely the ease with which the learner discriminates between different
instances. The key computational consideration (for both elemental and con-
figural approaches) is the extent to which the instances share stimulus elements
in common. Configural models focus on how shared elements are used to
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calculate generalization from past learning based on a similarity rule, while
elemental models focus on how individual components of the representation,
which each carry some associative strength based on their past engagement in
learning, are activated in a new situation. Assumptions about common elements
are central to many explanations offered by computational models to account
for complex behavior (e.g., Haselgrove, 2010; Soto & Wasserman, 2010). It is
not uncommon to assume that stimuli that are perceptually very distinct, such
as a light and a noise, share at least some elements in common (e.g., McLaren &
Mackintosh, 2000, 2002) and it is generally accepted that the degree of overlap
in the representations increases as stimuli become more similar, for instance
when they are drawn from the same stimulus modality, or are perceptually
confusable.

The importance of these assumptions is well illustrated when applied to
generalization and discrimination between stimuli that lie on an ordinal con-
tinuum, like lights of different spectral hue, or tones of different frequency.
Relatively simple assumptions about stimuli containing overlapping sets of
elements, coupled with a prediction error learning rule, can be used to model
generalization phenomena that are widely observed across many species
(Ghirlanda & Enquist, 1998). Blough (1975) took the Rescorla–Wagner rule
and applied it to a set of stimulus elements, which he assumed were activated by
stimuli to different degrees depending on the tuning properties of the elements.
For instance, a given stimulus element might be activated maximally for a
550 nm wavelength keylight, but also strongly active for lights of 540 nm and
560 nm, and partially active for lights of 520 nm and 580 nm. By using an array
of these perceptually tuned stimulus elements as the basis of learning, he showed
that the effects of discrimination learning on generalization could be modelled
with remarkable precision.

Perhaps the most striking example of this involves the peak shift effect
(Hanson, 1957). In a typical peak shift experiment, animals (e.g., pigeons) are
trained to discriminate between two very similar stimuli, an Sþ that is paired
with an outcome and an S– which is not (e.g., a 550 nm light Sþ versus a
560 nm light S–), and then successively shown a range of stimuli that vary along
the same dimension. Peak shift occurs if the subjects show a response preference
(i.e., peak responding) for a stimulus that has never been reinforced, one that is
a little less similar to S– than is the Sþ that was actually trained (e.g., 540 nm).
The peak shift effect suggests that animals prefer an exaggerated form of the
reinforced stimulus, one in which the characteristics that distinguish it from the
nonreinforced stimulus are a little more obvious. Blough’s analysis shows an
interesting property of error correction models when it comes to discrimination;
it is not always the elements that are most characteristic or representative of a
stimulus that are important for controlling behavior, particularly when discrim-
ination between stimuli is involved. Rather, the elements that are most diagnos-
tic of the outcome, those that best distinguish whether an outcome will or will
not occur (and at the same time, those that best distinguish between Sþ and S–)
are the most critical. Other models have used similar sampling assumptions to
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explain discrimination and generalization along a continuum (e.g., Ghirlanda &
Enquist, 1998; McLaren & Mackintosh, 2002) and have extended these basic
principles of overlapping stimulus representation to investigate discrimination,
generalization, and the peak shift effect in complex stimuli, where the ordinal
continuum along which the stimuli are organized is artificially contrived (e.g.,
Livesey & McLaren, 2019; Wills & Mackintosh, 1998).

21.5 Learning About the Absence of an Expected Outcome

21.5.1 Inhibitory Learning

One of the key advantages of the summed error term used by Rescorla and
Wagner (1972) is that it provides an intuitive explanation for how inhibitory
connections can develop when a cue serves as a signal for the omission of an
expected outcome. When the summed associative strength on a given trial
exceeds the value of the outcome that is actually presented (i.e., λ > ΣV), then
the summed error term (λ – ΣV) is negative. In making this prediction, the
Rescorla–Wagner model anticipated the observation of overexpectation; when
two cues have each individually been paired with an outcome repeatedly such
that they both predict the outcome well, and are then presented as a compound
followed by the outcome, their associative strength is predicted to decrease.
Studies have confirmed that overexpectation is observed in animal conditioning
(e.g., Kremer, 1978; Rescorla, 1970). Naturally, the concept of negative
prediction error applies to situations in which the outcome is expected but does
not occur (i.e., ΣV is positive but λ ¼ 0 ). For instance, if cue X has previously
been paired with an outcome such that its associative strength is positive, but
then the compound AX results in no outcome, then the learner has an expect-
ation that the outcome will occur based on the presence of X, but the presence
of A signals that the outcome will be omitted. In such situations, cue A – the
signal of outcome omission – develops the ability to suppress the conditioned
responding that would otherwise be evoked by other cues that have been paired
with the outcome (that is, A serves as a conditioned inhibitor; Rescorla, 1969).
According to the account offered by Rescorla and Wagner, stimuli that are
correlated with negative error come to acquire negative associative strength.
Hence, when they appear in combination with other cues, ΣV is reduced. On
this account, the relationship between a cue and outcome is captured by a single
association that can be positive or negative. Other models split the learning of
excitatory and inhibitory relationships such that a cue can come to activate a
node representing the outcome or a “no outcome” node, which in turn inhibits
the representation of the outcome (Hall & Rodriguez, 2010; Konorski, 1967;
Pearce & Hall, 1980). In most situations, these two approaches give roughly the
same predictions. However, the latter recognizes the potential for excitatory
and inhibitory connections to exist simultaneously, and goes part of the way to
acknowledging that the omission of an expected outcome often does not simply
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result in unlearning of the cue–outcome association. The clearest evidence of
this comes from research on extinction.

21.5.2 Extinction

Extinction refers to the behavioral effect observed when the consequences
associated with a predictive cue or action are no longer experienced (Pavlov,
1927). For instance, when a CS is initially paired with a US, conditioned
behavior emerges and strengthens over conditioning episodes, but if the US is
subsequently omitted – the CS is presented repeatedly in the absence of the US –

then that conditioned behavior will recede again towards a baseline. Extinction
is highly relevant to understanding the treatment of phobias, drug addiction,
and a range of other clinical and health issues. It is in one sense very lawful,
following what one might predict from any of the learning models discussed so
far; the presentation of a predictive cue without the outcome that it has come to
predict weakens the association between them. According to a prediction error
learning rule, for instance, expectation of the outcome based on the associative
strength of the cue will be positive and the observation of the outcome will be
null (e.g., λ ¼ 0). This means that, regardless of whether one uses an individual
or summed error term, the error term will be negative and associative value of
the cue will reduce towards 0. The shape of the typical extinction curve – which
mirrors an acquisition curve, with large reductions in responding early in
extinction and progressively less change thereafter – is well captured by this
approach. On the other hand, several phenomena clearly show that this explan-
ation, which views extinction as unlearning of an association between the CS
and US, is too simplistic. Chief among these are a set of “relapse” effects in
which conditioned behavior re-emerges after extinction appears to have all but
removed the response (e.g., see Bouton, 1994, 2004). For example, a change in
context between extinction and test often results in a resurgence in conditioned
responding, an effect referred to as renewal (e.g., Bouton & Bolles, 1979).
Renewal is particularly prevalent when the initial conditioning occurs in one
context (A), extinction in another (B), and then the test of renewal occurs in the
original conditioning context A. However, renewal has also been observed
when transferring to a novel context, or a context in which acquisition did
not occur, suggesting that the extinction learning, in particular, is specific to the
surrounding circumstances in which that learning occurs.

Relapse effects, and the context specificity of extinction, are not captured well
by standard prediction error models of learning: if (as such models suppose)
extinction of conditioned responding reflects unlearning of an association
between CS and US, then why does testing in a particular way (e.g., following
a change of context) suggest that the CS and US are in fact still associated?
Inclusion of the context in simulations using these models provides a partial
solution. If one assumes that the context has changed between acquisition and
extinction, then the extinction context acquires inhibitory strength as a conse-
quence of the cue (which initially produces an expectation of the outcome)

Computational Models of Animal and Human Associative Learning 721

https://doi.org/10.1017/9781108755610.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.025


being presented in the absence of the outcome in that context. This has a
number of consequences, the most important being that the cue itself is pro-
tected from complete extinction – at some point during extinction learning, the
inhibitory strength of the context matches the remaining excitatory strength of
the cue, meaning that summed associative strength equates to zero and no
further extinction occurs. Consistent with this observation, if two cues have
each individually been paired with an outcome and then undergone extinction
such that they no longer elicit responding, when they are presented together,
responding re-emerges as if their combined residual associations are sufficient to
overcome the inhibitory associations of the context. At this point, if the com-
pound is not followed by the outcome, then deepened extinction occurs, much as
would be expected from a prediction error model (Rescorla, 2006). A clear
challenge to this explanation though is that it necessarily entails the context
becoming inhibitory. Several studies have failed to find compelling evidence
that the context behaves like a conditioned inhibitor (Bouton & King, 1983; see
Williams, Overmier, & LoLordo, 1992 for a review; but see Polack, Laborda, &
Miller, 2012).
This is one of many limitations to the simple explanation of extinction offered

by the Rescorla–Wagner model (e.g., see Delamater & Westbrook, 2014). The
general approach to extinction offered by error correction mechanisms is not
completely without merit. For instance, Holmes, Chan, & Westbrook (2020)
recently demonstrated that Wagner’s SOP model – an elemental model that
implicitly operates as a prediction error model – predicts extinction-related
phenomena with much higher fidelity. In SOP, there are several mechanisms
that contribute to renewal, meaning that it is not reliant on the context being
inhibitory in the same way as the Rescorla–Wagner model. However, the
limitations are sufficient for theorists to consider a number of other approaches.
Researchers have appealed to the ability of the context to serve as an

occasion-setter in order to understand how behavioral expression of the cue–
outcome relationship changes with context and the passage of time. Occasion
setting refers to the situation in which a cue (X) provides information about
whether another cue (A) will be associated with the outcome (Holland, 1983;
see Fraser & Holland, 2019). X comes to modulate anticipation of the outcome
in the presence of A but does not appear to control anticipatory behavior in its
own right. It is as if X informs the learner about when A is associated with the
outcome without gaining any direct association with the outcome itself. In
considering extinction, components of the extinction context may serve as a
negative occasion setter, thus modulating the expression of the cue–outcome
association rather than directly weakening it (Bouton & Swartzentruber, 1986).
Alternatively, Bouton (1994) has also focused on the notion of competing
memories retrieved when a cue is experienced after both acquisition and extinc-
tion. These explanations are compelling and informative but since they have
not been formally instantiated in a computational model, focus here will instead
be on another emerging and complementary approach based on rational gen-
erative models of learning.
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Gershman, Blei, and Niv (2010) developed a generative model to understand
the problem of relapse phenomena observed in extinction. Generative models
are a type of rational model that assume there is a latent causal structure
determining events in the world, observed events (such as cues and outcomes)
and the relationships between them. Although the causal structure cannot be
directly observed, learning the contingencies between events provides the
learner with evidence about which of the latent causes are likely and which
are not. The learner’s goal, according to this rational approach, is to make
inferences about the nature of the underlying causal structure. Gershman et al.
(2010) proposed that the learner attributes training trials and extinction trials to
separate latent causes. When moving from acquisition to extinction schedules,
the abrupt change in the contingency between cue and outcome provides
evidence to the learner that a change has occurred in the underlying causal
structure. This idea is an adaptation of the notion of changing states proposed
by Redish et al. (2007) and is similar to a more general concept of a change in
context triggered by a noticeable change in the associative structure of the task,
but in this case is embedded in a Bayesian generative model. After extinction,
manipulations that present evidence consistent with the inference that the
latent cause from the acquisition phase is active (such as a change in context)
lead to renewed prediction that the outcome will occur and an increase in
conditioned behavior.

21.6 Learning in the Absence of Expectations
and Consequences

Associative learning is usually concerned with the relationships
between predictive cues and meaningful outcomes, and most models focus on
the manner in which information about statistical contingency between these
events is acquired. However, it is widely acknowledged that learning about
neutral environmental cues still occurs in the absence of any meaningful out-
come and (unlike in the case of extinction) in the absence of any learned
expectation that an outcome should occur. Evidence for such effects extends
back to observations of sensory preconditioning (e.g., Brogden, 1939); if an
animal is first presented with two cues A and B together without any conse-
quences, then B is later paired with an outcome, it often results in cue A also
eliciting anticipatory behavior despite never being paired with the outcome. The
result indicates a likely contribution of auto-associative processes that do not
require reinforcement by events of immediate motivational relevance. The
general propensity for animals to learn statistical relationships between cues
in their environment has led prominent researchers in animal conditioning to
describe associative learning as a means by which animals acquire information
about the causal structure of their world (e.g., Rescorla, 1988). Such processes
are thought to underpin the widespread observation of statistical learning
(Frost et al., 2019; Perruchet & Pacton, 2006; Saffran, Aslin, & Newport, 1996).
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While it is clear that animals possess a capacity to learn stimulus relations
“passively” (i.e., without any consequences), several other consequences of
mere exposure have captured the interests of theorists because they are particu-
larly challenging to explain in associative terms. Perhaps the most intensively
studied of these is latent inhibition (Lubow & Moore, 1959), the observation
that passive exposure to a cue slows the rate at which that cue is learned about
in the future. In a latent inhibition experiment, subjects are first exposed
repeatedly to a neutral cue in the absence of any particular consequence.
Subjects then perform a learning task in which the cue serves as a predictor of
an impending outcome. Latent inhibition refers to the fact that subjects show
poorer anticipation of the outcome throughout the learning stage and in subse-
quent tests compared to control conditions in which the stimulus is novel rather
than pre-exposed at the beginning of the learning stage. Thus the pre-exposure
phase effectively impedes later learning and retrieval.
The fact that pre-exposure of a cue influences the later rate of associative

learning is not captured by the standard prediction error approach typified by
the Rescorla–Wagner model. Since no outcome is presented during the pre-
exposure phase, there can be no change in the strength of the association
between the cue and that outcome: during this phase, the cue predicts nothing,
and nothing occurs, and hence prediction error will be zero. On this account,
since no learning occurs during the pre-exposure phase, there is no basis for
predicting that later conditioning will be impeded in any way. Theorists have
hypothesized several explanations for latent inhibition which, broadly speaking,
assume that exposure either produces a reduction in the capacity for the cue to
engage in new learning (a reduction in its salience or capacity to capture
attention) or produces competing memories of the cue occurring in the absence
of any meaningful events (or both; e.g., Hall & Rodriguez, 2010). Of those
accounts that are well developed computationally, several specifically assume
that stimulus salience is lost as the cue itself becomes expected, and thus its
ability to enter into new learning is reduced (e.g., McLaren, Kaye, &
Mackintosh, 1989; Wagner, 1981). Wagner (1978) suggested that since the
subject becomes familiar with the cue in a particular context, context–cue
associations form that give rise to the activation of the cue whenever the context
is experienced. This means that the representation of the cue is primed in
memory prior to its occurrence. Wagner proposed that this priming limits the
ability of the cue to form associations with the outcome.
Mere exposure to stimuli can have other consequences which at first glance

appear to be at odds with the latent inhibition effect. For instance, exposing a
subject to similar stimuli, in the absence of any outcomes, also renders them
easier to tell apart when the subject needs to learn that they are associated with
different consequences. In the seminal demonstration of this perceptual learning
effect, Gibson and Walk (1956) exposed developing rats to circle and triangle
shapes before training them on a discrimination in which the circles and
triangles signalled different consequences. Relative to a control group who were
not given any pre-exposure to the shapes, the rats acquired the discrimination
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rapidly, showing a clear facilitation of discrimination learning. One of the key
challenges for models that deal specifically with stimulus exposure is to explain
how becoming familiar with a stimulus can impede learning (latent inhibition)
but facilitate later discrimination (perceptual learning). One explanation that
has proven influential builds on the idea that stimulus elements lose salience
proportional to how well they can be predicted. During exposure, as stimulus
elements shared in common by similar stimuli will be experienced relatively
often, they will lose salience faster than elements that are less well predicted
(e.g., those representing features that are only present on some stimuli and not
others). This means that distinctive features will remain relatively salient com-
pared to common features, facilitating discrimination while at the same time
predicting latent inhibition. McLaren, Kaye, and Mackintosh (1989; McLaren
& Mackintosh 2000, 2002) formalized this idea in an elemental computational
model that uses prediction error for learning but also for enhancing the acti-
vation of surprising stimulus elements. This is but one example of an associative
mechanism that has been used to explain multiple phenomena that do not seem,
at first glance, to involve associating events together.

21.7 The Control of Instrumental Actions by
Associative Learning

Much of this chapter has concerned Pavlovian conditioning, for which
modeling efforts are primarily focused on associations between predictive cues
and their associated outcomes. This is no coincidence given that many of the
current computational theories of associative learning were developed at a time
when Pavlovian conditioning was the dominant paradigm in many learning
laboratories (Balleine & Dickinson, 1998). However, it neglects a significant
aspect of associative learning, namely learning about behavior–outcome
relationships.

Instrumental learning has been thought of in associative theoretic terms ever
since Thorndike (1898) conceived of association formation as a psychological
link between stimulus (S) and response (R), stamped in as a consequence of
experiencing reward after making the response. This highly influential S-R
learning idea forms the basis of understanding actions as habits, behaviors that
are performed as a natural consequence of prior experience rather than in
consideration of obtaining one’s current goals (e.g., Hull, 1943; Spence, 1956).
However, clear evidence now exists that animal learning is often goal-directed
in a way that is not captured by S-R associations alone. For instance, once an S-
R relationship is learned, responses in the presence of that stimulus are sensitive
to changes in the value of outcome (Adams, 1982). They are also sensitive to
changes in the probability that the response will lead to the rewarding outcome
(Dickinson et al., 1998). These and similar findings have stimulated a wealth of
theoretical development in recent decades, much of which falls under the
umbrella of reinforcement learning. Since reinforcement learning models are
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given comprehensive treatment in Chapters 10 and 22 in this handbook, they
will not be covered in detail in this chapter. One question about instrumental
learning that will be covered here briefly is how reward-seeking (and
punishment-avoiding) behaviors are motivated by Pavlovian signals of reward
and punishment. That is, how do environmental cues associated with meaning-
ful outcomes come to control behavior?
An idea that emerged in parallel to the expectancy-based prediction error

models of the 1970s is that the motivation to work for a reward is supplied by
the expectancy of that reward, or another like it. The phenomenon that dem-
onstrates this most clearly is Pavlovian-instrumental transfer (PIT) which refers
to the capacity of a Pavlovian cue to enhance instrumental responding when the
cue and the response have independently been paired with the same or similar
outcomes (e.g., Estes, 1943; Rescorla & Solomon, 1967). In a typical PIT
experiment, the learner might be asked to learn two instrumental responses,
R1 and R2, each reinforced with a different appetitive reward (O1 and O2). In a
separate phase, Pavlovian cues (e.g., S1, S2) are paired with one of these
outcomes such that S1 predicts O1. The learner is then presented with the
Pavlovian cues and given the opportunity to perform the instrumental responses
in the absence of reward. The Pavlovian cues possess a capacity to enhance
behaviors in both an outcome-specific way (e.g., S1 enhances R1 over R2) and a
general way (e.g., an S3, paired with O3, still enhances R1 and other instru-
mental responses).
Perhaps the most extensive mechanistic account of PIT offered to date

comes from the associative cybernetic model developed by Dickinson &
Balleine (1993) to provide a general framework for Pavlovian and instrumen-
tal interactions, and goal-directed behavior (see Balleine & Ostlund, 2007).
The key assumption of this model is that instrumental learning involves both
R–O and O–R associations, as the response is reinforced with the outcome,
but the outcome also serves to predict the generation of the next response. The
model then predicts that a Pavlovian stimulus will encourage instrumental
responding via Pavlovian S–O associations, which activate the representation
of the outcome, then subsequently enhance the response via O–R associations.
The dual (and dissociable) functions of the outcome – as both a stimulus and a
source of reward – are represented as independent nodes for associative and
reward memory. Since the latter is not stimulus specific, it provides a means of
explaining outcome-general PIT; the presence of S1 activates O1, which in
turn stimulates reward memory, causing a more general energizing effect on
behaviors associated with reward. This model demonstrates that interactions
between relatively simple forms of associative knowledge can predict surpris-
ingly complex behavior. Complementing the aims of the associative cybernetic
model, a Bayesian analysis of PIT has been developed by Cartoni et al. (2013).
Like other Bayesian models, it makes use of the notion of latent causes to offer
some further insights into why one might rationally expect to find specific and
general forms of PIT.
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21.8 Future Challenges

21.8.1 Translating Associative Predictions to Quantitative Changes
in Behavior

Associative learning models have often been developed with the explicit aim of
explaining commonalities across diverse examples of learning, including cross-
species comparisons, and comparisons of effects in very different test beds (for
instance the blocking effect has been shown in conditioned fear responses in rats
and in category learning in humans). Perhaps for this very reason, many formal
modeling efforts in this domain have avoided the difficult task of specifying how
associations should be translated into predictions about behavior. Formal
modeling often focuses on reproducing ordinal effects rather than close quanti-
tative fits. Choice behavior in humans is often modelled using Luce’s (1959)
response ratio rule (or the softmax rule) which allows a flexible way to explain
how a learner might distribute their choices probabilistically among several
options. Recently, researchers have explored the possibility of combining pre-
diction error learning models with evidence accumulation models of decision
making, which use error and response time distribution data to estimate factors
related to the decision process itself, such as the rate of evidence accumulation,
decision boundaries, and nondecision time (e.g., Luzardo, Alonso, &
Mondragón, 2017; Sewell, et al., 2019). These models provide a means of
simultaneously modeling the decision process, and the development of the
evidence on which the decision is made (i.e., retrieval of associations). This line
of inquiry offers new precision in applying computational models to associative
learning. Nevertheless, these efforts still currently only address a small subset of
the behavioral situations to which associative learning is routinely applied. In
human learning alone, the translation of associative predictions to causal
ratings, or the direction of eyegaze, or the probability of an eyeblink, elevation
of skin conductance, or change in neural response is nontrivial. There is a clear
need to integrate the formal computational models of associative learning with
formal models of the behavior itself.

21.8.2 Modeling Individual Differences

Associative learning theories are typically models of central tendency: they
track a single point estimate of associative strength and compute an expected
prediction based on that estimate rather than providing a meaningful distribu-
tion or range of credible values. In this sense they are largely silent regarding
predictions about individual differences in learning and responding. This is
increasingly being viewed as a limitation, as evidence suggests that stable
individual differences in learning emerge not only in humans but also in
laboratory animals. For instance, rats trained on a simple cue-reward contin-
gency differ markedly in their propensity to orient towards the cue (sign
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tracking) versus the location of the reward itself (goal tracking; Boakes, 1977).
This variability, coupled with parallels drawn between sign tracking and drug
seeking, has led some to propose sign tracking is a marker of vulnerability to
drug addiction (e.g., Flagel et al., 2009). However, Patitucci et al. (2016) found
that these differences were predicted by measures of the hedonic value of the
reward and were specific to the reinforcer, arguing that they have more to do
with variation in the process of reinforcement and association formation than
variation in the dispositions of the learners. In response, Honey, Dwyer, &
Iliescu (2020) recently proposed a model that attempts to make use of the
expression of associations to explain individual differences in conditioning.
Their HeiDI model assumes that reciprocal associations form between any pair
of stimuli (cues or outcomes, for instance) that are presented on a given learning
trial, each governed by a summed error term like that used in the Rescorla–
Wagner model. Simply by assuming that the salience of the cues and outcomes
(captured by the learning rate parameters α and β like those used in Equation
21.2) vary across individuals, Honey et al. show that reliable differences in
preference for sign tracking and goal tracking can be anticipated with
the model.
Explaining individual differences in human learning may prove decidedly

more complex. Computational models of associative learning have been
developed to account for a particular learning process and it should come as
no surprise that they do not speak directly to many of the facets of human
behavior. Nevertheless, researchers have questioned whether individual differ-
ences in learned behavior, and more critically the tendency to learn and behave
in specific ways, is related to individual differences in the development or use of
associations. One approach assumes that individual differences reside in how,
and the extent to which, other competing cognitive processes might build on or
even override predictions developed through associative learning. On this
account, the source of variation in human learning resides in the differential
reliance on associative versus other processes to make predictions (e.g.,
Goldwater et al., 2018; McDaniel et al., 2014). An alternative approach is to
assume that differences across individuals in the processes that are more integral
to associative learning itself might determine variance in the way associations
develop. These may include the way stimuli are represented (e.g., Byrom &
Murphy, 2014) or how effectively attention responds to learning (Le Pelley
et al., 2010). Recent test beds for these hypotheses have included the transfer of
feature-based and relational rules in negative patterning and their relationship
with measures of cognitive ability and cognitive control (Baetu et al., 2018; Don
et al., 2016, 2020; Maes et al., 2017). This is an area that requires further
empirical work and computational innovation. The issue at hand is that there
are multiple routes by which other psychological processes might influence the
way associative learning operates, and how its predictions might translate to
behavior (Thorwart & Livesey, 2016). Defining clear computational rules for
how these interactions occur in given circumstances is an important challenge
for future work.
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21.9 Conclusion

In providing a snapshot of some of the major theoretical questions pre-
occupying associative learning research, this chapter has hopefully made it clear
just how influential certain innovations have been to contemporary learning
models. Above all others, the concept of prediction error has been pivotal ever
since the development of the Rescorla–Wagner model, fifty years ago.
Prediction error is still thought to be fundamentally important for the
development and modification of associations and for guiding selective atten-
tion. The introduction of new formal rational models (particularly Bayesian
models) has provided new insights to understand the behavioral problems that
learning mechanisms must solve. There are, of course, other computational
approaches that are not covered here, and many more associative learning
phenomena that are of interest to theorists. After well over 100 years of
associative learning research, debates about the best ways to capture basic
learning processes, computationally and theoretically, are still alive and well.
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22 Computational Cognitive
Models of Reinforcement
Learning
Kenji Doya

22.1 Introduction

Reinforcement learning (RL) is a computational framework for an agent
to learn a policy through action exploration and reward feedback (Sutton
& Barto, 2018). Chapter 10 of this handbook presented the problem settings
of the Markov decision process (MDP) and partially observable MDP
(POMDP), the concepts of state and action value functions and temporal
difference (TD) error signal, model-free learning algorithms like Q-learning,
sarsa and actor-critic, and model-based methods like dynamic programming
and action planning by tree search. That chapter also covered present under-
standing about how reinforcement learning is realized in the brain, such as the
TD error coding by dopamine neurons, value coding in the basal ganglia, and
involvement of the cerebral cortex and the cerebellum in model-based action
planning and learning.

The present chapter first reviews advanced methods in reinforcement learn-
ing, namely, modular and hierarchical RL, distributional RL, meta-RL, RL as
inference, inverse RL, and multi-agent RL, many of which are utilized in recent
computational cognitive models. Presented next are computational cognitive
models based on reinforcement learning, including detailed models of the basal
ganglia, variety of dopamine neurons responses, roles of serotonin and other
neuromodulators, intrinsic reward and motivation, neuroeconomics, and
computational psychiatry.

22.2 Advanced Reinforcement Learning Methods

22.2.1 Modular and Hierarchical Reinforcement Learning

An important feature of RL is that it can address the issue of delayed reward, or
temporal credit assignment, by predicting the cumulative future rewards in a
form of a value function. However, if a long time is incurred from the start of an
episode to an acquisition of reward, typically by reaching a final goal state,
temporal credit assignment becomes difficult and learning requires many epi-
sodes. One solution to this issue is temporal abstraction by a hierarchical
behavior organization, with higher-level actions spanning multiple time steps.
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Such a hierarchical organization also has a merit of allowing compositional re-
use of behavioral modules in different situations.
One class of hierarchical RL is for a higher-level RL agent to sequentially

select lower level RL agents with rewards for reaching sub-goals. A classic
example is feudal RL (Dayan & Hinton, 1993), in which the higher-level RL
agent learns to maximize the task-level reward by learning to set the reward
functions for lower-level RL agents. For a task where a robot learns to stand
up, Morimoto and Doya (2001) developed a hierarchical RL architecture in
which a higher-level agent uses Q-learning to generate a sequence of target
postures, while lower-level agents use actor-critic to implement continuous
control of joint torques to reach each target posture.
In another class of hierarchical RL, the task reward is divided to lower-level

RL agents so that the overall consistency of the value function is maintained.
Examples include compositional Q-learning (Singh, 1992), HQ learning
(Wiering & Schmidhuber, 1998), MAXQ decomposition (Dietterich, 2000),
and the options framework (Sutton et al., 1999).
In the options framework (Sutton et al., 1999), each option consists of an

initiation set $, a policy π s, að Þ, and a termination condition β sð Þ. At a given
state s, among the set 's of available options, an option o 2 's is selected
according to a policy over options μ s, oð Þ, and then the policy πo is applied
until the option is terminated with the probability βo sð Þ. After the option is
completed at a state s0 in k steps, the value of the option is updated similarly to
the update of the action value in Q-learning as

Q s; oð Þ≔Q s; oð Þ þ α
Xk�1

t¼0

γtrt þ γk max
o02's0

Q s0, o0ð Þ �Q s; oð Þ
" #

(22.1)

Figure 22.1A illustrates how the propagation of value is accelerated by tem-
poral abstraction by options in an example of the hallway task, in which each
option implements a policy to reach to one of the gates between rooms.
A critical issue in modular and hierarchical RL is how to divide the main task

into subtasks and learn modules for solving the subtasks. One principle is to define
subtasks so that the state transition is well predicted (Doya et al., 2002; Haruno
et al., 2001) or Markovian properties are achieved (Cilden & Polat, 2015; Sun &
Sessions, 2000). A further extension is to learn modules separately for different
state transition dynamics and reward settings, which can facilitate compositional
re-use of multiple modules (Franklin & Frank, 2018; Sugimoto et al., 2012). In the
options frameworks, the option-critic architecture has been proposed (Bacon
et al., 2017) to simultaneously optimizing parameters defining the policies and
termination condition of options and the higher-level policy for selecting options.

22.2.2 Distributional Reinforcement Learning

The standard RL framework aims to maximize the expectation or the average
of rewards acquired over time. In real-life situations, however, one is often
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concerned with what can happen in the worst case, or what one can hope for in
the best case. Industries like insurance and gambling serve such needs. For such
purposes, an agent needs to consider the probability distribution over different
outcomes, rather than estimating the mean outcome. In a class of algorithms
called distributional RL, instead of the value function as the estimated mean of
return (cumulative discounted future rewards), the distribution of return from
each state or state-action pair is learned. One approach is to assume a parameter-
ized distribution, such as Gaussian or Beta distribution, and update its parameters
for each state or state-action pair (Daw et al., 2005; Dearden et al., 1998).
Another way is to represent the reward distribution in a nonparametric way by
a histogram (Bellemare et al., 2017) or quantiles (Dabney et al., 2018, 2020).

A B C R

x1 x2

B

Figure 22.1 (A) Options framework applied to the hallway task. Each option
implements a policy to move to one of the gates between rooms and terminate
when the agent arrives there. With temporal abstraction, the value signal can
propagate rapidly to the states far away from the goal in fewer updates (Sutton
et al., 1999). (B) In the Bayesian framework of classical conditioning, an
agent is supposed to infer hidden causes that generate different sensory cues
(A, B, C) and the reward R (Courville et al., 2006).
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In quantile regression TD learning (Dabney et al., 2018, 2020), the distribu-
tion of the return from each state s is represented by N samples
V1 sð Þ, . . . , VN sð Þf g and they are updated by TD learning with different
learning rates for positive and negative TD errors as

Vi sð Þ≔Vi sð Þ þ αþi f δið Þ if δi > 0 (22.2)

Vi sð Þ≔Vi sð Þ þ α�i f δið Þ if δi � 0 (22.3)

The TD error is computed using a sample Vj at the next state s0

δi ¼ tþ γVj s0ð Þ � Vi sð Þ (22.4)

and the learning rates are set, e.g., as αþi / i and α�i / N � i. When the function
f δð Þ ¼ sgn δð Þ, Vi sð Þ converges to the i-th quantile of the return distribution.

22.2.3 Meta-Reinforcement Learning

When humans and animals learn several related tasks, learning a similar new
task can become faster. Such a process is called “learning to learn” or meta-
learning (Doya, 2002; Thrun & Pratt, 1998). Meta-learning in RL can happen
in several ways. One is to learn to set appropriate parameters for RL algo-
rithms, such as the learning rate, the temperature for exploration, and temporal
discount factor (Doya, 2002). In general, it is possible to tune such parameters
by RL, i.e. RL of RL (Schweighofer & Doya, 2003).
For specific parameters, normative methods for adapting them based on the

nature of the environment and the progress of learning have been proposed. For
example, the learning rate can be set high in a deterministic environment, but have
to be kept low in a stochastic environment to avoid being distracted by noisy
outcomes. On the other hand, when the environment switches to a different mode
or context, the learning rate should bemade higher to adapt to a new environment.
Yu andDayan proposed a framework for regulating the learning rate based on the
stochasticity (predictable uncertainty) and the volatility (unpredictable uncer-
tainty) of the environment and attributed such controls to acetylcholine and
noradrenaline, respectively (Yu & Dayan, 2005). Other models for the regulation
of the learning rate have been proposed from a Bayesian perspective (Mathys
et al., 2011; Nassar et al., 2010). The regulation of learning rates in relation to the
volatility has also been observed in human RL (Behrens et al., 2007).
Another aspect of meta-learning is to learn relevant state and action repre-

sentations for a given class of tasks. Since the deep Q-network provides a
solution to representation learning in reinforcement learning through stable
combination of TD learning and error back-propagation (Mnih et al., 2015),
reuse of such action and reward-oriented representations for transfer learning of
similar tasks is a practical approach (Devin et al., 2017). By training a single
recurrent neural network for twenty different cognitive tasks, Yang and Wand
demonstrated that compositional task representation could be learned (Yang
et al., 2019).
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In animal conditioning studies, the effect of learning a sensory stimulus on
the subsequent learning with similar or combinatorial stimuli has been exten-
sively studied. While such effects have been traditionally explained as associa-
tive learning between sensory cues and reward or actions (Pearce & Bouton,
2001), a new line of research proposes that animals learn hidden causes for
generating sensory stimuli and reward or actions (Figure 22.1B) (Courville
et al., 2006; Gershman, 2015; Gershman et al., 2010; Langdon et al., 2019).

Learning a dynamic model of the environment and using a model-based
strategy can also facilitate learning to achieve a new goal in the same
environment (Doya et al., 2002; Franklin & Frank, 2018; Sugimoto et al.,
2012). A related strategy is to learn the successor representation, which is a
discounted frequency of visiting a state s0 by following a policy π from a state s
(Dayan, 1993; Stachenfeld et al., 2017)

Mπ s, s0ð Þ ¼ ®π

X
t¼0

γt1 st ¼ s0ð Þjs0 ¼ s

" #
(22.5)

A benefit of this successor representation is that the state value function is easily
computed by its inner products with the reward function

Vπ sð Þ ¼
X
t¼0

M s, s0ð ÞR s0ð Þ (22.6)

which allows rapid re-valuation of states when the task goal was changed. This
mechanism has been utilized in a framework of generalized policy updates that
uses a set of reward functions and policies with successor representations
(Barreto et al., 2020).

A further variant of meta-learning is to learn a procedure to change actions
based on the experienced sequence of state, action, and reward (Ito & Doya,
2015b; Wang et al., 2018). By combining a variant of actor-critic and a
recurrent neural network of long short-term memory (LSTM) units
(Hochreiter & Schmidhuber, 1997), Wang and colleagues demonstrated that
task-relevant latent variables, such as the reward probabilities for different
actions, can be learned. After sufficient learning, the meta-RL agent could
adapt to a new task setting even if all connection weights were fixed, by properly
updating the latent variables based on the sequence of sensory observation,
action, and reward (Wang et al., 2018).

22.2.4 Reinforcement Learning as Inference

Following the formulation of optimal control by dynamic programming by
Richard Bellman (Bellman, 1952), Rudolf Kalman developed a theory of
optimal linear quadratic regulator (LQR) (Kalman & Koepcke, 1958).
Kalman then developed an optimal filtering theory known as Kalman filtering
(Kalman, 1960) and realized that the equations used for optimal control and
optimal filtering had the same structure, known as Kalman’s duality. Recently,
the meaning of this duality was explained by Emanuel Todorov as the
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correspondence between the computation of the value function in RL and the
log posterior distribution in dynamic Bayesian inference (Todorov, 2008, 2009).
This understanding has motivated developments of a new class of RL and
control algorithms by translating the methods in statistical inference and
machine learning, known under the names of maximum-entropy RL (Ziebart
et al., 2010), planning as inference (Botvinick & Toussaint, 2012), or control as
inference (Kappen et al., 2012; Levine, 2018).
Specifically, by introducing an optimality variable that takes 1 when a state-

action pair is optimal and assuming that the reward function represents the log
probability for state-action pairs to be optimal, Levine showed that a reinforce-
ment learning problem can be cast as a Bayesian inference problem and that
message-passing algorithms for Bayesian inference will turn into update equa-
tions for state and action value functions (Levine, 2018). The common compu-
tations for sensory inference and reinforcement learning may provide a clue in
understanding the commonalities of the circuit architectures of the sensory and
motor cortices (Doya, 2021).

22.2.5 Inverse Reinforcement Learning

Reinforcement learning of a complex behavior from scratch takes many trials.
For most behaviors, however, one usually starts to learn by imitating behaviors
of others, such as parents, teachers, or peers. Although kids perform mimicry
naturally and spontaneously, getting a robot to mimic a human behavior takes
many technical challenges. One is to map the visual image of the performer to
its own body posture. Another is that action commands like joint torques or
muscle forces are usually not observable. Furthermore, even if the action
command could be estimated, with the difference in the physical degrees of
freedom or parameters, the same action may not work well for the imitator.
This motivates estimation of the goal of the behavior as a reward function,
rather than copying low-level actions.
The problem of estimating the reward function by observing the sequence of

states or state-action pairs is called inverse reinforcement learning. This is in
general an ill-posed problem as different reward settings can result in the same
optimal behavior. Despite the difficulty, inverse RL problems can be solved
under different assumptions (Ng & Russell, 2000; Uchibe, 2017; Uchibe &
Doya, 2014, 2021; Ziebart et al., 2008) and has been used for extracting expert’s
skills (Abbeel & Ng, 2004; Muelling et al., 2014), analyses of animal behaviors
(Yamaguchi et al., 2018), and inference of intention behind actions (Baker
et al., 2009).

22.2.6 Multi-Agent Reinforcement Learning

Humans and animals do not live alone. Learning to collaborate with colleagues
and learning to escape or to fight with adversaries are essential in life. Learning
in a society of multiple agents poses difficult and interesting problems. In a
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group of robots connected to a wireless network, it is possible to consider a
single RL agent controlling multiple robots. But a challenge in that case is that
the dimensions of observations and actions become high, which creates com-
binatorial complexity. Another approach is cloning, in which all agents use the
same policy and experiences by multiple agents are collected for policy
improvement to maximize the total reward acquired by all agents. In such
settings, sophisticated communications and altruistic behaviors can emerge
(Mordatch & Abbeel, 2017), as seen among a family of social insects.

A more interesting setting is for each agent to learn its own policy to
maximize its own reward. In this case, predicting the behavior of other agents
is crucial for selecting their own actions. The mechanisms for realizing collab-
orative behaviors, such as sharing rewards or punishing selfish agents, are
interesting topics of ongoing research (Hauert et al., 2007; Hilbe et al., 2018;
Ohtsuki et al., 2006, 2009; Yoshida et al., 2008).

22.3 Computational Neuroscience Models

22.3.1 Basal Ganglia, Amygdala, and Lateral Habenula

As reviewed in Chapter 10, dopamine and its projection to the basal ganglia are
considered to play a major role in RL in the brain. The circuit of the basal ganglia
has a parallel loop architecture targeting different cortical areas (Figure 22.2A)
(Alexander & Crutcher, 1990). While the input from the cortex to the striatum
has convergence from wide cortical areas, the subsequent pathway from the
striatum through the globus pallidus and the thalamus and back to the cortex
has topographic, parallel organization (Figure 22.2B) (Alexander & Crutcher,
1990; Graybiel, 1991). In primates, the basal ganglia-thalamocortical circuit has
been classified into four major loops: motor, oculomotor, prefrontal, and limbic
loops. In rodents, the circuit is often divided into three loops: dorsolateral
striatum-motor, dorsomedial striatum-prefrontal, and ventral striatum-limbic
loops (Figure 22.3A) (Voorn et al., 2004). They can be further subdivided, e.g.,
the motor loop into primary motor, premotor, and supplementary motor chan-
nels (Hoover & Strick, 1993). The ventral striatum is called the nucleus accum-
bens and it is subdivided into the core and shell parts. The striatal projections to
the midbrain dopaminergic nuclei (ventral tegmental area, VTA, and substantia
nigra pars compacta, SNc) and the dopaminergic projection back to the striatum
has a topographic, spiral-like organization (Haber et al., 2000).

Such parallel organization suggests implementation of parallel or hierarchical
RL architecture utilizing multiple state and action representations (Balleine
et al., 2015; Haber & Knutson, 2010; Haruno & Kawato, 2006; Nakahara
et al., 2001; Samejima & Doya, 2007). A possible three-level architecture is
for the motor loop to implement musculoskeletal actions, for the prefrontal
loop to take care of higher-level, long-term planning, and the limbic loop to
decide whether a certain behavior is worth taking or avoiding (Figure 22.3B)
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Figure 22.2 The parallel loop organization of the basal ganglia circuit
(Alexander & Crutcher, 1990). (A) In primates, there are four major cortico-
basal ganglia loops: motor, oculomotor, prefrontal, and limbic, targeting
different cortical areas. (B) Within the motor loop, there are finer loops
targeting the supplementary motor area (SMA), premotor cortex (PMC),
and primary motor cortex (MC), each with somatotopic organization
maintained throughout the loop.
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Figure 22.3 Possible hierarchical reinforcement learning in the cortico-basal
ganglia. (A) Dorsolateral to ventromedial organization of the rodent striatum
(Voorn et al., 2004). The motor loop originates from the sensory-motor cortex
(SMC), projects to the dorsolateral striatum (DLS), the prefrontal loop from
the prefrontal cortex (PFC) to the dorsomedial striatum (DMS), and the
limbic loop from the infralimbic cortex (IL), caudal amygdala and ventral
hippocampus to the ventral striatum (VS). (B) Those parallel loops may
implement hierarchical reinforcement learning (Ito & Doya, 2011).
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(Ito & Doya, 2011). Neural recordings from the dorsolateral, dorsomedial, and
ventral striatum of rats supported such a hierarchical organization (Ito & Doya,
2015a).
It is important to note that the basal ganglia are not the only brain structure

to realize RL. Invertebrates like worms (Ardiel & Rankin, 2010) or flies
(Yamagata et al., 2014) learn behaviors by reward and punishment without
the basal ganglia, using their own brain architectures. In vertebrates, the
amygdala also plays an important role in RL (Belova et al., 2007; Munuera
et al., 2018; Nishijo et al., 1988). An important observation is that the amygdala
has the circuit architecture and developmental origins similar to those of the
cortico-basal ganglia-thalamic circuit: the basolateral amygdala corresponding
to the cortex, the central amygdala to the basal ganglia, and the medial the
amygdala to the thalamus (Cassell et al., 1999; Soma et al., 2009). Because
amygdala is an evolutionarily older structure in the vertebrate brain than the
basal ganglia (Pabba, 2013), it may be regarded as a prototype cortico-basal
ganglia circuit for essential behaviors like eating, avoidance, and social
interactions.
The habenula is a pair of elongated nuclei located on top of the thalamus and

the lateral habenula (LH) receives input from the globus pallidus and projects
to dopamine neurons in VTA by way of the rostromedial tegmental nucleus
(RMTg). Neurons in LH have been shown to respond to punishment and
punishment predictive cues (Bromberg-Martin et al., 2010; Matsumoto &
Hikosaka, 2007), which suggests that LH complements the basal ganglia in
reinforcement learning for avoidance from punishments.

22.3.2 Direct/Indirect Pathways, D1/D2 Receptors,
and Striosome/Matrix Compartments

Within each of the parallel cortico-basal ganglia loops, there are multiple nuclei
with distinct connections (Gerfen, 1992). The globus pallidus is divided into the
external part (GPe) and the internal part (GPi). Some neurons in the striatum
project to the GPi and the substantia nigra reticulata (SNr) to form the direct
pathway. Other striatal neurons project only to GPe, and GPe neurons project to
the subthalamic nucleus (STN) and GPi to form the indirect pathway. In rodents,
striatal neurons projecting to the direct pathway express dopamine D1-type
receptors, while those projecting to the indirect pathway express D2-type
receptors (Gerfen et al., 1990). The imbalance between the direct and indirect
pathways has been suggested as a major cause of Parkinson’s disease (Delong,
1990). What is the reason, however, for such a complex circuit organization?
A dominant hypothesis is that the D1 striatal neurons projecting to the direct

pathway constitute the “Go” pathway for execution and reinforcement of actions
by positive dopamine responses, while D2 striatal neurons projecting to the
indirect pathway constitute the “NoGo” pathway for inhibition and avoidance
of actions by dips in dopamine responses (Figure 22.4) (Frank et al., 2004).
Experimental results of inhibition or activation of the D1/direct vs. D2/indirect
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striatal neurons are generally consistent with this hypothesis (Hikida et al., 2010;
Kravitz et al., 2012; Sippy et al., 2015). On the other hand, recordings of D1/
direct vs. D2/indirect neurons do not show opposing profiles (Cui et al., 2013),
suggesting complementary contributions (Tecuapetla et al., 2016). Given such
simultaneous working of the direct and indirect pathways, the opponent actor
learning (OpAL) model proposes a dual opponent actor system specialized in
positive and negative action values in the striatum (Collins & Frank, 2014).

Another complication in the striatum is the existence of compartments called
the striosome (or patch) and the matrix (Gerfen, 1984; Graybiel & Ragsdale,
1978). Because the neurons in the striosome project directly to the dopamine
neurons in VTA and SN, they have been hypothesized to serve as the critic and
send the state value signal for computation of the TD errors (Doya, 2000; Houk
et al., 1995). However, testing the hypothesis by recording from striosome
neurons has been difficult because the striosome and matrix form a complex
mosaic within the striatum. Recently, with the availability of molecular markers
for striosome neurons and cell-type specific calcium imaging, it has been shown
that striosome neurons develop reward predictive cue responses in the course of
classical conditioning, consistent with the hypothesis that they encode the state
value function (Bloem et al., 2017; Yoshizawa et al., 2018).

How the TD-like activity is realized in the dopamine neurons, however, still
remains not fully answered (Starkweather & Uchida, 2021; Watabe-Uchida
et al., 2017). Fine anatomy of the projections from the striosome to SN may
shed some light on the dynamic mechanism (Evans et al., 2020).

22.3.3 Variety of Dopamine Responses

Although dopamine neurons in VTA and SNc show responses similar to the TD
error in RL (Kim et al., 2020; Schultz, 1998; Schultz et al., 1997), substantial
varieties across neurons have been reported. Some of the dopamine neurons
respond to aversive or salient neutral stimuli (Redgrave et al., 1999). In

Frontal Cortex
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GPe

thalamusD2

SNc

−
D1
+
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inhibitory
modulatory striatum
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Figure 22.4 The hypothesis that the direct and indirect pathways in the basal
ganglia serve as Go and NoGo pathways (Frank et al., 2004).
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primates, it has been shown that dopamine neurons responding to aversive
unconditioned or conditioned stimuli are located predominantly in the dorso-
lateral part of SNc (Matsumoto & Hikosaka, 2009). In rodents, dopamine
neurons located in the most lateral part of the substantia nigra (SNL) project
to the caudal part of the striatum and are involved in avoidance learning from
threat (Menegas et al., 2018). Can these findings be reconciled with the TD
error theory of dopamine neurons?
In a hierarchical RL system, even in an aversive situation, if a subsystem did

an effective job in avoiding the damage, that should be properly rewarded. In
addition, for exploration and information gathering, observing a novel state can
be rewarded by an exploration bonus (Dayan & Sejnowski, 1996; Kakade &
Dayan, 2002). It is interesting whether the responses of dopamine neurons to
aversive or salient signals can be explained from such perspectives. In addition
to encoding TD error in model-free RL, the role of dopamine in model-based
action and learning has also been suggested (Daw et al., 2011; Doya, 1999;
Langdon et al., 2018). The most recent observation of wave-like dopamine
dynamics suggests its involvement in modular RL (Hamid et al., 2021).
Recently, a new hypothesis has been proposed that the heterogeneity of

dopamine neuron responses is used for distributional RL (see Section 22.2.2)
(Dabney et al., 2020; Lowet et al., 2020). This is an example of how sophistica-
tion in learning algorithms can shed a novel light on interpreting the meaning of
complex neural circuits and responses.

22.3.4 Serotonin and Other Neuromodulators

Neuromodulators are a subset of neurotransmitters that project diffusely to
wide brain areas and have complex, long-lasting effects, rather than simple
excitation or inhibition (Doya, 2002). Dopamine (DA), serotonin (5-HT),
noradrenaline (NA, also called norepinephrine, NE), and acetylcholine (ACh)
are the major neuromodulators projecting to the forebrain and expected to
carry broadcast-like messages. While dopamine signals TD error, the most
important learning signal in RL, what do other neuromodulators signal?
A classic theory is that serotonin serves as the opponent of dopamine, so that

it signals actual or predicted punishments and suppresses behaviors (Boureau &
Dayan, 2011; Daw et al., 2002; Palminteri & Pessiglione, 2017). However,
recent optogenetic stimulation and fiber photometry experiments on serotonin
neurons reported no punishing or inhibitory effects or even rewarding effects
(Li et al., 2016; Liu et al., 2014; Miyazaki et al., 2014; Nagai et al., 2020), which
prompts reconsideration of the opponent theory.
A hypothesis based on model-free RL theory (Doya, 2002) is that they signal

meta-parameters of RL for managing different trade-offs; serotonin for the
temporal discounting factor to weight between immediate and future rewards,
noradrenaline for the inverse temperature to handle exploration-exploitation
trade-off (Aston-Jones & Cohen, 2005), and acetylcholine for the learning rate
to address flexibility and stability of learning (Hasselmo, 1999).
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The roles of neuromodulators, however, appear to be more complex and
multi-faceted than regulating meta-parameters of RL (Doya, 2008). Recent
experimental methods for cell-type selective manipulation by optogenetics and
cell-type selective recording by calcium imaging, photometry, and photo-tagged
recording are providing much precise data on the functions of neuromodulators
than were possible by conventional methods of pharmacological manipulation,
electric stimulation, and electrode recording.

Serotonin has been shown to be involved not only in reward and punishment,
but also in neurodevelopment, circadian rhythms, flexibility of decisions (Matias
et al., 2017), and social interaction. A novel view based on recent findings about
serotonin is that serotonin signals availability of time and resources (Doya et al.,
2021), which should affect proper responses in addressing different trade-offs,
such as temporal discounting, exploration-exploitation, learning rate (Iigaya
et al., 2018), model-free vs. model-based computation (Ohmura et al., 2021),
and prior vs. likelihood in Bayesian inference (Miyazaki et al., 2018, 2020).

A prominent view regarding the roles of acetylcholine and noradrenaline is
that acetylcholine signals expected uncertainty (stochasticity), while noradren-
aline signals unexpected uncertainty (context change) (Yu & Dayan, 2005). In a
more recent theory of active inference, an agent updates its own belief about the
uncertainty of the environment, and acetylcholine signals the inverse precision
parameter (variance) of sensory observation given hidden state, while noradren-
aline signals the inverse precision parameter of state transition (Parr & Friston,
2017; Sales et al., 2019).

One question regarding the hypotheses concerning sensory inference is that
there can be sensory uncertainties for different modalities, such as vision,
audition, and touch, and even different dimensions within each modality, such
as location, motion, shape, and color of visual stimuli. How and why are those
uncertainties handled by global signaling by neuromodulators? Such
uncertainties may be better handled locally within each cortical area, without
involving long-range communication between the cortex and midbrain nuclei.
A possible answer is that multiple sensory signals are often correlated with each
other, such as the smell, sound, and vision of a prey or a predator. In such a
scenario, a change in the context, such as detection of a predator, should affect
multiple sensory modalities.

22.4 Cognitive Models

22.4.1 What Is Reward: Intrinsic Motivation

In engineering applications of RL, the design of a reward function is often a
key issue. A reward function usually includes multiple components: large
positive reward for the accomplishment of the task goal, small positive reward
for “shaping” of goal-approaching behaviors, small negative reward for trim-
ming irrelevant actions, and large negative reward to avoid disastrous
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outcome. Finding a proper balance in a complex task, such as autonomous
driving, is by no means easy. The weights for those components may have to
be varied depending on the context or with the progress of learning
(Palminteri et al., 2015).
In animals, reward functions are shaped through evolution to assure the two

major requirements for life: survival and reproduction. They include food and
water intake, avoiding pain, and mating. Inspired by this evolution of biological
reward functions, a robotic system was created to realize survival by charging
from battery packs and reproduction in software by exchanging programs or
parameters of a common program through proximity data communication
(Doya & Uchibe, 2005). In embodied evolution experiments in the robot
colonies, reward functions that promote successful charging and mating were
acquired (Elfwing et al., 2011). In some colonies, heterogeneity of mating
strategies emerged and stably co-existed (Elfwing & Doya, 2014).
In humans, money and social reputation serve as additional, or sometimes

greater, reward functions. While income and social status can positively affect
human survival and child raising, cultural evolution may play an important role
in establishing such social rewards. People try to mimic the behaviors of eco-
nomically or socially successful persons, which can cause acquisition of social
rewards during development or give selection pressure to biological evolution.
Behaviors are, however, not always aimed toward survival and reproduction.

People spend time and money playing games, listening to music, reading novels,
or watching movies just for fun. Some people even engage in costly behaviors
like climbing high mountains, running marathons, or devoting oneself to pure
basic science. What reward mechanisms drive humans and some animals to
such behaviors? The origins of curiosity and creativity have been studied under
the concept of intrinsic reward, intrinsic motivation, or information seeking
(Kaplan & Oudeyer, 2007; Maslow, 1943; Reiss, 2012; Sun, 2009). For the sake
of facilitating learning progress, the factors that are considered for intrinsic
rewards include:

• unexpected outcomes, prediction errors, or surprises
• improvement of prediction models
• parsimonious, factorial explanation of observations
• effectiveness of actions or empowerment

From the viewpoint of active inference, actions for information gathering are
generated for the sake of reduction of prediction errors in the future (Friston
et al., 2017).
See Chapter 29 on computational models of creativity in this handbook for

further information.

22.4.2 Neuroeconomics

Reinforcement learning theory has also been applied to modeling human
economic behaviors (Glimcher & Fehr, 2013). While animal experiments
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require real rewards like food and water, human psychology experiments can be
conveniently done by imaginary reward, such as by asking questions like
“Which do you prefer, receiving ten dollars today or eleven dollars a week
later?” By way of such questionnaire experiments, the characteristics of human
valuation and decision making have been extensively studied under the name of
prospect theory (Kahneman & Tversky, 1979). The studies have revealed
substantial deviation of human economic decisions from how a rational agent
would perform according to RL theory or expected utility theory (von
Neumann & Morgenstern, 1944), in which an agent tries to maximize the
expected reward with exponential temporal discounting. Typical examples
include the following (Doya, 2008):

• Loss aversion: People avoid a choice with a possibility of negative reward
even when the average expected reward is positive. Noradrenaline has been
implicated in individual differences in the degree of loss aversion (Takahashi,
2012; Takahashi et al., 2013).

• Risk aversion and preference: In economics, “risk” means stochasticity.
People usually prefer certain rewards over probabilistic rewards with the same
expected value. On the other hand, people sometimes over-evaluate a large
reward at a low probability, such as buying a lottery ticket.

• Hyperbolic discounting: Exponential temporal discounting is optimal when
there is a constant probability of death, or truncation of an episode. Humans
and animals, however, strongly prefer immediate rewards and care less for
longer delays, which often results in impulsive choices. Such a tendency is
modeled as hyperbolic discounting (Laibson, 1997), or a sum over multiple
exponential discounting functions (Kurth-Nelson & Redish, 2009).

Such a deviation from theoretical optimality may originate from the nonlinear
and nonstationary nature of the socioeconomic environment (Bavard et al.,
2018). An agent needs to maintain a minimal level of economical or nutritious
intake to survive. An agent also needs to achieve a high enough performance to
leave offspring in a competitive society. These might be the cause of loss aversion
or risk preference. As stated in Section 22.2.2, distributional reinforcement
learning allows an agent to make a decision by taking into account the probabil-
ities of different reward outcomes, rather than just the expected reward value.

Another interesting question regarding decision making is how one combines
and compares different types of rewards and punishments in making a choice. Is
there a “common currency” of decision making? Human brain imaging studies
pointed to the ventromedial prefrontal cortex and the striatum as the locus for
integrating multiple types of rewards for decision making (Levy & Glimcher,
2011; van den Bos et al., 2013).

22.4.3 Computational Psychiatry

Some psychiatric disorders may be attributed to distortions in reward evalu-
ation. Most addictive drugs have the effect of increasing dopamine release, such
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as by psychostimulants that block dopamine reuptake transporters. A marked
feature of addiction is that patients cannot stop the action even though they are
well aware of its negative effects on health, economy, and social standing.
Redish explained that effect by assuming that drug intake does not just serve
as a reward, but produces a positive bias in the reward prediction error signal
(Redish, 2004). Therefore, even after positive or negative values of the drug are
learned, the TD error persists to reinforce drug intake.
Gambling does not directly manipulate dopamine like drugs, but it is still

highly addictive to some people. They may be related to traits like over-
evaluation of large reward at low probability, low sensitivity to losses, or
impulsivity for immediate gratification. An important observation is that a
typical way people fail to stop gambling is to try to recover losses.
Experiments showed that pathological gamblers are sub-divided into two
groups, those with low and high loss aversion (Takeuchi et al., 2015), which
are associated with difference in brain volumes (Takeuchi et al., 2017). Another
feature of gambling disorder patients is that they are overly risk taking even
when that is not necessary in a task of achieving a given quota (Fujimoto &
Takahashi, 2016; Fujimoto et al., 2017).
Depression may be due to over-estimation of negative rewards, possibly by

sustained activation of lateral habenula (Hu et al., 2020). Depression may also be
attributed to under-estimation of delayed reward (Mukherjee et al., 2020), which
may be reversed by serotonergic activation (Miyazaki et al., 2014). Blunted
evaluation of future rewards has also been proposed in the model-based RL
approaches (Chen et al., 2015; Huys et al., 2012; Safra et al., 2019)
Selective serotonin reuptake inhibitors (SSRI) are commonly used for

depression, but they are also used for eating disorders and obsessive-compulsive
disorders (OCD), suggesting their deficits in evaluating long-term outcomes. In
an inter-temporal choice experiment, attention deficit hyperactive disorder
(ADHD) patients were less loss-aversive than control subjects (Tanaka et al.,
2018).
These studies stemming from RL theory have created a new research field

called computational psychiatry (Huys et al., 2021; Montague et al., 2012;
Redish & Gordon, 2016). See Chapter 26 in this handbook for computational
modeling in psychiatry.

22.5 Conclusion

Reinforcement learning theory captures the basic nature of animals and
humans to seek resources necessary for their survival, reproduction, or social
success. The theory can also apply to the behaviors of other self-sustaining
entities like companies, countries, or artificial intelligence agents. Thus RL
serves as a common language in interdisciplinary studies across biology, neuro-
science, psychology, psychiatry, economics, sociology, politics, machine learn-
ing, and artificial intelligence.
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PART IV

Computational Modeling in
Various Cognitive Fields

This part of the handbook addresses computational modeling that researchers
have undertaken in many relevant fields. It covers models in fields such as
developmental psychology, personality and social psychology, industrial-
organizational psychology, psychiatry, psycholinguistics, natural language
processing, social simulation, as well as creativity, morality, emotion, and so
on. This part includes some detailed surveys, as well as case studies of projects
and models.
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23 Computational Models of
Developmental Psychology
Thomas R. Shultz and Ardavan S. Nobandegani

23.1 Introduction

This chapter provides a review of computational models of
psychological development. The most common computational approaches
to modeling psychological development are based on symbolic rules,
artificial neural networks, dynamic systems, robotics, or Bayesian ideas.
Although these are the same approaches featured in the development chapter
of Cambridge Handbook of Computational Psychology (Shultz & Sirois,
2008), it is obvious that the field has significantly changed over the past
fifteen years. There are considerably more such models to choose from now
and together they cover many more psychological phenomena. The older
models are still worth knowing about, but the focus here is on newer
material. After some quick reminders about the nature of psychological
development, each of the five principal approaches and some of the newer
examples of each approach are considered. The ordering (same as above)
roughly follows the years in which each approach first appeared in the
psychological literature.

23.2 Developmental Issues

To understand how computational modeling can contribute to the
study of psychological development, it is important to appreciate the endur-
ing issues in developmental psychology. These include issues of how know-
ledge is represented and processed at various ages and stages, how children
make transitions from one stage to another, and explanations of the ordering
of those psychological stages. Although many excellent ideas about these
issues have emerged from empirical psychological research, these ideas often
lack sufficient clarity and precision. A welcome feature of computational
modeling is that it forces clarity and precision. Consequently, computational
modeling allows for more rapid progress on theoretically explaining how and
why psychological development works the way it does. Within cognitive
science, developmental research is essential for understanding the origin of
adult cognitive systems, in terms of explaining how adults came to be as
they are.
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23.3 Symbolic Rule Systems

Rule-based systems represent long-term knowledge in the form of
condition–action rules that specify actions to be taken or conclusions to be
drawn under particular conditions (see Chapter 4 in this handbook). Conditions
and actions are composed of symbolic expressions containing constants as well
as variables that can be bound to particular values. The rules are processed by
matching problem conditions (contained in a working-memory buffer) against
the condition side of rules. Ordinarily, one rule with satisfied conditions is
selected and then fired, meaning that its actions are executed or its conclusions
are drawn. Throughout matching and firing, variable bindings must be consist-
ently maintained so that the identities of particular items referred to in condi-
tions and actions are not confused.
Although first-generation production system models involved programmers

writing rules by hand, it is more interesting for understanding developmental
transitions if rules can be acquired by a model in realistic circumstances. Several
such rule-learning systems were developed, including Soar, which learns rules
by saving the results of look-ahead search through a problem space; and ACT-
R, which learns rules by analogy to existing rules or by compiling less efficient
rules into more efficient ones. Rule learning is a challenging computational
problem because an indefinitely large number of rules can be consistent with a
given data set, and because it is often unclear which rules should be modified
and how they should be modified (e.g., by changing existing conditions, adding
new conditions, or altering the certainty of conditions).
This approach is not as prevalent as it used to be in modeling development,

but an interesting self-modifying production system showed how these models
work in simulating transitive reasoning (Halford, Andrews, Wilson, & Phillips,
2012). Each rule is a condition–action pair that represents a problem-solving
step. If no rule has its conditions satisfied, the model builds a new rule, based on
a three-element transitivity template. For example, given the premise Tom is
taller than Peter, a rule fires creating the order Tom, Peter. If the premise Bob is
taller than Tom is presented, one possibility (albeit incorrect) is to append Bob
to the end of the existing ordered pair, creating the order Tom, Peter, Bob. An
error is detected as Tom above Peter below Bob conflicts with the transitive
template. Such error detection requires sufficient working-memory capacity.
The error also decreases rule strength and prompts search for a new rule that
appends Bob to the front of the ordered pair, producing Bob, Tom, Peter. This
new rule corresponds with the template, and thus increases in strength. If
working-memory capacity was insufficient, the error would not be detected
and no new rule would be created. This accounts for findings that children
under five years of age may correctly order pairs but fail to integrate the pairs
into larger ordered sets (Halford, 1984). In this work on transitivity, then,
developmental mechanisms include comparison to a built-in transitivity tem-
plate and growth in working memory capacity.
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23.4 Artificial Neural Networks

Artificial neural networks represent knowledge in a sub-symbolic fash-
ion via activation patterns on neuron-like units (see Chapter 2 in this hand-
book). These networks process information by passing activation among units.
Although some networks, including connection weight values, are designed by
hand, it is more common in developmental applications for programmer-
designed networks to learn their connection weights (roughly equivalent to
neuronal synapses) from examples. Constructive neural networks additionally
build their own topology, typically by recruiting new hidden units. The neural
learning algorithms most commonly applied to psychological development
include back-propagation (BP) and its variants, cascade-correlation (CC) and
its variants, simple recurrent networks, encoder networks, auto-association,
feature-mapping, and contrastive Hebbian learning. Constructive networks
are next described in some detail as they are used for several example neural-
network simulations to follow.

23.4.1 Constructive Networks

CC networks are deterministic, feedforward networks that learn from examples
by reducing overall prediction error (Fahlman & Lebiere, 1990; Shultz &
Fahlman, 2010). Unit activations are passed forward from input units that
describe examples, to hidden units that transform input signals into more
abstract representations, and finally to output units coding the response to
particular inputs. Network output is essentially expectation of what will happen
at the output, given the input, while target output represents what is actually
observed. During learning (in what is called output phase), connection weights
are adjusted to reduce network error:

E ¼
X
o

X
p

Aop � Top
� �2 (23.1)

where E is sum-of-squared error, A is the actual output activation for unit o and
pattern p, and T is the target output activation for this unit and pattern.

Learning in CC starts with a two-layer network (i.e., only the input and the
output layer), and then hidden units can be recruited one at a time, as needed, to
solve the problem being learned. The learning algorithm constructs its own
network topology, as opposed to static networks that are designed by a
programmer. In what is called input phase, input weights to candidate hidden
units are trained to increase the covariation of candidate hidden unit output
activation with overall network error. A classical CC network is deep, with only
one hidden unit per layer. A modification, called sibling-descendant CC
(SDCC) has a more varied network topology as each recruited hidden unit
can be installed either on the highest layer of hidden units or on its own higher
layer, depending on which has the better absolute covariation with network
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error. For both CC and SDCC, input weights to each recruited hidden unit are
frozen when the unit is installed. Weights are adjusted only one layer at a time,
thus never requiring the biologically unrealistic propagation of error signals
backwards through the network. The function to maximize in input phase is a
covariance between candidate-hidden-unit activation and network error:

C ¼
P

o

���Pp hp � 〈h〉
� �

eop � 〈eo〉
� ����

P
o

P
p eop � 〈eo〉
� �2 (23.2)

where hp is activation of the candidate hidden unit for pattern p, 〈h〉 is the mean
activation of the candidate hidden unit for all patterns, eop is the residual error
at output o for pattern p, and 〈eo〉 is the mean residual error at output o for all
the training patterns. Like many neural networks, constructive networks use a
sigmoidal activation function to convert net input into an activation signal.
Another member of the CC family is knowledge-based CC (KBCC), which is

able to recruit previously learned networks as well as single hidden units,
allowing simulation of the human tendency to base new learning on past
learning when the past learning is relevant (Shultz & Rivest, 2001). Recruited
networks are tweaked on their input weights during input-phase recruitment
and on their output weights after the shift back to output phase, in order to
better fit the new task.
A useful parameter for developmental simulations with constructive net-

works is score-threshold (ST), the maximum output activation distance from
a training target value that is considered to be correct. The default ST is 0.4.
Lowering ST demands more precise learning, while raising ST allows for
sloppier, more superficial learning.
Constructive networks seem well suited to modeling development as they can

provide a clear distinction between learning (weight adjustment) and develop-
ment (hidden-unit recruitment). The principal alternative would be that learn-
ing by weight adjustment can fully explain development. A telling point is that
constructive networks are often better than static networks at simulating the
appearance of qualitatively distinct stages (Shultz, 2003).

23.4.2 Balance-Scale Task

The balance-scale task has attracted several computational modeling efforts. On
this task, a child is shown a rigid beam balanced on a fulcrum. The beam has
pegs at regular intervals to the left and right of the fulcrum, and identical weights
are placed on a peg on each side of the fulcrum. While the beam is held
horizontally stable, the child predicts which side of the beam will drop, or
whether it will balance, when released. Children progress through four regular
stages (Siegler, 1976): (1) use weight information; (2) also use distance infor-
mation when the weights are equal on each side; (3) compare the sums of weight
and distance information across sides; and (4) compare the torques (products of
weight and distance) across sides. Another empirical regularity is that problems
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with large torque differences are easier for children to solve than problems with
small torque differences, torque difference being the absolute difference between
the torques on each side (Ferretti & Butterfield, 1986). Although an early
constructive-network model (Shultz, Mareschal, & Schmidt, 1994) simulated
both the torque-difference effect and stages 1–3, it did not capture stage 4.

A recent constructive model simulated all of these effects, including in stage
4 a genuine torque rule capable of solving problems requiring comparison of
torques (Dandurand & Shultz, 2014). As in other models, balance-scale prob-
lems were presented as input and the networks learned to predict direction of
tipping as output. The model employed an intuitive SDCC network that
learned to predict balance-scale results from examples alone. There was also
a neurally implemented torque rule inserted into the recruitment pool of a
KBCC network, mimicking the explicit teaching of torque in high-school
science classes. An SDCC selection network learned to predict accuracy of
the intuitive network and then decided, for each balance-scale problem,
whether to use the intuitive response or invoke the torque-rule module. This
was similar to other tri-process models that use confidence in intuitive solu-
tions to control access to more deliberative procedures (Thompson, Prowse
Turner, & Pennycook, 2011).

It seems likely that most people learn a torque rule from explicit verbal
instruction in secondary school or college (Siegler, personal communication).
People are unlikely to learn a torque rule from examples alone because prob-
lems requiring the torque rule for accuracy are very rare. SDCC networks can
learn a torque rule from examples alone if given enough examples, but it is
unlikely that people would typically get enough examples to learn in
that fashion.

The model progressed through all four stages seen in children, whether
measured by classic rule assessment (Siegler, 1976), Automatic Maxima
Detection (Dandurand & Shultz, 2010), or Latent Class Analysis (LCA)
(Boom & ter Laak, 2007; Quinlan, van der Maas, Jansen, Booij, & Rendell,
2007). The model also simulated the torque-difference effect and the pattern of
human response times, faster on simple problems than on conflict problems
(where weight and distance information gave different answers). The torque rule
was invoked more on conflict problems than on simple problems. Overlapping
waves of rule-based stages (Siegler, 1996) were also simulated. No other compu-
tational model has captured all of these balance-scale phenomena.

It was noted that the LCA method typically found small, unreliable rule
classes in both children and computational models that could not be replicated.
This suggests that LCA should be used with care in diagnosing stages.

23.4.3 Features-to-Correlations Shift in Category Learning

Infant research on category learning in a familiarization paradigm discovered
a developmental shift from knowledge of independent features of visual
stimuli to relations between the features (Younger & Cohen, 1986). After
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repeated presentation of visual stimuli with correlated feature values, young
infants showed more attention to stimuli with novel feature values than to
stimuli with either correlated or uncorrelated familiar feature values. Older
infants recovered attention both to stimuli with novel feature values, and
familiar but uncorrelated values, more than to stimuli with familiar correlated
values. These results suggested that young infants had learned about individ-
ual feature values of the stimuli, but not correlations among the values. In
contrast, older infants had learned not only about stimulus feature values, but
also about correlation patterns.
Emergence of this ability to understand correlations among feature values

helps to resolve a controversy about whether perceptual development involves
integration or differentiation of stimulus information. The psychological and
modeling results both favor the integration hypothesis by showing the gradual
understanding of relations among already discovered features. Infants of both
ages learned about individual stimulus features, but older infants also learned
how the features correlate.
This developmental shift was simulated with CC and SDCC constructive

encoder networks (Shultz, 2010; Shultz & Cohen, 2004). Encoder networks
learn to reproduce their inputs on their outputs, thus implementing recognition
memory. Deeper learning by networks representing the older infants allowed
them to understand the correlations as well as the features. In a kind of
computational bakeoff, three other neural-network models did not simulate
these phenomena quite as well for various reasons: requiring extra parameters
fit by a programmer, having weak effects, taking far longer to learn, or not
being able to cover the shift from features to relations within testing sessions.
Shultz (2010) provided a detailed analysis of these alternate models.

23.4.4 Word Learning

A model using two self-organizing maps (one for vision and another for
audition, Figure 23.1) and simple Hebbian learning explained the emergence
of taxonomies and fast mapping in early word learning, and the rapid increase
in acquisition rate seen in late infancy (Mayor & Plunkett, 2010). Accuracy of
word–object associations was directly related to the quality of prelexical, cat-
egorical representations in the networks. Synaptogenesis supported generaliza-
tion of word–object associations, while synaptic pruning minimized costs
without diminishing word learning. Simulated joint attention between infant
and adult accelerated and refined vocabulary acquisition. The model also
accounted for the qualitative shift from associative to referential use, over-
extension errors in production and comprehension, typicality effects, the shift
from prototype to exemplar-based effects, early mispronunciations, and lan-
guage deficiencies in Williams syndrome. More generally, the model showed
how constraints on word learning, often regarded as domain-specific, can
emerge from domain-general learning principles.
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Other work in this area simulated the transition from early perceptual cat-
egorization to later verbal labeling of categories (Westermann & Mareschal,
2014). As measured by novelty preferences, infants start to learn categories of
physical objects by around two months of age (Quinn & Johnson, 2000). By
about six to nine months of age, infants also start to learn words (Bergelson &
Swingley, 2012), and by thirteen months can associate novel labels with novel
objects (Gurteen, Horne, & Erjavec, 2011). These phenomena were simulated by
a dual-memory model (Figure 23.2). The hidden-unit layer consisted of a fast-
learning hippocampal system to simulate familiarization with a class of objects
and eventual preference for looking at novel objects, and a slower-learning
cortical system to simulate the superordinate- to subordinate-category shift
found in infants (Quinn & Johnson, 2000), as well as experience-based facilita-
tion of hippocampal learning. These two memory systems, each containing
fifteen units, were fully connected bilaterally. The eighteen input units coded
208 objects from twenty-six basic-level categories representing the superordinate
categories of animals, male and female humans, furniture, and transportation

Figure 23.1 A joint-attention event in a word-learning neural network. Adapted
from Mayor and Plunkett (2010). When, for example, a cat image is presented in the
visual map, a coherent activity pattern emerges. Similarly, when an acoustic cat label is
presented in the auditory map, a selection of neurons is activated. Synapses connecting
the two maps are adjusted using the Hebb rule. Adjusting synaptic strength to neurons
neighboring (gray) the maximally active neuron (black) supports generalization and
thus taxonomic responses.

Figure 23.2 Dual-memory neural network for object and word learning.
Adapted from Westermann and Mareschal (2014).
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devices. Each of the 208 objects was represented by eighteen general (geometric)
and object-specific (facial) features, including height, width, and protrusions,
with feature values scaled between 0 and 1.
This was essentially an encoder network in which information about the

input object was passed to the hidden layer and then decoded on the output
units. There were eighteen output units each for the hippocampal and cortical
systems. A third set of output units, called task/label units, received input from
the cortical memory system and coded a variety of object properties beyond
perceptual features, e.g., affordances, ways of interacting with objects, and
hidden properties of objects.
There were two kinds of training. Background training mimicked infants’

everyday experiences with objects, by presenting randomly selected objects for
random times. Familiarization training presented sequences of related stimuli
for fixed times. The hippocampal system outputted looking times, as affected by
novelty, while the cortical system decoded object features. Connection weights
were adjusted with backpropagation of error at each object presentation, a
procedure known as online learning.
In simulations of labeling, each object had a .5 chance of being labeled, either

with a superordinate-level or a basic-level label. The label was presented on the
task layer and weights from the hidden layer to the task layer were updated. Via
this training, the labels led to adjustment of the connections from the hidden to
the task units. When no label was presented, these weights were not updated.
Each object label was represented by a single unit on the task layer.
The model simulated a range of phenomena from early, prelinguistic object

categorization, accounting for data from several experimental paradigms and
from behavioral and neurophysiological studies, as well as the shift from pre-
linguistic to language-mediated categorization. Via the cortical system, it pro-
gressively differentiated perceptual categories with increased exposure to
exemplars, and simulated the superordinate-to-basic shift found in infants
(Quinn & Johnson, 2000). It also simulated the finding that background experi-
ence facilitates infants’ categorization ability (Kovack-Lesh, Oakes, &
McMurray, 2012). Labels warped the visual representational space by increas-
ing within-category similarity. The model also predicted that knowing the label
for a familiar object would speed up familiarization to other exemplars of this
object category.

23.4.5 False Belief

Children eventually come to understand that other people have mental repre-
sentations, something that often has been studied with false-belief tasks. Two
successive transitions have been noted in such tasks: (a) omniscient (others
always know the true state of the world) to representational (others rely on
representations that may or may not be accurate) (Wellman, Cross, &
Watson, 2001), and (b) approach-to-avoidance, a change from succeeding
only at tasks involving a desire to approach to succeeding at tasks that involve
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desires to either approach or avoid an object (Cassidy, 1998; Friedman &
Leslie, 2005).

The most comprehensive model of these transitions (Berthiaume, Shultz, &
Onishi, 2013) employed SDCC networks to simulate a nonverbal version of
false-belief tasks in fifteen-month-olds (Onishi & Baillargeon, 2005). There,
infants watched an agent hide an object in one of two boxes (green or yellow).
They next saw one of four belief-induction trials, leading the agent to hold a
true or false belief that the object was in the green or yellow box. Some infants
saw the agent watch the object move from green to yellow (true belief that
object is in yellow), while others saw that the agent was absent as the object
moved (false belief that object is in green). The other two belief-induction trials
induced a true belief that the object was in yellow and a false belief that it was in
green. Finally, the infant saw one of two test trials in which the agent searched
in either green or yellow. They looked reliably longer at the apparatus when the
agent did not search according to her belief, whether true or false, indicating a
disconfirmed expectation.

Because it is unlikely that infants learn about search behavior during false-
belief tasks, SDCC network training simulated everyday experience with search
behavior, while network testing simulated performance on the false-belief tasks
used in the infant experiment. Inputs coded the start and end locations of an
object and whether the agent saw the object move. Outputs coded four different
locations where the agent could search for the object. Before recruiting any
hidden units, networks used location information to categorize training patterns
by task, producing outcomes consistent with omniscient predictions for both
approach and avoidance tasks. After recruiting a hidden unit, networks could
distinguish false from true beliefs. With six hidden units, networks additionally
used information on actor’s attention to make representational predictions for
both approach and avoidance.

These results suggested that: (a) false-belief tasks cannot be solved by mere
linear associations, (b) the omniscient-to-representational transition arises from
overcoming a default true-belief attribution, and (c) the approach-to-avoidance
transition is due to avoidance search being less consistent than approach search,
as there are more possible locations where an object is not located than the one
where it is located. Analysis of the internal structure of the networks showed
categorization of the training patterns first by task (approach vs. avoidance)
and then by belief (true vs. false). This is the only model to simulate the two
false-belief task transitions. Given the same training and computational power,
backpropagation networks did not learn either transition as their error reduc-
tions stagnated within the first 100 training epochs.

This model and the infant data it simulated also showed that a variety of
alternative hypotheses about false-belief transitions are not required to explain
the two transitions: distinguishing beliefs from desires, development of
executive function, language acquisition, or improvement in working memory.

Some previous models of a false-belief task simulated the first transition, but
not the second. In these models, experimenters inserted specific false-belief task
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information, and transitions were accomplished via direct manipulation of
some parameter value (O’Loughlin & Thagard, 2000; Triona, Masnick, &
Morris, 2019), or by selection from a limited set of pre-determined options
(Goodman et al., 2006). The first of these models was a constraint-satisfaction
neural network, the second an ACT-R production system, and the third a
Bayesian network.

23.4.6 Transition Probabilities

Young infants are able to extract statistical structure from a stream of either
auditory or visual information (Aslin, Saffran, & Newport, 1998; Bulf,
Johnson, & Valenza, 2011; French, Mermillod, Mareschal, & Quinn, 2004;
Kirkham, Slemmer, & Johnson, 2002; Saffran, Aslin, & Newport, 1996;
Tummeltshammer, Amso, French, & Kirkham, 2017). Such abilities are
important in the debate on poverty-of-the-stimulus in language acquisition, the
question of whether children are exposed to enough linguistic data to acquire a
language purely through learning.
Learning of transition probabilities was simulated by a partially recurrent

autoencoder network that learned graded chunks on its connection weights and
recognized their recurrence, while drawing on co-occurrence statistics
(Figure 23.3). It accurately simulated two infant experiments in audition and
five in vision, including both forward and backward transitional probabilities
and illusory conjunctions. On each time cycle, an item was presented into the
right-side inputs. The left-side inputs were a blend of right-side input and
hidden-unit activations from the previous cycle. Parameter delta was the abso-
lute difference between input and output activations. When delta was large
(novel items), most of the contribution to left-side inputs came from right-side
inputs. When delta was small (familiar items), most of the contribution to left-
side inputs came from hidden units. In each cycle, weights were updated to

Figure 23.3 Architecture and information flow in the TRACX2 model, adapted
from Mareschal and French (Mareschal & French, 2017). See adjacent text
for interpretation.

778 thomas r. shultz and ardavan s. nobandegani

https://doi.org/10.1017/9781108755610.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.028


minimize delta. Improvement with age was implemented by increasing a
learning rate parameter.

23.4.7 Developmental Mechanisms in Neural Network Simulations

Common to all of these neural network simulations are the brain-like mechan-
isms of learning by adjusting weights between units so as to reduce error by
producing output unit activations that approximate those in the training set.
Unique to constructive networks are the developmental mechanisms of synap-
togenesis and neurogenesis, implemented by recruitment of new units and
weights to add computational power as needed to reconceptualize the problem
being learned. Some of the other transition mechanisms in these neural network
models are more idiosyncratic: learning a symbolic torque rule for the balance
scale through direct instruction; increasing the value of a learning-rate param-
eter to simulate age-related improvement in learning transition probabilities;
programmer-constructed particular network topologies for learning words and
transition probabilities.

23.5 Dynamic Field Theory Models

A dynamic system is a set of quantitative variables that change continu-
ally, concurrently, and interdependently over time in accordance with
differential equations (see Chapter 6 in this handbook). Such systems can be
understood geometrically as changes of position over time in a space of possible
system states. Artificial neural networks can be viewed as instantiations of
dynamic systems. In recurrent networks, activation updates depend in part on
current activation values; and in learning networks, weight updates depend in
part on current weight values. However, it is also common for dynamic-system
models to be implemented without networks, in differential equations where a
change in a dependent variable depends in part on its current value. In that
context, they are viewed as mean field theories.

Dynamic field theory (DFT) models have simulated children’s executive
function on the Dimensional Change Card Sort (DCCS) task, among a variety
of other phenomena. In the DCCS, children are first instructed to sort cards on
one dimension (e.g., shape) and then to sort instead on another dimension (e.g.,
color) (Zelazo, 2006). Target cards (e.g., a red circle and a blue star) show which
features go in which locations for different rules. Children are asked to sort test
cards that match either target card along different dimensions, creating poten-
tial decision conflict, e.g., a test card could match one target card on color and
another target card on shape. Typically, four- and five-year-olds easily switch
rules, but three-year-olds do not. The DCCS task measures several aspects of
cognitive abilities, and children’s DCCS performance has been variously char-
acterized as rule representation, object description, inhibitory control, and
attentional control.
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A DFT model of DCCS had populations of neurons selectively tuned to
continuous dimensions (e.g., color or shape). Performance reflected local exci-
tatory and lateral inhibitory interactions, creating activation peaks. Buss and
Spencer’s (2014) DFT model of executive-function development consisted of
connected visual-cognitive and dimensional-attention systems. A visual-
cognitive system had three interactive working memory fields. A spatial
working memory field represented the presence of stimuli at specific locations.
It was connected to a shape working memory field and a color working memory
field, representing objects as a color and a shape at a particular location. An
attention-system had competitive nodes that responded to color and shape
labels, controlling attention switching. These nodes were connected to shape
and color working memories in a weight matrix representing learned associ-
ations between features and values. Buss and Spencer (2014) gave older models
(a) stronger excitatory and inhibitory connections making the shape and color
nodes more competitive and durable, and (b) more selectivity in the weight
matrix between the attention system and visual-cognitive system.
Three-year-olds showed an interesting asymmetry on DCCS: previous experi-

ence with color facilitated rule switching from shape to color, while previous
experience with shape did not facilitate switching from color to shape. The DFT
younger model produced similar asymmetrical results when variation along the
shape dimension was sharply compressed, i.e., made less distinctive (Perone,
Molitor, Buss, Spencer, & Samuelson, 2015).

23.6 Developmental Robotics

Another relatively new approach is developmental robotics, a seem-
ingly unlikely marriage of robotics and developmental psychology (Berthouze
& Metta, 2005). A principal attraction for roboticists is to create generic robots
that begin with infant skills and learn their tasks through interacting with adults
and possibly other robots. The primary hook for developmentalists is the
challenge of placing their computational models inside of robots operating in
real environments in real time.
Developmental robotics complements more narrowly focused psychology

experiments, where typically only a few variables can be studied simultan-
eously. Robotics also enabled systematic exploration of the role of the body
in shaping development. For example, a review of human walking suggested
that learning to walk is more about embodiment than about computation
(Oudeyer, 2017). Viewed through the lens of computation, embodiment serves
as a set of constraints on the agent. Roboticists have arguably made more
progress in understanding walking by examining the relevant biophysics than
by building computational models of mental representations. For example,
McGeer (1990) built a pair of mechanical legs based on the geometry of human
legs. Placing this device on a mild slope enabled it to walk automatically,
powered by gravity interacting with the various mechanical parts. McGeer’s
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video report of this work revealed substantial similarity to human walking. His
technique has since been replicated and extended, revealing that walking is a
dynamic emergent pattern in which biophysics strongly constrains learning.
Perhaps walking and even earlier movement patterns (e.g., rolling, sitting,
crawling, and standing) could also be understood as embodied interactions
between learning and biophysics.

Researchers also built robots that generated their own goals through
curiosity-driven learning (Oudeyer, 2017). Robots learned by doing experi-
ments in which they tried actions and detected regularities between these actions
and their effects, yielding predictions. The robots designed experiments that
improved their own predictions, which provided new information, while allo-
cating some time to explore other activities. They focused on activities that
promoted learning progress, avoiding alternatives that were either too easy or
too difficult. Cognitive stages emerged that were not preprogramed, by focusing
on activities that were just beyond current capacity. For example, beginning
with random body movements, they next moved their legs to predict touching
of objects, then on grasping objects, and eventually tried vocal interaction with
another robot.

There is a humanoid-robot platform (iCub), which is designed to support
collaborative research in cognitive development emphasizing autonomous
exploration and social interaction (Metta et al., 2010). The platform offers
perceptual motor capabilities with fifty-three degrees of freedom, capacity for
learning and development, software that encourages integration and reuse, and
support infrastructure that fosters collaboration and resource sharing. The iCub
robot is about the size of a three-year-old child. It can crawl, sit up, grasp
objects, and has visual, vestibular, auditory, and haptic sensory capabilities.
Among the phenomena being explored are goal-directed action, learning of
object affordances, learning by individual exploration and imitation, gestural
communication, and perception-action loops. A sample video shows an iCub
robot performing a table-clearing task.

Cangelosi and Schlesinger (2015) provided a more general, recent review
of developmental robotics. Familiar mechanisms of developmental change
are seen in developmental robotics, including rules, neural networks, and
dynamic systems, but the importance of bodily structure and curiosity-driven
experimentation are signature features of the developmental robotics
approach.

23.7 Bayesian Approaches

Perhaps the biggest story in modeling of development since the 2008
Cambridge Handbook of Computational Psychology is the rapid advancement
of Bayesian approaches (see Chapter 3 in this handbook). There are now
multiple published Bayesian articles on each of at least twenty-one different
aspects of psychological development: induction, causal reasoning, reasoning
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and representation with graphical structures, categorization, decision making,
individual differences, planning, logical rules, theories, theory of mind, naïve
psychology, number, pedagogy, and many aspects of language, including
phonetics, morphology, semantics, syntax, verbs, words in general, word
segmentation, and language evolution.
For more complete reviews of Bayesian approaches to psychological devel-

opment, see Gopnik and Bonawitz, 2015; Perfors, Tenenbaum, Griffiths, and
Xu, 2011. Central to the Bayesian approach is the use of Bayes’ rule to infer
posterior probabilities (of a hypothesis given some data) from products of prior
and likelihood probabilities divided by the sum of such products across all
known hypotheses. Following are descriptions of two particular simulations,
one in more substantial detail.

23.7.1 Bayes by Sampling

Bayes’ rule provides a high-level computational model of how new evidence and
current beliefs are combined to produce updated beliefs. However, the
denominator in Bayes’ rule is acknowledged to be computationally intractable
because there are often an indeterminately large number of hypotheses to
consider (see Equation 23.3). Considerable evidence indicates that children do
approximate Bayes’ rule as they accumulate more evidence, but it remains
largely unknown what algorithm they might be using.
One idea that researchers are beginning to explore is that children’s algo-

rithms do only a small amount of sampling from probability distributions in
their Bayesian approximations (Bonawitz, Denison, Gopnik, & Griffiths, 2014).
To investigate how causal learning improves as new evidence is accumulated
over time, these authors used a trial-by-trial experimental design, allowing
analysis of changes in a learner’s knowledge as more evidence is gradually
presented.
They assumed that learners choose a hypothesis from a set, called the

hypothesis set, given byℋ ¼ h1, h2, . . . , hnf gwhere hi denotes the ith hypothesis.
They also assumed that P hið Þ denotes the prior probability of hypothesis hi,
reflecting the learner’s belief about hi being the correct hypothesis, before
observing any evidence. Given hypothesis space ℋ and prior distribution
P hð Þ, an ideal learner should update their beliefs in the light of new evidence.
Upon receiving evidence d, the learner updates their belief in hypothesis hi,
using Bayes’ rule:

P hijdð Þ ¼ P djhið ÞP hið ÞPn
i¼1P djhið ÞP hið Þ (23.3)

where P hijdð Þ denotes the learner’s updated belief of hypothesis hi given observed
evidence d; P hijdð Þ is termed the posterior probability of hi given d. P djhið Þ
expresses the probability with which hypothesis hi generates evidence d (i.e., the
probability of observing d, if hi were true), also known as likelihood. In general,
the likelihood P djhið Þ could be any probability distribution. However, in the case
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of a deterministic likelihood, which simplifies this exposition, the likelihood is
binary, depending on whether or not the data d could be generated by hi:

P djhið Þ ¼ 1 if d is consistent with hi
0 otherwise

�
(23.4)

This formalism can be straightforwardly extended to cases wherein n datapoints
d1, d2, . . . , dn are observed by the learner. The causal Bayes network shown in
Figure 23.4 characterizes the generative process responsible for these data-
points. Assuming that d1, d2, . . . , dn�1 denote observations after n� 1 trials,
and upon observing dn on the nth trial, the learner’s updated belief about
hypothesis hi is given by

P hijd1, d2, . . . , dn�1, dnð Þ ¼ P dnjhið ÞP hijd1, d2, . . . , dn�1ð ÞPn
i¼1P dnjhið ÞP hijd1, d2, . . . , dn�1ð Þ

(23.5)

The intuition behind Equation 23.5 is that an ideal learner’s updated belief
about hi upon receiving evidence dn on the nth trial, amounts to (1) evaluating
the learner’s belief about hi prior to receiving the evidence dn, and solely based
on past evidence d1, d2, . . . , dn�1 (captured by P hijd1, d2, . . . , dn�1ð Þ in the
numerator of Equation 23.5); (2) verifying if the final evidence dn is consistent
with the hypothesis hi (captured by P dnjhið Þ in the numerator of Equation 23.5),
and, finally; (3) ensuring that the posterior distribution over hi

0s sums to 1, by
performing normalization (the denominator of Equation 23.5 serves this
purpose).

In simple terms, upon receiving the first piece of evidence, d1, the likelihood
assigns a posterior probability of 0 to those hypotheses that are inconsistent
with the data. The hypotheses consistent with the data remain, with their
updated probability being proportional to their prior probability, and the
summation in the denominator operates over just those hypotheses. The same
process recurs with each subsequent piece of evidence, with the posterior
probability at each moment being the prior probability renormalized over the
hypotheses consistent with all the evidence received up to that moment.

Figure 23.4 A causal Bayesian network, adapted from Bonawitz et al. (2014).
The hypothesis h is selected from the hypothesis space ℋ, with prior probability
P hð Þ, and generates n datapoints d1, d2, . . . , dn over the n trials of the learning
task. If h were true, data di would be generated in the ith trial with probability
P dijhð Þ.
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Comparing Equation 23.5 and Equation 23.3 reveals an important fact:
substituting P hið Þ with P hijd1, d2, . . . , dn�1ð Þ converts Equation 23.3 to
Equation 23.5. The rationale behind this is important. In the absence of any
past observation, the learner’s prior belief about hypothesis hi is P hið Þ, which is
mathematically identical to P hij∅ð Þ, where ∅ denotes the empty set, highlighting
the fact that no past observation is available. This is why Equation 23.3 uses
P hið Þ. Equation 23.5 instead uses P hijd1, d2, . . . , dn�1ð Þ, because past observa-
tions d1, d2, . . . , dn�1 are available, dictating that an ideal learner’s prior belief
about hypothesis hi is P hijd1, d2, . . . , dn�1ð Þ.
Bonawitz et al. (2014) empirically tested adults and preschoolers on two

causal learning tasks, showing that adults and preschoolers’ behavior can be
accounted for by a sequential algorithm, called win-stay lose-sample (WSLS).
WSLS was inspired by the old win-stay lose-shift principle (Restle, 1962) which
holds that learners maintain a hypothesis until they receive evidence that
contradicts that hypothesis. As opposed to exact Bayesian inference that
requires evaluating the posterior probability of every hypothesis in light of the
evidence acquired thus far, WSLS frugally uses cognitive resources, by requir-
ing hypothesis revision only if the latest piece of evidence contradicts the
hypothesis held by the learner prior to that evidence. WSLS was proposed as
a rational algorithm for approximating computationally intractable Bayesian
inference. For a deterministic likelihood, WSLS can be iteratively described in
three steps: (1) Sampling: sample a hypothesis h 0ð Þ from the prior distribution
P hð Þ; (2) Belief Updating: upon observing the first piece of evidence d1 (corres-
ponding to the first trial), evaluate h 0ð Þ by verifying if d1 is consistent with h 0ð Þ

(see Equation 23.4); (3) Re-Sampling: if d1 is inconsistent with h 0ð Þ (i.e.,
Pðdjh 0ð ÞÞ ¼ 0), sample a new hypothesis h 1ð Þ from the posterior distribution
Pðhjd 0ð ÞÞ (see Equation 23.5). Otherwise, set h 1ð Þ ≔ h 0ð Þ.
This process can be iterated, replacing h 0ð Þ with h nð Þ and d 1ð Þ with d nþ1ð Þ in

steps 2 and 3, and h 1ð Þ with h nþ1ð Þ in step 3. With slight modifications, WSLS can
be extended to the case of having a stochastic likelihood. For details, the reader
is referred to Appendix B of Bonawitz et al. (2014). The authors show, using
proof by induction, that the WSLS algorithm always produces samples from the
correct posterior distribution given in Equation 23.5. A signature of WSLS is a
strong dependency between the consecutive hypotheses contemplated by the
learner. Specifically, as step 3 indicates, if the stream of data remains consistent
with a hypothesis h, WSLS retains that hypothesis until some contradictory
evidence arrives.
The WSLS algorithm made a good fit to three- to five-year-olds’ changing

hypotheses (Bonawitz et al., 2014). Children were presented with initial evi-
dence that was compatible with several different hypotheses and asked to guess
which hypothesis was correct as new evidence arrived. Each new piece of
evidence tended to either confirm or disconfirm the child’s current hypothesis,
and each new hypothesis shaped the next one. Despite high variation in the
sequence of hypotheses, on average children’s responses approximated the
WSLS Bayesian solution. The WSLS algorithm generally approximated a
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Bayesian response and matched hypothesis progressions. This was true for both
children and adults, but the pattern held for children only when a new experi-
menter was used in each testing cycle. Perhaps young children think that their
answers must be wrong if the same adult keeps questioning them, causing them
to readily abandon their current hypothesis as soon as they are questioned. The
role of repeated questioning also needs further study more generally, as it
remains unclear whether people would always change their hypothesis if it
was disconfirmed by new evidence.

23.7.2 Social Influences

Bayesian approaches not only explain direct individual learning, but also are
starting to explore the role of social influences in learning (Bonawitz & Shafto,
2016). Children make inferences about the knowledge and goals of an inform-
ant who is selecting the data to be presented. Children then use this knowledge
to enhance their learning. Such socially generated information can lead to even
stronger inferences and more rapid learning. Recent Bayesian models relate the
knowledge and goals of a demonstrator to their teaching actions, and formalize
how these purposeful actions influence learning.

Children represent and reason about others’ beliefs and actions, and how
informants sample from probability distributions. Sampling can be weak or
strong. In weak (random) sampling, an informant provides only the basic
information. Sampling is considered strong when samples are chosen by a
knowledgeable teacher to aid learning, allowing even stronger inferences about
the data (Shafto, Goodman, & Frank, 2012). It was found that four- and five-
year-old children used the knowledge and intent of the informant to draw
stronger inferences than would be afforded by the data alone (Bonawitz et al.,
2011; Buchsbaum, Gopnik, Griffiths, & Shafto, 2011).

23.7.3 Bayesian Insights into Development

The rapid growth of Bayesian models has already provided several fresh
insights into psychological development (Perfors et al., 2011), some of which
are summarized here:

1. Children rationally integrate a variety of information to update their
knowledge (posterior probabilities), taking account of what they presently
know (prior probabilities) and new evidence (likelihoods). This is at a high,
computational level, meaning that neither the processing algorithms nor
brain implementation are typically specified.

2. Bayes’ rule provides a rational resolution of a natural trade-off between
parsimony (priors) and goodness of fit (likelihoods).

3. The explanatory gap between innate and learning hypotheses can be bridged
by Bayesian updating that selects the best hypothesis (various symbolic
structures) to explain the known data.

Computational Models of Developmental Psychology 785

https://doi.org/10.1017/9781108755610.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.028


4. A lot can be learned quickly from very little data by taking account of both
current knowledge and information about how learning examples are
selected (strong or weak; random or intentional).

5. High-level learning constraints, such as hypotheses or theories, need not be
innate. Instead, they can be learned in hierarchical models, and are often
learned quickly (Goodman, Ullman, & Tenenbaum, 2011). This is because a
high-level hypothesis, residing at higher levels of a hierarchical model,
receives supporting evidence from a wider range of observations.

6. Because Bayesian models often ignore cognitive limitations when deriving
an optimal solution for a task, they make it possible to identify deviations
from rationality resulting from those limitations (e.g., constraints on time,
memory, attention, etc.).

Concrete transition mechanisms are relatively rare in Bayesian approaches to
development, but the WSLS algorithm for evaluating incoming evidence and
the emphasis on social learning and instruction are welcome contributions.

23.8 Integrating Bayesian and Neural Network Approaches

Due in part to the evident current popularity of Bayesian and neural
network approaches, it is worth considering whether these two approaches
could be usefully integrated in some way. Although they are often viewed as
competitors and can generate different predictions, some researchers are begin-
ning to recognize that these two approaches can complement and enrich each
other, in part because they operate at different levels of analysis (Marr, 2010).
Roughly, the Bayesian approach concentrates on a computational level of
analysis (the goal of the computation, and its ideal solution), while the neural
network approach emphasizes the algorithmic level (the precise computation
methods) in a brain-like way, thereby approaching the implementational level
(how the computation is implemented in brains).
An example of integration across these levels can be found in neural

network simulations of probability learning in preverbal infants. There is a
series of recent experiments showing that infants can learn simple, binary
probability distributions and use them to guide their search for desired objects
(Denison, Reed, & Xu, 2013; Denison & Xu, 2010, 2014; Teglas et al., 2011;
Xu & Garcia, 2008).
In one infant experiment, four-and-a-half– and six-month-olds were first famil-

iarized with two boxes, one containing a ratio of one pink to four yellow balls,
and the other containing the opposite 4:1 ratio (Denison et al., 2013). On each of
several test trials, an experimenter drew a sample of, e.g., one pink and four
yellow balls from one box and placed it in a small transparent container. Then the
experimenter revealed that the source box had a 4:1 ratio of yellow to pink balls,
while the other box had the opposite ratio. The test trials alternated between a
four-pink-and-one-yellow sample (relatively improbable, given the source) and a
four-yellow-and-one-pink sample (more probable, given the source).
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Results indicated that the older infants looked longer at an unexpected,
improbable sample than at an expected, probable sample, while the younger
infants looked about equally at both samples. Looking time in such experiments
is conventionally interpreted as an indicator of infant surprise. It was concluded
that the ability to generalize from samples to populations emerges by around six
months of age. Underlying causal or computational mechanisms were
not explored.

A simulation of this experiment used an SDCC constructive network which
was enhanced with learning-cessation ability, so that it could stop learning and
recruiting hidden units when error reduction stagnated (Nobandegani & Shultz,
2018). The age difference was implemented with the score-threshold parameter,
which controls depth of learning, as older infants are known to learn more from
the same stimulus exposure than younger infants do. Training patterns con-
sisted of an event sequence of drawing a ball from a container, where identifi-
cation of the container was the input and the color of the ball drawn was the
output. The probability distributions were accurately learned as output-unit
activations only in the deeper learning condition, in which two to three hidden
units were recruited. With shallow learning, typically no hidden units were
recruited. Error on test patterns represented surprise at seeing an unexpected
event, i.e., an improbable source box, given the sample. There was evident
surprise (measured as network error) only with deeper learning.

Another limitation of feedforward neural networks like SDCC was that they
could not generate samples from learned categories. This was solved by pairing
these networks with a Markov-chain Monte Carlo sampling algorithm
(MCMC) (Nobandegani & Shultz, 2017, 2018). This enabled simulation of
infant sampling from the learned probability distributions, thereby explaining
infant search for preferred objects in probabilistically more favorable locations.
This overall computational system, called NPLS (Neural Probability Learner
and Sampler), allows for bi-directional inference: forward from examples to
categories, and backwards from categories to samples (Shultz & Nobandegani,
2020, 2021). Importantly, probabilities were not provided as learning targets.
Instead, they were an emergent product of network learning of the connections
between particular containers and samples drawn from them. Because the
networks used a deterministic activation function, the notion of probability
was itself an emergent product of the learning.

In many of the infant probability learning experiments, probability had been
confounded with frequency in the sense that the most favorable container also
had more of the desired color. A particularly interesting study succeeded in
unconfounding probability and frequency across a series of four experiments
(Denison & Xu, 2014). There, ten- to twelve-month-olds saw two jars contain-
ing preferred and unpreferred colors of objects. The jars were then covered, and
one object was randomly removed from each jar and hidden in a separate cup
without revealing its color. In three of the four experiments, the two jars had
equal frequencies of preferred objects, but differing probabilities of obtaining a
preferred object, due to variation in numbers of unfavored items. Another
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experiment pitted probability against frequency, as the preferred object color
was more numerous but less probable. When infants were enticed to approach
the cups, their search patterns systematically reflected differential probabilities,
and not differential frequencies, of the preferred color. Indeed, infant search
patterns matched the ground-truth probabilities rather precisely. This was
simulated by NPLS networks that had been exposed to the same patterns used
in the infant experiments (Shultz & Nobandegani, 2020, 2021).
It has been a mystery how preverbal infants could learn and use probability

distributions. None of the usual suspects can explain this. Subitizing only works
with one to four items. Other, related experiments rule out perceptual factors
such as area, contour length, and density (McCrink & Wynn, 2007; Wynn,
Bloom, & Chiang, 2002; Xu & Spelke, 2000). The Approximate Number
System for magnitude estimation has not been shown to work with infants
and numbers as large as those used in the infant probability experiments (Xu &
Spelke, 2000), nor to be capable of division. Pointedly, the standard method of
computing probabilities (accurate estimation of multiple frequencies, summa-
tion of those estimates, and division of each of the frequency estimates by that
sum) is far beyond the abilities of preverbal infants, who are still several years
away from being able to explicitly and accurately count and divide.
To fully understand such Bayesian probabilistic abilities in young infants, a

general learning algorithm, capable of quickly and accurately learning various,
novel probability distributions is presumably required for a convincing explan-
ation of the infant results. Bayesian approaches have not, so far, explained how
such distributions could be learned, particularly by preverbal infants. This work
with NPLS is a start at integrating Bayesian and neural network approaches.
How well it would scale up to more complex abilities and probability distribu-
tions remains to be seen.

23.9 Near-Future Predictions

It could be interesting to speculate about the possible impact of new
breakthroughs in neural networks that perform so-called deep learning. In the
last few years, the use of neural networks in deep learning techniques have
achieved notable advancements on extremely difficult problems like mastering
the game of Go (Silver et al., 2016), and greatly speeding up the discovery and
manufacture of useful medicinal drugs (Segler, Preuss, & Waller, 2018). Deep
machine learning is already a vast research area, but one particular way in
which some of this work might eventually affect computational modeling of
psychological development is by being able to use more realistic inputs than
current programmer-designed coding schemes, like those reviewed in this chap-
ter. A compelling example concerns simulations of video-game playing. Deep
learning networks have learned to play several of the various game genres at a
high level, including arcade, shooting, racing, real-time strategy, open-world,
and team-sport games (Justesen, Bontrager, Togelius, & Risi, 2019). Much of
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this work employs end-to-end, model-free, deep-reinforcement learning,
wherein a convolutional neural network learns to play directly from viewing
raw video pixels while playing the game. In convolutional neural networks,
there are trainable filters suitable for processing image data such as the pixels on
a video-game screen, thus providing a possible computational model of human
perception. In these cases, no input-coding scheme needs to be invented by a
programmer. This is not to say that there is no preprocessing of the data; the
amount of data preprocessing is typically extensive in deep learning research.
Nonetheless, pixel input is often considered to be more realistic in terms of the
visual input received by a human player. For simple games, like most arcade
games, such networks learn to achieve performance that is considerably better
than humans achieve. For more complex games, there are still many open
problems and challenges. Of particular interest to computational modeling of
humans might be human-like game playing, where the goal is not to beat the
human world champion, but rather training bots that are fun to play with or
against, because they play like humans do (Hingston, 2012).

23.10 Conclusion

It is interesting to compare this chapter to the one in the 2008 hand-
book. Although the subfield of computational modeling of development is still
blessed with a healthy diversity of modeling approaches, there are now many
more published models and some dramatic shifts in the popularity of the
various approaches. Progress has been considerable in the number and range
of computational models and the depth and sophistication of those models. As
in cognitive science more generally, Bayesian models have become much more
numerous in the area of psychological development. Because so many different
phenomena are being simulated these days, the likelihood of finding computa-
tional bakeoffs like those featured in the 2008 chapter is now rather low.
Perhaps systematic reinstatement of computational bakeoffs could better reveal
the strengths and weaknesses of the various modeling approaches.

There is now an improved integration of empirical and modeling work, based
on both collaboration between empirical and modeling researchers and the
appearance of more researchers who do both empirical and modeling research.
There is also increased recognition that different phenomena may call for
different approaches, and this contributes to the increased acceptance of diverse
approaches. Each approach has its limits, but each is continuing to make
worthwhile contributions. It is likely that many modelers could continue to
improve the accessibility of their modeling reports to encourage further
integration of theoretical analysis and empirical data. Making code available
to other researchers is becoming a requirement in modeling of development and
throughout cognitive science more generally.

There is also a beginning recognition that different approaches can operate
on different levels. Marr’s (2010) three levels of analysis continue to be useful in
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this regard. It is widely recognized that Bayesian equations and other math-
ematical treatments generally reside at a relatively high computational level,
and that neural network and other algorithms occupy a lower, algorithmic level
specifying computational operations and mechanisms. This approaches the
brain implementation level, although most models of psychological develop-
ment are still considerably more abstract than actual brain circuits; although see
Helfer and Shultz (2018, 2019) for some exceptions in the nondevelopmental
areas of memory consolidation and reconsolidation.
Because some modeling approaches tend to reside on distinctly different

levels, it is entirely possible that they are potentially more complementary than
competitive. Section 23.8 provided a glimpse of how neural networks could be
better integrated with Bayesian approaches. There have also been interesting
efforts to integrate neural network approaches with both dynamic systems
(Spencer, Thomas, & McClelland, 2009) and symbolic approaches (Sun,
1995). As noted, Bayesian approaches are often selecting the best symbolic
structure to fit incoming data. It is reasonable to expect further cross-level
integration, including with neuroscience.
The good news is that handbook readers can anticipate even more amazing

discoveries in modeling of psychological development in the coming years.
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24 Computational Models
in Personality and Social
Psychology
Stephen J. Read and Brian M. Monroe

24.1 Introduction

This chapter focuses on computational models in social and personality
psychology. Although there has been a considerable amount of computational
modeling of social behavior in other fields such as anthropology, sociology, and
political science, that work will not be reviewed here. Some of the work in those
fields is covered in Chapter 32 in this handbook. Computational modeling in
social psychology and personality started in the early days of computational
modeling of human psychology; however, this chapter focuses on work over
roughly the last twenty-five years, occasionally referring to earlier work.
Coverage of various simulations is largely organized in terms of the substantive
questions being addressed, rather than by the particular simulation technique
being used.

The most frequently used modeling techniques in social and personality
psychology are various kinds of connectionist models (see Chapter 2 in this
handbook) or multi-agent systems (see Chapter 32 in this handbook). However,
several authors have used sets of difference equations in simulations of person-
ality. Others have used coupled logistic equations to simulate aspects of dyadic
interaction. Despite the popularity of symbolic models in cognitive psychology
and cognitive science, such as ACT-R (Anderson, 1993; Anderson & Lebiere,
1998) and Clarion (Sun, Slusarz, & Terry, 2005) (see also Chapter 4 in this
handbook), symbolic models are largely absent in current modeling in social
psychology or personality (although see Chapter 32 of this handbook for social
modeling in other disciplines). However, symbolic models were important in
early work in computational modeling in personality and social psychology, as
exemplified by such work as Abelson and Carroll’s (1965) simulation of conser-
vative ideology, the Goldwater machine, Gullahorn and Gullahorn’s (1963)
simulation of social interaction, Loehlin’s (1968) personality model, and
Colby’s (1975, 1981) model of paranoid personality (for overviews of this early
work, see Abelson, 1968; Loehlin, 1968; Tomkins & Messick, 1963).

There tends to be a strong correlation between the topics being addressed and
the simulation techniques being used. Work on intra-personal or individual
cognitive and emotional phenomena, such as causal reasoning, impression
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formation, stereotyping, attitude formation and attitude change, and personality,
have largely relied on various kinds of connectionist models. In contrast, work
focusing on interpersonal phenomena, such as dyadic relationships, mating
choice, social influence and group discussion, and decision making, has tended
to focus on techniques such as cellular automata, multiagent systems, and
mathematical models.
This chapter begins with work on social perception, causal learning, and

causal reasoning. It starts with social perception, because this has long been a
central area in social psychology. The chapter includes work on causal learning
and reasoning, because in social psychology, work in those areas developed in
the context of work on social perception, due to the central role of social
explanation, exemplified in attribution theory, in perceiving and understanding
other people. Finally, because it deals with many of the models that are used in
other substantive areas, it provides a useful introduction to this other work.

24.2 Computational Models

24.2.1 Causal Learning and Social Explanation

Research in this area has examined both the learning of causal relationships and
the use of such previously learned relationships in social explanation and
social perception.

24.2.1.1 Causal Learning

Several different researchers (e.g., Shanks, 1991; Van Overwalle, 1998; Van
Overwalle & Van Rooy, 1998, 2001) have used a feedforward network, with
delta-rule learning, to capture a number of different phenomena in human and
animal causal learning, such as overshadowing (cues compete for associative
strength), blocking (a previously learned cue blocks the learning of a new cue),
and conditioned inhibition (learning that one cue inhibits an outcome increases the
strength of a countervailing cue). The standard delta rule (Widrow &Hoff, 1960),
used in neural network models, is almost identical to the well-known Rescorla–
Wagner (Rescorla & Wagner, 1972) model of animal learning. Both are error-
correcting rules that modify the strength of association between an input or cue
and an output or response, so as to reduce the error of prediction from the input
to output. One aspect of this error-correcting rule is that it captures the impact of
competition between cues for predicting outcomes. For example, if two cues
simultaneously predict the same outcome, then associative strength is divided
between them (overshadowing). Or if an organism first strongly learns that cue
A predicts C, if they are then presented situations in which cue A and B predict C,
they will fail to learn that B also predicts C (blocking). This occurs because
A already predicts C, and in the absence of an error signal for C, there can be no
change in associative strength between B and C.
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24.2.1.2 Social Explanation

Other researchers have used Thagard’s (1989, 2000) ECHO model of
explanatory coherence to simulate causal reasoning and social explanation.
ECHO is a bidirectionally connected, recurrent network that functions as
a constraint satisfaction network and implements a number of principles
of explanatory coherence, such as breadth of explanation and simplicity of
explanation or parsimony.

In this model, nodes represent the evidence to be explained, as well as
potential explanatory hypotheses. Evidence nodes are connected to a special
node that provides activation to them. Explanatory hypotheses have positive
links to the data they explain and negative links to data that contradict them.
Further, contradictory hypotheses have inhibitory links to each other, whereas
hypotheses that support one another have excitatory links. Principles of
explanatory coherence are instantiated in terms of patterns of connectivity.
For example, breadth of explanation follows because an explanation that
explains more facts will receive more activation from those connected facts.
And simplicity is implemented by dividing the weights between explanations
and facts as a function of the number of explanatory hypotheses needed to
explain a given fact. Thus, more hypotheses mean smaller weights from
each one.

Goodness of explanations is evaluated by passing activation through the
recurrent connections among the evidence and hypotheses until the activation
levels asymptote. Thagard has shown that such a constraint satisfaction net-
work can capture a number of different aspects of causal reasoning, such as
scientific reasoning (Thagard, 2000) and jury decision making (Thagard, 2003).

Read and Marcus-Newhall (1993) showed that social causal reasoning
followed the principles of explanatory coherence embedded in ECHO’s con-
straint satisfaction network. They developed a number of scenarios in which
they could manipulate the influence of different principles of explanatory coher-
ence and then had subjects rate the goodness of various explanations. They
showed that ECHO could simulate the impact of the different principles on
subjects’ goodness of explanation ratings.

Read and Miller (1993) also showed how the same kind of network could
capture several fundamental phenomena in social explanation, including the
well-known correspondence bias (or fundamental attribution error), the tendency
to overattribute behavior to a trait and underweight the importance of situ-
ational forces. They suggested that the correspondence bias could be captured
by assuming that decreased attention to a potential cause (here, the situation)
leads to a decrease in the spreading of activation from that node, thus making it
less able to inhibit the alternative explanation, the individual’s trait.

Subsequently, Van Overwalle (1998) critiqued ECHO by noting (accurately)
that ECHO did not include learning, and expressed doubt that a constraint
satisfaction network, such as ECHO, could include learning. In response, Read
and Montoya (1999a, 1999b) presented a model that combined the constraint
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satisfaction capabilities of a recurrent, auto-associative network with the error-
correcting learning of the delta rule. Their model was based on McClelland and
Rumelhart’s (1986, 1988) auto-associator. Read and Montoya showed that this
integrated model was just as capable as feedforward, pattern associators of
capturing classic phenomena in human and animal causal learning, such as
blocking, overshadowing, and conditioned inhibition. At the same time, it
could capture many aspects of causal reasoning. First, it could capture the
principles of explanatory coherence embodied in ECHO (Read & Marcus-
Newhall, 1993). Second, it could model classic phenomena in causal reasoning,
such as augmenting and discounting. Discounting is the tendency to reduce the
strength of an hypothesized explanation to the extent that there is a plausible
alternative. Augmenting is the tendency to judge a cause to be stronger if it
results in an outcome in the face of countervailing or inhibitory forces. Third,
Montoya and Read (1998) showed how this auto-associator could also model
the correspondence bias in terms of accessibility of competing explanations.
The basic idea is that, at least among Americans, trait explanations are more
chronically accessible (active) than situational explanations, and thus able to
inhibit competing situational explanations.
Unfortunately, active work on causal learning and social explanation has

largely disappeared from social psychology. However, there continues to be
active modeling of causal learning and reasoning in cognitive psychology and
cognitive science. Further, there continues to be active modeling work in social
psychology on other aspects of social perception, much of which is reviewed in
the following.

24.2.2 Social Perception

Hastie (1988) presented a model of impression formation and person memory
that focused on simulating the impact of personality-relevant information that
was congruent or incongruent with an initial impression. Impressions were
represented as vectors of values on impression dimensions (e.g., intelligent,
sociable), and impression formation was modeled as a weighted average
applied to sequentially presented personality-relevant behaviors. Memory
was modeled by representing behaviors as propositions that started in
working memory and that subsequently moved to long-term memory. The
probability of forming links among behaviors and the impact of a behavior
on an impression increased with greater residence in working memory, with
residence time being a positive function of the discrepancy between the current
impression and the implications of the item. Retrieval of items from long term
memory proceeded by a search of the associative memory so that items with
more links were more likely to be retrieved. Hastie showed that his model
could capture many of the findings on the impact of incongruent information
on impressions and memory. For example, incongruent behaviors that were
relatively infrequent were more likely to be recalled than congruent behaviors
and had a greater impact on impressions.
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Smith and Zárate (1992) presented an exemplar-based model of social categor-
ization and judgment, based on Nosofsky’s (1987) Generalized Context Model
(GCM). Exemplar models argue that rather than individuals being represented
by prototypes or categories, they are represented in terms of exemplars, with each
exposure to an individual resulting in a new exemplar being stored in memory.
According to Nosofsky’s GCM, judgments about an individual rely on similarity
to retrieved exemplars, where similarity is a weighted average across the various
attributes of the exemplar, and attention to an attribute can influence its weight.
So when we identify an individual we do it on the basis of the most similar
retrieved exemplar, when we give that target individual’s attributes, such as our
attitude toward them, we retrieve that from the representation of the most similar
retrieved exemplar, we categorize an individual by their summed similarity to all
known members of a group, and we make judgments on a quantitative attribute
of a target individual as a function of their weighted similarity to exemplars that
vary on that attribute. In a series of simulations, they showed that: (1) factors,
such as experience, that bias attention to attributes of an individual, will influence
judgments about an individual due to its effect on the weighted average similarity
to exemplars, (2) that frequency of exposure to a particular individual will bias
judgments because it influences the number of exemplars stored of that individ-
ual, (3) that traits which individuals think are highly descriptive will bias judg-
ments of others because this increases attention to that attribute and its
weighting, and (4) they showed that when making judgments of ingroup versus
outgroup, our judgments are influenced by our own traits, because that influences
attention to trait attributes.

Constraint satisfaction models, such as those discussed above for causal
reasoning, have been used frequently to model social perception. Read and
Miller (1993) showed how an ECHO-type model could simulate how social
perceivers formed trait impressions of others from sequences of behaviors, or
narratives. They also described how conceptual combinations could be formed
from different combinations of traits by modeling how the underlying concep-
tual components of several traits were interconnected by excitatory and
inhibitory links. After the network settled, the active underlying concepts would
represent the meaning of the conceptual combination.

Kunda and Thagard (1996) used a related constraint satisfaction model, IMP
(IMPression formation model), in their simulation of a wide range of research
in impression formation, including the integration of stereotypes and individu-
ating information in forming impressions. They contrast their approach with
Brewer’s (1988) and Fiske and Neuberg’s (1990) models of impression forma-
tion, which distinguish between top-down, stereotype-driven processing and
bottom-up, attribute-based processing of information about individuals. Both
are serial process models and hypothesize that stereotype-driven processing
occurs first and then, under the right circumstances, may be followed by
attribute-based processes.

In contrast, Kunda and Thagard (1996) argue that both stereotype- and
attribute-based information are processed in parallel in a constraint satisfaction
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network. Their model assumes that stereotypes, traits, and behaviors are repre-
sented as interconnected nodes in a constraint satisfaction network. They use it
to investigate a number of phenomena in impression formation. For example,
they show that stereotypes can constrain the meaning of both behaviors and
traits as a result of the stereotypes’ patterns of connectivity with alternative
interpretations of the traits and behaviors. Conversely, they also show that
individuating information can influence the interpretation of a stereotype.
Further, they demonstrate that a stereotype will affect judgments of an individ-
ual’s traits when individuating information is ambiguous, but not when the
individuating information is unambiguous. Overall, they demonstrate that a
parallel process, constraint satisfaction model can successfully capture a wide
range of data in impression formation that had been previously argued to be the
result of a serial process.
Freeman and Ambady (2011) presented a recurrent connectionist model of

the social perception process as a dynamic interaction between higher level
categorical information (race, gender, stereotypes) and lower level inputs of
facial, vocal, and bodily cues. The model is an interactive activation network
(McClelland & Rumelhart, 1981; Rumelhart et al., 1986), with four levels: a cue
level, a category level, a stereotype level, and a higher order level that can
represent top down influences, such as task demands. A typical simulation has
race and gender input features, race and gender categories, and nodes for
stereotypical attributes of the individuals (e.g., aggressive versus docile). The
highest level represents things such as task demands (e.g., identify race or
gender of a target).
In one simulation, they showed that when the network was asked to identify

the gender of either a gender typical or a gender atypical male (top-down task
demand), for the typical male the node representing male gender became
activated more quickly and more strongly, than for the atypical male, and
the node for female became deactivated more quickly and more strongly. The
stereotypical traits of aggressive (male) and docile (female) showed the
same pattern.
In a further series of simulations, they investigated the impact of the fact that

there is overlap in the features that define race, gender, stereotypes and emotion,
on the identification of an individual’s race or gender. In one simulation they
showed that given that there is a stereotype that Blacks are hostile, a racially
ambiguous face that was angry was more likely to be classified as black, than
the same face when it was happy. In a second simulation they modeled the
impact of the fact that Blacks have stereotypical attributes that are shared with
being male (aggressive), whereas Asians have female attributes (e.g., docile). As
predicted, sex-ambiguous Black faces were more likely to be categorized as
male, whereas sex-ambiguous Asian faces were more likely to be categorized as
female. In a third simulation, given that angry faces share features with male
faces, and happy faces overlap with female faces, they showed that an angry
male face was categorized more strongly and more quickly as male, compared
to a happy male, whereas a happy female face was categorized more strongly
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and more quickly as female, than was an angry female. Finally, when categor-
izing male and female faces, the classification speed was faster when a simul-
taneously presented voice was sex-typical compared to sex-atypical. This also
shows up in a mouse-tracking task, which shows partial activation of the
alternative response by the sex-atypical voice.

Dual process models are very popular in social psychology, and many
researchers have argued that person perception is the result of a dual process
model, with an initial quick, relatively automatic System 1 process (implicit
process) followed by a more effortful, longer duration System 2 process
(explicit process). However, other researchers, such as Cunningham and
Zelazo (2007), in their Iterative Reprocessing model, have argued that person
perception is instead a dynamic, iterative process in which evaluations
develop over time as various brain systems and their related processes become
activated by the spread of activation over time. One does not need to assume
two separate processes to capture the dynamics of changing evaluations
over time.

Ehret, Monroe, and Read (2015) used O’Reilly’s Leabra architecture in the
emergent neural network modeling system to construct a multi-layer bi-direc-
tionally connected network that captured the time course of evaluative process-
ing in which activation spread from layers representing early perceptual
processing of information, such as race- and gender-related cues, to activation
of semantic information, to the integration of semantic processing of concepts
about situations, occupations, and traits. In one simulation they demonstrated
that the evaluation of an individual could shift dramatically (e.g., from negative
to positive) over time when earlier stereotype evaluations (e.g, about a Black
male) conflict with semantic information processed by later iterations of the
network (e.g., a doctor in a hospital). In another simulation they showed that a
context (e.g., a doctor’s office) that appeared before the person information
could modify the impact of early responses to race and gender cues on later
social inferences.

Monroe et al. (2017) used a constraint satisfaction network, with separate
input features and an attribute inference layer, with attributes fully connected,
to model first impressions. The network captured base rates of attributes in the
dataset and used asymmetric connections to capture different conditional prob-
abilities (e.g., p (A|B) versus p(B|A). They also implemented limited attention in
the network. They tested the model against a large-scale data collection effort in
which they gave subjects a large number of different descriptions of individuals
that were constructed from forty-seven different features and then asked them
to rate the trait that characterized each individual along fifty-two different
traits. Their network had the same feature and trait nodes. They also contrasted
the accuracy of their model in predicting subjects’ trait inferences with Kunda
and Thagard’s (KT) (1996). They found that: (1) including base rates of
attributes led to greater accuracy than the KT model; (2) allowing for
asymmetric weights led to greater accuracy than the KT model; and (3) adding
valence nodes improved inferences.
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A central question in person perception is whether people observing a per-
son’s behavior will spontaneously make trait inferences to describe that person
or whether trait inferences require a deliberative process. In a series of studies,
Uleman and others (Todorov & Uleman, 2002, 2003, 2004; Uleman, Newman,
&Moskowitz, 1996) have shown that people typically spontaneously make trait
inferences (STIs) simply upon observing someone behave. In a related body of
work, researchers (Carlston, Skowronski, & Sparks, 1995; Skowronski,
Carlston, Mae, & Crawford, 1998) have shown that when a communicator
describes the trait-related behavior of another person, observers will often come
to associate the trait implied by the behavior of the other to the communicator
(spontaneous trait transferences (STTs)). Some researchers have argued for a
dual process model, where STIs require an attribution process, requiring an
inference, whereas STTs are the result of a simple associative process.
However, Orghian, Garcia-Marques, Uleman, and Heinke (2015) used a

simple associative connectionist model, with learning, to demonstrate that both
STIs and STTs could result from the same associative process. Their primary
strategy was to manipulate “attention” to a node, influencing the activation of
the node. In their STI conditions, they typically had higher activation of the
actor node, than in the STT conditions. Across five simulations testing five
different findings that other researchers had argued supported different pro-
cesses for STI and STT, they showed that these results could be explained by
their simple connectionist model.
Various researchers have shown that an individual can be treated as a

member of a social category (e.g., male or female) or as an individual (John
versus Mary), where the different responses are actually the result of two
different processes. In contrast, Klapper et al. (2018) argued that a single
process can capture these and related findings.
It has been argued that some of the best evidence for these different

processes is that when identifying who, in a group, said a statement, people
will often confuse two members of the same category (e.g., two men). To test
their single process model, Klapper et al. constructed a neural network model
that could do a simple, simulated version of the “Who said what?” paradigm.
First, they created a feedforward network with Hebbian learning with eight
individuals, that learned an association between each individual node and
either a male or female category node and an individuating node, with a
unique node for each of the eight individuals (e.g., Mary, John, Lynn, etc.).
After extensive learning they presented the network with a series of state-
ments. Across three simulations they varied the attention paid to either the
individuating node or the category node (manipulating the input to that node)
and then updated the association between the statement node and all the
individuating and category nodes. They found that greater relative attention
to the category node during learning led to more within-category errors during
testing, whereas increased attention to the individuating node led to reduced
within-category errors during testing. Thus, their neural network, a single
process, captured both individuation and categorization.
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24.2.3 Group Perception and Stereotyping

Social psychologists have typically proposed that perceptions of different
groups, particularly outgroups, and stereotypes of group members are the result
of emotional and motivation processes. However, various researchers have used
computational models to show that these phenomena can be a natural result of
the structure of information in the environment and/or learning processes, and
do not require sophisticated motivated processing. The initial attempts in this
domain were based on analysis of the information environment, with models by
Smith (1991) and Fiedler (1996) addressing the illusory correlation. Illusory
correlation is a perceived (illusory) positive association between membership in
a smaller group and an infrequent behavior, despite the fact that the larger
group is proportionally just as likely to exhibit the behavior. Smith (1991), using
an exemplar-based memory model by Hintzman (1988), and Fiedler (1996) with
an information aggregation model, showed that illusory correlation could be a
natural product of information sampling and aggregation with different sized
groups. Sampling and aggregating larger samples of information led to more
precise and less variable estimates of parameters. The basic argument was that
illusory correlation could be understood in terms of the distribution of infor-
mation in the environment and did not depend on assuming some kind of biased
process model.

Subsequently, a family of fully recurrent auto-associator models, based on
McClelland and Rumelhart’s (1988) auto-associator, were used to explain
aspects of group perception by learning processes. Smith and DeCoster (1998)
argued that several seemingly disparate phenomena all have a common under-
lying mechanism. They showed that their forty-unit auto-associator, which
represented information in a distributed fashion and uses delta-rule learning,
made inferences based on the natural correlations that arise from the learning
experience. Once the network has learned, it fills in missing information with
stereotypical information for new (unlearned) individuals and can also make
complex inferences based on these learned representations. Additionally, they
replicated recency- and frequency-related accessibility effects, and made novel
predictions about the rapid recovery of schema information after decay.

In a follow-up model, Queller & Smith (2002) showed that their auto-
associator, based on the constraint satisfaction module of PDPþþ (O’Reilly
& Munakata, 2000), could explain empirical data that evidently supported
conflicting models of stereotype change. The model predicts that when counter
stereotypic information is clustered within a small number of individuals within
a larger sample, the result is subtyping, where the perceiver differentiates a new
subtype or category for this small group of individuals and maintains the
original stereotype of the other individuals. However, the model predicts that
when the same counter stereotypic information is broadly distributed across the
population of individuals this results in gradual change in the stereotype.

Van Rooy et al. (2003) used a semi-localist representation in an
auto-associator to examine the same general phenomena. Their model used
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delta-rule learning with one cycle of updating (although it was also tested with
multiple cycles and generally gave the same results). Consistent with the Queller
and Smith (2002) model, they also found that counter stereotypic information
that was dispersed among exemplars (as opposed to being concentrated in one
exemplar) helped to prevent subtyping.
Another important group impression phenomenon that has received concen-

trated modeling attention is the outgroup homogeneity effect (OHE), which is
the perception of the outgroup as having less person-to-person (within-group)
variability than one’s own group. Linville, Fischer, and Salovey (1989)
developed an exemplar-based simulation of the OHE (PDIST), where group
variability estimates are not calculated at encoding, but rather at the time of
judgment, using exemplars retrieved from memory. With more exemplars in a
group, it probabilistically follows that the range of values of group attributes
will tend to be larger, thus, variability estimates should be larger for the ingroup
(with which one typically has much more experience) than for the outgroup.
The information-based models mentioned above (Fiedler, 1996; Smith, 1991)

attempt to show that the OHE depends on noisy inputs masking variability.
The noise is more likely to be averaged out for larger samples, as would be the
case with the more familiar ingroup.
Van Rooy et al. (2003), using an auto-associator, suggest that the OHE is a

natural product of learning, as do Read and Urada (2003) using a recurrent
version of McClelland and Rumelhart’s (1988) auto-associator. Both models
essentially argue that learning of the extremes of the distribution is better for
larger samples (typically the ingroup).
Kashima and colleagues took a unique approach within social psychology

with their tensor product model (TPM) of group perception (Kashima,
Woolcock, & Kashima, 2000; Kashima, Woolcock, & King, 1998). In this
model, inputs for the event, the group, the person, and the context of an episode
are all vectors of distributed representations. These vectors are combined to
form a tensor product, which encodes the relations among the vectors. Various
judgments are based on operations on this tensor product. They are able to
reproduce empirical results on group impression formation and sequential
exposure to exemplars. One conclusion is that stereotype-inconsistent infor-
mation changes the representation of the individual in memory. Their model
shares with the previously discussed models the finding that attributional pro-
cesses are not needed to explain phenomena, but instead, they can be explained
by information distribution and basic learning processes. This is perhaps the
most significant conclusion of this line of research.

24.2.4 Face Perception

A recent area of interest in social psychology is how perception of facial features
and emotional expressions affects the inferences we draw about personality.
This phenomenon has been proposed to account for popularity and voting
outcomes in presidential elections (Ballew & Todorov, 2007), as well as more
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mundane interactions. Zebrowitz (Zebrowitz et al., 2003; Zebrowitz, Kikuchi,
& Fellous, 2007) argues that many of these social perception effects are driven
by overgeneralizations from evolutionarily adaptive responses to types of indi-
viduals such as babies and those with anomalous faces. Zebrowitz et al. (2003)
used a neural network with an input, hidden, and output layer, and a back-
propagation learning algorithm, and trained it to classify a complement of
normal, anomalous, and infant faces. They then showed that trait inferences
for test or generalization faces could be predicted by how they were classified by
the network. For example, ratings of adult faces on sociability were predicted
by the extent to which they activated the baby output unit. And higher acti-
vation of the anomaly output unit by a test adult face predicted lower ratings on
attractiveness, health, and intelligence.

In a subsequent study, Zebrowitz et al. (2007) focused on reactions to
emotional expressions, arguing that these may be evolutionarily adaptive gen-
eralizations from responses to baby faces (which elicit affiliative responses) and
mature faces (which elicit feelings of dominance or being dominated). Using the
same network architecture, they found that impressions of emotion faces were
partially mediated by their degree of resemblance to baby and mature faces.
Faces showing an angry expression, like mature faces, created impressions of
high dominance and low affiliation, whereas faces showing a surprise expres-
sion, like baby faces, led to impressions of high affiliation and low dominance.
The authors emphasize that the success of these models (which are based solely
on the information structure in the faces) in predicting impressions, suggests
that resorting to cultural explanations for the associations between facial fea-
tures and trait inferences is not always necessary. These results, along with
several other models of unrelated phenomena, such as the OHE and illusory
correlations, show how many empirical effects can be reproduced by relying
only on basic properties of learning systems and information structure, and do
not require complex motivational or other processes.

24.2.5 Attitudes and Attitude Change

One of the earliest computational models in social psychology was Abelson and
Carroll’s (1965) “Goldwater Machine,” an attempt to model the ideological
belief systems and attitudes of a conservative (also see Abelson, 1963, 1973).
This led to Abelson’s collaboration with Roger Schank (Schank & Abelson,
1977) on scripts, plans, goals, beliefs, and understanding, and the Yale artificial
intelligence approach. Unfortunately, this early work by Abelson was not
followed up by other social psychologists and seems to have had little direct
influence on computational modeling in social psychology.

However, there has been a recent resurgence of modeling of attitudes, pri-
marily motivated by interest in cognitive consistency. Theories of cognitive
consistency were in their heyday in the 1960s (see Abelson et al., 1968), but
interest then declined dramatically. However, the advent of computational
modeling has added a fresh perspective on this and related phenomena, such
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as attitude formation and change, and cognitive dissonance. The classical
formulations of cognitive consistency theory (Abelson et al., 1968; Festinger,
1957) argue that attitudes and evaluations are the result of a balancing act
among competing cognitions; for people to make sense of the world, these
cognitions must end up being organized in such a way as to mutually support
each other, maintaining consistency in one’s world view. For example, as it does
not make much sense to think both that one needs to drive the latest oversized
sports utility vehicle and that we should conserve natural resources and protect
the environment; one of these beliefs must be adjusted, or some other way of
reducing the disparity between them needs to be found, for example, by intro-
ducing intervening cognitions like “my one car doesn’t make much difference
when the problem is a global one.”
This sounds quite similar to processing in coherence-type networks, such as

Thagard’s ECHO model. Not surprisingly, cognitive consistency has recently
been reconceptualized in terms of constraint satisfaction or coherence networks.
Two variants of ECHO have been used to simulate cognitive consistency. First,
Spellman, Ullman, and Holyoak (1993) asked students their opinions on the
Persian Gulf conflict of 1991 at two times, two weeks apart. They constructed
ECHO models of students’ opinions, where all concepts were only indirectly
related to each other through the overall opinion node. The way the network
settled predicted students’ attitude changes over the two-week period.
Second, Read and Miller (1994) used ECHO to model a variety of balance

and dissonance situations. One addition they made is that they represented
differences in the initial degree of belief. This model showed how different
modes of inconsistency resolution could be implemented, mainly by adding
nodes that contradicted or bolstered the ambivalent cognitions. The resolution
mode that ultimately gets chosen in this model is determined by coherence.
Shultz and Lepper (1996, 1998) developed their own constraint satisfaction

model to account for cognitive dissonance. As in the preceding models, the
weights are bi-directional and fixed – only the activations change during the
settling process. They introduced an additional change resistance parameter to
represent how “changeable” a particular node is, due to things like attitude
importance and embeddedness in a web of beliefs. They then simulated studies in
four classic cognitive dissonance paradigms. First, they simulated Freedman’s
(1965) forbidden toy study and were able to successfully simulate the finding that
children found a forbidden, attractive toy to be more attractive, only when a
warning not to play with the toy was mild and they did not think they were being
watched. Second, they modeled Linder et al.’s (1967) study in the forced com-
pliance paradigm, in which subjects are asked to write an essay that is counter to
their true attitude on a topic. The model successfully simulated the finding that
attitude change was largest when subjects thought they had free choice to write
the essay versus being assigned to the topic. Third, they simulated Gerard and
Mathewson’s (1966) severity of initiation study, in which severe or mild electric
shock was used to capture severity of initiation. All subjects received a shock
(either severe or mild), half were told it was part of an initiation to join a group
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and the other half were not. After the shock, all participants listened to a boring
discussion by that group. The model successfully simulated the finding that
the most positive attitude toward the group was in the Severe shock,
Initiation condition.

Finally, they used this model to make novel predictions about the pattern of
evaluation changes between chosen and rejected wall posters by thirteen-year-
olds, in a study based on a free choice study by Brehm (1956). In this paradigm,
subjects have to choose between two objects that have been previously rated on
desirability. Consistent with Brehm’s results, the model predicted that (1) when
the two objects were desirable and of equal value, the model denigrated the
nonchosen object; and (2) when one object was clearly more desirable, there was
no attitude change. However, the model also made a unique prediction, that
had not been previously tested: when the two objects were not desirable and of
equal value the model bolstered the chosen object, rather than denigrating the
nonchosen one. This prediction was tested in lab studies by Shultz, Léveillé, &
Lepper (1999), which confirmed the novel prediction, as well as further con-
firming Brehm’s classic findings. In addition, they could also reproduce annoy-
ance effects, mood effects, and locus of change effects found in the original
studies that were not predicted by classical dissonance theory.

Van Overwalle (Van Overwalle & Jordens, 2002; Van Overwalle & Siebler,
2005) has noted that a shortcoming of the previous models is that they cannot
capture long-term changes in attitudes, as there is no learning. To remedy this,
Van Overwalle and Jordens (2002) represented attitudes in a feedforward neural
network with delta-rule learning, with input nodes representing the features of
the environment and two output nodes: behavior and affect. The average of the
activation of the behavior and affect nodes are treated as the measure of
attitude. They then used this model to simulate the results of the same studies
modeled by Shultz and Lepper. However, Van Overwalle and Jordens’ (2002)
model does not actually account for the experience of dissonance or the attitude
change that follows. Their model simply shows that the network will learn to
associate an object with an affective response that is explicitly provided by the
modeler. The affective response is not generated by the network.

In contrast, the various constraint satisfaction models can actively generate
the affective inference. Thus, a constraint satisfaction network, in which weights
are updated after the network settles, would seem to make more theoretical
sense. Following this reasoning, Read and Monroe (2019) investigated a
constraint satisfaction network with learning. They modeled dissonance reduc-
tion in a recurrent neural network model with learning, using the constraint
satisfaction module in the PDPþþ neural network package (Dawson, O’Reilly,
& McClelland, 2003). The model could capture both short-term attitude
change, in terms of activation change resulting from the constraint satisfaction
process, and long-term attitude change, in terms of weight changes when the
network settles. They successfully simulated the four cognitive dissonance
studies simulated by Shultz and Lepper (1996, 1998) and showed long-term
attitude change as a result of the dissonance reduction.
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Monroe and Read (2008) simulated a number of other central attitudinal
phenomena using the same general constraint satisfaction package (csþþ).
They used a network with four sets of units: Cognitorium units that represent
various different beliefs, Persuasion units that represent features of persuasive
arguments, an Attitude object, which represents the Attitude objects, and
Evaluation nodes, which represent the valence of the attitude.
The network uses a form of associative (Hebbian) learning, which allows it to

capture long-term attitude and belief change. A fairly unique aspect of this
network is that they controlled the amount of processing by putting a ceiling on
the total net activation of layers. This can be viewed as manipulating available
cognitive capacity.
They simulated five major attitudinal phenomena:

Thought-induced attitude polarization. Merely thinking about an attitude
object can lead to a more polarized attitude. They had a network with an
initial modestly positive attitude settle multiple times, which led to a more
positive evaluation of the attitude object.

Elaboration and attitude strength. Greater degree of thought (represented by
more cycles of processing) led to greater resistance to persuasion (a
stronger attitude).

Motivated reasoning and social influence. They treated one unit in the cogni-
torium as a bias unit (representing a particularly important goal) that was
connected to related beliefs. When the bias unit was positively active and
supported related beliefs, the network responded less strongly to a
persuasion attempt.

Heuristic versus systematic persuasion. In the heuristic condition, attitude
change relies on the direct link between the message and the evaluation,
whereas in the systematic condition, attitude change relies more on the
relation of the persuasive message to the cognitorium and then to the
evaluation. They showed that a systematic message was more effective
under high capacity and a heuristic message was more persuasive under
low capacity, when attitude was measured immediately. Systematic per-
suasion led to greater maintained attitude change over time.

Implicit versus explicit attitude change. Implicit attitudes are relatively quick
and nondeliberative, whereas explicit attitudes are more thoughtful and
deliberative. It has typically been argued that this distinction results from a
dual systems architecture. They represented an implicit attitude as a direct
evaluative link between attitude object and evaluation, whereas an explicit
attitude was represented as an indirect link through a more complex
representation in the cognitorium. As a result, the explicit attitude took
more time and processing to come online.

Orr, Thrush, and Plaut (2013) used a parallel constraint satisfaction network
to model the Theory of Reasoned Action (Fishbein & Ajzen, 1975), a theory of
how attitudes toward an action and social norms about an action generate a
behavioral intention to perform the action. They used the network to model
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high school students’ attitudes, beliefs, and intentions toward having sex and
showed that when the model learned different patterns of beliefs and intentions,
this led to different behavioral choices. Subsequently, Orr and Chen (2017)
presented preliminary work on the plausibility of developing a multi-agent
model in which agents, each defined by its own neural network, interact over
a social network. The current literature on multi-agent models rarely, if ever,
uses neural networks to implement individual agents, making this work
relatively unique.

Dalege et al.’s (2018) Attitudinal Entropy Framework is based on the CAN
(Causal Attitude Network) (Dalege et al., 2016) model, which treats attitude
elements as nodes in a network that are connected by pairwise interactions. It is
based on psychometric network models and constraint satisfaction models of
attitudes, such as Monroe and Read (2008) and Shultz and Lepper (1996, 1998).
The basic idea is that attitude networks can be analyzed in terms of the Ising
(1925) model, which comes from work on thermodynamics. In a standard Ising
model, nodes are either on or off and they have a threshold, which governs their
tendency to be on or off, and there are weights between nodes, which represent
the strength of interactions between pairs of nodes. Such a system is treated as if
it has energy, where the energy is a function of the thresholds of the individual
nodes and the weights between the nodes. Such systems tend to spontaneously
seek low energy states. The system’s energy also depends on its dependence
parameter: with high dependence the state of the network is largely influenced
by the threshold and weights, whereas in a network with little or no dependence,
the network behaves randomly. Focusing attention on a network is argued to
increase its dependence parameter and therefore its tendency to become
more organized.

It is important to note that Ising models were also the basis of Hopfield’s
(1982, 1984) analysis of what are called Hopfield neural networks and he
showed that the same mathematical models that could be used to describe
patterns of magnetism could be used to analyze simple neural networks. He
also showed that these mathematical tools could be used to characterize
neural networks as having energy and as seeking a state of low energy.
This is the basis of what are called constraint satisfaction neural
network models.

In Dalege et al.’s (2018) first simulation they proposed that one major
difference between implicit and explicit attitude measurement could be under-
stood in terms of differences in the impact of attention on the dependence
parameter. They argued that implicit attitudes, because they are quick, will
receive less attention, which results in a lower dependence parameter, and fairly
random networks, whereas explicit attitudes, which are the result of greater
thought, will have a higher dependence parameter and thus greater organiza-
tion. Their simulations showed that attitude measures in a low dependence
network showed low consistency between measurement times, but stable mean
estimates from time 1 to time 2, whereas attitude measures in a high dependence
network showed greater consistency.
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In another simulation they captured the mere thought effect, which is that
greater attention to a set of beliefs or attitudes leads to more extreme attitudes.
They simulated the impact of greater attention by increasing the dependence
parameter, which led to more extreme attitudes.
In several other simulations they demonstrated that the degree of ambiva-

lence of a system of attitudes could be understood in terms of the “energy” of
the network. They showed the highest degree of ambivalence occurred in a
network when there were highly mixed attitudes and a high dependence param-
eter (i.e., greater attention), resulting in higher “energy.”
Nonconstraint satisfaction networks have also been used to study attitudes.

Eiser et al. (2003) used a feedforward network, with a hidden layer, and
backpropagation learning, to show how attitude perseverance naturally results
from an uneven payoff matrix and reinforcement learning. Using a “good
beans, bad beans” paradigm (BeanFest), in which the network had to learn
whether a “bean” was “good” (increased energy) or “bad” (decreased energy),
their simulations showed that when the network only received feedback when it
chose to “eat” a bean, but did not receive feedback when it “avoided” a bean,
that the network fully learned which were “bad” beans, but failed to learn that
many of the “good” beans were “good.” Essentially what happens is that if the
network thinks a bean is “good” it will eat it and get accurate feedback, but if it
has an initial impression that the bean is “bad” and avoids it, then it never
learns otherwise. This shows how mistaken initial negative impressions may fail
to be disconfirmed.
In a follow-up, Eiser, Stafford, and Fazio (2008) used the neural network

model from Eiser et al. (2003) to model the impact of expectancy bias on both
learning and choice. They modeled a positive expectancy by modifying connec-
tions more in response to good beans than bad beans and a negative expectancy
by modifying connections more in response to bad beans than good beans. The
model would choose to eat what was predicted to be a bean, but avoid what
they thought was a bad bean. A negative expectancy resulted in more frequently
misclassifying good objects as bad and failing to update their impression,
because a negative impression led to avoiding objects, regardless of whether
they were actually good or bad. In contrast, a positive expectancy encouraged
approach and gaining feedback about both good and bad beans, leading to
more accurate discrimination of good and bad beans.
Eiser, Stafford, and Fazio (2009) used their BeanFest NN model to examine

how prior expectancies might be a mechanism for learning negative stereotypes.
In a first simulation, they manipulated the Action Bias, the probability of
approach. They used the contingent feedback version of the model, where
feedback is received only when a decision is made to eat (approach) a bean,
and no feedback is received when a bean is avoided. Noise was added to
the decision.
They implemented a negative action bias by scaling the evaluation of the

beans in one region, that were all positive, so that they were less positively
evaluated, which would reduce the likelihood that they would be chosen. In the
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positive action bias condition, they scaled beans in a different region that were
actually all bad so that they were more positively evaluated, which would
increase the likelihood that they would be chosen. They showed that a negative
Action Bias reduced the likelihood of learning that these positive beans were
good, whereas a positive action bias increased the likelihood of learning that
these negative beans were actually bad.

In another simulation they manipulated Learning Bias, the probability of
learning (weight change) from outcomes. For the negative learning bias, they
downscaled the discrepancy between prediction and actual value for a set of
positive beans that they had been told were bad, and for the positive learning bias
condition they downscaled the discrepancy between prediction and actual value
for a set of negative beans that they had been told were good. If the NN had a
negative learning bias it learned more slowly from a set of positive beans and took
longer to approach them. And if the NN had a positive learning bias, it learned
more slowly from a set of negative beans, and took longer to avoid those beans.

24.2.6 Social Influence

Researchers have used cellular automata and multi-agent systems to model
various aspects of social influence, the process by which we influence and are
influenced by others. The subject of influence has ranged from attitudes and
group opinions, to belief and enforcement of group norms, to the development
of cultural beliefs, to gossip. (Other reviews of work on computational models
of social influence can be found in Mason, Conrey, and Smith (2007) and
Flache et al. (2017).)

Abelson & Bernstein (1963) were the first to do a computer simulation of
opinion dynamics. Using a multi-agent system, they examined opinion dynam-
ics as a function of relationships among agents and communication between
them. Their model exhibited polarization of opinions: pro attitudes became
more pro and con attitudes more con.

Latané and colleagues (e.g., Latané, 1996, 2000; Latané, Nowak, & Liu,
1994; Nowak, Szamrej, & Latané, 1990) focused on trying to predict the
following characteristics of a multi-agent system: (1) polarization/consolida-
tion – the degree to which the proportion that adopts the majority/minority
opinion changes over the course of interaction; (2) dynamism – the likelihood of
an individual changing his or her position; and (3) clustering – the degree of
spatial organization in the distribution of positions held by individuals.
A critical step in these simulations is determining the influence function: how
an individual is influenced by his or her neighbors. The parameters that have
been focused on are the strength of attitude/conviction in the influencee (who
also serves a dual role as an influencer); the persuasiveness of an influencer in
changing the influencee’s attitude; the supportiveness of the influencer in
defending the influencee’s current attitude; the social distance between influen-
cer and influencee; and the number of people within the influence horizon
(which can be affected by the geometries of contact, e.g., full connectivity,
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where everyone in the network is connected to everyone else vs. a family
geometry, where individuals contact only their family members plus a few
selected friends). The investigators suggest that different influence rules might
be applicable under different circumstances; for example, when groups and
issues are well-defined, the influence horizon can include the whole
population, but when issues and groups are not well formed, a purely incre-
mental influence function is more appropriate (Latané et al., 1994).
These simulations show that the equilibrium (final) distributions are highly

dependent on small changes in initial conditions. Initial majorities tend to get
bigger, leaving clusters of minorities with strong convictions (Latané, 1996;
Latané et al., 1994; Nowak et al., 1990). Subsequent lab experiments were
carried out: generally, the simulations reproduced the lab results well, with
the caveat that the more strongly held the opinions/attitudes, the less well the
lab results were predicted by the simulations (Latané & Burgeois, 2001).
Latané’s (2000) simulations of group opinion change have shown results

similar to those with an influence function where an individual’s attitude is
the average of his or her neighbors. Clusters of similar attitudes develop, and
majorities tend to gain more control. This model also implemented social
comparison processes as an additional source of influence. In this case, if a
neighbor’s outcome was better, an individual adopted that neighbor’s effort
level. Simulating several parallel work groups, the results showed remarkable
within-group homogeneity, but large between-group differences.
Centola, Willer, and Macy (2005) modeled social influence in one particular

context: the public enforcement of privately unpopular social norms (also
known as the Emperor’s dilemma). Their model suggests that this can happen
when the strength of social influence exceeds the strength of conviction of the
individuals. The process requires a few true believers (individuals with imper-
turbable convictions) to induce a cascade of norm enforcement that happens
because the people with the weakest convictions adopt enforcement rather
quickly, which further increases the influence on the remaining individuals until
most everyone enforces the unpopular norm. This effect only occurs in net-
works where only local influence is allowed.
Turner and Smaldino (2018) examined polarization of opinion in groups

using an agent-based model with social network connectivity. Each agent had
a position in opinion space defined by a vector of opinions. Agents were
arranged in groups of five, with some additional long-range ties to other groups,
which was manipulated in the simulations. Weights on edges were a function of
opinion distance and determined the degree of social influence. If agents were
too distant, the weight became negative. Agents updated attitudes by adding the
average influence of agents to which they were connected. They found that
whether attitudes become polarized is extremely path-dependent because of the
stochasticity of the model: identical repeatable starting conditions resulted in
different outcomes. They also found that polarization was more likely when
there were more agents with extreme positions and when there was noise in the
communication channels among agents.
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MacCoun (2012; also see MacCoun, 2015, 2017) has outlined an integrated
mathematical model of social influence (BOP-Burden of Proof model) that can
be applied in a variety of different domains, such as classic conformity experi-
ments, group deliberations, such as jury decision making, and social diffusion.
He has tested the predictions of the model using Monte Carlo and simple
Agent-based, cellular automata simulations. The family of related models does
a very good job of fitting the impact of social influence in a variety of different
decision contexts and across multiple paradigms. He shows how earlier models
can be seen as special cases of the more general BOP model.

The model has four key parameters: b, which is the threshold for responding
to influence; the potential strength of influence θ, measured as the ratio or
proportion of the number of sources to the population; and c, which is a
measure of the clarity or the degree to which norms are consensually shared.
m represents the maximum possible external influence in the situation.

The model is related to earlier work on social decision schemes and Latané
(SIT) and Nowak’s work on social influence models, Mullen’s (1983) other-total
ratio (OTR) model, and Tanford and Penrod’s (1983) social influence model
(SIM). However, BOP is more flexible, psychologically interpretable, and
handles a range of data.

24.2.7 Group Behavior

24.2.7.1 Group Formation

Smaldino, Pickett, Sherman, and Schank (2012) examined the assumptions of
Brewer’s (Brewer 1991; Leonardelli, Pickett, & Brewer 2010) Optimal
Distinctiveness Theory to see if and how individual preferences for optimal
distinctiveness would influence group formation. Brewer argued that people
have a need to be optimally distinct, where optimal identities simultaneously
satisfy both the need for assimilation/inclusion in a group and the need for
differentiation.

They tested this in a multi-agent simulation. Each individual had a single
social identity (SID) visible to neighbors and an optimal distinctiveness that was
the desired frequency of that SID in the population. If they did not have an
optimally distinctive SID, they switched to that SID in the neighborhood that
was closest to optimally distinctive, assuming that a neighbor was closer to
optimal. Each agent changed their SID until they were optimally distinct. They
compared populations in which agents could interact with all agents in the
population (well-mixed) and those who could only interact with those who were
spatially close. Spatially restricted neighborhoods led to more optimally dis-
tinctive groups. Individuals in well-mixed populations never approached
optimal distinctiveness.

Smaldino and Epstein (2015) further examined conditions under which the
need for optimal distinctiveness led to conformity in groups or distinct popula-
tions. They showed that when all agents have the same or similar preferences for
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optimal distinctiveness then the population will converge to the same value.
However, as the difference between populations diverged, the ultimate distribu-
tion of positions of the agents diverged.
Gray et al. (2014) used agent-based modeling to examine whether principles

of reciprocity and transitivity of friendship are sufficient for group formation in
the absence of differences in all other characteristics (e.g., skin color, hair, etc.).
Agents played an iterated prisoners’ dilemma game, in dyads, in which all
agents were equally close to one another at the beginning of the simulation.
Degree of closeness was represented by the probability of interacting. Agents
moved closer to those with whom they cooperated in the Prisoner’s dilemma
(had a greater probability of interacting in the future) and they moved closer to
those who were friends (where friends are those they cooperated with) of their
friends. They also found that higher reciprocity and transitivity led to group
formation and higher payoffs.

24.2.7.2 Culture

Several researchers have modeled the development and change of culture and
cultural beliefs. Muthukrishna and Schaller (2020) examined the impact of
social influence processes in social networks to study the impact of cultural
differences on changes in cultural norms. They looked at consolidation of
majority opinions, and innovation, the spread of initially unpopular beliefs.
They used a two-step simulation in which they first created a network

structure and then examined the evolution of beliefs in that structure. To create
the networks, they modeled the impact of individual differences in
“extraversion” of agents and spatial proximity on the development of social
ties to other agents. They used different distributions of agents’ extraversion for
different simulations. They then used the different network structures to exam-
ine the impact of these structural differences on belief change. Agents differed in
their influenceability. The probability of belief change was a function of the
degree of social influence, which was a joint product of the proportion of
acquaintances who held a belief and the influenceability of the target.
They found faster belief change in “cultures” with higher mean levels of

susceptibility to social influence. Innovation or initially unpopular beliefs
were more likely to spread within cultures characterized by higher influence-
ability and less dense network structures (lower extraversion). Innovation
could occur with a single ideologue who was convinced of their position (not
influenceable), with the effect being stronger as the ideologue had
more disciples.
Nowak and colleagues (2016) did a fascinating agent-based simulation of the

conditions under which honor cultures develop and survive. Many cultures
throughout the world are honor cultures, which are characterized by a “willing-
ness to retaliate against other people to defend one’s reputation, even if doing so
is very risky or costly” (p. 12). From an evolutionary point of view, this looks
irrational. However, they used agent-based modeling to show that an honor
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culture can develop and survive, when there is a competing aggressive culture,
weak institutional structures (e.g., little or no effective policing), and a
tough environment.

Agents have a fitness value that depends on their resources. All agents have
strength and reputations, where reputation is based on perceived strength,
partially based on willingness to fight back, no matter what, and likelihood of
winning. Reputation can become higher than actual strength. Winning a fight
decreases strength somewhat, losing a fight decreases strength more. If an agent
fights back it gains reputation, more when it wins than when it loses. If a
challenger wins, it gains reputation; if it loses, it loses reputation. Agents with
low fitness (resources fall below threshold) are eliminated.

Agents interact in a small-world network. Simulations start with equal
numbers of agents with four strategies: (1) Aggressive – attack those perceived
as weaker; (2) Rational – fight back when one is stronger, but surrender when
weaker; (3) Honor – always fight back if attacked; and (4) Interest – call police
when confronted.

The number of honor agents and aggressive agents was high only when
authorities were ineffective, and dropped as the effectiveness of authorities
(police) increased. Further, when authorities are ineffective, there is an oscilla-
tory relationship between honor and aggressive agents. As the population of
aggressive agents grows, the population of honor agents grows in response.
Once the honor agents become frequent enough to “eliminate” the aggressive
agents, the rational agents begin to grow, eliminating the honor agents. But
now with few honor agents the population of aggressive agents begins to grow
followed by growth in the population of honor agents. And so on.

24.2.7.3 Gossip

In two papers, Smith (2014; Smith & Collins, 2009) used multi-agent models to
examine the role of gossip in the development of impression formation in social
interaction. Smith and Collins (2009) used sets of twenty agents that interacted
over time, in dyads. On each time tick, an agent randomly sampled from one
other agent in the network. In their first simulation, they investigated the impact
of a negative sampling bias in how people collected information by direct
interaction and formed impressions. They found that an initial negative impres-
sion reduced information sampling (future interactions) and led to more nega-
tive final impressions. In later simulations, agents could query a third party
about their impressions. This third-party information gathering (gossip)
reduced the impact of negative valence sampling.

They also varied the sampling rule. In ONE-SIDED sampling, each agent
decided independently whether they would sample from the other agent in a
dyad. In EITHER sampling, either agent could decide whether both were
sampled, and in VETO, either agent could veto or prevent sampling. They
found that both forms of linked sampling (EITHER and VETO) decreased
overall negativity of impression.
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In a second investigation, Smith (2014) used the same framework to investi-
gate additional factors. First, agents either interacted with a randomly chosen
partner, or they interacted on the basis of their current impression, with the
likelihood of interacting going down as the impression was more negative.
Second, they examined two different forms of gossip: in Directed Gossip, on
40 percent of trials, an agent asked a third party about their impression of the
target, while in Interesting Gossip, they didn’t ask the other agent about a
specific target, but instead asked the agent for their impression of the target
about whom they had the most negative information. Third, they manipulated
whether an agent could protect themselves from biased or malicious gossip, by
manipulating whether they had a simple threshold, such that information that
differs from their current impression by more than 1.0 in absolute value would
be ignored. Fourth, they manipulated whether or not a population of agents
had a small set of “evil” targets who on 5 percent of their trials produced a very
negative behavior. Finally, they manipulated whether or not there were “mali-
cious” observers who would provide highly negative (malicious) information
about four possible targets.
They found that observers who do not gossip and who unconditionally

interact with the targets, rather than deciding on the basis of their current
impression, are unable to detect the evil targets. However, gossiping or making
impression-based judgments about interaction allowed them to detect evil
targets. Interesting gossip was more effective than directed gossip in identifying
evil targets, especially where they did not use their impression for deciding on
interaction. Finally, agents who had a threshold for rejecting discrepant infor-
mation were able to eliminate influence by a malicious gossiper.

24.2.7.4 Communication in Groups

Van Overwalle & Heylighen (2006) modeled communication in a multi-agent
network and its effect on attitudes and beliefs, where the agents were
individual recurrent connectionist networks, with delta-rule learning. This
use of neural networks to model individual agents is almost unique in social
psychology, although they have been occasionally used in the broader agent-
based literature. Communication between agents was modeled by transmit-
ting the activations for nodes representing beliefs in one agent to identical
nodes in another agent, and scaling the transmission of activation by the
trust between agents. There could be different levels of trust for different
attributes and for different directions between speaker and listener. Trust
could increase when what the talker says is consistent with what the listener
believes and trust could decrease when what the talker says is not consistent
with what the listener believes. They successfully simulated a number of key
findings in social psychology such as showing that a greater number of
arguments led to increased persuasion and that group discussion increased
polarization of attitudes. They also examined the transmission of stereotypes
in rumor transmission.
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24.2.8 Dynamics of Human Mating Strategies

Extensive research has shown that couples are similar on almost any personal
attribute that one can think of, including physical attractiveness. An obvious
hypothesis about how similarity on physical attractiveness comes about is that
people choose partners who are similar to them on physical attractiveness.
However, there is little evidence for this. When given a choice, people almost
always choose the most attractive partner available. So, how can we get
attractiveness matching when people do not seem to be choosing partners
who are similar to them on attractiveness?

Kalick and Hamilton (1986) ran a simulation with a set of very simple agents
to test whether, in a population of individuals who choose the most attractive
partner, the result could still be attractiveness matching. In one simulation, they
generated a large number of “men” and “women” who randomly varied on
“attractiveness.” Male and female participants were randomly paired on a date
and decided whether to accept their partner as a mate. The likelihood of
accepting the partner was a positive function of the partner’s attractiveness.
To form a “couple,” each member had to accept the other. Given these factors,
two partners of the highest level of attractiveness would be almost certain to
accept each other, and two partners of the lowest level would be extremely
unlikely to do so. Once a couple was formed, they were removed from the
dating pool, and new pairings were made. Kalick and Hamilton showed that
over time, matching on attractiveness moved to levels comparable to those
found with real couples. Thus, attractiveness matching did not require choosing
a similar mate, but instead could result from people choosing the most attract-
ive mate available who would reciprocate.

Kenrick et al. (2003) used cellular automata to examine hypotheses about
the distribution of human mating strategies. Work in evolutionary
approaches has noted that human males and females differ in the amount
of investment in their offspring. Such differential investment is typically
related to different mating strategies for males and females in a species, with
the sex that makes the greater investment being more selective and having a
more restricted mating strategy. However, it is not clear whether men and
women actually have such biologically based differences in mating strategies.
As Kenrick et al. note, mating strategies are not just a function of the
individual; they are also a function of the strategies of their potential mates
and the surrounding population. For example, a man who might prefer an
unrestricted mating strategy might follow a restricted strategy if that is what
most available women desire.

In one set of simulations, individuals in a standard checkerboard pattern
made decisions about their mating strategy on the basis of the mating strategies
of their contiguous possible partners. Each individual had either a restricted or
an unrestricted mating strategy and changed their strategy as a function of the
proportion of surrounding individuals who followed a specific strategy. Kenrick
et al. (2003) then varied both the initial distribution of mating strategies among
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men and women, as well as the decision rule (proportion of surrounding others)
for changing a strategy.
In their initial simulations, although both men and women needed more than

a majority of the surrounding population to have a different rule in order to
change, men had a lower threshold for switching from restricted to unrestricted
than for switching from unrestricted to restricted. Women had the reverse
pattern. With these rules and over a wide range of initial distributions of
mating strategies, most of the populations ended up with more restricted
members (both men and women). In another simulation, they found that if
both sexes used male decision rules, the populations moved toward more
unrestricted distributions, whereas if both sexes used female decision rules, the
populations moved toward more restricted populations.
Conrey and Smith (2005) used a multi-agent system to study the evolution of

mating choice rules. Research has shown that women tend to have mates with
more resources than they do, and men tend to have mates who are younger than
they are. Conrey and Smith note that the typical approach in evolutionary
psychology is to identify such a pattern of behavior and then assume that there
is an evolved mechanism or “module” that directly corresponds to the behavior.
However, Conrey and Smith note that since behavior is the result of genes,
environment, and their interaction, it is possible that men and women actually
have the same decision rule.
They ran a series of simulations in which numerous agents are born, enter

reproductive age, have children (if they get a mate), and then die. Women invest
more resources in their offspring than men do. Agents who do not maintain
enough resources die. Once agents reach reproductive age, they make offers to
potential mates. Individuals make offers to the most desirable available part-
ners, given their decision rule. And pairing off requires mutual agreement. This
is similar to a key assumption in Kalick and Hamilton (1986).
In the first study, Conrey and Smith (2005) simulate several different com-

binations of decision rules for men and women. All agents can have no decision
rule, they prefer the partner with the most resources, they can prefer the partner
who is youngest, or they can prefer a partner with both. Perhaps not surpris-
ingly, populations in which women want a mate with resources and men want a
youthful partner exhibit empirically observed patterns of mate choice.
However, when both men and women prefer a partner with resources they get

the same pattern of mate choice. A second study provides some clues as to why
this might happen. They start with a population with no decision rules, but in
which it is possible for a resource rule and a youth rule to evolve by a process of
mutation and selection. They find that a pattern of resource attention evolves
quite quickly in both sexes, whereas a pattern of sensitivity to youth never
evolves. Yet, the result is a population in which women end up with men with
resources and men end up with women who are younger. Conrey and Smith
(2005) note that such a shared decision rule can result in sex differences in mate
choice because of very different correlations between age and resources for men
and women. In their simulations, the correlation between age and resources is
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quite high for men, but fairly modest for women. Thus, sex differences in
behavior do not require sex differences in underlying decision rules.
Environmental constraints can also play a major role in the pattern of choices.

24.2.9 Personality

Computational modeling of personality has a long history (Colby, 1975;
Loehlin, 1968; Tomkins & Messick, 1963) and has recently been quite active.
Probably the earliest work on simulating personality was summarized in
Tomkins and Messick (1963). Subsequent work was presented by Loehlin
(1968), who simulated personality dynamics, Atkinson and Birch (1970), who
presented a numerical simulation of the dynamics of the activation of
motivational systems over the course of a day, and Colby (1975, 1981), who
simulated a paranoid personality. More recently, Sorrentino et al. (2003) have
presented a simulation of Sorrentino’s trait of uncertainty orientation, which has
some conceptual similarities to the earlier Atkinson and Birch (1970) work.

Of the more recent models, Mischel and Shoda’s (1995) Cognitive Affective
Processing System (CAPS) model is a recurrent, localist network, which func-
tions as a constraint satisfaction system. It has an input layer consisting of
nodes representing different situations (or situational features), which are recur-
rently connected to a set of nodes representing the cognitive affective units
(CAUs). The CAUs represent various beliefs, goals, and emotions that an
individual may have, and are recurrently connected to behavior nodes.
Individual differences are represented by different patterns of weights among
the CAUs. In a series of simulations, Mischel and Shoda generated an array of
different CAPS networks with different randomly generated weights and then
exposed the different networks to the same sequence of situations. They showed
that these differently connected networks have distinctive behavioral signatures,
giving different behavioral responses to the same situation.

Mischel and Shoda (1995) are trying to deal with an apparent paradox in the
personality literature: there is clear evidence for individual differences in per-
sonality, yet there is little evidence for strong general cross-situational consist-
ency in behavior. They propose their CAPS model as a possible solution. They
argue that people have consistent behavioral signatures, behaving consistently
to the same situations, but that different individuals have different behavioral
signatures. In their various simulations, they show that different patterns of
connection of the CAUs do lead to consistent behavioral signatures for different
individuals. However, they make no attempt to try to capture major differences
in personality structure (e.g., the Big Five: extraversion, agreeableness,
neuroticism, conscientiousness, and openness to experience).

Read and Miller (Read & Miller, 2002; Read et al., 2010) have used a
multilayer, recurrent neural network model, using the Leabraþþ architecture
in PDPþþ, and subsequently in emergent (O’Reilly & Munakata, 2000), to
model both personality structure and dynamics. One of the major ideas driving
Read and Miller’s model is that personality traits are goal-based structures;
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goals and motives are central to the meaning of individual traits. Thus, person-
ality can be understood largely in terms of individual differences in the behavior
of underlying motivational systems. Thus, a central focus of this model is to
capture both personality structure (e.g., the Big Five) and personality dynamics
in terms of the structure and behavior of motivational systems.
This attempt to simulate major personality distinctions is one major differ-

ence from the CAPS model. In Mischel and Shoda’s model, there is little
structure to the cognitive affective units or their interrelationships. And there
is no attempt to relate the structure of their model to structural models of
personality.
Although Read andMiller presented their first model in 2002, focus will be on

the more sophisticated Read et al. (2010) model and its later variants. Read et al.
(2010) presented a neural network model that simulated personality-related
behavior as the result of the activation of structured motivational systems.
Central to the model are an Approach motivation layer, and an Avoidance
motivation layer, each containing multiple motives, as well as a system governing
general inhibition and constraint of behavior through inhibition of activations.
A motive’s degree of activation is determined by the situational inputs, experi-

ence (i.e., weights established during training, discussed below), the baseline
activation of the motive in question, the strength of the inhibition system, the
sensitivity of the relevant broad motivational system, and competition among
motives within each of the two motivational systems. The network’s parameters
can be varied to simulate human personality traits. In turn, motive activation
and activation from the resource layer are sent to a hidden layer and then
proceeds to the behavior layer where the different potential behaviors compete
with each other and produce behavioral outputs.
Read et al. (2010) ran eight simulations to test how well the model reproduced

well-known results in personality research. The first four simulations explored
the Approach and Avoidance systems. First, stronger gains or sensitivities for
the Approach or Avoidance systems resulted in stronger activation of the
relevant system and more frequent activation of relevant behaviors. Second, a
model with a “positivity offset” (Approach nodes had higher baseline activations
than Avoidance nodes) and “negativity bias” (the Avoidance system had higher
gain than the Approach system) (Cacioppo, Gardner, & Berntson, 1997), gener-
ated more approach than avoidance behaviors when input strength was low
(indicating a positive bias), but produced more avoidance behaviors as situ-
ational feature inputs strengthened. Third, the relative activation of approach
goals versus avoidance goals during training paralleled the frequency of acti-
vation of approach versus avoidance behaviors when later tested on the same
situations. Fourth, consistent with Miller (1959), the Approach and Avoidance
systems competed for control of behavior, resulting in nonlinear relationships
between strength of activation of the two systems and behavior.
The other simulations focused on simulating specific trait dimensions.

Simulation 5 showed that a trait like Conscientiousness (Disinhibition/
Constraint) could be simulated by manipulating the amount of inhibition
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within layers, with higher levels of inhibition leading to less behavior-switching
(a greater tendency to stick with a behavior). Simulation 6 showed that
behavioral output for facets of the Big Five could be mimicked by varying the
biases of relevant goals and resources. Simulation 7 manipulated both goal/
resource and motivational system settings to create “the communal component
of Extraversion” and successfully simulated Fleeson’s (2007) findings that
within-person variability in trait-related states can have the same magnitude
as between-person variability in the comparable trait. Finally, Simulation
8 modeled a highly specific trait, rejection sensitivity, by increasing the
baseline activation of two avoidance goals and increasing the gain of the
avoidance system compared to the approach system. The rejection-sensitive
model more frequently generated socially withdrawn behavior.

Read, Droutman, and Miller (2017) showed how a neural network model,
representing appropriately structured motivational systems, could give rise to
the psychometric structure of the Big Five. Nodes in the input layer represent-
ing thirty different situations were fully connected to two nodes in an Approach
layer and three in an Avoidance layer, each node representing a plausible motive
for a different Big Five factor. The Approach and Avoidance layers were
connected to a Behaviors layer, with competition set so that only one behavior
would be activated at a time. Importantly, the thirty behaviors are organized
into five clusters, so that each motive is highly related to six behaviors, but
unrelated to the others. So, when a motive is activated, each of the six associ-
ated behaviors will tend to be equally activated, on average.

They created 576 network variations or “Virtual Personalities” (VP), by
varying the activation of the motives in the Motivation Level layer and the
gain on both the Approach and Avoidance layers. The resulting VPs were
trained by repeatedly presenting them with thirty situations co-occurring
equally often with each of the five motives. They then exposed each VP to the
thirty situations, recorded the activations of the behavior nodes in response to
each situation. and created a correlation matrix that was factor-analyzed. The
result was a very clear five-factor structure corresponding to the five motives.
Read and Miller (2021) did a variation of this simulation in which each
situation was related only to one goal and still successfully recovered the Big
5 structure.

Another important issue is that personality is supposedly stable. Yet recent
research (e.g., Fleeson, 2004) shows that within-person variability in
personality-related states can be as high as or higher than the between-person
variability in personality traits. How can such variability in behavior result
from a stable structure?

Read, Smith, Droutman, and Miller (2017) showed how stable, structured
motivational systems can result in motivational and behavioral dynamics over
time and situations that result in high within-person variability. They created a
simple model of the motivational system of a college student and then simulated
the behavior of that network as the “student” moved through typical situations
over the course of a day.
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They made several key additions to the Read et al. (2010) model. First, they
added information about bodily or interoceptive states to the network. The
activation of a particular motive node in the model is a multiplicative function
of the relevant interoceptive state (e.g., hunger) and the cue strength of the
situational affordance (e.g., food) (e.g., Bechara & Naqvi, 2004; Berridge, 2012;
Berridge & O’Doherty, 2013). Second, enacted behaviors can modify the situ-
ational affordances (e.g., as in consummation: eating food reduces or eliminates
the amount of food available). Third, behaviors can modify interoceptive state
(e.g., as in satiation: eating reduces hunger). Fourth, the availability of situ-
ational features may vary over time (e.g., a friend comes to visit and then
leaves). Another important factor in variability is that behavior is typically
the result of competition among motives. Thus, three major factors can influ-
ence the variability of personality states over time: (1) the availability of
relevant situational affordances; and (2) current interoceptive states, both of
which can change over time; and (3) competition among multiple motives.
They showed that the same kinds of structured motivational systems that

could produce a Big-Five-type structure in Read, Droutman, and Miller (2017)
could also produce high levels of within-person variability across time and
situations, demonstrating the integration of structural and dynamic approaches
to personality. Read and Miller (2021) also did an expanded version of the
Read, Smith, Droutman, & Miller (2017) everyday student simulation. They
added several new situations, motives, and behaviors, as well as simulating the
impact of baseline dopamine levels (which excite Approach and inhibit
Avoidance).
Pickering (Pickering, 2008; Smillie, Pickering, & Jackson, 2006) has pre-

sented an NN model of Gray and McNaughton’s (2000) revised version of
Reinforcement Sensitivity Theory (RST). The revised version of RST argues
that there are three major systems governing motivation and personality: a
Behavioral Activation System (BAS) which governs sensitivity to reward; a
Fight, Flight, Freeze System (FFFS) which governs sensitivity to threat/pun-
ishment; and a Behavioral Inhibition System (BIS), which manages motiv-
ational conflict, typically, although not uniquely between the BAS and the
FFFS system. Pickering modeled the interactions among those three systems
in an attempt to capture the relationship among major dimensions of personal-
ity that corresponded to these three systems (BAS to Extraversion, FFFS to
Neuroticism). Each of the systems had individual differences in their sensitivity
to environmental inputs, so that different individuals would respond differently
to the same reward and punishment cues. Pickering argued that because
personality-related behavior was a function of competition between the system
governing response to reward (BAS) and the system governing response to
punishment (FFFS), measures of the corresponding personality traits of
Extraversion for BAS and Neuroticism for FFFS should be negatively correl-
ated, which is what is empirically observed. Pickering’s simulation of the
interaction of these three systems did show the predicted negative correlation
between the BAS and the FFFS. Interestingly, there was also a positive

822 stephen j. read and brian m. monroe

https://doi.org/10.1017/9781108755610.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.029


correlation between BAS activation and BIS activation, which makes sense
given that BIS activation is driven by the conflict between BAS and FFFS.

Revelle and Condon’s (2015) Cues-Tendency-Action model (CTA) is a re-
parameterization of Atkinson and Birch’s (1970) Dynamics of Action model, a
model of motivational dynamics. It is included as the cta function in the psych
package which can be found at https://personality-project.org/r/psych/. Revelle
and Condon were interested in modeling the dynamics of individual personality
over time and how these different dynamic patterns can be used to capture
individual differences. The model is represented as a set of two difference
equations, with mutual inhibition among possible actions influencing the choice
of action, although it could easily be implemented as a neural network. Cues in
the environment (c) activate action tendencies (t), which then activate the
actions (a). Actions can have a consummatory effect on the action tendencies
and actions compete with other actions for enactment. The equation for action
tendencies is dt ¼ Sc – Ca, where S is the strength of the connection between
cues and action tendencies, and C is the effect of consummatory actions on the
action tendency. The equation for action is da ¼ Et – Ia, where E is the strength
of connection between action tendencies and actions, and I is the strength of the
inhibition between actions. Multiple pairs of these equations can be used to
represent different actions and the competition between them. Individual dif-
ferences can be modeled by differences in the different parameters.

24.2.10 Personality and Dyadic Interactions

The previous simulations focus on individual behaviors. In other work, Shoda,
LeeTiernan, and Mischel (2002) have used the CAPS constraint satisfaction
architecture to simulate dyadic interactions among individuals with different
personalities (for other simulations of social interaction, see Ron Sun’s
Chapter 32 in this handbook). In Shoda et al.’s simulations, the behavioral
output of one member’s network is the input to the other member’s network,
resulting in new attractors that are not characteristic of either of the individual
networks. This suggests that the behavior of two individuals, when joined in a
dyad, are different from their behavior in isolation, and it provides a mechan-
ism for that difference.

Nowak and Vallacher have done dynamical systems simulations of a wide
range of different social and personality phenomena (e.g., Nowak & Vallacher,
1998; Nowak, Vallacher, & Zochowski, 2002). Only a subset of that work is
discussed here. In one series of simulations, they used coupled logistic equations
to investigate both the conditions under which synchronization of behavior
occurs in dyadic interactions and the role of individual differences in the extent
to which behavior is affected by the characteristics of the other with whom they
are interacting. In these coupled logistic equations, an individual’s behavior is a
function of both his or her state on the previous timestep (x1(t)), as well as the
preceding behavior of his or her partner (x2(t)). The parameter r is a control
parameter that determines the extent to which the current behavior is due to the
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previous state of the individual, and the parameter α is the extent to which the
current behavior of the individual is influenced by the preceding behavior of his
or her partner.
In a series of simulations, they found that the degree of synchronization

between the members of the dyad was higher when the degree of coupling, α,
was higher and when the control parameters r for the two individuals were more
similar. They also found that synchronization between two individuals could
occur, even with weak coupling, when the control parameters (r) were similar.
Interestingly, they found that with moderate degrees of coupling, the two
individuals tended to stabilize each other’s behavior.
In further simulations, they argued that individual differences could be

partially captured by the location, depth, and breadth of attractors for
equilibrium values of a particular state of an individual. They show that these
factors affect the extent to which the behavior of one member of a dyad is
affected by and becomes synchronized to the behavior of the other member. For
example, the behavior of A is more likely to become synchronized to the
behavior of B when their attractors are close together or when the attractor
for A is shallow. Further, the behavior of A is less likely to become synchron-
ized to B when A has a deep attractor.

24.2.11 The Self

The self is a central concept in social psychology, but its properties have
remained somewhat nebulous. Researchers have begun to investigate aspects
of it with different types of models.
Greenwald and Banaji (1989) examined whether an associative semantic

memory model could capture memory and recall effects related to the self.
Using an existing framework, they found that no special adjustments were
required to replicate their lab results (better recall of self-generated names and
subsequent learned associations to objects vs. other generated names), conclud-
ing that there is nothing extraordinary about the structure of the self in memory.
Smith, Coats, and Walling (1999) investigated the self’s overlap with rela-

tionship partners and ingroup members. Using the Interactive Activation and
Competition model (McClelland & Rumelhart, 1981), with nodes for the self,
others, and particular traits connected by bidirectional links, they tested
response times as proxies for the activation flow between concepts in the
cognitive structure. They found the self is implicitly accessed when the subject
was asked about its relationship partner. Additionally, they concluded that the
exact representation of the self (i.e., the pattern of activation relevant to the self-
concept) varies with context.
Nowalk et al.’s (2000) innovative approach to examining this topic was to use

cellular automata to represent different aspects of the self and to investigate
how the mind can self-organize the self-concept with respect to a positive versus
negative evaluation. In their simulation, each unit in the lattice was influenced
by its adjacent neighbors, and this influence was modified by a centrality (in the
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self-concept) parameter representing a particular aspect’s resistance to change.
The model did indeed self-organize, with the initially more prevalent positively
evaluated aspects gaining even more units. The negative units that did survive
tended to be highly central ones. Even more thought-provoking were their
simulations of what happened when information was introduced to a pre-
integrated network. They found that high pressure for integration (a tunable
parameter of the model) prevented external information from influencing the
network, yet under lower pressure, external information actually facilitated
integration of the network. Further, when the influence of the information
was particularly strong and it was random, its random nature overwhelmed
the existing structure of the network and reduced organization.

24.3 Conclusion

In looking back over this chapter, several themes are clear. One is that
a large number of central phenomena in social psychology can be captured by a
fairly simple feedback or recurrent network with learning. Important findings
on causal learning, causal reasoning, individual and group impression forma-
tion, attitude change, and personality can all be captured within the same basic
architecture. This suggests that we might be close to an integrated theory or
account of a wide range of social psychological phenomena. It also suggests
that underlying the apparent high degree of complexity of social and personality
phenomena may be a more fundamental simplicity. Some of the complexity of
social psychological theory may be due to the current lack of understanding of
the underlying principles. The success of a relatively simple model in providing
an account for such a wide range of phenomena suggests that once we under-
stand the basic underlying principles, we will be able to integrate a wide range
of social psychology.

Another theme that comes through in many of the models is the emphasis on
self-organization and coherence mechanisms, the role of constraint satisfaction
principles that seek to satisfy multiple, simultaneous constraints. As Read,
Vanman, and Miller (1997) indicated, this is not a new trend, but goes back
to the gestalt psychological roots of much of social psychology. Theories of
cognitive consistency (e.g., cognitive dissonance, Festinger, 1957; balance,
Heider, 1958), impression formation (Asch, 1946), personality and goal-
directed behavior (Lewin, 1935), and group dynamics (Lewin, 1947a, 1947b),
all central topics in social psychology, were based on gestalt principles. Gestalt
psychology, with its emphasis on cognition as the result of interacting fields of
forces and holistic processing, was essentially focused on constraint satisfaction
principles, although this term was not used. Other authors (e.g., Rumelhart &
McClelland, 1986) have also noted the parallels between constraint satisfaction
principles and the basic principles of gestalt psychology.

Another interesting, although not surprising, theme is that the type of com-
putational model tends to be strongly related to whether the investigator is

Computational Models in Personality and Social Psychology 825

https://doi.org/10.1017/9781108755610.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.029


interested in intra-personal or inter-personal phenomena. Connectionist models
strongly tend to be used to model intra-personal phenomena, whereas cellular
automata and multi-agent models are typically used for inter-personal phenom-
ena, such as social influence and development of mating strategies.
Social and personality psychologists have been interested in computational

models since the early days of computational modeling, with work by Abelson
on hot cognition (Abelson, 1963) and on ideology (Abelson, 1973; Abelson &
Carroll, 1965) and by Loehlin (1968) and Colby (1975, 1981) on personality (see
also Tomkins &Messick, 1963). However, it is only recently that computational
modeling has started to become more widely used in the field. And even now,
computational modeling is much rarer in social and personality psychology
than it is in cognitive psychology and cognitive science. However, given the
complexity of social and personality dynamics and the requirements for theories
that can adequately handle that complexity, there should be an increasing focus
on computational modeling.
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25 Computational Modeling
in Industrial-Organizational
Psychology
Jeffrey B. Vancouver

25.1 Introduction

Industrial-organizational (I-O) psychology focuses on the application of
psychology to work settings. By applying psychological understanding, the field
seeks to improve productivity and decision making in organizations as well as
employees’ quality of life. Given the contextualized domain of persons at work,
the field interacts with other disciplines focused on the person (e.g., cognitive
psychology), the work (e.g., human factors), organizations (e.g., management and
organizational theory), and extra-work environments (e.g., work–life balance).
I-O also substantially overlaps with organizational behavior and human resource
management, which are sister fields found in business schools. Given this pos-
itioning, I-O psychology questions focused on the individual level of analysis are
considered micro, and those focused on more social processes like team inter-
actions are considered meso. Macro organizational theory questions, which focus
on the organization, industry, markets, or other larger social units, are outside the
scope of I-O psychology and will not be considered in the chapter except when a
macro-level model informs or inspires micro- or meso-level models.
As readers of this handbook are likely aware, computational modeling is well

ensconced in basic psychological disciplines. It has also established a foothold in
macro-organizational theory (e.g., Harrison & Carroll, 1991; Lomi & Larsen,
2001). However, in I-O psychology it is just emerging. For example, I-O psychol-
ogy’s flagship journal, Journal of Applied Psychology, published its first computa-
tional model in 2010 (Vancouver, Weinhardt, & Schmidt, 2010). Before then,
the only other I-O journal focused on individual-level processes to publish
computational models or research related to computational modeling was
Organizational Behavior and Human Decision Processes (e.g., Gibson, Fichman,
& Plaut, 1997; Sterman, 1989). Fortunately, the last decade has shown a greater
openness to computational modeling, with most of the major I-O journals now
publishing micro or meso computational models, including the Academy of
Management Journal (Wellman et al., 2020), the Journal of Management
(Vancouver, Tamanini, & Yoder, 2010), and Personnel Psychology (Vancouver,
Li, Weinhardt, Purl, & Steel, 2016).
Despite the small set of computational models in I-O, they are used for a

variety of topics and purposes. One primary use is to see if a verbal theory
works as advertised (Busemeyer & Diederich, 2010). That is, predictions
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regarding how dynamic and complex processes described in a theory might
unfold are difficult to fathom (Farrell & Lewandowsky, 2010). Indeed, even
simple processes create effects not necessarily understood (Cronin, Gonzalez, &
Sterman, 2009). Thus, computational models are a means of testing a theory’s
logic or the reasoning used to deduce predictions from a theory. This applica-
tion of computational models has made them particularly useful for macro
problems because rigorous empirical tests of theories tend to be more difficult to
conduct, given experimental designs (i.e., manipulating variables) and random
assignment are generally unavailable at the organization, industry, or market
levels of analysis (Davis, Eisenhardt, & Bingham, 2007).

To some extent, the largely nonempirical application of computational
models by macro-organizational researchers may have been one reason the
micro I-O community was slow to adopt the approach (Kerr, 2000).
Fortunately, models presented in the micro and meso levels tend to include
empirical studies designed to test the models (e.g., Kennedy & McComb, 2014)
or can use existing empirical results (e.g., Vancouver, Tamanini, et al., 2010).
Still, the specialized language that facilitates communication within a scientific
community about a computational model is just jargon to the unfamiliar given
the nascent computational modeling community in I-O. Thus, computational
modelers need to carefully explain the logic of their models using language
familiar to an audience whose theories are largely static and presented as path
diagrams (i.e., sets of between-unit correlations or relationships) as opposed to
patterns of change over time within units. Meanwhile, the empirical protocols
needed to test the models are often complex and unusual because they involve
empirically capturing the dynamically interacting elements the models claim to
explain. Papers with both a model and empirical studies to validate the model
can become unwieldy and difficult to publish.

Still, the issues described above are likely to work themselves out over time.
In the meantime, the current novelty of computational modeling is a value-
adding component of papers including them. This author is optimistic that as
more and more computational models adorn the pages of I-O’s major
journals, the information overload issue will become less of a problem and
the usefulness of computational models will become more apparent via the
insights they provide. Toward that end, the insights emerging from I-O
psychologists using computational models are described here. The structure of
the chapter largely follows one used in a review of the modeling literature in I-O
by Weinhardt and Vancouver (2012). In that review, the models were discussed
in terms of the major domains of I-O.

25.2 Computational Models in Domains of
Industrial-Organizational Psychology

As noted, I-O is about psychology applied in the work setting.
Typically, the field begins with questions of attraction and choice to participate
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in a particular work setting (i.e., accept a job). Once on the job, the degree to
which one chooses to apply themselves to various aspects of the job take center
stage. I-O psychologists focus on employees’ motivation and ability to perform
their job, or their likelihood to otherwise contribute to the organization’s
mission. These choices – to join and apply resources toward a job – fall under
the domain of motivation, where most of the micro-level computational mod-
eling work has occurred.
The choice to join an organization also leads to processes related to learning

about the organization (i.e., socialization) and the job (i.e., training), which has
also seen a fair share of computational attention. Other models have focused on
the consequences of processes like selection, promotion, and withdrawal, as well
as the context of organizations like leadership and team work. In each domain,
models and key findings from them are described.

25.2.1 Motivation

Theories of motivation focus on when, why, and to what extent one applies
resources toward a behavior. Over the last several decades, the notion that
behavior serves goals has become so well accepted that motivation has become
less about the behavior and more about the goals (Austin & Vancouver, 1996;
Steel &Weinhardt, 2018). Thus, informal models about processes related to goal
choice, planning, and striving populate applied psychology’s theory-scape.
Critically, goal striving is readily represented formally via the simple, classic
control system (Vancouver, Putka, & Scherbaum, 2005), which is described
below. In addition, many informal theories and some formal ones describe
networks of goals presumed to work in concert (Austin & Vancouver, 1996).
Yet, understanding the dynamics of even a simple system can be challenging
without the support of computational representation (Cronin et al., 2009). Thus,
seeking to understanding whether and how a constellation of dynamic control
systems could account for motivational processes has led to programs of com-
putational model building and research (Neal, Ballard, & Vancouver, 2017).

25.2.1.1 Base (Control System) Model

The fundamental role of the control system model in computational (and
informal) models of motivation and human behavior more generally
(Jagacinski & Flach, 2003) merits its description here. Figure 25.1 illustrates
the basic control system as used in most computational models of motivation
and goal striving (Schmidt, Beck, & Gillespie, 2013). The model can be used to
describe a temperature control system or a car’s cruise control system. It
includes three mechanisms, which can be represented by three or fewer func-
tions, depending on how the system interacts with other systems. Together the
functions form the self-regulatory agent (see Figure 25.1).
The control system is a loop with no specific starting or ending point, though

it is typically described starting with the input function (Powers, 1973). The
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input function represents a mechanism that creates a perception, p, (i.e., an
internal signal) of the value of a variable, v, outside the agent. What signals are
used by the input function and how it translates them into a perception
determines what the system is regulating. For example, in a temperature control
system, the perception is a representation of the temperature of the room via the
thermostat and in the cruise control system the perception is a representation of
the speed of a car. In humans, input functions could create perceptions of a
current level of performance (e.g., number of widgets completed or sense of the
state of a manuscript one is writing).

Next, the comparator assesses the discrepancy between the perception eman-
ating from the input mechanism with a referent or desired perception, p*. In
control theory parlance, p* is a reference signal. In motivational parlance, this
reference signal is the goal level the agent is seeking to obtain or maintain.
Finally, the output function takes discrepancy values, weighted by a gain, k,
and distributes the resulting signals. Psychologically, gain might be equated
with importance and discrepancy with need (Vancouver, Weinhardt, et al.,
2010), but gain can also govern the operation of the agent. Specifically, if gain
is zero then discrepancies are ignored. If the output function does not propagate
that agent’s discrepancy information, discrepancies are not translated into
actions on the variable monitored by the input mechanism.

The final function represented in control system models is the one that
translates outputs from the self-regulatory agent into changes in the variable
at some rate, r. Typically, the outputs can only move a variable in one direction
(i.e., a furnace can only increase the temperature of a room), which is why the
math, f(p* � p), often only translates positive discrepancies into signals.

Figure 25.1 Base control system architecture.
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Importantly, the variable can also be affected by other factors, collectively
called disturbances, D. More importantly, the variable has the property of
conservation (Cronin & Vancouver, 2020). That is, the variable holds its value,
displaying inertia, unless perturbed by outside forces. For example, the amount
of snow accumulated on one’s sidewalk does not change until outside forces
such as heat from the sun, additional snowfall, or shoveling the walk have acted
upon it. These forces can be from the self-regulatory agent within the system of
interest (e.g., a human shoveling) and/or disturbances (e.g., the weather).
Computationally, the comparator, output, and variable change functions can
be combined in the following equation:

Δv ¼ rf p∗ � pð Þk þD (25.1)

The key property of a stable control system is that it defines a negative feedback
loop where the output of the agent moves the variable closer to the desired
perception (i.e., it reduces the discrepancy). Using the language of motivational
theorists, it is the simplest form of a purposeful entity (i.e., an agent) in that it
operates for the purpose of moving or maintaining a perception of a variable at
a goal. Moving a perception to a desired state (i.e., reducing the discrepancy to
zero) is goal achievement (Austin & Vancouver, 1996).

25.2.1.2 Propagating Agents

Aside from describing the self-regulatory agent, all self-regulation theories
include the notion that multiple agents exist, generally arranged in hierarchical
or networked patterns, where the outputs become inputs for other agents
(Austin & Vancouver, 1996). For example, Powers (1973) described the signals
used by input functions as coming from an individual’s sensory organs or from
perceptions arising from other agents’ input functions. Similarly, Lord and
Levy (1994) and others (e.g., Carver & Scheier, 1998) argued that the values
of desired perceptions (i.e., goal levels) come from the output functions of other,
higher-level agents. In this way, the signals from output functions eventually
determine, indirectly, the actions of the individual by setting the referents for
muscular subsystems that translate “thought” into action. The process is indir-
ect because perceptions from the environment relating to the lower-level sub-
systems are used by these subsystems to attain/maintain their goals. This kind of
hierarchical conceptualization accounts for the ability of the widget maker (and
the rest of us) to reach for and grab a tool needed to complete the widget
regardless of initial position or obstacles in the way (Simon, 1969). Thus, the
lower-level agents allow individuals to regulate the sub-processes requiring
knowledge of their changing current and desired states.
Given the potential interconnections, coupled with the dynamic nature of the

agents and the signals processed by them, it becomes difficult to understand the
implications of this type of theorizing or just how it might work without the
support of formal (i.e., mathematical) representations of the theory (Vancouver
et al., 2005). Indeed, control theory was originally formulated by mathematicians
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wishing to describe dynamic behavior (Rosenblueth, Wiener, & Bigelow, 1943).
Psychologists have not generally taken advantage of this more formal representa-
tion, particularly within applied psychology, until relatively recently.

25.2.1.3 Initial Application

Vancouver et al. (2005) introduced the initial application of a formal control
theory model to applied phenomenona when they used it to represent an
explanation of the goal-level effect (also called the goal-difficulty effect)
described in a key I-O motivational application (i.e., goal-setting theory;
Locke & Latham, 1990). The goal-level effect refers to the finding that those
assigned a difficult (i.e., high level) goal end up with higher levels of perform-
ance compared to those assigned an easy (i.e., low level) goal. That is, asking
one to complete twenty widgets leads to more widgets made than when asking
one to complete ten widgets. The robust finding is the basis for goal-setting
interventions popular in many domains (e.g., work, exercise, etc.).

To capture this phenomenon, this initial model involved agents that regulated
task performance and the number of tasks performed. One unique feature of the
model compared to verbal descriptions is that the output from the agent
regulating task performance affected the gain of the agent regulating number
of tasks performed. By affecting gain, other agents could have multiplicative
effects on a focal agent by determining the operation of the focal agent. This
addition allowed for a parallel processing system of agents to exhibit some of
the properties of serial processing systems described in first generation theories
of control (e.g., Miller, Galanter, & Pribram, 1960).

The paper also included an ABA repeated-measures empirical study that the
model was specifically built to represent. The fit of the model to the participants’
data was strong, supporting the verbal descriptions found in most goal-based
theories of motivation and buttressing the application of the control systems
structure in addressing conflicts, controversies, and competing models within
and beyond I-O psychology.

25.2.1.4 Addressing Initial Challenges

The area of applied motivation has been noted for its menagerie of theories as
opposed to a grand, comprehensive theory of human motivation (Schmidt et al.,
2013). Powers (1973) hoped to build a comprehensive, formal theory of
motivation around the negative feedback loop of control theory. However, this
required addressing misperceptions and perceived limitations of a theory based
on the simple information-processing structure at the theory’s core (Bandura,
1991). For example, Vancouver et al.’s (2005) control theory model worked by
regulating perception (i.e., inputs), but Locke (1997) argued that control systems
regulate behaviors (i.e., outputs). Self-regulation models of behavior would be
like a cruise control that worked by keeping regular the output of the engine as
opposed to the speed of the car. To contrast and challenge the alternative

Computational Modeling in Industrial-Organizational Psychology 841

https://doi.org/10.1017/9781108755610.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.030


descriptions, Vancouver and Scherbaum (2008) constructed a self-regulation
model of behavior that could account for Vancouver et al.’s (2005) data as well
as the original self-regulation model of perception. They then constructed an
empirical paradigm where the regulation of perception and the regulation of
behavior models made different predictions. The data collected overwhelmingly
supported the regulation of perception model by showing that the participants’
stop rule for engaging in the task reacted to the state of the variable as perceived
rather than to the actions taken (i.e., behavior).
Bandura (1991) challenged the ability of control theory to explain

discrepancy creation as a function of task success. Discrepancy creation occurs
when agents within a human system increase a discrepancy by increasing a goal
level and is a key process within Bandura’s social cognitive theory (SCT). To
evaluate this argument, Scherbaum and Vancouver (2010) built a
computational model of discrepancy-reducing agents to account for the results
of a study where participants exhibited discrepancy creation resulting from
successful task performance. They also pointed out that SCT provides no
explanation for discrepancy creation, precluding the possibility of pitting a
control theory computational model against a social cognitive one. On the
other hand, the computational model did not account for individual differences
in discrepancy creation, leading Scherbaum and Vancouver to suggest that self-
efficacy, which is one’s belief in one’s capabilities to affect aspects of one’s
environment (e.g., effectiveness at performing a task) and a key concept in SCT,
might be an important person-level moderator.
Another challenge related to a comprehensive theory of motivation is

avoidance motivation. That is, achievement goal-striving is easily described
using the negative-feedback control system shown in Figure 25.1; however,
notoriously unsustainable and unstable positive feedback loops are often used
to describe avoidance goal behavior (e.g., Carver & Scheier, 1998). To over-
come this, Carver and Scheier (1998) suggested that an achievement goal
governed by a negative feedback system will eventually dominate a positive
loop to restore stability. However, Ballard, Vancouver, Yeo, and Neal (2017)
proposed a variant on the negative feedback loop to account for behavior
around avoidance goals and created two computational models to represent
each view.
Specifically, loop polarity is determined by the number of negative links in

the loop (Richardson, 1991). If the number of negative links is odd, the loop is
negative. For the basic control theory model, a negative link exists between the
input and comparator functions because perceptions are subtracted from the
desired perceptions (see Equation 25.1). All the remaining links in the loop are
positive. To create a positive loop avoidance-goal model, one can subtract an
undesired goal value from a perception, turning the perception input to the
comparator function positive and thus all the links positive in the loop. In
contrast, Ballard et al. (2017) turned this positive feedback model into a
negative feedback model by subtracting the discrepancy from this comparator
function in the output function. Specifically, the gain-weighted discrepancy, kd,
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is subtracted from an intercept, b, representing the asymptote of output the
agent produces to avoid the undesired goal (i.e., maximum effort to avoid)
where negative values for output are ignored (e.g., by using an if-then statement
or other such function). Ballard et al. then used an empirical protocol to show
that the positive loop model could work in certain contexts where an achieve-
ment goal was also available to pursue, just as described by Carver and Scheier
(1998). Yet, the model’s behavior became more intense the greater the distance
from the undesired goal, creating runaway behavior in contexts without an
achievement goal to pursue. In contrast, the negative feedback loop model not
only fit the participants’ data better than the positive feedback loop model when
an achievement goal was available to pursue, but also fit the data in contexts
where no achievement goal was available.

25.2.1.5 Forethought and the Roles of Self-Efficacy in Motivation

A presumed significant limitation of a control theory-based model of motiv-
ation is that it could not account for forethought or other higher-ordering
cognitive processes central to most applied theories of motivation (e.g.,
Bandura, 1991). Such a limitation would preclude using control theory models
to account for key motivational phenomena like goal choice and goal planning,
given these require forethought and mental models of the person-in-environ-
ment (Austin & Vancouver, 1996). Yet, some elements of mental modeling are
relatively easy to understand using a control theory architecture. For example,
Vancouver and Purl (2017) built a computational model that included a pri-
mary loop that created a scalar perception, p, from a weighted, ws, array of
perceptions, ps, arising from stimuli representing the state of the environmental
variable, vt, as processed by input functions in lower-level agents. This descrip-
tion is consistent with the general form of the base control theory (i.e., agent)
model. However, it also included a secondary loop that translated output from
the agent, as assessed by the individual (e.g., perception, pm), into an estimate of
the change of the environmental variable, depending on the individual’s self-
efficacy belief. Specifically, self-efficacy belief was operationalized as a weight,
wm, representing one’s belief in the effectiveness of one’s outputs on
performance. The ‘m’ subscripts indicate that the second term was part of a
mental model where a weight, s, determines the relative contribution of the
environmental stimuli as opposed to estimate mentally modeled when creating
the perception for the task performance agent. Together, the task agent’s input
function was represented as follows:

p ¼ s wspsð Þ þ 1� sð Þ wmpmð Þ: (25.2)

25.2.1.6 Goal Choices in the Face of Deadlines

A control theory approach to motivation is inherently temporal. That is, it
addresses motivation processes as they unfold over time. However, a more
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specific temporal element of long interest to motivational researchers involves
the role of deadlines (Steel & Weinhardt, 2018). Vancouver, Weinhardt, et al.
(2010) developed a control-theory-based computational model involving dead-
lines called the multiple goal-pursuit model (MGPM). The MGPM also
includes components from decision- and choice-based motivational theories
(e.g., expectancy theory; Vroom, 1964), reintroducing the dynamics Lewin
(1951) described in his applied decision-making theory.
More specifically, the MGPM includes four types of self-regulatory agents

based on the inputs to the agents and thus the roles they play in the process.
Figure 25.2 illustrates these agents, their inputs, the discrepancies they monitor,
and their outputs. In this figure, task deadline is a referent for an agent labeled
“time agent” (see upper left corner of Figure 25.2), where “time” is the stimulus
for the agent and “time available,” TAk, is the output for a particular task, k.
The standard task agent described earlier is also included, except that the
output from the comparator function feeds into two output functions. One
output function creates the mentally modeled projection of time required,
TRk, to achieve the goal (i.e., reduce discrepancy to zero) using a rate belief
(i.e., self-efficacy) for the task. That is, one’s belief in the rate at which the
distance between one’s goal and performance is closed (i.e., a discrepancy
reduced) represents one’s belief in one’s effectiveness or capabilities, which is
the definition of self-efficacy (Bandura, 1991). Like the classic self-regulatory
agent, the other output function calculates the product of discrepancy or
distance from goal, dk, and importance or gain, kk1, of the goal. Because this

Figure 25.2 Self-regulation model of choice of goals with differing deadlines.
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model focused on the choice to engage in one task over another, this product
becomes a signal called “valence,” Vk, to conform with Lewin’s (1951) concept
used in applied psychology theories of motivation (e.g., Vroom, 1964). Valence
is a subjective perception of value – also called “utility” in decision-making
models (Edwards, 1954).

In line with Lewin (1951), the valence term in the MGPM model is expected
to change over time, t. The change arises primarily from change in the state of
the task (i.e., performance) due to disturbances, actions on the task, or a
change in goal level (Vancouver et al., 2010). These changes would be reflected
in the distance to goal, dk(t), signal. In addition, when deadlines are relevant,
Ballard, Vancouver, and Neal (2018) considered the possibility that the
valence function might include a time pressure factor (Peters, O’Connor,
Pooyan, & Quick, 1984). Specifically, they tested a model with the following
valence function:

Vk tð Þ ¼ max kk1 � dk tð Þ þ kk2 � TRk tð Þ
TAk tð Þ, 0

� �
(25.3)

This function includes the original gain times discrepancy term as well as a time
pressure term, represented as the ratio of time required and time available
signals weighted by sensitivity to time pressure, kk2. When little or no progress
is being made, the term increases valence for a goal as the deadline approaches.
The max function assures the result does not become negative. The MGPM also
includes a dynamic expectancy concept (Vancouver et al., 2010). Expectancies
are the subjective probability of obtaining a goal or performing an action
(Edwards, 1954; Vroom, 1964). In a modification to the original MGPM,
Ballard, Yeo, Loft, and Vancouver (2016) suggested the following function
for the comparator within the expectancy agent (see Figure 25.2):

Ek tð Þ ¼ 1
1þ exp �γ � TAk tð Þ � TRk tð Þð Þ½ � (25.4)

In this function, the expectancy value, Ek(t), depends on the difference between
the time available and the time required to achieve the k task goal, depending
on one’s sensitivity, γ, to the difference between the time components. The
function returns a value of .50 (i.e., 50 percent) when the time available equals
the time required, but quickly approaches one or zero as one has either spare
time or less time than presumed needed, respectively. Of course, time available
and time required are likely changing over time, making expectancy
time varying.

The fourth agent in the MGPM, shown at the bottom of Figure 25.2, chooses
which of two goals, k ¼ A or B, to pursue by comparing the expected utilities,
Uk(t), of each. In the original MGPM, utility for either goal was the product of
valence and expectancy. In the Ballard et al. (2018) model, where the deadline
for the goals could differ, the utility function includes the temporal discounting
explanation for the observation that, as deadlines approach, motivation
increases (Steel & König, 2006). Specifically, the temporal discounting
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explanation for motivational effects is captured in the denominator of the
following function:

Uk tð Þ ¼ Vk tð Þ �Ek tð Þ
1þ ΓTAk tð Þ , (25.5)

where time available until deadline, TAk(t), is weighted by one’s sensitivity to
the deadline, Γ. Thus, assuming some sensitivity to deadline and no changes to
valence and expectancy over time, the utility for the goal, k, increases as one
approaches the deadline because it reduces the time available to work on a goal
and thus the value in the denominator.
In concert, the above set of equations account for a large set of often

contradictory findings. For example, Schmidt and DeShon (2007) found that
individuals often chose to work on the goal with a larger distance from the
goal unless the deadline for the goals was close at hand and the time required
approached or exceeded the time available. The MGPM model produces this
effect because the valence is higher the greater the distance from the goal, but
expectancy shrinks dramatically when approaching a deadline unlikely to be
met. Meanwhile, Ballard et al. (2018) found that motivation for a particular
goal increased as one approached the deadline. They used a set of three
experiments to pit the temporal discounting explanation (e.g., Steel &
König, 2006) from the time pressure explanation (Peters et al., 1984). The
results showed both processes occurred. Thus, the above set of equations
suggest that individuals have two mechanisms that increase the motivation
for working on a goal as the deadline approaches but may also abandon
a goal as its deadline approaches if achievement seems too far out of
reach.
To further integrate theory and functionality into the MGPM, Ballard et al.,

(2016) added components that could handle risk and overlapping consequences
across goal pursuit actions, Li (2017) generalized the model beyond choosing
among more than two goals, and Vancouver, Weinhardt, and Vigo (2014)
added learning agents. Conceptually, these additions involved incorporating
the formal elements of decision field theory (see Chapter 16 in this handbook)
and learning models (e.g., see Chapters 2 and 21 in this handbook). For
example, the simple delta-learning rule described by Thomas and McClelland
(2008) is the following:

ΔWij ¼ η ti � aið Þaj (25.6)

As Vancouver et al. (2014) pointed out, Equation 25.1 and Equation 25.6
overlap except that no external influences (i.e., disturbances, D) are assumed to
affect the variable because it is an internal weight, wij, and both positive and
negative errors between the referent, ti, and the controlled signal, ai, are used to
change that which affects the controlled signal (i.e., the weight). Indeed, the aim
of these efforts was to work toward a conceptually parsimonious comprehen-
sive theory of human behavior much like Sun’s (2016) Clarion model of
human behavior.
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25.2.2 Learning, Training, and Socialization

Motivation is a key construct in understanding human behavior. Another key
concept is learning, which involves relatively long-term change in an individ-
ual (Weiss, 1990) or other entity (e.g., organizational learning; Senge, 1990).
Learning is explicitly considered in some of the computational models
described previously and motivation is explicitly considered in some of the
computational models described in this section and beyond. In organizational
settings, learning is presumed to occur mostly during training, whether formal
or informal, and socialization, which involves learning about the new organ-
ization in which one finds themselves. In I-O, the computational approach to
understanding learning began at the macro level aiming at prescriptive, as
opposed to descriptive, ends.

Specifically, in 1991, James March considered a motivational question
regarding the allocation of an organization’s resources to the issue of acquir-
ing new knowledge or practices. The model addressed the dynamics of exploit-
ation (i.e., leveraging what is known) and exploration (i.e., seeking new, useful
knowledge or products) and the role socialization (i.e., the onboarding of
newcomers) might play in the process. March assumed that exploitation can
be advantageous in the short term, but exploration is more advantageous in
the long term. Moreover, March saw exploration as driven by newcomers who
had not yet learned to conform to the current practices of the organization via
the organization’s socialization processes. Thus, to maintain a good balance,
March’s model describes how a more drawn out socialization process provides
the possibility of exploration without necessarily incurring the risks and costs
of such exploration. The model also shows, counterintuitively, that some
turnover can be good for an organization because replacement hires bring in
new ideas to explore. This prediction was later supported empirically (e.g.,
Glebbeek & Bax, 2004).

Another macro-level model related to change over time was developed by
Harrison and Carroll (1991). They modeled organizational culture shifts over
time. The model also allowed the modelers to explore the effects of personnel
parameters (e.g., hiring, turnover, growth rates, and socialization intensity) as
described across different organizational styles and structures. Like March
(1991), Harrison and Carroll found some counterintuitive results regarding
the rates of culture change. For example, they found that the development of
strong cultures indicative of declining organizations is more likely a function of
the changing composition of the organization as opposed to more intense
targeted responses to norm-violating behavior (i.e., higher gains in the norm
maintenance systems).

In contrast to the above models, which considered how organizational-level
processes and parameters can affect organizational-level outcomes, Vancouver,
Tamanini, et al. (2010) developed a control-theory-based computational model
of socialization focused on the individual newcomer and most specifically,
proactive socialization. Proactive socialization is the notion that individual
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newcomers take charge, at least somewhat, of their own learning about the
organization and their jobs in it. According to the prominent theory explaining
the behavior, an individual’s uncertainty is the presumed motivator or cause of
information seeking and thus proactive socialization (Ashford & Cummings,
1983). Yet, the empirical literature tended to find a positive relationship
between information seeking and knowledge, which is the inverse of
uncertainty (Bauer, Bodner, Erdogan, Truxillo, & Tucker, 2007). Vancouver
et al. explained this paradox using a single negative feedback loop model of
uncertainty reduction. It showed that the timing and nature of data collection
could determine the sign of the relationship between information seeking
and knowledge.
For example, if a sample of newcomers varies in terms of propensity to seek

information, the high propensity seekers will initially seek more information
and thus grow in knowledge faster than low propensity seekers. This leads to a
faster accumulation of knowledge and thus a more rapid drop-off in infor-
mation seeking. Eventually, high propensity seekers will seek at lower levels.
Thus, depending on when measurements are taken, seeking and knowledge
might be positively or negatively related across the sample. The researchers
also showed how a model of a competing theory sometimes used to explain the
decline in information seeking over time would have similar trajectories as the
uncertainty-reduction model such that extant empirical investigations were not
diagnostic regarding the validity of the theories. Although Vancouver,
Tamanini, et al. did not include an empirical study, they used the two models
to describe a possible paradigm that could be used to pit the models.
Delving even deeper into processes of human learning, a computational

model by Hardy, Day, and Arthur (2018), called the dynamic exploration-
exploitation learning (DEEL) model, integrates elements of the control struc-
ture described in Vancouver, Tamanini, et al.’s (2010) model, an individual-
level, exploration-exploitation model like March’s (1991), and the production
model of skill acquisition described by Anderson (1982). DEEL addresses
questions of resource allocation toward learning, novelty, and use (i.e., exploit-
ation) as well as the effects that cognitive biases, like overestimates of capacity,
can have in learning and allocation decisions. Hardy et al. demonstrated
numerous counterintuitive findings that empiricists might be able to confirm
or disconfirm in the future.

25.2.3 Personnel Processes: Selection, Promotion, and Withdrawal

Besides being trained, personnel are selected, promoted, and eventually with-
draw from an organization. Models related to these processes have also inter-
ested I-O psychologists. This section reviews the models that have focused on
these personnel processes and the consequences of the processes for
organizations.
For example, one interest to I-O psychologists is unfair discrimination (e.g.,

biases). Research on discrimination showed only very small discrimination
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effects for women, throwing into question unfair discrimination as a substan-
tial cause of the glass ceiling or wage differences across the sexes. However,
Martell, Lane, and Emrich (1996) used a simulation to illustrate the long-term
effects of the observed small differences in the probability of women being
promoted relative to men during a particular selection episode. Note that the
model focused on the consequences of processes if the model correctly reflected
reality; it did not necessarily represent the latent processes responsible for the
effect (e.g., why did women have a slightly lower probability of being pro-
moted). Yet, all explanations are relative. For instance, in the Martell et al.
case, their model provided a possible explanation for why the finding of only a
slight bias against promoting women could be a primary explanation for the
glass ceiling.

In a similar vein, Zickar (2000) used a computational model to show that the
typical empirical statistics used to quell a concern applied psychologists had
about using editable selection instruments like personality inventories were not
diagnostic. As background, note that I-O psychologists confirm the usefulness
of individual difference measures for selection purposes by correlating scores
from the measures with existing performance indices from a set of incumbents
(i.e., concurrent validity) or predict it across a set of applicants (i.e., predictive
validity). In some cases, a concern is that applicants motivated to obtain a job
will distort their responses on the selection instrument in order to make them-
selves look good to the organization. For example, mean scores on personality
measures (e.g., conscientiousness) are known to be substantially different
between a group instructed to complete the measure accurately and a group
instructed to “fake good” for the purpose of scoring well as perceived by a
hiring organization (Griffith, Chmielowski, & Yoshita, 2007). Yet, despite
finding that the measure can be faked, studies showed no evidence that such
faking undermines the ability of the measures to predict future performance
(Hough & Furnham, 2003). However, Zicker’s computational model showed
that if only some are willing to fake good on the measure when seeking
employment, the predictive validities would not suffer but that the cheaters
would be much more likely hired.

Grand (2017) also produced a model similar in implications to the Zickar
(2000) and Martell et al. (1996) models. Specially, Grand demonstrated how a
small effect associated with stereotype threat might undermine an organiza-
tion’s performance over time. Stereotype threat refers to the attentional
resources directed away from the task-at-hand because of concerns of confirm-
ing a negative stereotype regarding a group to which one belongs (Steele &
Aronson, 1995). Typically, concern has been directed toward how stereotype
threat might adversely affect assessment (e.g., while in a selection process),
particularly if group membership is made salient and the stereotype relates to
what the assessment is about. However, Grand was concerned that such effects
might undermine learning during training, which though likely a small effect,
might lead to long-term detriments to an organization given the accumulation
of the effect across persons and time. Grand not only provided an empirical
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study to assess the possibility and magnitude of the effect, but also used a
conservative parameter estimate from the study in the computational model.
Simulations of the model showed substantial detriments to organizations if
negative stereotypes are a salient part of the training context. For example,
after simulating 500 organizations with 100 employees, half of which presented
some amount of stereotype threat, performance differences between the sets of
organizations varied from over two standard deviations to over eight standard
deviations from each other.
A well-known but somewhat puzzling finding in the I-O literature is the

positively skewed distributions in performance across many fields of endeavor
(O’Boyle & Aguinis, 2012). To evaluate alternative explanations, Vancouver
et al. (2016) operationalized I-O psychology’s classic selection model as a
dynamic computational model. The selection model assumes that
performance is a distal function of ability and motivation, mediated by know-
ledge and skills and resources allocated, respectively. Via engaging various
aspects of the computational representation of this selection model,
Vancouver et al. (2016) were able to show that distal, stable individual differ-
ence constructs (i.e., ability and trait motivation) could not explain the posi-
tively skewed distribution, largely because of the imperfect measurement of
these individual differences during selection. However, they found that resource
allocation policies (i.e., rewarding better performers with more resources) could
account for the skewed distribution observed. That is, they found that a low
gain, positive feedback loop crossing the person–environment boundary was
likely responsible for what is often attributed to person qualities (i.e., “star
performers”; O’Boyle & Aguinis, 2012).
Finally, and somewhat ironically, the earliest computational models in I-O

psychology focused on the tail end of the individual’s connection to an
organization (i.e., withdrawal) and the impact this can have on the organiza-
tion. Specifically, Hanisch, Hulin, and Seitz (1996) described a set of models
that operationalized different predictions from different theories regarding
relationships among the types of withdrawal one can have from organizations
(e.g., psychological,1 lateness, absence, and turnover). For example, one
theory expects that the types of withdrawal should be positively correlated
(Beehr & Gupta, 1978), another that they should be negatively correlated (Hill
& Trist, 1955), and a third that they would likely be unrelated (March &
Simon, 1958). Thus, the models represented implications drawn about the
theories of withdrawal (i.e., relationships one should observe) as opposed to
models about the processes the theories described that lead to the expected
observed relationships. The models allowed one to assess the long-term effects
that might occur for different organizational policies given the different
theories (Hanisch, 2000).

1 Psychological withdrawal involves reduced focus on work activities, often covertly so as to not
incur any costs from the organization.

850 jeffrey b. vancouver

https://doi.org/10.1017/9781108755610.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.030


25.2.4 Leadership

Leadership is a major topic of theory and research for organizational psycholo-
gists, with many theories and perspectives (Barling, Christie, & Hoption, 2011).
Yet, as some reviewers of the subdiscipline note (e.g., Antonakis, 2017), leader-
ship theory and research often lack rigor. To move toward a more robust
science, some are pursuing computational models as a method for theoretical
specification (e.g., Dionne & Dionne, 2008). Like the motivation and learning
literatures reviewed previously, the computational leadership literature has
highlighted motivational, decision-making, and learning processes. However,
leadership is an inherently meso topic where the behavior of a leadership system
involves the interaction among two (i.e., supervisor-subordinate dyads) or more
individuals (i.e., groups).

Much of the computational modeling within the area of leadership utilizes
agent-based modeling (ABM) to explain or evaluate emergent phenomena, where
leadership style or other factors are considered (see Chapter 32 by Sun in this
handbook for more on ABMs). For example, a simulation by Oh, Moon, Hahn,
and Kim (2016) examined the differences between a uniform treatment of subor-
dinates compared with a differential treatment as encouraged by leader-member
exchange theory (Graen & Uhl-Bien, 1995) on participation over time in online
collaborative work communities. They found that the style’s effectiveness in
encouraging participation depended on the stage of the community in its life
cycle and environmental uncertainty. Phelps and Hubler’s (2006) ABM examined
the role of peer pressure and leadership strength on the level of participation of
individuals in youth groups. Other ABM’s focused on the emergence of social
roles (Eguiluz et al., 2005), self-organizing processes (Muller, 2006), and other
collective behavior (Will, 2016). Still others focused on the properties of the
members to predict leader’s emergence (Serban et al., 2015).

An early model of the role of leaders was described by Rees and Koehler
(2000). The model focused on decision making, group diversity, and leadership
style – three topics that arise in many of the leadership models described here. In
the Rees and Koehler case, they used a genetic algorithm model to mimic the
evolution of solutions to problems facing groups in order to predict the effects
of leadership style during the problem-space search process within a group
decision support system. Leadership style was either autocratic (i.e., authoritar-
ian) or democratic (i.e., participative) with either active or passive leaders. The
primary outcome of interest was the number of solution ideas generated by the
groups. After many simulations, the only reasonably reliable finding was that
autocratic groups had lower solution diversity.

Another computational model related to leadership and decision making in
hierarchical groups was created by Dionne and Dionne (2008). The hierarchy in
this case refers to the higher-order role of the formal leader of the group, which
is presumed to characterize most groups in organizations. The modeling exer-
cise considered the question of what style of leadership would lead to the most
optimal decisions for the group. Leadership style levels ranged from autocratic
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leaders who made the decision based on their decision utility function
unaffected by interactions with group members to participative leaders who
made decisions based on the input of group members regardless of the import-
ance of those members. Between these extremes two other style levels,
individualized-leadership and leader-membership exchange (LMX), involved
different ways the leader considered the subordinates, as described in the
following. The optimality decision utility function used was the weighted aggre-
gate of the group members’ individual decision utilities, where the weights were
determined by each individual’s importance. Importance was determined by the
individual’s expertise, cognitive ability, openness, and tenure, which were values
drawn from distributions at the beginning of simulation runs (i.e., Monte
Carlo runs).
In the Dionne and Dionne (2008) model, the primary process of interest was

the willingness of members in the group, including the leader, to adjust their
decision utilities (i.e., expected values of options being considered) as they
interacted with other members of the group. For some styles this adjustment
was determined by the leader’s perception of the importance of the members of
the dyad interacting. Perceived importance was operationalized mostly as a
function of the importance weight used to determine the optimal decision. For
the individualized-leadership style, leader perceptions of the importance of the
members developed dyadically. For LMX, the leader importance perceptions
were assigned at the group level where two groups – an in-group and an out-
group – existed. Meanwhile, the group members paid attention to the import-
ance of the other members as they interacted and potentially changed their
decision utilities over time. Finally, a “control condition” existed where all
members were equally important and modified their decision utilities only if it
moved them closer to the optimal solution (i.e., the weighted aggregate of the
individuals’ decision utilities).
The results of the simulations confirmed that although the autocratic leader-

ship style would lead to a more optimal solution than any other style or the
control condition, if time pressure was severely constrained (i.e., only a few
hundred time steps were available), the participative style approached optim-
ality faster than any other style except in the control condition. The results also
demonstrated that decision optimality was adversely affected in runs where
individual attributes (e.g., tenure) were decreased by 3 percent, which is consist-
ent with empirical findings.
Finally, a computational model by Zhou, Wang, and Vancouver (2019)

extrapolated the control theory models described above to the team context
with a prescribed leader. The primary purpose of the model was to provide a
formal description of a baseline process – allocating leader resources to team
members based on need – that might undermine interpretations of observations
used to test more sophisticated theories of leadership. The model results were
consistent with the functional leadership perspective (McGrath, 1962) as well as
the results from an empirical investigation of the model’s predictions.
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25.2.5 Team Process Models

Beyond the issue of leadership, scholars interested in team processes have also
recently begun to turn to computational modeling, exhibiting the most formal
modeling in I-O after motivation. Of course, teams tend to have leaders and
thus the leadership models can inform team models and vice versa. Likewise,
the team models often focus on who holds what information and how that
information is changed after interactions with each other. The configuration of
the information and/or how it might be used to determine team outcomes are
generally the outcomes of interest in these models.

For example, Dionne, Sayama, Hao, and Bush (2010) developed an agent-
based model of shared mental model convergence, team performance improve-
ment, and the role leadership plays in these processes. In the team literature,
“mental model” most often refers to knowledge of who knows what about the
problem space on which the team is working. Shared mental models are ones
where the team members’ knowledge of who knows what converges. In Dionne
et al.’s model, team performance is determined by the difference between a true
problem function (TPF) and the average of the team members’ individual
problem functions (IPFs), which changes over time. Specifically, Dionne
et al.’s model assumes that IPFs and beliefs about who knows what are updated
as a function of interactions between team members, which are the agents in the
ABM. Interactions will involve the leader in all cases, but who among the other
nine members of the team “hears” the interaction is dependent on the social
network structure the leader encourages via a leadership style. Network struc-
tures could range from only dyadic (i.e., a star pattern with a leader in the
center) to a fully connected network. Between these extremes are forms of the
LMX leadership style with the number of members in the in-group going from
one, which is the star pattern, to eight, where all but one team member is part of
the in-group. Team members could also differ in their domains of expertise (i.e.,
proximity of the IPF to that part of the TPF), which affected their confidence
and likelihood of speaking up about the part. Teams also varied in expertise.
Finally, teams varied in mutual interests, which determined how broadly a
speaker’s opinion was evaluated. The evaluations are what led to changes in
the listeners’ confidence and values as well as the speaker’s values.

The results of the simulations revealed that participative teams with high
mutual interest and knowledge homogeneity (i.e., no experts) converged to
shared mental models most quickly, though their team performance tended to
deteriorate over time. Participative teams with heterogeneous knowledge (i.e.,
dispersed expertise) tended to develop shared mental models and improve on
team performance over time. In contrast, the mental models of teams with low
in-group minorities and with low mutual interests tended to diverge over time,
regardless of the distribution of the knowledge.

McHugh et al. (2016) developed a similar agent-based model that examined a
path model predicting the effect of individual members’ intelligence and
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knowledge on collective intelligence and decision quality. Collective decision
quality was defined in terms of the difference between a predefined correct
decision function and the aggregated function of the collective once consensus
among the collective was reached. The researchers were interested in larger
groups of individuals (i.e., they simulated groups of fifty) with no formally
identified leader. They also considered several moderators (e.g., task complex-
ity) and conducted a small field study to help triangulate on the phenomenon.
Results were interesting, perhaps largely because they did not support the path
model proposed. That is, the simulations only reproduced three of the ten (30
percent) relationships represented in the path model and the field study only
found support for two of the ten, though two more were partially supported.
Another computational modeling effort by Kennedy and McComb (2014)

focused on a prominent verbal theory of group processes (Marks, Mathieu, &
Zaccaro, 2001). Marks et al.’s model describes interpersonal, transition, and
action processes that ebb and flow across a team’s life cycle. The primary
perspective of the modelers was to use team communication patterns to assess
when process shifts were occurring and evaluate the effects interventions might
have on triggering or stifling process shifts. Neural network architecture
(Anderson, 1995) was the primary modeling structure, but they also used
genetic algorithm procedures to determine communication patterns that opti-
mized team processes and performance. Finally, virtual experiments and obser-
vations of laboratory teams were used to validate the model and numerous
conclusions drawn.
Another extensive model construction and evaluation project regarding the

dynamics of team cognition was described by Grand, Braum, Kuljamin,
Kozlowski, and Chao (2016). The model focused on the emergence of shared
mental models of teams (i.e., team knowledge) as a function of individual
learning and sharing what one learns or knows so that others in the team can
learn and know. Several subprocesses related to learning and sharing were
described and translated into a computational model that could be instantiated
in agent-based simulations (ABS). To derive predictions, a simulation experi-
ment was conducted. The experiment operationalized three levels of
information-processing skill, which determined rate of learning, communica-
tion skill, which determined rate of sharing, and degree of specialization, which
determined the distribution of knowledge among the team members at the
beginning of a simulation. Outcomes of interest included several measures of
knowledge distribution among the team members over time and at the end of
the simulation. The results indicated the computational model acted reasonably
and in accordance with extant theory and research.
Additionally, Grand et al. (2016) included an empirical study to confirm fit

between the model and participants, as well as specific, prescriptive implications
of the model. The empirical study involved a team-level intervention to improve
information processing and communication skills and a control group. Fit was
assessed qualitatively. That is, the researchers found that the patterns of team
knowledge growth and distribution among the participants matched the

854 jeffrey b. vancouver

https://doi.org/10.1017/9781108755610.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.030


patterns produced by the computational model, including the effect of the
intervention. More specifically, team knowledge grew across both control and
experimental groups, but the growth in team knowledge leveled off sooner in
the teams in the control group compared to the experimental group (see
especially Figure 5 in Grand et al., 2016).

Finally, Wellman et al. (2020) examined the effects of alternative formal
hierarchical structures on team performance using an ABM. Formal hierarchies
refer to the power distributions of team members. The typical hierarchy is the
pyramid, with a leader at the top, some lieutenants, and a relatively large set of
low-ranking team members. Yet, variations from flat (i.e., leaderless) to reverse
pyramid are possible and exist in some spaces. These structures are assumed to
affect members’ perspective-taking motivation as well as identification with the
team. The perspective-taking motivation involves how willing the member is to
comprehend and incorporate the view of others when making decisions. In this
way, the model is like the models by Dionne and colleagues described above,
though the hierarchical structure and properties of the team’s task (e.g., task
variety) were considered. A primary prediction derived from simulations of the
models was that inverse pyramid-shaped formal hierarchies had better team
performance relative to classic pyramid-shaped hierarchies when task variety
was high, but not when it was low. Wellman et al. also reported that this
prediction was supported in a field study of sixty-eight nursing shifts across
five hospitals.

25.3 Conclusion

Like cognitive psychology, I-O psychology attempts to understand a
large variety of phenomena. Unlike cognitive psychology, computational mod-
eling in I-O is in a nascent phase. As a result, this one chapter captures much of
the modeling efforts occurring within the subdiscipline. Yet, clear progress has
been made in the areas of motivation, training, leadership, and team processes.
In the models of motivation, training, and socialization, a comprehensive
theory covering action (e.g., goal striving), thinking (e.g., goal choice), and
learning is emerging based on the control system architecture. In the models of
leadership and team processes, much has been learned about how leadership
and network structures can influence information transmission to affect out-
comes of interest to individuals in organizations (e.g., decision quality) using
ABM models.

Besides addressing issues relevant to I-O psychologists, the architectures used
here (e.g., control systems, ABM) are likely useful for representing certain kinds
of problems relevant for other subdisciplines of psychology, just as the architec-
tures described in this handbook (e.g., connectionist, Bayesian, dynamical
systems, etc.) are clearly relevant to I-O. Likewise, the more specific processes
explicated in the models described here are likely to be relevant in other domains
of psychology. Goal striving, decision-making processes, and information
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transformation and dissemination are clearly generic processes of relevance
outside of work settings. Because mathematics is a universal language, the
computational approach should facilitate the sharing of models and perspectives
needed to construct a science of human behavior. Time to get to work.
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26 Computational Modeling
in Psychiatry
Cody J. Walters, Sophia Vinogradov,
and A. David Redish

26.1 Introduction

The concept of computational psychiatry derives from the more
general field of computational neuroscience which explores how the nervous
system represents and processes information to guide adaptive behavior.
Breakthroughs in neuroscience over the last several decades have elucidated
how these computations work both in terms of the processes themselves and of
the neural circuits involved in those processes (Dayan et al., 2001; Redish,
2013). Computational psychiatry entails applying reliability engineering tech-
niques to those brain information processing systems – if one understands how
the system works, one can identify its “vulnerabilities” and tailor treatment to
address those vulnerabilities (Huys et al., 2016; MacDonald et al., 2016;
Montague et al., 2012; Redish et al., 2008).
With this paradigm shift, psychopathology can now be understood as a

failure of various brain information processing systems to generate an
adaptive response to dynamic environmental contingencies. It is important to
recognize that this failure lies in the interaction between the environment and
the individual – an individual susceptible to cocaine addiction who never tries
cocaine never becomes a cocaine addict. Moreover, psychiatric symptoms
depend on complex feedback loops between neural information processing
and the environment – for example, excessive anxiety can produce insomnia,
which produces fatigue, which produces an inability to provide the self-control
to reduce anxiety.
This chapter will discuss several mathematical models and how they are used

to capture physiological and cognitive features characteristic of certain
psychiatric diseases. While there are hundreds of mathematical models in
existence and fewer than a dozen are highlighted in this chapter, there are two
model classes that are so ubiquitous in the field of computational neuroscience
that they warrant emphasis: Bayesian models (broadly centered around the
notion of incorporating new observations into a body of pre-existing know-
ledge) and reinforcement learning models (which address how an agent pro-
cesses rewards and punishments to guide optimal behavior). Both come in
different shapes and sizes, and we will explore a few of these variations – as
well as the application of non-Bayesian and non-reinforcement learning
models – in the cases presented below.
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26.1.1 Approaches to Psychiatry

The field of computational psychiatry is often described as including both
theory-driven and data-driven approaches (Huys et al., 2016). Theory-driven
approaches are like those described above: one can derive “failure modes” or
“vulnerabilities” from a theory-driven understanding of the underlying infor-
mation processing (MacDonald et al., 2016; Redish et al., 2008) and design
treatment options that target or bypass those vulnerabilities. With a sufficient
knowledge of these vulnerabilities, one could even engineer tests which identify
early warning signs and point the way to treatments aimed at preventing the
expression of a dormant vulnerability. To take one example, work in the theory-
driven branch of computational psychiatry has generated new insights into
aspects of cognitive behavioral therapy (Chekroud, 2015; Moutoussis et al.,
2018; Redish & Gordon, 2016), a psychotherapy treatment option which has
proven popular owing to its affordability, brevity, and efficacy.

In contrast, data-driven approaches use unsupervised learning techniques to
identify clusters of behaviors that co-occur (Huys et al., 2016). Historically, the
DSM-III was built on this model, in which the authors attempted to find
symptom clusters from surveys and interviews with practicing psychiatrists
(Lieberman, 2015). DSM categories, as such, lack a biological foundation and
instead operate on the assumption that a sufficiently accurate diagnosis can be
arrived at if enough symptom features (e.g., loss of energy, change in mood,
weight loss) are considered (see Section 26.9.1 for a discussion on the shortcom-
ings of DSM categories). While big-data approaches are still being tried
(Borsboom et al., 2019), it is argued that the major breakthroughs that have
occurred within the field of computational psychiatry so far have been from the
theory-driven side, and thus this chapter will focus on them.

Behavior arises from a complex interaction of genetics, biochemistry, and the
environment, which includes (because humans are social animals) our social
interactions. However, all of those underlying causes are translated through the
brain and its interaction with the environment (Figure 26.1). This means that one
can conceptualize the brain’s information operations as the key step in translating
underlying causes (genetics, biochemistry, the physical and social environment,
etc.) to adaptive or maladaptive behavior, including psychopathology. These
computational processes are implemented through complex neural (and hormo-
nal and glial) networks, and understanding the interaction between these pro-
cesses and the environment leads to a recognition of where that interaction can
fail and the vulnerabilities within these complex networks. The sections below
will review seven cases that highlight how a theoretical approach to neural
information processing can be applied to psychiatric phenomena.

26.2 Addiction

Addiction is broadly defined as an inability to stop engaging in a
behavior despite negative consequences. This takes many forms: gambling,
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Figure 26.1 Underlying causes of psychiatric disease in the form of potential
risk factors lead to computational dysfunctions in the nervous system. These
computational dysfunctions then lead to psychopathology, which in turn
influences the array of potential risk factors.
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alcoholism, smoking, shopping, drugs, video games – almost any rewarding
behavior can become inelastic to social and financial costs as well as physical
and psychological harm. In addition to an inability to stop the behavior, people
with an addiction often experience cravings or withdrawal as well as an escal-
ation of their addictive behavior over time, often with evidence of sensitization
(e.g., taking larger and larger doses of the drug or going on longer or more
expensive gambling sprees).

26.2.1 Temporal-Delay Reinforcement Learning Models

Current computational models of addiction are generally based on
reinforcement learning (RL) computational neuroscience models, in which a
decision-making agent applies actions to a simulated world. In RL models, the
world communicates to the agent by providing observations and rewards
(which can be positive rewards or negative punishments/costs), and the agent
communicates actions back to the world, which have the effect of changing the
state of the world.

The first RL computational model of addiction with simulations is that of
Redish (2004), in which drugs of abuse are assumed to modify parameters of
what is now referred to as a “model-free temporal difference reinforcement
learning (TDRL)” model. In this classic TDRL model, value is defined as the
amount of expected future reward given a decision policy (Sutton et al., 1998),
taking an action in any given state of the world is associated with an expected
value, and that value is learned through “temporal difference reinforcement
learning.” If the agent takes an action and finds more (or less) reward than
expected, then the agent increases (or decreases) the stored value of taking that
action in that environment. At its most basic, this is represented as:

prediction error ¼ observed outcome� expected outcome (26.1)

This difference is known as the “reward prediction error” or “value prediction
error,” and there is evidence that some aspects of dopamine signaling carry this
value prediction error signal (Schultz et al., 1997). To derive a more workable
formulation from the above expression, we can assert that, when the agent
leaves one state Skð Þ and enters another Slð Þ, we will define the value prediction
error δð Þ to be:

δ tð Þ ¼ γd R slð Þ þ V slð Þ½ � � V skð Þ (26.2)

where R slð Þ is the reward received in state Sl, V is the value of a given state (i.e.,
the average predicted reward of all the states that can be reached from a given
state), and R slð Þ þ V slð Þ is discounted by γd (so that the larger the temporal
distance between Sk and Sl , the smaller R slð Þ þ V slð Þ becomes). The value of
state Sk is then adjusted by δ such that if the reward received in state Sl is better
δ > 0ð Þ or worse δ < 0ð Þ than expected, the agent will increase or decrease the
stored value of Sk, respectively. In a stable environment V skð Þ will eventually
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approach γd R slð Þ þ V slð Þ½ �, meaning that when the agent is in state Sk it has an
accurate prediction of the reward it will receive in state Sl, thus δ will approach 0.
Redish (2004) noted that given the evidence that many drugs of abuse

produce dopamine neuropharmacologically, one can model the effect of these
drugs as a noncompensable δ signal:

δ tð Þ ¼ max γd R slð Þ þ V slð Þ½ � � V skð Þ þD slð Þ,D slð Þ� �
(26.3)

where D slð Þ is the neuropharmacological effect of receiving the drug upon
entering state Sl. Through simulations, Redish (2004) found that the agent
would develop preferences for drug-taking, preferences for drug-seeking, and
would become increasingly inelastic with continued drug use.
The Redish (2004) model can serve as an introduction to the concept of

failure modes. According to these RL computational models of decision
making, the brain evolved to use dopamine as a learning signal driving the
recognition of future value. A chemical that bypasses the normal function of
dopamine as a value prediction error signal δð Þ provides a signal that is
interpreted by the rest of the brain as always being “better than expected”
and driving an increased willingness to take the action that led to drug use,
no matter how pleasant or rewarding it actually was. This is a vulnerability in
the brain’s reinforcement learning processes.
An important issue in action selection models is that there is now very strong

evidence that decision making arises from multiple algorithms (Kahneman,
2011; Redish, 2013), each of which has different vulnerabilities. For example,
the incentive-sensitization theory of addiction (Robinson & Berridge, 2001)
distinguishes between pleasure (liking or craving, encoded in endogenous opiate
signals and vulnerable to exogenous drugs of abuse like morphine, heroin, and
oxycodone) and value (wanting or incentive salience, encoded in endogenous
dopamine signals and vulnerable to exogenous drugs of abuse like cocaine and
amphetamine). Robinson and Berridge (2001) suggest that these two aspects are
dissociable and can change independently of one another (e.g., an increase in
wanting with a decrease in liking, a common phenomenon in addiction).
While the current reinforcement-learning computational models of addiction

like those described above are all based on positive (reinforcing) outcomes,
addiction likely has a darker side as well, in which drug-seeking becomes a
means of escaping negative affective states (anxiety, depression, anhedonia,
social isolation) which can result from withdrawal and other effects of drug
taking (Koob & Volkow, 2010). These components are included in other
models of addiction, such as pharmacological homeostatic models (Tsibulsky
& Norman, 1999) and opponent process models (Koob & Volkow, 2010). For a
more complete review of computational models of addiction, see Walters and
Redish (2018).
This multi-vulnerability model has important consequences for both under-

standing of psychiatric phenomena and treatment. It suggests that symptom
clusters (such as addiction and drug-seeking) reflect processes that are multi-
potential (multiple consequences of a given underlying deficit) and multifinal
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(multiple causes for a given behavioral outcome). It also suggests that treatment
should address the underlying impairments rather than the symptom clusters
(Friston et al., 2014; Redish et al., 2008; Redish & Gordon, 2016). We will
return to this discussion at the end of the chapter (see Section 26.9.2).

26.3 Psychosis

Schizophrenia is a heterogeneous psychiatric disorder characterized
by three kinds of symptom clusters: positive symptoms (hallucinations and
delusions), negative symptoms (blunted affect, reduced speech, and social
withdrawal), and cognitive symptoms (impairments in processing speed,
working memory, executive function, and social cognition).

An individual’s first psychotic episode is often preceded by a prodromal
phase, which can last anywhere from weeks to years, during which they pro-
gressively exhibit symptoms such as depression, suspiciousness, magical think-
ing, and social isolation. This period then culminates in a psychotic episode,
known as the acute phase, during which some combination of the above
symptoms are exhibited. The acute phase is generally followed by treatment
and a degree of recovery, with variable periods of time separating episodes of
acute psychosis.

26.3.1 Basin of Attraction Models

Neurophysiological theories suggest that cortical systems carry information
about the world – where information is defined mathematically as the degree
to which knowing something about the state of one system (e.g., a neuron’s
firing rate) reduces your uncertainty about the state of another system (e.g., a
visual stimulus) (Shannon, 1948) – by categorizing stimuli into “basins of
attraction,” a concept from dynamical systems theory (Hertz et al., 1991). In
these models, both perception and memory are encoded as specific firing
patterns across a population of neurons. Computational models of these net-
works have shown that appropriate connection structures will recover remem-
bered patterns from noisy or partial patterns of activity (Hebb, 1957; Hertz
et al., 1991; Hopfield, 1982).

This phenomenon – called an attractor state – is a mathematical description
of pattern completion wherein a remembered pattern is retrieved from partial or
noisy cues. The set of points in this n-dimensional space that flow into a stored
state is called a “basin of attraction” because one can imagine this process of
pattern completion as a ball falling down into a valley, with a larger distance
from the remembered pattern corresponding to greater potential energy of the
ball on the energy landscape. In perception, this process produces categoriza-
tion whereby similar patterns (the many shades of blue) can flow into a single
pattern and become recognized as part of that category (blue). In memory, this
process implements content-addressable memory whereby retrieving part of a
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memory results in the memory being recalled in full. Attractor dynamics depend
on the depth of the basin, where deeper basins occur with stronger synapses
(which produce a stronger vector field), while shallower basins are more sensi-
tive to noise and thus more susceptible to small changes in input (Seamans &
Yang, 2004).
Attractor models can provide valuable insights into the biological dynamics

underlying psychosis. In a study using a recurrent integrate-and-fire biophysical
network model, Loh et al. (2007) found that a decrease in NMDA conductance
not only reduced firing rates of neurons in a stable network state but also resulted
in a failure to maintain a persistent network pattern. They argue that this shift in
dynamics could relate to negative symptoms (e.g., blunted affect which is thought
to relate to the reduced activity in orbitofrontal and anterior cingulate cortices
seen in individuals with schizophrenia) and cognitive symptoms (e.g., working
memory deficits which are thought to result from unstable attractors in prefrontal
networks), both of which often appear together and precede the exhibition of
positive symptoms. Furthermore, they found that decreasing both NMDA and
GABA conductance resulted in a failure to maintain both an immediate and a
persistent network pattern, thus giving rise to spontaneous jumps between
attractors, a finding consistent with experimental evidence showing that disrupt-
ing NMDA-receptor activity disrupts spike timing and decouples prefrontal
circuits in nonhuman primate models of schizophrenia (Zick et al., 2018). This
effectively makes the network less resilient to stochastic neuronal activity and as a
result liable to meander from basin to basin.

26.3.2 Bayesian Models

Going beyond attractor models, abnormalities in the neurotransmission
systems that regulate synaptic gain (e.g., NMDA-R function, dopamine, and
acetylcholine) are a common focus in other models of psychosis, such as
Bayesian models (Adams et al., 2013). Bayesian models allow for the incorpor-
ation of new observations (the likelihood) with established knowledge (the
prior) in order to continuously infer the probable cause of new observations:

p causejobservationð Þ / p observationjcauseð Þp causeð Þ (26.4)

which is more concisely denoted as:

posterior / likelihood � prior (26.5)

where the posterior distribution is simply the updated expectation after making
an observation. Thus, the posterior at one time step becomes the prior at the
next time step, with the aim being to continuously update expectations (i.e.,
beliefs) so that they predict new observations with increasing accuracy. Given
that the posterior, the likelihood, and the prior are all probability distributions,
the width of the prior and the posterior reflect belief uncertainty and the width
of the likelihood reflects the observation (or stimulus) noise. Additionally, the
difference between the prior and the likelihood corresponds to the error in the
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prediction of the prior (i.e., the surprise), and the difference between the prior
and the posterior can be thought of as the information gained, or, more
precisely, how much the belief changes to fit the new observation.

A helpful reframing of Bayes’ theorem is that it is describing how to best
update beliefs about the world when new observations deviate from expectations
(i.e., the prior). This deviation from expectation is the surprise mentioned above,
but in Bayesian models the surprise is weighted in accordance with the number
of observations that have been made (Adams et al., 2013; Mathys, 2016). For
example, the prior is more precise when it is based on more observations, thus
the weight placed on the surprise is inversely proportional to the precision of the
prior. This means that if the prior is highly precise as the result of many
observations having been made, then a new observation that drastically deviates
from that prior expectation will not result in a large belief change. Bayes’
theorem is therefore mathematically equivalent to (Mathys, 2016):

new belief / old belief þ weight � surprise (26.6)

Bayesian accounts of psychosis hold that schizophrenic symptoms result from
faulty Bayesian inference. According to these models, psychosis is driven by
inaccuracies in beliefs (i.e., priors) and the confidence in those beliefs (i.e., the
precision, or the inverse variance, of the prior) (Adams et al., 2013). Confidence
in this context is a direct function of synaptic gain in neurons signaling surprise,
where discrepancies between predictions (priors) and sensory data (likelihood)
drive Bayesian belief updating. Psychotic symptoms can thus be understood in
terms of an imbalance in synaptic gain (i.e., in terms of the energy landscape
whose shape is dictated by the state of the network’s synaptic matrix), much in
the same way as the basins of attraction model discussed above.

26.4 Anxiety Disorders

It is important to distinguish between fear and anxiety, as they are
separate emotional states with distinct behavioral correlates (Blanchard &
Blanchard, 2008; Mobbs et al., 2007; Perusini & Fanselow, 2015). Broadly
speaking, fear corresponds to immediate threat while anxiety is elicited when
threat is spatially or temporally distant and uncertain (Blanchard & Blanchard,
2008; Mobbs et al., 2007; Perusini and Fanselow, 2015). Both fear and anxiety
are adaptive and elicit evolutionarily advantageous defensive behaviors aimed
at avoiding bodily harm and predation; however, they can become pathological
if they are excessively or inappropriately expressed such that they significantly
interfere with one’s daily activities.

There are various disorders of anxiety with examples ranging from
generalized anxiety disorder and specific phobias to social anxiety disorder,
agoraphobia, and panic disorder (DSM-5). While symptoms for each disorder
differ, somatic symptoms common to most forms of anxiety include periods of
intense physiological arousal, restlessness, muscle tension, heart palpitations,
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fatigue, shortness of breath, and avoidance behaviors (Beck et al., 2005; NIMH,
2019a). Anxiety is also characterized by cognitive symptoms such as sustained
periods of rumination and worry (Nolen-Hoeksema, 2000; NIMH, 2019a).
There is often a positive feedback loop component between the somatic symp-
toms and the cognitive dimension of anxiety, such that one initiates and exacer-
bates the other (Ehlers et al., 1988).

26.4.1 Belief-State Models

Anxiety has been suspected to involve some form of prospection, or mental
simulation, for millennia. Seneca (65 ce), the Roman philosopher and states-
man born in the year 4 bce, observed that “memory brings back the agony of
fear while foresight brings it on prematurely.” More recent theories agree,
viewing anxiety as involving negative beliefs about the future (Beck et al.,
2005; MacLeod & Byrne, 1996). However, to understand anxiety as a form of
negative future thinking requires identifying the neural and cognitive processes
that support prospection.
Episodic future thinking, the ability to perform mental simulations, has

become an increasingly studied topic in recent years; there is now a growing
body of evidence that both humans and nonhuman animals engage in episodic
future thinking to some degree (Clayton et al., 2003; Redish, 2016; Suddendorf,
2013). One facet of mental simulation involves the representation of spatio-
contextual information stored in the hippocampus (Hassabis et al., 2007;
Redish, 2016; Schacter et al., 2008). The hippocampus encodes spatial and
contextual maps of experienced environments which can then be explored off-
line to facilitate learning even when the animal is not currently occupying that
environment (O’Keefe & Nadel, 1978; Redish, 1999). Animals perform this
prospective planning during periods of hippocampal theta, the 4–10 Hz
oscillation prominently observed in the hippocampal local field potential
(Redish, 2016). Furthermore, there is high hippocampal theta power during
reward-based (Johnson & Redish, 2007) and threat-based (Kim et al., 2015)
conflict in rodents, as well as in humans during avoid-approach conflict (Ito &
Lee, 2016). The theta-suppression model of anxiolysis suggests that anxiolytics
(particularly barbiturates and benzodiazpines) function by attenuating hippo-
campal theta (Yeung et al., 2012), thus possibly impairing the ability to engage
in hippocampal-dependent episodic future thinking (Walters et al., 2019).
While there have been a few models of fear focusing on amygdalar circuitry,

biases in threat processing, and defensive behaviors, there have not been many
computational models of anxiety per se (Raymond et al., 2017). Gray (1982)
was the first to suggest that the septo-hippocampal circuit plays a role in
anxious prospection and the resolution of conflict between competing goals
(e.g., during avoid-approach conflict). Dayan and Huys (2008) used reinforce-
ment learning to model future-oriented thoughts that terminate in either posi-
tively or negatively valued predicted future states. They further modeled a
hypothesized effect of serotonin on pruning by stopping these trains of thought
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when they transition to the consideration of aversive outcomes. Avoid-
approach conflict models of anxiety in humans suggest that behavioral inhib-
ition, a hallmark readout of anxiety, coincides with goal-directed planning and
acts as a cost-minimizing strategy in environments where threat and reward are
correlated (Bach, 2015), thus supporting the case that subjects are considering
future outcomes during anxiogenic decision making.

Some have used a discrete state model known as a partially observable
Markov decision process (POMDP) to model belief states and their relation
to mood and action selection. In such models, the environment is treated as
noisy and uncertain, and thus agents represent probabilistic beliefs over the
states to inform action selection. In these models, the agent’s beliefs are updated
on the basis of observations obtained from performing actions (Paulus & Yu,
2012). POMDP models also allow agents to perform mental simulations in
addition to physical actions. The resulting fictive observations can inform state
estimations (and thus decision making), with these mental simulations having
specific representational elements (e.g., space, value, and state inference) sup-
ported by distinct neurobiological substrates (Walters et al., 2019).

Data supports the theory that impairments in episodic foresight may in fact
be central to certain anxiety disorders (Miloyan et al., 2016). Avoidance behav-
iors which reduce the probability of experiencing a future aversive outcome are
fundamental to most anxiety disorders and have been shown to be anxiolytic
(Lovibond et al., 2008). The expectancy-based model of anxiety claims that
expectations about aversive future events generates anxiety which avoidance
behaviors serve to alleviate (Declercq et al., 2008). Exposure therapy is aimed at
subverting avoidance behaviors and forcing the individual to learn from experi-
ence that their expectations are largely inaccurate. Such expectations about the
future appear to become pathological in individuals with generalized anxiety
disorder, who, for example, have difficulties constructing positively valenced
episodic simulations and perceive negatively valued simulated events as being
more likely to happen than their nonanxious counterparts (Wu et al., 2015).

26.5 Depression

Major Depressive Disorder (MDD) is a mood disorder characterized
by persistent feelings of dysphoria, fatigue, helplessness, hopelessness, and loss
of interest and pleasure. Individuals suffering from MDD commonly have
somatic symptoms that include changes in sleep patterns (often with difficulty
sleeping), changes in appetite, and lethargy or agitation. Additionally, people
with MDD may experience suicidal ideation and behavior.

26.5.1 Decision-Theoretic Models

Many theories assert that the brain represents a model of its environment, and
that this model can be thought of as a set of beliefs (i.e., predictions) about the
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structure of the world and the likely causes of sensory observations (Huang &
Rao, 2011). The manner by which these beliefs get updated in light of new
sensory evidence can be described as a form of Bayesian inference (see Section
26.3 for more on Bayesian inference):

Δbelief / precision � surprise (26.7)

where Δbelief is the degree to which the agent updates its belief; precision is the
certainty, or inverse variance, of the prior belief; and surprise is the difference
between the prior belief and the new sensory observation. Chekroud (2015)
proposes a framework in which depression is viewed through the lens of the free
energy principle, a cognitive framework which, in the context of perception,
asserts that the brain represents a model of the environment in order to infer the
causes of sense data and minimize surprise (mathematically, free energy), where
surprise simply means unexpected states, via sensory prediction errors (i.e., the
disagreement between the model’s predictions and the inputs it receives)
(Friston, 2010).
Importantly, there are two ways an agent can minimize surprise: they can

change their model to fit the environment or they can change the environment
to fit their model. Chekroud argues that depression results from a set of depressive
beliefs (owing to aberrant neural information processing) that are immune to
countervailing evidence; therefore, an individual with a depressive model of the
world behaves in a way that reinforces their depressive model (e.g., by not
engaging in rewarding behaviors) as opposed to altering the model itself, thus
resulting in a self-reinforcing feedback loop. It is worth noting that this cyclic
notion of an individual’s actions reinforcing their psychopathology is likely true
of other psychiatric conditions (e.g., anxiety and obsessive-compulsive disorders).
Others have used decision-theoretic approaches to explore the nature of these

depressive models of the world. It has been suggested that many depressive
symptoms (e.g., anergia) can be explained as the result of pessimistic evalu-
ations of the future where predicted utility is consistently low (Huys et al.,
2015). This dovetails with another symptom of clinical depression, learned
helplessness, in which patients feel that their actions have no impact on the
outcomes they experience in the world, thus they resign to a state of inaction
and exhibit signs of indifference and lethargy in the face of adversity (Seligman,
1972).
Within this context, rumination (the consideration of alternative past and

potential future events), which is commonly seen in depression, entails search
processes through a potentially very large transition function T :

T : sa,t ! p ŝtþ1ð Þ 8s 2 S, a 2 A (26.8)

where T is a matrix of all transition probabilities between an initial state s at
timestep t and any other state ŝ at timestep tþ 1 in the set of all possible states S
after taking an action a from the set of available actions A. Rumination can be
interpreted as exploration of the possible paths in a POMDP state space.
Models of depression have suggested that the excessive rumination seen in
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depression may be a pathological extension of a normal consideration-and-
evaluation process evolved to determine useful paths within a large and poten-
tially unknown state space.

Indeed, a follow-up modeling study to Dayan and Huys (2008), mentioned
previously (see Section 26.4), found that the extent to which one prunes the
mental search tree of possible future states correlates with sub-clinical symp-
toms of depression (Huys et al., 2012). This suggests that nondepressed individ-
uals underexplore aversive prospects while individuals with depression will
overexplore negative prospects. Huys et al. (2012) interpret these findings in
the context of a theoretical model of serotonin, supported by some experimental
evidence suggesting that behavioral inhibition in the context of threat predic-
tion may be mediated by serotonergic activity (Dayan and Huys, 2009), which
posits that serotonin curtails the contemplation of aversive outcomes. Given
that some forms of depression are characterized by reduced serotonergic activ-
ity and that patients with depression benefit from medications that increase
serotonergic neurotransimission, this framework suggests that the result of such
an imbalance could be an inability to prune the mental search tree, thus leading
to an increased consideration of negative outcomes.

Anhedonia, another hallmark symptom of depression, is characterized by a
reduction in motivation and the enjoyment of formerly rewarding stimuli. Two
possible causes have been suggested: disrupted reward learning or decreased
sensitivity to reward itself (Huys et al., 2013). Some data suggest that aberrant
prediction error signaling may underlie anhedonia (Gradin et al., 2011) while
reward sensitivity to positive and negative outcomes might be modulated by
serotonin (Seymour et al., 2012). Attempts to sharpen the distinction between
these two hypotheses, most commonly in the language of opponent-processes
attempting to make sense of the functional interplay between serotonin and
dopamine, have not been conclusive (Daw et al., 2002). However, MDD is a
heterogeneous condition and abnormalities in reward learning and action selec-
tion are only two of the many symptomatic factors which might manifest in
a patient.

26.6 Obsessive-Compulsive Disorder, Tics, and
Tourette’s Syndrome

Obsessive-compulsive disorder (OCD) is a psychiatric condition char-
acterized by obsessive thoughts (e.g., a preoccupation with a perceived threat
such as germs) that cause negative affect and repetitive, ritualized behaviors
(e.g., excessive hand washing) which are thought to provide (temporary) relief
from the distressing obsessions (Dougherty et al., 2018).

Tourette’s syndrome is a related but distinct neurological condition in which
individuals exhibit tics – spontaneous and repetitive movements or vocaliza-
tions (e.g., facial twitches, eye-blinking, humming, throat clearing, etc.) which
can escalate in complexity over time (Swain et al., 2007).
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26.6.1 Models of Habit and Sequence Learning

That action selection is not mediated by a unitary system has been a long-held
view in psychology and neuroscience (Kahneman, 2011; O’Keefe & Nadel, 1978;
Redish, 2013), with evidence pointing to there being nonoverlapping neural
systems underpinning at least two differentiable modes of action selection
(Scoville &Milner, 1957). Procedural processes encompass the largely automated
habit system while declarative processes refer to the more episodic goal-directed
system. Operationally, habitual behavior can be said to be insensitive to changes
in contingency, such as outcome devaluation, while goal-directed behavior is
defined by its flexibility in response to novel circumstances and environmental
rules. In nonhuman animals, the habit system has been labeled the stimulus-
response (S-R) system while the declarative system has been labeled the action-
outcome (A-O) system (Adams & Dickinson, 1981).
This distinction is further supported at the level of anatomy, with individuals

suffering from medial temporal lobe damage exhibiting impairments in the
declarative system while maintaining a functioning procedural system (Scoville
& Milner, 1957) and damage to the basal ganglia disrupting procedural function
while leaving declarative abilities intact (Saint-Cyr et al., 1995). Similarly, in
nonhuman animals, lesioning the basal ganglia impairs habit-like S-R learning
(O’Keefe & Nadel, 1978; Redish, 1999, 2013; Saint-Cyr et al., 1995) while
behaviors involving goal-directed A-O planning require the hippocampus
(O’Keefe & Nadel, 1978; Redish, 1999, 2013, 2016).
There is now considerable evidence implicating dysfunction in the cortico-basal

ganglia-thalamo-cortical (CBGTC) loop, a critical circuit in the habit system, in
OCD. Key hubs in this network include the orbitofrontal, anterior cingulate, and
medial prefrontal cortices as well as the caudate nucleus (Graybiel & Rauch,
2000). Individuals with lesions to the striatum (or its downstream target the
pallidum), for example, show signs of obsessions, compulsions, and stereotyped
behaviors reminiscent of OCD (Laplane et al., 1989).
While obsessions and compulsions are often co-expressed, there is some

evidence suggesting that they might be developmentally dissociable (Freeman
et al., 2012). Furthermore, individuals with OCD display signs of impaired goal-
directed planning and an over-reliance on habitual heuristics in a variety of tasks
with no indication of the presence of obsessions (Gillan et al., 2011). Though it
has been commonly thought that obsessions instigate compulsions, these and
other data have led to the supposition that this causal relationship might in fact
run in the other direction, with compulsions being the primary feature of OCD
which precede obsessions (Gillan et al., 2011). In this “COD” model, compul-
sions are viewed as being egodystonic, meaning they generate behaviors that are
in conflict with one’s self-image. This results in cognitive dissonance, and obses-
sions are posited as confabulatory reactions attempting to rationalize that
mismatch (e.g., “I feel the urge to wash my hands therefore I must be worried
about germs,” as opposed to “I am worried about germs therefore I feel the need
to wash my hands”) (Gillan & Robbins, 2014). In support of this COD model,

874 cody j. walters, sophia vinogradov, and a. david redish

https://doi.org/10.1017/9781108755610.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.031


confabulation has been shown to be a key factor in dealing with dysfunction
(Gazzaniga et al., 1965; Ramachandran et al., 1998).

Neural network models consisting of coupled excitatory and inhibitory units
have been shown to recapitulate many of the defining features of OCD when the
E-I balance is disrupted (specifically when the inhibition parameter is reduced)
(Verduzco-Flores et al., 2012). Maia and McClelland (2012) underscore how
this parameter change is likely equivalent to the levels of network excitation
increasing, which is consistent with prior modeling work (Rolls et al., 2008)
showing that glutamatergic hyperactivity generates deeper basins of attraction
which could be the cause of the tenacious habitual responses characteristic of
OCD (see Section 26.3 for a more in-depth discussion of attractors). However,
unlike point attractors which stabilize around a set pattern of activity, the
Verduzco-Flores model captures attractor dynamics that cycle through stereo-
typed sequences of activity, a property which more closely resembles the motor
and thought sequences experienced by those with OCD. Sequence learning has
been a long-standing problem in psychology and cognitive science (Lashley,
1951). While previous theoretical and experimental efforts have underscored the
role of the basal ganglia in sequence production (Berns & Sejnowski, 1998;
Graybiel, 1995), they have not explored how sequences could become patho-
logically expressed in conditions like OCD.

While OCD and Tourette’s syndrome are both behaviorally and neurologic-
ally similar, as well as highly comorbid, the two conditions are dissociable
(George et al., 1993). Anatomically, evidence implicates the degeneration of
parvalbumin-containing neurons in the striatum and pallidum in Tourette’s
syndrome (Kalanithi et al., 2005), two structures often compromised in OCD.
Functional magnetic resonance imaging (fMRI) data has shown that volitional
suppression of tics correlates with an increased fMRI BOLD signal in the
caudate nucleus and prefrontal cortex and a decreased signal in the putamen
and pallidum relative to BOLD activity observed during the free expression of
vocal or motor tics (Peterson et al., 1998).

Tic disorders and Tourette’s syndrome may result from aberrantly reinforced
motor behaviors (Maia & Conceicao, 2017). As in OCD, individuals with
Tourette’s syndrome often report an escalating sense of discomfort leading up
to tic expression known as a premonitory urge, and this discomfort is often
dissipated by expression of the tic. A recent model of premonitory urges argues
that sensory signals originating in structures like the somatosensory cortex get
projected to cortical regions such as the insula, and that the resulting aversive
sensations are successfully terminated by tic execution (Conceicao et al., 2017).
This generates a positive prediction error (conveyed via phasic dopamine)
which then reinforces the tic via the CBGTC loop (Conceicao et al., 2017).
Other models suggest that elevated levels of tonic striatal dopamine (or changes
in striatal dopamine receptor density or sensitivity) result in hyperactivity in the
direct GO pathway in the CBGTC loop, thus amplifying the expression of
motor and vocal tics (Maia & Frank, 2011). This is consistent with the efficacy
of D1 receptor antagonists in suppressing tics in individuals with Tourette’s
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(Gilbert et al., 2014) and the ability of D1 receptor agonists to cause spontan-
eous tic-like motor behaviors (Bergstrom et al., 1987).

26.7 Autism Spectrum Disorder

The autism spectrum refers to a continuum of neurodevelopmental
disorders associated with impaired social communication, a preference for
sameness, and sensory hypersensitivity. Individuals with autism often exhibit
a narrow range of interests (e.g., an intense preoccupation with a specific topic)
and repetitive behaviors (e.g., rocking or repeating certain words or phrases).

26.7.1 Bayesian Observer Models

As mentioned above (see Sections 26.3 and 26.5), Bayesian models assert that
the brain weighs bottom-up sensory information (the likelihood) using an
internal predictive model of the environment in the form of top-down expect-
ations (the priors). This operation serves the purpose of inferring the probable
cause of a given sensory state using prior knowledge of how the world works to
form a percept (the posterior), and is thought to be implemented by hierarchical
surprise signaling wherein higher order brain areas compare their predictions
against incoming sensory information from lower order brain areas (Van Boxtel
& Lu, 2013).
This model, known as the Bayesian brain hypothesis (Knill & Pouget, 2004),

posits a fundamental trade-off between having a veridical representation of the
external world (weak priors, which is equivalent to overweighting the likeli-
hood) and the ability to extract statistical patterns from experience and skew
perception in line with those expectations (strong priors). Individuals on the
autism spectrum appear to have attenuated priors (i.e., abnormal internal
predictive models of the environment) which results in incoming sensory infor-
mation being less heavily weighted by top-down expectations (Pellicano & Burr,
2012).
Impaired priors results in perception being more accurate in the sense that the

trial-by-trial variability of sensory experience is not smoothed out and biased
toward the mean of those experiences (as is the case in nonautistic individuals).
Instead, the hypersensitivity to fluctuations in sensory information characteris-
tic of autism is akin to overfitting noisy data. This model furnishes an explan-
ation for a variety of nonsocial symptoms observed in individuals on the autism
spectrum. For example, people with autism are often overwhelmed by certain
sensory stimuli (such as loud sounds or being touched) and are resistant to
change in their environment – an inability to leverage past experience (via
priors) in order to generalize and respond adaptively to novel stimuli would
make the world confusing and unpredictable. This model predicts that the near-
constant feeling of being overwhelmed by novel sensory information (hypersen-
stivity) leads to a preference for routine (which minimizes exposure to novel
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scenarios). In support of this model, experimental evidence shows a reduction in
the amount of temporally correlated mutual information (a measure of repre-
sentational stability over time) in the hippocampus of individuals with autism
(Gómez et al., 2014), suggesting impairments in top-down processing in indi-
viduals with autism consistent with the notion of weak priors.

A cognitive framework consistent with the Bayesian brain model of autism is
known as the weak central coherence theory (Frith, 2003; Happé & Frith,
2006). This theory posits that while nonautistic individuals have an innate
perceptual bias towards Gestalt perceptions (privileging the coherent whole
over its constituent parts), autism is characterized by an anti-Gestalt perceptual
bias (a bias toward perceiving local features at the expense of global properties)
(Frith, 2003). There is a considerable body of experimental evidence in favor of
the weak coherence account with a variety of neurobiological mechanisms
having been proposed (Happé & Frith, 2006).

The model of weak priors in autism does not, however, make much headway
in explaining the social and emotional dysfunctions experienced by those with
autism. These symptoms have been suggested to be a result of abnormalities in
interoception, the ability to detect sensations from the body and viscera (heart
rate, chemoreceptors, respiration, gastrointestinal tract, etc.) and interpret those
physiological signals as feeling states (hunger, anxiety, excitement, etc.).
Garfinkel et al. (2016) argue that there are several dimensions to interoception,
two of which are accuracy (objective ability to detect bodily states) and sens-
ibility (one’s belief about one’s accuracy), and that individuals with autism
exhibit poor interoceptive accuracy and high interoceptive sensibility. This
complements embodied theories of social cognition and attachment which
suggest that one mentally simulates the emotional state of others in order to
empathize with them (Niedenthal, 2007). These and other data suggest that
impairments in interpreting one’s own interoceptive states could drastically
impair one’s ability to infer the emotional states of others (Friston et al., 2014).

26.8 Attention-Deficit Hyperactivity Disorder

Attention-deficit hyperactivity disorder (ADHD) is characterized by
extreme difficulty sustaining attention during conversation or any task requiring
persistent mental effort. Individuals with ADHD often exhibit signs of restless-
ness, poor concentration, and distractibility (e.g., fidgeting) and can be highly
disorganized (e.g., regularly losing personal items) or display impulsive behavior.

26.8.1 Normalization Models

Agents must arbitrate between stable behavior, exploiting what they currently
know about the environment to maximize value, and unstable behavior, explor-
ing potentially less fruitful alternatives in order to gain new information. The
brain, then, is confronted with this explore-exploit dilemma and needs to strike
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a balance between these two competing strategies (Daw et al., 2006). Hauser
et al. (2016) frame ADHD in relation to this trade-off, arguing that ADHD
biases an agent toward more exploratory (i.e., information-gathering) behavior
at the cost of stability (i.e., exploitation), a policy that can be advantageous in
highly uncertain environments.
Hauser et al. (2016) model attention in terms of neural gain by building on a

standard softmax model of exploration versus exploitation (Sutton et al., 1998;
Williams and Dayan, 2005) which uses a sigmoid function that takes an input
signal and either amplifies or dampens the probability of taking an action given
that signal:

f G xð Þ ¼ 1
1þ e�Gxþb

(26.9)

where G is the gain parameter and b is a bias term that allows the equation to
shift the sigmoid along the horizontal axis. Hauser et al. (2016) then relate this
more general principle of neural gain, which dictates sensitivity to incoming
signals, to action selection and choice stochasticity. They do this by employing a
variant of the softmax decision function wherein the value of performing a
given action is weighted relative to the value of performing all other available
actions (Williams & Dayan, 2005):

p aið Þ ¼ e
ai
τ

PN
k¼1e

ak
τ

where p aið Þ is the probability of taking action i, ai denotes the value of action i,
ak is a vector of the value of all N possible actions, and τ is the decision
temperature. What this softmax function does in practice is to convert the value
associated with a set of actions into probabilities of taking those actions. A low
τ is equivalent to the neural gain being high and choice being more exploitative
while a high τ is equivalent to the neural gain being low and choice being
more exploratory.
Indeed, there are now converging lines of evidence that attentional computa-

tions involve some form of normalization (Lee et al., 1999; Reynolds & Heeger,
2009; Schmitz & Duncan, 2018). The neural gain model of ADHD thus
provides a comprehensive perspective which first outlines the computational
problem (the explore-exploit trade-off ), characterizes an algorithm that can
model the phenomenon of interest (neural gain), and links the algorithm to a
biological mechanism (catecholaminergic tone in the striatum). This framing is
consistent with other efforts to relate ADHD symptomatology to variations in
decision temperature (Williams & Dayan, 2005) as well as experimental findings
from individuals with ADHD (Hauser et al., 2014).
Both modeling (Frank et al., 2007) and experimental evidence (Tripp &

Wickens, 2008) support ADHD as a condition of low neural gain (i.e.,
increased decision temperature) owing to impaired catecholaminergic signaling
(dopaminergic or noradrenergic neurotransmission). This decreases the neural
signal-to-noise ratio between competing actions, making attention unstable and
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behavior more stochastic. This idea is consistent with a long-standing theory of
ADHD which posits that it results from an impairment in behavioral inhibition
and excessive impulsiveness (Sagvolden & Sergeant, 1998). The notion that
ADHD is associated with a hypersensitivity to delayed rewards is supported
by data showing excessive discounting of future outcomes in individuals with
ADHD (Tripp & Wickens, 2008). This cognitive model of excessive delay
discounting is in agreement with the dopaminergic account described above
given modeling data which suggests that low levels of dopamine in the ventral
striatum decreases motivation to pursue distal rewards (Smith et al., 2006).

26.9 Conclusion

26.9.1 Current Challenges in Psychiatry

The goal of computational psychiatry is, of course, to improve the understand-
ing of psychiatric disorders so that one may develop new effective treatments
and improve the quality of life of patients. The growing body of evidence briefly
described above strongly suggests that: (1) psychiatric dysfunction is due to a
maladaptive interaction between underlying brain information processing vul-
nerabilities and the environment; (2) treatment development should be guided
to address the underlying information processing dysfunction(s) in the brain
that are relevant to a given patient; and (3) appropriate tests can likely be
developed that will allow one to identify information processing vulnerabilities
in an individual, gauge risks of future maladaptive behavior, and provide the
possibility of prevention.

The standard model in psychiatric nosology has held that categorical descrip-
tions furnished by the DSM (e.g., agoraphobia, trichotillomania, depersonal-
ization, bulimia nervosa, etc.) map onto a set of hidden physiological causes
generating the psychiatric condition under consideration. This does not appear
to be the case, since different patients diagnosed with the same psychiatric
disorder often exhibit a wide range of varying cognitive and physiologic meas-
ures. Likewise, patients from different diagnostic categories can exhibit very
similar cognitive and physiologic findings. This phenomenon is described by the
principles of equifinality and multifinality – the notion that, in a complex open
system, many unique pathways (sets of dysfunctions) result in the same out-
come (the same symptoms), and any given dysfunction can give rise to multiple
divergent observations (symptoms), respectively.

26.9.2 A New Approach to Psychiatric Nosology: The Bayesian
Integrative Framework

To capture the full complexity of psychiatric nosology, one needs to recognize
tiers of causal influence in the origin, instantiation, and symptomatology of
psychiatric disease (Flagel et al., 2016). In this novel framework, putative causes
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lead to hidden physiological states, physiological states relate to a range of
continuously distributed latent variables, and latent variables give rise to symp-
toms which form the basis of categorical and dimensional assignments made by
physicians (Figure 26.2). Latent variables are akin to the dimensional con-
structs provided by the Research Domain Criteria approach (NIMH, 2019b)
(reward responsiveness, cognitive control, perception of self and others, habit
learning, threat reactivity, etc.), which are grounded in a complex milieu of
putative causes (genetics, pre- and peri-natal factors, trauma, developmental
experiences, etc.) and difficult-to-observe physiological states (aberrant neuro-
transmission, synaptic dysregulation, glial dysfunction, functional hypo- or
hyper-connectivity across networks, etc.).

Figure 26.2 Putative causes engender unobservable (or difficult to observe)
physiological changes which in turn affect a range of latent variables (where
the dots indicate the patient’s actual position along a given latent variable and
the clinical estimate of that position is depicted as a probability distribution
over that variable). The patient’s position in latent variable space influences
their symptoms and subsequent diagnoses and prognoses, and treatments
themselves feed back into the list of putative causes.
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The Bayesian integrative framework builds from the clinical observations
from a patient. These include putative observable causes (e.g., risk genes,
environmental insults, exposure to trauma, etc.), symptoms (e.g., hallucin-
ations and their characteristics, depressed mood and its persistence, etc.), and
how responsive symptoms have been to specific treatments. A generative
model (i.e., a probabilistic model of how a dataset might have been generated)
could then factor in these data and make inferences regarding the patient’s
location in latent variable space – which is analogous to the concept of
diagnosis – and their most likely trajectory through that space – their progno-
sis. This can then inform the prescription of treatment (see Figure 26.2).
Furthermore, Bayesian models provide a method by which to compare models
and determine which one offers the best fit to the data (i.e., is the most
accurate) but also requires the lowest dimensional parameter space (i.e., is
the least complex), a procedure which is critical given the fact that adding
parameters adds dimensions which generally increases the explanatory power
(a problem known as overfitting). Of course, one would not expect the
clinician to do these calculations explicitly, but they can be factored into
computerized decision-support systems (such as apps) derived from these
generative models.

26.9.3 Where To From Here: Moving (Slowly) Toward
Precision Psychiatry

The cases described above reveal a field in flux. Some disorders, such as
schizophrenia and addictions, have received more focus, while others, such as
anxiety and depression, have not been as heavily modeled. While early compu-
tational models of psychiatric disorders show a great deal of promise and a clear
potential for future breakthroughs, there are as yet no current examples where
these new perspectives have actually changed clinical practice (Redish &
Gordon, 2016; Stephan et al., 2016). However, mounting evidence suggests that
a biologically informed, computationally grounded approach to psychiatry will
lead to a richer etiological understanding of these disorders and allow not only
better disease progression prediction but also better treatment options in a
personalized, patient-specific manner. Indeed, taking a computational
approach to psychiatry has already positively impacted the understanding of
the nature of mental illness at various levels, and these insights do appear to
have diagnostic and therapeutic value (Bzdok & Meyer-Lindenberg, 2018;
Redish & Gordon, 2016). Many groups are working to bring these insights into
the clinic and represent collaborations between fundamental neuroscientists
studying the underlying neuroscience of phenomena, clinicians and clinical
scientists who treat and study patients, and computational neuroscientists
working to bridge that gap.

If one looks at the process of scientific discovery, one tends to find a
thirty-year (or longer) path from initial breakthrough to implementation
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(Contopoulos-Ioannidis et al., 2008; Redish et al., 2018). This occurs due to
the fact that this path requires three stages. First, in the fundamental science
stage, one must find the space of a discovery – Where does it apply? What are
the parameters of the discovery? What are the regularities? What are the
correct constructs, the correct language, with which to talk about these par-
ameters? How does one measure them? Second, in the engineering stage, one
must find the space of control – How does knowing about that discovery allow
us to take action? What are the subtleties of specific instantiations of control?
Third, in the implementation stage, one must find a way to make that
control ubiquitous – How can we make that control reliable such that it
works under every appropriate condition? How can we prevent its application
in inappropriate conditions? How can we make it simple enough for everyone
to use? Of course, these three stages do not occur in a completely linear
manner, and there are multiple recursive interactions as engineering obser-
vations lead to new fundamental discoveries or implementation consider-
ations require re-engineering. Nonetheless, this basic sequence is a good
description of many breakthroughs.
Computational psychiatry as a field is presently at the boundary between the

fundamental science and engineering stages. We know that the new language of
psychiatry will be grounded in an understanding of information-processing and
a thoughtful approach to delineating the continually evolving interactions
between decision-making systems, their underlying network dynamics, and
the environment. We know that measuring these phenomena will require
behavioral assays and neural measurements obtained from EEG, fMRI, and
other technologies. We know that there are important unresolved questions
about the underlying neural processing occurring within the brain’s decision
systems, their malleability, and the degree to which compensatory processes
come to bear. We also know that nosology is going to depend on complex
interactions between underlying neurocomputational dysfunction and observ-
able clinical phenotypes such as the examples in this chapter. Lastly, we know
that successful treatment will depend on neural manipulations (e.g., transcra-
nial magnetic stimulation, transcranial direct current stimulation, focal electro-
convulsive therapy, ketamine and other pharmacological infusions, invasive
neurostimulation, etc.), behavioral manipulations (e.g., cognitive and social-
affective training), and meta-cognitive therapies that induce both restorative
and compensatory processes.
The promise of computational psychiatry is a new view on psychiatry itself

and on how one approaches mental disorders. Characterizing a complex phe-
nomenon mathematically accelerates the understanding of it, and the ability to
use those mathematical models and test their predictions against experimental
data allows one to do this in a quantitative way. Successfully integrating the
most recent insights and methods from computational neuroscience into
psychiatry will have large and meaningful consequences for the future of mental
health care (Huys et al., 2016; Lynn and Bassett, 2019; Redish & Gordon, 2016;
Vinogradov, 2017).
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27 Computational
Psycholinguistics
Matthew W. Crocker and Harm Brouwer

27.1 Introduction

How is it that people map between a linguistic signal and a mental
representation of the meaning that signal encodes? While this mapping can be
viewed from both the language production (see Dell & Cholin, 2012) and
comprehension perspectives, the focus of this chapter will be on the latter.
Even within comprehension, there are numerous stages involved in this
process – recovering a phonological or orthographic representation of words,
determining their relevant morphological and syntactic properties, retrieving
their meaning from long-term semantic memory, and then combining words to
recover the intended message of the entire utterance. The complexity,
ambiguity, and context-dependent nature of language, combined with the
dynamical nature of the processes that support comprehension in real time,
highlights the need for computational theories – which can be instantiated as
computational models – of how people retrieve the words of an utterance as
they are encountered, and incrementally integrate them into an unfolding
representation of the intended meaning, based on what they know about the
words themselves, the structure of language and possible meanings.
Importantly, in focusing on sentence-level comprehension, the processes of
speech perception and word recognition, which have also been investigated
extensively using computational models (Magnuson et al., 2012), will be taken
for granted. Similarly, models of how language is acquired by children
(Alishahi, 2010) are not considered. For a comprehensive review of the numer-
ous dimensions of psycholinguistic research see Spivey et al. (2012).
Perhaps the greatest challenge to developing theories and models of compre-

hension, as is the case for many areas of cognitive modeling, is that the central
players – the nature of mental representations, the constraints that govern their
construction, the processes involved in constructing representations, and how
these processes interact – cannot be directly inspected using behavioral or
neurophysiological methods. Furthermore, most online measures of human
language comprehension – whether reading times, event-related potentials, or
activations of brain regions – are known to be influenced by a range of factors,
likely reflecting multiple underlying cognitive processes. It is therefore essential
that explicit computational linking theories also be developed that identify
precisely how cognitive processes are indexed by observable measures of
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comprehension. Only then can empirical data from a given measure be used
correctly and consistently to inform computational theories that best reflect the
nature of the human language comprehension system. For example, word-by-
word reading times offer a behavioral measure of the time people spend on
each word as they comprehend a sentence, which is generally taken to reflect
cognitive effort (see Rayner, 1998). Increases in effort have then been
associated with more specific mechanisms such as word recognition, lexical
and syntactic disambiguation, reanalysis, as well as working memory.
Neurophysiological measures such as event-related brain potentials, are
scalp-recorded voltage fluctuations caused by post-synaptic neural activity,
time locked to the onset of each word in a sentence. Observable components
are generally taken to reflect the neural activity underlying specific computa-
tional operations carried out in given neuroanatomical networks. Of particular
relevance to language comprehension are the N400 and P600 components (see
Kutas and Federmeier, 2011, for a review). While there is some debate
regarding precisely what cognitive processes these components index, the
N400 is known to respond to semantically unexpected words, while the P600
has been demonstrated to be sensitive to more compositional syntactic,
semantic, and pragmatic violations. Other neurophysiological methods such
as fMRI, offer further insight into the brain regions associated with particular
linguistic features. Wehbe et al. (2014), for example show that machine learn-
ing methods can be used to predict activity in particular brain regions based on
various lexical, syntactic, and semantic features of words during reading of
naturalistic texts. Importantly, however, the primary goal in computational
psycholinguistics is not to model empirical measures as precisely as possible,
but rather to develop models of language comprehension – that recover mean-
ing from the linguistic signal – in a manner that is informed by, and consistent
with, behavioral and neurophysiological measures.

Linguistic theories provide independently motivated accounts of the rules
and representations that determine possible linguistic forms (syntax) and mean-
ings (semantics). Indeed, all cognitive models must adopt some representational
framework, minimally for defining the output of the system, but also possibly
for intermediate levels of representation. Linguistic theories, however, trad-
itionally emphasize human linguistic competence – formally characterizing
“what” it means to know language – over the performance concerns about
“how” the linguistic signal is encoded and decoded in real time. As a result,
such accounts are often not entirely amenable to, nor informed by, demands of
incremental processing, and are almost exclusively symbolic in nature, making
them well-suited to more high-level symbolic processing models but more
challenging to integrate naturally within neurocomputational accounts.

Another consideration that can help inform the development of computa-
tional theories of language is to consider broader theories of cognition. In
particular, it has been argued that many cognitive systems can be viewed as
rational, to the extent that they appear to behave in a manner that is optimally
adapted to the task of that system and the environment in which it functions
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(Anderson, 1991). If a particular system – such as language comprehension – is
regarded as being rational, then one can reason abstractly about “what” the
optimal way to perform the task would be, what Marr (1982) refers to as a
computational level theory. This in turn can be used to inform and constrain the
development of suitable algorithmic-level models that identify the actual mech-
anisms that instantiate the computational theory. Indeed, this approach has
been dominant in computational psycholinguistics over the past two decades,
resulting in the development of probabilistic theories that emphasize the role of
likelihood in determining both human comprehension behavior in the face of
ambiguity, as well as processing effort more generally.
Despite the vast empirical literature on language comprehension that has

accrued over the last fifty years, advancements in linguistic theory, as well as the
paradigm shift from symbolic toward probabilistic and subsymbolic (neural)
computation, there is still relatively limited consensus regarding which
computational mechanisms best characterize the comprehension system.
There are several reasons for this: (1) the nature of mechanisms and representa-
tions is underdetermined by the empirical evidence; (2) experiments typically
test binary predictions derived from hypotheses about some specific aspect of
processing, disconnected from any complete model of comprehension (Newell,
1973); (3) interpretation of experimental findings is dependent on the linking
hypothesis that is assumed; (4) results are often interpreted in isolation, and not
reconciled with the broader literature. When developing and evaluating com-
putational models of language, it is therefore important to take into account
several dimensions:

Overarching behavior: People accurately understand the meaning of most
utterances they encounter and do so highly incrementally, and typically
without conscious difficulty. Models need to explain this generally accur-
ate and effortless behavior, as well as pathological cases where people
have difficulty.

Coverage: Models should not be tailored to individual phenomena and
findings, but rather be consistent with as much relevant evidence as pos-
sible. As a consequence, it is important that models are in principle scalable
with respect to their potential linguistic coverage. Further, models should
ideally map into meaning representations, and explain interaction with
world and situational knowledge, which are crucial for comprehension.

Linking hypothesis: While any given empirical measure underdetermines
characterization of the underlying comprehension mechanism, establish-
ing accurate linking hypotheses to multiple complementary online meas-
ures – such as behavioral (e.g., reading times, visual attention), and
neurophysiological (event-related potentials) – has the potential to miti-
gate this problem.

In this chapter, a range of implemented computational theories of human
sentence comprehension are reviewed, in the context of the above criteria, with
a view to establishing both the points of consensus and important differences.
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A recently implemented neurobehavioral model of language comprehension,
and its linking hypothesis with both neurophysiological and reading time
measures, is then presented in greater detail in order to illustrate and integrate
the concepts more concretely.

27.2 Early Perspectives on Sentence Processing

In pursuing the goal of characterizing the cognitive processes under-
lying the incremental, word-by-word nature of human sentence processing,
early accounts focused on syntactic parsing: how is it that people integrate each
word into a connected, semantically interpretable, yet possibly incomplete,
analysis of the unfolding sentence (Frazier 1979)? While for most people brief
introspection is enough to confirm this assumption of incrementality – that each
word that is encountered contributes to furthering understanding of the mean-
ing being conveyed – this property has important consequences. Firstly, it
formally constrains the set of mechanisms that one can consider with regard
to the recovery of meaning, and secondly, it entails that parsing mechanisms
will need to make decisions in the face of substantial ambiguity. While much
ambiguity in language – whether lexical, syntactic, and semantic – is eliminated
by the end of the sentence, incrementality entails that decisions about how to
integrate each word into the unfolding sentence interpretation must be made as
soon as that word is encountered. This predicts that, if a decision taken at some
point of ambiguity in the sentence is subsequently disconfirmed, it will be
necessary for the parsing mechanisms to re-process the sentence, or restructure
the current analysis, to accommodate the disconfirming word. This reprocessing
cost is postulated to result in observable processing effort as manifested by, for
example, word-by-word reading times. A classic illustration of this comes from
the reduced relative clause ambiguity (Bever, 1970) in (1a) compared to its
unreduced, and unambiguous, counterpart in (1b) (adapted from Rayner
et al.,1983):

(1a) “The florist sent the flowers smiled.”
(1b) “The florist who was sent the flowers smiled.”

When “sent” is first encountered in (1a) it is in fact ambiguous as being either a
simple past verb, or a past participle. As illustrated in Figure 27.1 (ignore the
probabilities for now), the parser must therefore decide whether to analyze it as
the main verb of the sentence (and thus as simple past) as shown in the first
parse tree, or as a past participle which begins a (reduced) relative clause,
illustrated by the second tree. Frazier (1979) argued that human preferences
for a range of such local structural ambiguities could be explained by two
simple decision principles. The Minimal Attachment (MA) principle postulated
that the parser should prefer less complex syntactic analyses (i.e., fewest nodes
in the parse tree). In this case, MA predicts that “sent” is initially analyzed as
the main verb – as this parse tree has fewer nodes when “sent” is processed.
While the noun phrase “the flowers” is consistent with either analysis, the verb
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“smiled” – which can only be the main verb – disconfirms the previously
adopted main clause analysis, explaining why most people find (1a) to be
difficult: once “smiled” is encountered, either substantial reprocessing effort is
required to construct the reduced relative clause interpretation of “sent the
flowers,” or it simply cannot be integrated at all.
In cases where two possible analyses are equally minimal according to MA,

a second principle – Late Closure (LC) – postulates that the word should be
attached to the most recently built part of the parse tree. This commonly
occurs with modifying phrases which can be associated with several phrases,
as in (2):

(2) “Someone shot the governor of the company that had been sold/elected.”

Here, when “that” is reached, the parser must begin the construction of a
relative clause that can modify either “governor” or “company.” LC predicts
this will be attached to “company,” explaining why less reading effort is
observed when the final word of the relative clause is consistent with that
attachment (e.g., “sold”), compared to when it forces attachment to “governor”
(e.g., “elected”).
Beyond these two decision principles for resolving structural ambiguity,

Frazier explicitly assumes several other important characteristics of the parsing
mechanism. Firstly, the parser is strictly serial, in that once a preferred parse has
been constructed, alternatives are no longer considered. Second, the parser is
purely syntactic, with access to only basic part of speech information about
incoming words of the sentence, and decision strategies that are determined by
structural properties of the parse. The parsing model can thus be viewed as very
strictly modular, in the sense of Fodor (1983), in that the initial incremental
parsing and disambiguation process has no access to, and is not influenced by,
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Figure 27.1 Syntactic analyses of the main clause (left) and reduced relative
clause (middle) ambiguity. A probabilistic context-free grammar (right) used
to derive the probabilities of both parse trees.
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either detailed lexical (e.g., meaning, frequency, subcategorization) or semantic
(e.g., plausibility) information. The overriding motivation for this collection of
assumptions is that they contribute to reducing the amount of computation, and
thus effort, involved in achieving real time comprehension. Importantly, how-
ever, no implementation or precise parsing algorithm is provided, and it is
interesting that early attempts to implement Frazier’s decision strategies reveal
that it is not straightforward. Firstly, strictly incremental parsing algorithms are
in fact not straightforward to implement for conventional (hierarchical) phrase
structure grammars (see Crocker, 1999, for discussion). Indeed, Marcus (1980)
developed a deterministic model of human parsing that required extensive
nonincremental “look ahead” capabilities to explain why many structural
ambiguities do not cause substantial processing difficulty, but in doing so
completely violated any notion of incrementality. Secondly, MA entails that
the parser be able to compare competing alternative parses with respect to their
global structural properties, something which cannot be accomplished fully in
terms of standard serial parsing operations (Pereira, 1985), emphasizing the
importance of developing fully specified computational theories, rather than
relying on purely verbal formalizations.

Following in Frazier’s footsteps, however, several computational models of
sentence processing were developed that, while differing in various important
respects, shared her view of a serial, incremental, and largely modular syntactic
processing architecture. For example, Crocker (1996), building on proposals by
Pritchett (1988), implemented a model for English and German which priori-
tized thematic role assignment (agent, theme, location, etc.) over simple struc-
tural decision principles like MA. Stevenson (1994) proposed a related hybrid
network model of human parsing and disambiguation which emphasized both
role assignment and minimal structure building. Gibson (1998), in contrast,
developed a model in which memory load (unresolved dependencies) and
locality contribute to determining comprehension effort as well as preferences
in resolving ambiguity, while Lewis and Vasishth (2005) use the ACT-R frame-
work (see Chapter 8 in this handbook) to model the role of memory retrieval in
determining parsing difficulty.

It is worth noting that all of these models assume that the human parser
incrementally recovers a grammatically licensed and semantically correct inter-
pretation of a sentence. There are, however, a range of findings suggesting that
comprehenders – depending on their goals, and situational demands – may not
always analyze sentences fully or even correctly (Ferreira, 2003; Sanford &
Sturt, 2002). Global attachment ambiguities as in (2) for example, might
simply be left unresolved if the final verb does not disambiguate the two
readings (e.g., “discredited” instead of “sold”). Other evidence suggests that
people sometimes misunderstand simple Noun-Verb-Noun sequences, e.g.,
“the dog was bitten by the man,” failing to recover the passive reading, and
rather using an Agent-Action-Patient heuristic (i.e., “the dog bit the man”),
particularly when that reading is more plausible (Ferreira, 2003; Gibson et al.,
2013; Townsend & Bever, 2001). Studies using event-related potentials have
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also been taken as providing evidence that anomalous sentences like “After an
air crash, where should the survivors be buried?” (where the survivors are
presumably still alive) elicit no effect in the N400 component, despite this
component often being found for semantically unexpected words (Sanford
et al., 2011). Related evidence from role-reversal anomalies, such as “The
hearty meal was devouring . . .” also elicit no N400 effect (Kim & Osterhout
2005; see also Hoeks et al., 2004; van Herten et al., 2005), suggesting that
people may construe a plausible meaning (“the meal was devoured”) for an
implausible sentence (though an alternative interpretation is considered in
Section 27.5). Taken together, evidence that comprehenders may modulate
the depth and veracity of linguistic processing – possibly as a function of their
communicative goals and available cognitive resources, but also their prior
knowledge and expectations – has been used to argue that the comprehension
system may in some circumstances function in a manner that is “good enough”
(Ferreira et al., 2002). The diversity of these phenomena – spanning lexical
meaning, grammaticality, semantic role reversals, as well as the underspecifi-
cation of syntactic ambiguity – has thus far eschewed any uniform treatment
(see Ferreira & Patson, 2007, for discussion), though models have been pro-
posed which address particular phenomena such as role-reversal anomalies
(e.g., Gibson et al., 2017; Rabovsky & McClelland, 2019). In general, the
focus of discussion here will be on modeling the process of full understanding
that has been attested in many psycholinguistic studies. Nonetheless, better
understanding of how the human comprehension system modulates its depth
and accuracy of processing may offer important insights into the nature of the
mechanisms and representations involved.

27.3 Probabilistic Models and Rational Approaches

Many of the models discussed above, and particularly that of Frazier,
assumed that cognitive limitations – coupled with the time sensitive demands of
real time comprehension – were central in shaping the nature of the human
parsing mechanism. That is, the need to quickly and incrementally structure the
incoming signal into an interpretable representation is used to motivate serial
processing (rather than constructing multiple analyses in parallel) and simple
modular decision principles. This perspective was fundamentally challenged by
increasing empirical evidence that a variety of nonsyntactic factors – such as
prior experience (frequency), plausibility, context, and world knowledge – can
rapidly influence disambiguation (MacDonald et al., 1994). This resulted in a
shift away from highly restricted “serial, syntax first” models, toward models
that start with the assumption that people bring considerable computing
resources and diverse relevant information sources to bear on language com-
prehension. With hindsight, this perspective can be seen as a shift away from
viewing comprehension as a system shaped by limitations on cognitive pro-
cesses, to one in which it is viewed as more rational (Anderson, 1991). That is, a
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view in which the behavior of the comprehension system is optimally adapted to
the task (obtaining the correct meaning), given the environment (an incremental
and ambiguous signal). Importantly, this view invites theorists and modelers to
constrain the search for the specific mechanisms underlying comprehension, by
first thinking carefully about what the goal of the system is, and how it can be
optimally achieved:

An algorithm is likely understood more readily by understanding the nature of the
problem being solved than by examining the mechanism (. . .) in which it is
solved. (Marr, 1982, p. 27)

Taking this view, one can theorize what the goal of a rational comprehension
system might be (Marr’s computational level), and then consider what cogni-
tively plausible mechanisms and representations (Marr’s algorithmic level)
might instantiate such a theory (Crocker, 2005). As a first approximation, it
seems reasonable to suggest that the comprehension system’s goal is to recover
the most likely interpretation of the input, which can be formalized as in
Equation 27.1.

Î ¼ argmax P ijs,Kð Þ (27.1)

where i ranges over the possible interpretations of the sentence s. That is, this
function states that “what” the comprehension system does is seek to identify
the interpretation Î that has the highest likelihood given the sentence itself, and
the relevant knowledge K. Given the assumption of incrementality, this
formalization can also be extended to the word-by-word construction of
sentence meaning (but see Chater et al., 1998, for an alternative rational
analysis).

With this computational-level theory in place, one can now consider what
algorithmic-level models are plausible instantiations of this theory. Jurafsky
(1996) built on the abundant evidence for the role of frequency in both lexical
and syntactic disambiguation to motivate a probabilistic likelihood-based
model of the parsing process. The model departs from Frazier in two key
respects: (a) it constructs all possible alternatives in parallel, and (b) it deter-
mines their probability on the basis of lexical and syntactic frequency infor-
mation, including probabilistic information about the subcategorization
preferences of individual verbs. Returning to Example (1a) previously listed,
Figure 27.1 illustrates how a probabilistic grammar and lexicon,1 shown in the
panel on the right, can be used to assign a probability to each possible parse of
the sentence after the verb “sent” is encountered. That probability is simply the
product of the probabilities of each rule used to construct the parse tree. In this
case, the reduced relative clause is assigned a probability more than two orders

1 This grammar is highly simplified for expository purposes. Phrases such as “the florist” should of
course be fully parsed, the analysis assigned to the reduced relative clause is simplified, and the
probabilities themselves were constructed to reflect relative likelihoods of the two structures.
Typically, the grammar and the probabilities would be determined using a large parsed corpus.
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of magnitude lower than the main clause. This is due to a number of reasons:
the additional relative clause rule (NP ! NP VP); the lower probability of the
reduced relative (VP) itself; and the lower probability for “sent” to be a past
participle. To explain why sentences such as this (and many others) are difficult,
Jurafsky proposes a linking hypothesis under which parses that are too low
compared to the highest probability parse – as is the case in this example – are
eliminated by the parser (or “pruned”), such that they cannot be retrieved later
in the sentence. While in this case the model makes the same prediction as
Frazier, the model explains other instances of this ambiguity which do not cause
the same degree of difficulty, due to differences in the specific probabilities. That
is, the likelihood of the reduced relative clause analysis may be sufficiently close
to that of the main clause parse, that it is not pruned, meaning that when the
main verb “smiled” is encountered, the relative clause analysis is still available.
As an algorithmic-level account, Jurafsky proposed a concrete mechanism

that can be seen as approximating the computational-level theory. Specifically,
an incremental parallel parser exploits a probabilistic context-free grammar to
approximate the true probability of syntactic analyses and substitutes bounded
parallelism (implemented using beam search based on the pruning of low-
probability parses) in place of full parallelism (which is often viewed as cogni-
tively implausible). Crocker and Brants (2000) propose a wide-coverage prob-
abilistic parsing model which can be seen as an alternative algorithmic-level
instantiation of the same computational-level likelihood theory, differing pri-
marily in the role of verb-frame information, the nature of the pruning mech-
anism, and the proposal of a linking hypothesis in which reranking of
(nonpruned) parses is assumed to result in more graded increases in
reading difficulty.
One limitation of these models, however, is the lack of any means to assess

semantic plausibility of competing syntactic analyses. For example, contrasting
(1a) with (1c), people typically find the (1c) version easier to understand, as
evidenced by reduced total reading times (Rayner, 1983). This is because while
“florist” is a good Agent of the “send flowers” event, encouraging the compre-
hender to prefer a main clause analysis, “performer” is a better Recipient of
such an event, rendering the relative clause interpretation easier to recover.

(1c) “The performer sent the flowers smiled.”

The increasing amount of empirical evidence from reading times demonstrating
the rapid influence of semantic knowledge on human disambiguation (e.g.,
Trueswell et al., 1994) motivated several nonmodular “constraint-based” theor-
ies. These accounts posit that probabilistic constraints at all relevant levels
(from phonology and morphology through to syntax, semantics, and
constraints provided by the context) contribute directly and immediately to
determining which interpretation – among the possible grammatical alterna-
tives – is best (Macdonald et al., 1994; Tanenhaus et al., 1995). This approach
was instantiated in the Competition-Integration Model (CIM), illustrated in
Figure 27.2, in which competing interpretations (I1 and I2) are simultaneously
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represented,2 with their relative activation being determined by a collection of
probabilistic constraints, each providing more or less support for a particular
interpretation, and with each constraint having its own weight compared to the
other constraints (McRae et al., 1998). Crucially these constraints can in
principle reflect any relevant source of information, such as lexical frequency
bias and semantic plausibility, or even broader contextual constraints, resulting
in their immediate influence on the resolution of ambiguity.

Constraint biases in the model are established independently using corpus
frequencies (e.g., to determine the main clause versus relative clause frequency,
and frequency of “sent” as either simple past or past participle) or human
judgment studies (e.g., to determine how likely a “florist” or “performer” is to
either send or receive flowers). To model the online disambiguation process, the
probability of the two possible interpretations is computed as the weighted
average of the probability assigned to it by each of the individual constraints
(the “integration” step). A recurrent “feedback” mechanism readjusts the con-
straint biases to reflect the interpretation activations. The model then continues
these integration-feedback cycles until one of the interpretations reaches thresh-
old. This number of cycles is postulated to quantitatively index disambiguation
effort that is reflected in reading times. As McRae et al. (1998) demonstrate, this
approach is able to capture the influence, particularly of the thematic fit of the
initial noun as either an Agent or Recipient of “sent,” on modulating the
difficulty of these ambiguities. While this can be seen as another algorithmic
instantiation of a likelihood model, it differs significantly with regard to the
proposed linking hypothesis, which is only indirectly determined by the
likelihoods of various constraints. One limitation of this approach, however,
is that a new model must be constructed to model each ambiguous construction
type and the constraints relevant to it (see Tanenhaus et al., 2000, for an
overview). To address this shortcoming, Pado et al. (2009) demonstrated
how thematic fit could be estimated from large corpora and integrated into a
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Figure 27.2 The Competition-Integration Model (McRae et al., 1998).

2 In contrast with other models discussed here, the CIM does not include any mechanism to
construct the alternative interpretations, but rather models how the comprehension system
resolves the ambiguity.
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broad-coverage incremental probabilistic parsing architecture similar to those
discussed above, while also retaining a likelihood-based reranking linking
hypothesis similar to Crocker and Brants (2000).
In addition to the symbolic implementations of likelihood models above,

many connectionist models also maximize the likelihood of their output repre-
sentation, for a particular input, as a consequence of learning algorithms that
minimize error on average (Rumelhart et al., 1986), and thus reflect the
statistical properties of their training environment (see Chapter 2 in this hand-
book). One particularly well-known illustration of this comes from Elman’s
(1990) Simple Recurrent neural Network (SRN) – a three-layer feedforward
network: input ↦ hidden ↦ output, in which at a timestep t, the hidden layer
receives additional input from a context layer that contains the activation
pattern of the hidden layer at timestep t� 1. Crucially, the context layer provides
a memory of words that have been processed previously, enabling the network to
draw upon the entire unfolding sentence despite processing on a word-by-word
basis (Figure 27.3). Elman (1990) demonstrated that, when trained to predict the
next word – a task which is inherently nondeterministic for human languages –
the model’s output was strongly correlated with the conditional n-gram likeli-
hoods determined from the training corpus. While modeling next word predic-
tion is clearly not equivalent to language comprehension, the SRN architecture
has also been used to map into fixed “sentence gestalt” representations of
sentence-level meaning, which represent the main action and its associate role-
fillers (McClelland et al., 1989) that also reflect likelihood (Brouwer et al., 2017;
Mayberry et al., 2009; Rabovsky et al., 2018). However, while next-word-
prediction networks can easily be scaled to unrestricted language (see e.g.,
Aurnhammer and Frank, 2019), a long-standing concern regarding
connectionist models of human comprehension relates to the scalability and
linguistic adequacy of such thematic role and sentence gestalt representations
for recursive sentence structures, as well as to whether a fixed number of output
units can represent the full compositional and hierarchical nature of possible
meanings (see Lopopolo & Rabovsky, 2021, for one approach). Recent
advances in connectionist computational linguistics have begun to address these
issues (see, e.g., Bowman et al., 2016, and Linzen & Baroni, 2021), potentially
offering solutions which may be relevant to future cognitive models.

Figure 27.3 The Simple Recurrent Network architecture (Elman, 1990).
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27.4 Expectation-based Models of Sentence Comprehension

The probabilistic models outlined above can be viewed as
algorithmic-level instantiations of a computational theory which seeks to
maximize the likelihood of recovering the correct interpretation. However,
while all models have in common a linking hypothesis for which high likeli-
hood interpretations will be easier to process than low likelihood ones, they
differ substantially with regard to why this is the case – is it because low
probability interpretations are completely pruned, or simply ranked lower, or
is it due to the increased cycles of competition needed for a low probability
interpretation to reach a threshold. That is, having identified a computational
theory of the comprehension system, the linking hypotheses are only stated
at the algorithmic level. Hale (2001) builds on consensus around likelihood-
based architectures in proposing a computational-level linking theory,
which is grounded in Shannon’s (1948) Information Theory. Specifically,
Information Theory provides a mathematical framework to determine the
amount of information that is conveyed by an event (such as encountering a
word wi) – also known as its surprisal – as determined by its expectedness in a
given context (since the likelihood of a word is heavily influenced by the
context in which it appears):

surprisal wið Þ ¼ � log 2P wijContextð Þ (27.2)

Hale proposes that the effort required to process each word of an
unfolding sentence should be proportional to its surprisal – the number of
bits of information each word conveys, given the context in which it occurs
(such as the preceding words). The prediction is clear: words that are highly
expected in a particular context convey little information, and require little
effort to process, while words that are unlikely convey more information,
and entail more effort. At face value, this claim appears almost trivial. It has
long been known, for example, that a word’s Cloze probability (Taylor,
1953) – namely, the likelihood that people will complete a particular context
with a given word – is a robust predictor of its reading time and skipping
probability (Rayner & Well, 1996), as well as N400 amplitude (Kutas &
Federmeier, 2011). For this reason, many psycholinguistic experiments
determine, and control for, the Cloze probability of critical words.
However, as outlined by Hale (2001), and later expanded upon by Levy
(2008), surprisal can also be seen as quantifying the reranking cost of an
incremental probabilistic parser. Specifically, the surprisal of a word wi is
determined based on prefix probabilities determined by the parser, based on
the first i words of the sentence:

surprisal wið Þ ¼� log 2P wijw1 . . .wi�1ð Þ ¼� log 2
P w1 . . .wið Þ
P w1 . . .wi�1ð Þ

¼� log 2

P
T2TreesP T jw1 . . .wið Þ

P
T2TreesP T jw1 . . .wi�1ð Þ

(27.3)

Computational Psycholinguistics 901

https://doi.org/10.1017/9781108755610.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.032


Under this formulation, the surprisal of a word wi is determined from the
probability of the sentence prefix up to and including wi – which is the sum of
the probabilities of all the parses that span that prefix – divided by the prob-
ability of the sentence prefix before wi was encountered. Reconsidering the
reduced relative clause, the appearance of “smiled” means that, while the
denominator in Equation 27.3 will be the sum of both possible analyses shown
in Figure 27.1, the numerator will only include the very low probability relative
clause parse, resulting in high surprisal. One way to view surprisal, therefore, is
as reflecting the relative loss of probability mass associated with the much more
likely main clause parse, and the need to “shift attention” toward a much lower
probability alternative. Indeed, Levy (2008) points out that surprisal at word wi

is equivalent to the change in the probability distribution over all possible
parses after wi is encountered compared to before it was encountered, as
quantified by Kullback-Leibler divergence (KLD). As such, surprisal can be
viewed as characterizing the effort associated with reranking, or shifting of
attention, among possible parses based on the integration of word wi.
Importantly, however, quantifying the effort of resolving such structural

ambiguity is simply a special case of surprisal, which can just as well explain
difficulty in unambiguous constructions, such as the preference for subject rela-
tive clauses over object relative clauses (Hale, 2001), or simply a word’s expect-
ancy in a particular context. That is, even if only a single parse is possible up to
word wi-1, not all continuations will be equally likely as there is still uncertainty
regarding how the sentence will unfold lexically and syntactically, both of which
will influence the unfolding probability of the utterance at w1. . .i, compared to
w1. . .i-1 and thus the surprisal induced by wi (see Roark et al., 2009, for details).
Furthermore, as Equation 27.2 makes clear, while Surprisal Theory can be
implemented in terms of parse probabilities, there are many other algorithms
that can determine the likelihood of a word in context, including so-called
language models, which do not recover any interpretation at all, such as statistical
n-gram models, and connectionist word-prediction models based on SRNs (as
discussed above) and LSTMs (Aurnhammer & Frank, 2019; Michaelov &
Bergen, 2020). Indeed, this highlights what Levy (2008, pp. 1132–1133) refers
to as a causal bottleneck, namely that “many different classes of generative
stochastic process can determine conditional word probabilities” and will thus
similarly account for empirically observed surprisal effects.
The empirical coverage of Surprisal Theory is considerable in explaining

reading-time behavior observed for many ambiguities (Hale, 2001; Levy,
2008) and in more naturalistic texts (Boston et al., 2008; Demberg & Keller,
2008; Smith & Levy, 2013). Similarly, surprisal has been found to correlate with
neurophysiological measures, typically the N400, in both controlled (Delogu
et al., 2017; Michaelov & Bergen, 2020; Staudte et al., 2021) and naturalistic
(Brennan & Hale, 2019; Frank et al., 2015) studies. However, as the causal
bottleneck illustrates, even relatively uninteresting language models can capture
these effects. Thus, in the context of building models of language
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comprehension, the goal must rather be to explain why surprisal correlates with
cognitive effort as a consequence of the mechanisms and representations that
underlie the comprehension process, and fully characterize how surprisal is
determined in such a mechanism, and manifest across the spectrum of relevant
observable measures.

While the instantiation of surprisal as KLD over syntactic analyses elevates
Surprisal Theory as an overarching, explanatory linking theory of word-by-
word processing difficulty, syntactic analyses are still at best a proxy for
utterance interpretations. That is, comprehension is not about deriving a struc-
tural analysis of a sentence per se, but about recovering a “situation model”-like
representation of utterance meaning, which may also go well beyond the literal
propositional content conveyed by an utterance (Johnson-Laird, 1983; Van
Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998). For instance, understand-
ing a simple sentence such as “John is sleeping,” presumably does not just
involve extracting the proposition sleep(john), but may also include the
“world-knowledge”-driven inferences such as wear(john,pyjamas), in
(john,bed), and time_of_day(night). Moreover, accumulating evi-
dence shows that world knowledge affects word processing difficulty above
and beyond linguistic experience alone (see Venhuizen et al., 2019, Warren &
Dickey, 2021, and the references therein). Hence, for Surprisal Theory to scale
up, models should be developed in which comprehension involves recovering
rich “situation model”-like utterance meaning representations capturing
“world-knowledge”-driven inferences, rather than deriving syntactic analyses
alone, and online processing in these models should be sensitive not only to the
likelihood of syntactic analyses based on linguistic experience, but also to the
likelihood of utterance meanings, based on knowledge about the world.

Venhuizen, Crocker, and Brouwer (2019) have recently proposed such a
model of “comprehension-centric” Surprisal. Their model is a three-layer
Simple Recurrent neural Network (recall Figure 27.3) that processes sentences
on a word-by-word basis, and incrementally recovers a “situation model”-like
utterance meaning representation (Frank et al., 2003, 2009; Venhuizen et al.,
2019, 2022). The building blocks for these meaning representations are vectors
for atomic propositions, such as sleep(john) and walk(mary), which can
be combined into vectors of propositions of arbitrary complexity using logical
operations. That is, the meaning of atomic and complex propositions is defined
relative to a number of observations of states of affairs in the world, in which a
proposition is either true or false. Indeed, propositional meaning is thus defined
in terms of co-occurrence relative to these observations of states of affairs, which
serve as cues towards determining the truth-conditions of a logical expression.
This approach is analogical to how linguistic contexts offer cues for determining
lexical meaning in distributional lexical semantics (see Lenci, 2018, for a review),
but importantly supports the representation of arbitrarily complex compos-
itional meanings. These meaning representations are inherently probabilistic as
well. That is, as the number of observations relative to which the meaning of a
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proposition is defined grows, the fraction of observations in which the propos-
ition is true increasingly approximates its probability in the world. Given the
logical nature of these representations, the probability of two propositions co-
occurring, as well as the conditional probability between propositions, directly
derives from the vector representations, thereby allowing for “world know-
ledge”-driven inferences (see Venhuizen et al., 2022, for details).
Taken together, a finite set of atomic propositions, and a finite set of obser-

vations that describe the state of each of these propositions in terms of their
truth or falsehood, thus define a meaning space that is inherently probabilistic,
which allows for “world knowledge”-driven inferences and the compositional
derivation of complex propositions (see Venhuizen et al., 2022 for a detailed
exposition). Ideally, this meaning space should capture the structure of the
world in terms of hard co-occurrence constraints (e.g., certain propositions
cannot be true at the same time) as well as probabilistic co-occurrence con-
straints (e.g., certain propositions are more likely to co-occur than others). To
illustrate this, Venhuizen and colleagues constructed such a meaning space by
deriving 150 observations from a high-level description of the world, covering
forty-five atomic propositions pertaining to activities on a night out on the
town: e.g., enter(beth,cinema), order(beth,popcorn), enter
(thom,restaurant), and so forth. They then trained their SRN to map
sentences, on a word-by-word basis, onto their corresponding sentence-final
meaning representation, that is, a vector representing atomic or complex prop-
ositional meaning. As certain sentence-prefixes may overlap (e.g., “thom
entered [bar/restaurant]”), the model will produce vectors at sentence-
intermediate words that lie at the crossroads of potential sentence-final mean-
ings. In other words, comprehension in the model is effectively word-by-word
navigation through meaning space. Figure 27.4 visualizes this comprehension
as meaning space navigation process in three-dimensional space (using multi-
dimensional scaling). Given the sentence-initial word “thom,” the model moves
towards a (colored) point in space that is in between all potential sentence-final
meanings (gray points). Upon encountering the next word “ordered,” the model
then moves in the direction of sentence-final meanings pertaining to order
(thom,[. . .]), and so forth, until the sentence-final word is reached upon
which sentence-final meaning will be recovered.
Crucially, as can be seen in Figure 27.4, certain words trigger larger move-

ments through meaning space than others (compare “water” to “champagne”).
In general, words that trigger larger movements can be thought of as inducing a
less expected shift in meaning than words that trigger smaller movements; that
is, prior to processing a next word, the model will be in a state that is closer to
more expected continuations than to more unexpected ones. Venhuizen et al.
harness the probabilistic nature of the meaning space to quantify this “compre-
hension-centric” notion of expectancy by defining the surprisal induced by a
word wt as the negative log probability of the meaning as constructed by the
model after processing wt, the activation pattern produced at the output layer of
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the model at t, given the meaning prior to encountering word wt, the activation
pattern produced at the output layer at t � 1:

surprisal wtð Þ ¼ � logP outputt j outputt�1ð Þ (27.4)

The numbers in Figure 27.4 show that given the interpretation constructed after
processing the sentence-initial fragment “thom ordered [. . .]”, “comprehension-
centric” surprisal is higher for “water” (.70) than for “champagne” (.62). Note that
while this notion of “comprehension-centric” surprisal is indeed closely related to
distance in meaning space, they are not strictly the same thing mathematically.
Finally, as the model navigates the meaning space on a word-by-word basis, this
notion of “comprehension-centric” surprisal is effectively similar to KLD over
syntactic analyses; the processing of a word potentially prunes away sentence-final
meanings, and the more probability mass is pruned away, the higher the surprisal.
Importantly, Venhuizen et al. (2019) trained the model such that it is exposed to
certain sentences more frequently than other sentences (linguistic experience), and
such that certain sentences are mapped onto meanings that are more probable in

Figure 27.4 Three-dimensional visualization of comprehension as meaning
space navigation.
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the meaning space than other meanings (world knowledge). Their simulations
demonstrate that the model combines cues from these information sources, balan-
cing them according to their relative strengths.
To illustrate, consider the following “comprehension-centric” surprisal-based

account of the reduced relative clause ambiguity (1a), which induces increased
processing effort relative to its unreduced counterpart (1b). Prior to encounter-
ing the disambiguating main verb “smiled,” sentence (1a) is compatible with a
meaning in which either the proposition send(florist,flowers) or in which
receive(florist,flowers) is inferred. Here, world knowledge will dictate
that florists are more likely to send rather than receive flowers, thereby biasing
towards the interpretation in which send(florist,flowers) holds.
Linguistic experience, in turn, may support this bias, as noun phrases in subject
position are most often followed by the main verb, and tend to be agents of that
verb. Upon encountering the main verb “smiled,” however, this bias is discon-
firmed, and the model needs to rule out the proposition send(florist,
flowers) by inferring its negation !send(florist,flowers), and draw the
inferences that receive(florist,flowers) and that smile(florist).
Indeed, this involves pruning away a high probable point in meaning space
and moving towards a less probable one. Crucially, this is not necessary in (1b)
where the relative pronoun “who” informs the model to adopt such a relative
clause analysis immediately. Hence, depending on whether or not the model has
encountered the relative pronoun “who,” it will find itself in a different place in
meaning space prior to encountering the main verb “smiled.” Consequently, the
surprisal induced by “smiled” in (1a) will be higher than in (1b), because in (1a)
it will trigger a less likely transition in meaning space than in (1b). This
increased processing cost at “smiled” in (1a) will be reduced, however, if the
sentence-initial noun phrase is replaced with a good recipient for “the flowers,”
like “the performer” (1c), since receive(performer,flowers) will be
much more likely than receive(florist,flowers). In this case world
knowledge will bias the model towards a reduced relative interpretation, even
when no explicit relative pronoun is present.
In sum, word-by-word, incremental sentence comprehension in the

Venhuizen et al. model can be conceptualized as word-by-word meaning space
navigation. Both the linguistic experience of the model and the world know-
ledge contained within the meaning space influence how precisely the model
traverses the meaning space during processing. At any point in processing, more
frequent sentence continuations (linguistic experience) and more probable
meanings (world knowledge) are favored over less frequent sentence continu-
ations and improbable meanings. Moreover, if linguistic experience and world
knowledge are in conflict, their relative weightings will determine model behav-
ior. Surprisal in the model is “comprehension-centric” and derives directly from
the probabilistic meaning representations that the model constructs. Higher
surprisal ensues when an incoming word induces a less expected change in
utterance meaning, while a more likely change leads to lower surprisal.
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27.5 A Neurobehavioral Model of Sentence Comprehension

The “comprehension-centric” notion of surprisal proposed by
Venhuizen et al. (2019) predicts that processing cost is directly related to the
word-by-word updating of an unfolding utterance interpretation. An open
question, however, is how this processing cost is reflected in the different
neurophysiological and behavioral indices of processing difficulty, in particular
the N400 component and the P600 component of the ERP signal, as well as
reading times (henceforth RTs). Brouwer, Delogu, Venhuizen, and Crocker
(2021) have recently proposed an explicit neurocomputational model that
addresses this question. The core of this model is a neurocomputational instan-
tiation of the Retrieval-Integration account of the N400 and the P600 in
language comprehension (Brouwer et al., 2017).

On the Retrieval-Integration account, the N400 component of the ERP
signal – a negative deflection that reaches maximum amplitude at around
400 ms post word onset – reflects the retrieval of the meaning of an incoming
word from long-term memory. This retrieval is facilitated, leading to a reduc-
tion in N400 amplitude, when word meaning is primed by lexical and/or
contextual cues; for instance, continuing “He spread his warm bread with
[. . .]” with “socks” leads to a larger N400 than when continuing it with “butter”
(Kutas & Hillyard, 1980), as the latter is primed to a larger degree than the
former. In turn, the P600 component of the ERP signal – a positive deflection
reaching maximum amplitude at around 600–800 ms post word onset – indexes
the integration of retrieved word meaning into the unfolding utterance inter-
pretation. P600 amplitude increases whenever the meaning of an incoming
word incurs structural, semantic, or pragmatic integration difficulty. The
Retrieval-Integration account thus predicts word-by-word processing to pro-
ceed in retrieval (N400) and integration (P600) cycles, such that in addition to
an N400 effect, for the contrast “He spread his warm bread with socks/butter,”
a P600 effect is also predicted, indicating difficulty in integrating the meaning of
socks into the unfolding utterance interpretation. This account contrasts with
models in which the N400 is assumed to also index integration processes
(Baggio & Hagoort, 2011; Rabovsky et al., 2018), as well as accounts that link
the P600 to syntactic (e.g., Gouvea et al., 2010) or more general conflict
resolution processes (Rabovsky & McClelland, 2019).

The Retrieval-Integration account makes the prediction that implausible
words may nonetheless be highly associated with the sentence context, facilitat-
ing retrieval and attenuating the N400, while integration difficulty is still
predicted to be reflected in the P600. This is precisely the case with the role-
reversal example discussed in Section 27.2, where continuing “The hearty meal
was [. . .]” with “devouring” does not elicit an N400 effect, as “devouring” and
“devoured” are equally primed by the context, but rather produces a larger
P600 than continuing it with “devoured” (Kim & Osterhout, 2005), as
according to linguistic and world knowledge “the hearty meal” is a poor agent
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for devouring (but is a good patient of “was devoured”). How other models
explain such findings is considered below.
The original neurocomputational model instantiating such Retrieval-

Integration cycles was shown to account for key semantic processing phenom-
ena such as those above, but was somewhat limited in coverage due to its use of
linguistically impoverished “thematic role”-based utterance meaning represen-
tations (as discussed previously). In a more recent instantiation of the model,
Brouwer et al., (2021) replaced these “thematic-role”-based meaning represen-
tations with the “situation model”-like meaning representations introduced
above (Venhuizen et al., 2019). The resultant comprehension model recovers
“situation model”-like utterance meaning interpretations on a word-by-word
basis, and produces estimates of the N400, reflecting the effort involved in
retrieving word meaning, the P600, indexing the work involved in integrating
the retrieved word meaning into the unfolding utterance interpretation, as well
as of surprisal, reflecting the likelihood of the change in utterance meaning
induced by a word.
The architecture of this model, depicted in Figure 27.5, is effectively an

extended SRN: input ↦ retrieval ↦ retrieval_output ↦ integration ↦ integration_
output, in which both the retrieval and integration layer receive additional
input from an integration_context layer that contains the activation pattern of
the integration layer at timestep t � 1. The model processes sentences on a
word-by-word basis, and mechanistically, the processing of a word wt can be
conceptualized as a function process(word form, utterance context) ↦ utterance
representation, which maps an acoustic or orthographic word form, and the

input (16)
word form representation

retrieval_output (42)
word meaning representation

integration_output (350)
utterance meaning representation

integration (120)
internal representation at t

retrieval (50)
internal representation at t
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Figure 27.5 Schematic illustration of the neurocomputational model.
Reproduced with permission (CC BY) from Brouwer et al. (2021).
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utterance context as established after processing words w1. . .wt-1, onto an utter-
ance representation, an interpretation spanning words w1. . .wt.

27.5.1 N400

This mapping from word form onto an utterance representation does, however,
involve an intermediate representation; that is, in line with the Retrieval-
Integration account, it is assumed that a word form is first mapped onto word
meaning while taking the utterance context into account: retrieve(word form,
utterance context) ↦ word meaning. This retrieve function, which is assumed to
underlie the N400 component of the ERP signal, is implemented by the first
part of the SRN: input ↦ retrieval ↦ retrieval_output, which maps localist word
form representations (input) onto distributed lexical-semantic word meaning
representations (retrieval_output), while taking utterance context into account
(integration_context). The retrieval layer effectuates this mapping, and N400
amplitude is estimated as the degree to which the activation pattern of this layer
changes as the result of processing an incoming word wt:

N400 wtð Þ ¼ dist retrievalt, retrievalt�1ð Þ (27.5)

where dist x, yð Þ ¼ 1:0� cos x, yð Þ. Estimated N400 amplitude will be small if
the model finds itself in a state in which the meaning of wt is expected, as this
will induce little change in the activation pattern of the retrieval layer from t � 1
to t. By contrast, if it is in a state in which the meaning of wt is less expected, this
will induce a larger change in the activation pattern of the retrieval layer, and
consequently estimated N400 amplitude will be larger.

27.5.2 P600

Retrieved word meaning is subsequently integrated with the utterance context to
produce an updated utterance representation, which can be conceptualized as
the function integrate(word meaning, utterance context) ↦ utterance represen-
tation. This integrate function is hypothesized to underlie the P600 component
and is implemented by the remainder of the SRN: retrieval_output↦ integration
↦ integration_output, which maps the distributed lexical-semantic word mean-
ing representation (retrieval), and the utterance context (integration_context),
onto an updated utterance representation (integration_output). Here, the inte-
gration layer is responsible for this mapping, and P600 amplitude is therefore
estimated as the degree to which the activation pattern at this layer changes as a
result of processing a word wt:

P600 wtð Þ ¼ dist integrationt, integrationt�1ð Þ (27.6)

If the interpretation resulting from integrating word wt is expected, given the
input history of the model as well as the world knowledge contained within the
meaning space, the activation pattern in the integration layer will change little
from t � 1 to t, and estimated P600 amplitude will be small. If, on the other
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hand, the resultant interpretation is less expected, a larger change in the
activation pattern will ensue, and estimated P600 amplitude will be larger (also
see Crocker et al., 2010).

27.5.3 Surprisal

Finally, like in the Venhuizen et al. (2019) model, surprisal is estimated as the
negative log probability of the utterance meaning as constructed by the model
after processing a word wt – that is, from the utterance representation produced
at the integration_output layer – given the utterance meaning as understood by
the model prior to encountering wt:

surprisal wtð Þ ¼ � log Pðintegration outputt j integration outputt�1Þ
(27.7)

Indeed, the model predicts a close link between the P600 and surprisal, where
P600 amplitude indexes the work involved in updating an utterance meaning
representation from t � 1 to t, and surprisal the likelihood of the resultant
change in meaning.
To further evaluate the predictions of the model, Brouwer et al. (2021)

modeled the N400 and P600 findings from a recent study by Delogu,
Brouwer, and Crocker (2019), as well as the reading time data from a self-
paced reading paradigm replication of this study in terms of surprisal. The
design of this study differentially manipulated retrieval and integration diffi-
culty through association and plausibility, respectively, while also avoiding the
anomalous nature of the role-reversal evidence discussed above. When only
plausibility is manipulated (“John [left/entered] the restaurant. Before long he
opened the menu”) – “menu” is semantically associated with “restaurant,” but
unlikely to be opened after having left versus entered a “restaurant” – a P600
effect at “menu,” reflecting increased integration difficulty, while the associ-
ation results in no N400 effect being elicited. By contrast, when both association
and plausibility are manipulated (“John entered the [apartment/restaurant].
Before long he opened the menu”) – “menu” is both unassociated with “apart-
ment” and unlikely to be opened in an “apartment” – an N400 effect is
produced, reflecting increased retrieval difficulty, and this is followed by an
occipitally distributed P600 effect, reflecting increased integration difficulty.3 In
a simulation of this experiment, the model was shown to predict the same
pattern of estimated ERP effects. Behaviorally, in turn, all contrasts increased
RT at the target word (as well as in the spillover region). Following Hale (2001)
and Levy (2008), the surprisal estimates of the model are taken to correspond to
RTs. Crucially, the model also predicts the pattern of increased RTs for all

3 This P600 effect is both stronger, and centro-parietally distributed, after correcting for spatio-
temporal component overlap that arises due to a large N400 effect masking a subsequent P600
effect (Brouwer et al., 2021). In a follow-up study, Delogu et al. (2021) further confirm the
presence of such a centro-parietal P600 effect for integration difficulty, when there is no con-
founding N400 difference preceding the predicted P600 effect.
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contrasts. In sum, the neurocomputational model correctly predicted the N400
effects, P600 effects, and RT results, and confirmed the predicted relationship
between the P600 and surprisal.

The implications of these modeling results extend well beyond this one
particular study. First, the neurocomputational model offers a general, inte-
grated algorithmic-level account with explicit linking hypotheses to the N400,
the P600, and surprisal/RTs in language comprehension, that is sensitive to
probabilities manifest in both linguistic experience and knowledge about the
world. Several neurocomputational models have focused on modeling the
lexical retrieval processes underlying the N400 component alone based on
evidence from the processing of words in isolation (e.g., Laszlo & Plaut, 2012;
Rabovsky & McRae, 2014). These models provide important mechanistic
explanations for a wide spectrum of lexical properties known to influence the
N400, such as frequency, orthographic neighborhood size, and semantic
relatedness, which offer further support for the view that the N400 is indeed
an index of lexical retrieval processes. These mechanistic accounts are similar in
nature and fully consistent with the instantiation of retrieval in the neurocom-
putational instantiation of the Retrieval-Integration model, which in its current
form is focused on the additional contribution of sentence-level expectancy to
retrieval processes.

Two more recent models have focused on modeling sentence level compre-
hension. In contrast to recovering a rich meaning representation, however, one
model uses next word prediction as a proxy for comprehension (Fitz & Chang,
2019), rendering a direct comparison to proper comprehension models difficult.
The other model is a comprehension model in which the N400 is an index of the
“quasi-compositional” mapping of sentences onto “sentence gestalt” represen-
tations (Rabovsky et al., 2018; Rabovsky & McClelland, 2019). Crucially, this
quasi-compositional mapping is effectively “good enough” semantic integra-
tion, and the N400 amplitude induced by a word is a function of the degree to
which the updated “sentence gestalt” is expected. On this model, the absence of
an N400 effect for the plausibility-only manipulation (“John [left/entered] the
restaurant. Before long he opened the menu”) in the Delogu et al. data would be
accounted for by (temporarily) misunderstanding “left” as “entered” in the
sentence prior to the target sentence, presumably because of the strong semantic
association/attraction between “menu” and “restaurant.” While not explicitly
part of their computational model, Rabovsky and McClelland (2019) suggest
the P600 is a “more-controlled attention-dependent process” that subsequently
resolves this temporary misunderstanding, correctly predicting the P600 effect
for “John [left/entered] the restaurant. Before long he opened the menu”.
Importantly, however, their model predicts only an N400 effect for “John
entered the [apartment/restaurant]. Before long he opened the menu”, which
is problematic as a P600 effect is also present for the latter contrast as discussed
above. Finally, the contrast “John [entered/left] the restaurant. Before long he
opened the umbrella,” produces a P600 effect and no N400 effect (Delogu et al.,
2021). As there is no semantic association/attraction between “restaurant” and
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“umbrella,” it is unclear why “entered” should be misunderstood as “left” when
reading the first clause, and hence how this result can be reconciled with the
Rabovsky and McClelland account.
Given that the meaning representations that the Retrieval-Integration model

recovers during comprehension derive from propositional co-occurrence, the
coverage of the model can be scaled far beyond what is possible with simple,
slot-based thematic-role assignment representations (cf. Brouwer et al., 2017;
Crocker et al., 2010; Rabovsky et al., 2018, but see Lopopolo & Rabovsky,
2021, for an approach to scaling the sentence-gestalt approach). Hence, the
model not only has broad coverage of neural and behavioral processing indices,
but also in terms of the processing phenomena that it can capture; that is, the
model is capable of capturing N400, P600, and surprisal/RT modulations
driven by syntactic, semantic, and pragmatic aspects of incremental, word-by-
word comprehension.
Secondly, the model also bridges the gap to functional-neuroanatomic

models of language processing; that is, Brouwer et al. (2017) show how their
neurocomputational model – and thereby the model discussed above – aligns
with a minimal cortical processing network instantiating Retrieval-Integration
cycles. This cortical network, depicted in Figure 27.6, is centered around two
cortical epicenters or hubs – the left posterior Middle Temporal Gyrus (lpMTG;
Brodmann Area, BA, 21) and left Inferior Frontal Gyrus (lIFG; BA 44/45/47) –
which are assumed to be core nodes in larger networks, serving as critical
gateways for the integration of information from various sub-networks (see
Brennan et al., 2020 for recent modeling evidence consistent with such a central
role for these areas). More specifically, the lpMTG is taken as an epicenter/hub
for Retrieval and is therefore the core generator of the N400 component.
Integration, in turn, is subserved by the lIFG, and activity in this area is the
presumed core generator of the P600 component. The lpMTG and the lIFG are
wired together through white matter tracts in the dorsal pathway (dp) and the
ventral pathway (vp). Figure 27.6 shows the alignment of the neurocomputa-
tional model to this cortical network. Depending on the input modality, incom-
ing words enter the system through either the auditory cortex (ac) or the visual
cortex (vc), corresponding to the input layer in the model. The lpMTG then
serves to retrieve the meaning of an incoming word, while taking the unfolding
context into account (lIFG ↦ lpMTG via either dp or vp), thereby generating
the N400. The lpMTG aligns with the retrieval and retrieval_output layers of the
model, of which the former generates an N400 estimate, and receives the
unfolding context through the recurrent projection from the integration layer.4

Retrieved word meaning is then projected to the lIFG (lpMTG ↦ lIFG via
either dp or vp), where it is integrated into the unfolding utterance interpret-
ation, thereby generating the P600. The lIFG, in turn, aligns with integration
and integration_output layers, of which the former generates a P600 estimate.

4 Note that a shorthand notation is used for recurrent projections from integration ↦ integration
and integration ↦ retrieval, in order to omits the integration_context layer from the figure.
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Figure 27.6 Alignment of the Neurocomputational Model to a minimal cortical network. Reproduced with permission from
Brouwer et al. (2017, CC BY-NC), Brouwer et al. (2021, CC-BY), and Delogu et al. (2019, CC BY-NC-ND).
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In sum, the neurocomputational model outlined above, (1) offers an inte-
grated account of the N400, P600, and surprisal/RTs in incremental, word-by-
word comprehension; (2) has the potential to scale up to a wide range of
syntactic, semantic, and pragmatic processing phenomena; and (3) connects
computational models of comprehension to functional neuroanatomy, thereby
paving the way for an even more integrated investigation of language in
the brain.

27.6 Conclusion

Models of human language comprehension seek to explain how people
map the linguistic signal, word-by-word, into a representation of the intended
meaning. Despite the complexity and ambiguity inherent in this task, it is
something people mostly do effortlessly. While early theories were shaped by
those situations in which people have difficulty – positing architectures and
strategies aimed to limit demands on working memory or limit the influence of
diverse information sources – there is increasing agreement that the language
comprehension system can be viewed as rational. That is, in general, people
rapidly deploy their prior experience with language and their knowledge of the
world to probabilistically distribute their attention across possible interpret-
ations of the unfolding utterance.
Thus, while many computational models have been proposed, the last twenty

years have witnessed increasing consensus – at least at Marr’s computational
level – that the comprehension system seeks to maximize the likelihood of
recovering the correct interpretation. This in turn has led to a linking hypoth-
esis, Surprisal Theory, in which expected words are easier to process than
unexpected ones. The range of phenomena that can be accounted for by
surprisal is considerable, but this success is somewhat mitigated by the causal
bottleneck – many different probabilistic mechanisms can yield accurate
conditional word probabilities, including many that make no attempt to com-
prehend language, such as language models trained to simply predict the next
word. Indeed, due to their simplicity and ease of training, such models often can
provide a superior fit to empirical measures, but nonetheless say little about the
actual comprehension mechanism that yields those measures. This emphasizes
the point that modeling empirical measures must be secondary to modeling the
task in question, namely language comprehension.
To this end a recent model was presented in more detail, which (a) utilizes

rich probabilistic meaning representations that go beyond conventional syntac-
tic parsing models, and further incorporate the influence of world knowledge;
(b) implements an expectation-driven model in which surprisal is viewed as
being a “meaning-centric” measure of how difficult it is to integrate the current
word into the unfolding representation of the utterance; and (c) provides
transparent, mechanistic linking hypotheses to three distinct dependent meas-
ures that differentially index lexical retrieval (N400), semantic integration

914 matthew w. crocker and harm brouwer

https://doi.org/10.1017/9781108755610.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.032


(P600), and overall cognitive effort (reading times) – each in a manner that is
consistent with the expectation-driven nature of the system as a whole, instanti-
ating Surprisal Theory. More generally, this serves to illustrate how progress in
cognitive modeling of language can benefit from combining rational theorizing
about what the system computes and what kinds of representations are needed,
with explicit links to multiple behavioral and neurophysiological empirical
measures that differentially index the processes that recover those representa-
tions. Only by bringing to bear this combination of rational and empirical
approaches to constrain and inform computational models and theories will it
be possible to converge on closer approximations of the human language
comprehension system.
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28 Natural Language
Understanding and Generation
Marjorie McShane and Sergei Nirenburg

28.1 Introduction

A human’s ability to understand and generate natural language is
interdependent with many other cognitive capabilities. As such, modeling it in
computer systems must be tightly integrated with the models of other
cognitive capabilities, such as learning, reasoning, planning, memory manage-
ment, interpreting nonlinguistic perception modalities, and engaging in
mental model ascription (mindreading) of one’s collaborators. All of these
capabilities are best integrated using some version of the belief-desire-
intention (BDI) approach to agent modeling (Bratman, 1987). And, to opti-
mize the efficiency of the development effort, it is preferable to support all of
these processes within an integrated knowledge substrate encoded in a single
knowledge representation language.

This chapter will concentrate on work devoted to developing artificial intelli-
gent agents featuring the above functionalities. The language component of
such agents must be capable of natural language understanding (NLU) –

extracting the meanings that the speakers in a dialog or authors of a text
intended to express and representing those meanings in a form that facilitates
human-quality reasoning and action. One kind of agent action is verbal action.
Consequently, agents must include a natural language generation (NLG) com-
ponent that translates meaning representations into utterances.

Fundamentally addressing NLU and NLG requires a triad of research foci:
language, computation, and cognition. Pairwise combinations of these are pursued
in other fields. The field of natural language processing (NLP) treats language
using computation, but has overwhelmingly turned away from the cognitive core
of language, which involves meaning. Instead, systems make decisions about
language inputs using sophisticated analogical reasoning carried out by statistical
and machine-learning methods operating over large corpora (Jurafsky & Martin,
2009; Otter et al., 2021). The coupling of language and cognition, for its part, is
investigated in two fields whose preferred methodology is human experimenta-
tion – psycholinguistics (Rueschemeyer & Gaskell, 2018; Spivey, McRae, &
Joanisse, 2012) and neurolinguistics (Zubicaray & Schiller, 2019).

Although the twin capabilities of language understanding and generation
draw upon many of the same knowledge bases and reasoners, they involve
different challenges and goals. In language understanding, an agent must be able
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to (a) extract the meanings of potentially ambiguous, underspecified, and
elliptical linguistic expressions; (b) represent and remember those meanings in
a model of memory; (c) use these representations for decision-making about
action (be it verbal, physical, or mental); and (d) continuously learn about the
world both by reading and by being told. In language generation, an agent must
translate its “thoughts” – which are represented in the same ontologically
grounded metalanguage as its knowledge bases and decision functions – into
contextually appropriate natural language utterances.
No matter the directionality of the language processing – be it understanding

or generation – the words comprising the language signal only very partially
account for the meaning they convey. The challenge of building computational
cognitive models of human language processing is accounting for the rest in a
way that is both human-inspired and machine-tractable.

28.2 Theories, Models, and Systems

In order to achieve the important goal of explanatory AI, cognitive
models of natural language understanding and generation must enable agents
to explain their decisions. The best hope for achieving this is to build systems
inspired by theories that describe how people manipulate natural language.1

However, since computational cognitive modeling is also a practical endeavor,
it is important to recognize and manage not only the binary distinction between
systems and their underlying theories, but the ternary distinction between
theories, models, and systems.2 As a first approximation:

• Theories are abstract and formal statements about how human cognition
works.

• Models account for real data and add decision-making heuristics to theoret-
ical postulates; they are influenced as much by practical considerations as by
theoretical insights.

• Computational systems implement models using approximations that reflect
the real-world constraints of existing technologies.

Each of these will be explored in more detail.

28.2.1 Theories

Scientific theories attempt to explain and reflect reality as it is, albeit with great
latitude for underspecification. They are not bound by practical concerns such

1 Understanding how people manipulate natural language is irrelevant to the currently dominant
paradigm of NLP, which emphasizes results rather than explanations – like the statistical and
machine-learning-oriented AI paradigm to which it belongs.

2 The above tripartite distinction is different in kind from (a) Marr’s (1982) similarly tripartite
distinction between the computational, algorithmic, and implementational levels in analyzing
information processing systems, and (b) Newell’s (1982) computer system levels. BothMarr’s and
Newell’s analyses apply only to systems. In a nutshell, the distinction proposed here is oriented at
issues of content rather than formalism or computational implementation.
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as computability or the attainability of prerequisites. For example, the theoret-
ical level of the exposition of Ontological Semantics (Nirenburg & Raskin,
2004) proposes the major knowledge and processing components of the
phenomena in its purview, which is language understanding. However, the
lion’s share of actual work in this paradigm is centered on developing models
and systems.

Theories serve to guide developers’ thinking when creating models. For
example, certain types of linguistic metaparameters – such as simplicity,
parallelism, prefabrication, and ontological typicality – manifest so widely
and prominently across the language system that they can serve as a concep-
tual starting point for model building.3 So, whether one is building a model
of verb-phrase ellipsis resolution, nominal compound interpretation, lexical
disambiguation, or new-word learning, one can start by asking: Which kinds
of attested occurrences of these phenomena are simple, and which feature
values manifest that simplicity? Can lexical, syntactic, and/or semantic par-
allelism effects be leveraged in analyzing any of the examples? Can any of
the occurrences be treated using prefabricated components, such as lexically
or ontologically grounded constructions, for which the answer will be pre-
recorded in the system’s knowledge bases? Does the analysis of any of the
occurrences rely centrally and inevitably on ontological knowledge – i.e., an
understanding of how the world typically works? And, finally, do multiple
feature values reflecting different metaparameters corroborate the same
language-analysis answer?

Consider, in this regard, the following minimal pair of examples, which
illustrate the type of verbal ellipsis called gapping.

(1) a. Delilah is studying Spanish and Dana __, French.
b. ? Delilah is studying Spanish and my car mechanic, who I’ve been going

to for years __, fuel-injection systems.

Gapping is best treated as a construction (a prefabricated unit) that requires the
overt elements in each conjunct (the arguments and adjuncts) to be syntactically
and semantically parallel. It also requires the sentence to be relatively simple
and ontologically typical. The infelicity of (1b), indicated by the question mark,
results from:

3 This is an illustrative, not full, inventory of metaparameters. A deeper discussion of metapara-
meters is beyond the scope of this chapter but the following can serve as a starting point for
interested readers:

Simplicity has been addressed both directly (Culicover & Jackendoff, 2005) and from the
opposite perspective – complexity (Newmeyer & Preston, 2014).

Parallelism has been explored both within the language system itself (Goodall, 1987; Hobbs &
Kehler, 1997) and in broader contexts, such as poetics and rhetoric (Fox, 1977; Jakobson & Vine,
1985).

Prefabrication manifests, e.g., in grammatical constructions, which are studied within the
various approaches to construction grammar (Hoffmann & Trousdale, 2013).

Ontological typicality is an idea that stems back at least to Schank’s work on scripts (e.g.,
Schank & Abelson, 1977) and “memory organization packets” (Schank, 1982).
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• the lack of simplicity: the second conjunct includes the relative clause who I’ve
been going to for years;

• the lack of strict syntactic parallelism: whereas the second conjunct contains a
relative clause, the first does not; and

• the lack of ontological typicality: whereas languages are a typical topic of
study – as recorded in the formal ontology supporting NLU/NLG – fuel-
injection systems are not.

Certainly, not all linguistic phenomena require such a strict cooperation of
feature values. The point in citing this example is to illustrate that the meta-
parameters introduced above are grounded in linguistic reality. This explains
why they have proven so useful for modeling quite diverse phenomena not only
in English but in other languages as well (e.g., McShane, 2018).
The final aspect of theories to be mentioned in this brief overview is that

theories guide developers’ thinking in interpreting the nature, output, and
expectations of models. Humans are far from perfect both in generating and
in understanding natural language, and yet successful communication is the
norm rather than the exception. Models of language processing need to
account for both the widespread imperfection and the overwhelming success
of language use. Two human-inspired notions salient for this modeling are
cognitive load and actionability.
Cognitive load describes how much effort humans have to expend to carry

out a mental task. As a first approximation, a low cognitive load for people
should translate into a simpler processing challenge for machines and, accord-
ingly, a higher confidence in the outcome. Of course, this is an idealization,
since certain analysis tasks that are simple for people (such as interpreting novel
metaphors using reasoning by analogy) are quite difficult for machines; how-
ever, the basic insight remains valid. So, if a given language-analysis task is
informed by feature values reflecting all four of the metaparameters introduced
earlier, the cognitive load for people can be assumed to be low, and the system’s
confidence in the resulting analysis should be high. As regards actionability, it
captures the idea that people can often get by with an imperfect and incomplete
understanding of both language and situations.
The approximations of cognitive load, and their associated confidence

metrics, do not carry an absolute interpretation. For example, in the context
of off-task chit-chat, an agent might decide to simply keep listening if it does not
understand exactly what its human partner is saying since the risk of incomplete
understanding is little to none. By contrast, in the context of military combat,
anything less than full confidence in the interpretation of an order to aggress
will necessarily lead to a clarification sub-dialog to avoid a potentially
catastrophic error.

28.2.2 Models

Computational cognitive models of language describe specific linguistic phenom-
ena. Themost important property of suchmodels is that theymust be computable.
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This means that they must rely exclusively on types of input (e.g., property
values) that can actually be computed using technologies available at the time
of model construction. If some feature that plays a key role in a theory cannot
be computed, then it either must be replaced by a computable proxy, if such
exists, or it must be excluded from the model. To take just one example from the
realm of pronominal coreference, although the notions topic and comment
(theme and rheme) figure prominently in linguistic descriptions of coreference,
they do not serve the modeling enterprise since their values cannot be reliably
computed in the general case.

Models must account for the widest possible swath of data involving a
particular phenomenon – which, for linguistics, is a far cry from the neat
and orderly examples found in dictionaries, grammars, and textbooks. They
should embrace well-selected simplifications, drawing from the collective
experience in human-inspired machine reasoning, which has shown that it is
counterproductive to populate decision functions with innumerable param-
eters whose myriad interactions cannot be adequately accounted for
(Kahneman, 2011).

Finally, models must operationalize the factors identified as most important
by the theory. By way of illustration, return to the notions of cognitive load and
actionability. The cognitive load of interpreting a given input can be estimated
using a function that considers the number and complexity of each contributing
language-analysis task. Consider one example from each end of the complexity
spectrum. The sentence Leslie ate a banana will result in a low-complexity, high-
confidence, analysis if the given language understanding system generates a
single, canonical syntactic parse, finds only one sense of Leslie and one sense of
banana in its lexicon, and can readily disambiguate between multiple senses of
eat based on the fact that only one of them aligns with a human agent and an
ingestible theme. At the other end of the complexity (and confidence) spectrum
would be the analysis of a long sentence that contains multiple unknown words,
does not yield a canonical syntactic parse, and offers multiple identically
scoring semantic analyses of unlinked chunks of input.

Establishing the relative importance of all the subtasks contributing to over-
all processing, and specifying the scoring mechanisms for them, while taking
into account their interactions, is part of the modeling challenge. As concerns
actionability, it can only be judged based on an agent’s assessment of its current
plans and goals, its assessment of the risk of a mistake, and so on – which means
that the modeling of language must necessarily be integrated with the modeling
of many other cognitive capabilities.

28.2.3 Systems

The transition from models to systems moves yet another step away from the
neat and abstract world of theory. The first challenge of building systems
involves managing cross-model incompatibilities. That is, when implementing
computational-linguistic models of specific phenomena, economy of effort
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suggests that existing system components and tools should be used to the degree
they are available and of good quality. However, if these are developed exter-
nally to a particular language processing environment (which many are likely to
be), they will be grounded in some explicit or implicit linguistic model that may
well not align with the model they are being used to implement. To take the
simplest example, different systems rely on different inventories of parts of
speech, syntactic constituents, and semantic dependencies. So, importing off-
the-shelf processors requires aligning the form and substance of their primitives
with those of the target model – which not only requires a significant effort but
often forces modifications to the original model, not necessarily improving it.
There is no generalized solution to the problem of cross-model incompatibility
since there is no single correct answer to many problems of language analysis –
and humans are quite naturally predisposed to hold fast to their individual
preferences. So, dynamic model alignment is an imperative of computational-
linguistic systems development that must be proactively managed.
Another challenge of system building is that all language-processing subsys-

tems are error-prone. Even the simplest of capabilities, such as part-of-speech
tagging, are far from perfect at the current state of the art. This means that
downstream components must anticipate the possibility of upstream errors and
prepare to manage the overall cascading of errors – all of which represents a
conceptual distancing from the model that is being implemented.
Because of the abovementioned, and other, practical considerations, imple-

mented systems are unlikely to precisely mirror the models they implement. If
one were to seek a “pure” evaluation of a model, the model would have to be
tested under the unrealistic conditions of all upstream results being correct; in
that case, any errors would be confidently attributed to the model itself.
However, introducing manual intervention into runtime system operation
would render the system not truly computational in any interesting or useful
sense of the word. It would lead to a model/system hybrid rather than a
computational linguistic system. So, any evaluation of a system will be namely
an evaluation of a system and, in the best case, it will provide useful insights
into the veracity of the underlying model.

28.3 Cognitive Modeling That Is Not Computational

Long before cognitive became a buzzword, linguists were describing the
phonology, morphology, syntax, semantics, pragmatics, and prosody of
languages in rigorous ways that have clear applicability for computational
cognitive modeling. However, the idea that linguistics fundamentally involved
description changed when, in the mid-twentieth century, Noam Chomsky’s
generative grammar took linguistics by storm. Chomsky shifted attention from
how languages are organized to how the human brain must be organized in
order to acquire and use them. Since the latter is clearly a cognitively oriented
issue, and since this theory has garnered a remarkable amount of attention for
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over half a century, one might assume that it is the place to look for guidance in
developing computational cognitive models. However, that is not the case.
Although the earliest work on the theory contributed to the development of
modern-day syntactic parsing technologies, which can serve computational
cognitive models, the lion’s share of subsequent work has been too abstract,
compartmentalized, and quickly changing to have practical applicability.

Whereas, for most of its history, Chomsky’s generative grammar had a
marked syntax-only orientation, other theoretical approaches have more cen-
trally considered the mapping between form and meaning. For example, con-
struction grammars (Hoffman & Trousdale, 2013) focus on the form-to-
meaning mappings of linguistic entities at many levels of complexity, from
words to multiword expressions to templates of syntactic constituents. As
theoretical constructs, construction grammars make particular claims about
how syntactic knowledge is learned and organized in the human mind. For
example, constructions are defined as learned pairings of form and function,
their meaning is associated exclusively with surface forms (i.e., unlike generative
grammar, there are no transformations or empty categories), and they are
organized into an inheritance network. Dynamic Syntax (Kempson, Meyer-
Viol, & Gabbay, 2001) is another human-oriented theoretical paradigm that
integrates syntactic and semantic analysis, but it places emphasis on the incre-
mental generation of syntactic tree structures that are decorated with semantic
interpretations.4 Both of these paradigms, like generative grammar, attempt to
explain the human language faculty without reference to computability by
machines. That being said, both paradigms offer theoretical support for
approaches to language modeling that do have practical utility. For example,
constructions – understood as concrete elements of recorded knowledge – figure
prominently in some knowledge bases oriented toward language processing
(e.g., FrameNet; Fillmore & Baker, 2012), and incremental parsing has been
gaining attention as a necessary capability of intelligent agent systems operating
in real time (e.g., Demberg, Keller, & Koller, 2013).

Yet another theoretical approach with noteworthy ripples of practical utility
is the hierarchy of grammar complexity proposed by Jackendoff and
Wittenberg (Jackendoff, 2002; Jackendoff & Wittenberg, 2014, 2017; hereafter
referred to as J&W). J&W emphasize that communication via natural language
is, at base, a signal-to-meaning mapping. All of the other levels of structure that
have been so rigorously studied (phonology, morphology, syntax) represent
intermediate layers that are not always needed to convey meaning.

J&W propose a hierarchy of grammatical complexity, motivating it both
with hypotheses about the evolution of human language and with observations
about current-day language use. They hypothesize that language evolved from

4 This theory served as a substrate for experimentation in automatic incremental parsing (e.g.,
Purver, Eshghi, & Hough, 2011). However, the semantic angle of the joint syntactic/semantic
parsing appears to be underdeveloped, as the intended interpretations of word strings were
manually provided, thus bypassing the most challenging problems of NLU.
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a direct mapping between phonetic patterns and conceptual structures through
stages that introduced various types of phonological, morphological, and
semantic structure – ending, finally, in the language faculty of modern humans.
The earliest stage of language evolution – what they call linear grammar – has
no morphological or syntactic structure, but the ordering of words could convey
certain semantic roles following principles such as Agent First (i.e., refer to the
Agent before the Patient). At this stage, pragmatics was largely responsible for
utterance interpretation. As the modern human language faculty developed, it
went through stages that introduced phrase structure, grammatical categories,
symbols to encode abstract semantic relations (such as prepositions indicating
spatial relations), inflectional morphology, and the rest. These added capabil-
ities significantly expanded the expressive power of language.
As mentioned earlier, the tiered-grammar hypothesis relates not only to the

evolution of the human language faculty; it is also informed by phenomena
attested in modern language use. Following Bickerton (1990), J&W believe that
traces of the early stages of language evolution survive in the human brain,
manifesting when the system is either disrupted (e.g., by agrammatic aphasia) or
not fully developed (e.g., in the speech of young children, and in pidgins).
Expanding upon this idea, they describe the human language faculty as “not a
monolithic block of knowledge, but rather a palimpsest, consisting of layers of
different degrees of complexity, in which various grammatical phenomena fall
into different layers” (J&W, 2014, p. 67). In addition to fleshing out the details of
these hypothesized layers of grammar, J&W offer additional modern-day evi-
dence (beyond aphasia, the speech of young children, and pidgins) of the use of
pre-final layers. For example, (a) language emergence has been observed in two
communities of sign language speakers (using Nicaraguan Sign Language and
Al-Sayyid Bedouin Sign Language), in which the language of successive gener-
ations has shown increased linguistic complexity along the lines of J&W’s layers;
(b) the fully formed language called Riau Indonesian is structurally simpler than
most modern languages; according to J&W (2014, p. 81) “the language is
basically a simple phrase grammar whose constituency is determined by pros-
ody, with a small amount of morphology”; and (c) the linguistic phenomenon of
compounding in English can be analyzed as a trace of a pre-final stage of
language development, since the elements of a compound are simply juxtaposed,
with the ordering of elements suggesting the semantic head, and with pragmatics
being responsible for reconstructing their semantic relationship.
What do language evolution and grammatical layers have to do with compu-

tational cognitive modeling? They provide theoretical support for independ-
ently motivated modeling strategies. One does not have to look to fringe
phenomena like aphasia and pidgins to find evidence that complex and perfect
structure is not always central to effective communication: this is clear by
looking at everyday dialogs, which are rife with fragmentary utterances and
production errors – unfinished sentences, self-corrections, stacked tangents,
repetitions, and the rest. All of this mess means that machines – like humans –
must be prepared to apply far more pragmatic reasoning to language
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understanding than would be expected by approaches that assume a strict
syntax-to-semantics pipeline.

Another practical motivation for preparing systems to function effectively
without full and perfect structural analysis is that all of that analysis is very,
very difficult to perfect, and thus represents a long-term challenge for the AI
community. As the field works toward a solution, machines will have to get by
using all of the strategies they can bring to bear – not unlike someone who is
learning a new language, listening to a static-filled speech signal, or ramping up
in a specialized domain. In short, whenever idealized language processing
breaks down, one encounters a situation remarkably similar to the hypothesized
early stages of language development: using word meaning to inform a largely
pragmatic interpretation.

28.4 An Example of a Cognitive Model of Language
Processing

Within the cognitive systems paradigm (Langley, Laird, & Rogers,
2009), language processing efforts pursue the goal of faithfully replicating
human language behavior as part of overall cognition. The extent, quality,
and depth of language processing achieved by current efforts within this para-
digm (e.g., Cantrell, Schermerhorn, & Scheutz, 2011; Lindes & Laird, 2016) are
determined by the scope of functionalities of the given cognitive agent, as well
as the relative importance of language processing within the overall program of
research (for example, a given research thrust might focus more centrally on
some other cognitive capability, such as planning, learning, or agent collabor-
ation). As an example of a highly developed computational cognitive model of
language, consider the natural language understanding (NLU) capabilities of
language-endowed intelligent agents (LEIAs) within a cognitive architecture
called OntoAgent (English & Nirenburg, 2020; McShane & Nirenburg, 2012;
McShane & Nirenburg, 2021).5 A high-level view of that architecture is shown
in Figure 28.1. Before moving to the language-specific aspects of the architec-
ture, some introductory statements are in order.

A LEIA’s core knowledge resources include an ontological model (long-
term semantic memory), a long-term episodic memory of past conscious
experiences, and a situation model that describes the participants, props,
and recent events in the current situation. In addition to the representation
of a slice of the observable world, the agent’s situation model must also
include knowledge about its own and other agents’ currently active goals
and plans, as well as their current physical and mental states. Along with
general ontological knowledge, the long-term semantic memory includes an
inventory of the agent’s goals; an inventory of physical, mental, and

5 This description reflects the state of the model in 2019, when this chapter was first written. For a
discussion of generation by LEIAs, see McShane and Leon (2021).
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Figure 28.1 A high-level sketch of the OntoAgent architecture.
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emotional states; its long-term personality traits and personal biases; societal
rules of behavior, including such things as knowledge about the responsibil-
ities of each member of a task-oriented team; and the agent’s model of the
relevant subset of the abovementioned features of its human and agentive
collaborators.

When a LEIA receives text or dialog input, it interprets it using its knowledge
resources and a battery of reasoning engines, represented by the module labeled
Language Understanding Service in Figure 28.1. The result of this module’s
operation is one or more text meaning representations (TMRs), which are
unambiguous assertions written in the native metalanguage of meaning repre-
sentations (MRs) shared across all of the agent’s knowledge resources and all
downstream processing modules. These TMRs are then incorporated into the
agent’s knowledge bases.

As can be seen in Figure 28.1, a LEIA’s channels of perception may include
not only language but also robotic vision, other sensors, and even computer
simulations; e.g., the simulation of human physiology is perceived by an agent
through the process of interoception. No matter the channel of input, the LEIA
must interpret the signals into ontologically grounded knowledge structures,
resulting in MRs that are stored to memory. The upshot is that all knowledge
learned by the agent from any source is equally available for the agent’s
subsequent reasoning and decision-making about action.

The NLU module accommodates a very large number of linguistic phenom-
ena in an analysis process that is intended to emulate how humans understand
language. It is comprised of implemented models, called microtheories, that
treat individual linguistic and extralinguistic phenomena such as modality,
ambiguity, ellipsis, indirect speech acts, and syntactic ill-formedness – to name
just a few.6 The goal is to cover as many manifestations of each linguistic
phenomenon as possible.

The process of translating input strings into TMRs (a) focuses on the content
of the message rather than its form; (b) resolves complexities such as lexical and
referential ambiguity, underspecification, ellipsis, and linguistic paraphrase;
and (c) permits many of the same knowledge bases and reasoning engines to
be used for different natural languages. The global interpretation of text mean-
ing is built up compositionally from the interpretations of progressively larger
groups of words and phrases. Semantic imprecision is recognized as a feature of
natural language that must be situationally concretized only if the imprecision
impedes reasoning or decision-making.7

To ground the discussion, consider the TMR for the simplest of sentences,
A gray squirrel is eating a nut.

6 It is beyond the scope of this chapter to present the full list of microtheories or discuss
their typology.

7 This dovetails with the views of Lepore and Stone (2010) about metaphor – i.e., metaphorical
meanings do not need to be fully semantically interpreted or recorded.
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INGEST-1
agent squirrel-1
theme nut-foodstuff-1
time find-anchor-time
from-sense eat-v1
word-num 3

SQUIRREL-1
color gray8

agent-of ingest-1
from-sense squirrel-n1
word-num 2

NUT-FOODSTUFF-1
theme-of ingest-1
from-sense nut-n1
word-num 6

This example is simple for the following reasons: it contains just one clause;
that clause is syntactically regular; none of its referring expressions require
textual coreference resolution; its lexical ambiguities can be resolved using
rather simple analysis techniques; and the semantic analyses of the lexemes
combine into an ontologically valid semantic dependency structure. This TMR
should be read as follows.

• The first frame is headed by a numbered instance of the concept ingest,
concepts being distinguished from words of English by the use of small caps.
Note that this is not vacuous “upper-case semantics”9 because the concepts in
question have property-based definitions in the ontology that support
reasoning about language and the world.

• ingest-1 has three contextually relevant property values: its agent (the
eater) is an instance of squirrel; its theme (what is eaten) is an instance
of nut-foodstuff; and the time of the event is the time of speech, which is
computed by the LEIA, if possible, using the procedural semantic routine
find-anchor-time. This routine has not yet been launched at the stage of
analysis shown here.10

• The properties in gray italics are among the many elements of metadata
generated during processing in support of system evaluation, testing, and
debugging. The ones shown indicate which word number (word indices start
at 0) and which lexical sense were used to generate the given TMR frame.

8 Gray is written in plain script, not small caps, because color is a literal-attribute, meaning
that its values are literals, not concepts.

9 Upper-case semantics refers to the practice, undertaken by some researchers in formal semantics
and reasoning, of avoiding natural language challenges like ambiguity and semantic non-
compositionality by asserting that strings written using a particular typeface (often, uppercase)
have a particular meaning: e.g., TABLE might be said to refer to a piece of furniture rather than
a chart.

10 In some applications, it is not necessary to chase down the anchor time of speech/writing: the
relative time expressed by the function call is sufficient.
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• The next frame, headed by squirrel-1, shows not only the inverse relation to
ingest-1, but also that the color of this squirrel is gray.

• Since no additional information is available about the nut, its frame – nut-
foodstuff-1 – shows only the inverse relation with ingest-1, along
with metadata.

For each TMR it produces, the system generates a value of the confidence
parameter that reflects the LEIA’s certainty in the TMR’s correctness. For
TMRs like this one, which do not require advanced semantic and pragmatic
reasoning, the confidence score is computed using a function that compares how
the elements of input align with the syntactic and semantic expectations of word
senses in the lexicon.

In working through how a LEIA generates this analysis, assume for the
moment that the agent has access to the entire sentence at once (the details of
incremental processing will be introduced in due course). First the input under-
goes preprocessing and syntactic analysis, supplied by an external parser.
(Recall that integrating external resources is key to the feasibility of
computational-linguistic system building.) Using features from the syntactic
parse, the LEIA attempts to align sentence constituents with the syntactic
expectations recorded in the lexicon for the words in the sentence. For example,
when it looks up the verb eat, it finds three senses: one is optionally transitive11

and means ingest; the other two describe the idiom eat away at in its physical
and abstract senses (The rust ate away at the pipe [physical]; His behavior is
eating away at my nerves! [abstract]). Since the idiomatic senses require the
words away at, which are not present in the input, they are rejected, leaving only
the ingest sense as a viable candidate.12 Below is a simplified version of the
needed lexical sense of eat (eat-v1) as contrasted with one of the idiomatic
senses (eat-v2).

eat-v1
def. to ingest food
ex. Gwen was eating (berries).
syn-struc
subject $var1
root $var0
directobject $var2 (opt +)

sem-struc
ingest
agent ^$var1
theme ^$var2 (sem food)13

11 Optionally transitive verbs can take a direct object but do not require one. Eat, read, and draw
(in their most typical meanings) are examples of optionally transitive verbs.

12 A more complete lexicon would include many more phrasal senses, such as eat one’s hat, eat
one’s heart out, eat someone alive, and so on.

13 The semantic constraint food is listed because it is narrower than the ontology’s basic constraint
on the theme of ingest – which allows for beverage and ingestible-medication as well.
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eat-v2
def. phrasal “eat away at”; erode physically
ex. The rust ate away at the pipe.
syn-struc
subject $var1
root $var0
adv $var2 (root “away”)
pp
prep $var3 (root “at”)
obj $var4

sem-struc
erode
instrument ^$var1
theme ^$var4

^$var2 null-sem+14

^$var3 null-sem+

The syntactic structure (syn-struc) zone of eat-v1 says that this sense of eat is
optionally transitive: it requires a subject and can be used with or without a
direct object (“opt +” means “optional”). The semantic structure zone (sem-
struc) says that the meaning of this sense of eat is the ontological concept
ingest. Each constituent of input is associated with a variable in the syn-
struc: the subject is $var1 and the direct object is $var2. Those variables are
linked to their semantic interpretations in the sem-struc (^ is read as “the
meaning of”). So the word that fills the subject slot in the syn-struc ($var1)
must first be semantically analyzed, resulting in ^$var1 (“the meaning of
$var1”); then that concept can be used to fill the agent role of ingest.
The ontology, for its part, provides information about the valid fillers of the

case-roles of ingest. Consider a small excerpt from the ontological description
of ingest, whose full ontological frame actually contains many more property-
facet-value triples.

ingest
agent sem animal

relaxable-to social-object
theme sem food, beverage, ingestible-medication

relaxable-to animal, plant
not human

This says that the typical agent of ingest (i.e., the basic semantic constraint
indicated by the sem facet) is an animal; however, this constraint can be
relaxed to social-objects (e.g., The fire department eats a lot of pizza).
Similarly, the description of the theme indicates that food, beverage, and

14 Null-sem+ indicates that the meaning of the word indicated by the variable has already been
incorporated into the meaning representation and should not be computed compositionally.
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ingestible-medication are the most typical themes, but other animals
and plants not already subsumed under the food subtree might be consumed
as well. humans are explicitly excluded as ingestibles, using the not facet, since
they would otherwise be understood as unusual-but-possible ingestibles due to
their placement in the animal subtree. There are two reasons to exclude
humans as ingestibles even though they can, in principle, be eaten. First, the
ontology is intended to provide agents with knowledge of how the world
typically works. And second, there are plenty of nonliteral language uses in
which humans get eaten: The audience ate that comedian alive! I wish these
mosquitos would stop eating me up! The fact that humans are not typical
themes of ingest allows the agent to avoid ambiguity in analyzing
such inputs.

Having narrowed down the interpretation of eat to a single sense, the LEIA
must now determine which senses of squirrel, gray, and nut best fit this input.
Squirrel and gray are easy: the lexicon contains only one sense of each, and
these senses fit well semantically: squirrel is a suitable agent of ingest, and
gray is a valid color of squirrel. However, there are three senses of nut: an
edible foodstuff, a crazy person, and a machine part. As neither people nor
machine parts are appropriate themes of ingest, only the nut-foodstuff
sense remains as an option; it fits perfectly and is selected as a high-
confidence interpretation.

Operationally speaking, the TMR for A gray squirrel is eating a nut is
generated by (a) copying the sem-struc of eat-v1 into the nascent TMR; (b)
translating the concept type (ingest) into an instance (ingest-1); and (c)
replacing the variables with their appropriate interpretations (^$var1 is squir-
rel-1 (color gray); ^$var2 is nut-foodstuff-1). With respect to runtime
reasoning, this example is as simple as it gets since it involves only constraint
matching, and all constraints match in a unique and satisfactory way. “Simple
constraint matching” does not, however, come for free: its precondition is the
availability of high-quality lexical and ontological knowledge bases that are
sufficient to allow the LEIA to disambiguate and validate the semantic congru-
ity of its interpretations.

As mentioned earlier, LEIAs generate confidence values in TMRs based on
how well the syntactic and semantic expectations of lexical senses are satisfied
by the candidate interpretation. Whereas the squirrel TMR will get a very high
score, there will be no high-scoring interpretations of A gray squirrel is eating
my garden furniture. Such inputs are handled using downstream recovery
methods.

This ontologically grounded knowledge representation language has many
advantages for agent reasoning. Most importantly, it is unambiguous and the
concepts underlying word senses are described extensively in the ontology,
which means that additional knowledge is available for reasoning about lan-
guage and the world. However, translating natural language utterances into this
metalanguage is difficult and expensive. So, a reasonable question is, Do we
really need it?
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If agents were to communicate exclusively with other agents, and had no need
to learn anything from human-oriented language resources, then a case could be
made against the need for the natural language to knowledge-representation
language translation that is described here. However, agents do need to com-
municate with people, and they do need to learn about the world by converting
vast amounts of data into machine-tractable knowledge. Because of this, it is
important both to establish the formal relationship between natural language
and a knowledge-representation language, and to provide intelligent agents
with the facility to translate between them.
The NLU process described previously made two simplifying assumptions

for clarity of exposition: that the input sentence was simple and that it was
available in full from the outset. Both of those simplifications are removed in
the more comprehensive view of a LEIA’s NLU module that follows.
Language understanding by LEIAs features two types of incrementality:

horizontal and vertical. Horizontal incrementality refers to interpreting the
language signal as it becomes available over time. This not only models human
behavior, it has practical utility as well – for example, it enables LEIAs to
interrupt the speaker for clarification or correction, and to begin to act before a
long utterance has been completed.
When an agent processes input incrementally, it carries out pre-semantic

analysis for each new word of input, but it launches semantic analysis only
when (a) the new word is a noun or a verb; (b) a sentence-final punctuation
mark is reached; or (c) the end of a dialog turn is identified (as by a system user
hitting Return to enter an input). So, it will launch semantic analysis three times
for the following input, as indicated by forward slashes: Phil / eats / away at my
patience. There is only one available analysis of Phil: human (has-personal-
name “Phil”). There are three available analyses of eats, as described earlier,
which will result in three candidate TMRs for the fragment Phil eats. But when
the last fragment is added, confident disambiguation occurs: the syntactic
structure says that this must be one of the idiomatic meanings, and the fact
that patience is an abstract-object clearly points to the abstract interpret-
ation of eat away at.
Vertical incrementality involves leveraging ever more sources of knowledge

and types of reasoning to interpret whichever elements of input are currently
available. The control flow for the agent’s NLU system involves decision-
making about how to proceed through the horizontal and vertical layers of
context. For example, if an application is not time-sensitive, there is no need
to compute subsentential analyses using horizontal incrementality; and if an
input can be recognized as out-of-purview (for a particular agent with a
particular set of goals) using shallow analysis, there is no need to subject it
to deeper analysis.
The vertical layers of context are organized into six processing stages, each

one followed by a decision about how to proceed. These decisions are discussed
and illustrated after a brief overview of each stage.
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28.4.1 Stage 1: Pre-Semantic Analysis

Pre-Semantic Analysis covers preprocessing and syntactic parsing. It generates
feature values (part-of-speech tags; the base forms and morphological features
of input words; syntactic constituency; syntactic dependencies; etc.) that inform
semantic analysis. Since the theory of Ontological Semantics makes no claims
about how people compute pre-semantic features, it is economical and theoret-
ically neutral to import these heuristic values.

28.4.2 Stage 2: Pre-Semantic Integration

Pre-Semantic Integration involves a battery of procedures aimed at making the
abovementioned heuristics as useful as possible to semantic analysis. Since the
parser uses a different inventory of parts of speech and semantic dependencies
than the LEIA’s knowledge bases, these must be aligned. The actual
dependencies in the parse must be aligned with the expected dependencies of
the input words recorded in the LEIA’s lexicon to determine which word senses
are syntactically suitable for the context. Certain semantics-based decisions that
the syntactic parser was forced to make must be undone: for example,
prepositional-phrase attachments and the bracketing of complex nominal com-
pounds must be reambiguated to allow for semantically informed decision
making later on. Lexical senses must be posited for previously unknown words,
which is the first of several stages of new-word learning. Finally, the agent must
decide what its next language-processing move will be based on how well
syntactic analysis worked. In the best case, the parse is well-formed and candi-
date analyses are passed on to semantic analysis. In the next-best case, the parse
is ill-formed but the input can be automatically normalized (e.g., by stripping
repetitions and disfluencies) such that subsequent reparsing results in a well-
formed structure. In the worst case, the parse is beyond repair, in which case the
agent abandons the syntax-informs-semantics pipeline (realized as processing
Stages 3–5) and jumps directly to Stage 6, where it attempts purely semantic/
pragmatic analysis in the spirit of J&W’s linear grammar.

28.4.3 Stage 3: Basic Semantic Analysis

Basic Semantic Analysis involves lexical disambiguation and the establishment
of the semantic dependency structure. It is “basic” because it does not yet
invoke coreference resolution, static knowledge sources beyond the lexicon
and ontology (see Stage 5 for that), or situational reasoning. Basic Semantic
Analysis covers any form-to-meaning mapping that can be recorded in the
lexicon – including mappings that require running context-dependent meaning
procedures. As an example of the latter, a procedure triggered by the lexicon
entry for the adverb respectively will analyze the sentence John and Mary like
painting and music, respectively as the meanings of John likes painting andMary
likes music.
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In general terms, Basic Semantic Analysis covers so-called “sentence seman-
tics” – the meaning of sentences outside of context. For example, given the
input “But John can’t!”, this stage of processing will (a) detect the verb-phrase
ellipsis (the complement of can’t is missing); (b) posit an underspecified event
as its analysis (i.e., John can’t do something); (c) fill a case-role slot of that
event with a human named John; and (d) apply the meaning of can’t
(potential modality with a value of 0) to that event. It is noteworthy that
ellipsis is treated at all at this early stage: most approaches to ellipsis (in the
descriptive, computational, and theoretical realms) treat it as a pragmatic
phenomenon quite separate from basic semantics. However, one can see from
this example that a partial analysis is available to people prior to resolving the
coreference – and so a cognitive model should follow suit.
In addition to treating a wide range of elliptical phenomena, this stage of

analysis treats constructions (It’s just that [clause]), canonical metaphors
([someone] attacks [someone], used to mean “criticizes, opposes”), convention-
alized indirect speech acts (It would be great if you would [do something]),
lexicalized metonymies ([someone] gives [someone] lip), well-formed fragments
(Not always), and modification that must be computed using procedural seman-
tic routines (e.g., the meaning of very, very applied to tall tree). It also carries
out the ontologically informed semantic analysis of new words: for example,
given the sentence They tend to eat cupuacu for breakfast, the formerly unknown
word “cupuacu” is hypothesized to be a food. Basic Semantic Analysis often
results in residual ambiguity – i.e., multiple interpretations are considered
plausible. This is appropriate because extra-sentential context is often needed
to resolve ambiguities, and anaphoric expressions (such as he, they, and it) have
not yet been resolved.

28.4.4 Stage 4: Basic Coreference Resolution

Basic Coreference Resolution involves linking overt and elided referring expres-
sions to their textual sponsors, if they have textual sponsors (not all do). Although
LEIAs draw some coreference information from a knowledge-lean coreference
resolver (Lee et al., 2013), they also use a large inventory of knowledge-based
functions to address such complex phenomena as broad referring expressions
(noun phrases that refer to one or more propositions), nonidentity coreference
relations (e.g., bridging constructions), event coreference, various types of ellipsis,
third person pronoun resolution that requires semantic heuristics, and more (see
McShane, 2009, and McShane & Nirenberg, 2021 for example-rich overviews of
the actual scope of reference phenomena that agents must master).
For LEIAs, pointing to the sponsor for a referring expression is not an end in

itself. As an illustration, compare the examples of verb phrase ellipsis below, in
which the text-string sponsor for each elided expression is underlined.

(2) Constantine wanted to go and did __.
(3) Mark painted his house this year and Fred will __ next year.
(4) Elizabeth hopped over the fence and Alice did __ too.
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In (2), both the overt and the elided verb refer to the same instance of motion-
event carried out by the same agent – they are simply scoped over by two
different types of modality: volitive in the first clause and epistemic in the
second. By contrast, in (3) and (4), the elided verb phrases indicate different
instances of their respective events (paint, jump) carried out by different
agents. Moreover, whereas in (3) two different instances of house (private-
home) are implied, in (4), the same fence (fence) is implied. Fully resolving
the verb phrase ellipsis requires making these and other such analysis decisions
and recording them explicitly in text meaning representations.

28.4.5 Stage 5: Extended Semantic Analysis

Extended Semantic Analysis addresses four potential suboptimal eventualities of
the analysis thus far – residual ambiguities, incongruities, underspecifications,
and fragments. The following examples illustrate some of the associated methods.

One type of residual ambiguity is polysemy that could not be resolved using
the local dependency structure. Consider the italicized polysemous words in (5)
and (6).

(5) Debbie saw a horse that was snoozing in its stall.
(6) The horse was being examined because of a broken tooth.

Horse can refer to an animal, a sawhorse, or a piece of gymnastic equipment; stall
can refer to an animal-holding pen or a booth for selling goods; and tooth can refer
to a body part or a tool part. The key to disambiguating these nouns is ontological
knowledge. Specifically, the concept forhorse (the “animal”meaning of horse) is
formally linked to the animal-stall meaning of stall through the property
location, and to the tooth (i.e., body-part) meaning of tooth through the
property has-object-as-part, as shown by the ontology excerpt below:

HORSE

agent-of sem walk, trot, canter, gallop, jump, buck-
event, rear-on-hind-legs, …

color sem white, black, gray, bay, chestnut, buckskin, dun, . . .
LOCATION sem barn, field, ANIMAL-STALL, riding-arena, …
HAS-OBJECT-AS-PART sem hoof, mane, tail, head, leg, TOOTH, …

The reason why this ontology-search process is launched during Extended,
rather than Basic, Semantic Analysis is because it seeks ontological relation-
ships beyond the most basic dependency structures.

An example of an incongruity that can be resolved at this stage is the
productive use of metonymy. Typical metonymic relationships are recorded in
a metonymy repository, which is formulated in terms of ontological concepts. It
includes such correspondences as producer for product (We bought an Audi),
social group for its representative(s) (The ASPCA reported. . .), and clothing or
body part for the person associated with it (The long hair just bumped into me).
Replacing the metonymy with its implied class results in the satisfaction of
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previously unsatisfied selectional constraints. Metonymy processing is left to
Extended Semantic Analysis because it is triggered as a result of a low-scoring
TMR during Basic Semantic Analysis.
An example of underspecification is nominal compounding. Whereas some

nominal compounds are fully analyzed during Basic Semantic Analysis (thanks
to the availability of associated lexical templates), most are initially analyzed
using a generic relation to convey the connection between the meanings of
the nouns. Then, at this stage, if the agent decides that a more specific relation is
important (it is not always), it consults a special-purpose knowledge base that
records prototypical relationships between pairs of concepts. For example, if
N1 is foodstuff and N2 is prepared-food then “N2 contains N1”: papaya
saladmeans “salad contains papaya-fruit”. And if N2 is a property and
N1 is a legal filler of its domain, then “N2 domain N1”: ceiling height means
“height domain ceiling”. Note that these patterns not only suggest which
relation to choose, they also help to disambiguate the nouns in question. For
example, both height and ceiling also have metaphorical uses (He grew up at the
height of the Great Depression; This methodology has reached a ceiling of results)
which are not applicable to the compound ceiling height.
The last kinds of phenomena treated at this stage are well-formed sentence

fragments, such as “Never!”, “Why?”, “Four.”, and “Last week.” Although
these are not full propositions, they are well-formed in the sense that they yield a
well-formed syntactic parse that supports semantic analysis in the regular way.
At this stage, the LEIA can integrate the meaning of such fragments into the
meaning of the larger discourse context thanks to its knowledge of typical
discourse strategies. Consider the dialog: “I bought a new car.” “When?”
“Last week.” For “When?”, the LEIA will compute the meaning of “When
did you buy a new car?”; and for “Last week.”, it will compute the meaning of
“I bought a new car last week.” These interpretations will be linked using
appropriate coreference relations.
Let us pause for a recap. Up through this stage of processing, the LEIA has

been trying to squeeze every bit of analytical power it can from the lexicon, the
ontology, additional static knowledge bases (e.g., the nominal-compounding
and metonymy repositories), and additional linguistically oriented reasoning
(e.g., about the use of fragments in dialog strategies). All that remains now is
full-on situational reasoning.

28.4.6 Stage 6: Situational Reasoning

Situational Reasoning uses all of an agent’s perception and reasoning capabil-
ities to further specify the context-specific meaning of language inputs. This can
require, for example, interpreting nonlinguistic inputs (that can refer to what the
speaker is pointing at), mindreading the speaker’s intention (This nail is too
short can imply Give me a longer one), detecting when a conversation goes off
topic (a furniture-building robot need not pay close attention to a conversation
about ice hockey), further specifying the meaning of newly learned words using
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knowledge about the task and features of the physical context, and, as men-
tioned earlier, cobbling together the meaning of utterances that are so syntactic-
ally fragmented that they could not be treated using the canonical language-
analysis pipeline. In concrete terms, the input to Situational Reasoning is
usually multiple candidate analyses, and the goal is to arrive at the single one
that is context-appropriate and reflects a human level of analysis.

The reason why these six stages of processing are formally separated is that
each one results in a decision point for the LEIA: it can take action (physical,
verbal, or mental) based on its current understanding, it can analyze the given
input more deeply, or it can consume the next element of input. Although its
actual decisions will be largely dependent upon its task, three examples will
suffice for illustration:

1. If the agent is capable of carrying out only a limited range of tasks but it
collaborates with people who engage in a lot of off-task conversation, it can
be configured to detect, and then ignore, off-topic utterances using superfi-
cial processing strategies, such as those provided by Stages 1 and 2.

2. If a situation is not urgent, the agent can bypass incremental analysis and,
instead, process sentences in full, which is more efficient overall.

3. If an agent is operating in a high-risk context in which it is expected to
understand every utterance with high confidence, then it can carry out
maximally deep analysis of each incoming fragment and immediately ask
for clarification should anything be unclear.

The above exposition of the NLU process underscores the central role played
by knowledge resources, most notably an ontology and a lexicon that expresses
the meaning of words and phrases in terms of the ontology. The ontology is
relied upon and shared by all of an agent’s perception, reasoning, and action
processes. It offers an interoperable metalanguage for formulating the content
of the message traffic among all of an agent’s processing modules; as such, it
provides the basis for the agent’s decisions and actions. Elements of the onto-
logical metalanguage are grounded in the outside world in three ways: (1)
through the lexicon; (2) through the lexicon’s counterparts for other modes of
perception, such as vision; and (3) through actions, such as pointing at objects
or generating language that refers to them. An agent’s ontologically grounded
meaning representations – text meaning representations (TMRs), vision mean-
ing representations (VMRs), and so on – capture meanings associated with the
external world, the agent’s internal states, and all manner of actions and
situations that the agent can act upon. To summarize, language understanding
in a content-centric cognitive model like this is a part of a comprehensive task
environment, with the ontology anchoring the agent’s inner workings.15

15 Another knowledge resource supporting agent operation (specifically, reasoning by analogy) is
episodic memory, which records the results of past functioning. Episodic memory consists of
TMRs as well as ontological concept instances generated by other processes involving percep-
tion, reasoning, and action.
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For LEIAs to approach human levels of functioning, they must understand
why they are making each of their conscious decisions and be able to explain
their reasoning to others. Accordingly the NLU approach described above has
been motivated in large part by the need to endow agents with this metalevel
capability of explanation.16

Another precondition for the realistic functioning of LEIAs is that their
knowledge resources be of sufficient breadth and depth to cover a nontrivial
chunk of the world and language. Lieto et al. (2018) criticize current practice in
the field of cognitive architectures, stating that they “only process a simplistic
amount (and a limited typology) of knowledge.” As a result, the authors claim
that “the . . . mechanisms that [cognitive architectures] implement concerning
knowledge processing tasks (e.g., retrieval, learning, reasoning, etc.) can be only
loosely evaluated and compared . . . to those used by humans.” Nirenburg et al.
(2020) argue that computational cognitive modeling must become content-
centric, both to sustain the long-term objective of modeling human cognitive
capabilities and to boost the quality of agent-oriented application systems.
Content is crucial. But its acquisition requires nontrivial effort. To under-

stand why, it is useful to survey the development of the many ontology acquisi-
tion and consolidation projects undertaken since the early 1980s – the most
well-known of which is Cyc (see Lenat et al. (1990) or Lenat & Guha (1990) for
early descriptions).17 The relevant issue for this chapter is that since the mid-
1990s, the prevalent opinion in the field has been that NLP and AI in general
are faced with an insurmountable knowledge bottleneck. Adherents of the
bottleneck view believe that it is unrealistic to develop high-quality, broad-
coverage ontologies and ontologically grounded computational lexicons. This
belief, together with the newly available ability to manipulate very large
amounts of text very fast, contributed to the empirical turn in NLP and AI.
Empirical machine-learning approaches have been dominant ever since.
However, at the time of writing, it is becoming increasingly clear that while
these approaches have advanced a number of practical applications beyond
expectations, they are not suited to enabling a number of important capabilities,
and arguably never will be (Church, 2011; Marcus, 2020). The brief explan-
ation18 is that empirical methods, by their nature, dispense with the need for
including unobservables in their picture of the world. They connect perceptual
inputs (for NLP, words) directly with things in the world, without that connec-
tion being mediated by thought. This position does not support modeling
agents’ conscious reasoning, including reasoning in service of NLU. By con-
trast, real NLU centrally requires a high-quality ontology and lexicon that
make manifest the agent’s understanding of unobservables.

16 They must also be able to explain their nonlinguistic behavior, but that lies beyond the scope of
this chapter.

17 Interested readers can also peruse Wikipedia articles on formal ontology, ontology engineering,
and ontology alignment, and follow the links therein.

18 For further discussion see McShane and Nirenburg (2021).

942 marjorie mcshane and sergei nirenburg

https://doi.org/10.1017/9781108755610.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.033


Acquiring knowledge resources can, in principle, be done manually.
However, this requires substantial outlays that, within the currently dominant
language technology paradigm, are channeled into manual annotation of
training corpora to drive machine learning. A more forward-looking, long-term
solution is to use available ontologies and lexicons to bootstrap LEIAs’ ability
to augment their ontologies and lexicons through understanding language
inputs. Such lifelong learning by instruction in language (possibly augmented
by input from other perception modalities) can be deployed either as a side
effect of LEIAs’ regular functioning or in dedicated learning environments that
will train LEIAs before they are deployed. Lifelong learning was studied in the
DARPA Learning by Reading program. Since then several experiments dem-
onstrated this capability using small knowledge bases in robotic applications
(Lindes & Laird, 2016; Scheutz et al., 2017). The approach to language under-
standing described in this chapter has been shown to support the learning of
both lexicon entries and ontological concepts (including scripts) by LEIAs
(Nirenburg et al. 2007, 2018; Nirenburg & Wood, 2017).

This discussion of NLU by LEIAs primarily focused on the underlying
computational cognitive model, with selected insights into the model’s theoret-
ical substrate. Recalling the originally posited theory-model-system triad, this
brings up the level of systems – about which little is said in this chapter. The
reason is that system-level discussions are, by nature, detailed, idiosyncratic,
and of remarkably short shelf-life. For example, part-of-speech-tagging errors
that are tripping up LEIAs today might well be remedied tomorrow; similarly,
expanding the knowledge bases in even minimal but well-selected ways can lead
to substantial gains in coverage and accuracy. System-level discussions also
open the Pandora’s box of evaluation metrics – which, for knowledge-based
systems, is a wide-open research issue. That is, knowledge-based systems cannot
be usefully or fairly evaluated using the currently widely adopted, black-box
methods custom-made to evaluate systems that adhere to the statistical para-
digm. Instead, novel evaluation suites must be invented to demonstrate pro-
gress, given the specific goals and contributions of each given program of R&D.
One approach to evaluation is to focus on specific tasks, such as lexical disam-
biguation, processing multiword expressions, or resolving verb phrase ellipsis.
However, rather than converge into a generalized regimen for system evalu-
ation, phenomenon-level evaluation methods instead provide stark evidence of
how different they need to be. For further discussion of evaluation in
knowledge-based NLU, as well as summaries of several task-level evaluation
efforts, see McShane and Nirenburg (2021, chapter 9).

28.5 Conclusion

This overview of computational cognitive modeling in the realm of
natural language understanding and generation consisted of three parts. First, it
proposed that computational cognitive modeling must be viewed within the
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context of a theory-model-system triad. Next, it explained to what extent past
linguistic work does and does not serve the enterprise of computational
cognitive modeling. Finally, it described a particular computational cognitive
model of natural language understanding in some detail – one that pursues the
greatest depth and breadth of coverage of any implemented model of which the
authors are aware. It is not surprising that there exist few broad and deep
models: after all, the history of work in both general linguistics and
computational linguistics has shown a marked preference for splitting off
individual tasks and problems rather than approaching the problem of language
analysis holistically.
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29 Computational Models
of Creativity
Sébastien Hélie and Ana-Maria Olteteanu

29.1 Introduction

Creativity has been fascinating humans since the beginning of time. It is
typically defined as producing something that is novel, useful, and surprising
(Simonton, 2013). Such endeavor plays a critical role in the arts (e.g., producing
a new song or painting), as well as in scientific discovery (e.g., paradigm-shifting
revolutions). For example, Einstein’s theory of relativity emerged from the
juxtaposition of thinking about the same object simultaneously in motion and
at rest. Likewise, René Magritte’s paintings present numerous reversals of size,
indicating another type of oppositional thinking. While creativity in the arts
and sciences has great societal value, the processes leading to creative product
or discovery are still unclear. One possible reason for this knowledge gap is that
creators rarely have access to the processes leading to the discovery or artistic
product, and instead report that the idea leading to the creation appeared
suddenly. This phenomenological observation was an important part of
Wallas’ (1926) theory of creativity which suggested four stages: (1) preparation,
(2) incubation, (3) illumination (insight), and (4) verification. While stages (1)
and (4) are mostly rational and verbalizable (e.g., logical reasoning), stage (2)
relies more on intuition and free associations and is often difficult to fully
verbalize. Stage (3) is the appearance of the “happy idea.”

While creativity is often thought of in terms of historically creative “geniuses”
(Big-C), Small-c, everyday creativity, is also critical in navigating the environ-
ment and solving smaller daily problems. In fact, Small-c creativity is not a
uniquely human achievement. For example, a recent book edited by Kaufman
and Kaufman (2015) reviews many findings in animal creativity research from
many different species. One implication is that, as a common cognitive activity,
creativity should be amenable to scientific investigation leading to a process-
based understanding, similar to other cognitive functions (Hélie & Sun, 2010).
Hence, it should also be possible to propose models and write computer
programs modeling the creativity process for cognitive science and artificial
intelligence (AI).

This chapter describes recent advances in computational models of creativ-
ity. It is organized as follows. Section 29.2 briefly reviews creativity research
from a historical perspective and describes pre-computational theories with a
focus on cognitive processes. This is followed by more detailed descriptions of
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two recent computational models of creativity aimed at better understanding
how humans respond to creativity tests and solve problems creatively
(Sections 29.3.1 and 29.3.2). Section 29.3.3 then describes general approaches
that have been successful in computational creativity, while Section 29.4
discusses challenges and promises for computational creativity. This chapter
concludes in Section 29.5 with a summary of the findings reviewed in
this chapter.

29.2 From Historical Pre-Computational Theories
to Process Focus

Focus on creativity is not new in cognitive science and its adjacent
fields. Research on creativity has been performed simultaneously in psychology,
design, and more recently, computer science. Some pre-computational theories
are still strongly influencing modern research, such as Wallas’ (1926) stage
decomposition (Section 29.1), and have echoes in computational concepts and
tools. For example, Koestler (1964) proposed a process of bisociation that is
currently the center of new investigations on concept blending (Eppe et al.,
2018). Mednick’s (1962) Associative Basis of the Creative Process, in which he
stated that “the ability to bring mutually remote ideas into contiguity facilitates
creative problem solving,” echoes flavors of Hebbian learning principles, like
“neurons which fire together, wire together” (Hebb, 1949) and computational
techniques of knowledge organization like semantic networks (Sowa, 1992).
Such echoes are not always intentional, or known between fields, and work in
one field is not always followed by a response from, or awareness of, the other
fields: creativity science is far from being an integrated field, despite the multiple
possibilities for synergies.
A productive part of such synergies is theories and models focused on

cognitive process. The processes most represented so far in the literature are
analogy (Falkenhainer et al., 1989; Gentner, 1983; Hofstadter &Mitchell, 1994;
Langley & Jones, 1988) and metaphor (Indurkhya, 1999; Lakoff & Johnson,
1980, 1999) (see also Chapter 14 in this handbook). Metaphors and analogies
play an important role in re-representation (also known as representational
change, restructuring, and representational redescription) (MacGregor &
Cunningham, 2009; Ohlsson, 1984), a topic that has recently gathered renewed
interest – as can be seen in the recent special issue (Olteteanu & Indurkhya,
2019). Other historically important computational models of creativity include
models of scientific discovery (e.g., Langley et al., 1988; Nersessian, 2008;
Newell et al., 1962), but these models are currently underrepresented, perhaps
on account of their complexity.
The path from cognitive models to computational ones is still not trodden

as often as would be beneficial for an integrated cognitive science of creativity.
The remainder of this chapter focus on computational models of creativity
that have been implemented and simulated to generate data, showcasing their
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successes and limitations. The current challenges and promises of the field are
then underlined in later sections.

29.3 From Cognitive Models of Creativity, to Computational
Models and Cognitive AI

Computational modelers interested in creativity have emphasized dif-
ferent aspects of creativity and aimed for different goals. For example, some
research teams have emphasized functional (or psychological) explanations of
creativity (e.g., what psychological processes are involved in generating creative
ideas and products) while others have emphasized the automatization of tools
that optimize creativity (e.g., regardless of psychological realism). These differ-
ent goals have been referred to as “weak” and “strong” views of computational
creativity respectively (al-Rifaie & Bishop, 2015). This terminology has been
borrowed from earlier discussions of AI (Searle, 1980), where weak AI refers to
a system that can reproduce intelligent behavior (with various degrees of deter-
mination from humans), whereas strong AI requires the model to understand
and have genuine cognitive states. The analogy between AI and cognitive
computational creativity is highly relevant as both intelligence and creativity
have been difficult to define, and are at best defined by examples of intelligent or
creative behavior (respectively). In the case of cognitive computational creativ-
ity, weak computational creativity would correspond to simulating human
creativity (i.e., providing a psychological explanation of creativity), whereas
strong computational creativity would need the model to be genuinely creative,
understand what it means to be creative, and volitionally attempt to generate
creative products.

Interestingly, volitionally attempting such generation and self-awareness of
the generation process are two different things in creativity science, as implicit
processes appear to play an important role in creativity. Thus, an understanding
of the creative process is not necessary to be strongly creative, for AI or for
humans. Csikszentmihalyi (1996), for example, stated that: “Cognitive theorists
believe that ideas, when deprived of conscious direction, follow simple laws of
association. They combine more or less randomly, although seemingly irrele-
vant associations between ideas may occur as a result of a prior connection.”
For example, the Remote Associates Test (RAT) (Mednick & Mednick, 1971),
a task in which one needs to find a word associated with three given words (for
details see Section 29.3.2.2), can be solved in an insightful manner without
much awareness. The incubation phase proposed by Wallas (1926) as part of
the insight process, although not always necessary when solving insight prob-
lems, is still an important implicit process which creativity science and
computational modelers need to grapple with.

A different side of the process awareness conundrum is experienced in
computational creativity. As computational creativity systems are developed
that produce artifacts which can be deemed creative works of art, the human
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user or consumer of such artifacts may have biases related to the “mystery” of
the creativity process. Thus some computational creativity system developers
prefer not to explain the process a system follows to human users/consumers, as
being aware of the process can make them see the product as less creative.
A lack of awareness of their own processes of creativity, together with myth-
ology perpetuated for centuries around creativity, may have led to this bias in
some humans.
This section provides in-depth descriptions of the Explicit-Implicit

Interaction (EII) theory (Hélie & Sun, 2010) and the CreaCogs architecture
(Olteţeanu, 2016a). Both these models emphasize cognitive processes that can
account for human creativity and therefore could be classified as providing a
weak view of cognitive computational creativity. This presentation is followed
by a broader discussion of the main components included in computational
creativity models.

29.3.1 The Explicit–Implicit Integration Theory

Most theories of creative problem solving have focused on either a high-level
stage decomposition or on a process explanation of only one of the stages
(Lubart, 2001). The EII theory (Hélie & Sun, 2010) was an attempt at integrat-
ing and unifying existing theories of creative problem solving in two different
senses. Specifically, EII attempts to integrate previous theories to make them
more complete in order to provide a detailed description of the subprocesses
involved in key stages of creative problem solving. EII starts from Wallas’
(1926) stage decomposition of creative problem solving and provides a detailed
process-based explanation sufficient for a coherent computational implementa-
tion. A conceptual schematic of the EII theory is shown in Figure 29.1.

29.3.1.1 Theory

The EII theory mainly relies on five principles (Sun, 2002). First, the EII theory
assumes the existence of explicit and implicit knowledge residing in two separ-
ate modules. Explicit knowledge is easier to access and verbalize, and is pro-
cessed using rules that follow hard constraints. Using rule-based processing
requires extensive attentional resources. In contrast, implicit knowledge is
inaccessible, harder to verbalize, and typically involves soft constraints satisfac-
tion using associative processing. Implicit associative processing does not
require much attentional resources. Second, explicit and implicit processes are
involved simultaneously under most circumstances. This can be useful because
different representations and types of processing are used to describe the two
types of knowledge. As such, each type of process can end up with similar or
conflicting conclusions that contribute to the overall output. Third, explicit and
implicit knowledge is often redundant. In many cases, explicit and implicit
knowledge can amount to re-descriptions of one another in different represen-
tational forms. For example, knowledge that is initially implicit is often later
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re-coded to form explicit knowledge (Hélie, Proulx, & Lefebvre, 2011; Sun,
Merrill, & Peterson, 2001). Likewise, knowledge that is initially learned expli-
citly (e.g., through verbal instructions) is often later assimilated and re-coded
into an implicit form, usually after extensive practice (Hélie & Cousineau, 2014;
Hélie, Ell, & Ashby, 2015; Sun, 2002). Fourth, explicit and implicit processing
may produce similar or different conclusions. The integration of these conclu-
sions can lead to synergy (Sun, Slusarz, & Terry, 2005). EII assumes that this
synergy is an important component of creative problem solving. Fifth, process-
ing is often iterative according to the EII theory. If the integrated outcome of
explicit and implicit processing does not yield a result in which one is highly
confident, and if there is no time constraint, another round of processing may
occur, which uses the integrated outcome as part of the new input.

29.3.1.2 Computational Model

The EII theory of creative problem solving has been implemented using the
non-action-centered subsystem of the Clarion cognitive architecture (Sun,
2002). The model is composed of two major modules, representing explicit
and implicit knowledge respectively. These two modules are connected through
bidirectional associative memories (Kosko, 1988). In each trial, the task is
simultaneously processed in both modules, and their outputs (response activa-
tions) are integrated in order to determine a response distribution. Once this
distribution is specified, a response is stochastically selected and the mode of the
distribution (i.e., max) is used to estimate the internal confidence level (ICL).
The ICL is a form of meta-cognitive evaluation estimating how confident the

Figure 29.1 Information flow in the EII theory. The gray sections are implicit
while the white sections are explicit.
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agent is in the selected response. If this measure is higher than a predefined
threshold, the selected response is output; otherwise, another iteration of
processing is done in both modules, using the selected response as the new input.
In the model, explicit processing is captured using a two-layer linear connec-

tionist network with localistic representations (i.e., 1 node ¼ 1 concept) while
implicit processing is captured using a nonlinear attractor neural network
(Chartier & Proulx, 2005) with random distributed representations (i.e., con-
cepts are represented by patterns of activation). The key processes for creativity
are (1) the synergistic integration of the results of explicit and implicit process-
ing and (2) response selection. All other equations and details can be found in
Hélie & Sun (2010).
In the connectionist implementation of EII, knowledge integration is defined

by:

oi ¼ Max yi, λ kið Þ�1:1
Xr

j¼1

f jizj

" #
(29.1)

where o ¼ {o1, o2, . . ., om} is the integrated response activation, y ¼ {y1, y2, . . .,
ym} is the result of explicit processing, z ¼ {z1, z2, . . ., zr} is the output of
implicit processing, F ¼ [fji] is a r � m weight matrix connecting implicit
distributed representations with explicit representations, λ is a scaling parameter
specifying the relative weight of implicit processing, and ki is the size of the
implicit distributed representation (number of nodes) connected to yi.

Next, the result of Equation 29.1 is normalized using a Boltzmann equation:

P oið Þ ¼ eoi=αP
je

oj=α
(29.2)

where α is a noise parameter. From Equation 29.2, a response is stochastically
selected and the mode of the Boltzmann distribution is used to estimate the ICL.
This measure represents the relative support for the most likely response (which
may or may not be the stochastically selected response). The selected response is
output if the ICL is higher than threshold ψ, and the response time of the model
is a negative function of the ICL. However, if the ICL is smaller than ψ, the
search process continues with a new iteration using the selected response as the
new input to the model. The algorithm specifying the complete process is
summarized in Table 29.1.

29.3.1.3 Previous Simulation Work

The EII theory has been used to simulate creativity in several cognitive tasks
(Hélie & Sun, 2010). These include incubation in a lexical decision task (Yaniv
& Meyer, 1987); incubation in a free-recall task (Smith & Vela, 1991); know-
ledge restructuring in insight problem solving (Durso, Rea, & Dayton, 1994);
and overshadowing effects in insight problem solving (Schooler, Ohlsson, &
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Brooks, 1993). In the first example, EII reproduced human results showing that
searching for a target word associated with a definition (Phase 1) primed the
same target word in a follow-up lexical decision task (Phase 2), but only when
participants felt they were close to finding the target word in Phase 1. In EII,
feeling close to the solution is represented by a higher ICL, which typically
corresponds to a better search in Phase 1. Hence, high ICL typically means that
EII begins Phase 2 closer to the solution, thus producing priming. In the second
example, EII correctly reproduced a higher reminiscence score in subsequent
free recall tasks when there is a longer delay between the free recall tasks. The
delay between the free recall tasks is considered an incubation period in EII and
implicit processes keep searching for words during that period. Words recalled
during the incubation phase are output at the beginning of the second free recall
task, thus increasing the number of words recalled in the second task and the
likelihood of new words. In the third example, EII reproduced knowledge
restructuring when an insight is reached in problem solving, and showed that
more restructuring is achieved when using a broader search. In EII, this is
achieved by increasing noise in the Boltzmann distribution. Finally, the last
example showed that the likelihood of solving a problem using insight is
reduced when participants are forced to verbalize problem solving strategies.
In EII, this is achieved by lowering the scaling parameter for implicit process-
ing. When only the explicit processing is considered in EII, typical, noncreative
solutions, are generally output.

More recently, EII has been applied to innovation in entrepreneurship (Calic
& Hélie, 2018; Calic, Hélie, Bontis, & Mosakowski, 2019; Calic, Mosakowski,
Bontis, & Hélie, 2022). Specifically, Calic and colleagues used simulations to
extend work that has been done on the effects of paradoxical frames on
creativity (Miron-Spektor, Gino, & Argote, 2011). For example, firms are often
asked to be both collaborative and competitive. Simulation results suggest that
the relationship between paradoxical frames and creative output is nonmono-
tonic – contrary to previous studies (Calic et al., 2019). Specifically, creative
output is enhanced when paradoxes have a balanced effect on the cognitive

Table 29.1 Algorithm of the Clarion implementation of EII

1. Observe the current input information;
2. Simultaneously process the explicit and implicit representations;
3. Compute the integrated activation vector (Equation 29.1) and the hypothesis

distribution (Equation 29.2);
4. Stochastically select a response and estimate the ICL using the mode of the

hypothesis distribution (Equation 29.2):
a. If the ICL is higher than predefined threshold ψ, output the selected response

to effector modules;
b. Else, if there is time, go back to Step 1 and include the selected response in

the input;
5. Compute the response time of the model.
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processes responsible for an individual’s capacity to search for new information
and willingness to tolerate new ideas (Calic & Hélie, 2018). Hence, individuals
with high baseline levels of creative cognition are more likely to suffer negative
creative performance consequences resulting from contradictory demands. For
those individuals, contradictory demands may produce more alternatives,
which increases uncertainty and time to insight (if insight is ever reached).
This suggests that incentives or rewards to resolve contradictions may have
the unintentional effect of reducing creative output in some circumstances
(Calic et al., 2022).

29.3.2 CreaCogs

CreaCogs is a cognitive framework for modeling artificial cognitive agents
which focuses on research questions related to (1) the relationship between
knowledge organization and process, and (2) ways of evaluating cognitive
systems that are comparable to the evaluation of human participants. As a
result, Oltețeanu, Falomir, & Freksa (2018) proposed designing systems for
broader tasks (e.g., creative association, or creative object replacement), and
then evaluating the systems with similar tasks as humans, including
creativity tests (e.g., the RAT as a form of evaluation for creative associ-
ation, or the Alternative Uses Test as a form of evaluation for creative
object replacement).

29.3.2.1 Cognitive Framework (Theory)

CreaCogs has three levels of knowledge – namely a conceptual level (middle),
anchored in a feature space (lower level), and a problem template (top level).
An overview of the architecture is shown in Figure 29.2.
The feature-space level is used in CreaCogs to allow for machine learning and

subsymbolic encoding. For example, Self-Organized Maps (Kohonen, 1982) are
used in the object replacement and object composition (OROC) system (Section
29.3.2.3). Meanwhile, the problem-template level is similar to some forms of
knowledge organization classically posited in the AI and cognitive science
literature, like frames (Minsky, 1975), schemata (Brewer & Treyens, 1981;
Rumelhart, 1984) and scripts (Schank & Abelson, 1977).
The feature-space and problem-template levels are built to offer an answer

to the cognitive grounding question of the conceptual level (Barsalou, 2003;
Barsalou & Wiemer-Hastings, 2005; Gärdenfors, 2004; Sun, 1994). For
example, if a hammer is encoded at the conceptual level, ontological know-
ledge about the hammer is represented in the system by encoding its features
about shape, parts, materials, and color at the feature level. Note that the
conceptual and feature-space levels in CreaCogs are similar to the top and
bottom levels in EII (respectively), except that EII puts more focus on know-
ledge accessibility and “features” in EII may not be interpretable (Hélie & Sun,
2010). Meanwhile action chains and using the hammer in conjunction with
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other objects to obtain some result are encoded at the problem template level.
For example, a hammer can be encoded together with a walnut and the action
of striking it, resulting in separating a walnut from its shell. Alternatively, it
can be encoded together with a nail, a wall, and a striking action resulting in
putting the nail in the wall.

This form of encoding allows for the processes of creative replacement,
inference, and composition (Oltețeanu, 2014). One consequence of grounding
is that concepts with similar properties have points in common (or points in
proximity) in various feature maps. This makes concepts that are similar on
various properties efficiently accessible during computational search processes,
via neighborhood activation or “creative slipping” to other concepts connected
to similar features. In addition, concepts with links to problem templates are
encoded in various contexts. This allows for concepts to have different action
possibilities (affordances) and meaning in different contexts, facilitating context
switches and creative replacement of objects within a current template with
other objects of similar functionality to be performed. For illustration, the
implementation of two different such processes as part of computational cogni-
tive systems is described below.

29.3.2.2 comRAT-C

comRAT-C (Olteţeanu & Falomir, 2015) is a system implemented using the
associative search principles in CreaCogs aimed at solving the RAT. The RAT
(Mednick & Mednick, 1971) measures creativity as a function of the ability of

Figure 29.2 Knowledge organization in the CreaCogs framework. The three
levels are labeled on the left.
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making remote associations. A RAT question is made of three words, like
<Cottage, Swiss, Cake>, to which the human participant has to find a word
that can be related to all three terms. In this case, Cheese is a plausible answer.
In comRAT-C, knowledge is organized using compound structures that the
system has encountered. Thus, if comRAT-C encounters the compound
Cottage Cheese, the two concepts are learned and an associative link is set up
between them. The strength of this associative link is based on frequency
calculations in linguistic corpora.
When solving the RAT, comRAT-C uses its knowledge organization to

trigger its learned associations, thus allowing for convergence on potential
answer words. The query words trigger an upward search in comRAT-C. At
the problem-template level, the structures in which the query words have been
involved are activated, converging upon elements they have in common. The
process is visually depicted in CreaCogs (a) and at the conceptual level (b) in
Figure 29.3. If the three words Cottage, Swiss, and Cake are given as a query,
comRAT-C triggers their associates, and converge upon potential answers. In
Figure 29.3, words Swiss and Cake trigger the word Chocolate, and all three
words trigger the word Cheese, which will be proposed as a potential answer.
This associative process is aimed at preserving the “pop-up” effect of the

answer, as human participants often solve RAT problems via insight and are
not aware of a search process, but rather experience finding the answer directly.
The process itself could bear expansions to larger chunks of knowledge, not just
words, as the RAT has been shown to correlate with the ability to successfully
solve insight problems (Schooler & Melcher, 1995).
The activation and convergence process is further influenced by the strength

of connections between the known words. The frequency of appearance of
compound words is used to calculate the probability that a particular answer
will be found (wx), given a particular query item (wa), given that ea are all
expressions in which wa appears, as shown in Equation 29.3:

P wxjwa½ � ¼ fr wa,wxð ÞPm
i¼1fr eað Þ (29.3)

comRAT-C then sums up and equally divides the influence of each query item
to calculate the mean probability. Note that this implementation is meant as an
initial prototype, to which assumptions can be added and modeled. For
example, it is sensible to hypothesize that word order presentation (if successive
or left to right) may affect query item influence, and such a hypothesis can be
used to parametrize the search process.
Initial results show that comRAT-C could answer 97.9 percent of the

queries for which it had all needed associations from the normative data queries
proposed by Bowden and Jung-Beeman (2003), and 30.3 percent of the queries
for which it had knowledge of only two of the needed associations. The rest of
the answers were however not all incorrect. Interestingly, new plausible answers
were also offered for some queries, rather than the “correct” answers provided
in Bowden and Jung-Beeman. For example, to the query <Home, Sea, Bed>
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Figure 29.3 Visual depiction of the comRAT-C process (a) and (b) at the concept level. c ¼ concept;
PT ¼ problem template.
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the expected correct answer was Water; the answer provided by comRAT-C –

Sick – is also plausible. This raised questions about queries that may have
multiple correct answers; for these, computational implementations like
comRAT-C may be able to correct previous expectations in normative data.
In order to compare the performance of comRAT-C’s process with that of

human participants, the probability of comRAT-C solving the queries was
compared with query difficulty as indicated by normative data from human
participants. The Pearson correlation between human accuracy and probability
was statistically significant. The correlation between response times and
probability was also statistically significant. comRAT-C thus can be used as a
tool to further model and study the creative association process.

29.3.2.3 OROC

Another system implemented with CreaCogs principles was OROC (Olteţeanu
& Falomir, 2016). OROC focused on creative object replacement and object
composition. It was evaluated with the Alternative Uses Test (Guilford, 1956,
1967). Object replacement is implemented in OROC using a CreaCogs down-
ward search principle. When an object cannot be found, OROC searches for a
creative replacement by triggering knowledge about properties of the needed
object, and uses these properties to search for other objects anchored in the
same or similar features. As shown in Figure 29.4a, if OROC needs to perform
a task for which a CUP was encoded as the traditional object to use (e.g., it
needs an object with the affordance to drink from), and a cup is not present in
the environment, the system searches in its feature spaces for (1) other objects
encoded with similar features as the needed object (or a subset thereof ), or (2)
objects encoded in the neighborhood of those features. Thus, OROC imple-
ments the hypothesis that the computational system can use objects that have
subsets of the same features or of similar features for similar purposes, and that
proposing these objects would make sense and act as a creative replacement.
Object composition is performed based on object replacement. For example,

if OROC knows that a Fishing Rod can be split into a Rod, Line, and Hook,
the system can use object replacement and recomposition to attempt to create a
Fishing rod from a Stick, Rope, and Paperclip (Figure 29.4b).
In the object domain, OROC considers some features like shape and material

more important than others (e.g., color), though these would probably depend
on the feature that provides the highest degree of functionality for a particular
affordance. These assumptions are in line with known cognitive research sug-
gesting that features that are important in categorizing objects may also play a
role in knowledge organization and creative inference. For example, basing its
inferences on the shape and material domain, OROC’s object replacement and
composition were shown to produce results that were deemed creative by
human evaluators. To bring the system answers to a form in which they could
be evaluated and compared to a benchmark, OROC was modified as follows:
instead of answering what object could be used to replace an initial object, the
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system produced alternative uses for the initial object by triggering the affor-
dances of the objects it could be replaced with. For example, for the question
“What else could you use the Cup for,” OROC finds replacement objects, like a
bowl, a bucket, and a vase, and lets “Cup” inherit the affordances of these
objects (creative inference mode) – like “You could use it to carry water” (from
bucket) or “You could use it to store food” (from bowl) or “You could use it to
put flowers in” (from vase).

The evaluation of the OROC system aims for the same comparability to
human answers, and is done in two ways: (a) using human judges, which
provide a Novelty, Likability, and Usability Likert rating to alternative uses
proposed by OROC (without knowing they were produced by an artificial
system); (b) comparison of processes to those observed in think aloud protocols
(Gilhooly et al., 2007).

29.3.3 Idea Generation, Search, and Evaluation

The descriptions of EII (Hélie & Sun, 2010) and CreaCogs (Oltețeanu et al.,
2018) highlight three important ideas with a long history in creativity research:
idea generation, search, and evaluation (Finke et al., 1992). These three com-
ponents of computational creativity are now discussed in turn.

29.3.3.1 Idea Generation: A Darwinian Account

Idea generation is often associated with the evolutionary theory of creativity
(Campbell, 1960; Johnson-Laird, 1988). In its original form, the evolutionary
theory of creativity assumes Darwin’s three principles (i.e., blind variation,
evaluation/selection, and retention). This is in essence how the EII theory of
creativity generates ideas and reaches insight. Implicit noisy representations are
processed in the bottom (implicit) level until the network converges to a stable
state (blind variation). The resulting state is then translated into a symbolic
representation and integrated into the explicit level. Insight is reached if the

Figure 29.4 Object replacement (a) and object composition (b) in the
OROC system.
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integrated activation crossed a threshold (evaluation/selection). Otherwise the
integrated representation is sent back to the bottom-level for more processing
(retention).
Perlovsky and Levine (2012) later proposed a conceptual framework that

shares similarity with the idea generation process in EII. Specifically, the
process of translating vague (implicit) representations into crisp (linguistic)
representations in EII (originally proposed in Sun et al., 2001) is similar to
the framework proposed by Perlovsky and Levine (2012), who also proposed
that only the final state of processing is accessible to consciousness. According
to Perlovsky and Levine, the main difference between creative and noncreative
individuals is the features that they emphasize during processing.
Fedor and colleagues (2017) also proposed a computational model that has a

similar implementation to EII. Specifically, Fedor et al. used a population of
attractor networks to generate ideas and recombined the output of the attractor
networks. One interesting innovation in Fedor et al. is the alternation between
learning periods (where the network weights are modified) and processing
periods (where ideas are generated).
Despite the success of existing Darwinian approaches to idea generation,

Gabora (2005) argued that evolutionary theories of creativity should not be
expected to follow Darwinian principles. Specifically, Gabora explains that
one implicit requirement of Darwinian principles is that ideas undergoing
selective pressure need to be generated at the same time (or during the same
iteration). However, each idea generated affects the context in which other
ideas are generated, so multiple ideas do not undergo the exact same
selective pressure.
Despite the criticism of Darwinian principles, Gabora argues that evolution-

ary principles can still be used to account for creativity, albeit using a
nonDarwinian approach. She advocates that evolution can be broadly
described by recursive context-driven actualization of potential (CAP). CAP
are composed of a deterministic segment, which dictates how ideas change state,
and a probabilistic segment, which affects context. One important difference
between this approach and Darwinian evolutionary theories of creativity is that
selection does not occur in CAP (Gabora, 2005). Ideas are generated sequen-
tially and enrich the context in which following ideas are generated.
Accordingly, the creativity of early ideas is expected to be low, increase as the
iterative process progresses, and eventually become low again as the potential of
the creator becomes exhausted.

29.3.3.2 Search: A Network Approach

Networks have a long history of modeling semantic memory structures in
cognitive psychology (e.g., Collins & Loftus, 1975), and early theories of
creativity have assumed that memory structures would affect creative output.
For example, Mednick (1962) proposed the associationistic theory of creativity,
which predicted that an important distinction between high and low creativity
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individuals is the steepness of the association strengths in semantic memory.
Specifically, ideas that are judged as more creative are less likely to be generated
because they tend to be more remote in the semantic network. According to
Mednick, highly creative individuals have a flatter associative hierarchy in their
semantic network, and as a result are more likely to reach remote associations.
In contrast, lower creativity individuals would have a few strong associations
and many weak associations. Strong associations would be retrieved repeatedly
and prevent more remote (creative) associations from being retrieved.

Network-based approaches to computational creativity modeling have been
two-pronged. First, connectionist models have been used for creativity research
in cognitive science and AI (e.g., Boden, 2004; Duch, 2006; Hélie & Sun, 2010;
Martindale, 1995). According to Martindale (1995), a “noisy” neural network,
where a random signal is added to the connection weights or inserted in the
activation function, can be used to generate new ideas. This approach is related
to Mednick’s (1962) associationistic theory of creativity because the noise level
can be used to represent the “flatness” of the associative hierarchy in creative
individuals by making the network activation more homogeneous. Hence, more
creative individuals could be modeled by using more noise whereas less creative
individuals would be modeled by using less noise. This addition of noise in
neural networks is similar to Duch’s (2006) “chaotic” activation and Boden’s R-
unpredictability (i.e., pragmatic unpredictability).

More recent network-based computational creativity modeling work has
focused on using graph theory to test the underlying assumption of the
associationistic theory of creativity that the semantic networks of low and high
creative individuals differ, and finding ways to quantify these differences
(Kenett & Faust, 2019; Siew et al., 2019). For example, Marupaka, Iyer, and
Minai (2012) tested the effect of graph connectivity on idea generation. Using
simulation, they showed that networks with small-world and scale-free proper-
ties generate more unique conceptual combinations. These predictions were
later confirmed by Kenett, Anaki, and Faust (2014), who showed that the
semantic network of highly creative individuals has a lower average shortest
path length and modularity (Q) value, as well as a higher small-world-ness (S)
value. This facilitates a more efficient flow of information within the network
and easier production of remote associations (Kenett, 2019). These findings are
supported by measuring the forward flow of thought of highly creative individ-
uals (e.g., artists, entrepreneurs, etc.: Gray et al., 2019). Finally, the semantic
network of highly creative individuals is also more robust to network percola-
tion (gradual removal of weak links in an ordered manner), showing that their
structure degrades more gracefully (Kenett et al., 2018).

CreaCogs (Oltețeanu et al., 2018) implements this idea by relying on search
implemented as spreading of activation in a semantic network. For example,
comRAT-C (Olteţeanu & Falomir, 2015) solves RAT problems by activating
the cue words in a semantic network. Activation spreads from the cue words,
and the solution is found when activation reaches a node from multiple edges
simultaneously. Insight is experienced when multiple sources of activation add
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up on the same node. This is similar to the synergistic integration needed in EII
to reach the insight threshold (Hélie & Sun, 2010).

29.3.3.3 Evaluation: A Role for Decision-Making

Regardless of whether an idea was found through search or an evolutionary
process, whether an insight was experienced or not, evaluation is a critical step.
In evolutionary theories, the ideas generated are typically evaluated using a
fitness function (Fedor et al., 2017). In EII, ideas are evaluated using the ICL,
which measures the convergence between the results of explicit and implicit
processing (Hélie & Sun, 2010). ComRAT-C (Olteţeanu & Falomir, 2015)
similarly values the overlap in activation received from multiple sources.
Unfortunately, in all these models, the evaluation aspect is the part of creativity
that is the least developed. Fitness functions are typically hard-coded in the
model, and computing convergence (as in EII and CreaCogs) is not
always useful.
A detailed implementation of evaluation would require a sophisticated model

of decision-making, which would not only compute a value for the idea but also
decide whether the idea is ready to be output (the threshold in EII). Such a
sophisticated decision-making model would require implementing motivational
and emotional mechanisms, which is a challenge in its own right (Perlovsky &
Levine, 2012; Sun, 2002). This last aspect of computational creativity is the least
developed and an important limitation preventing the fully-fledged implemen-
tation of hard computational creativity. Yet this understudied area of creativity
might be one of the most important (Hélie et al., 2017).

29.4 Challenges and Promises

29.4.1 Challenges Related to Autonomy

One important limitation of models implementing weak computational creativ-
ity (such as EII and CreaCogs) is that the simulated agents lack genuine
autonomy (Jennings, 2010). Creative autonomy is critical to achieve hard
computational creativity: it ensures that creativity is assigned to the simulated
agent and not the software engineer. According to Jennings (2010), creative
autonomy requires (1) autonomous evaluation, (2) autonomous change, and (3)
nonrandomness. The first two criteria require the creative agent to be able to
evaluate its product – i.e., decide if it likes the product or not – and potentially
modify its evaluation function to generate more creative products (Augello
et al., 2015). Jordanous (2016) suggests that computational creativity can be
evaluated from four different perspectives (the four Ps): producer (is the agent
creative), process (what did the agent do), product (is the result creative), and
press/environment (how is the product received). In terms of the four Ps,
Jennings’ criteria are important for the “Producer” perspective. The last
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criterion is required to ensure that the evaluation function is not modified
randomly until the agent luckily finds a solution. Nonrandomness is important
to meet the “Process” perspective of creativity. Randomly generating products
are typically not considered creative by external evaluators (the “Press/
Environment” perspective).

The three criteria proposed by Jennings (2010) address three of the four Ps
of creativity. What is missing is the “Product” perspective. Accordingly, a
fourth criterion is proposed, namely intrinsic motivation (Saunders, 2012).
A creative agent does not create solely to meet outside demands (Hélie & Sun,
2010). Intrinsic motivation ensures that the agent decides what and when it
wants to create. Intrinsic motivation should lead the creative agent to not only
learn to adjust its evaluation function, but also the means of idea generation
and production. Toivonen and Gross (2015) argue that both product gener-
ation and evaluation functions can be learned autonomously by using
data mining.

29.4.2 Challenges Related to Comparability Between Different
Creativity Evaluation Tools

Multiple creativity evaluation tools and tests exist – the RAT (Mednick &
Mednick, 1971), the Alternative Uses Test (Guilford, 1967), Torrance Tests of
Creative Thinking (Kim, 2006), the Wallach-Kogan Tests (Wallach & Kogan,
1965), riddles (used by, e.g., Whitt & Prentice, 1977; Qiu et al., 2008), rebus
puzzles (Threadgold, Marsh, & Ball, 2018), insight tests (Duncker, 1945;
Maier, 1931; Saugstad & Raaheim, 1957), etc. However, no clear landscape
has been developed of (1) which different tests and tools measure what
creativity factors; (2) how well these measures correlate or overlap; and (3)
which factors remain unaccounted for by existing empirical evaluation tools.
Providing for such a landscape would allow for progress in the field to proceed
in a more integrative manner, and for the various tools and tests to be
deployed coherently by researchers from other fields that only aim to measure
creativity as a factor that may influence other phenomena of interest. Another
important limitation is that most of these tests are focused on verbal creativ-
ity, whereas many models of creativity suggest that the creative process is not
necessarily verbal (e.g., Fedor et al., 2017; Hélie & Sun, 2010; Perlovsky &
Levine, 2012). Hence these tests may not be informative about the creativity
process per se but instead on how they are translated into a linguistic format
(or reach awareness).

29.4.3 Challenges Related to Models

Some of the challenges related to cognitive and computational models are
influenced by the challenges listed in Section 29.4.2; integrated computational
models that can be applied to multiple tasks are uncommon. Because most
models have been designed specifically to achieve one task, they are difficult to
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compare. Furthermore, comparing the processes implemented by the models is
not possible if they do not initially include the same amount of knowledge.
Various AI fields have benefited from establishing benchmarks – generally

consisting of batteries of tests and tasks that models, agents, and robots need to
be able to solve and pass, and on which their performance could be compared.
Ideally an initial categorization of creativity processes would exist, even if very
open ended, to allow for such standardization. For example, task-based bench-
marks could exist to model tasks of divergent thinking or creative problem
solving. Likewise, process-based benchmarks could be created for the process of
incubation or insight. Until then, the field remains quite disparate.
Furthermore, the differentiation between cognitive models and computa-

tional implementation artefacts is not always clear. Clarifying which parts of
a model aim to emulate cognitive processes, and which are meant to enable such
processes, would facilitate comparisons. For example, the most popular imple-
mentation of the EII theory of creative problem solving (Hélie & Sun, 2010)
used the Clarion cognitive architecture (Sun et al., 2001, 2005). However, other
implementations of the EII theory have been proposed (e.g., EII-BF, see Hélie
& Sun, 2008, 2009). While the EII-BF and Clarion implementations of EII
differ, they are both consistent with the EII theory and include all the EII
principles. It is thus important to distinguish theoretical principles from com-
putational convenience. This allows for defining a priori the scope of any theory
or model of creativity, and for setting boundaries about what can count as
evidence supporting or invalidating a theory or model. Accordingly, if one
could show that the Clarion implementation of EII cannot fit a data set related
to incubation in problem solving, this would be problematic for the Clarion
implementation of EII but not necessarily for the EII theory of creative problem
solving. However, if one could show that an insight problem is solved using
only explicit or implicit knowledge/processing, this would be a problem for the
EII theory as a whole. Whether simulation results are mostly due to theoretical
strengths, the cognitive model design, or to computational tools used and
implementation type, should be clarified.

29.4.4 Challenges Related to Comparability in Evaluation of Creativity
(Between Models and Humans)

The comparability between cognitive models and humans is also challenging.
An important question is at which point should comparability be established?
The cognitive system comRAT-C, for example, aims for comparability at the
performance level with accuracy and response times. The performance of
OROC is compared to the average performance of humans on Fluency,
Novelty, Usability, and Likability metrics (same as human participants).
OROC’s process is also compared to other processes observed in think-aloud
protocols given for the same task in the literature.
A unified schema of comparison does not yet exist, and it may very well be

that such a schema needs to be developed at a conceptual level that differs
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depending on the task. Marr’s (1982) levels of explanation can be useful here.
Comparability could be established at the computational (performance), algo-
rithmic (process), and implementation (biophysical) levels. While there are no
standard benchmarks, current attempts have been mostly focused on the com-
putational (performance) and algorithmic (process) levels. As progress is made,
future models should be able to account for benchmarks at the implementation
level, and hopefully a unified model will eventually be available to tie in the
different levels of explanations (similar to what the computational cognitive
neuroscience approach is proposing for other cognitive functions, e.g., Ashby &
Hélie, 2011).

29.4.5 Promises Related to the Creation of Large-Scale Parametrized
Creativity Tests

Though widely used in creativity research, the RAT has mostly been created
manually, with the biggest dataset of such stimuli being Bowden and Jung-
Beeman’s 144 compound RAT items with normative data on human perform-
ance (Bowden & Jung-Beeman, 2003).

The development of the comRAT-C model (Olteţeanu & Falomir, 2015) was
based on the understanding that, in this type of knowledge organization, each
word connected to more than three other words is also a potential answer. With
the computational comRAT-G system, Oltețeanu, Schultheis, and Dyer (2018)
were able to create an ample set of seventeen million RAT query words in
American English using potential answer words from comRAT-C’s knowledge
base and combinatorics. While not all stimuli may be interesting, such a large
dataset can be highly useful as a researcher’s tool, allowing for multiple highly
precise forms of stimulus selection. Potential uses include: (1) the study of RAT
query difficulty; (2) the parametrization of experimental designs based on query
or answer words (e.g., frequency or probability); and (3) checking whether
multiple correct answers are possible. For example, the dataset created with
comRAT-G was used to find that frequency and probability factors separately
influence the creative process (Oltețeanu & Schultheis, 2019). Finally, big item
datasets can help understand why some stimuli may be considered more inter-
esting by human participants or require more creativity than others.

While so far compound RAT stimuli were the norm in the literature,
Worthen and Clark (1971) have proposed that Mednick’s initial set of stimuli
was actually mixed, containing both compound (cheese ~ cake) and functional
(apple ~ pear) relationships between question words and answer words.
However, the set of items proposed by Worthen and Clark as an appendix
was lost in transport to the Library of Congress. A different form of comRAT-
G, comRAT-GF was used to recreate functional RAT queries (Olteţeanu,
Schöttner, & Schuberth, 2019) based on Worthen and Clark’s hypothesis.
These computationally constructed items can now be used to examine whether
functional and compound items are indeed different (from a cognitive perspec-
tive). A similar attempt at computationally creating stimuli for practical
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object-based insight problems is underway with elements of CreaCogs
(Olteteanu, 2016b). However, such problems require much more common
sense knowledge to create (Sun, 1994).
Computational generation of ample sets of stimuli offers numerous advan-

tages to research in terms of design precision and parametrization, and may
very well play a role in the future. The question of whether all such computa-
tionally generated items require (or are perceived as requiring) creativity to
solve can only be answered empirically. Computational systems for stimulus
generation may play a useful role, even if they required further selection by
human investigators.

29.5 Conclusion

Computational creativity is a fascinating emerging field of cognitive
science and AI. Much progress has been made in the last fifty years since Newell
and colleagues (1962) first proposed a computational model of scientific discov-
ery. This chapter reviewed a selected set of models and approaches that have
been useful in better understanding human creativity, including EII (Hélie &
Sun, 2010) and CreaCogs (Oltețeanu, 2014). Both systems lack the creative
autonomy required for hard computational creativity. However, EII has been
useful in integrating many disparate theories of creativity in problem solving
and is now being used to study innovation in management. CreaCogs systems
have been useful in understanding the relationship between knowledge organ-
ization and process, and in comparative evaluation between cognitive systems
and human participants. Despite the progress so far being in weak computa-
tional creativity, and the many other limitations discussed in this chapter,
computational creativity models keep improving collective understanding of
creativity and allow for better measurement and tools to improve
creative output.
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30 Computational Models of
Emotion and Cognition-
Emotion Interaction
Eva Hudlicka

30.1 Introduction

The past two decades have witnessed a rapid growth in computational
emotion modeling (Bosse et al., 2014; Ojha et al., 2020; Rodriguez & Ramos,
2014; Sanchez-Lopez & Cerezo, 2019), within the broader area of affective
computing (Picard, 1997). Researchers in cognitive science, computational
psychology and affective science, AI, Human-Computer Interaction (HCI),
intelligent virtual agents (IVA), robotics and human-robot interaction (HRI),
and gaming are developing models of emotion, both stand-alone but typically
embedded within agent architectures. The majority of existing models were
developed to improve human–computer interaction, most frequently by enhan-
cing the behavior of virtual agents or robots: their overall autonomy, believ-
ability (e.g., affective and social realism of a virtual agent acting as a coach) or
their performance on a specific task (e.g., effectiveness of search-and-rescue
robots) (e.g., Alfonso et al., 2017; Andre et al., 2000; Becker-Asano et al., 2013,
2014; Dias et al. 2014; Kramer et al., 2013; Lewis & Canamero, 2014, 2017;
deRosis et al., 2003; Prendinger & Ishizuka, 2004; Scheutz & Sloman, 2001).
Emotion models are also being developed for basic research purposes, to help
elucidate mechanisms mediating affective processes in biological agents (Bosse,
2017; Broekens et al., 2015; Broekens & Dai, 2019; Hesp et al., 2021; Hudlicka,
2008b, 2014c; Lewis & Canamero, 2016, 2019;).

The objective of this chapter is to provide a comprehensive introduction to
the emerging area of computational emotion modeling, focusing on models at
the psychological level (vs. neuroscience level), which are typically, although
not exclusively, implemented via symbolic representational and inferencing
formalism, and within the context of a symbolic agent architecture.

30.1.1 Terminology: What Is Being Modeled in Models of Emotion?

In spite of the many stand-alone emotion models, and numerous agent and
robot architectures developed to date, there is still a lack of consistency
regarding what exactly is meant by emotion modeling. The term, unfortu-
nately, continues to be used rather loosely in the affective computing litera-
ture, and can refer to modeling affective processing, but also to implementing
emotion expression in agents, recognition of emotions by machines, or
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affective user modeling. Hudlicka (2008a) previously suggested that the term
emotion modeling be reserved for computational models that model the gener-
ation of emotions and their effects on cognitive processes and behavior,
including expressive behavior. This is the sense in which the term is used
throughout this chapter.
Another issue arises in regards to the term emotion itself, and its use in the

cognitive science, affective computing, AI and HCI communities, where it can
refer to a wide range of affective states, characterized by varying degrees of
complexity, temporal patterns and modalities (e.g., cognitive, physiological,
expressive). Contributing to the terminological confusion is the frequent use
of the terms emotion or affective to refer to a range of mental and physiological
states that are either mixed affective-cognitive states (e.g., confusion), or even
states that are not affective at all (e.g., fatigue). A working definition of
emotion, for modeling purposes, is therefore provided in Section 30.2.

30.1.2 Models of Emotion versus Models of Cognition-Emotion
Interactions

When interest in emotion research resumed, following its relative neglect during
the behaviorist and cognitivist eras, one of the objectives was to establish the
chronological sequence of cognitive and affective processing during emotion
generation: the primacy of emotion vs. primacy of cognition debate. Arguing
for the primacy of affect, Zajonc summarized the perspective of “primacy of
emotions” in the statement “preferences need no inferences” (Zajonc, 1984).
Arguing for the “primacy of cognition,” Lazarus emphasized the critical role of
cognition in mediating the appraisal of an agent’s current situation, which then
determines the resulting emotion (Lazarus, 1984).
As is the case with many dichotomies, the hard line between these two

perspectives began to blur as research in cognitive and affective neuroscience
increasingly demonstrated the interdependence and tight coupling between
cognitive and affective processing, and as the terminology used in the
“primacy” debate was refined and clarified; e.g., the role of unconscious cogni-
tive processing (via automatic processing) during cognitive appraisal. The
validity and utility of drawing rigid boundaries between emotion and cognition
was thus brought into question, with emerging neuroscience data demonstrat-
ing that many neural circuits are shared by what has traditionally been categor-
ized as emotional or cognitive processing (e.g., Gray et al., 2005; Pessoa &
McMenamin, 2017; Phelps, 2006).
The interdependence between cognitive and affective processing also makes

the distinction between models of emotion and models of cognition-emotion
interactions questionable. Cognitive processing, whether conscious or uncon-
scious, typically plays a central role in the generation of emotions, via a range of
interpretive processes comprising the evaluation of the current situation and its
relevance for the agent’s well-being (Scherer, 2001a, 2005, 2009). In turn,
emotions and moods strongly influence cognitive processing, attention, and
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perception, with a range of specific effects associated with particular emotions
(Bar-Haim et al., 2007), emotion components (e.g., specific appraisal variables)
(Lerner & Tiedens, 2006; Scherer & Moors, 2019) and moods (Forgas, 2017)
(see Table 30.2). In other words, although it is possible to model some cognitive
processing without considering emotions, it is not possible to model affective
processing (at the psychological level) without involving at least some degree of
cognition. The distinction between models of emotion and models of emotion-
cognition interaction thus becomes less meaningful.

Thus, although the term emotion model is used throughout this chapter, it
should be understood that most of the existing emotion models at the psycho-
logical level include some aspects of cognitive processing, particularly models
implementing appraisal and embedded within agent architectures. In the major-
ity of existing models, cognition is the primary process mediating emotion
generation (see Section 30.5.2). Some models also address the effects of
emotions on cognitive and perceptual processes (see Sections 30.5.2 and
30.5.6). Similarly, the term affective architecture (or emotion architecture) is
somewhat misleading, because modeling emotions within an agent architecture
almost always involves cognition, and therefore the term cognitive-affective
architecture is more accurate; for convenience’s sake, in this chapter the term
architecture therefore refers to a cognitive-affective architecture.

30.1.3 Research versus Applied Models

Emotion models and agent architectures are developed for a variety of object-
ives but can broadly be categorized into research (also referred to as theoretical)
and applied (Becker-Asano, 2008; Broekens, 2010; Hudlicka, 2012). Research
models aim to elucidate the mechanisms mediating affective processing in
biological agents (e.g., mechanisms mediating emotion effects on cognition;
mechanisms underlying affective disorders). To this end, research models aim
to emulate (vs. simulate) (some aspects of ) affective processing in biological
agents. In contrast, the objective of applied models is to enhance human–
machine interaction (e.g., affective realism of virtual agents, social robots, or
nonplaying characters in games), or to improve a synthetic agent’s autonomy
and performance on some task (e.g., search-and-rescue robot effectiveness). To
this end, it is sufficient to simulate the necessary affective processing to achieve
the objectives, and correspondence to the processes in biological agents is
not essential.

While the development of applied emotion models poses a number of chal-
lenges (e.g., achieving the desired degree of agent affective realism), nonetheless
the need for emulating biological mechanisms in research models constrains
their design and implementation, thereby making their development signifi-
cantly more challenging. The distinction between research and applied models
is important, since their aims, modeling approaches, and criteria for validation
and evaluation are quite distinct. However, as Broekens points out (Broekens
et al., 2013), these two categories should not be viewed as mutually exclusive,
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since the development and evaluation of applied models can also advance the
understanding of biological affective phenomena.

30.1.4 Chapter Structure

The chapter is organized as follows. Section 30.2 provides a brief overview of
the relevant emotion research from psychology. Section 30.3 discusses the
theoretical foundations for computational emotion models. Section 30.4 intro-
duces a computational analytical framework for conceptualizing emotion mod-
eling. Section 30.5 discusses model design and development and Section 30.6
describes a specific architecture in more detail. Section 30.7 concludes with a
brief discussion of the evaluation of applied models and validation of research
models, some open questions and challenges, and suggestions for near-term
priorities to advance the state of the art.

30.2 Emotion Research Background

Psychological theories of emotion, and empirical data from emotion
research in psychology and neuroscience, provide foundations for the
development of theoretically and empirically grounded emotion models. This
section provides an overview of the relevant research from psychology. An
extensive discussion of emotion research can be found in (Barrett et al., 2016;
Davidson et al., 2003; Fox et al., 2018; Sander & Scherer, 2009; Scarantino,
2021).

30.2.1 Working Definition of Emotions

In spite of the significant progress in emotion research over the past three
decades, emotion researchers have not yet agreed upon an established
definition of emotions, although not for lack of trying. Nearly four decades
ago over 100 definitions were summarized (Kleinginna & Kleinginna, 1981) and
the number has grown since. Nonetheless, some agreement does exist.
Alternative definitions are offered from the multiple existing theoretical per-
spectives. Reisenzein and colleagues offer a broad definition, cast in terms of the
attributes of emotions as “transitory states . . . denoted by ordinary language
words such as ‘happiness’, ‘sadness’ . . . occurring as reactions to the
perceptions, imagination, or the thinking about certain objects . . . (events or
states of affairs) [with both] subjective and objective manifestations”
(Reisenzein et al., 2020, p. 81), where subjective manifestations are the pleasant
or unpleasant feelings, directed at the eliciting objects, and objective manifest-
ations include actions, expressions, and physiological changes. A narrower
definition, consistent with basic emotion theories and some appraisal theories,
defines emotions as states reflecting evaluative judgments of the environment,
the self, and other agents, in light of the agent’s goals and beliefs, which then
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motivate and coordinate adaptive behavior. This definition is a useful working
definition of emotions for modeling purposes.

30.2.2 Types of Affective Factors: States and Traits

In the emotion research literature, the term emotion refers to a transient state,
lasting for seconds or minutes, typically associated with identifiable triggering
stimuli and characteristic patterns of expressions and behavior. (Complex social
emotions, involving more complex cognitive processing, exhibit greater vari-
abilities in both triggers and manifestations.) Emotions can thus be contrasted
with other terms describing affective phenomena: moods, sharing many features
with emotions but typically less intense and lasting longer (hours to months),
often lacking awareness of a specific eliciting stimulus (Frijda, 1993), and
exhibiting diffuse behavioral tendencies or not associated with a specific action
at all; affective states, undifferentiated positive or negative “feelings” and
associated behavior tendencies (approach, avoid); and feelings, a problematic
and ill-defined construct from a modeling perspective. (Averill points out that
“feelings are neither necessary nor sufficient conditions for being in an
emotional state” (1994).)

In addition to the transient states, there are also stable traits, some of which
influence affective processing; e.g., neuroticism, one of the “Big Five” traits
(Costa & McCrae, 1992), which is associated with affective reactivity and a
tendency toward experiencing negative emotions. An in-depth discussion of
emotional traits can be found in (Reisenzein et al., 2020).

30.2.3 The Problematic Notion of “Basic” Emotions

Emotions are often organized into various sets of categories, including: basic
(e.g., anger, joy, fear, sadness) and social (e.g., pride, guilt, shame, envy,
jealousy, gratitude); and utilitarian (anger, sadness, joy, fear, shame, pride)
and aesthetic (e.g., awe, surprise, admiration) (Scherer, 2005). The notion of
basic emotions remains problematic, and even the term basic is ambiguous, and
can refer to biologically, psychologically, or conceptually basic (Ortony &
Turner, 1990; Scarantino & Griffiths, 2011; Turner & Ortony, 1992). The most
common meaning refers to biologically basic, and basic emotion theory (BET)
proposes the existence of a small set of emotions characterized by distinct and
universal triggers and expressive manifestations, innate emotion-specific
circuitry, characteristic physiological signatures, and evolutionary significance,
facilitating rapid reactions to survival-critical situations (Ekman, 1992, 1994;
Ekman & Cordaro, 2011; Izard, 1993; Oatley & Johnson-Laird, 1987;
Panskepp, 1998; Panskepp & Watt, 2011). (Psychologically basic refers to
emotions which cannot be further decomposed into more “primitive” constitu-
ent emotions, and conceptually basic refers to a set of emotions which represent
basic level categories in a taxonomy of lexical emotion terms (Scarantino &
Griffiths, 2011).)
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Whether a set of basic emotions exists, and exactly which emotions are basic
and how many basic emotions there are, continues to be debated, as does the
utility of the concept itself. Proponents of basic emotion theory include Ekman
(1992; Ekman & Cordaro, 2011) and Panskepp (1998; Panskepp & Watt, 2011;
Scarantino, 2018), and researchers continue to seek evidence supporting the
existence of distinct feature sets characterizing basic emotions (e.g., facial
expressions (Jack et al., 2014); brain networks (Hamann, 2012)). Opponents
(e.g., Ortony & Turner, 1990; Turner & Ortony, 1992; Barrett, 2014; Lindquist
et al., 2012) have argued that there is insufficient evidence to support the notion
of biologically basic emotions, and that the notion of psychologically basic
emotions suffers from conceptual and logical gaps and contradictions. Their
argument goes further to suggest that the very notion of basic emotions is not
useful, and that the emotional primitives ought to be emotion components, such
as individual appraisals, subcomponents of facial expressions, or general
behavioral tendencies (e.g., approach vs. avoid), rather than emotions them-
selves. However, more recently, Scarantino and Griffiths (2011) analyze Ortony
and Turner’s arguments against basic emotions, and conclude that the notion of
basic emotions, in each of its senses, remains a useful construct.
Historically, the exact number of emotions considered to be basic has varied,

but typically includes the following: joy, sadness, anger, fear, disgust, and
surprise. Recent work by Jack and colleagues (Jack et al., 2014), analyzing
facial expression data and taking into consideration expression dynamics,
suggests that there may be four biologically basic emotions: joy, sadness, fear/
surprise, and disgust/anger, which represent initial responses to emotional
stimuli that are later (within the emotion episode) refined into the set of six
emotions listed above. Space does not permit further discussion of the notion of
emotion primitives, including emerging evidence that emotions may be most
usefully analyzed in terms of their subcomponents (Scherer & Ellgring, 2007;
Scherer & Moors, 2019; Ortony & Turner, 1990) (e.g., individual appraisals
inducing particular facial muscle movement (Jack et al., 2014) or biasing effect
on cognition (Lerner & Tiedens, 2006))), rather than in terms of distinct
emotion terms.
Given the complexity of emotion categorization, and the ongoing lack of

convergence regarding which emotions belong to which set, this chapter adopts
a term used by Scherer (2009) to refer to the most frequently studied emotions
(anger, joy, fear, sadness, disgust, surprise) as the “Big Six.” The majority of
existing models of emotions represent a subset of the “Big Six.”

30.2.4 Emotions as Multi-Modal Phenomena

An important, and according to some researchers even defining (e.g., Scherer,
2005), characteristic of many emotions is their multi-modal nature. (Note,
however, that not all emotion researchers subscribe to this view of a multi-
modal “emotion syndrome,” and consider emotions to be purely mental states
(e.g., Reisenzein et al., 2020).)
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The most visible is the behavioral/expressive modality, where the expressive
and action-oriented characteristics of emotions are manifested; e.g., facial
expressions, speech, gestures, posture, movement quality (e.g., fast vs. slow),
and behavioral choices (e.g., fight vs. flee). Closely related is the somatic/
physiological modality – the neurophysiological substrate making behavior
(and cognition) possible, and including the internal and external manifestations
of the neuroendocrine-system-mediated aspects of emotions, including those
associated with the autonomic nervous systems (e.g., heart rate, blood pressure,
skin conductivity). The cognitive/interpretive modality is most directly associ-
ated with the evaluation-based definition of emotion above, and is emphasized
in the majority of symbolic models of emotion, mediating emotion generation
via cognitive appraisal. The nature and role of this modality, at its extreme, is
best expressed by Hamlet’s “Nothing is good or bad but thinking makes it so.”
Both conscious and unconscious processes are involved in emotion generation
(Scherer, 2005), and both types of processes are in turn influenced by emotions
and moods. From a modeling perspective, the most problematic is the experien-
tial/subjective modality: the conscious, and inherently idiosyncratic, experience
of emotion. This modality however also reflects a quintessential aspect of the
felt experience of emotion, strongly linked with conscious awareness, and able
to induce, in Sartre’s words, a “magical transformation of the world” that one
can experience in different emotions or moods.

30.2.5 Functions and Roles of Emotions

The dominant contemporary view regarding the evolution and utility of emotions
is that their primary function is to improve survival, by enhancing adaptive
behavior, including social behavior, in complex, dynamic, and uncertain environ-
ments (refer to two recent handbooks: Fox et al., 2018; Sander & Scherer, 2009,
as well as Clore, 1994; Frijda, 1986, 2008; LeDoux, 2000; Oatley & Johnson-
Laird, 1987; Plutchik, 1984). Emotions can, of course, also become highly
maladaptive, even dangerous, both to the individuals experiencing or manifesting
them, and to others in their social environment. (This is, of course, also the case
for cognition, although one rarely hears a criticism of the form “Oh don’t be so
cognitive!”.) The functional roles of emotions can be grouped into two broad
categories: intrapsychic (mediating processing within the individual) and interper-
sonal (coordinating social interactions) (see Table 30.1). A distinguishing feature
of these diverse functions is their speed, made possible in part by the innate neural
circuitry, which rapidly processes salient stimuli, mobilizes the necessary meta-
bolic resources, and selects and executes patterns of behavior.

30.2.6 Emotion and Mood Influences on Attention, Perception,
and Cognition

Emotions and moods exert profound influences on cognition, influencing
both the fundamental processes mediating information processing (attention,
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perception, memory), and higher-level cognitive processes, including situation
assessment, decision making, goal management, planning, and learning.
These effects can be adaptive or maladaptive, depending on their type, mag-
nitude, and context. For example, the preferential processing of threatening
stimuli associated with anxiety and fear can be adaptive in situations where
survival depends on fast detection of danger and protective behavior (e.g.,
avoid an approaching car that has swerved into your lane). However, the same
effect can be maladaptive if neutral stimuli are judged to be threatening (e.g.,
passing car is misperceived to be on a collision course and causes the driver to
swerve into a ditch), or if the threat level of a stimulus is exaggerated
(MacLeod & Matthews, 2012). Table 30.2 provides examples of empirical
findings regarding the affective influences on cognition (Bar-Haim et al., 2007;
Blaney 1986; Bower, 1981; Clore, 1994; Forgas, 2017; Frederickson &
Branigan, 2005; Gasper & Clore, 2002; Isen, 1993; Lerner et al., 2015;
Mellers et al., 1997; Mineka et al., 2003).
It is interesting to note that distinct emotions can induce the same effect on

cognitive processing. For example, both joy (a positive emotion) and anger
(generally considered to be a negative emotion) induce heuristic processing.
Lerner and Tiedens (2006) explain this finding by suggesting that the affective
influence occurs at the level of individual appraisals, rather than at the level of
the emotion itself. In the case of heuristic processing, it is the high value of the
certainty appraisal variable, shared by both joy and anger, that may be respon-
sible for inducing the observed heuristic processing.

Table 30.1 Intrapsychic and interpersonal roles of emotions

Intrapsychic roles

• Rapid detection & processing of salient stimuli (e.g., avoid danger, get food)
• Triggering, preparation for & execution of, fixed behavioral patterns necessary for
survival (e.g., fight, freeze, flee)

• Rapid resource (re)allocation & mobilization
• Coordination of multiple systems (perceptual, cognitive, physiological)
• Implementation of systemic biasing of processing (e.g., threat detection, self-focus)
• Interruption of ongoing activity & (re)prioritization of goals; goal management
• Motivation of behavior via reward & punishment mechanisms
• Motivation of learning via boredom & curiosity

Interpersonal roles

• Communication of internal state via nonverbal expression and behavioral
tendencies (e.g., frown vs. smile, inviting vs. threatening gestures & posture)

• Communication of status information in a social group (dominance &
submissiveness)

• Mediation of attachment behavior
• Communication of acknowledgment of wrong-doing (guilt, shame) in an effort to
repair relationships and reduce possibility of aggression
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30.3 Theoretical Foundations for Computational
Emotion Modeling

This section first introduces three contemporary theoretical perspec-
tives on emotions, and then discusses specific theories within each perspective
regarding both emotion generation and emotion effects that can serve as
foundations for emotion modeling.

Table 30.2 Effects of emotions on attention, perception, and decision making: Examples of
empirical findings

Anxiety and attention & working
memory

Anger and attention, perception,
decision making & behavior

Narrowing of attentional focus

Reduced responsiveness to peripheral cues

Predisposing towards detection of threatening
stimuli

Reduced capacity of working memory
available for the task at hand

Increases feelings of certainty

Increases feelings of control & ability to cope

Induces shallow, heuristic thinking

Induces hostile attributions to others’ motives
& behavior

Induces an urge to act

Arousal and attention Affective state and memory

Faster detection of threatening cues

Slower detection of nonthreatening cues

Mood-congruent memory phenomenon

(positive or negative affective state induces
the recall of similarly valenced material)

Positive affect and problem solving Negative affect and perception, problem-
solving, decision making

Promotes heuristic processing

Increased likelihood of stereotypical thinking,
unless held accountable for judgments)

Increases estimates of degree of control

Overestimation of likelihood of positive
events/Underestimation of likelihood of
negative events

Increased problem solving

Facilitation of information integration

Promotes variety seeking

Promotes less anchoring, more creative
problem-solving

Longer deliberation, use of more information,
more re-examination of information

Promotes focus on the “big picture”

Depression lowers estimates of degree of
control

Anxiety predisposes towards interpretation of
ambiguous stimuli as threatening

Use of simpler decision strategies

Reliance on standard and well-practiced
procedures

Decreased search behavior for alternatives

Faster but less discriminate use of
information – increased choice accuracy on
easy tasks but decreased on more difficult
tasks

Simpler decisions and more polarized
judgments

Increased self-monitoring

Promote focus on details
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30.3.1 Broad Theoretical Perspectives on Emotions

Emotions represent complex, and not yet fully understood, phenomena (e.g.,
Mobbs et al., 2019). It is therefore not surprising that a number of distinct
theories have evolved over time, to explain a subset of these phenomena or to
account for a particular set of observed data. A literature search for “theories
of emotion” yields a number of distinct categories of emotion theories, where
a particular category includes some combination of the following: James-
Lange, Cannon-Bard, Schachter-Singer’s two-factor theory, basic emotion
theories, cognitive appraisal theories, dimensional theories, and constructivist
theories. For the purposes of computational affective modeling, Scherer’s
(2009) categorization appears the most suitable, consisting of categorical,
constructivist and appraisal theories. This is in part because these categories
provide a logical and conceptually clear grouping of existing theories, and in
part because the three perspectives it delineates suggest distinct, if overlap-
ping, approaches to modeling, including distinct conceptual building blocks
and semantic primitives.
Discrete/categorical theories emphasize a small set of emotions or emotion

families (e.g., different types and intensities of anger or fear), and this approach
is best represented by the basic emotion theories that emphasize a set of
biologically basic emotions, typically including the “Big Six” discussed above
(Ekman, 1992; Ekman & Cordaro, 2011; Panskepp, 1998; Panskepp & Watt,
2011; Tomkins & McCarter, 1964). The underlying assumption is that these
emotions represent distinct entities, mediated by associated neurophysiological
circuitry (Tomkins’ affect programs), and sharing a number of characteristics
(elicitors, expressions, behavior, subjective felt experience), which “distinguish
one emotion family from another, as well as from other affective states. These
affective responses are preprogrammed and involuntary, but are also shaped by
life experiences” (Ekman & Cordaro, 2011, p. 364). Both the number of specific
emotions within this set, and the defining characteristics, vary among different
researchers. The semantic primitives offered by these theories are the individual
basic emotions.
Proponents of basic emotion theory emphasize empirical evidence supporting

this perspective, such as universality of facial expressions, patterns of auto-
nomic nervous system signals, distinct patterns of brain activation in neuroima-
ging studies (e.g., Ekman & Cordaro, 2011). Opponents provide data to the
contrary from studies of facial expressions (Jack et al., 2012) and neuroimaging
data (Hamann, 2012; Lindquist et al., 2012). However, the jury appears to still
be out regarding the status of basic emotions, as evidenced, for example, by a
recent neuroimaging study using more sophisticated analysis methods (multi-
voxel pattern analysis (MVPA)) and spanning brain networks over larger
regions, which concluded that the fMRI data were consistent with multiple
theoretical perspectives: “MVPA has revealed that brain representations of
emotions are better characterized as discrete categories as opposed to points
in a low-dimensional space parameterized along the valence continuum.
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However, it is not yet clear whether these category-specific, distributed acti-
vation patterns reflect evolutionarily ingrained networks, constructive pro-
cesses, or a combination of factors” (Kragel & LaBar, 2016, p. 451).

Constructivist theories argue against the existence of dedicated affect pro-
grams for specific emotions, and suggest instead that emotions are the results of
complex, typically high-level cognition mediated interpretations of felt
physiological states. Different constructivist theories vary in terms of which
physiological data are considered (e.g., peripheral nervous system, central
nervous system, arousal, or the core affect dimensions of arousal and
valence), as well as the nature of the interpretive processes which then construct
the felt emotions. Scherer’s categorization includes within this set the early
feeling theories of emotions (James-Lange and Cannon-Bard theories (bodily
sensations followed by interpretations (e.g., an emotion (fear) is experienced
because of the somatic reactions (high arousal, running) to the triggering event
(bear)) (Cannon, 1927), Schachter-Singer two-factor theory (arousal followed
by interpretation) (Schachter & Singer, 1962), embodied theories of emotion
(bodily sensations followed by, or simultaneous with, interpretations) (e.g.,
Damasio, 1994; Damasio & Carvalho, 2013; Prinz, 2004), as well as the recently
emerging radical constructivist theories, such as the Conceptual Act Theory and
its descendants, proposed by Barrett (2014, 2017; Hoemann et al., 2019).

Because a number of these theories suggest that the neurophysiological felt
state can be characterized by a small number of dimensions, most often pleasure
(valence) (P) and arousal (A), and often also dominance (D), some of these
theories have been referred to as dimensional theories of emotion. The dimensions
define a 2- (PA) or 3-D (PAD) space within which distinct emotions can be
located, and, conversely, a given emotion can be characterized by an n-tuple
corresponding to a particular set of PA or PAD values, specifying either a point
or a region. The most frequent characterization uses two dimensions: valence
(pleasure) and arousal (Russell, 2003; Russell & Mehrabian, 1977). Valence
reflects a positive or negative feeling state, as described in the context of undiffer-
entiated affect above. Arousal reflects a general degree of activation of the
organism, primarily mediated by the autonomic nervous system, and represents
a readiness to act (low arousal/low energy; high arousal/high energy). Since this 2-
D space cannot differentiate among emotions sharing the same values of arousal
and valence (e.g., anger and fear, both characterized by high arousal and negative
valence), a third dimension is often added, termed dominance or stance, provid-
ing a 3-D PAD (Pleasure, Arousal, Dominance) space (Mehrabian, 1995). More
recently, a fourth dimension of unpredictability has been proposed, based on
studies of emotion terms across four languages (Fontaine et al., 2007).

Proponents of constructivist theories cite the lack of data regarding basic
emotion theories, as well as empirical evidence in support of the neural basis of
the dimensions constituting core affect (Hamann, 2012; Lindquist et al., 2012),
as supporting arguments. However, once again, the jury is still out, as evidenced
by data supporting an appraisal theory perspective (Scherer, 2012; Scherer &
Moors, 2019), counterarguments regarding the assertion that existing imaging
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data support the constructivist perspective (e.g., Scherer, 2012), and the fact
that neural imaging data continue to emerge that are consistent with multiple
theoretical perspectives (Kragel & LaBar, 2016).
Appraisal theories emphasize the critical role of cognitive processing in

generating emotions (causal appraisal theories) or structuring the experience
of felt emotions (constitutive appraisal theories). Appraisal theories have their
roots in antiquity, primarily the Stoics, and have undergone a number of
iterations since, with many researchers over the past four decades contributing
to their current incarnations (Arnold, 1960; Ellsworth & Scherer, 2003; Frijda,
1986; Lazarus, 1984; Mandler, 1984; Oatley & Johnson-Laird, 1987; Ortony
et al., 1988; Reisenzein, 2001; Roseman & Smith, 2001; Scherer et al., 2001;
Smith & Kirby, 2001).
The majority of appraisal theories are causal, and most of the causal theories

propose a set of evaluative criteria (appraisal variables) used to interpret the
current stimuli, both external (incoming sensory data) and internal (memories,
expectations), in light of the agent’s goals and beliefs. The values of the
appraisal variables (e.g., novelty, goal relevance, goal congruence) then define
the resulting emotion (Frijda, 1986; Lazarus, 1984; Leventhal & Scherer, 1987;
Roseman & Smith, 2001; Scherer, 1984; Smith & Kirby, 2001). Some research-
ers propose the existence of innate comparator processes, which produce signals
reflecting the degree of congruence between new data and existing beliefs and
desires, with the results then defining (or constituting) the resulting emotion: the
belief-desire theories of emotion (BDTE) (Castelfranchi & Miceli, 2009;
Reisenzein, 2009, 2012;). (Further distinctions among cognitive appraisal the-
ories, and distinct forms of BDTEs, which are relevant for modeling, are
elaborated by Reisenzein (2009, 2012), and a formal specification of BDTE
can be found in Reisenzein and Junge (2012).)
In contrast, a theory proposed by Ortony and colleagues (Ortony et al., 1988;

Clore & Ortony, 2013), referred to as OCC, is a constitutive appraisal theory,
which describes the cognitive structure of emotions, rather than their generation,
and postulates that appraisals “are psychological aspects of situations that
distinguish one emotion from another, rather than triggers that elicit emotions”
and that “emotions emerge from, rather than cause, emotional thoughts, feelings,
and expressions” (Clore & Ortony, 2013, p. 335). (Note that the distinction
between causal and constitutive appraisal theories is often ignored in
computational modeling, and OCC is frequently used as a causal theory.)
Although the majority of appraisal theories focus on emotion generation, some
also address emotion effects; e.g., Scherer’s component process model (2001a).
The appraisal variables offered by appraisal theories in effect define an n-

dimensional space, within which a large number of emotions can be located.
Note that given the fact that dependencies exist among the appraisal variables,
they cannot be considered dimensions in the mathematical sense. Nonetheless,
it is clear that these variables define a significantly larger space than that defined
by the two or three dimensions offered by the dimensional theories, which
underscores the ability of this perspective to differentiate among a large set of
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affective states and emotions. The semantic primitives offered by the appraisal
theories are the individual appraisal variables.

In terms of supporting empirical evidence, a number of studies of multi-
modal affective expression (Jack et al., 2014; Scherer & Ellgring, 2007; Scherer
& Moors, 2019), as well as some brain imaging studies (Kragel & LaBar, 2016),
provide data consistent with the existence of processes deriving the values of the
distinct appraisal variables.

Significant overlap exists among the theoretical perspectives, particularly
between the constructivist and appraisal (Brosch, 2013), and elements of early
theories (e.g., the James-Lange and Cannon-Bard feeling theories) are incorpor-
ated into recent embodied theories of emotions (e.g., Prinz, 2004). At the same
time, a healthy debate continues regarding the utility of, and supporting evi-
dence for, particular theoretical perspectives, with both constructivist and
appraisal theorists arguing against basic emotion theories (e.g., Barrett, 2014;
Hamann, 2012; Hoemann et al., 2019), and Ortony and Turner (Ortony &
Turner, 1990; Turner & Ortony, 1992), respectively. An overview of supporting
evidence for specific theories across the multiple perspectives can be found in
Reisenzein (2019), and a number of critiques of specific theories also exist, e.g.,
Reisenzein and Stephan’s (2014) comprehensive analysis of the arguments
against James’ feeling theory.

The distinct theoretical perspectives evolved from different research trad-
itions (e.g., biological vs. cognitive psychology) were derived from different
types and sources of data via different methodologies (e.g., factor analysis of
self-report data (dimensional) vs. facial expression analysis (discrete/categor-
ical)), and emphasize different components or processes regarding affective
phenomena (e.g., appraisal theories emphasizing emotion generation vs. basic
emotion theories attempting to characterize the entire evolving emotion epi-
sode, from triggers to behavior). In considering the multiple perspectives it is
therefore important to keep in mind that they should not be viewed as mutually
exclusive candidates for the ultimate truth, but rather as distinct perspectives
within an evolving endeavor to understand the nature of, and mechanisms
mediating, emotions and other affective phenomena. Indeed, computational
emotion models and cognitive-affective architectures frequently combine mul-
tiple theoretical perspectives: e.g., WASABI (Becker-Asano, 2008; Becker-
Asano et al., 2014), Cathexis (Velasquez, 1997), Kismet (Breazeal, 2003),
ALMA (Gephard, 2005), PEACTIDM (Marinier et al., 2009); GenIA3

(Alfonso et al., 2017).
Regarding the utility of the different theoretical perspectives for

computational modeling, the theories within each perspective vary in terms of
the degree of elaboration of the hypothesized processes and mechanisms, and
thus provide varying degrees of support for constructing computational models.
For example, while a number of cognitive appraisal theories provide descrip-
tions of hypothesized processes and the necessary information to support
computational modeling (e.g., Scherer’s componential process model provides
a number of specific evaluative criteria and outlines the sequence of stimulus
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evaluation checks mediating appraisal; Reisenzein’s computational belief-desire
theory of emotion (CBDTE) proposes specific comparative mechanisms gener-
ating emotion type and intensity (Reisenzein, 2009); OCC specifies in detail the
hypothesized cognitive structure of emotions in terms of the evaluation criteria),
the constructivist theories (e.g., Barrett’s Conceptual Act Theory (2014) and
Prinz’s embodied appraisal theory (Prinz, 2004)) provide only very high-level
descriptions regarding the processes hypothesized to mediate emotion gener-
ation. In general, theories of emotion generation, and particularly the role of
cognition in emotion generation, are more elaborated than theories regarding
emotion effects, and particularly emotion effects on cognitive processing.

30.3.2 Theoretical Foundations for Modeling Emotion Generation

Emotion generation is an evolving, dynamic process, typically occurring across
multiple modalities, with complex feedback and interactions among them.
While multiple modalities are involved, the theoretical foundations for
psychological-level models are most extensively developed within the
cognitive modality, and cognitive appraisal theories represent the most fre-
quently used theoretical basis for modeling emotion generation in symbolic
emotion models. These theories are therefore emphasized below, following a
brief discussion of basic emotion theories and constructivist theories.
Basic emotion theories (BET), the most prominent representatives of the

discrete/categorical theoretical perspectives, postulate the existence of dedicated
neurophysiological processes mediating the detection of emotion-eliciting trig-
gers and the generation of the corresponding emotions (Ekman, 1992; Ekman &
Cordaro, 2011; Panskepp, 1998; Panskepp &Watt, 2011; Tomkins &McCarter,
1964). These processes have strong innate components but are modified by
individual experience, thus allowing individual variability. Distinct basic emo-
tions are triggered by specific patterns of elicitors; e.g., obstruction of a goal
producing anger; threat of harm fear; a sudden and novel event surprise; loss
sadness; a physical object or an idea that is repulsive disgust; and achievement of
a desired goal joy (Ekman & Cordaro, 2011). The generation of more complex
emotions (e.g., social emotions such as guilt, shame, pride, embarrassment) also
involves shared patterns of triggers (e.g., violation of a social contract for guilt,
violation of a social rule for embarrassment). However, for the social emotions,
the acquired components of the generation process are more significant, thereby
enabling much greater individual and cultural variability. With respect to
emotion generation, BETs essentially propose a direct mapping from emotion-
specific triggers to the corresponding emotion.
Constructivist theories propose a two-phase process for emotion generation,

which may involve some overlap between the phases. During the first phase,
largely innate, fast processing mediated by the “low road” to emotion, includ-
ing the thalamus and the amygdala, produces bodily sensations and results in an
undifferentiated felt bodily state. This state corresponds to what some of the
constructivist theorists refer to as core affect (Russell, 2003), which is often
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characterized in terms of the PA dimensions. During the second phase, the felt
bodily state is interpreted via higher-level cognitive processing to generate the
specific experienced emotion. This process is significantly influenced by individ-
ual idiosyncrasies, cultural variabilities and the specific situation. The
constructivist theories typically do not specify the details of these processes,
beyond offering the constituent dimensions of the felt affective state, and
postulating that “conceptual processing” is involved in categorizing and inter-
preting the felt state into a labeled emotion.

Appraisal theories provide the most detailed specification of the processes
mediating emotion generation, including the types of information required and
the structure of the resulting emotion construct. Many appraisal theories pos-
tulate that cognitive processing occurs at multiple levels of complexity, from
low-level, innate and automatic processing to complex, controlled processing
accessible to awareness, with the higher-level processing also subject to cultural
influences; e.g., Leventhal and Scherer (1987) propose three interconnected
levels mediating appraisal: sensorimotor, schematic, and conceptual. Their
computation-friendly specifications make appraisal theories well-suited for pro-
viding the theoretical foundations for modeling emotion generation. Three
specific appraisal theories are described in more detail below: the component
process model (CPM) (Scherer, 1984, 2001a, 2001b), OCC (Ortony et al., 1988),
and the computational belief-desire theory of emotion (CBDTE) (Reisenzein,
2009, 2012).

CPM is a causal cognitive appraisal theory which postulates that emotions are
generated via processes termed stimulus evaluation checks, each producing a
value for one of the appraisal variables. CPM appraisal variables are grouped
into four categories: relevance of the eliciting stimulus (assessing its novelty,
intrinsic valence, and goal relevance), implications of the stimulus for the agent
(probability of a particular outcome, discrepancy from expectations, goal con-
gruence, and urgency to act), coping potential (assessing the agent’s degree of
control over the situation and ability to act), and degree of congruence with
individual and social norms. Appraisal variable values are generated in a
sequence, beginning with novelty and ending with norm congruence, but with
significant feedback among the individual stimulus evaluation checks. These
operate in parallel and eventually settle into a stable state, which then corres-
ponds to the resulting emotion. Table 30.3 lists a subset of the appraisal
variables and indicates how their specific values map onto distinct emotions.

Scherer (2009) describes CPM in terms of concepts from dynamical systems,
referring to the individual processes mediating appraisal as coupled psycho-
physiological oscillators, which at some point reach a synchronized state, cor-
responding to a stable attractor basin, which then represents a particular
emotion. He distinguishes between the processes producing these distinct states,
and those which then categorize and label the states, and emphasizes feedback
interactions among them.

OCC (Ortony et al., 1988) is a constitutive appraisal theory which describes
the structure of emotions in terms of a set of evaluative criteria (similar to the
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appraisal variables) that characterize the distinct emotions. Both the evaluative
criteria and the emotions are organized into a taxonomy, based on the type of
the triggering stimulus and the evaluative criteria used. Event-based emotions
are appraised with respect to the agent’s goals and are further categorized into
emotions relevant to the agent’s well-being (e.g., joy, distress), fortunes-of-
others (e.g., happy-for, sorry-for, resentment), and those considering possible
future events (e.g., prospect-based emotions of hope and fear, and confirmation
emotions of relief, satisfaction, disappointment). Attribution emotions are
appraised with respect to existing standards and behavioral norms (“Is Agent
A acting appropriately?”) and focus on acts by agents (self or other), reflect
approval or disapproval, and include the social emotions of pride, shame,
reproach, and admiration. Attraction emotions are appraised with respect to
the agent’s preferences and attitudes (“Is this appealing to me?”), focus on
characteristics of objects, and include the emotions of like and dislike. The
OCC taxonomy also allows for emotions resulting from triggers from multiple
categories: compound emotions; e.g., anger combines event-based (well-being)
and attribution (act by another agent) emotion types. Table 30.4 lists examples
of emotions within the OCC taxonomy, including the types of triggers and
evaluation criteria. OCC was one of the first computation-friendly theories

Table 30.3 Examples of Scherer’s CPM theory mappings of appraisal variable values onto
specific emotions

Appraisal variable Fear Anger Joy Sadness Shame Guilt Pride

Relevance
Novelty
Suddenness high high high/

med
low low open open

Familiarity low low open low open open open
Predictability low low LOW open open open open
Valence low open open open open open open

Goal relevance high high high high high high high

Implications
Cause: Agent other/nat other open open self self self
Cause: Motive open int int/

chan
int/
chan

int/
neglig.

int int

Outcome probability high v. high v. high v. high v. high v. high v. high
Conduciveness to goal obstr obstr v. high obstr open high high
Urgency v. high high low low high med low

Coping potential
Control open high open v. low open open open
Power v. low high open v. low open open open

Based on Table 5.4, pp. 114–115 in (K. R. Scherer, 2001a).
Abbreviations: chan¼ chance; diss¼ dissonant; int¼ intentional; nat¼ natural forces; neglig¼ negligence;
obstr ¼ obstruct.
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developed, and it was due to this, as well as early influential implementations,
beginning with Elliot’s Affective Reasoner (Elliot, 1992), that it continues to be
the most frequently used theoretical basis for emotion generation, in spite of the
fact that it was conceptualized as a constitutive theory.

Table 30.4 Examples of definitions of emotions in terms of the OCC triggers, internal
references, and evaluation criteria (local variables)

Emotion
OCC emotion
type Trigger type

Appraised
w/ respect

Evaluation criteria
(local variables)

Simple emotions (evaluated with respect to single category of criteria)

Joy Well-being Event affecting
self

Goals Desirability of event wrt goal

Distress Well-being Event affecting
self

Goals Undesirability of event wrt
goal

Happy-for Fortunes of
others

Event affecting
another agent

Goals Pleased about a desirable
event for another agent

Sorry-for Fortunes of
others

Event affecting
another agent

Goals Distressed about an
undesirable event for another
agent

Hope Prospect-
based

Prospective
event

Goals Pleased about a potential
good event in the future

Fear Prospect-
based

Prospective
event

Goals Distressed about a potential
bad event in the future

Fears
confirmed

Confirmation Prospective
event

Goals Distressed because an
expected bad event occurred

Relief Confirmation Prospective
event

Goals Pleased because an expected
bad thing did not happen

Disappointment Confirmation Prospective
event

Goals Distressed because an
expected bad thing did
happen

Pride Attribution Act by self Norms Approving of own behavior

Shame Attribution Act by self Norms Disapproving of own
behavior

Compound Emotions (Evaluated with respect to multiple categories of criteria)

Gratitude Well-being &
attribution

Event/Act by
another

Goals/
Norms

Joy þ Admiration

Anger Well-being &
attribution

Event/Act by
another

Goals/
Norms

Distress þ Reproach

Remorse Well-being &
attribution

Event/Act by
self

Goals/
Norms

Distress þ Shame

Based on Table 2.1 in Elliot, 1992 and (O’Rourke & Ortony, 1994).
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The computational belief-desire theory of emotion (CBDTE) (Reisenzein,
2009, 2012) is a causal cognitive appraisal theory, but differs from the above
theories in proposing more generic evaluative processes, and an absence of the
cognitive components from the generated emotion. CBDTE proposes two innate
processes, operating at an unconscious level, and continuously comparing
incoming data (external and internal) with existing beliefs and desires: the
Belief-Belief Comparator (BBC) and the Belief-Desire Comparator (BDC), which
together constitute the agent’s belief-desire system. The output of this system is a
nonpropositional, “sensation-like” signal, that reflects the degree of match or
mismatch between the incoming data and the existing beliefs and desires, and
produces the felt emotion, which is considered to be a nonpropositional, noncon-
ceptual mental state, and does not include the conceptual information used by the
BBC and BDC to compute the degree of match. Table 30.5 lists examples of
CBDTE emotions in terms of the agent’s beliefs and desires and the output of the
two comparators. CBDTE also proposes a model of the emotion intensity, based
on the certainty of the belief that some proposition p is true, and the magnitude of
the desirability of p, where the value of intensity is a monotonically increasing
function of the desirability of state p. CBDTE allows for a continuum regarding
the conscious awareness of an emotion, based on the emotion intensity.
Cognitive appraisal theories serve as the theoretical foundations for the

majority of existing models, particularly applied models embedded in agent
architectures. The reason for this choice is twofold: (1) these theories provide
detailed, computation-friendly, process-level specifications of the hypothesized
appraisal processes, which lend themselves to more or less direct translation
into model specifications; (2) they provide specifications for a larger set of
emotions, in terms of the n-tuples of the appraisal variable values, than the

Table 30.5 Definitions of emotions in terms of the agent’s beliefs and desires, incoming data
and the belief-belief and belief-desire comparators from CBDTE

Incoming
data

Prior
belief Current belief

Current
desire

BBC
output

BDC
output Emotion

p p (certainty high) p match match joy

p p (certainty high) ~p match mismatch unhappiness

p p (certainty low) p match match hope (because of
belief uncertainty)

p p (certainty low) ~p match mismatch fear (because of
belief uncertainty)

~p p ~p p match mismatch disappointment

~p p ~p ~p match match relief
p ~p p mismatch surprise

Where p represents a proposition regarding the state of the world or the agent (e.g., “X was elected as
chancellor”). Belief that p is true ¼ 1, and desire for p > 0, results in joy; belief that p is true is > 0 and < 1,
and desire for p <0, results in fear. (Reisenzein, 2009)
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discrete/categorical theories or the PAD space offered by the dimensional/
constructivist theories. While the constructivist theories provide the
conceptual framework for the psychological construction of a large set of
emotions, the hypothesized processes are not specified at a level of detail that
supports a direct mapping onto model components.

30.3.3 Theoretical Foundations for Modeling Emotion Effects

For modeling purposes, it is useful to divide emotion effects into two categories:
the visible, often dramatic, behavioral and expressive manifestations, and the
less visible, but no less significant, effects on the internal attentional, perceptual,
and cognitive processes (refer to Table 30.2). While the majority of existing
emotion models focus on the former category, particularly applied models
within agent architectures, given the emphasis on emotion–cognition inter-
actions in this chapter, the focus here will be on theories of emotion effects
on cognition.

Several theories have been proposed to explain a specific observed effect of
emotions and moods on cognitive processes, including effects on memory
(mood congruent recall (Bower, 1981)), on memory, judgment, and decision
making (Affect Infusion Model (AIM) (Forgas, 1995, 2003, 2017)), on decision
making (Lerner et al., 2015), and on specific attentional, perceptual, and
cognitive processes (e.g., Bless & Fiedler, 2006; Derryberry & Reed, 2002;
MacLeod & Matthews, 2012). Existing theories emphasize different subpro-
cesses mediating information processing (e.g., attention, memory, automatic vs.
controlled processing) and researchers often group affective influences into
different categories, based on the cognitive structures and processes affected.
For example, focusing on emotion influences on attitudes and social judgments,
Forgas (2003, 2017) suggests a distinction between memory-based influences
and inference-based influences. An example of the former being network theor-
ies of affect, explaining mood congruent recall via spreading activation mech-
anisms (Bower, 1981, 1992). Example of the latter being Schwartz and Clore’s
theory of affect-as-information (Schwarz & Clore, 1988, 2003). Focusing on
personality and individual differences research, Derryberry and Reed (2002)
propose four categories of mechanisms mediating emotion effects on cognition:
automatic activation, response-related interoceptive information, arousal,
and attention.

All of these theories lend themselves to computational modeling, and two
types are highlighted below: spreading activation theories across semantic net-
work memory representations, and parameter-based theories, which suggest that
emotions (as well as nonaffective states such as fatigue) induce variabilities in
cognitive processing, and subsequently observable behavior, that can be speci-
fied in terms of changing values of various parameters. Spreading activation
theories aim to explain affective priming (shorter response times required for
identifying targets that are affect-congruent with the priming stimulus vs. those
that have a different affective tone), and mood-congruent recall (the tendency to
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preferentially recall schemas from memory whose affective tone matches that of
the current mood) (e.g., Bower, 1992; Derryberry, 1988). Bower’s Network
Theory of Affect assumes a semantic net representation of long-term memory,
where nodes representing declarative information co-exist with nodes represent-
ing specific emotions. Activation from a triggered emotion spreads to connected
nodes, increasing their activation, thereby facilitating the recall of the associ-
ated information. Alternative versions of this theory place the emotion-induced
activation externally to the semantic net.
A number of researchers have independently proposed a broader theory of

mechanisms mediating emotion–cognition interaction, where parameters
encoding various affective factors (states and traits), influence a broad range
of cognitive processes and structures (e.g., Hudlicka, 1998; Matthews & Harley,
1993, 2002; Ortony et al., 2005). The parameters modify characteristics of
fundamental cognitive processes (e.g., attention and working memory speed,
capacity, and bias), thereby inducing effects on higher-level cognition (problem
solving, decision making, planning, learning, as well as the processes mediating
cognitive appraisal). The parameter-based theories appear promising, in part
due to their potential to encompass a broad range of effects across multiple
structures and processes, and in part due to the possibility that this approach
may be suitable for modeling some of the hypothesized neuromodulatory
effects of emotions.

30.3.4 From Theories to Models

Before discussing the construction of emotion models in more detail, it is helpful
to summarize the type of information that should be provided by existing
theories to support model design. This pragmatic perspective provides a basis
for a systematic evaluation of candidate theories, to determine which is best
suited for a particular modeling objective. The associated specific questions also
provide a basis for defining abstract computational tasks necessary to imple-
ment emotions models.
Theories of emotion generation ought to be able to answer questions such as:

• What is the stimulus-to-emotion mapping; i.e., {emotion elicitor(s)}–to–
{emotion(s)}? Is this mapping implemented directly (domain stimuli-to-emo-
tions), or indirectly, via some intermediate, domain-independent representa-
tions (e.g., PAD dimensions for the dimensional theories; appraisal variables
for the appraisal theories)? What types of representational structures and
inferencing processes are necessary to implement these mappings?

• Which factors influence emotion intensity, and what are the intensity calcu-
lating functions?

• Are the affective dynamics specified; i.e., intensity onset and decay rates,
integration of multiple emotions, and integration of newly generated emo-
tions with existing mood?

• How is the resulting emotion represented and what are the semantic primi-
tives available to represent emotions (e.g., emotion types, PAD dimensions,
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appraisal variables)? What information does the emotion construct need to
represent (e.g., emotion type, intensity, triggers, associated goals, direction of
action)?

Theories of emotion effects on cognition ought to be able to answer questions
such as:

• Which cognitive processes and structures are influenced by particular emo-
tions, moods, affective states, and traits, and how; e.g., attention, memory
functions (encoding, recall), decision making, the cognitive appraisal process
itself? What are the effects on dynamic mental constructs mediating action
selection (goals, expectations, plans)? What are the mediating variables of the
effects (e.g., distinct emotions, dimensions characterizing core affect, individ-
ual appraisal variables)?

• What is the relationship between the emotion or mood intensity and the type
and magnitude of the influence? Can distinct intensities of emotions or moods
have qualitatively different effects on different cognitive processes?

• How and when should the influences of multiple emotions, moods, and traits
be integrated and how should the influences of newly generated emotions be
integrated with ongoing effects of prior emotions or moods, to ensure affect-
ively and behaviorally realistic dynamic transitions between different emo-
tional states?

While for some of these questions there is significant consensus (e.g., types of
stimuli triggering particular emotions), others require considerable educated
guesswork (e.g., integration of emotions associated with incompatible action
tendencies). Currently, theories attempting to explain the mechanisms of emo-
tion effects on cognition are less elaborated than theories hypothesizing the
nature of cognitive appraisal. The least elaborated aspect of emotion modeling
regards the affective dynamics: the calculation of emotion intensity and the
magnitude of emotion effects, their changes over time, as well as the integration
of multiple emotions and moods, and integration of multiple effects on a
specific cognitive process. Frequently, only qualitative descriptions of these
relationships are available in the psychology literature.

Thus, while ideally the psychological theories would provide sufficient details
to answer the above questions, and thereby support their operationalization in
terms of specific computational tasks, representational structures, and associ-
ated inferencing, in practice, this is typically not the case. It is in fact the actual
design of computational models that often reveals gaps or contradictions in the
high-level specifications of psychological emotion theories, and thereby facili-
tates their refinement through the modeling process.

30.4 Computational Analytical Framework

In spite of the increasing interest in computational emotion modeling,
no systematic guidelines have been established for model design and analysis.
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The lack of guidelines contributes to ad hoc design practices, hinders model
sharing and re-use, and makes systematic comparison of existing models chal-
lenging (Hudlicka, 2014a). In addition, the lack of an established, computation-
ally grounded terminology (Sloman et al., 2005) hinders cross-disciplinary
communication that is essential to advance the state of the art (Reisenzein
et al., 2013). More broadly, Reisenzein and colleagues highlight the importance
of developing a “theoretical toolbox of basic theory-elements, formulated in a
common language, from which theories of emotional agents (or of emotion
modules for agents) can be constructed” (Reisenzein et al., 2013).
A number of efforts have attempted to address these issues, with growing

interest in the development of formal specifications of emotions and affective
processes, as well as agent architectures, and the construction of associated
development tools. Earlier efforts include Reilly’s outline of the representational
and reasoning requirements for modeling cognitive appraisal (Reilly, 2006),
Lisetti and Gmytrasiewicz’s (2002) identification of high-level components
required for a computational emotion model, and Cañamero’s (2001) design
requirements for affective agents. More recently, building on Reisenzein’s (2001)
formal definition of appraisal, Broekens and colleagues proposed a set-theoretic
formalism for a systematic comparison of cognitive appraisal theories (Broekens
et al. 2008; Hindriks & Broekens, 2011). Adams and colleagues proposed a
logical representation of OCC within a BDI architecture (Adam et al., 2009),
and Reisenzein and Junge (2012) defined a formal specification of the BDTE.
Some of these formal specifications revealed inconsistencies in existing appraisal
theories (e.g., Steunebrink et al., 2009).
Formal specifications of specific emotions have also been proposed (e.g., envy

and shame specified in terms of goals and beliefs (Turrini et al., 2007), four of
the “Big Six” emotions specified in terms of mental attitudes using modal logic
(Meyer, 2006), and emotions defined in terms of beliefs, uncertainties, and
intentions, supporting the generation of emotions an agent should express to
convey empathy (Ochs et al., 2012)). A semi-formal specification of the elicit-
ation of three other-condemning moral emotions (moral anger, moral disgust,
and contempt), based on cognitive appraisal theories and associated coping
strategies, and embedded within a BDI agent architecture, was proposed by
Dastani and Pankov (2017).
In terms of architectures, Sloman and colleagues have conducted extensive

analyses of the characteristics and requirements for architectures capable of
supporting adaptive behavior in general, including emotions (Sloman et al.,
2005), as well as features of the architecture that enable undesirable states, such
as rumination and repetitive thought (e.g., Beaudoin et al., 2020). Vernon et al.
(2015) outlined an approach for incorporating emotions in cognitive robot archi-
tectures, emphasizing an embodied emotions perspective. Sanchez-Lopez and
Cerezo (2019) have summarized existing cognitive-affective agent architectures
that use the established Belief Desire Intention (BDI) architecture framework, and
offered a number of suggestions for more systematic design practices. Also within
the BDI framework, Alfonso (Alfonso et al., 2017) proposed a generic architecture
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(GenIA3) to support the development of a broad range of specific architectures,
based on a set of fundamental processes (e.g., affective evaluation, affect gener-
ation, affect regulation, affect dynamics). The associated software platform
extends the AgentSpeak language (Rao, 2009) and the associated Jason agent-
oriented language, and facilitates the rapid development of GenIA3 agents.

There is also increasing interest in addressing the implementation of emotion
models and architectures. Rodriguez and Ramos (2014) have analyzed a
number of existing emotion models from the perspective of the software devel-
opment lifecycle, outlining specific design issues and challenges. Osuna and
colleagues (2020) have proposed a systematic approach to designing emotion
models following established software engineering practices.

In spite of these efforts, no broadly accepted guidelines have yet been estab-
lished and the development of computational models of emotion remains an
art. Hudlicka has previously proposed a computational analytical framework
to address this issue (Hudlicka, 2008a, 2012, 2014a). The framework, summar-
ized below, delineates a number of generic computational tasks required to
construct emotion models, and thereby aims to provide a basis for the develop-
ment of more systematic design guidelines, as well as for systematizing model
analysis and comparison.

30.4.1 Computational Analytical Framework

The framework delineates two broad categories of affective processes, emotion
generation and emotion effects, and identifies the abstract, generic computa-
tional tasks necessary for their implementation. Building upon and expanding
the work of Broekens and colleagues (Broekens et al., 2008), the framework
also defines a set of abstract domains necessary to implement the proposed
generic computational tasks.

The generic tasks can be thought of as the emotion model building blocks,
and represent a candidate set of fundamental generic functions necessary to
model affective processes, and, by extension, to implement the various roles of
emotions, in both applied and research models (see Figure 30.1). By defining the
generic tasks, the framework also facilitates systematic comparisons of different
theories, the suitability of different representational and inferencing formalisms
used to implement a particular theory or a particular task (e.g., predicate
calculus vs. production rules vs. Bayesian belief nets), and the efficacy of
algorithms or functions required for implementing a specific task (e.g., different
functions used to model emotion intensity onset and decay).

In addition, defining the structure of an emotion model in terms of the generic
tasks also promotes modularity, which in turn facilitates model re-use and
model sharing. The proposed framework therefore directly supports several of
the primary challenges in affective modeling: development of standards and
modeling guidelines; systematic comparison of theories and models; model
sharing and re-use; and the development of systematic evaluation and
validation criteria.
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30.4.2 Core Affective Processes

Given the multiple modalities of emotion and the complexity of the cross-modal
interactions, the fact that affective processing takes place at multiple levels of
complexity and across varying time intervals, and the limited understanding of
these processes, it may seem futile, at best, to speak of core affective processes.
Nevertheless, for purposes of developing symbolic models of emotions, at the
psychological level, it is useful to cast the emotion modeling problem in terms of
the processes mediating emotion generation and those mediating the effects of
the generated emotion.
This temporally based categorization (prior to and following the generated

emotion) helps manage the complexity of the modeling effort, by supporting a
systematic analysis of the high-level processes in terms of the underlying compu-
tational tasks. Figure 30.1 illustrates the relationship between the computational
tasks (lower third), the core processes (middle third), and the different functions
of emotions (top third). (There are of course many complex interactions among
these processes, which would also need to be represented in models of emotions
that aim to represent affective processing in biological agents.)
It is important to note that no implied suggestion is being made that the two

core processes, or the associated generic computational tasks, correspond to
specific distinct neural processing mechanisms. Rather, they represent useful
abstractions, and a means of managing the complexity of symbolic emotion

Figure 30.1 Relationship between emotion roles, the core processes of emotion,
and the computational tasks necessary to implement these processes.
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modeling. Whether some of these generic tasks in fact correspond to existing
neural mechanisms remains to be determined.

30.4.3 Generic Computational Tasks

The proposed set of generic computational tasks required to implement the core
processes is summarized in Figure 30.2. The subset of the tasks necessary for a
particular model depends on the selected theoretical perspective (e.g., discrete/
categorical models do not require a two-stage mapping sequence for emotion
generation), and a given model does not necessarily require all tasks (e.g.,
simpler models capable of generating only one emotion at a time do not need
to represent the integration of multiple emotions). Emotions exert complex,
interacting effects in biological agents across the multiple modalities discussed
earlier. While most existing models of emotion generation emphasize the
cognitive modality and associated cognitive appraisal, models of emotion
effects cannot as easily ignore the multi-modal nature of emotion. This is
particularly the case in models implemented in the context of embodied agents
that need to manifest emotions not only via behavioral choices, but also via
expressions across the channels available in their particular embodiment (e.g.,
facial expressions, gestures, posture etc.). The generic tasks mediating emotion
effects therefore include additional modalities. However, this chapter will con-
tinue to emphasize the cognitive modality.

30.4.4 Abstract Domains

Due to space limitations, a detailed discussion of these domains is not included
but a summary is provided in Figure 30.3 and Table 30.6. For additional
background and details see (Broekens et al., 2008; Hudlicka, 2012).

Figure 30.2 Generic tasks for modeling emotion generation via appraisal
(upper left) and for modeling emotion effects (upper right).
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30.5 Emotion Model Development

Having provided the theoretical foundations and a computational
analytical framework, this section describes in more detail how an emotion
model would be implemented. Since the majority of existing emotion models
are embedded within an agent architecture, the notion of a cognitive-affective
architecture is first introduced. Approaches to implementing emotion models
are then discussed, organized in terms of the proposed framework, focusing on
models emphasizing the cognitive modality, in both emotion generation and
emotion effects modeling.

30.5.1 Cognitive-Affective Architectures

An agent architecture performs the information processing required to enable
the agent to function within its environment. In the case of cognitive-affective
architectures, the see-think-do sequence implemented in cognitive agent archi-
tectures (see Chapter 8 of the present handbook) is augmented by affective
processing, to implement a see-think/emote-do sequence, with possible feedback
of the generated emotion(s) influencing the processes mediating this sequence.
Embedding emotion models within agent architectures has important bene-

fits: (1) it provides more realistic constraints on emotion modeling than stand-
alone emotion models (analogously to Newell’s argument for integrated cogni-
tive architectures (Newell, 1990)); and (2) the ability of the associated agent to
interact with its environment (real or simulated, physical and/or social) provides
rich opportunities for exploring both the benefits of affective processes for
adaptive behavior, and any potential problems associated with maladaptive

Figure 30.3 Abstract domains necessary to implement the abstract
computational tasks.
The figure assumes the existence of intermediate variables that mediate both
emotion generation and emotion effects, which may not be necessary for all
models. The solid arrows indicate paths mediating emotion generation; the
dashed arrows paths mediating emotion effects.
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or dysregulated affective states. The development of these architectures thus has
the potential to both help characterize the mechanisms mediating affective
processing in biological agents, and to explore the benefits, and the potential
drawbacks, of implementing emotions in synthetic agents. Sloman has
addressed this issue in depth for agent architectures in general, in the context
of a proposed CogAff architecture schema, arguing for design-space based
definitions of mental states, which would specify in detail the particular elem-
ents of an architecture necessary in order for it to manifest specific states of
interest, including emotions (Sloman, 2004; Sloman et al., 2005; Sloman &
Croucher, 1981; Wright et al., 1995).

While a “gold standard” cognitive-affective architecture template has not yet
been established, which would support a systematic mapping of the require-
ments onto specific architecture structures and processes, several researchers
have proposed a three layer architecture, (referred to in this chapter as the
“triune architecture”), to develop agents capable of complex adaptive behavior,
and implementing both the cognitive and affective processing necessary to

Table 30.6 Domains required to implement emotion models (emotion generation
and emotion effects)

Domain name Description Examples of domain elements

Object (W) Elements of the external world
(physical, social), represented
by perceptual cues

Other agents, Events, Physical
objects

Mental (O) Internal mental (cognitive)
constructs necessary to
generate emotions, or manifest
their influences on cognition

Cues, Situations, Goals,
Beliefs, Expectations, Norms,
Preferences, Attitudes, Plans

Abstract (Ab) Theory-dependent; e.g.,
dimensions, appraisal
variables

Pleasure, Arousal,
Dominance; Certainty, Goal
Relevance, Goal

Affective (A) Affective states (emotions,
moods) & personality traits

Joy, sadness, fear, anger, pride,
envy, jealousy; extraversion

Physiology (Ph) Simulated physiological
characteristics

e.g., arousal level, hormone
level

Expressive
channels (Ex)

Channels within which agent’s
emotions can be manifested:
facial expressions, gestures,
posture, gaze & head
movement, movement, speech

Facial expressions (smile,
frown), speech (sad, excited),
gestures (smooth, clumsy),
movement (fast, slow),
(represented via channel-
specific primitives, e.g., FACS)

Behavioral (B) Agent’s behavioral repertoire Walk, run, shake hands w/
another agent

The set of abstract domains represents a superset of possible domains, with the actual set
varying as a function of the model’s theoretical foundations and objective.
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generate a broad range of affective states (Leventhal & Scherer, 1987; Ortony
et al., 2005; Sloman, 2004; Sloman et al., 2005). Currently, no existing
cognitive-affective architecture implements all of these layers, let alone the
complex interactions among the processes within and across the layers. The
H-CogAff architecture developed by Sloman and colleagues most closely
approximates the “triune” architecture structure (Sloman, 2001; Sloman
et al., 2005). Although several architectures implement multiple levels of pro-
cessing (e.g., Becker-Asano, 2008; Becker-Asano et al., 2014; Dias et al., 2014),
neither the levels, nor the emotions produced, map directly onto the layers and
emotion types specified by the “triune” architecture template. Nonetheless, it is
important to consider this template during the design process and performance
evaluation, to facilitate a more systematic and principled exploration of the
design-space of the architecture features, both structural and functional, and to
establish the mapping between particular features and specific agent capabil-
ities, including adaptive behavior and affective processing.
A less complex architecture schema, but one that lends itself well to modeling

emotions, due to its emphasis on representing beliefs and desires, is the Belief
Desire Intention (BDI) architecture (Rao & Georgeoff, 1995). BDI is well
established in agent research, with a number of available tools facilitating
development (e.g., AgentSpeak (Rao, 2009)), and has been broadly adopted
as a framework for cognitive-affective architectures (e.g., Alfonso et al., 2017;
Becker-Asano & Wachsmuth, 2010; Boukricha & Wachsmuth, 2011; de Rosis
et al., 2003; Jiang et al., 2007; Jones et al., 2009; Neto & da Silva, 2012; Ochs
et al., 2012). Formal specifications of the affective BDI framework have also
been developed (e.g., Adams et al., 2009; Dastani & Lorini, 2012; Dastani &
Pankov, 2017; Gluz & Jaques, 2017), emphasizing primarily the OCC cognitive
appraisal theory for emotion generation. (For a recent review of emotional BDI
architectures (EBDI) see Sanchez-Lopez and Cerezo (2019)). In terms of its
relationship to the CogAff schema, processing in EBDI architectures corres-
ponds roughly to the middle, deliberative layer. However, since the terms belief,
desire, and intention are often interpreted rather broadly by different research-
ers, it is difficult to establish a precise correspondence of BDI architectures with
the CogAff schema, and its H-CogAff instantiation; e.g., BDI architectures
may include aspects of reactive behavior, as well as limited aspects of reflective
behavior implemented at the meta-management layer of the CogAff schema.
A number of established cognitive architectures have also been augmented

with emotions; e.g., Clarion (Sun et al., 2016), LIDA (Franklin et al., 2014),
and BICA (Samsonovich, 2020), or used as an environment within which to
explore emotion modeling (e.g., Soar (Marinier & Laird, 2006); EMA (Gratch
& Marsella, 2004); ACT-R (Becker-Asano et al., 2013; Dancy, 2013)).

30.5.2 Modeling Emotion Generation

Following a brief discussion of the differences among the theoretical perspec-
tives with respect to modeling emotion generation, and representational and
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inferencing requirements for different types of emotions, examples of models
using each of the three theoretical perspectives are outlined, organized in terms
of the generic computational tasks.

30.5.2.1 Stimulus-to-Emotion Mapping

The primary task in emotion generation is to map the triggering stimuli
(emotion elicitors) onto the resulting emotion(s), which reflects the agent’s
evaluation of these stimuli, in light of its goals (broadly, desires and needs)
and beliefs (broadly, knowledge of the state of the world or self ). (Note that
“evaluation” does not imply conscious, complex reasoning.) Depending on the
theoretical perspective, this can be implemented via a single stage (i.e., direct
mapping of the domain-specific elicitors to the resulting emotion(s), for the
discrete/categorical theories; e.g., “growling dog ➔ fear”), or via multiple
stages, involving a domain-independent intermediate representation for the
constructivist and appraisal theories (constructivist: PAD dimensions charac-
terizing core affect; e.g., negative P, positive A, negative D➔ “fear”; appraisal:
variables such as novelty, intrinsic valence, goal relevance, goal congruence,
coping ability; e.g., high novelty, low intrinsic valence, high goal relevance, low
goal congruence, low coping ➔ “fear”).

The two-stage approach facilitates higher resolution of the emotion space,
and affords a degree of domain independence, by capturing the key charac-
teristic of the emotion-eliciting situation in terms of the values of the
domain-independent dimensions (for the constructivist models using the
PAD dimensions) or appraisal variables (for most of the cognitive appraisal
models). However, it is critical to note that while the domain-independent
phase of this process, that is, establishing the mapping from the elements of
the [{PAD} |{appraisal variables}] set to the set of emotions, may be
relatively simple, deriving the values of the PAD dimensions or the
appraisal variables from the domain-specific information during the first
phase of emotion generation can be far from trivial. In any but the simplest
contexts deriving the PAD or appraisal variable values requires rich repre-
sentational formalisms and complex inferencing (see Figure 30.5). In other
words, determining whether a particular situation is goal relevant and goal
congruent, and assessing the agent’s coping abilities, may require represen-
tations of complex goal hierarchies, temporal, “what-if,” abductive and
counterfactual reasoning, probabilistic representations of the domain’s
causal structure, reasoning under uncertainty, and truth maintenance (refer
to discussion regarding the illusion of domain independence in Section
30.5.4).

Choices regarding the representational and inferencing requirements are a
function of the types of emotions represented in the model, and the domain
complexity. For example, fear and hope, referred to as prospect-based emotions
in OCC, require representations of future states. Complex social emotions
require explicit representations of the self and others. Regret and remorse
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require representations of the larger problem search space, and ability to
simulate possible alternative actions in the past and assess their consequences
via counterfactual reasoning.
Frequently used formalisms (refer to Figure 30.5) include belief nets

(Greta (de Rosis et al., 2003), MAMID (Hudlicka, 2007)), more recently
hierarchical belief nets modeling active inference (Hesp et al., 2021; Smith
et al., 2019), production rules (FEELER (Pfeifer, 1994), Affective Reasoner
(Elliot, 1992), EMA (Gratch & Marsella, 2004), ALMA (Gephard, 2005),
FearNot! (Dias & Paiva, 2005)), fuzzy logic (FLAME (El-Nasr et al.,
2000)), frames (Affective Reasoner (Elliot, 1992), EMA (Gratch &
Marsella, 2004)), or dedicated functions or procedures for each emotion
represented, common in the early models and architectures (e.g., demons
(Loyall, 1997; Reilly, 1996), “proto-specialists” (Breazeal, 2003; Canamero,
1997; Velasquez, 1997)). Connectionist representations (artificial neural
nets) have also been used, typically when multi-modal or noncognitive
emotion generation is implemented (e.g., Lowe et al., 2019; Scheutz &
Sloman, 2001). Mathematical formalisms have been explored, including a
variety of decision-theoretic formalisms and hidden Markov models (e.g.,
Busemeyer, 2007; Lisetti & Gmytrasiewicz, 2002). More recently, there is
increasing interest in using various forms of reinforcement learning (e.g.,
TDRL models (Broekens et al., 2015; Broekens & Dai, 2019)). The choice
of a particular formalism is driven by a number of factors, including:
necessity for, and ability, to represent and reason under uncertainty (belief
nets, fuzzy rules), availability of associated formal inferencing procedures
(predicate calculus), and availability of tools to facilitate development.
Many models use customized representations and associated reasoning
mechanisms (e.g., frames, customized functions/procedures), which maxi-
mizes flexibility at the expense of using established formal reasoning and
sharable components.
A large number of emotion generation models have been developed to date,

primarily in applied contexts (see reviews by Ojha et al., (2020); Rodriguez &
Ramos (2014); Sanchez-Lopez & Cerezo (2019)). None embody all aspects of a
particular theory and many combine several of the theoretical perspectives
outlined earlier. The discussion below outlines representative examples, organ-
ized in terms of the primary theoretical perspective emphasized in each model.

30.5.2.1.1 Emotion Generation Based on Basic Emotion Theories
Basic emotion theories (BET) served as the theoretical basis for implementing
emotion generation in several early robot architectures, including Cathexis
(Velasquez, 1997), Kismet (Breazeal & Brooks, 2005), and the simulated simple
robots Abbotts (Canamero, 1997). In each case, dedicated procedures derived a
subset of the “Big Six” emotions by mapping inputs from various sensors
monitoring both internal states (e.g., level of simulated neurotransmitters;
deflections from optimal state of essential physiological variables (e.g., glucose
level)), and the external environment (e.g., presence of a specific object or
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enemy, attributes of the robot’s interaction partner) onto the associated emo-
tion. Cathexis and Kismet combined simulated physiology and cognitive
appraisal. Abbotts modeled emotion generation via two mechanisms: specific
and general. The specific mechanism implemented BET via a fixed mapping of
domain-specific triggers onto four of the “Big Six” emotions, plus interest and
boredom (e.g., enemy triggered fear; interference with goal triggered anger).
The emotion triggers were assumed to be perceived via pre-attentive processes
and distinct from cognitive appraisal processes. This mechanism aimed to
produce emotions from the status of the agent’s simulated bodily state, and
was based on mapping particular patterns of changes of the physiological
variables (sudden increase, decrease, or a consistently high value) onto an
emotion; e.g., a high value of a particular variable triggering anger. The
resulting emotions were defined in terms of specific values of the simulated
hormones, which then exerted influence on the agent’s motivation, perception
and ultimately behavioral choices. The intensity of the emotion was propor-
tional to the level of activation and the model allowed for multiple emotions to
be triggered simultaneously, each releasing its associated hormones at the
corresponding levels of intensity.

The original Abbotts architecture has served as a basis for a number of later
implementations in embodied agents (robots), developed for both applied and
research objectives, with continued emphasis on modeling noncognitive
approaches to emotion generation. Specifically, deflections from the optimal
values of the essential physiological variables (e.g., energy level, physical
integrity) mapping onto simulated hormones, which then influenced motiv-
ation and behavior. An example of an applied model being an affective social
robot Robin, designed to help children manage diabetes (Lewis & Canamero,
2017). Examples of research models include modeling different types of pleas-
ure (valence) and the associated effects on decision making (Lewis &
Canamero, 2016), and efforts to explore mechanisms mediating compulsive
disorders, and the hypothesized mechanisms of therapeutic interventions
(Lewis & Canamero, 2019).

30.5.2.1.2 Emotion Generation Based on Constructivist Theories
Constructivist theories include the feeling and embodied theories of emotion,
and frequently use the dimensional perspective to characterize the felt affective
state in terms of the PA(D) dimensions. These are then further interpreted and
categorized into specific emotions, or map directly onto expressions, action
choices or cognitive effects. Two models are summarized below.

The WASABI architecture (Becker-Asano, 2008; Becker-Asano et al., 2013;
Becker-Asano et al., 2014) was originally constructed both to enhance the
affective and social realism of virtual agents (embodied conversational agents),
and to develop a cognitive-affective architecture that would reflect the
complexity of emerging findings regarding affective processing, and promote
cross-disciplinary research in emotion. To this end, WASABI uses multiple
theoretical perspectives (constructivist and appraisal), generates both primary
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(anger, fear, joy, sadness, surprise) and secondary (hope, fears-confirmed,
relief ) emotions (Damasio, 1994), and enables processing at multiple levels of
complexity (reactive and deliberative). The reactive component generates pri-
mary emotions, by mapping patterns in sensory input to a valence value; e.g., a
museum guide agent considers the presence of visitors to be an inherently
positive event, and the reactive innate process therefore generates a positive
valence. A valence value is also generated via cognitive processing at the
deliberative layer, which also produces a value for the dominance dimension,
by assessing the agent’s coping potential. These values are integreated with
existing mood to produce the PAD 3-tuple, which then defines one of
the emotions.
WASABI explicitly represents the mutual influence among emotions and

moods. Positive events induce positive valence and also contribute to a positive
mood, which then predisposes the agent towards positive emotions, and vice
versa. The intensities of both valence and mood are derived from simulated
mass-spring systems and decay to zero. This dynamic interaction is represented
in terms of a 3-D space, where X corresponds to the valence magnitude, Y to
the mood magnitude, and Z represents boredom (lack of an emotion-inducing
event). The values of valence and arousal are calculated as shown in Equations
30.1 and 30.2 (Becker-Asano et al., 2013), and updated at regular intervals. The
mapping of the 3-tuple PAD values onto specific emotions, as well as the
parameters of the simulated mass springs deriving the x and y values, can be
adjusted to achieve the desired model performance.

pðxt, ytÞ ¼ ½ðxt þ ytÞ (30.1)

aðxt, ztÞ ¼ jxtj þ zt ðwith zt being negatively signedÞ (30.2)

Another model using elements of constructivist theories was developed by
Lowe and Kyriazov (2014), and aims to implement Prinz’s embodied appraisal
theory (Prinz, 2004) and Damasio’s somatic marker hypothesis (Damasio,
1994), within a robotic architecture. The model emphasizes the physiological
modality, and aims to ground emotion in the homeostatic processes and motiv-
ation. Two variables were used to reflect simulated physiology and served as a
basis for deriving the value of the arousal dimension: the robot’s level of energy
and “work” (a ball tracking task). Arousal was defined as a function of the
robot’s energy level (Energy), energy deficit (Denergy), distance from the energy
source (Cenergy), work deficit (Dwork), and distance from the robot’s task
(Cwork) (see Equation 30.3), and influenced both the recharging activity and
the ball tracking performance.

Arousal ¼ Energy • ðCwork • Dworkþ Cenergy • DenergyÞ (30.3)

Recently, there has been growing interest in implementing the generative/
predictive modeling aspects of the constructivist theories. Examples include
work of Lowe and colleagues modeling Damasio’s “as-if body loop” (Lowe
et al., 2017), and models using active inference, implemented using Bayesian
belief nets (e.g., Smith et al., 2019).
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30.5.2.1.3 Emotion Generation Based on Appraisal Theories
Cognitive appraisal theories are used most frequently to model emotion gener-
ation in symbolic models of emotion and cognitive-affective architectures, with
OCC being the earliest, and most frequently implemented (Andre et al., 2000;
Aylett et al., 2005; Bates et al., 1992; El-Nasr et al., 2000; Elliot, 1992; Loyall,
1997; Prendinger & Ishizuka, 2004; de Rosis et al., 2003; Reilly, 1996; Staller &
Petta, 1998). Several models have used Frijda’s appraisal theory (Frijda &
Swagerman, 1987). Appraisal theories of Scherer, Roseman, and Smith and
Kirby (Roseman, 2001; Scherer et al., 2001; Smith & Kirby, 2000) have also
been used as the basis of computational models (e.g., composite models inte-
grating multiple appraisal theories, such as FLAME (El-Nasr et al., 2000),
PEACTIDM (Marinier et al., 2009)). Appraisal theories have also been the
most frequently formalized (Adam et al., 2009; Dastani & Pankov, 2017;
Hindriks & Broekens, 2011; Steunebrink et al., 2009, 2012). Figure 30.4 shows
a summary of a subset of existing appraisal-based emotion-generation models,
illustrating their historical context.

The appraisal process proceeds through two phases: (1) values of the
appraisal variables are derived by analyzing the current situation in the context
of the agent’s goals and beliefs; (2) the resulting vector of values then corres-
ponds to a specific emotion (refer to Tables 30.3 and 30.4). The first phase is
necessarily domain-dependent, and the complexity of the required inferencing
corresponds to the complexity of the context, both external (physical/social
environment) and internal (agent’s internal representations of the self and the
world). A variety of representational and inferencing formalisms can be used,
including belief nets, rules, predicate calculus, or dedicated procedures (see
Figure 30.5).

Figure 30.4 Summary of emotion generation models implementing
cognitive appraisal.
Adapted from (Gratch & Marsella, 2015; Figure 5.3, p. 60)
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Figure 30.5 Subnet of a Dynamic Belief Net in Agent Greta (left) and an Example of a Fuzzy Rule in the
FLAME Model (right).
(Adapted from (de Rosis et al., 2003; Figure 4, p. 29, (left) and (El-Nasr et al., 2000 (right).)
The belief net represents the derivation of the OCC emotion “Sorry-for” within a single time frame, from

the constituent evaluative criteria; where G stands for agent Greta and U stands for Greta’s human
interlocutor. Since Greta believes U is her friend (upper right node), and she has to inform U that U has an
eating disorder (left column nodes), knowing this will be disappointing for U (center column nodes), Greta’s
goal of “preserving others from bad events” will be violated (Thr-PresFBad U), and this will trigger the
emotion of Sorry-for (bottom node) (left).
The fuzzy rule from the FLAME model, which combines elements of OCC and Roseman’s theory, shows

the derivation of the desirability appraisal variable; where A, B, & C represent fuzzy sets defined in terms of
qualitative values representing impact of the event on each goal (set A), the importance of each affected goal
to the agent (set B), and the desirability assessment of the event (set C) (right).
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30.5.2.2 Affective Dynamics: Calculating Emotion Intensity Onset and Decay

Modeling emotion intensity requires not only the initial intensity calculation
function, but also the functions that determine the onset and decay rates, which
may vary by emotion type, and must also take into consideration any residual
emotion or mood, to ensure smooth and affectively realistic transitions among
distinct states. The theoretical foundations and empirical data necessary for
emotion intensity calculation and dynamics are less well developed than those
for implementing the stimulus-to-emotion mappings, although some quantita-
tive (analytical) models have been developed (e.g., Mellers et al., 1997;
Reisenzein, 2009).

Data supporting precise calculations of intensities and onset and decay rates
are not necessarily available, and existing empirical studies often provide only
qualitative estimates, which may be specific to a particular domain and emotion
induction method. Variability of these processes across emotions and individ-
uals, while documented, has also not been adequately quantified; e.g., high
neuroticism rate predisposes individuals towards faster and more intense nega-
tive emotions; anger appears to decay more slowly than other emotions (Lerner
& Tiedens, 2006; Lerner et al., 2015). Even more importantly, some researchers
point out that the appraisal dimensions identified for emotion differentiation
may not be the same as those that “allow prediction of duration and intensity,”
and that “the current set of appraisal dimensions may be incomplete” (Scherer,
2001a, p. 375). Number of complexities are typically not addressed. For
example, Reilly (2006) points out the need for representing asymmetry of
success vs. failure; i.e., for different types of individuals (and different goals)
success may be less (or more) important than failure; e.g., extraversion is
associated with reward-seeking whereas neuroticism is associated with
punishment-avoidance. Modeling these phenomena thus requires distinct vari-
ables for success (desirability of an event, situation or world state) vs. failure
(undesirability of the same).

The above issues notwithstanding, progress has been made in systematizing
intensity calculations, particularly in models using cognitive appraisal. Most
existing models use relatively simple functions of desirability (often also referred
to as utility) and likelihood (often referred to as expectancy or probability); e.g.,
[desirability * likelihood] (Gratch & Marsella, 2004); [desirability * (change in)
likelihood] (Reilly, 2006) (see Table 30.7). Several studies have established that
intensities calculated via power functions using these two variables are consist-
ent with human data, for a number of emotions (Gratch et al., 2009; Reisenzein
& Junge, 2006). An empirical study comparing model-generated and human
data suggested that the expected utility model, implemented in EMA (Gratch &
Marsella, 2004) and FearNot! (Aylett et al., 2005; Dias & Paiva, 2005) provided
the best fit for intensity changes for five of the “Big Six” (joy, sadness, hope,
fear, and anger), with respect to the human data generated within the explora-
tory study (Gratch et al., 2009). Reisenzein and colleagues (Junge & Reisenzein,
2013) conducted studies aimed at validating a previously proposed model of
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intensity within the BDTE appraisal theory (Reisenzein, 2009), using novel
methods for eliciting intensity data via self-reports. Analytical models of inten-
sity for relief and disappointment were consistent with human data obtained in
the study, as well as with previously developed models of positive and negative
affect (Mellers et al., 1997). The formulae for disappointment and relief are
shown below (Equations 30.4 and 30.5).

Table 30.7 Examples of intensity calculating formulae

Intensity function Pros/Cons
Model using
the function

Importance * belief (that
event is true or that goal will
be affected)

þ Simple

þ Explicit representation of agent’s
belief

þ Works for many simple cases

– Ignores asymmetry in success/
failure of goal

– Ignores expectation of event

– Ignores possible differences
between actual likelihood and
agent’s beliefs

de Rosis
et al., 2003
(Greta)

Desirability * (change in)
(Likelihood of success) (for
positive emotions)

|Undesirability| * (change in)
(Likelihood of failure) (for
negative emotions)

þ Relatively simple

þ Accounts for change in perceived
likelihood of success/failure

þ Works for many simple cases

þ Captures asymmetry in success or
failure of affected goal

– Requires distinct variables for
importance of success (goal
desirability)(joy & hope) vs.
importance of avoiding failure (goal
undesirability) (distress & fear)

Reilly, 1996
(Em)

|desirability| * likelihood þ Simple

þ Works for many simple cases

– Ignores asymmetry in success/
failure of goal

– Ignores expectation of event

Gratch &
Marsella,
2004 (EMA)

(1.7 * desirability *
expectation**.5) þ (–.7 *
desirability) (for positive
emotions)

(2 * desirability *
expectation**2) –
desirability (for negative
emotions)

þ Explicitly represents asymmetry in
importance of success vs. avoiding
failure

– Constants are empirically derived
and likely to be context specific

El-Nasr
et al., 2000
(FLAME)
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disappointment ðnot� pÞ ¼ bðpÞ � dðpÞ if dðpÞ > 0; else 0 (30.4)

relief ðnot� pÞ ¼ jbðpÞ � dðpÞj if dðpÞ < 0; else 0 (30.5)

where p is the desired outcome, b is the belief that p will occur, and d is the
desire for p to occur. In addition to the initial intensity calculation, the decay
rates must also be determined, and need to consider the extent to which
emotions represent self-sustaining processes, which must run their course, often
due to the activated neurophysiological components (e.g., hormones released
into the blood stream must dissipate). Reilly (2006) categorized approaches to
decay calculation into linear (simple to compute but not realistic), exponential,
and logarithmic (more realistic than linear), or “some arbitrary monotonically
decreasing function over time” (see Table 30.8).

30.5.2.3 Affective Dynamics: Combining Multiple Emotions

Complex situations necessitate corresponding complexity in the emotion gener-
ation process, and may result in the generation of multiple emotions (e.g., an
agent may have conflicting goals, resulting in opposing emotions). In addition,
even when a single emotion is derived, it may need to be integrated with existing
emotions and moods. At their maximum intensity, a single emotion may be
experienced and expressed. However, more typically, multiple emotions interact
to form the subjective feeling state and influence cognitive processing and
behavior via complex, and often poorly understood, mechanisms, not yet
quantified to the degree required for modeling.

Reilly (2006) analyzed approaches to combining similar emotions, highlight-
ing their drawbacks and benefits. Simple addition of intensities can lead to
unrealistically high intensity values (e.g., few “low intensity” emotions lead to a
“high intensity” reaction). Averaging the intensities may result in a final inten-
sity that is lower than one of the constituent intensities: an unlikely situation in
biological agents. Max (winner-takes-all) approach ignores the cumulative
effects of multiple emotions. Note also that the notion of similarity is in itself
problematic, since establishing similarity for these multi-dimensional phenom-
ena is nontrivial. Typically, similarity implies a shared valence or shared broad
behavioral tendencies (approach vs. avoid).

Table 30.8 Examples of functions for modeling emotion intensity decay

Function type Description

Linear Decrement intensity at t-1 by a decay constant

Exponential Decrement at each t is proportional to intensity at t-1; slope
determined by decay constant; faster than logarithmic

Logarithmic Decrement at each t is proportional to intensity at t-1; slope
determined by decay constant; slower than exponential

Mass spring Decrement at each t is proportional to intensity at t-1; slope
determined by decay constants; sinusoid behavior
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No analogous analysis exists for combining opposing emotions, nor do
existing theories and empirical data provide the necessary details. Should
opposing emotions cancel each other out? (Is one likely to feel calm and
neutral if their house burned down but they have just won the lottery?) Is it
even appropriate to think of emotions in pairs of opposites? Can it be
assumed that the strongest emotion is “the correct one”? At what stage of
processing are emotions combined and any contradictions resolved? Should
conflicting emotions be resolved during emotion generation, to avoid the
issue entirely? At the cognitive effects stage, e.g., during goal selection? Or at
the behavior selection stage? The latter being potentially the most problem-
atic; and yet it is apparent that this phenomenon occurs in biological agents.
One only needs to witness the scrambling of a frightened squirrel as a car
approaches to see a dramatic impact of the failure to resolve contradictory
behavioral tendencies. Modeling affective dynamics, in particular the poten-
tial integration of multiple emotions, remains one of the core challenges in
emotion modeling.
The end result of the inferencing discussed above is an instance of the

generated emotion, such as the illustrative example in Table 30.9. Note that
the specific attributes of such an emotion object instance are determined by the
requirements of the particular model: thus more, fewer or different attributes
from the ones shown in Table 30.9 may be appropriate for a specific model.
Note also that in some models no explicit emotion object may be created, and
the elements defining the emotion (e.g., PAD dimensions; appraisal variables)
may map directly onto the emotion effects (e.g., TABASCO, Staller & Petta,
1998)).

30.5.3 Modeling Emotion Effects

While data are available regarding the effects of particular emotions on
specific aspects of cognition, often referred to as affective biases (see
Table 30.2), theories of the mechanisms of these influences are not nearly as
well elaborated as those for emotion generation via cognitive appraisal. (Note
that “bias” does not imply an undesirable effect but simply the preferential
processing of certain types of information, which may then enhance or dimin-
ish adaptive behavior.) Development of theoretically grounded models of
emotion effects on cognition is thus more challenging. In addition, due to
the fact that the majority of emotion models have been developed for applied
purposes, to enhance the behavior and realism of synthetic social agents,
robots, or nonplaying game characters, there has been more emphasis on
modeling the visible effects on emotions, in terms of expressions and behavior,
than on models of emotion effects on cognition. The discussion of emotion
effect models below is thus not as extensive as the discussion of emotion
generation. However, a specific model of emotion effects is presented in detail
in Section 30.6, to illustrate an implementation of a parameter-based model of
affective biases.
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30.5.3.1 Emotion-to-Cognitive Process Mappings

Distinct tasks need to be specified for the effects of interest on the cognitive
structures and processes represented in the model. These may be the
fundamental processes underlying high-level cognition: attention (speed,
capacity, accuracy), working memory (encoding and recall speed and
accuracy), and long-term memory (encoding, recall, structure, content), or
higher-level cognitive processes, such as situation assessment, learning, goal
management, planning and plan selection, and action selection and execution

Table 30.9 Example of a frame representing an emotion instance

Attribute Content Example

Affective State type {affect, emotion, mood,
attitude}

Emotion

Valence Some value between –n and
þn, where n is typically 1

1

Emotion type Name of emotion Joy

Intensity/Activation Level Some value between 0 and
n, where n is typically 1

.5

Underlying dimensions, if
dim model used (PA or
PAD)

{Arousal, Valence,
Dominance}, represented
by values between –n and
þn, where n is typically 1

(.5, –1,0)

Underlying appraisal
variables, if componential
model used

List of specific appraisal
variables and their values Novelty ¼ 1

Goal congruence ¼ high
Etc.

Time when first created T where t > 0 3

Current time Tcurrent, where Tcurrent >¼ T

Duration/Decay function Specific decay function for
this emotion type

2 minutes / Exponential

Eliciting Triggers (may be
further categorized into
types, as per OCC theory)

Pointers to structures
containing list of triggers
(e.g., events)

e.g., Event_12;
Situation_5

Affected goals/concerns
(internal evaluative
criteria)

(may be further categorized
into types, as per OCC
theory; e.g., goals,
standards, preferences)

Pointers to structures
containing list of goals/
concerns

e.g., Goal_22;
Behavioral_Norm_42

Direction/Target of
emotion-triggered behavior

List of agents (including
self ) and objects

Agent_007
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monitoring. Increasingly there is interest in modeling the effects of emotions on
the affective processes themselves, including cognitive appraisal (Castellanos
et al., 2019) and emotion regulation (Bosse, 2017).
Empirical data provide some basis for defining these tasks, at least in qualita-

tive terms, and several models implement some of these. For example, the early
robot architecture Kismet used emotion to focus attention, prioritize goals, and
select action (Breazeal, 2003). MAMID architecture encodes emotion effects on
cognitive processing in terms of parameters which induce changes in capacity,
speed, and specific biases within distinct modules (Hudlicka, 2003, 2007). The
MicroPsi architecture (Bach, 2009) uses parameters to model emotion effects on
action readiness, perceptual and memory processes, activity persistence and
orienting and novelty-seeking behavior. A parameter-based approach, imple-
mented within ACT-R, has been used to model action selection (via conflict
resolution) (Belavkin & Ritter, 2004), and stress effects (Ritter et al., 2007).
(Note, however, that stress level is modeled via a parameter that essentially
introduces noise into the conflict resolution process, and thus does not corres-
pond to any specific biasing effects.) Another model of stress, using simulated
physiological variables and hormones, including a generic “stress hormone,”
was developed by Lewis and Canamero (2019), in the context of a robotic agent.
The magnitude of the stress hormone is a function of external and internal
stressors; e.g., physical confinement or the values of essential physiological
values outside of the desired range. The stress hormone modifies the desired
range of the physiological variables, thereby impacting the difficulty of achieving
the desired simulated physiological state, and can also cause the robot to mis-
perceive the variables’ target values. Several models of emotion effects on
behavior selection have used decision-theoretic formalisms, where emotions bias
the utilities and weights assigned to different behavioral alternatives (e.g.,
Busemeyer et al., 2007; Lisetti & Gmytrasiewicz, 2002).

30.5.3.2 Determining the Magnitude of Emotion Effects

Translating the qualitative relationships typically identified in empirical studies
(e.g., anxiety biases attention towards threatening stimuli) into quantitative
specifications is challenging, since existing empirical data typically do not
provide sufficient information for calculating the exact magnitudes of the
observed effects. In general, and not surprisingly, more accurate data are
available at the periphery of information processing (attention and motor
control tasks), and in the contexts of simple laboratory tasks. Frequently,
therefore, quantification of the available qualitative data requires model adjust-
ments and tuning to achieve the desired performance.

30.5.3.3 Integration of Multiple Emotions

Existing empirical studies also generally do not provide information about how
to combine multiple effects, or how these may interact. This requires that the
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modeler combine known qualitative data in a somewhat ad hoc manner, and
tune the resulting models to obtain the desired model performance. As was the
case with appraisal, a number of issues must be addressed in combining similar,
different, or opposing effects; both regarding the stage of processing where these
effects should be integrated, and the corresponding formulae or procedures.

For both of the tasks above, data for the internal processes and structures (e.g.,
effects on goal prioritization, expectation generation, planning) are more difficult
to obtain and quantify, due to lack of direct access, and the transient nature of
emotions and their effects on cognitive processes. This may indeed represent a
limiting factor for research models of these phenomena. Currently, the degree of
resolution possible within a computational model far exceeds the degree of
resolution of the data available about these processes, resulting in models that
are highly underconstrained, which limits their explanatory capabilities.

30.5.4 The Illusion of Domain Independence

As is evident from the discussion above, a significant component of any
emotion model is necessarily domain dependent, and the complexity of
domain-specific inferencing increases with the complexity of the domain (e.g.,
consider the inferencing necessary to model fear, anger, and joy in an NPC in a
simple computer game vs. that required to model realistic affective behavior in
an embodied agent acting as a companion, and needing to manage complex,
possibly conflicting, interpersonal goals). While the generic computational
tasks, as well as the evaluative criteria used to implement cognitive appraisal,
are domain independent, many of the processes necessary to implement them
are necessarily domain-specific. Notably, in models of cognitive appraisal, the
analysis and interpretation of the emotion elicitors, assessment of their rele-
vance and congruence with respect to the agents’ current goals and beliefs, are
necessarily domain dependent and complex, compared to the relatively straight-
forward mapping of the resulting domain-independent vector of values onto the
emotion space defined by the appraisal variables. One must thus carefully
evaluate any claims about domain independence made in regards to particular
emotion models, and consider which components are in fact domain independ-
ent, and how readily the model can be instantiated in a different domain. As
always, the devil is in the details.

30.6 Model and Architecture Example: Modeling Emotion
Effects on Cognition

This section describes a specific cognitive-affective architecture in more
detail, to provide a concrete view of the structure and functioning of a process-
level, research model, developed to explore the mechanisms mediating emotion
effects on cognition: the MAMID cognitive-affective architecture (Methodology
for Analysis and Modeling of Individual Differences) (Hudlicka, 1998, 2002,
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2003, 2007). MAMID was selected because it is one of the few symbolic emotion
models focusing on modeling of emotion effects on lower-level cognitive pro-
cessing and thus explicitly emphasizing cognition–emotion interactions, and
because it illustrates an implementation of the parameter-based modeling
approach. Following a description of the architecture and the modeling meth-
odology, MAMID’s utility as a research model is briefly discussed.

30.6.1 MAMID Architecture and Generic Methodology for Modeling
Individual Differences

MAMID is a domain-independent symbolic cognitive-affective architecture,
implementing a generic methodology for modeling the interacting effects of
multiple individual differences, including emotions and traits, via parametric
manipulations of the architecture processes and structures (see Figure 30.6). The
underlying thesis of this approach is that the combined effects of a broad range
of individual differences, including distinct emotions, can be integrated and
represented in terms of specific configuration of these parameter values.
MAMID focuses on modeling the effects of emotions on the cognitive processes
mediating decision making, in terms of parameters controlling processing
within the individual architecture modules.
MAMID was instantiated and evaluated in two domains (search-and-rescue

operations and a peacekeeping scenario). It implements a sequential see-think/
emote-do sequence, consisting of: Attention (filters incoming cues and selects a
subset for processing); Situation Assessment (integrates cues into an overall
situation assessment); Expectation Generation (projects current situation onto
possible future states); Emotion Generation (derives a valence and four of the
Big Six emotions from external and internal elicitors); Goal Selection (identifies
high-priority goals); and Action Selection (selects the best actions for goal
achievement). The modules thus map the incoming cues onto actions, via a
set of intermediate internal structures (situations, expectations, and goals),
collectively termed mental constructs. This mapping is enabled by long-term
memories (LTM) associated with each module, represented by belief nets
encoding domain-specific knowledge, with the priors and conditional probabil-
ity tables derived from domain knowledge and empirical data. Mental con-
structs are characterized by their attributes (e.g., familiarity, novelty, salience,
threat level, valence, etc.), which determine their rank, and thereby the likeli-
hood of being processed during a given execution cycle; e.g., cue will be
attended, situation derived, goal or action selected.

30.6.2 Modeling Affective Processes

MAMID models both emotion generation and emotion effects, but emphasizes
the latter. Emotion generation is modeled via appraisal, within a dedicated
Emotion Generation module, which integrates external data (cues), internal
interpretations (situations, expectation), and goals, with both static and
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Figure 30.6 Structure of the MAMID architecture and the mental constructs produced by each module (left) and a
schematic illustration of the MAMID methodology (right).
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transient individual characteristics (traits and emotional states), to generate
both a valence and one of the four “Big Six” emotions (fear, anger, sadness,
joy). The intensity of each emotion is influenced by task- and individual-specific
factors; e.g., a particular situation may affect anxiety positively or negatively,
depending on the individual’s specific experience.
Emotion effects are modeled by mapping a specific configuration of emotion

intensities onto a set of parameter values, which then control processing within
the architecture modules, as well as the data flow among them; e.g., decrease/
increase the modules’ capacity and speed, introduce a bias for processing
particular types of constructs; e.g., high-threat, self-related. Functions imple-
menting these mappings are constructed from available empirical data; e.g.,
anxiety-linked bias to preferentially attend to threatening cues and interpret
situations as threatening is modeled by ranking high-threat cues and situations
more highly, thereby making their processing by the Attention and Situation
Assessment modules more likely (see Figure 30.7). The parameter-calculating
functions consist of weighted linear combinations of the factors that influence
each parameter; e.g., working memory capacity reflects a normalized weighted
sum of emotion intensities, trait values, baseline capacity, and skill level. These
functions can be easily modified as needed, to reflect available empirical data.

30.6.3 Modeling Mechanisms Mediating Anxiety

MAMID enables the exploration of alternative mechanisms mediating anxiety
disorders through its ability to represent attentional and interpretive biases, and
the resulting anxiety states (including the extreme state of panic), through the
parametric manipulations of the underlying processes (Hudlicka, 2008b,

Figure 30.7 Modeling threat bias within MAMID.
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2014c). Alternative hypotheses regarding the mediating mechanisms of an
observed phenomenon can be modeled and the resulting behavior evaluated
within the context of a simulated environment, and ultimately tested via empir-
ical studies with humans. The approach demonstrates the ability of the same set
of underlying processes to generate a variety of behaviors, ranging from adap-
tive protective, through mildly maladaptive (overprotective behavior), to patho-
logical (panic attack), depending on the values of the parameters controlling
processing: as the anxiety intensity increases, the processing becomes increas-
ingly biased towards threatening and self-relevant information, demonstrating
increasingly maladaptive behavior.

MAMID models a panic attack as follows. Stimuli, both external and
internal, arrive at the Attention module, which already has a reduced capacity
due to the heightened anxiety. The anxiety-linked threat- and self-bias causes
self-related and high-threat cues to be processed preferentially, in this case
resulting in the agent’s focus on its own anxious state. This consumes the
module’s reduced capacity, leading to the neglect of external and nonthreaten-
ing cues (e.g., proximity of needed resources, which could reduce the anxiety
level), which then results in a continued self- and threat-focus in the down-
stream modules (Situation Assessment and Expectation Generation). No useful
goals or behavior can be derived from these constructs, and the agent enters a
positive feedback-induced vicious cycle of self-reflection, characteristic of panic
states, where the reduced-capacity and biased processing exclude cues that
could lower the anxiety level and trigger adaptive behavior.

A number of factors can be manipulated to induce the effects described
above, simultaneously or sequentially, reflecting multiple, alternative mechan-
isms mediating the anxiety-biasing effects. In the case of the capacity param-
eters, alternative mechanisms can be defined from the agent’s overall sensitivity
to anxiety (reflected in the weights associated with trait and state anxiety
intensity factors), the baseline (innate) capacity limits (reflected in the factors
representing the minimum and maximum attention and working memory cap-
acities), and the anxiety intensity itself. This factor can be further manipulated
via the set of parameters influencing the affect appraisal processes, including the
nature of the affective dynamics (e.g., maximum intensity, and the intensity
onset and decay functions). The validity of these hypotheses can then be
explored via empirical studies.

Such mechanism-based characterizations of affective disorders can then sup-
port more customized approaches to diagnosis and treatment, including the
development of targeted interventions and progress assessment (Hudlicka,
2019b, 2020).

30.7 Conclusions

Having discussed both the theoretical foundations and methods for the
construction of symbolic models of emotions, this section concludes with a brief
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discussion of model validation and evaluation, open questions and challenges,
and suggestions for near-term research priorities.

30.7.1 Validation and Evaluation

The distinction between research and applied models is particularly relevant in
regards to model validation and evaluation. Research models aim to corres-
pond to the modeled phenomenon both structurally and functionally, and need
to be validated with respect to empirical data from biological agents. In con-
trast, applied models need to meet some context-specific performance criteria
(e.g., users assess virtual characters as more believable; social robots are more
effective in achieving their interactional goals with humans; an autonomous
robot can perform its search-and-rescue task more effectively), and thus the
term evaluation is more appropriate. Validation of research models is signifi-
cantly more difficult than evaluation of applied models, and represents one of
the core challenges in emotion modeling.
As interest in emotion modeling continues to grow, increasing attention is

being paid to both validation and evaluation. Validation studies currently focus
on individual model elements (vs. entire architectures). Examples include inten-
sity calculation models (e.g., Gratch et al., 2009; Junge & Reisenzein, 2013), as
well as models using nonsymbolic approaches to emotion modeling, such as
reinforcement learning (affective dynamics of joy, distress, fear, hope, and
regret (Broekens et al., 2015; Broekens & Dai, 2019)), and hierarchical
Bayesian belief nets using active inference (valence and valence dynamics
(Hesp et al., 2021)). Validation studies of other affective phenomena are also
being conducted; e.g., emotion regulation (Bosse et al., 2014), decision making
(Alfonso et al., 2017). Evaluation of applied models is more extensive, particu-
larly in the area of synthetic artificial agents (e.g., Bosse, 2017; Fitrianie et al.,
2019; Klug & Zell, 2013; Becker-Asano et al. 2014), with evaluations focusing
on linking particular agent affective and affect-mediated capabilities to specific
model features being less frequent (e.g., Bosse & Zwanenburg, 2014).

30.7.2 Open Questions

As the enterprise of modeling emotions in synthetic agents continues to
advance, a number of broader questions are emerging. Should affect-like mech-
anisms in synthetic agents be considered emotions? Is the felt sense of emotion
an epiphenomenon, and, if not, what causal role does it play? What is the
relationship between emotions and consciousness? Three of these broader ques-
tions are briefly addressed below.

30.7.2.1 Do Machines Need Emotions?

This question entails a number of related issues, including the functions of
emotions, and their roles in interpersonal and adaptive behavior. The answer
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is, of course: “It depends.” For social agents, the ability to recognize and
express emotions to achieve social realism seems essential, while the depth of
affective modeling required to accomplish this remains an open question. For
nonsocial agents, this question is best addressed by considering the roles of
emotions in adaptive behavior.

30.7.2.2 Are Emotions Necessary for Adaptive, Intelligent Behavior in Machines?

A number of AI researchers have suggested that emotions are necessary to
implement adaptive behavior in machines, and some have argued that human-
level intelligence necessitates emotions (e.g., Minsky, 1986, 2006); e.g., “The
question is not whether intelligent machines can have emotions, but whether
machines can be intelligent without any emotions” (Minsky, 1986). On the
other hand, Sloman cautions against uncritically embracing the notion that
emotional states themselves are important, by pointing out that “saying that
states of type X can occur as a side-effect of the operation of some mechanism
M that is required for intelligence does not imply that states of type X are
themselves required for intelligence” (Sloman, 2004). Yet others have warned
about the possible or likely negative impacts of emotions in synthetic agents
(e.g., Arbib, 2005; McCarthy, 1995).

A problem with most of the arguments advocating the necessity of emotions
in synthetic agents is their failure to define exactly what emotions are, at an
operational level suitable for agent architectures. Many of the arguments also
do not specify which functions of emotions are critical and thus represent the
sine qua non of high-level intelligence and adaptive behavior. It is unlikely that
a question posed at this level of abstraction will generate useful answers.
Rather, it should be reframed in terms of the specific functions emotions
perform, and whether these functions are necessary for a particular synthetic
agent; e.g., Macedo et al. (2009) suggest that surprise is necessary to ensure
agent autonomy in dynamic and uncertain environments.

30.7.2.3 Are Emotions in Synthetic Agents Really Emotions?

This question perhaps belongs more in the realm of philosophy than cognitive
science and AI. Assume that many, or all, of the identified roles of emotions
outlined earlier have been implemented in an architecture. Can it then be
claimed that the agent in fact has emotions, in the sense in which this term is
commonly understood? Is it possible for a synthetic agent to have emotions?
Does it make a difference whether the agent is embodied, and the type of
embodiment, and whether it is a virtual or a robotic agent? It is critical to
recognize that the fact that some processes are mediated by emotions in
biological agents in no way implies that emotions represent the only mechan-
isms for implementing these processes in synthetic agents (e.g., Sloman &
Logan, 1999). Furthermore, it is clear that “emotions” in synthetic agents are
not the same as emotions in biological agents, in part due to the limited number
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of modalities implemented in synthetic agents, not to mention the thorny issue
of the role that consciousness plays in the experience of emotion. More import-
antly, however, because it is unclear whether, and how, the complexity of
emotions, with their direct link to the powerful desires for survival, and the
seeking of pleasure and avoidance of pain so central to motivation in biological
agents, can be implemented in machines. The issue whether synthetic emotions
in machines can ever be a faithful analog of the neurophysiology- and
awareness-mediated affective phenomena experienced by biological agents
therefore remains unresolved.
The questions addressed above are not merely exercises in polemics. Rather,

they enable one to consider the complexity and variability of affective phenom-
ena, across a variety of agents, both biological and synthetic. The exploration of
these phenomena, within the synthetic entities capable of representing some
subsets of the mechanisms mediating emotions in biological agents, will hope-
fully contribute to a deeper understanding.

30.7.3 Challenges and the Way Forward

Computational affective modeling has witnessed significant growth over the
past two decades but faces the expected challenges of new disciplines, including
a lack of: clear and consistent terminology, standards and guidelines, estab-
lished methodologies, and tools. Several reviews discuss these challenges
(Broekens et al., 2013; Hudlicka, 2014a; Reisenzein et al., 2013; Sanchez-
Lopez & Cerezo, 2019), and propose specific efforts to advance the state of
the art. These include the development of: shared, cross-disciplinary
terminology; formal specifications of emotion theories, in implementation-
independent formalisms; general architectures with sharable modules; design
guidelines; analytical frameworks facilitating model comparison; protocols for
evaluation and validation; and model and architecture development tools.
Progress across all of these areas is being made, with increasing emphasis on

the development of formal specifications of theories, emotions, models, and
architectures (Adam et al., 2009; Broekens et al. 2008; Dastani & Pankov, 2017;
Gluz & Jaques, 2017; Hindriks & Broekens, 2011; Meyer, 2006; Ochs et al.,
2012; Reisenzein & Junge, 2012; Turrini et al., 2007), and the development of
modular and domain-independent modeling tools and architectures (FaTIMa
(Dias et al., 2014); WASABI (Becker-Asano, 2013); GenIA3 (Alfonso et al.,
2017); CAAF (Kaptein et al., 2016)), as well as emotion modeling tools for
specific contexts, e.g., the affective game engine Gamygdala (Broekens et al.,
2016; Popescu et al., 2014).

30.7.4 Conclusions

The ability to construct affectively realistic, believable, artificial social agents
(both virtual and robotic) may transform the way humans interact with
machines, while also raising a number of ethical issues (Hudlicka, 2017; Luxton

1020 eva hudlicka

https://doi.org/10.1017/9781108755610.035 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.035


& Hudlicka, 2021). While models continue to be developed primarily for applied
purposes, the utility of research models as important tools in basic research is
increasingly being recognized (Reisenzein, 2019). These simulation-based models,
in effect “runnable versions of cognitive-affective theories” (Broekens et al., 2013,
p. 242), provide a unique method for refining psychological theories and helping
to elucidate the mechanisms mediating affective processing, thereby augmenting
the existing in vivo and in vitro methods with in computo (Broekens, 2011).
Particularly promising in this regard is the increasing interest in the development
of models grounded in neurophysiology, and the use of new methodologies (e.g.,
dynamic systems (Lewis, 2005)), as well as the increasing use of nonsymbolic
modeling methods; e.g., temporal difference reinforcement learning (Broekens
et al., 2015; Broekens & Dai, 2019; artificial neural networks (Lowe & Billing,
2017); and hierarchical Bayesian belief nets using active inference (Hesp et al.,
2021; Smith et al., 2019), which appear promising for representing the predictive
modeling element of some of the constructivist theories.

A recent development is also the recognition that computational emotion
models represent a novel and promising approach to understanding the mech-
anisms mediating a variety of cognitive-affective disorders (e.g., Hudlicka,
2014c, 2019b), as well as the mechanisms of therapeutic action in psychother-
apy (Moutoussis et al., 2017; Smith et al., 2020), and play a key role in the
emerging subdiscipline of computational psychiatry. The broadening of the
modeled phenomena to include emotion regulation (Bosse, 2017; Martinez-
Miranda et al., 2014), empathy (Boukricha et al., 2013; McQuiggan & Lester,
2007; Ochs et al., 2012; Paiva et al., 2004; Sanchez-Lopez & Cerezo, 2019) and
emotion contagion (Bosse et al., 2015; Coenen & Broekens, 2012; Tsai et al.,
2013) will further contribute to these goals.

Computational emotion modeling is a rapidly growing subdiscipline within
the emerging discipline of affective science. The objective of this chapter was to
provide an introduction to this new area, and stimulate interest in contributing
to its continued advancement.
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31 Computational Approaches
to Morality
Paul Bello and Bertram F. Malle

31.1 Introduction

Morality regulates individual behavior so that it complies with com-
munity interests (Curry et al., 2019; Haidt, 2001; Hechter & Opp, 2001).
Humans achieve this regulation by motivating and deterring certain
behaviors through the imposition of norms – instructions of how one should
or should not act in a particular context (Fehr & Fischbacher, 2004; Sripada &
Stich, 2006) – and, if a norm is violated, by levying sanctions (Alexander,
1987; Bicchieri, 2006). This chapter examines the mental and behavioral
processes that facilitate human living in moral communities and how these
processes might be represented computationally and ultimately engineered in
embodied agents.

Computational work on morality arises from two major sources. One is
empirical moral science, which accumulates knowledge about a variety of
phenomena of human morality, such as moral decision making, judgment,
and emotions. Resulting computational work tries to model and explain these
human phenomena. The second source is philosophical ethics, which has for
millennia discussed moral principles by which humans should live. Resulting
computational work is sometimes labeled machine ethics, which is the attempt
to create artificial agents with moral capacities reflecting one or more of the
ethical theories. A brief discussion of these two sources will ground the subse-
quent discussion of computational morality.

31.2 A Map of Moral Phenomena

A variety of moral phenomena have been studied in moral science, and
Figure 31.1 provides a map to distinguish them.

31.2.1 Five Moral Phenomena

Moral behavior includes, first, intentional actions that conform to, violate, or
exceed moral standards. These actions rely on moral decisions – understood as
conscious choices among paths of action to comply with moral standards
(Kohlberg, 1984; Turiel, 2002). Second, many morally significant behaviors
are unintentional, such as recklessness, preventable accidents, or unintended
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side effects (Laurent et al., 2016; Weiner, 2001). Computational models, how-
ever, have focused almost exclusively on moral decision making and action.
In contrast to the agent perspective of moral behavior, moral judgments are

made from an observer perspective: people appraise an event, behavior, or
person in light of moral standards. Research has identified at least four classes
of moral judgment, which differ primarily in what they judge and what infor-
mation they process (Cushman, 2008; Malle, 2021) – distinctions that have
important implications for computational modeling. First, evaluations can be
made about intentional and unintentional behavior, persons, events – anything
that could be compared to a normative standard; and they broadly assess how
good or bad the judged object is. Second, norm judgments focus on actions and
declare whether a given action falls under a norm – whether it is prohibited,
obligated, or permitted. Third,moral wrongness judgments declare that an action
violated a relevant norm, but they are also sensitive to the person’s reasons for
acting, and some reasons can provide a justification, making the action no longer
wrong. Finally, blame judgments criticize a person for an intention, action, or
unintentional outcome. Of all moral judgments, blame integrates the most infor-
mation – about the norms that were violated, the agent’s causal involvement,
whether the agent acted intentionally or not; if the agent acted intentionally,
what the agent’s reasons were for acting; and if not, whether the agent could
have and should have prevented the unintentional event (Alicke, 2000; Malle
et al., 2014; Shaver, 1985). In contrast to computational models of moral
decision making, models of moral judgment are quite rare.
A third prominent moral phenomenon is moral emotions. After a long period

in which morality was predominantly treated as a cognitive phenomenon, the
early twenty-first century saw a rise of interest in morality’s emotional aspects –
moral emotions as results of moral judgment (e.g., sympathy and anger;
Weiner, 2001), as capacities of regulation (e.g., guilt, shame, and empathy;
Eisenberg, 2000; Tangney & Dearing, 2002), as causes of moral judgment
(Alicke, 2000; Prinz, 2006), or as competing with moral reasoning (Cushman
et al., 2010). Computational work on emotions has only begun to emerge in the
last decade.

Figure 31.1 Five major moral phenomena: moral behavior (including moral
decision making), moral judgments, moral emotions, moral sanctions, and
moral communication.
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Whereas moral judgments and emotions are typically in the observer’s head,
moral sanctions are social acts that express a judgment or emotion and attempt
to regulate the violator’s future behavior, most prominently in the form of
punishment. Moral communication encompasses a variety of social acts, includ-
ing moral praise and criticism, justification and apology, statements of remorse
and forgiveness. Both sanctions and communication, as social behaviors, have
been hardly modeled computationally, but a rich array of opportunities awaits.

31.2.2 Norms as a Foundation

A growing consensus in empirical moral science is that the above phenomena
are moral not by virtue of a special brain circuit or unique cognitive mechanism,
but by virtue of applying fundamental processes of human decision making,
judgment, emotions, and so on to moral matters – which are matters of human
behavior governed by moral norms (e.g., Bartels et al., 2015; Bicchieri, 2006).
Without knowledge of the relevant norms of a community, people could not
judge how bad a certain outcome is; decide what is the right or wrong decision;
or even know whether to feel sad or resentful. Thus, any computational model
of human morality must incorporate an analysis of norms.

What are norms? The following working definition of norms integrates a
number of previous proposals (Bicchieri, 2006; Brennan et al., 2013; Cialdini
et al., 1991; Gibbs, 1965; Malle et al., 2017):

A norm is an instruction, in a given community, to (not) perform a behavior in a
given context, provided that a sufficient number of individuals in the community

(i) demand, to a certain degree, of each other to follow the instruction and
(ii) do in fact follow this instruction.

This definition has five components, < S, C, A, Df, P>. A normN always exists
relative to a social community S in which that norm holds (Hechter & Opp,
2001; Sachdeva et al., 2011). It operates on a particular behavior B (thus being
more specific than, say, abstract values like freedom or justice), and it operates
in a given context C (Aarts & Dijksterhuis, 2003; Bartels et al., 2015). Further,
the norm comes with a deontic modality D (e.g., prescription, prohibition),
which has a force parameter f, expressing the strength of the norm (Heider,
1958, Chapter 8; Malle, 2020). Finally, a norm has a prevalence P, which
indicates how consistently community members adhere to the norm
(Bicchieri, 2006; Cialdini et al., 1991). These properties of norms will re-emerge
in a number of the subsequent sections.

31.3 Philosophical Ethics

Artificial moral agents must be capable of acting, and more import-
antly, of choosing the “right” action to perform in a given situation. This will
often involve assessing the moral goodness or badness of actions or outcomes:
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an activity associated with consequentialist and deontological ideas in
philosophical ethics. What follows are brief overviews of two popular schools
of ethical thought: deontology and consequentialism, along with some of their
challenging implications. Where appropriate, computational models or ana-
lyses will be mentioned. Alternative ethical theories such as virtue ethics are
only beginning to be explored from a computational perspective
(Govindarajulu et al., 2019; Howard & Muntean, 2017), but aspects of its core
idea of moral habit learning have recently resurfaced in reinforcement learning
frameworks of moral decision making, discussed in more detail in Section
31.4.2.2.

31.3.1 Deontological Ethics

Broadly, deontological ethics concerns itself with the moral status and motiv-
ation for individual acts. Most famously, this is illustrated in the moral philoso-
phy of Immanuel Kant. Kant’s two primary imperatives evaluate the status of a
moral rule by whether (1) the reasoner would want every other agent to abide
by it, and (2) whether or not it uses other autonomous, rational agents as pure
means to achieve a desired end. Kant’s philosophy is framed against the
background of the will acting out of duty to the moral law. This may be
understood as an agent who desires to keep the moral law and recognizes the
rational benefit in doing so as opposed to giving in to other irrational or
nonrational inclinations. A discussion of whether machines might ever be
Kantian in this sense can be found in Powers (2006). Recent empirical results
lend support to the idea that universalization, the principle stated in the first of
Kant’s two primary imperatives, is consistent with spontaneous moral judg-
ments made by adults (Levine et al., 2020).
Deontology is often associated solely with Kant’s moral philosophy, but it

also finds expression in the contractualism of John Rawls that takes moral acts
to be the ones that we would all agree ought to be done if we were ignorant of
our place in the social hierarchy when performing them (Scanlon, 1998).
A computational example of Rawlsian ethical decision making can be found
in Leben (2017), with some preliminary empirical evidence for contractarian
judgments in humans to be found in Levine et al. (2018). Also in this group is
the theory of W. D. Ross (1930) that considers maximizing the good as one of a
plurality of prima facie duties, each of which can outweigh the others in
different situational contexts. A well-known implementation of prima facie
duties is the MedEthEx system (Anderson & Anderson, 2006), which uses
expert bioethical analysis of dilemma cases to seed a case-based reasoning
system that can offer advice on novel ethical cases. From the cases and the
expert decisions, MedEthEx attempts to learn how to order priorities for a set of
duties: Respect for Autonomy, Nonmaleficence, Beneficence, and Justice,
which are then used in searching for the best action to perform in novel cases
that are deemed similar to those in the database. Both natural law and Divine
command theories are also deontological in nature, grounding right action in
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conformance to God-given moral imperatives (Quinn, 1978) such as the Judeo-
Christian Ten Commandments, the latter having been given an initial logical
formalization and computational treatment (Bringsjord & Taylor, 2012).

31.3.2 Consequentialist Ethics

Consequentialism or teleological ethics, broadly speaking, is the idea that
actions are to be evaluated solely in terms of their outcomes or their “goods.”
This is at odds with deontological theories that evaluate action in terms of what
is right to do. The most well-known variety of consequentialism is act utilitar-
ianism, due to J. S. Mill, who fixes value on pleasure, equating utility with the
amount of pleasure less the amount of pain experienced by individuals. Applied
to ethics, this takes moral decision making to be the process of determining the
action that results in the most utility for the greatest number of people.

Other conceptions of value can be found in rule utilitarianism and preference
utilitarianism. Rule utilitarianism takes right action to be conformant to rules
that lead to the greatest good. Rule utilitarianism is exceptionless, and inherits
many of the same counterexamples that plague deontological frameworks.
Exception-tolerant versions of rule utilitarianism have been developed, but they
have been criticized on the grounds of collapsing into act utilitarianism when
the number of exceptions becomes large. A discussion of rule-utilitarianism and
its advantages for building artificial moral agents can be found in Bauer (2020).
Preference utilitarianism takes actions to be morally right that best fulfill the
preferences (i.e., interests, desires) of others. Naturally, questions arise as to
how to weigh the preferences of those involved in a moral decision if they
should conflict, introducing a new set of ethical challenges. Recently, preference
utilitarianism has been promoted in AI ethics research under the banner of
value alignment (Russell, 2019) as a way to prevent threats to humans from
superintelligent machines, should we ever be successful at engineering them.
Preference utilitarianism is not without its problems. If the vast majority of a
group desire that members of another group die, and this wins the competition
of preference satisfaction, preference utilitarianism would recommend a
machine to engage in extermination.

31.3.3 Computational Challenges

Each of the ethical theories has difficulties that have been explored by
philosophers, legal scholars, and others (Brundage, 2014). All theories share
the serious implementation issue of how to frame a moral decision problem. For
example, how many agents should a Kantian, Rawlsian, or utilitarian algo-
rithm take into consideration while computing aggregate welfare? The norma-
tive frameworks themselves are silent, leaving the modeler to introduce extra-
normative constraints, possibly from psychology, to help guide computation.
Taken at face value, utilitarian theories impose an enormous epistemic burden
in the form of thinking about vast numbers of agents and the factors that
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impact their collective welfare, under enormous uncertainty over virtually infin-
ite time horizons. Low-probability, high-value states are washed out in utility
computations. A simplified analysis of the scaling difficulties for both utilitarian
and (some) deontological theories is given in Brundage (2014). Apart from
scaling difficulties, both deontological and (some) utilitarian theories face the
possibility of impasses in inference. For example, preference-based utilitarian
algorithms may encounter a situation where agents under consideration have
incompatible preferences that must somehow be resolved. However, the type of
impasse most thoroughly explored in the literature is that of conflict between
norms, which has become something of a research area unto itself among
deontologists (see Section 31.4.1.4).

31.4 Moral Decision Making

Computational models of moral decision making have been inspired by
philosophical ethics to build general-purpose algorithms for selecting ethical
actions and by descriptive work in the cognitive and social sciences of
normative behavior. Many of the resulting efforts have taken rule-based
approaches, often grounded in formal logic. These will be reviewed first,
followed by brief discussions of case-based reasoning, recent reinforcement
learning frameworks, and the cognitive science of moral dilemmas.

31.4.1 Rule-Based Approaches

Formal logic has had an outsized influence on the development of rule-based
approaches to moral decision making. In a very early paper, Shoham and
Tennenholtz (1995) describe well-known problems with distributed collections
of robotic agents trying to co-exist in an environment. Prior approaches to
handling situations where collective behavior led to poor outcomes (e.g., colli-
sions between moving robots) relied upon agent-to-agent communication and
negotiation techniques. Doing so incurs a large computational burden on each
agent, which can be reduced if all agents follow social laws, leading to a
proposal for a language of social constraints to be used by multi-agent systems
that is a precursor to richer and more explicit specification of norms. A start on
such explicit specification was outlined by several authors who insisted (1) that
norms were not to be modeled as hard constraints and (2) that agents are to be
“autonomous” – they should have the opportunity to learn, reason over,
negotiate, accept, reject, abide by, and violate norms in order to have “some
degree of control” over their actions (Castelfranchi et al., 2000).

31.4.1.1 Deontic Logic

These needs for flexibility and autonomy found partial satisfaction in the
theoretical development and computational treatment of various modal logics

1042 paul bello and bertram f. malle

https://doi.org/10.1017/9781108755610.036 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.036


of belief, desire, intention, and obligation. In particular, the development of
deontic logic (Von Wright, 1951), which captures the relationships between
obligation, forbiddance, and permission, has been an inspiration to researchers
in the multi-agent systems communities who seek to build norm-governed,
agent-based simulations. Deontic logics are differentiated in two ways: first,
by different sets of axioms that provide inference rules to transform premises
into justified conclusions; second, by the syntax and semantics of deontic terms
such as obligation, forbiddance, and permission, resulting in different semantic
machinery for evaluating deontic inferences. For example, obligations, permis-
sions, and forbiddances are typically represented asO ϕð Þ, P ϕð Þ, and F ϕð Þ, where
ϕ is a well-formed formula. However, the exploration of various well-known
deontic paradoxes (Carmo & Jones, 2002; van der Torre & Tan, 1997) has led to
the development of dyadic deontic logics (Prakken & Sergot, 1997), where basic
syntax for deontic terms looks likeO ϕjαð Þ, meaning that if α then ϕ is obligated.
Thus, certain deontic logics capture the context specificity of norms that has
been established empirically (Aarts & Dijksterhuis, 2003). Semantic differences
between standard and dyadic deontic logics are beyond the scope of this
chapter, but interested readers are directed to the more thorough explanations
found in Goble (2003). For a discussion of a highly expressive family of multi-
operator deontic logics and an automated reasoning technology in which they
have been encoded, see Govindarajulu et al. (2019).

31.4.1.2 Belief-Desire-Intention Frameworks

Agents are not only sets of obligations, but rather have beliefs, desires, and
intentions (BDI) that guide their practical reasoning and facilitate action. Much
of the foundational work on normative multi-agent systems leans heavily on the
view of rational agency or practical reasoning promoted by philosophers such as
Bratman (1987), and formalized by Rao and Georgeff (1991). For a review, see
Meyer et al. (2015). A typical BDI agent maintains a set of beliefs, desires, and
intentions that are reasoned over, along with a plan library. Practical reasoning
begins with perception that updates the current set of the agent’s beliefs, exam-
ines the current deliberation, and looks at the top of the stack of active inten-
tions. It searches its plan library for an action plan with a post-condition
(outcome) that matches the content of the intention. Candidate plans are then
winnowed down by matching the set of necessary pre-conditions for each against
the agent’s current set of beliefs about the state of the world and how it meets the
preconditions. The contents of plans that survive the matching process become
intended actions, which are then executed (Bordini et al., 2007), while unfulfilled
intentions are kept in a stack. The original BDI framework was developed as a
logic of rational agency, but a number of BDI logic-conformant implementa-
tions have been successfully used to solve real-world problems (Dastani, 2008;
D’Inverno et al., 2004; Rao, 1996). Normative extensions to the BDI framework
have been used in multi-agent simulations; however, robust implementations in
real-world agents (e.g., swarm robots) have not been attempted.
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Logical representations of norms and accompanying BDI-style agents come
with the very obvious advantage that their computations are inspectable, facili-
tating attempts at building artificial moral agents capable of explaining their
decisions. In principle, computational logics offer certain attractive guarantees
regarding the correctness of the conclusions that they draw. On the other hand,
they have a number of disadvantages as well. BDI and deontic logics are modal
logics as opposed to the more well-known first-order logic that has been a staple
of AI research since the inception of the field. Modal logics are substantially
more difficult to automate, with only a handful of very recent attempts offering
a path forward (Benzmüller, 2019). Effectively, all of the work in the BDI
tradition discussed here uses encoding schemes that capture at most a fragment
of BDI logic in first-order logic in order to keep computation tractable.
Importantly, these fragments do not typically allow for nesting of modal
operators, thus leaving beliefs about beliefs (for example) out of play. Nested
expressions are critical for theory of mind, or the ability for one agent to reason
about the mental states of others – a central ability involved in complex
moral judgment.

31.4.1.3 Focus on Norms: The EMIL-I-A Architecture

As a matter of psychological reality, norms are central to human moral decision
making. One of the most elaborate models of such norm-based moral decision
making is the EMIL family of architectures, which consists of implemented
computational architectures that have been used to explore how self-interested
agents might achieve significant degrees of co-operation in a social community.
These moral decisions are modeled as being deeply guided by social and moral
norms. One central tenet of the EMIL-I-A architecture, which is a member of
the EMIL family, is that norms are not just external forces in the community
but can become internalized in an agent (Andrighetto et al., 2010). In this
process, the cognitive maintenance of a norm becomes detached from external
rewards and punishment, eventually resulting in often automatic behavioral
responses that are norm-conforming while still allowing the agent deliberation
and control if necessary. Simulation studies of iterated Prisoner’s dilemma
games have shown that agents capable of internalizing norms, in contrast with
traditional strategic (decision-theoretic) agents, maintain co-operation even
when punishment is rare or unlikely (Realpe-Gómez et al., 2018).
Enabling such internalization of norms, the EMIL-I-A architecture (where

the I-A stands for Internalizing Agent) embeds norm representations within a
BDI framework, with intimate interactions between norm recognition,
normative beliefs, and normative goals (Andrighetto et al., 2010). The under-
lying cognitive model of norms draws on the definition of a norm as being a
prescription that members of a society generally comply with (Ullmann-
Margalit, 1977); but Andrighetto and colleagues added the proviso that when
a prescription spreads within a society, it gives rise to shared normative beliefs
and goals among its members. “Normative beliefs” are mental representations
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that a given action has a normative status (i.e., being obligated, prohibited,
etc.) for a given set of agents in a particular context. The authors complement
these normative beliefs with “normative goals,” defined as “the will to per-
form an action because and to the extent that this is believed to be prescribed
by a norm” (Andrighetto et al., 2010, p. 327). Thus, EMIL-I-A addresses three
features of the earlier presented working definition of human norms (see
Section 31.2.2): deontic modality/status (D), context-specificity (C), and
community-relativity (S).

Another concept that connects Andrighetto et al.’s work with the psycho-
logical reality of human norms is their notion of norm “salience” (Andrighetto,
Brandts et al., 2013; Conte et al., 2013). In earlier work, salience was defined as
a norm’s “degree of activation,” in close affinity to social psychological work
that showed norms guide behavior when they are, at that moment, on the
agent’s mind (Aarts & Dijksterhuis, 2003; Lindenberg, 2013). Then salience
expanded to “the degree of activity and importance of a norm” (Andrighetto
et al., 2010, p. 329). And most recently, it became “the perceived degree of
importance and strength of a norm” (Andrighetto, Castelfranchi, et al., 2013,
p. 145). These components of salience seem to map onto the deontic force
parameter Df and the prevalence parameter P, respectively, in Section 31.2.2’s
working definition of norms, although combined into a single EMIL-I-
A parameter.

In sum, few models of norm-conforming decision making are as well aligned
with concepts of human moral psychology as EMIL-I-A, and the type of multi-
agent simulations used to explore EMIL-I-A’s capabilities are valuable (e.g.,
Realpe-Gómez et al., 2018). However, they do fall short of what would be
required of a robotic system interacting with people in the real world.

31.4.1.4 Norm Conflict Resolution

Considerable efforts have gone into computational solutions to one of the core
features of moral decision making: that norms can conflict and such conflicts
must be resolved. An extensive survey by Santos et al. (2017) catalogues over
fifty approaches to detecting and/or resolving norm conflicts in multi-agent
systems (MAS). Outside the MAS literature, several other approaches to norm
conflict resolution exist. Thagard (1998) proposed multiple-constraint satisfac-
tion processes (“coherence”) among competing normative propositions.
Guarini (2007) critiques this approach at multiple levels, including its lack of
psychological realism and difficulties of using coherence criteria for the justifi-
cation of moral claims. Numerous argumentation frameworks (Dung, 1995)
have been developed to resolve conflicts between plans, when each plan favors
different goals and norms. Competing plans are evaluated by aggregating
arguments for (e.g., norms adhered to) and arguments against them (e.g., norms
violated), heeding the counted number of fulfilled goals and norms, as well as
preference orderings among them (Shams et al., 2020). A strength of this
framework is that it delivers justifications for the reasoner’s moral decisions,
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something that is increasingly recognized as essential in moral communication.
A weakness is that its resolution criteria – counts of fulfilled goal/norms and
preference orderings among them – can contradict one another, demanding yet
new conflict resolution.
Conflicts among resolution criteria may be avoidable with a continuous

deontic force parameter for norms (akin to Df), such as used by Kasenberg
and Scheutz (2018). The model relies on linear temporal logic and Markov
decision processes to represent acts and consequences probabilistically, and it
minimizes a cost function in which violating more important norms accrues
higher costs. Strengths of the proposal include the ability to handle
uncertainty about consequences and the ability to provide justifications for
the decisions. A weakness, which the authors admit, is that the mathematical
machinery does not scale well to even moderate numbers of norms. Scalability
is also a challenge for approaches that use formal verification methods to
select least norm-violating plans among multiple conflicting ones (e.g., Dennis
et al., 2016).
There is surprisingly little empirical research on human norm conflict reso-

lution (Broeders et al., 2011; Holyoak & Powell, 2016). The considerable
computational work on this topic might inspire new experiments and
psychological theories, which in turn may help refine the computational models.

31.4.2 Other Approaches to Moral Decision Making

While logical reasoning and traditional approaches to planning and acting have
been central to computational modeling of moral decision making in AI, they
have not been the only avenues explored. Much of applied ethics and the law
focuses on the analysis of cases, and how to apply judgments produced in the
past to a current case. More recently, learning-based approaches to moral
decision making have been explored in cognitive science primarily using
reinforcement learning as a unifying framework. Both of these approaches are
briefly explored next.

31.4.2.1 Moral Decision Making Using Cases

The MedEthEx system uses inductive logic programming to first extract
principles from cases previously judged by expert ethicists and then test them
on yet further cases until a set of principles are generated that best cover
expert judgment across the widest number of cases (Anderson et al., 2006).
Being an implementation of prima facie duties, the cases were marked up with
tuples, consisting of each duty and an integer representing how violated or
satisfied the experts judged the duty to be. This is a fascinating combination
of learning and more traditional rule-based reasoning, but the approach
suffers from reduction to integers of such abstract duties as “beneficence,”
which are rather richly textured and difficult to apply to concrete actions
in context.
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Other case-based approaches eschew generalizing over larger numbers of
cases and specifically acknowledge that the abstract and complex nature of
moral principles are still beyond comprehensibility for machines. The combin-
ation of Truth-Teller and SIROCCO, developed specifically to be ethical
decision-aides, retrieve past cases or newly generated hypothetical cases to
compare against a current problem of interest (McLaren, 2006). Truth-Teller
focuses primarily on case comparison, where each case details a dilemma in
which a choice between performing an action or not is supported by respective
sets of reasons. Comparison is performed at the level of reason content, mean-
ing that reasons can be stronger or weaker than other reasons, or not compar-
able at all. SIROCCO was developed to draw cases out of memory to feed the
case-comparison process described previously. Interestingly, the retrieval pro-
cess is two-step, with surface-level comparisons computed first before deep
structure mapping is applied to more promising candidates. This two-stage
process is reminiscent of the MAC/FAC model of analogical retrieval by
Forbus et al. (1995), which has substantial empirical support. A combination
of Truth-Teller and SIROCCO adjudicate conflicting reasons before providing
an analysis to support the human decision maker.

Finally, cases have been employed to examine a fundamental question in the
study of philosophical ethics: whether there are general ethical principles at all.
One can imagine that, in the limit, every morally charged situation or case has
an analysis all of its own. This is a highly oversimplified description of moral
particularism, which assumes, in contrast to moral generalism, that there are no
abstract principles that exist across cases (Dancy, 2009). One corollary of
particularism is that moral case classification ought to be impossible, as should
generalization to new cases, since both classification and generalization rely on
the notion of learned regularities. Guarini (2010) employed connectionist mod-
eling techniques to explore exactly these issues. Interestingly, case classification
could be achieved in relatively simple feedforward and recurrent neural archi-
tectures. However, Guarini points out that re-classification of a decided case,
upon being given an objection or further information, almost certainly requires
general rules.

31.4.2.2 Reinforcement Learning

A recent addition to the computational toolbox of moral decision making are
reinforcement learning (RL) approaches (Abel et al., 2016; Crockett, 2013;
Cushman, 2013). In short, these approaches conceptualize decision making as
a sequence of actions that are transitions from one state of the environment to
the next. The algorithms need feedback from the environment (“rewards”) on
the state transitions, generating a “reward function.” The system can then find
an optimal sequence of actions (“policy”) that maximizes rewards over some
time horizon. Two attractive features characterize these approaches. The first is
that systems choose among possible actions using a unified valuation (reward)
function, which some suggest is compatible with cognitive and neural evidence
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about human decision making generally, not just moral decision making (Haas,
2020).1 A second advantage is that RL models are by nature capable of
learning – both bottom-up learning from observation or exploration
(Hadfield-Menell et al., 2016) and dynamic updating of initial top-down set-
tings (e.g., a starting set of rules; Malle et al., 2020). Additional features worth
mentioning are that RL models are highly suitable for context-specific norm
activation (because all actions are individuated relative to a situation or
“state”), that reward functions may be able to represent graded deontic forces
of norms (Rosen et al., 2022) and that they are able to internalize norm-guided
actions and execute them reflexively, in line with the popular two-systems view
of moral cognition (Cushman, 2013).
RL approaches to moral decision making also have disadvantages. First,

they are conceptually lean, lacking important concepts such as intentionality,
reasons, or justification, so the agent does not in any way understand why it acts
as it does and cannot explain its decisions to others (Arnold et al., 2017). Such
concepts and processes may be grafted onto the RL algorithms (e.g., actions
with certain beliefs and desires are rewarded differently from actions with other
beliefs and desires). Indeed, Arnold et al. suggest one such hybrid model, in
which the representational format is a modal logic but learning occurs within an
RL framework.
A second limitation of RL models is their complete reliance on external

feedback. This feedback, and therefore the system’s reward function, may be
the reflection of a teacher’s personal preferences, not the reflection of a com-
munity’s norm system, and the RL agent would not know the difference.
Further, because an RL agent’s actions “are strictly determined by the reward
signal or signals in the environment” (Haas, 2020, p. 238), the system is unable
to maintain previously learned norms in light of novel input from “bad actors.”
Without significant filtering of external feedback (e.g., by assessing soure reli-
ability or community agreement), a pure RL agent would quickly adopt the
worst behaviors of those it learns from.

31.4.2.3 Decision Making in Moral Dilemmas

Philosophers have used moral dilemmas to pit ethical theories against each
other, such as in the well-known trolley dilemma, which contrasts utilitarian
with deontological reasoning (Foot, 1967): A train has lost control and is
destined to kill five people. Is it permissible to switch it onto another track
where the five people can be saved but one person is killed? And if one had to
push a heavy person off a footbridge to stop the train, would that be permis-
sible? Utilitarians would say yes; deontologists would say no.
Results of numerous studies (Christensen & Gomila, 2012) suggest that

people are neither utilitarians nor deontologists, but in the course of this

1 This does not imply an automatic commitment to utilitarianism as a classic ethical theory, as the
optimal policy can minimize rule violations, maximize utility calculations, or both.
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research it became clear that people’s moral decisions are deeply influenced by
the distinction between intended and unintended (merely foreseen) conse-
quences. Most people find it morally acceptable to cause a person to die if it
saves five people and the death is not intended, merely an unavoidable side
effect of the decision. By contrast, intentionally using the person as a means to
stop the train and save the people is not acceptable. People’s moral preferences
are in line here with the Principle of Double Effect (Aquinas, 2003). Double-
effect reasoning depends critically on a fairly sophisticated capacity for causal
and counterfactual reasoning, and formal representation and computation of
such reasoning has recently seen significant progress (Govindarajulu &
Bringsjord, 2017; Pereira & Saptawijaya, 2017).

Psychological and neural scientists have adopted trolley dilemmas to draw a
contrast between two psychological processes believed to underlie moral deci-
sion making: reason vs. emotion. Greene (2007) proposed a competition model
according to which people have immediate aversive emotional reactions to
certain violations (e.g., pushing and killing a person) but also engage in con-
scious reasoning (e.g., deliberating about the number of people saved), which
can temper their emotional reaction. Initial brain imaging evidence and reac-
tion time data seemed to support this dual-process theory (Greene et al., 2001,
2008), but it has faced numerous challenges more recently (e.g., Gürçay &
Baron, 2017; Royzman et al., 2011; Sauer, 2012).

On the computational side, Bretz and Sun (2018) used the computational
cognitive architecture Clarion to model moral decision making in variants of
the trolley dilemma. Integrating implicit and explicit cognitive processes with
motivational processes, rather than a simple emotion–reason duality, they
offered a compelling account of empirical studies by Greene et al. (2009).
Those studies measured moral judgments (e.g., “Is it morally acceptable for
[agent] to. . .”), not moral decisions. This is common in the moral dilemma
literature, though comparisons suggest that judgment and decision measures
might sometimes lead to different results (Francis et al., 2016; Gold et al., 2015;
Schaich Borg et al., 2006).

To address the confound is to model what is common in decisions and
judgments. Mikhail (2008) suggests that a fundamental conceptual structure of
human action underlies moral and legal judgment and decision making. This
structure relates acts, means, ends, and side effects to each other in ways that,
according to Mikhail, form the top-level computations of moral reasoning. There
is recent evidence that humans do represent moral behavior in such structures
(Levine et al., 2018), but the structures operate over concrete actions governed by
context-specific norms, leaving powerful processes still unaccounted for.

31.5 Moral Judgment

When making moral judgments, people appraise events, behaviors, or
persons in light of moral standards, with the canonical case being an observer’s
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judgment of another person’s behavior. Section 31.2.1 distinguished between
four kinds of moral judgment: evaluations, norm judgments, wrongness judg-
ments, and blame judgments. How can they be captured computationally?

31.5.1 Evaluations

Evaluations are the appraisal of events or behaviors as good or bad and form a
building block of many cognitive architectures (e.g., ACT-R, Clarion). They
also lie at the core of RL models of decision making, as the continuous “value”
that actions acquire by virtue of the rewards they elicit. However, such action
values are typically grounded in the agent’s subjective perspective, tied to
personal preferences that agents develop in response to environmental feedback
for their actions. This makes RL a candidate model for decision making, but
moral evaluation demands a community perspective – assessing what counts as
morally good or bad in this community, relative to its norms and values, not
merely relative to the observer’s (or individual other people’s) personal prefer-
ences. Although RL algorithms can acquire value representations for actions
that others perform (Cushman, 2013), it is not as obvious how they can distin-
guish between moral (community-based) and nonmoral (personal goal-based)
value functions. Recently, RL models have emerged that try to integrate the
community perspective into an agent’s value function (Abel et al., 2016), but the
model does not yet distinguish between collective preferences (e.g., most people
want coffee) and actual norms (e.g., one must stand in line at the coffee
counter).

31.5.2 Norm Judgments

Norm judgments assess an action as permissible, obligatory, or forbidden,
which requires retrieving the deontic modality and, likely, the deontic force of
the norms that govern a given action. NorMAS systems (such as EMIL-I-A,
discussed in Section 31.4.1.3) are able to model these judgments and often take
into account the context specificity of norms, but less often their community
specificity or community prevalence, and rarely the graded nature of norms.
A challenge that all extant models face is that, in order to assess whether a
particular action falls under a particular norm, the action must be identified
under the description presupposed by the norm (e.g., “shake hands,” not “hold
hands”). In many everyday settings, this identification requires segmenting,
representing, and interpreting perceived behavior in terms of agency,
causality, and mind – serious obstacles in state-of-the-art machine learning
(Marcus & Davis, 2019; Pearl & Mackenzie, 2018). Most computational
approaches therefore feed preprocessed information to their algorithms, with
all of the interpretational work already done.
One exception comes from Kleiman-Weiner et al. (2015), who focus on the

moral perceiver’s inferences of another agent’s beliefs and intentions en route to
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permissibility judgments. In the context of trolley dilemmas, they model this
process of third-person social-moral cognition, thus speaking to moral judg-
ments in dilemmas, not decisions (where trolley dilemmas are often located).
Their account is based on an influence diagram (acyclic graph) representation of
the causal dependencies among an agent’s decision options, the states each
decision option causes, and their resulting utilities. Under the assumption that
the agent maximizes utility given beliefs (and that utilities are based on desires
and norms), the moral perceiver can infer which states the agent intended and
which ones were side effects. Essentially conducting counterfactual double-
effect reasoning, the model treats nodes as mere side effects just in case remov-
ing them from the causal structure (and the optimal policy) would not change
the action taken by the agent.

31.5.3 Judgments of Wrongness

Wrongness judgments build on norm judgments but not only take intentionality
into account but the agent’s specific reasons and justifications for the action
(Cushman, 2008; Malle, 2021). Cushman (2013) proposed that wrongness
judgments can be captured by model-free RL models, but the role of justifica-
tion is not part of such a model, and Ayars (2016) maintained that a model-free
RL agent cannot distinguish between morally wrong actions and simply dis-
preferred actions. Conitzer et al. (2017) propose that an AI system can learn to
make moral wrongness judgments via a machine-learning approach: collect a
large number of action-in-context stimuli, along with all their morally relevant
features and labels that declare them to be morally wrong or not; then train a
deep neural network to infer wrongness from features and generalize to new
stimuli. If the initial stimulus collection is representative, such a network will be
a practically useful prediction machine, but it is unlikely to be a model of the
human cognitive process of wrongness judgments.

31.5.4 Judgments of Blame

Blame judgments go several steps beyond wrongness judgments, as they apply
to both intentional and unintentional behavior (or outcomes) and process infor-
mation about norms, causality, intentionality, justifications, and counterfac-
tuals. Cognitive information processing models of blame have existed for many
decades (see Guglielmo, 2015). The first computational model was developed by
Shultz (1987). It required describing a violation as an input vector of binary
information about harm, foreseeability, intention, and so on. The model then
used thirty-nine production rules to infer other judgments as output, primarily
responsibility and blame. In effect, the system executed formalized representa-
tions of inferences such as “If harm was caused by A, was foreseen by A, . . .A is
responsible.” This model redescribed, in more precise language, the best
psychological theory of blame at the time, making it potentially amenable to
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automated reasoning in artificial agents. From the perspective of cognitive
theory, however, such redescriptions do not substantially exceed insights gained
from existing linear regression models of experimental data.
Mao and Gratch (2012) offered a more elaborate model. The system per-

forms dialogue analysis of short narratives that describe agents’ main actions,
consequences, and speech acts, and it builds hierarchical plan representations
using up to twenty-seven predicates, fifteen functions, and twenty-six inference
rules, which capture concepts such as intends, believes, coercion, and causal
responsibility. This expressiveness to represent the complex concepts and pro-
cesses involved in blame judgments is a strength of the model, yet it still
captures only a portion of this complexity, omitting elements such as justifica-
tion and counterfactuals (e.g., obligations to prevent violations), and it culmin-
ates in only a qualitative assignment of who is to blame, rather than a graded
judgment of how much blame the person deserves.
Sileno et al. (2017) used simplicity theory (a variant of information theory) to

represent concepts such as causal contribution, foreseeability, and intention in
terms of the conditional expectedness of situations, given actions or other
situations, along with a concept of emotion (akin to perceived value). An agent’s
moral responsibility (in effect, blame) for an action is defined as a function of
the resulting situation’s (dis)value, how much the action caused the situation,
how much the agent foresaw it, and the complexity of description (which is not
further clarified). A strength of the proposal is to consider uncertainty, continu-
ous variables, and distinct points of view (e.g., what the agent knew vs. what an
observer knows), thus hinting at a theory of mind capacity. However, it is
unclear how some of the terms could be measured (e.g., the objective complex-
ity of events) and, as with other models, some central concepts are omitted, such
as moral norms (beyond personal desirability), the agent’s reasons for acting, or
obligations to prevent violations.
More technically refined but conceptually narrower is the formal treatment of

blameworthiness by Halpern and Kleiman-Weiner (2018). Their concept of
blame is, roughly, counterfactual causal responsibility for negative outcomes.
This formalism handles the notion of preventability (blame increases if the
person could have taken an alternative action that would have prevented the
negative outcome) but would need to be augmented by a concept of norm to
handle degrees of obligation to prevent. They also define intention within a
utility maximizing framework, but they do not integrate intention and blame or
handle reasons and their justification.
These preliminary models of moral judgments provide promising starting

points, and it now becomes imperative to account for the full range of infor-
mation that humans process and the full range of moral judgments they form.
Future models may aggregate separate components into a processing hierarchy
(e.g., RL for evaluation, extended Belief-Obligation-Intention-Desire for
wrongness, all the way to a hybrid for blame) and connect them to the complex
nonmoral capacities of theory of mind and causal-counterfactual reasoning.
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31.6 Other Moral Phenomena

Compared to moral decision making and moral judgment, computa-
tional work on the remaining moral phenomena outlined in Figure 31.1 has
been sparse. Nonetheless, some promising starting points may accelerate devel-
opment in the near future.

31.6.1 Moral Emotions

Affect and emotion can relate to morality in at least two ways. First, they can
causally interact with moral phenomena. Here, computational work is sparse.
Arkin and Ulam (2009) improved a lethal autonomous weapon’s responses to
the unintended harm it causes by incorporating the emotion of guilt as a
corrective process, improving its future decisions. Cervantes, Rodríguez,
López, Ramos, and Robles (2016) proposed an ambitious model in which
ethical decision making is strongly influenced by emotions, moods, and evalu-
ative experiences. Though inspired by brain science, the model has not yet been
shown to simulate any psychological data, and as a framework for artificial
agents’ decision making, the computation of over two dozen parameters
(assessed for each of many potential actions) appears daunting.

Second, some emotions can themselves be moral. Such “moral emotions”
include guilt and remorse as the clearest cases, but also disgust, anger, or
sympathy. Though several computational models of emotions have been
offered (for reviews see Kowalczuk & Czubenko, 2016; Rosales, Rodríguez,
& Ramos, 2019), models of specifically moral emotions are rare. Ferreira et al.
(2013) coded moral emotions such as shame or reproach as reactions to norm
violations. More extensively, Battaglino, Damiano, and Lombardo (2014)
equipped a BDI architecture to assess not only whether the agent’s goals are
achieved but also whether its values (e.g., honesty, loyalty, justice) are main-
tained. Emotions are constituted by combinations of the agent’s “appraisals” of
behaviors or events as desirable, causal, or blameworthy (following the
cognitive theory of emotions; Ortony et al., 1988). For example, failure to
achieve a goal (appraised as undesirable) leads to “distress,” whereas threats
to values (appraised as blameworthy) lead to “shame” if appraised as self-
caused or “reproach” if appraised as caused by another agent. The intensity
of the resulting emotion is proportional to the importance of the goals and/or
values at stake. One advantage of such a system is its transparency, as it allows
the agent to explain exactly why it “feels” a certain emotion (“because I didn’t
achieve this very important goal and also went against one of my values . . .”).
A disadvantage lies in its summative functions (see formulas in Battaglino et al.,
2013), which permit disconcerting trade-offs, such as that fulfilling two goals
can make up for one violated value. A general question, applicable to this and
related models is what effective work the “emotion states” actually do, if they
are merely linear functions of a number of nonemotional appraisals. One
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response is that, at the level of action guidance, they may be dispensable, but if
the interwoven appraisals result in expressed emotions, such as remorse or
gratitude, then humans interacting with such computational agents may better
understand the agent and be more accepting of it. Whether a robot that
expresses human-like emotions constitutes deceptive design is an important
concern (Danaher, 2020).

31.6.2 Moral Sanctions

Moral sanctions include social blame, acts of shaming, and interpersonal or
institutional punishment. There is empirical research on social blame (e.g.,
Balafoutas et al., 2014) and shaming (e.g., Coricelli et al., 2014), but punish-
ment responses have been studied somewhat more extensively and systematic-
ally, primarily using economic games (Zinchenko, 2019). Sometimes they are
computationally modeled as linear functions of the stimulus and role condi-
tions – for example, degree of punishment ¼ f(how much money a player takes
away from another player); see Stallen et al. (2018). It is unclear how generaliz-
able economic games with strangers are to the broad range of moral situations
in ordinary life (Guala, 2012), so an expansion of research in this domain is
needed. Studies do suggest that neural processes underlying sanctioning behav-
ior are distinct from those underlying moral judgments (Buckholtz et al., 2015;
Zinchenko, 2019). These neural models may be amenable to computational
treatment, perhaps integrated with computational models of moral evaluation
(Cervantes et al., 2016).

31.6.3 Moral Communication

With increasing interactions between humans and artificial agents, the need to
communicate about moral matters is increasing as well. Computational work in
this domain, however, is sparse. Some authors have begun to model justifica-
tions as explanations of decisions that refer to norms (Kasenberg et al., 2019),
and models based on argumentation logic are able to explain their resolutions
to norm conflicts (Shams et al., 2020). Many other forms of moral communi-
cation have been left untouched, such as expressed moral criticism (which,
computationally, would require both full-fledged moral judgment capacities
and sophisticated communication and theory of mind skills), or apologies.
Given the continued error-proneness of artificial agents, implementing capaci-
ties for effective apology would seem particularly useful. Psychological research
has only recently begun to identify the decisive components of such effectiveness
(Cerulo & Ruane, 2014; Slocum et al., 2011). Successful apologies must cer-
tainly build on theory of mind skills (simulating what would soften the other’s
blame judgments) and discourse skills (e.g., foregrounding the victim). There is
also evidence that apologies are most successful when the apologizing offender
incurs a cost, such as through atoning actions (Ohtsubo et al., 2018; Watanabe
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& Laurent, 2020). It is an intriguing question how an artificial agent might
convince humans that it incurred such a cost.

31.7 Conclusion

The wide diversity of moral phenomena poses significant challenges for
empirical research and computational modeling. No single brain area or
psychological mechanism exists that represents norms, selects moral actions,
makes moral judgments, instantiates moral emotions, and conducts moral
communication. In addition, moral processes build on almost the entire suite
of human mental capacities – from attention to memory, from evaluation to
causal perception, from counterfactual analysis to theory of mind. As a result,
no one computational model, tool, or approach will be able to formalize and
elucidate these diverse phenomena. This challenging situation, however, offers
the opportunity to build the best computational tools for specific functions and
phenomena and enable a fruitful confluence of many different schools of
thought – logic, connectionism, probabilistic inference, reinforcement learning,
and many more. The question should not be which model is correct but what an
integrative model will look like. Such a model must pay close attention to the
rapidly growing empirical science of morality and capture the distinctions and
patterns that characterize human moral phenomena. Such a model will have
significant innovative impact on moral science – by pointing to undiscovered
relations and developing novel predictions, demanding new experiments and
revisions to theory. And with such an integrative model, the goal of building
artificial moral agents, for those who pursue it, will be more feasible, safer, and
better attuned to human social reality.
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32 Cognitive Modeling
in Social Simulation
Ron Sun

32.1 Introduction

Cognitive social simulation lies at the intersection of cognitive model-
ing and social simulation – two forms of computational modeling and
understanding that are to some extent isomorphic to each other (Sun,
Coward, & Zenen, 2005). Specifically, computational cognitive modeling, as
developed in cognitive science, focuses on producing precise computational
(and/or mathematical) models of individual mental processes (such as models
of human memory, reasoning, or decision making). The term “cognitive” here
should be interpreted broadly, including not only purely cognitive aspects but
also motivational, emotional, metacognitive, and other mental aspects. Social
simulation, as developed in the social sciences, centers on computational models
of social processes (such as models of interaction between individuals, group
decision making, or other collective processes).
Cognitive social simulation combines approaches and methodologies from

both cognitive modeling and social simulation, leading to cognitively sophis-
ticated and detailed social simulation (Carley & Newell, 1994; Sun, 2006,
2018). By combining cognitive and social models, cognitive social simulation
is poised to address issues concerning both individual and social processes as
well as their interaction. Sun (2001, 2006), for example, argued for the role
of computational modeling in understanding social-cognitive issues, espe-
cially through social simulation with realistic computational cognitive
models (i.e., cognitive social simulation), utilizing cognitive architectures in
particular. Computational simulation enables precise analysis of possible
scenarios and outcomes (social or individual), detailed substantiation,
testing, and validation of existing theories, and development of new theories.
Cognitive social simulation may lead to not only better theoretical under-
standing, but also better practical applications, in many areas that require
understanding at both the individual and the aggregate level (e.g., for policy
makers or for students of social-cognitive issues). The present chapter aims
to cover this area and its various possibilities (see a number of examples in
subsequent sections).
In the remainder of this chapter, rationales for combining cognitive modeling

and social simulation are discussed in more detail. Then, some examples of
cognitive social simulation are briefly described. A more general discussion of
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types, issues, applications, and directions of cognitive social simulation follows.
Finally, a conclusion section completes this chapter.

32.2 Combining Cognitive Modeling and Social Simulation

Below, some background and relevant concepts are discussed to
demonstrate why and how combination of cognitive modeling and social
simulation works.

Cognitive science (combining computational modeling, experimental psych-
ology, linguistics, neuroscience, and so on) has made important advances in
recent decades. In particular, computational cognitive modeling (i.e.,
computational psychology) has changed the ways in which cognition/psychology
is explored and understood in many respects (Sun, 2008). Rather than relying
purely on verbal-conceptual theories regarding complex matters, a more exact,
more detailed approach is often more desirable. Given the complexity of the
human mind, it has proven difficult to infer fine-grained psychological details
from behavior alone. Although informal (verbal-conceptual) theories abound,
full consequences of such a theory may not be obvious, its details may be
underspecified, and its ambiguity and inconsistencies may be hard to discover
or avoid (Sun, Coward, & Zenzen, 2005). Computational modeling, unlike
verbal-conceptual theories, is precise yet expressive. It is a suitable ground upon
which detailed cognitive theories may be constructed and then tested.

Pertinent to computational modeling, the notion of “agent” should be
examined, which naturally points to the integration of social and cognitive
research. First, computational models of agents often take the form of a
cognitive architecture (as developed in cognitive science), that is, a broadly
scoped, domain-generic computational model describing the essential struc-
tures and processes of cognition/psychology (e.g., Anderson & Lebiere, 1998;
Sun 2016; see also Chapter 8 in this handbook). In particular, cognitive
architectures specify a wide range of psychological processes together in tan-
gible (i.e., computational) forms. For example, a cognitive architecture may
include memory, categorization, skill, decision making, reasoning, and many
other mental functionalities.

A cognitive architecture provides a concrete framework for more detailed
modeling and simulation of psychological phenomena, through computation-
ally specifying essential mental structures along with essential mechanisms and
processes. It thus helps to narrow down possibilities and provide scaffolding
through embodying foundational assumptions. Cognitive architectures unify
various subfields by providing unified computational accounts of specialized
empirical findings. Some have accounted for a wide range of phenomena from
cognitive psychology, social/personality psychology, industrial/organizational
psychology, and more (e.g., Sun, 2016). The usefulness of cognitive architec-
tures has been demonstrated and argued for before (see, e.g., Anderson &
Lebiere, 1998; Sun, 2016). Computational cognitive modeling, especially with
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cognitive architectures, has become an essential research area in cognitive
science. Such developments, however, need to be extended to multiple agents
and their social interactions.
On the other hand, models of agents in social simulation tend to be simple,

although there have been some promising developments to the contrary (Balke
& Gilbert, 2014; Carley & Newell, 1994; Jager, 2017; Schultheis, 2021; Sun,
2006). Generally speaking, two approaches dominate the social sciences trad-
itionally. The first may be termed the “deductive” approach (Axelrod, 1997;
Moss, 1999), exemplified by much research in classical economics. It centers on
the construction of mathematical models, usually as a set of equations.
Deduction may be used to find consequences of assumptions. The second
approach may be termed the “inductive” approach, exemplified by traditional
approaches to sociology. Insights are obtained by generalizations from obser-
vations; these insights are often qualitative; phenomena are often described in
terms of general categories. Data mining and machine learning techniques that
emerged recently may also be applied.
However, a different, newer approach involves computational modeling and

simulation of social phenomena. It starts with a set of assumptions in the forms
of rules, mechanisms, or processes. Simulations then lead to data that can be
analyzed. Both inductive and deductive methods may be applied: induction can
be used to find patterns in simulation data, and deduction can be used to find
consequences of assumptions (i.e., rules, mechanisms, and processes specified).
Thus simulations are useful in multiple ways (Axelrod, 1997; Moss, 1999).
This third approach centers on agent-based simulation, that is, simulation

consisting of autonomous individual entities (i.e., agents). It explores interactions
among agents whereby complex patterns emerge. Thus it may provide explan-
ations for corresponding social phenomena (Gilbert & Doran, 1994). Agent-
based simulation models are geared towards understanding the processes that
bring about a macro phenomenon, including not only initial (micro or macro)
conditions but also intervening steps and intermediate results. Generating a
phenomenon may be a necessary step towards explaining it (Conte & Giardini,
2016). Agent-based social simulation is becoming an important research method-
ology. It may be used to test theoretical models and to investigate their properties,
especially when analytical solutions are not possible, or it may serve as an
explanation of a social phenomenon by itself.
Researchers have used agent-based social simulation for studying a wide

range of issues (e.g., Conte et al., 1997; Epstein & Axtell, 1996; Gilbert &
Doran, 1994; Kohler & Gumerman, 2000; Moss & Davidsson, 2001, etc.).
One of the first uses of agent-based models was by Axelrod (1984) in which
simulations were used to study strategic behavior in the iterated prisoner’s
dilemma game. Even today, this work is still influential. Another area,
Artificial Life, emerged in the 1980s, which simulates life to understand basic
principles of life. This has led to the application in social simulation of ideas
such as complexity, evolution, self-organization, and emergence. Recently,
another topic area came to prominence, dealing with the formation and the
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dynamics of social networks – social structures through social familiarities of
various kinds (including online ones; Abdelzaher et al., 2020; Falk & Bassett,
2017; Mason et al., 2007). However, to understand the spread of information
and beliefs, one has to consider both the social networks and the psychological
processes of the agents involved.

But work in social simulation often assumes rudimentary cognition on the
part of agents: agent models have often been just a limited set of domain-
specific rules, not comparable to cognitive architectures in complexity or sophis-
tication. Although this approach may be adequate for achieving some limited
objectives, it is overall unsatisfactory: it not only limits the realism and the
applicability of social simulation, but also limits the extent of tackling the
theoretical issue of micro-macro link (Alexander et al., 1987; Sawyer, 2003;
Schelling, 2006).

Simulation and exploration of social phenomena need cognitive science,
because such endeavors need better understanding, and better models, of individ-
ual mind; only on that basis can better models of aggregate processes be
developed (Castelfranchi, 2001; Sun, 2001, 2006, 2018). Cognitive models pro-
vide better grounding for understanding social interaction, by better representing
realistic capabilities, inclinations, and limits of agents. This point was argued at
length in Sun (2001). This point has also been argued, for example, in the context
of cognitive realism of game theory (Camerer et al., 2003; Kahan & Rapaport,
1984) and in the context of understanding social networks from a cognitive
perspective (Mason et al., 2007). See also Balke and Gilbert (2014), Carley and
Newell (1994), Conte and Giardini (2016), Jager (2017), and Sun (2006, 2012).

Fundamentally, cognitive science may provide a foundation for the social
sciences (e.g., sociology, anthropology, economics, and political science; Sun,
2012). The social sciences may ignore cognition/psychology at their own peril:
examples abound of failure of social theories or social practices due to the
failure to take into account important factors of human psychology (Sun, 2006).
In this regard, some researchers have explored the cognitive/psychological bases
of social, cultural, political, and religious processes (e.g., Atran & Norenzayan,
2004; Boyer & Ramble, 2001; Kim et al., 2010; Mithen, 1996; Sun, 2020b;
Turner, 2001). In these processes, two types of forces, macro and micro, interact
with each other, giving rise to complex phenomena (Castelfranchi, 2001).
Although some cognitive details may ultimately prove to be irrelevant, they
cannot be determined a priori; modeling can be useful in determining which
aspects can be safely abstracted away.

Conversely, cognitive science also needs the social sciences. Cognitive science
is in need of better ways of analyzing sociocultural aspects of cognition (Nisbett
et al., 2001; Vygotsky, 1962) and cognitive processes involved in multi-agent
interaction (Andersen & Chen, 2002; Sun, 2006). It needs computational models
from multi-agent modeling work (in AI and in social simulation), and also broad
conceptual frameworks that can be found in sociology and anthropology (as well
as in social psychology to some extent). Cognitive modeling can be enriched
through the incorporation of these strands of ideas.

Cognitive Modeling in Social Simulation 1067

https://doi.org/10.1017/9781108755610.037 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.037


Although modeling and simulation are often limited to a particular level of
abstraction at a time (see Chapter 1 in the present handbook), this need not be
the case: Cross-level analysis and modeling, such as combining cognitive mod-
eling and social simulation, can be important (Sun, 2012; Sun et al., 2005). This
is because these levels do interact with each other and may not be readily
tackled alone. Moreover, their respective territories are often intermingled.
One may start with purely social descriptions but then substitute psychologic-
ally realistic models for simpler descriptions of agents. Thus, the separations
across levels can be rather fluid. Sun et al. (2005) and Sun (2012) provided
detailed arguments for crossing and mixing the levels of the sociological, the
psychological, and so on (see also Kaidesoja, Sarkia, & Hyyryläinen, 2019 and
Schultheis, 2021 for additional arguments); Sun (2006) documented early
examples of integrating social simulation and cognitive modeling.
An important theoretical issue in this regard is downward versus upward

causation across levels. In the present context, upward causation is the influ-
ences from the micro to the macro (from individuals to society), and downward
causation is the opposite. Upward causation has indeed been explored and
utilized in agent-based social simulation (Axelrod, 1984; Sawyer, 2003;
Schelling, 2006). What has not been sufficiently emphasized is the role of
individual psychological processes in this influence. Sun (2001) emphasized this
role beyond the usual treatment of upward causation, and also advocated
computational modeling in tackling upward and downward causation (see also
Sun, 2012).
Cognitive social simulation may lead to explanations of social phenomena

based (largely, or at least in part) on underlying psychological factors, relying
on mechanisms and processes at a lower level. Instead of making superficial, ad
hoc assumptions to generate simulation results that match observed data,
assumptions may be made at a lower level. This approach puts more distance
between assumptions and outcomes and thereby provides deeper explanations
(Sun, 2006).

32.3 Examples of Cognitive Social Simulation

Below, a few examples of cognitive social simulation will be briefly
examined, ranging from the practically relevant organizational decision making
to the theoretically important issues of culture.

32.3.1 Cognitive Simulation of Games

Some work in cognitive social simulation extends existing formal frameworks of
agent interaction, taking into consideration cognition more realistically. In
particular, various alternatives to classical game theory (Von Neumann &
Morgenstern, 1944) move in the direction of enhanced cognitive realism.
While game theory may be used to find mathematically optimal strategies for
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various situations, humans often do not adopt optimal game-theoretic strategies
in real life (Axelrod, 1984).

For instance, a cognitive social simulation by West et al. (2006) found that
human players did not use a fixed way of responding as prescribed by game
theory. Instead, they attempted to adjust their responses to exploit perceived
weaknesses in their opponents’ play. It was argued that humans had evolved
to be such a player; furthermore, it was argued that the human cognitive
system had evolved to support a superior ability as such a player (West et al.,
2006).

West et al. (2006) produced a cognitive model of game playing by applying
the ACT-R cognitive architecture (Anderson & Lebiere, 1998), and compared it
with the behavior of actual human players. The standard game theory requires
that players be able to select moves in accordance with preset probabilities, but
research has repeatedly shown that people are very poor at doing this. Instead,
people try to detect the opponent’s sequential patterns of contingent choices
(such as tit-for-tat) and use this information to make the next move. Research
shows that, when sequential dependencies exist, people can detect and exploit
them (e.g., Estes, 1972).

Using this model, they found the following results: (1) the interaction
between two agents of this type produced the seeming randomness; (2) the
sequential patterns produced by this process were temporary and short-lived;
(3) human subjects played similarly to a lag-2 network that was punished for
ties: that is, people were able to predict their opponent’s moves by using infor-
mation from the previous two moves and they treated ties as losses.

Other social simulation work that attempts to make classical game theory
more cognitively realistic also exists; see, for example, Axelrod (1984) and
Juvina et al. (2011, 2015), among others (cf. Camerer et al., 2003).

32.3.2 Cognitive Simulation of Organizations

Another example of cognitive social simulation concerns organizational
decision making, which helped to shed light on the role of cognition in organ-
izations (Sun & Naveh, 2004).

In this task (Carley et al., 1998), each agent makes a separate decision, but no
single agent has access to all the information relevant to making a decision, and
separate decisions made by different agents are integrated in some way.
Organizational structures include two types: (1) teams, which treat individual
decisions as votes and the organization decision is the majority decision; (2)
hierarchies, in which the decision of a superior is based solely on subordinates’
recommendations. Information is accessible to each agent in two different ways:
(1) distributed access, in which each agent sees a different subset of attributes,
and (2) blocked access, in which several agents see exactly the same subset of
attributes.

The Clarion cognitive architecture (Sun, 2016) was used for modeling indi-
vidual agents. Because Clarion is intended for capturing all essential cognitive
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processes, its parameters include, for example, learning rate, generalization
threshold, probability of using implicit versus explicit processing, and so on.
With these parameters in Clarion, the results of the simulation closely accorded
with the patterns of the human data (e.g., with teams outperforming hierarch-
ies, and distributed access being superior to blocked access; cf. Carley et al.,
1998), far better than previous simulations, which showed the advantage of
cognitive social simulation. Furthermore, the simulation also led to deeper
explanations (for details, see Sun & Naveh, 2004).
But what happens if these cognitive parameters are varied? The statistical

analysis on the simulation results showed the advantages of team and distrib-
uted information access early on, and the disappearance or reversal of these
trends later. The analysis showed that the patterns above did not depend on any
particular setting of parameters. Many other patterns were also found with
regard to these parameters (Sun & Naveh, 2004).
In sum, the simulation with the Clarion cognitive architecture more accur-

ately captured organizational performance. Furthermore, one can vary
parameters that correspond to cognitive processes, to test their effects on
collective performance. This approach may be used to predict organizational
performance based on cognitive factors or to prescribe optimal cognitive abil-
ities or predispositions for specific tasks and organizational structures.
For other cognitive social simulations of organizations and groups, see, for

example, Carley et al. (1998), Clancey et al. (2006, 2013), Grand et al. (2016),
Helmhout (2006), Prietula, Carley, and Gasser (1998), Sun and Naveh (2007),
Sun and Fleischer (2012), Van Overwalle and Heylighen (2006), and so on. See
also Chapter 25 in this handbook.

32.3.3 Cognitive Simulation of Culture

More of theoretical interest, simulating and explaining culture and cultural
processes have been undertaken (e.g., Conte, Andrighetto, & Campennl,
2013; Elsenbroich & Gilbert, 2014; Sun, 2020b; Thagard, 2019). Culture is, at
least in part, based on innate psychological processes. Transmission of culture
also depends on characteristics of the mind (Sperber & Hirschfeld, 2004). Social
interaction leads to distributing similar mental representations and public pro-
ductions (behaviors and artifacts); mental representations and public produc-
tions that have been stabilized are the cultural.
At an individual level, it has been hypothesized that culture may be mani-

fested in individuals’ minds as “schemas” (DiMaggio, 1997). However, culture
need not be just the vague notion of “schema” and can be more specifically
described (Sun, 2020b). At an individual level, culture includes the complex
patterns of interaction of an individual with social and physical environments.
For instance, it involves implicit cognitive processes besides explicit processes
(Sun, 2020b). The role of motivation is also important: a culture may downplay
some aspects of human motivation and highlight some others, but it neverthe-
less has to be in accord with essential human motivation as a whole
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(Sun, 2020b). Culture may (in part) be viewed as a manifestation of essential
human motivation; different cultures may represent different forms of
manifestations.

For instance, research often linked individual choice to higher levels of
intrinsic motivation, better performance, and more satisfaction. Iyengar and
Lepper (1999) examined the limitations of these findings for cultures in which
individuals were considered more interdependent: personal choice generally
enhanced motivation more for independent cultures than for interdependent
cultures; children from a more independent culture showed less intrinsic motiv-
ation when choices were made for them by others; in contrast, children from a
more interdependent culture could be most intrinsically motivated when choices
were made for them. Theoretical interpretations of such findings have been
explored based on the Clarion cognitive architecture. In Clarion, essential
motives (i.e., drives) may be differently activated in different individuals (Sun,
2016). Some cultures emphasize (the drive for) “autonomy,” while others
emphasize (the drives for) “deference” (respecting authority) and “similance”
(social conformity). Cultural differences manifest themselves, at an individual
level, through fine-tuning the inclinations of activating different drives (through
the deficit parameters within Clarion; see Sun, 2016). Drives lead to corres-
ponding goals and actions (Sun, 2016). Higher activations of a drive also lead to
higher internal rewards when the drive is satisfied (Sun, 2016). Therefore,
individuals of different cultures can show different levels of intrinsic motivation
as a result of different drive activations (e.g., in the aforementioned two
circumstances). Clarion thereby provides a mechanistic, process-based inter-
pretation of the cultural difference (Sun, 2020b).

Clarion can also account for Hofstede et al.’s (2010) theory of cultural
dimensions, such as power distance, individualism versus collectivism, mascu-
linity versus femininity, and so on. Among them, at an individual level, power
distance (the extent to which the less powerful accept that power is distributed
unequally) can be accounted for (in part) by the activations of the “deference”
drive; individualism (the degree to which people in a society are not integrated
into groups) can be accounted for (in part) by the activations of the “auton-
omy” drive; masculinity (a preference for achievement, heroism, and material
rewards) can be accounted for (in part) by the activations of the “achievement”
drive; and so on (see Sun, 2016).

Many other cultural differences exist, for example, as described by Henrich
et al. (2010), Medin and Atran (2004), and Nisbett et al. (2001). They range
from spatial cognition to fairness perception, from self-model to moral judg-
ment, and so on. Cognitive models may be used to account mechanistically for
some of these differences as well (Sun, 2020b). Norm and norm formation
have also been tackled (Conte, Andrighetto, & Campennl, 2013; Elsenbroich
& Gilbert, 2014; Kenrick, Li, & Butner, 2003; Nyborg et al., 2016; Vu et al.,
2020). Linguistic phenomena have been modeled (Cole et al., 2019; Gong
et al., 2014). Culture formation, propagation, and transformation can also
be modeled (Muthukrishna & Schaller, 2020; Nowak et al., 2016; Sun,
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2020b). Dual cognitive processes may be taken into account in modeling
culture (Strandell, 2019; Sun 2020b). Other high-level social theories (such
as social persuasion theory of Cialdini, 2009) may also be explained mechan-
istically (e.g., through a partially motivational account within Clarion; Sun,
2016). See Thagard (2019) for explanations of a broad range of issues related
to culture. Understanding of culture is connected with understanding of the
mind, because culture is (at least in part) grounded in actual human psych-
ology (Sun, 2012, 2020b).

32.3.4 Some Other Cognitive Social Simulations

Other work relevant to cognitive social simulation includes models of individ-
ual and collective motivation (e.g., Clancey, Sierhuis, Damer, & Brodsky,
2006; Sun & Fleischer, 2012), personality and personality interaction (see
Chapter 24 in this handbook), emotion and emotion contagion (e.g., Allen
& Sun, 2016; see Chapter 30 in this handbook), and individual and collective
morality (Bretz & Sun, 2018; see Chapter 31 in this handbook). For other
models of emotions in social settings, see Bourgais et al. (2018), Erisen et al.
(2014), Gratch et al. (2006), Thagard and Kroon (2006), and Wilson and Sun
(2021). Furthermore, unified models of cognition, metacognition, motivation,
emotion, personality, moral judgment, and so on have been developed within
the Clarion cognitive architecture, for the sake of in-depth, unified under-
standing of these aspects. These models further enhance cognitive social
simulation and its abilities to tackle deeper psychological factors involved in
social processes. They help with better understanding of motivation, emotion,
personality, morality, and so on, in addition to better understanding of their
roles in social processes.
Analysis of social and political issues based on existing computational models

has been attempted (e.g., White, 2020). It was suggested that these models could
help to better understand social and political issues and might lead to reason-
able resolutions of these issues. Thagard (2019) also addressed, from a compu-
tational modeling perspective, a broad range of social issues, ranging from
ideology to religion, and from international relations to economics.
Detailed simulations of political behavior have been undertaken. For

example, the Clarion cognitive architecture was applied to studying voter
decisions in an election campaign (Schreiber, 2004). The ACT-R cognitive
architecture was applied to produce a computational model of political atti-
tudes incorporating psychological theories and findings from electoral behavior
(Kim et al., 2010).
Overall, domains and problems addressed by cognitive social simulation have

been diverse. They include, for example, opinion dynamics, collective emotion,
crowd behavior, tribal customs, game playing, consumer behavior, stock
market dynamics, academic publication, urban planning and architectural
design, group interaction, organizational decision making, political behavior,
social cooperation, evolution of language, formation of social norms, and many
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others (see, e.g., Sun, 2006 for some sampling of these topics; see Sun, 2012 for
further justifications).

32.4 Types, Issues, Applications, and Directions of Cognitive
Social Simulation

32.4.1 Dimensions of Cognitive Social Simulation

Given the many examples above of cognitive social simulation, it is important
to look into some possible dimensions for categorizing different cognitive
social simulations.

First, different ways of representing agents are important, because concep-
tions of how agents should be modeled are crucial for any agent-based model-
ing. One approach, the equation-based approach, often involves abstracting
agents away altogether. Agents in such an approach are often not explicitly
represented, and their roles are only indirectly captured. A contrasting
approach involves representing agents as autonomous computational entities.
While lacking the “elegance” of an equation-based approach, this approach
often allows a more direct and possibly more detailed representation of target
phenomena and often allows models to be more easily understood.

Furthermore, amount of detail in agents may vary widely (Balke & Gilbert,
2014; Jager, 2017), ranging from very simple agent models, such as those used
in some early simulations of the prisoner’s dilemma (e.g., Axelrod, 1984), to
very detailed cognitive models, such as ACT-R (Anderson & Lebiere, 1998) or
Clarion (Sun, 2016).

Agents can be further distinguished based on their computational complexity
(as characterized by computer scientists using “Big-O” or other related
notions). Such a measure has important implications with respect to the
scalability of a model, since it determines whether the running time and the
memory requirement of a model scale linearly, polynomially, or exponentially.

Models also differ in terms of degree of rationality imputed to agents. Some
models (e.g., in traditional economics or game theory) assume perfectly rational
agents, whereas others (e.g., in psychology) consist of boundedly rational agents
that aim for satisficing solutions, rather than optimal ones (Anderson &
Lebiere, 1998; Vernon, 2014).

More importantly, models differ in terms of their cognitive (psychological)
realism. Social simulation models can be noncognitive, by using, for example, a
simple finite-state automaton for modeling an agent (Axelrod, 1984). Social
simulation models can also be fully cognitive (broadly conceived, including,
e.g., motivational, emotional, and metacognitive details), by using well-
developed cognitive architectures (Balke & Gilbert, 2014; Sun, 2016). In
between, there can be models that are more cognitively realistic than a simple
finite-state automaton but less than a typical cognitive architecture (e.g., Carley
& Newell, 1994; Clancey et al., 2006; Dignum, Tranier, & Dignum, 2010;
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Edmonds, 2014; Goldspink, 2000; Jager, 2017; Vu et al., 2020). The dimension
of cognitive realism often determines amount of detail: high levels of cognitive
realism often entail high levels of cognitive detail. Using cognitively realistic
models also tends to lead to boundedly rational models, as humans are usually
not perfectly rational.
The distinctions above lead to a set of dimensions for classifying simulations

according to their representation of agents. These dimensions include, (1)
whether or not a model is agent-based; (2) the granularity, or detailedness, of
the agent model; (3) the computational complexity of the agent model; (4)
whether rationality is bounded or unbounded in the agent model; (5) the degree
of cognitive realism in the agent model (including its motivational, emotional,
metacognitive, and other aspects). In actuality, these dimensions may be correl-
ated, but they should all be evaluated in order to gain a better understanding. In
particular, the last dimension above is not often used in evaluation, but it is
important, for reasons discussed earlier.
Using the dimensions above, one can categorize the previously described

Clarion simulation of organizations (Sun & Naveh, 2004) as an agent-based
simulation, reasonably detailed, computationally somewhat complex, bound-
edly rational, and cognitively realistic. This simulation therefore inherits the
limitations associated with these characteristics. As a high-granularity model,
Clarion can make it difficult to disentangle the contributions of different factors
to the results of simulations (although it can be done; Sun & Naveh, 2004). Its
somewhat high computational complexity can raise issues of scalability. The
choice of a cognitively realistic agent model may itself rest on a particular
ontological conception. For another instance, the ACT-R game simulation
described earlier (West et al., 2006) is also agent-based. However, it is slightly
less detailed, boundedly rational, and cognitively realistic (although it does not
cover some psychological aspects). Its computational complexity is also
somewhat high.
Some additional dimensions that may also be relevant include: amount of

noncognitive detail, type of interactivity among agents, number of agents
involved, and so on. Amount of noncognitive detail can be varied independ-
ently of amount of cognitive detail: one may include in a model only highly
abstract social scenarios, for example, as described by game theory, or one may
include more details as captured in ethnographical studies (e.g., Clancey et al.,
2006).
In terms of interactivity, there can be the following types (among others): no

interaction, indirect interaction (such as in simple game-theoretic scenarios;
e.g., Juvina et al., 2011; West et al., 2006), limited direct interaction (such as
in some simple simulations of groups and opinion dynamics; e.g., Grand et al.,
2016; Hegselmann & Krause, 2002), and full direct interaction (such as in some
detailed ethnographical simulations; e.g., Clancey et al., 2006).
Number of agents involved is also a relevant dimension. The more agents

there are in a simulation, the more difficult it is to conduct the simulation in a
realistic way. Thus this dimension affects choices in other dimensions: for
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example, when a very large number of agents are required in a simulation, the
amounts of cognitive and noncognitive detail may have to be somewhat small.

32.4.2 Issues in Cognitive Social Simulation

By incorporating cognitive models in social simulation, one can take into
consideration the human mind when trying to understand and to explain
collective social situations or outcomes (Sun, 2001, 2006, 2012). Conversely,
one can also take into consideration sociocultural processes in understanding
the individual mind (Nisbett et al., 2001; Vygotsky, 1962; Zerubavel, 1997). The
result is more detailed, more comprehensive models and better understanding.
Effects of a cause (social or cognitive) can be verified through experimentation
within cognitive social simulation. They can also be explained at a more
detailed and deeper level. Cognitive social simulation focuses on processes
and thus also helps to provide temporal perspectives (both cognitive and social)
in explaining phenomena.

Cognitive social simulation is still at an early stage of development, given the
relatively recent emergence of the two fields on which it is based (social
simulation and cognitive modeling, including cognitive architectures). Many
research issues and challenges remain to be addressed.

First, whether or not to use detailed cognitive models in social simulation is a
decision that has to be made on a case-by-case basis. There are reasons for using
or not using detailed cognitive models. Reasons for using detailed cognitive
models include: (1) cognitive realism may lead to more accurate capturing of
empirical data in social simulation; (2) with cognitive realism, one may be able
to formulate deeper explanations for results observed (e.g., by basing explan-
ations on cognitive factors rather than arbitrary assumptions); (3) with detailed
cognitive models, one can vary parameters that correspond to cognitive details
and test their effects on outcomes; thus simulations may be able to predict
outcomes based on cognitive factors or to improve task performance by pre-
scribing optimal cognitive abilities or predispositions.

On the other hand, reasons for not using detailed cognitive models in social
simulation include: (1) it is sometimes possible to describe causal relationships
at a higher level without referring to lower levels; (2) complexity resulting from
detailed cognitive models may make it difficult to interpret results in terms of
precise contributing factors; (3) complexity also leads to high computational
cost and issues of scalability.

Another issue facing cognitive social simulation is validation of simulation
models, including validation of cognitive models involved. Validation of
complex models is always difficult (Axtell et al., 1996; Pew & Mavor, 1998).
Full, precise validation of social simulation models, especially when detailed
cognitive models are used, is unlikely at present (due to, among other things,
complexity). Relevance of big data, data mining, and data science may be
explored in this regard. However, adopting existing cognitive models in cogni-
tive social simulation can be beneficial: if one adopts a well established cognitive
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model (a cognitive architecture in particular), the prior validation of that
cognitive model (to whatever extent available) can be leveraged in validating
the overall simulation. Thus there is a significant advantage in adopting an
existing cognitive model (although this may not always be the practice). But,
even when existing cognitive models are adopted, validation of cognitive
social simulation is still a difficult task, due to complexity and other factors
(cf. Brousmiche et al., 2016; Conte & Giardini, 2016).
Yet another issue facing cognitive social simulation is that of the relationship

between simulation and theory: can a simulation constitute a theory of
cognitive-social phenomena and processes? One viewpoint is that computa-
tional modeling and simulation should not be taken as theories. According to
some, a simulation is only a generator of data and phenomena. According to
some others, simulation is only useful for testing theories and it is not a theory
by itself. However, there is a rather different position based roughly on the idea
that a computational model can be a theory by itself (see Chapter 1), which may
serve well as a meta-theoretical foundation for cognitive social simulation.
According to this view, a cognitive social simulation model is a formal,
process-based description of relevant cognitive-social phenomena and thus a
theory of the phenomena and the processes behind them. The language of a
model is, by itself, a proper symbol system for formulating the theory
(cf. Newell, 1990).
Generally, in the social sciences, evolutionary theories have been popular, but

they sometimes tell only “just so” stories. Mathematical theories (such as game
theory) are useful and respected, but they are often too normative and fail to
take into account real-life complexity. Cognitive social simulation may provide
an alternative to these forms of theories. See Chapter 1 in this handbook for
further discussions of the issue of model versus theory.

32.4.3 Practical Applications

First of all, as an example, when policy makers consider a certain social,
economic, or organizational policy, they preferably would want to know the
full implications of it: they would like to know the implications in terms of
quantifiable and measurable direct outcomes, such as the total increase in
revenue or the total cost; but they may also want to consider less quantifiable
implications, such as how it affects individuals’ perception, emotion, and
motivation, how changed perception, emotion, and motivation lead to cultural
(or societal) changes, and how all of these changes lead to altering quantifiable
and not-so-quantifiable outcomes. Rather than relying on speculations, one
would want more reliable means. Thus they may need to look into not just
social sciences but also cognitive science and connect analyses at these levels
through computational means for the sake of a more comprehensive and more
precise understanding (Sun, 2018).
For instance, simulation models of organizational structures and dynamics

on the basis of cognitive models can be useful in understanding or even
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designing organizational structures and makeups for improving organizational
performance (as discussed earlier). Cognitive architectures have been applied to
the simulation of organizational decision making (Carley et al., 1998; Sun &
Naveh, 2004). Relatedly, there have also been cognitively based models of
group or team dynamics (e.g., Clancey et al., 2006; Grand et al., 2016). These
models may lead to significant applications in organizations of various types,
large or small.

Furthermore, industrial/organizational psychology needs to understand not
only how goal setting, feedback, self-efficacy, and other factors affect individual
performance (Locke & Latham, 2013), but also how these factors interact with
social environments (e.g., organizational structures, team goals, emotion conta-
gion, and so on) in affecting overall performance. Cognitive social simulation
can provide valuable information concerning interaction of these variables and
is thus useful in terms of understanding implications of organizational practices
and policies. Leadership, innovation, and other aspects of organizational
behavior can also be explored through cognitive social simulation (Grand
et al., 2016; Watts & Gilbert, 2014). See Chapter 25 in this handbook for some
related discussions.

Ongoing work on computational modeling of emotion, motivation,
personality, and other socially relevant psychological aspects (see
Chapter 24 and Chapter 30 in this handbook) may lead to applications.
These models are useful not only for understanding these aspects per se, but
also for designing relevant social mechanisms for channeling them for public
good. For example, emotion (as well as opinion) contagion occurs in social
settings; it may be useful for law enforcement to be able to anticipate crowd
behavior in volatile situations, in part based on modeling emotion contagion
among a crowd (e.g., Parunak et al., 2014; see also Hegselmann & Krause,
2002). Such modeling may also be applied in much larger scales, for example,
in relation to public responses of national or global scales to pandemics or to
serious terrorist incidents.

Computational modeling of politics on the basis of individual cognition (as
touched upon earlier) has led to detailed simulations of voter behavior, political
opinion formation, emotional political response, and emotionally colored pol-
itical reasoning (e.g., Kim et al., 2010; Schreiber, 2004). These models can be
useful tools for political mechanism design and for making decisions on
political strategies.

In the age of the Internet, understanding influences on social media are
of practical importance. For instance, crowd manipulation, social hysteria
propagation, and group polarization are commonplace on social media.
Misinformation, targeting one’s moral sense, manipulating online social struc-
tures, and so on are possible means. To better understand these, cognitive social
simulation can be useful. It can not only take account of physical processes
described by existing simple models of opinion dynamics (e.g., Hegselmann &
Krause, 2002), but also psychological processes underlying information flows
and opinion dynamics (cf. Brousmiche et al., 2016; Edmonds, 2020). Prior
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beliefs play a role in terms of susceptibility to influences of various kinds.
Emotions also play a role in coloring one’s thinking (as mentioned earlier).
Underlying motivations affect one’s reasoning and judgment (Kunda, 1990;
Lodge & Taber, 2013). Furthermore, a realistic model of human moral psych-
ology (e.g., Bretz & Sun, 2018) may be needed to counter manipulation of one’s
moral sense. Models based on psychology of persuasion can help to explain
relevant tendencies of individuals or groups (e.g., Cialdini, 2009). Cognitive
social simulation is therefore important in terms of deeper understanding of
social media.
Relatedly, cognitive social simulation can also be useful in understanding

social networks (in online or offline forms). A more realistic agent model can
better capture individuals’ behaviors, taking into full account individuals’ think-
ing, reasoning, motivation, emotion, personality, and so on (cf. Abdelzaher
et al., 2020; Cole et al., 2019). Taking these factors into fuller consideration
can lead to better understanding and better prediction of social networks (Falk
& Bassett, 2017) and thus significant potentials for applications.
Other possible applications include modeling and simulation of game

playing, including military battlefield simulation, with detailed cognitive
models of agents (Pew & Mavor, 1998). Recent advances in deep learning
models successfully playing games (e.g., Silver et al., 2017) give rise to the hope
that applying similar techniques, combined with better understanding of human
psychology, may lead to cognitively realistic models of complex tasks, perform-
ing at or above the best human performance level. In turn, these models can be
scaled up to address practical situations and to lead to significant practical
applications.
Another research area with significant potentials for application is social

robotics (e.g., generating useful social behavior amongst a group of robots).
Such work often involves, in a sense, both social simulation and cognitive
modeling. For example, in the work of Shell & Mataric (2006), various cogni-
tive constructs were explored in an effort to generate useful social behavior
amongst robots. See also Tani (2016). Furthermore, it has been argued that
realistic cognitive modeling may serve as the basis for symbiotic systems of
humans and machines (Sun, 2020a). Work along these lines, besides being
relevant to applications, also constitutes interesting cognitive-social models.
Overall, cognitive social simulation has significant application potentials. It

may lead to better, more cognitively and socially realistic models that address
both fundamental theoretical issues facing social and cognitive scientists and
practical matters facing policy makers, technology developers, and other
practitioners.

32.4.4 Directions of Cognitive Social Simulation

There are a number of research directions involving combining cognitive mod-
eling and social simulation. These directions may lead to advances in under-
standing and modeling social and cognitive processes and their interaction.
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There has been work in extending existing formal (mathematical) frame-
works of agent interaction, in order to take into account cognitive processes
more realistically. For instance, there have been various modifications of, and
extensions to, the mathematical framework of game theory in the direction of
enhanced cognitive realism: behavioral game theory starts with observed para-
doxes in the behavior of agents that are not completely “rationale” and tries to
explore effects of cognitive, motivational, emotional, and social factors on
agents’ decisions (such as altruism, fairness, and framing) and how their deci-
sions may differ from those prescribed by classical game theory (e.g., Camerer
et al., 2003; see also Juvina et al., 2015). On the other hand, West et al. (2006),
as reviewed earlier, modeled game-theoretic situations using a cognitive archi-
tecture, beyond existing formal descriptions (see also Juvina et al., 2011).
Behavioral economics, experimental economics, and neuroeconomics have
been relatively well established (e.g., Loewenstein, Rick, & Cohen, 2008; Plott
& Smith, 2008; Thaler, 2016). They apply experimental methods to the investi-
gation of various decision-making scenarios replete with anomalies that are
contrary to classical economics (e.g., bounded rationality, prospect, temporal
discounting, and a variety of heuristics). They help to identify the psychological
reality glossed over by classical theories. Such approaches need to be further
developed and, more importantly, need to be combined with the effort in
developing psychologically realistic models, especially cognitive architectures
(Sun, 2006). Together they may lead to better models of agents, for better
cognitive social simulation, not just for economics but also for many other
social and behavioral disciplines.

There have been sociologists (such as cognitive sociologists), anthropologists
(such as psychological and cognitive anthropologists), and social and cultural
psychologists interested in socioculturally shaped cognition, that is, how culture
and social processes shape individuals’ minds (e.g., Brekhus & Ignatow, 2019;
D’Andrade & Strauss, 1992; Zerubavel, 1997). The reverse direction – how
cognition (human psychology) shapes, substantiates, and grounds social pro-
cesses, social institutions, and culture – is under-explored. The fact that this
direction has been under-explored makes exploring it even more important,
both theoretically and empirically. See Sun (2012).

Relatedly, sociological and anthropological modeling and simulation have
been taking place. Conte, Hegselmann, and Terna (1997) and Gilbert and
Doran (1994) described a variety of early studies. For an early example,
Reynolds (1994) simulated the ritual of the llama herders in the Peruvian
Andes and provided explanations for the emergence of the ritual. Doran et al.
(1994) provided explanations for the increasing complexity of tribal societies in
the Upper Paleolithic period. Later, Kohler and Gumerman (2000) described a
range of other projects along this direction. Turner (2001) and Sun (2012)
advocated pursuing this direction with psychologically realistic models. The
related work of White (2020) was discussed earlier. Sociological and anthropo-
logical modeling and simulation using cognitively realistic agent models need to
be developed further, which will help in advancing and validating cognitive
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social simulation. In particular, dual cognitive processes need to be taken into
better consideration in this endeavor (Chaiken & Trope, 1999; Strandell, 2019).
Existing high-level theories from social psychology can also be incorporated
into such simulations when applicable (e.g., Brousmiche et al., 2016; Jager,
2017); social psychological theories may be explained, validated, or refined
through such simulations (e.g., Sun & Wilson, 2014).
In addition, cognitive social simulation may invoke evolutionary processes:

for example, evolutionary simulation of social survival strategies (Cecconi &
Parisi, 1998; Sun & Naveh, 2007), evolution of motivational processes (Sun &
Fleischer, 2012), and simulations of other issues relevant to the evolution of
psychological processes in social settings (Kenrick, Li, & Butner, 2003; Kluver
et al., 2003). For instance, Sun and Naveh (2007) described an evolutionary
simulation of social survival strategies, in which a social phenomenon was
explained by cognitive factors through an evolutionary process. Sun and
Fleischer (2012) extended the simulation to motivational factors. Kluver et al.
(2003) addressed issues relevant to the evolution of cognitive processes in social
simulation. More recently, Red’ko (2015) reviewed research relevant to the
evolution of cognition; Lotem et al. (2017) developed a simulation of the
evolution of cognitive mechanisms.
Finally, work is ongoing on modeling motivation, emotion, personality,

morality, and other socially relevant aspects of human psychology, which may
be fundamental in combining social simulation and cognitive modeling
(Schelling, 2006; Sun, 2016). Unified models of emotion, motivation,
personality, morality, social norm, social role, social identity, self-categorization,
representation of self and others, and other socially relevant aspects need to be
developed (although some exist, as discussed earlier). Such models then need to
be integrated into social simulations of, for example, norm formation, social
networking, dynamics of work teams, formation of political opinions, and so on.
See Chapters 24, 30, and 31 in this handbook for more details of these aspects.

In all, many directions of research are being pursued, which may lead to
better, more cognitively and socially realistic simulations that address funda-
mental theoretical issues or important practical problems. As such, they will
have significant theoretical as well as practical ramifications.

32.5 Conclusion

The present chapter surveys the area of cognitive social simulation,
which is at the intersection of cognitive modeling and social simulation. By
integrating cognitive and social models, cognitive social simulation can address
issues involving both cognition and sociality. Cognitive social simulation may
find practical applications in many areas too.
Overall, this area of research is at an early stage of development, given the

relatively recent emergence of the two fields on which it is based (so that there is
currently no off-the-shelf software or comprehensive guidebook available).

1080 ron sun

https://doi.org/10.1017/9781108755610.037 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.037


There are many research issues to explore and intellectual challenges to address.
Given the importance of the topics and the novelty of the methodologies, it is
reasonable to expect that this area of research will eventually come to fruition in
helping to better understand both cognition/psychology and sociality as well as
their interaction. In particular, it may lead to better understanding of a wide
range of topics in the social sciences, ranging from politics to economics and
from organization to culture.
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33 Cognitive Modeling for
Cognitive Engineering
Matthew L. Bolton and Wayne D. Gray

33.1 Introduction

Cognitive engineering is the application of cognitive science to human
factors and systems engineering. When cognitive models are used for this
purpose, the predictive or explanatory power of the model is used to improve
engineering system performance. Cognitive models can be used at any stage of
the engineering life cycle (Figure 33.1). They can be part of the analysis of an
existing system to identify when human cognition is contributing to problems
and establish requirements for new systems. Cognitive models can be used in
design to produce system elements (human–machine interfaces, system behav-
iors, or training requirements) that are compatible with human cognition.
Cognitive models can be incorporated into an actual system’s implementation
to provide humans with training and/or decision support. Cognitive models can
inform system testing and evaluation by identifying cognitive conditions worthy
of deeper analysis. Furthermore, model-based generation can create tests to
ensure that all cognitively relevant system conditions are observed. Finally,
cognitive models that were part of implementation can be used during a
system’s operation and maintenance.
Thus, while the cognitive models and architectures commonly associated

with cognitive engineering [ACT-R (Anderson, 1993), EPIC (Kieras & Meyer,
1997), Soar (Newell, 1990), and QN-MHP (Liu, Feyen, & Tsimhoni, 2006)]
were created to understand human behavior, their use and development in
engineering has been done with the purpose of realizing better systems. This
means cognitive engineering models are not strictly concerned with understand-
ing the cognitive mechanisms underlying behavior (the emphasis of cognitive
science) unless that understanding has utility for engineering goals.
Fortuitously, the explainability of cognitive models does have value because it
enables systems, analysts, and users to understand why behavior is occurring
and use this to inform response and design.
Gray (2008) identified five key differences between cognitive science and

engineering: (1) Cognitive engineers pick the problems they address (system
performance, safety, workload, usability, financial impact, trust in automation,
etc.) because there is an operational need, not because they are necessarily
scientifically interesting. (2) Because of operational need, cognitive engineers
often work in emerging domains or those where there has been little prior study
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(like autonomous driving or wearable computing); not the well-trodden appli-
cations common to cognitive science. (3) This means that cognitive engineering
modelers must rely on domain experts (i.e., subject matter experts or
practitioners) to supply information when there is a lack of historical data or
cognitive theory. (4) For cognitive engineers, model utility is prioritized over its
ability to provide a depth of insight into the represented phenomenon. Finally,
(5) cognitive engineers are typically responsible for predicting human perform-
ance as part of a complex system. As such, a significant amount of cognitive
engineering is focused on capturing the control of integrated cognitive systems
in their models (Gray, 2007). In this situation, any lower level cognitive con-
structs (like memory or categorization) are included in service of accomplishing
and/or explaining the control.

These distinctions produce an environment where model fidelity varies based
on application goals. This chapter provides readers with a history of cognitive
modeling in cognitive engineering and its diverse contributions. It first reviews
the seminal work of Card, Moran, and Newell (1983), which laid the founda-
tions for many developments. Then, to give readers a sense of the issues facing
contemporary cognitive engineering, the chapter examines the use of cognitive
models in complex systems. The chapter concludes with a summary and a
discussion of potential threats and future advances.

33.2 Initial Approaches to Cognitive Modeling for
Cognitive Engineering

Attempts to apply computational and mathematical modeling tech-
niques in human factors and systems engineering have a history (see Byrne,
2007; Kieras, 2007; Pew, 2007) that is beyond the scope of this chapter. This

Analysis

Design

ImplementationTesting and 
Evaluation

Operation and 
Maintenance

Figure 33.1 The engineering life cycle.
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section focuses on the seminal work of Card, Moran, and Newell on GOMS
(goals, operators, methods, and selection rules). GOMS is a task-analytic
framework for modeling human information-processing, behavior, and per-
formance. GOMS is based on the human’s (a) goals, the (b) operators (low-
level perceptual, motor, or cognitive acts) needed to accomplish the goals,
sequences of operators and sub-goals that constitute (c) methods for accom-
plishing a goal, and (d) selection rules for choosing methods.
Most cognitive science researchers were trained in experimental psychology.

This tradition focuses on discovering truths about the natural world with large,
controlled studies. People with this background often cannot conceive of how
someone could model something as complex as driving or unmanned aerial
vehicle (UAV) operation.
Such developments are possible because most human behavior can be mod-

eled as a hierarchy of tasks and subtasks (Kirwan & Ainsworth, 1992; Simon,
1996, chapter 8). The structure of this hierarchy is generally determined by the
task environment, rather than the human operator. As such, cognitive engineers
can break behavior down to the level required by analysis goals. This task
analysis works well for designing complex industrial operations and procedures
for human tasks (Kirwan & Ainsworth, 1992; Shepherd, 1998, 2001). For those
interested in interactive systems, task analyses can be straightforward because
most human behavior is produced in direct response to changes in the environ-
ment. Although interactive behavior is complex, the complexity lies in (a)
evaluating the current state of the environment; (b) deciding what can be done
to advance user goals; (c) evaluating strategies for accomplishing these goals;
and (d) executing the strategy. The key to this cycle is the unit task.

33.2.1 The Unit Task as a Control Construct for Human
Interactive Behavior

Card, Moran, and Newell’s conceptual breakthrough was that most tasks were
composed from smaller “unit tasks within which behavior is highly integrated
and between which dependencies are minimal. This quasi-independence of unit
tasks means that their effects are approximately additive” (Card et al., 1983,
p. 313). Thus, the “unit task is fundamentally a control construct, not a task
construct” (Card et al., 1983, p. 386). The unit task is not given by the task
environment, but results from the interaction of the task structure with the
control problems faced by the user.
The prototypical unit task example (Card et al., 1983, chapter 11) is the

structure imposed on a typist during transcription. The transcription task
environment consists of dictated speech, a word processor, and a foot pedal
that controls recording playback. As speech is typically faster than skilled
typing, the basic problem faced by typists is how much of the recording to
listen to before pausing. Efficient typists listen while typing. The longer typists
listen, the greater the lag between what is heard and what is typed. At some
point, typists will pause the recording and type until they cannot confidently
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remember more of the recording. With experience, a skilled typist will minimize
the amount of rewind and replay while maximizing the amount typed per unit
task. This “chopping up” of the task environment into unit tasks reflects a
control process that adjusts performance to task characteristics (dictation speed
and speech clarity), the typist’s skill (words per minute), and to the typist’s
cognitive, perceptual, and motor limits.

33.2.2 The Path from Unit Tasks, Through Interactive Routines,
to Embodiment

Table 33.1 shows a typical GOMS unit task using Natural GOMS Language
(NGOMSL). This is one of approximately twenty needed to model Lovett’s and
Anderson’s (1996) building sticks task: a game whose objective is to match the
length of a stick by building a new one from pieces of various sizes. This unit task
would be invoked to subtract length from the built stick when it was larger than
the target. This example (Table 33.1) shows that each line/statement has an
execution overhead (statement time; Stmt Time) of 0.1 seconds (s). There are
three operator types used: a point operator (P) that is assumed to have a time of 1.1
s; a button click (BB; up and down) with duration 0.2 s; and amental operator (M)
with duration 1.2 s. The entire method for accomplishing this unit task lasts 5.8 s.

As the table suggests, NGOMSL (Kieras, 1997) reduces all operators to one
of a small set. The duration of each operator is based on empirical data or
mathematical models (such as Fitts’ Law or Hick’s Law). Much of what goes
into an NGOMSL analysis comes from the second chapter of Card et al. (1983),
which casts many regularities gleaned from experimental psychology into a
form that has utility for engineers.

GOMS was intended as a tool for cognitive engineering. Hence, each line of
the NGOMSL analysis could be more precise and tailored based on factors

Table 33.1 Example unit task for the “building sticks task” using natural GOMS
language (NGOMSL; Kieras, 1997)

Step Description
Stmt
time (s) Op # Ops Op time

Total
time (s)

Method for goal: Subtract stick<position> 0.1 0.1
Step 1 Point to stick<position> 0.1 P 1 1.1 1.2
Step 2 Mouse click stick<position> 0.1 BB 1 0.2 0.3
Step 3 Confirm: Stick is now black 0.1 M 1 1.2 1.3
Step 4 Point to inside of “your stick” 0.1 P 1 1.1 1.2
Step 6 Click mouse 0.1 BB 1 0.2 0.3
Step 7 Confirm: Change in stick size 0.1 M 1 1.2 1.3
Step 8 Return with goal accomplished 0.1 0.1

Overall Time (s): 5.8

Abbreviations: Stmt time ¼ statement time; Op ¼ operator; P ¼ point operator; BB ¼ button
click; M ¼ mental operator.
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such as the exact distance moved. However, the granularity of GOMS analyses
in Table 33.1 is too gross for some purposes. Indeed, to model transcription
typing, John (1996) developed a version of GOMS that went to a lower level.
John (1988) represented the dependencies between cognitive, perceptual, and
motor operations during task performance (see Figure 33.2) in an activity
network formalism (Schweickert, Fisher, & Proctor, 2003) that allowed for
the computation of critical paths. This variant is called CPM-GOMS, where
CPM has a double meaning as both critical path method and cognitive, percep-
tual, and motor operations.
The power of this representation was demonstrated through its ability to

predict performance times for telephone Toll and Assistance Operators (TAOs;
Gray, John, & Atwood, 1993). CPM-GOMS models predict the counterintui-
tive finding that TAOs using a proposed new workstation would perform more
slowly than those who used the older workstations. After a field trial confirmed
this prediction, the models provided a diagnosis, in terms of the procedures
imposed by workstations on the TAO, as to why newer, faster technologies
could perform more slowly than older ones.

cursor
initiate-move- attend-target initiate-POG pos

verify-target- attend-cursor
@target

verify-cursor
@target

POGmove-cursor

perceive-
target

perceive-
cursor 

@target

new-cursor-

50 50 50

location

50 50 50

0

100 100

301 30

530 ms
Predicted time:

Figure 33.2 A CPM-GOMS model of an interactive routine (Gray & Boehm-
Davis, 2000), which could be instantiated as Steps 1 and 4 from Table 33.1. It
shows the cognitive, perceptual, and motor operations required to move a
mouse to a predetermined computer screen location. Total predicted time is
530 milliseconds (ms). The middle row shows cognitive operators with a
default execution time of 50 ms each. Above that are the perceptual operators.
Below it are the motor operators. Operators flow from left-to-right with lines
indicating dependencies. Within an operator type, dependencies are sequential.
However, between operator types, dependencies may be parallel. Numbers
above each operator indicate its execution time in ms. Time accumulates
from left-to-right along the critical path (bold lines connecting
shadowed boxes).
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33.2.3 The Legacy of Card, Moran, and Newell

GOMS and CPM-GOMS made several things obvious. First is the basic insight
offered by the unit task; namely, that functional units of behavior resulted from
an interaction between: the task being performed; detailed elements of the task
environment’s design; and limits of human cognitive, perceptual, and motor
operations. Second, the notation of CPM-GOMS made it very clear that all
human behavior was embodied behavior. Indeed, the mechanistic representa-
tions of CPM-GOMS were very compatible with the views of embodiment
expressed by modelers such as Ballard (Ballard & Sprague, 2007) and Kieras
(Kieras & Meyer, 1997). Third, whereas GOMS and NGOMSL (Kieras, 1997)
emphasized control of cognition, CPM-GOMS provided a representation that
showed that this control was far from linear, but entailed a complex interleaving
of various parallel activities.

Since the nineties, many of the insights of CPM-GOMS have become stand-
ard among modelers and accelerated cognitive engineering progress.
Researchers built GOMS-inspired hierarchical task modeling formalisms with
increased expressive power for capturing nondeterminism in human behavior,
representing different elements of cognition, and supporting different
engineering efforts (see for example ConcurTaskTrees (CTT; Paternò et al.,
1997), Enhanced Operator Function Model (EOFM; Bolton et al., 2011),
HAMSTERS (Fahssi, Martinie, & Palanque, 2015), Work Models that
Compute (Pritchett et al., 2014), and GOMS-HRA (Boring & Rasmussen,
2016)). Kieras and Myers built the EPIC cognitive architecture (Kieras &
Meyer, 1997), by expanding Kieras’ parsimonious production system (Bovair,
Kieras, & Polson, 1990; Kieras & Bovair, 1986) to include separate modules for
motor movement, eye movements, and so on. ACT-R (Anderson, 1993) has
added a module for visual attention (Anderson, Matessa, & Lebiere, 1997),
experimented with EPIC’s modules (Byrne & Anderson, 1998), and completely
restructured itself so that all cognitive activity (not simply that which required
interactive behavior) entailed puts and calls to a modular mind (Anderson et al.,
2004). During the same period, Ballard’s notions of embodiment took literal
form in Walter – a virtual human who could follow a path while avoiding
obstacles, picking up trash, and stopping to check traffic before he crossed the
street (Ballard & Sprague, 2007).

33.3 Computational Cognitive Modeling for Engineering
Complex Systems

Cognitive modeling has shown significant utility in engineering, par-
ticularly for complex systems. A system is complex if it is composed of multiple
interacting components (including human operators) that must work together
to achieve system goals. In such systems, so called “human error,” where a
human diverges from a normative plan of action (Hollnagel, 1993), is regularly
cited as a source of failure or system instability (Reason, 1990; Sheridan &
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Parasuraman, 2005). Human error in medicine contributes to 251,000 deaths a
year (Makary & Daniel, 2016); approximately 50 percent of commercial avi-
ation and 75 percent of general aviation accidents (Kebabjian, 2016; Kenny,
2015); a third of UAV incidents (Manning et al., 2004); roughly 90 percent of
automobile crashes (NHTSA, 2008); and high profile disasters like the catas-
trophe at Three Mile Island (Le Bot, 2004), often due to poorly designed human
interaction (Bainbridge, 1983). This is an extremely topical area because engin-
eered systems continue to become more complex and automated, often with
little regard for the capabilities, cognitive limitations, or well-practiced experi-
ence of human operators (Strauch, 2017).
With this perspective, cognitive engineers attempt to analyze, design, and

evaluate systems from a human-centered perspective: giving humans the infor-
mation and controls they need to fulfill their role in the system safely and
effectively. For engineers in the cognitive modeling space, this means using
cognitive models to understand the demands on human cognitive, perceptual,
and action resources during system operations, discover potentially dangerous
operating conditions, and inform designs that will address or avoid problems
and facilitate human performance. In fact, model-based analyses offered by
cognitive models are particularly advantageous in complex systems for several
reasons. First, many complex domains are safety critical, where it can be
dangerous to evaluate human behavior in actual operational environments.
Cognitive-model-based analyses can provide deep insights into human perform-
ance without the need for running the system in dangerous situations. Second,
system failures are relatively uncommon and may be difficult or impossible to
anticipate. Cognitive-model-based analyses can help engineers reduce the like-
lihood of human source of variability. They can also explore a system’s state-
space to discover previously unforeseen operating conditions. Finally, human
subject experiments and testing are expensive, time consuming, and incomplete.
Cognitive-model-based analyses can be performed without human participants
or identify specific areas where human testing is necessary. This can lead to
faster, more cost effective, and more complete engineering efforts.
The following discuss contemporary developments in cognitive models in

complex systems engineering. It starts with a description of cognitive-architec-
ture-based simulation advances before looking at the more applied applications
of cognitive models in “formal methods” analyses.

33.3.1 Cognitive Architectures

Cognitive architectures offer frameworks around which to model human cog-
nition and behavior computationally. In cognitive engineering, this is typically
implemented based on the way that humans learn, store, and execute “if-then”
production rules. These are typically used in simulation-based analyses where
the model represents simulated humans in a simulated or real operational
environment. The performance of the simulation is used in engineering analyses
and evaluations. The cognitive portion of the model serves to explain human
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behavior and/or a cognitive dimension of the behavior. There is a long history
of cognitive-architecture-based models. Recent developments have focused on
incorporating elements of visual and auditory perception (Kieras, Wakefield,
Thompson, Iyer, & Simpson, 2016). The following sections describe several
complex system areas where cognitive-architecture-based models have been
advancing both cognitive science and cognitive engineering.

33.3.1.1 Unmanned Air Vehicles

An important challenge for cognitive engineering is the design of new systems,
especially those that create new human operator roles. One such system is the
UAV. UAVs are increasingly used by the defense, intelligence, and civilian
organizations in contexts from piloting to package delivery.

Remotely piloting a slow-moving aircraft while searching for ground targets
is difficult for even experienced pilots. A complete model that could take off,
perform missions, interact with teammates, and return safely would entail the
detailed integration of most, if not all, functional subsystems studied by cogni-
tive scientists and raise challenges in the control of integrated cognitive systems.
Such a complete system is beyond the current state-of-the-art. However, partial
systems can be useful in determining limits of human performance and identi-
fying strategies that work. This is the approach proposed by Gluck et al. (2005)
and Ball et al. (2010), who outlined how a “synthetic teammate” for UAV
ground control training could be realized using ACT-R. Since its proposal, this
effort has produced what might be the largest and most complicated cognitive
model ever created. Gluck, Ball, & Krusmark, (2007) advanced this approach
by building partial models to study the challenges of human UAV pilots. These
researchers modeled two alternative strategies, one based on a simple control
strategy and the other based on what is taught to pilots. They showed that the
simple one would not meet UAV performance demands and that actual human
performance data suggested that the best pilots used the strategies from the best
performing model. More recently, Rodgers, Myers, Ball, & Freiman (2011)
have been exploring how to account for situation awareness in the synthetic
teammate by integrating linguistic inputs, the context of discourse, the task
process, and the model’s knowledge in a new situation component. Demir et al.
(2015, 2016) also advanced this approach by accounting for human–human
communication and coordination. In this, language comprehension, language
generation, dialog modelling, situation modelling, and agent-environment
interaction components are ultimately used to communicate (textually) using
common patterns from the work domain.

33.3.1.2 Driving Under Different Levels of Autonomy

Driving inherently occurs as part of a complex system that involves a dynamic
environment, multiple vehicles, and multiple drivers. It is also cognitively
demanding in that it requires the integration and interleaving of basic tasks
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related to control for stable driving, tactical behavior for interacting with the
dynamic environment, and strategic processes for planning (Salvucci, 2006).
Salvucci and colleagues (Salvucci, 2006; Salvucci & Gray, 2004; Salvucci &

Macuga, 2002) did foundational work modeling human cognition (in ACT-R)
while driving. Ultimately, Salvucci (2006) compared the models with human
behavior on several dependent variables related to lane keeping, curve negoti-
ation, and lane changing using simulations. The dependent variables included
performance-based measures such as steering angle, lateral position, and eye
data related to visual attention.
In recent years, the driving domain has been made more complex with

varying levels of automobile autonomy being introduced or planned for near-
term deployment. This creates many new potentially cognitively demanding
situations for human drivers who must now monitor the environment and the
automation and be prepared to take control at any time. Not surprisingly,
driver modeling has been the subject of many contemporary advances. For
example, Rehman, Cao, and MacGregor (2019) determined how to model
driver situation awareness into the Queueing Network variant of ACT-R using
dynamic visual sampling to simulate realistic patterns of driver attention allo-
cation. Rhie et al. (2018) used the queueing-network-based architecture to
account for oculomotor behaviors that include things like reaction time and
movement patterns to understand the level of human information processing.
Similarly, Jeong and Liu (2017) used queueing-based models to predict eye
glances and workload for secondary stimulus response tasks (related to
auditory-manual, auditory-speech, visual-manual, and visual-speech modal-
ities) humans perform while driving. In all cases, simulated model behavior
was validated against actual human data. Finally, Mirman, Curry, and Mirman
(2019) used computational cognitive modeling to show that population changes
in driver crash rates (post licensing) are consistent with sudden, nonincremental
decreases in individual crash risks. Mirman (2019) used these findings to for-
mulate a new theory of driver behavior based on dynamical systems principles,
the so-called phase transition framework, to explain and do research on this and
similar phenomena.

33.3.2 Formal Methods for Human Interaction with Complex Systems

The cognitive-architecture-based analyses discussed above all use simulation for
their analyses. These can have very high-fidelity, predictive models. However,
they can miss critical conditions that could be the source of system failures.
Recent developments have shown that these limitations can be overcome by
using cognitive models with formal methods. Specifically, the complexity of
many modern systems can make it extremely difficult for designers to determine
how humans will interact with system elements, how erroneous behavior can
occur, how these can cause failures, and how to design-away problems. Formal
methods are tools and techniques that have grown out of computer science for
mathematically modeling, specifying, and proving properties about (formally
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verifying) systems (Wing, 1990). The formal models mathematically describe
the behavior of the target system. Specification properties describe conditions
that should always be true in the system. Formal verification is the process of
mathematically proving if the formal model satisfies the specifications. There
are many different ways of using formal methods. These run the gamut from
pen and paper proofs to automated processes. For example, model checking is a
fully automated, computer-software-based approach (Clarke et al., 1999). In
this, the target system is formally modeled as a state machine: variables whose
values indicate state and transition between states occur based on inputs and/or
the current state. Specification properties logically assert desirable system con-
ditions (such as the lack of an unsafe condition) using modal logic (such as
temporal logic; Emerson, 1990). During formal verification, the model checker
exhaustively searches the formal model’s statespace. If no violation is found, the
model checker has proven that the model satisfies the specification. If a viola-
tion is found, the model checker returns a counterexample, a trace through the
model’s statespace that explicitly proves why the specification is not true.

Formal methods are mostly used in computer hardware and software
engineering (Wing, 1990). Because they are adept at finding problems that arise
from interactions between components in complex systems, researchers have
been exploring how they can be used for human interactive systems (Bolton,
2017a; Bolton, Bass, & Siminiceanu, 2013; Degani, 2004; Weyers, Bowen, Dix,
& Palanque, 2017; Wu, Rothrock, & Bolton, 2019). Most topical is the work
that has integrated models based on human task behavior and cognitive archi-
tectures with larger system models to use formal methods to improve system
reliability and safety.

33.3.2.1 Task-Model-Based Approaches

Many of the GOMS-inspired task models are composed of hierarchies of goal-
based activities that decompose down to atomic actions. These can be repre-
sented using discrete, tree-like graphs and thus readily interpreted as state
machines or process algebras, enabling their use in larger system models and
formal methods analyses of safety. For analyses focused on normative behav-
ior, formal proofs can determine whether a system will always perform safely
and enable humans to complete their goals based on how people actually
behave (as determined by a task analysis) or are expected to behave (based on
training or manuals) (Abbate & Bass, 2015; Aït-Ameur & Baron, 2006;
Basnyat, Palanque, Bernhaupt, & Poupart, 2008; Basnyat, Palanque, Schupp,
& Wright, 2007; Bolton & Bass, 2010; Bolton, Siminiceanu, & Bass, 2011;
Degani, Heymann, & Shafto, 1999; Paternò & Santoro, 2001). These techniques
are powerful, but can miss the impact of erroneous acts. Other researchers have
determined how to allow experts to manually include specific human errors into
normative tasks using mutation patterns (Bastide & Basnyat, 2007; Fields,
2001). Finally, researchers can automatically generate human errors using
systematic deviations from normative tasks based on human error genotypes
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(errors are classified based on cognitive causes) and/or phenotypes (errors are
classified based on observable deviations from a normative plan) (Barbosa,
Paiva, & Campos, 2011; Bolton, 2015; Bolton & Bass, 2013; Bolton, Bass, &
Siminiceanu, 2012; Pan & Bolton, 2018).

33.3.2.1.1 An Illustrative Example
To show how formal methods and task models can be used to determine how
human behavior (including unanticipated human error) can assess system
safety, consider a radiation therapy machine example (originally from
Bolton et al. 2012, 2019). This machine is a room-sized, computer-controlled,
medical linear accelerator. Its important feature is that it has two treatment
modes: electron beam mode for treating shallow tissue and X-ray mode
(which uses a beam one hundred times stronger than electron beam mode)
for deeper treatments. To account for the increased power, the X-ray mode
uses a spreader (not used in the other mode) to attenuate the radiation beam.
The mode and other treatment information are controlled by a practitioner
who must select options and administer treatment using a computer console.
Clearly, this is a complex machine whose proper function relies on human
interaction that could have profound implications for patient health and
safety. The following describes a formal model of this machine along with
the human task used to interact with it. Formal verification model checking
analyses for assessing system safety with both normative and potentially
unanticipated human errors is presented afterwards.
The human–machine interface formal model (top of Figure 33.3) takes five

keyboard keys as input (“X,” “E,” “Enter,” “",” and “B”) and information
presented to a practitioner who is administering treatment on a computer moni-
tor. The interface state (InterfaceState) starts in Edit where the human operator
can press “X” or “E” (PressX or PressE) to select the X-ray or electron beam
mode and, thus, transition to the ConfirmXrayData or ConfirmEBeamData
respectively. When in a confirmation state, the corresponding treatment data
are displayed (DisplayedData). The practitioner can confirm the displayed treat-
ment by pressing enter (advancing to PrepareToFireXray or PrepareToFireE-
Beam) or go back to Edit by pressing “"” (PressUp). In PrepareToFireXray or
PrepareToFireEBeam, the human operator waits for the beam to become ready
(BeamState), at which point a press of “B” (PressB) will fire the beam. This
transitions the interface to TreatmentAdministered. Alternatively, the operator
presses “"” to return to the previous state.
The device automation model (bottom of Figure 33.3) controls beam power

level, spreader position, and beam firing. The beam power level (BeamLevel) is
initially not set (NotSet). When the human selects the mode, the power level
transitions to the appropriate setting (XrayLevel or EBeamLevel). However, if
the human selects a new mode, there is a transition delay to the correct level,
where power remains in an intermediary state (XtoE or EtoX) at the old level
before automatically transitioning to the new one. The spreader position
(Spreader) starts either in- or out-of-place (InPlace or OutOfPlace). When the
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human selects X-ray or electron beam treatment, the spreader transitions to the
correct configuration (InPlace or OutOfPlace respectively). The beam firing
state (BeamFireState) is initially waiting (Waiting). When the human fires the
beam (presses “B” when the beam is ready), the beam fires (Fired) and returns
to waiting.

The normative task for interacting with this machine was represented using
EOFM (Bolton et al., 2011) using three tasks (Figure 33.4): (a) selecting the
treatment mode; (b) confirming treatment data; and (c) firing the beam. These
tasks access variables from other parts of the model such as the human–
machine interface, displayed treatment data (DisplayedData), and the ready
status of the beam (BeamState). It also has a variable (TreatmentType) that
nondeterministically specifies which treatment is prescribed (Xray or EBeam).

Figure 33.3 Concurrent state machine representation of the formal human–
machine interface (top) and automation (bottom) models for the radiation
therapy application (Bolton et al., 2012). Rounded rectangles represent states.
Arrows between states are transitions. Dotted arrows indicate initial states.
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When the interface is in the edit state (aSelectXorE), the practitioner selects
the appropriate treatment mode by performing the actions for pressing the X or
E keys. When the interface is in either of the two data confirmation states
(aConfirm), the practitioner can choose to confirm the displayed data (if the
data correspond to the prescribed treatment) by pressing enter. Alternatively, he
or she can return to Edit by pressing up (“"”). When the interface is in either
state for preparing to fire (aFire), the practitioner can fire if the beam is ready
(by pressing “B”) or press “"” to return to the previous state.
A compelling contribution of EOFM is its formal semantics (Figure

33.5a–b). These provide unambiguous, mathematical interpretations of the
task’s behavior (Bolton et al., 2011). Every activity and action is treated as a
state machine that transitions between three states: Ready (the initial state),
Executing, and Done. An activity transitions between these states based on
whether the Boolean conditions on the labeled transitions are true. These are
defined using activity strategic knowledge conditions (Preconditions,
RepeatConditions (not shown in Figure 33.5), and CompletionConditions) and

Figure 33.4 Visualization of the EOFM tasks for interacting with the radiation
therapy machine (Bolton et al., 2012): (a) selecting the treatment mode;
(b) confirming treatment data; and (c) firing the beam. Atomic actions are
rectangles and goal-directed activities are rounded rectangles. An activity
decomposes into sub-activities or actions via an arrow labeled with a
decomposition operator. This operator logically describes how many and in
what order decomposed acts are executed (i.e. xor for only one sub-act and
ord for all executing in order from left to right). Strategic knowledge
(environmental conditions that influence task performance) conditions are
connected to associated activities. These are labeled with the Boolean logic
of the condition. A Precondition (what must be true for an activity to begin)
is a yellow, downward triangle. A CompletionCondition (what must be true
for an activity to complete) is a magenta, upward triangle.
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three additional, implicit conditions. These assert whether an activity or action
can start, end, or reset based on its position in the task and other relevant
activity and action states (Bolton et al., 2011, 2017). These formal semantics are
the basis for automated translator software that converts EOFMs into a formal
representation for inclusion in a larger formal model.

For the radiation therapy example, the task from Figure 33.4 was translated
into a formal model and paired with the elements from Figure 33.3. Model
checking was used to check a linear temporal logic specification:

G¬

BeamFireState ¼ Fired

^BeamLevel ¼ XRayPowerLevel

^Spreader ¼ OutOfPlace

0
B@

1
CA: (33.1)

This asserts that the machine should globally (G) never (¬) irradiate a patient by
administering an unshielded X-ray treatment when the spreader is out of place.

Figure 33.5 The formal semantics used to interpret EOFMs (like the one from
Figure 33.4) as a formal model. (a) and (b) are the normative semantics for
task activities and actions respectively (Bolton et al., 2011). (c) and (d) are
additional erroneous transitions (for activities and actions respectively) used
for generating human errors (Bolton et al., 2019) using the task-based
taxonomy (Bolton, 2017b).
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This verified to true, proving that the radiation therapy machine will never
irradiate a patient if the human operator behaves normatively.
While the ability to prove that a model is safe with normative behavior is

powerful, this provides no insights into human error (especially that which is
unanticipated). Another contribution of EOFM can address this. Specifically,
EOFM was used in the formulation of the task-based taxonomy of erroneous
human behavior (Bolton, 2017b). This classifies where a deviation occurs based
on a violation of task formal semantics and thus indicates the observable
manifestation of the error (its phenotype (Hollnagel, 1993)) and its associated
failure of attention (the genotype of the slip (Reason, 1990)). While there are
multiple levels of classification in this taxonomy, this discussion focuses on error
modes: erroneous transitions that can occur between execution states (Figure
33.5c–d). An intrusion occurs when an act (an activity or action) executes when
it should not. An omission occurs when an act transitions to done when it
should not. A restart occurs when an act’s execution restarts when it should not.
Finally, a delay occurs when an act does not transition when it should.
These erroneous semantics were incorporated into the translator (along with

the original, normative transitions) to enable formal verification to consider all
of the possible human errors encompassed by the taxonomy (Bolton et al.,
2019). This enables modeling checking to determine if normative or potentially
unanticipated erroneous human behavior can ever cause problems.
When the erroneous transitions were enabled for the radiation machine,

the verification of (1) failed. This produced a counterexample showing how
the patient could be irradiated. First, the practitioner accidentally selected the
wrong mode for the machine (an activity Ready-to-Executing intrusion
(Figure 33.5c) of aSelectXray (Figure 33.4a) when the human improperly
attended to the precondition of the activity). This set the BeamLevel to the
XRayLevel and moved the Spreader InPlace. The human noticed the mistake
because the treatment data was incorrect. He/she then pressed “",” corrected
the error by selecting electron beam mode, thus moving the Spreader
OutOfPlace and setting the BeamLevel to XtoE. The practitioner confirmed
treatment data and, when the beam became ready, fired it. Because the beam
was fired before the BeamLevel transitioned away from XtoE, an
XRayPowerLevel was delivered without the Spreader being InPlace.
Bolton et al. (2019) went on to explore interventions that could address this

discovered problem (by ensuring that BeamState does not become ready until
the BeamLevelmatches the entered treatment mode) and evaluated the resulting
design with additional verifications.

33.3.2.1.2 Additional Capabilities of Formal, Task-Analytic Methods
The example presented above gives an illustration of both the capabilities of
using task-models with formal methods and an example of how the engineering
developments in this area can lead to new ways of using cognitive science. There
are many other applications of formal task analytic methods. Researchers
(España, Pederiva, & Panach, 2007; Li, Wei, Zheng, & Bolton, 2017; Luyten,
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Clerckx, Coninx, & Vanderdonckt, 2003; Santoro, 2005) have explored
methods for automatically designing human–machine interfaces directly from
task models so that the interfaces are guaranteed to always support the human’s
tasks. Additionally, researchers have explored how cognitive models of human
reliability can be integrated with tasks to determine the likelihood of human
errors causing failures (Fahssi, Martinie, & Palanque, 2015; Zheng, Bolton,
Daly, & Biltekoff, 2020). Finally, formal task models have been used for
automated test case generation (Barbosa et al., 2011; Campos et al., 2016; Li
& Bolton, 2019; Vieira, Leduc, Hasling, Subramanyan, & Kazmeier, 2006): a
method where tests are created from formal models to guarantee that analyst-
specified criteria are satisfied in tests. Tests can be executed automatically (to
validate that the system conforms to the model) or with human subjects (to gain
insights about things like usability and workload not manifest in the model).

33.3.2.2 Cognitive-Architecture-Based Approaches

Practical and cognitive insights can be made for formal analyses based on task
models. However, without a deeper model of cognition, analyses will be limited.
To address this, multiple researchers have explored how cognitive architectures
can be formalized so that sophisticated cognitive models can be used to under-
stand how human cognition contributes to system problems.

The most significant research in this area was the generic user modeling
(Curzon & Rukšėnas, 2017). This approach built off of preceding work on
Programmable User Models (PUMs) (Young et al., 1989), where the human
has goals to achieve with an application and actions they can perform. A rule
set (beliefs or knowledge) defines when the human may attempt to pursue a
specific goal based on the state of the human–automation interface, the environ-
ment, or other goals currently being considered. An action can be performed
when a human commits to applying it according to production rules. A separate
action execution occurs after the human commits to performing that action.

Generic user modeling has been used in many formal verification analyses.
Curzon and Blandford (2004) identified how cognitively plausible human errors
could manifest in their models. These included performance/coordination errors
associated with the phenotypes of erroneous action (Hollnagel, 1993) and
mechanisms for identifying post-completion errors, special omissions where
the human forgets to perform actions that occur after a primary goal has been
achieved (Byrne & Bovair, 1997). Problems discovered with formal verification
can be addressed with design rules (Curzon & Blandford, 2004). Work has
investigated how to use these types of formal cognitive models to determine
when different operators (expert vs. novice) may commit errors (Curzon,
Rukšėnas, & Blandford, 2007). Later contributions incorporated additional
cognitive mechanisms to account for salience, cognitive load, interpretation of
spatial cues, and timing in analyses (Rukšėnas, Back, Curzon, & Blandford,
2008, 2009; Rukšėnas et al., 2007; Rukšėnas, Curzon, Back, & Blandford,
2007). Similarly, Basuki, Cerone, Griesmayer, and Schlatte (2009) used
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heuristics for modeling human habituation, impatience, and carefulness within
the architecture.
An illustrative example was reported by Curzon et al. (2007), who evaluated

the human–machine interaction of an automated teller machine (ATM) with a
cognitive architecture and automated theorem prover to determine if a human
could ever leave the machine without completing all intended goals. The
verification discovered the presence of a post-completion error where the
human could receive his or her cash (the primary goal) and leave without
retrieving the ATM card. Curzon et al. also explored improved machine designs
that had the human retrieve the card before cash was dispensed, which was
verified to prevent the error.

33.4 Conclusions

This chapter has described the area of cognitive engineering and
explored the ways that cognitive modeling is used within this area to accomplish
engineering goals throughout the engineering life cycle. In particular, the chap-
ter showed how cognitive engineering differs from cognitive science in that: (1)
cognitive engineering addresses problems based on practical need more than
academic interest; (2) cognitive engineers tend to work in emerging techno-
logical domains rather than well-studied fields; (3) cognitive engineering mod-
elers rely heavily on domain experts to acquire information and data needed for
modeling; (4) the utility of models to engineering goals is paramount, and
insights into human cognition are only interesting if they serve these
engineering goals; and (5) cognitive engineers are typically dealing with
human performance in a complex system and must capture the control of
integrated cognitive systems in their models.
As such, cognitive models are often used by engineers to help ensure that

complex systems are human-centric. This means enabling systems to allow
humans to accomplish their goals while avoiding system performance and
safety problems. This domain was used to explore the different ways that
cognitive models have been used in engineering. To provide context, the
chapter delved into the foundational work Card, Moran, and Newell did for
GOMS. It then covered simulation analyses and showed how cognitive archi-
tectures can be used as the basis for models that provide engineers with
insights into human performance in emerging areas such as UAV piloting
and autonomous driving. The chapter also explored how the requirements of
applying cognitive models to these environments expanded the canon of both
cognitive science and modeling. While the simulation-based cognitive archi-
tecture models are definitely at the forefront of cognitive science develop-
ments, they can miss dangerous operating conditions. The use of cognitive
models in formal-methods-based verification addresses this shortcoming. In
this context, the cognitive models may be simple tasks (in the spirit of GOMS)
or based on cognitive architectures. It is important to note that, compared
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with simulation, formal verifications, as a consequence of being exhaustive,
scale very badly (something colloquially called the state explosion problem;
Clarke et al., 1999). Thus, it is not surprising that the formal methods are
much simpler than those used in simulation. The innovation in this domain
comes from determining how to include cognitive concepts in formal models
so that the power of verification can account for them. As such, the formal
methods research is heavily dependent on the advances made on the more
conventional cognitive architecture front.

As systems become more complex and integrated into everybody’s lives, it is
more important than ever that these systems be human-centered and aligned
with fulfilling humanistic goals. As such, cognitive-model-based engineering
should remain topical and relevant far into the future, especially as the
capabilities and validity of the methods improve. To this end, ACT-R (and its
variants) remains the premier architecture for cognitive modeling advances.
This is largely because ACT-R is easy to extend, has kept pace with advances
in cognitive science, and is capable of interacting with the same software as
human users (Gray, 2008).

Despite this, current research trends actually run counter to those tradition-
ally upheld by cognitive engineering modelers. Specifically, advances in data
science, machine learning (ML), and artificial intelligence (AI) tend to favor
algorithms that can (sometimes) do a remarkably good job of predicting
performance or exerting control. There is thus a serious push to use these
approaches everywhere. While it is true that cognitive modeling is a form of
ML or AI, the new methods are fundamentally different in that they are not
based on any specific theory of human cognition and are often incapable of
“explaining” their predictions. In fact, “explainable AI” is a hot topic within
cognitive engineering, with ACT-R even being used as a potential tool for this
(Gunning & Aha, 2019). Such developments have the potential to be
extremely useful from an engineering perspective because they could provide
systems with an unprecedented ability to recognize human behavior, respond
to humans, or simulate human behavior. However, these developments also
have potential pitfalls because, when used in place of cognitive models, the AI
will likely not provide the same explanations, reduce insight, and limit their
import to cognitive science. Whether or not this is a critical flaw for an
engineering effort will largely depend on whether explainability is important.
As the examples above demonstrate, significant insights into cognitive science
can be gained through cognitive engineering advances. Thus, it should be a
priority for researchers and engineers moving forward to maintain the syner-
gistic relationship between cognitive science and engineering as this will allow
both fields to advance.

Historically, the introduction of advanced and unexplained automation has
caused complex system problems in ways that could be exacerbated by ML and
AI (Bainbridge, 1983; Strauch, 2017): automation can be brittle and fail in
situations unanticipated during design and/or model fitting; the human may not
be able to track the state of the system, leading to mode confusion, disorienting

Cognitive Modeling for Cognitive Engineering 1105

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


automation surprise, and human errors; and humans can have their roles
change to ones (such as monitoring) incompatible with their abilities and
competencies. Thus, cognitive engineers should be very careful moving forward
not to abandon cognitive models in their efforts, as joint developments of
cognitive science and engineering will help ensure that engineering projects will
be human centered.

References

Abbate, A. J., & Bass, E. J. (2015). Using computational tree logic methods to analyze
reachability in user documentation. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting (Vol. 59, pp. 1481–1485).

Aït-Ameur, Y., & Baron, M. (2006). Formal and experimental validation approaches in
HCI systems design based on a shared event B model. International Journal on
Software Tools for Technology Transfer, 8(6), 547–563.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C., & Quin, Y. (2004).
An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: a theory of higher-level
cognition and its relation to visual attention. Human-Computer Interaction,
12(4), 439–462.

Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6), 775–780.
Ball, J., Myers, C., Heiberg, A., et al. (2010). The synthetic teammate project.

Computational and Mathematical Organization Theory, 16(3), 271–299.
Ballard, D. H., & Sprague, N. (2007). On the role of embodiment in modeling natural

behaviors. In W. D. Gray (Ed.), Integrated Models of Cognitive Systems.
New York, NY: Oxford University Press.

Barbosa, A., Paiva, A. C., & Campos, J. C. (2011). Test case generation from mutated
task models. In Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (pp. 175–184).

Basnyat, S., Palanque, P. A., Bernhaupt, R., & Poupart, E. (2008). Formal modelling of
incidents and accidents as a means for enriching training material for satellite
control operations. In Proceedings of the Joint ESREL 2008 and 17th SRA-
Europe Conference (CD-ROM). London: Taylor & Francis.

Basnyat, S., Palanque, P., Schupp, B., & Wright, P. (2007). Formal socio-technical
barrier modelling for safety-critical interactive systems design. Safety Science,
45(5), 545–565.

Bastide, R., & Basnyat, S. (2007). Error patterns: systematic investigation of deviations
in task models. In Task Models and Diagrams for Users Interface Design 5th
International Workshop (pp. 109–121). Berlin: Springer.

Basuki, T. A., Cerone, A., Griesmayer, A., & Schlatte, R. (2009). Model-checking
user behaviour using interacting components. Formal Aspects of Computing,
1–18.

Bolton, M. L. (2015). Model checking human–human communication protocols using
task models and miscommunication generation. Journal of Aerospace
Information Systems, 12(7), 476–489.

1106 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Bolton, M. L. (2017a). Novel developments in formal methods for human factors
engineering. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (pp. 715–717).

Bolton, M. L. (2017b). A task-based taxonomy of erroneous human behavior.
International Journal of Human-Computer Studies, 108, 105–121.

Bolton, M. L., & Bass, E. J. (2010). Formally verifying human-automation interaction
as part of a system model: limitations and tradeoffs. Innovations in Systems and
Software Engineering: A NASA Journal, 6(3), 219–231.

Bolton, M. L., & Bass, E. J. (2013). Generating erroneous human behavior from
strategic knowledge in task models and evaluating its impact on system safety
with model checking. IEEE Transactions on Systems, Man and Cybernetics:
Systems, 43(6), 1314–1327.

Bolton, M. L., & Bass, E. J. (2017). Enhanced operator function model (EOFM): a task
analytic modeling formalism for including human behavior in the verification
of complex systems. In B. Weyers, J. Bowen, A. Dix, & P. Palanque (Eds.), The
Handbook of Formal Methods in Human-Computer Interaction. Berlin:
Springer.

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2012). Generating phenotypical
erroneous human behavior to evaluate human–automation interaction using
model checking. International Journal of Human-Computer Studies, 70(11),
888–906.

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to
evaluate human-automation interaction in safety critical systems, a review.
IEEE Transactions on Systems, Man and Cybernetics: Systems, 43(3),
488–503.

Bolton, M. L., Molinaro, K. A., & Houser, A. M. (2019). A formal method for assessing
the impact of task-based erroneous human behavior on system safety.
Reliability Engineering & System Safety, 188, 168–180.

Bolton, M. L., Siminiceanu, R. I., & Bass, E. J. (2011). A systematic approach to model
checking human-automation interaction using task-analytic models. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 41(5), 961–976.

Boring, R. L., & Rasmussen, M. (2016). GOMS-HRA: a method for treating subtasks in
dynamic human reliability analysis. In Proceedings of the 2016 European Safety
and Reliability Conference (pp. 956–963).

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance
of text-editing skill: a cognitive complexity analysis. Human-Computer
Interaction, 5(1), 1–48.

Byrne, M. D. (2007). Cognitive architecture. In A. Sears & J. A. Jacko (Eds.), The
Human-Computer Interaction Handbook (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum Associates.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C.
Lebiѐre (Eds.), The Atomic Components of Thought (pp. 167–200). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Byrne, M. D., & Bovair, S. (1997). A working memory model of a common procedural
error. Cognitive Science, 21(1), 31–61.

Campos, J. C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., & Pinto, M.
(2016). Systematic automation of scenario-based testing of user interfaces. In
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (pp. 138–148).

Cognitive Modeling for Cognitive Engineering 1107

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999).Model Checking. Cambridge, MA:
MIT Press.

Curzon, P., & Blandford, A. (2004). Formally justifying user-centered design rules: a
case study on post-completion errors. In Proceedings of the 4th International
Conference on Integrated Formal Methods (pp. 461–480). Berlin: Springer.

Curzon, P., & Rukšėnas, R. (2017). Modelling the user. In B. Weyers, J. Bowen, A. Dix,
& P. Palanque (Eds.), The Handbook of Formal Methods in Human-Computer
Interaction. Berlin: Springer.

Curzon, P., Rukšėnas, R., & Blandford, A. (2007). An approach to formal verification of
human–computer interaction. Formal Aspects of Computing, 19(4), 513–550.

Degani, A. (2004).Taming HAL: Designing Interfaces Beyond 2001. New York, NY:
Macmillan.

Degani, A., Heymann, M., & Shafto, M. (1999). Formal aspects of procedures: the
problem of sequential correctness. In Proceedings of the 43rd Annual Meeting
of the Human Factors and Ergonomics Society (pp. 1113–1117). Los Angeles,
CA: SAGE.

Demir, M., McNeese, N. J., Cooke, N. J., Ball, J. T., Myers, C., & Frieman, M. (2015).
Synthetic teammate communication and coordination with humans. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
(pp. 951–955). Los Angeles, CA: SAGE.

Demir, M., McNeese, N. J., & Cooke, N. J. (2016). Team communication behaviors of
the human-automation teaming. In 2016 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA) (pp. 28–34). New York, NY: IEEE.

Emerson, E. A. (1990). Temporal and modal logic. In Formal Models and Semantics (pp.
995–1072). Oxford: Elsevier.

España, S., Pederiva, I., & Panach, J. I. (2007). Integrating model-based and task-based
approaches to user interface generation. In Computer-Aided Design of User
Interfaces V (pp. 253–260). Amsterdam: Springer.

Fahssi, R., Martinie, C., & Palanque, P. (2015). Enhanced task modelling for systematic
identification and explicit representation of human errors. InHuman-Computer
Interaction – Interact 2015 (pp. 192–212). Cham: Springer International
Publishing.

Fields, R. E. (2001). Analysis of erroneous actions in the design of critical systems.
Unpublished doctoral dissertation, University of York, York.

Gluck, K. A., Ball, J. T., Gunzelmann, G., Krusmark, M., Lyon, D., & Cooke, N.
(2005). A prospective look at a synthetic teammate for UAV applications.
In Infotech@ Aerospace. Reston: American Institute of Aeronautics and
Astronautics.

Gluck, K. A., Ball, J. T., & Krusmark, M. A. (2007). Cognitive control in a computa-
tional model of the predator pilot. In W. D. Gray (Ed.), Integrated Models of
Cognitive Systems (pp. 13–28). New York, NY: Oxford University Press.

Gray, W. D. (2008). Cognitive modeling for cognitive engineering. In R. Sun (Ed.), The
Cambrdge Handbook of Computational Psychology (pp. 565–588). Cambridge:
Cambridge University Press.

1108 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Gray, W. D. (Ed.). (2007). Integrated Models of Cognitive Systems. New York, NY:
Oxford University Press.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: an introduction to
microstrategies and to their use in describing and predicting interactive behav-
ior. Journal of Experimental Psychology: Applied, 6(4), 322–335.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: validating a
GOMS analysis for predicting and explaining real-world performance.Human-
Computer Interaction, 8(3), 237–309.

Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence pro-
gram. AI Magazine, 40(2), 44–58.

Hollnagel, E. (1993). The phenotype of erroneous actions. International Journal of Man-
Machine Studies, 39(1), 1–32.

Jeong, H., & Liu, Y. (2017). Modeling of stimulus-response secondary tasks with
different modalities while driving in a computational cognitive architecture.
In Proceedings of the 9th International Driving Symposium on Human Factors in
Driver Assessment, Training, and Vehicle Design (pp. 193–199). Iowa, IA:
University of Iowa.

John, B. E. (1988). Contributions to engineering models of human-computer interaction.
Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

John, B. E. (1996). TYPIST: a theory of performance in skilled typing. Human-
Computer Interaction, 11(4), 321–355.

Kebabjian, R. (2016). Accident statistics. planecrashinfo.com. Retrieved from www
.planecrashinfo.com/cause.htm [last accessed July 30, 2022].

Kenny, D. J. (2015). 26th Joseph T. Nall Report: General Aviation Accidents in 2014.
Technical Report. Frederick, MD: AOPA Foundation.

Kieras, D. E. (1997). A guide to GOMS model usability evaluation using NGOMSL. In
M. Helander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of Human-
Computer Interaction (2nd ed., pp. 733–766). New York, NY: Elsevier.

Kieras, D. E. (2007). Model-based evaluation. In A. Sears & J. A. Jacko (Eds.), The
Human-Computer Interaction Handbook (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum Associates.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: a
production-system analysis of transfer of training. Journal of Memory and
Language, 25, 507–524.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for
cognition and performance with application to human-computer interaction.
Human-Computer Interaction, 12(4), 391–438.

Kieras, D. E., Wakefield, G. H., Thompson, E. R., Iyer, N., & Simpson, B. D. (2016).
Modeling two-channel speech processing with the EPIC cognitive architecture.
Topics in Cognitive Science, 8(1), 291–304.

Kirwan, B., & Ainsworth, L. K. (Eds.). (1992). A Guide to Task Analysis. Washington,
DC: Taylor & Francis.

Le Bot, P. (2004). Human reliability data, human error and accident models – illustra-
tion through the Three Mile Island accident analysis. Reliability Engineering &
System Safety, 83(2), 153–167.

Li, M., & Bolton, M. L. (2019). Task-based automated test case generation for human-
machine interaction. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (Vol. 63, pp. 807–811).

Cognitive Modeling for Cognitive Engineering 1109

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
https://doi.org/10.1017/9781108755610.038


Li, M., Wei, J., Zheng, X., & Bolton, M. L. (2017). A formal machine learning approach
to generating human-machine interfaces from task models. IEEE Transactions
of Human Machine Systems, 47(6), 822–833.

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing Network-Model Human Processor
(QN-MHP): a computational architecture for multitask performance in
human-machine systems. ACM Transactions on Computer-Human Interaction
(TOCHI), 13(1), 37–70.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in
problem solving: combined influences on operator selection. Cognitive
Psychology, 31, 168–217.

Luyten, K., Clerckx, T., Coninx, K., & Vanderdonckt, J. (2003). Derivation of a dialog
model from a task model by activity chain extraction. In Proceedings of the
10th International Workshop on Interactive Systems. Design, Specification, and
Verification (pp. 203–217). Berlin: Springer.

Manning, S. D., Rash, C. E., LeDuc, P. A., Noback, R. K., & McKeon, J. (2004). The
Role of human Causal Factors in US Army Unmanned Aerial Vehicle
Accidents. Technical Report No. 2004-11. Adelphi, MD: USA Army
Research Laboratory.

Makary, M. A., & Daniel, M. (2016). Medical error – the third leading cause of death in
the US. BMJ, 353, 5.

Mirman, J. H. (2019). A dynamical systems perspective on driver behavior.
Transportation Research Part F: Traffic Psychology and Behaviour, 63,
193–203.

Mirman, J. H., Curry, A. E., & Mirman, D. (2019). Learning to drive: a reconceptua-
lization. Transportation Research Part F: Traffic Psychology and Behaviour, 62,
316–326.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

Newell, A., & Card, S. K. (1985). The prospects for psychological science in human-
computer interaction. Human-Computer Interaction, 1(3), 209–242.

NHTSA. (2008). National Motor Vehicle Crash Causation Survey: Report to Congress.
Technical Report No. DOT HS 811 059. Springfield: National Highway
Traffic Safety Administration.

Pan, D., & Bolton, M. L. (2018). Properties for formally assessing the performance level
of human-human collaborative procedures with miscommunications and erro-
neous human behavior. International Journal of Industrial Ergonomics, 63,
75–88.

Paternò, F., & Santoro, C. (2001). Integrating model checking and HCI tools to help
designers verify user interface properties. In Proceedings of the 7th International
Workshop on the Design, Specification, and Verification of Interactive Systems
(pp. 135–150). Berlin: Springer.

Paternò, F., Mancini, C., & Meniconi, S. (1997). ConcurTaskTrees: a diagrammatic
notation for specifying task models. In Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction (pp. 362–369).
London: Chapman & Hall.

Pew, R. W. (2007). Some history of human performance modeling. In W. D. Gray (Ed.),
Integrated Models of Cognitive Systems. New York, NY: Oxford University
Press.

1110 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Pritchett, A. R., Feigh, K. M., Kim, S. Y., & Kannan, S. K. (2014). Work models that
compute to describe multiagent concepts of operation: part 1. Journal of
Aerospace Information Systems, 11(10), 610–622.

Reason, J. (1990). Human Error. New York, NY: Cambridge University Press.
Rehman, U., Cao, S., & MacGregor, C. (2019). Using an integrated cognitive architec-

ture to model the effect of environmental complexity on drivers’ situation
awareness. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (pp. 812–816).

Rhie, Y. L., Lim, J. H., & Yun, M. H. (2018). Queueing network based driver model for
varying levels of information processing. IEEE Transactions on Human-
Machine Systems, 49(6), 508–517.

Rodgers, S., Myers, C., Ball, J., & Freiman, M. (2011). The situation model in the
synthetic teammate project. In Proceedings of the 20th Annual Conference on
Behavior Representation in Modeling and Simulation (pp. 66–73).

Rukšėnas, R., Back, J., Curzon, P., & Blandford, A. (2008). Formal modelling of
salience and cognitive load. In Proceedings of the 2nd International Workshop
on Formal Methods for Interactive Systems (pp. 57–75). Amsterdam: Elsevier
Science Publishers.

Rukšėnas, R., Back, J., Curzon, P., & Blandford, A. (2009). Verification-guided model-
ling of salience and cognitive load. Formal Aspects of Computing, 21(6),
541–569.

Rukšėnas, R., Curzon, P., Back, J., & Blandford, A. (2007). Formal modelling of
cognitive interpretation. In Proceedings of the 13th International Workshop on
the Design, Specification, and Verification of Interactive Systems (pp. 123–136).
London: Springer.

Rukšėnas, R., Curzon, P., Blandford, A., & Back, J. (2014). Combining human error
verification and timing analysis: a case study on an infusion pump. In
Proceedings of the 13th International Workshop on the Design, Specification,
and Verification of Interactive Systems (pp. 123–136). London: Springer.

Salvucci, D. D. (2001). Predicting the effects of in-car interface use on driver perform-
ance: an integrated model approach. International Journal of Human-Computer
Studies, 55(1), 85–107.

Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human
Factors, 48(2), 362–380.

Salvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering.
Perception, 33(10), 1233–1248.

Salvucci, D. D., & Macuga, K. L. (2002). Predicting the effects of cellular-phone dialing
on driver performance. Cognitive Systems Research, 3(1), 95–102.

Santoro, C. (2005). A Task Model-Based Approach for Design and Evaluation of
Innovative User Interfaces. Belgium: Presses universitaires de Louvain.

Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps toward building math-
ematical and computer models from cognitive task analyses. Human Factors,
45(1), 77–103.

Shepherd, A. (1998). HTA as a framework for task analysis. Ergonomics, 41(11),
1537–1552.

Shepherd, A. (2001). Hierarchical Task Analysis. New York, NY: Taylor & Francis.
Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction. Reviews of

Human Factors and Ergonomics, 1(1), 89–129.

Cognitive Modeling for Cognitive Engineering 1111

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Simon, H. A. (1996). The Sciences of the Artificial (3rd ed.). Cambridge, MA: MIT
Press.

Strauch, B. (2017). Ironies of automation: still unresolved after all these years. IEEE
Transactions on Human-Machine Systems, 48(5), 419–433.

Thomas, M. (1994). The role of formal methods in achieving dependable software.
Reliability Engineering & System Safety, 43(2), 129–134.

Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., & Kazmeier, J. (2006).
Automation of GUI testing using a model-driven approach. In Proceedings
of the 2006 International Workshop on Automation of Software Test (pp. 9–14).

Weyers, B., Bowen, J., Dix, A., & Palanque, P. (Eds.). (2017). The Handbook of Formal
Methods in Human-Computer Interaction. Berlin: Springer.

Wing, J. M. (1990). A specifier’s introduction to formal methods. Computer, 23(9),
8–22.

Wu, C., Rothrock, L., & Bolton, M. (2019). Editorial special issue on computational
human performance modeling. IEEE Transactions on Human-Machine
Systems, 49(6), 470–473.

Young, R. M., Green, T. R. G., & Simon, T. (1989). Programmable user models for
predictive evaluation of interface designs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 15–19). New York:
ACM.

Zheng, X., Bolton, M. L., Daly, C., & Biltekoff, E. (2020). The development of a next-
generation human reliability analysis: systems analysis for formal pharmaceut-
ical human reliability (SAFPH℞). Reliability Engineering & System Safety, 20.
https://doi.org/10.1016/j.ress.2020.106927

1112 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1017/9781108755610.038


34 Modeling Vision
Lukas Vogelsang and Pawan Sinha

34.1 Introduction

It may appear odd for a volume about cognitive science to include a
chapter on vision. But, this is entirely appropriate. A long period after the famed
Peripatetic school was founded in the fourth century BCE, Aristotelian philoso-
phers, including Thomas Aquinas, promulgated the argument, roughly trans-
lated, that “nothing is in the intellect that was not first in the senses” (Nihil est in
intellectu quod non sit prius in sensu) (Cranefield, 1970). The senses provide the
grist over which cognition operates. They help define the world that an animal
queries, and interacts with, for its basic needs. There is little to cogitate about
without sensory input.

In the realm of the senses, there is remarkable diversity in the sensory modalities
and apparatus across the animal kingdom. These include magneto-reception,
electroception, somatosensation, chemo-reception, audition, and vision. Different
ecological niches have emphasizedmodalities most useful in particular settings. For
primates, vision has a privileged status. Much of our ability to rapidly and safely
interact with our environment is rendered possible by vision. The diurnal and
crepuscular emphasis in our sleep–wake schedule allows us to operate in circum-
stances when light is plentiful, and vision has the requisite raw material to operate
on. Furthermore, the task demands one faces, such as detecting danger from afar,
locating and recognizing conspecifics, foraging, and path planning over complex
terrain, all are best performed using the visual sense. It is perhaps no surprise that
the primate brain devotes an abundance of neural resources for processing visual
information. An estimated third of our brain’s cortex is devoted to analyzing
information fromour eyes, by far the largest allocation across all sensorymodalities
(Vanderah & Gould, 2016). Given that visual processing is strongly represented in
neural hardware, it is natural to ask what this processing machinery actually does.
The quest to answer this question involves theorizing about and modeling vision.

34.2 The History of Modeling Vision

34.2.1 Early Conceptualizations of Vision

Attempts to understand how vision “happens” have long and rich historical
roots. Records of theories on vision go at least as far back as the fourth
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century BCE. Plato advocated the “extramission” theory of vision – the idea
that visual information pickup happens with the eye “seizing” objects by
sending out light rays. This notion was motivated, in part, by the “fire”
seemingly gleaming in the eyes of such animals as cats and wolves (Finger,
1994; Reymond, 1927). Although disputed by Aristotle, who favored an
intromission account of vision, the extramission notion was enormously
influential, holding sway over physicians and thinkers until at least the ninth
century CE. The Graeco-Roman physician Galen, in the second century CE,
conducted careful studies of the structure of the eye (remarking especially
about the lens, which he thought was the principal instrument of vision), but
subscribed to the extramission theory. Ninth-century Islamic scholars, such
as al-Kindi and Hunain ibn Ishaq, agreed with this account and elaborated
on it in works such as “Ten Treatises on the Eye” and “The Book of the
Questions on the Eye.” However, this dogma began to give way in the
eleventh century due to proposals and investigations from other scholars
such as al-Haythan (Alhazen). He noted in his “Book of Optics” that the
eye can be damaged by light that was sufficiently strong, suggesting that the
eye is affected by incident light rather than generating light of its own
(Adamson, 2016). Al-Hazen’s contemporary, Avicenna, also argued for the
intromission theory (“The eye is like a mirror, and the visible object is like
the thing reflected in the mirror.” – Avicenna, translated, 1973), but retained
Galen’s suggestion of the crystalline lens as being the key instrument of
vision. This thinking about the primacy of the lens as the locus of vision
began to be challenged by the sixteenth century due to the work of phys-
icians like Felix Platter who argued for the retina and optic nerve as key
organs of vision (Grusser & Hagner, 1990). By the early seventeenth century,
thinkers like Kepler and Descartes came to view the eye as a camera obscura,
stating that “. . . vision occurs through a picture of the visible things on the
white, concave surface of the retina.” This was a crucial step towards modern
conceptualizations of vision, even though the notion that vision depends
profoundly on processing beyond the eye, in the brain, took much longer
to germinate and take root. Interestingly, a large proportion of the lay
public, even into the twenty-first century, continues to believe in the extra-
mission theory of vision (Winer et al., 2002).
One of the drivers that forced theories of vision to go beyond the eye was the

observation that the image incident on the retina was far more impoverished
than the phenomenal experience of the world that generated the image. Most
obviously, the flat projections on the retina were a far cry from the vividly three-
dimensional world one perceives. It appeared necessary to posit that further
elaboration of retinal information is needed to convert the raw sensations to
perceptions. Exactly how the association between sensations and perceptions is
accomplished led to one of the longest-running debates in philosophy – between
empiricists like Locke (1690) and Berkeley (1709) who suggested that the
association is the result of experience, and nativists like Immanuel Kant
(1781) who argued for the brain coming innately prepared for these
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associations. Both of these schools of thought led to further theorizing about the
nature of the associations between sensations and perceptions.

34.2.2 Theories of Vision in the Nineteenth and Early
Twentieth Centuries

The Structuralists (Wundt, 1897; Titchener, 1929) adopted a compositional
perspective – their experiments, often introspective (requiring observers to
verbally describe what they were experiencing), involved trying to fractionate
complex percepts into their constituent elementary sensations. Helmholtz
talked about how learned knowledge could be used by an observer to infer
percepts from the basic sensations.

. . . objects are always imagined as being present in the field of vision as would
have to be there in order to produce the same impression on the nervous
mechanism . . . The psychic activities that lead us to infer that there in front
of us at a certain place there is a certain object of a certain character, are
generally not conscious activities, but unconscious ones. In their result, they
are equivalent to a conclusion . . . Helmholtz, 1866, translated 1925, pp. 2–4

Taking a more nativistic stand, the European Gestalt psychologists (Koffka,
1935; Wertheimer, 1938 [1924]) rejected the notion of perceptions being built
from learned associations linking elementary sensations and higher-order per-
cepts. Instead, they suggested that the whole was greater than the sum of the
parts, and complex visual percepts could not be decomposed as merely the
summation of constituent sensations; they were better thought of as the result of
global “dynamic fields” within the brain, although what these fields might be
was left largely undefined.

34.2.3 Mid-Twentieth Century: The Perceptron

With the advent of information technology in the 1950s and early 1960s,
theorizing about vision underwent a significant change. The quest was reshaped
into one of specifying the processing steps that were sufficiently well-defined (in
contrast to the vague proposals of the Gestaltists, for instance) to be implemen-
table on computers, and could yield outputs akin to those observed with
humans. An important, though ultimately tragic, episode in this development
commenced in 1958 with Rosenblatt’s proposal of a “Perceptron” (Rosenblatt,
1958). Motivated in part by the exciting new field of cybernetics, and making
use of the capabilities of the time’s computer technology, Rosenblatt described
a simple neural network that could learn to perform basic visual discrimination
tasks. The work quickly generated tremendous excitement and was seen as a
huge step forward in our quest for reverse engineering vision. Under the
headline “New Navy device learns by doing,” the July 8, 1958 issue of the
New York Times described it thus: “. . . the embryo of an electronic computer
that [the US Navy] expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence.”
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The Perceptron was implemented as an array of 400 photocells, to serve as
the inputs to a set of simulated “neurons.” The system succeeded at several
image recognition tasks. However, interest in this avenue waned significantly
after it was shown that a single-layer perceptron could only distinguish between
linearly separable classes (Minsky & Papert, 1969). Although the result does not
apply to multi-layer perceptrons (MLPs), Rosenblatt did not have a satisfactory
approach for adjusting the weights of hidden layers, preventing the exploration
of learning and pattern recognition in multi-layer architectures. The next sev-
eral years saw little further work on neural networks. Rosenblatt himself died
soon afterwards, on his forty-third birthday in 1971, in a boating accident in the
Chesapeake Bay, not having lived to see how his work would prove to be the
forerunner of major advancements in pattern recognition and AI.

34.2.4 Marr’s Framework

This somewhat bleak period, with no broadly promising theoretical avenues for
vision research in evidence, eventually saw the emergence of a powerful
conceptual framework. David Marr, who had recently completed his doctoral
work at the University of Cambridge, was invited, by Marvin Minsky, to join
MIT’s Artificial Intelligence Laboratory. Marr accepted and spent a few
remarkably productive years in the mid- to late 1970s at the AI lab developing
ideas about how to approach problems in vision.
In contrast to the ad-hoc models of disparate aspects of vision that had been

the norm until that point, Marr proposed, in concert with Tomaso Poggio,
stratifying the modeling enterprise into three levels. At the most abstract is the
computational level, which specifies what needs to be computed from the image
signal (for instance, the image disparities, or surface reflectance values). Next is
the algorithmic level, which describes the possible internal representations and
algorithms that could potentially be used to accomplish the computational goal
of the first level. The third level is implementation, which specifies how the
algorithms of level 2 are actually to be grounded using the available hardware,
whether neural or machine.
In essence, each level of Marr’s framework is an attempt to achieve a

symbolic description of some aspects of image information; vision, in this view,
proceeds through the computation of a set of symbolic descriptions from
images. Marr envisioned the entire visual system as a set of modules arranged
hierarchically and in parallel, with information proceeding largely in a ‘bottom-
up’ fashion, from early vision modules (emphasizing image-filtering-like oper-
ations such as those involved in edge detection) to mid-level modules (respon-
sible for tasks like color, shape and motion estimation), to higher-level ones
(concerned primarily with recognition).
The well-reasoned systematicity of Marr’s framework proved enormously

influential. Marr’s book (Marr, 1982), published posthumously after his
untimely death due to leukemia, was hailed as a landmark in understanding
vision and modeling it. It contains several examples of how the framework can

1116 lukas vogelsang and pawan sinha

https://doi.org/10.1017/9781108755610.039 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.039


be deployed to model diverse aspects of vision. Many of Marr’s onetime
students and colleagues, such as Eric Grimson, Ellen Hildreth, Tomaso
Poggio, Whitman Richards, and Shimon Ullman, who contributed to these
models, went on to become leaders in the field.

The late 1970s saw computational modeling become increasingly prominent
in the vision research zeitgeist. Besides work from Marr and his colleagues,
there were other notable contributions. One especially notable one, in terms of
its impact, was Edwin Land’s research in color perception. Land was a prolific
inventor (with more than 500 patents to his credit), the founder of Polaroid
corporation, and a keen investigator of visual perception despite not having any
advanced academic credentials (he dropped out of Harvard after his freshman
year, but was later conferred an honorary doctorate by the institution in
recognition of his remarkable accomplishments). Land had an abiding interest
in the phenomenon of color constancy – our ability to discern colors accurately
despite dramatic changes in the incident illumination. Based on the results of
several remarkable perceptual studies, he and his colleague, John McCann,
proposed “Retinex” – a theory to explain color constancy in constrained
settings (Land & McCann, 1971). Retinex’s ability to account for striking
perceptual results, despite (or, perhaps, because of ) its computational simpli-
city, led to it having a strong impact on the field. More generally, it was a
demonstration of how a computationally precise approach could lend concep-
tual clarity to seemingly complex perceptual questions.

Even as Marr’s elegant conceptualization of vision, and researchers like
Land’s modeling of specific aspects of visual perception, helped “carve” it into
distinct modules and processing stages, it remained unclear whether such par-
cellation was factually representative, or even a fundamental feature, of the
visual system. This quandary has persisted to the present day. Is it possible that
this neat structure of modules and hierarchies is one that modelers are imposing
to facilitate thinking about a complex system, but the system itself is not so
clearly segmented? This question lies at the heart of the distinction between
symbolic approaches of the kind Marr espoused and connectionist approaches
of which the Perceptron was an early, albeit rudimentary, exemplar.

34.2.5 Connectionist Models

The concern that through adherence to symbolic approaches one might be
artificially forcing structure in models beyond what may actually exist in
nature, and the fact that the implementational substrate of brains is funda-
mentally a network-based one, has sustained interest in connectionist para-
digms despite periodic downturns, e.g., after the publication of Minsky and
Papert’s book, as noted above. By the mid-1980s, research in neural networks
was being reinvigorated due to the emergence of new kinds of network
architectures (Hinton & Sejnowski, 1983; Hopfield, 1982) and computational
procedures for training them, such as backpropagation of errors (Rumelhart
et al., 1986).
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Part of the appeal of connectionist models lies in the similarity they ostensibly
possess to their biological counterparts – a network of many simple processors
rather than one monolithic hub of processing. This biological congruence also
confers upon such models benefits of parallel processing, which include speedups
in time, robustness to damage, as well as convenient ways for incorporating
multiple constraints in a computation that need to be considered simultaneously.
An excellent case in point is the network model for stereopsis that was proposed
by Marr and Poggio in 1976 (see Figure 34.1). The scheme of weights between
neighboring units in this network elegantly implemented three constraints – those
of compatibility, uniqueness, and continuity of matches (corresponding to the
natural regularities of objects appearing very similar in the two eyes, and real-
world surfaces being mostly opaque and smooth). With these constraints built
into the network via synaptic weights, the system was able to “solve” stereo
correspondence problems with random dot stereograms that until that point were
considered computationally intractable given the combinatorics of possible
matches. Such connectionist models were also proposed for other mid-level visual
tasks such as three-dimensional shape estimation from shading cues, and optic-
flow estimation (Lappe et al., 1993).
Connectionist models for the task of object recognition got a boost from the

empirical results reported by David Hubel and Torsten Wiesel, who had been

Figure 34.1 The network for stereo correspondence proposed by Marr and
Poggio (1976). The inter-unit connection weights incorporate constraints
from the natural world. The cross-layer inhibitory connections encode surface
opacity constraint, by obviating multiple matches for a given feature in one
half image, while the within-layer excitatory connections encode surface
smoothness. With this pattern of weights, the network is able to settle into
a state that corresponds to the solution of the input stereo pair.
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doing pioneering work on recording from individual neurons in the mammalian
visual cortex. One of the key overarching themes in Hubel and Wiesel’s results
was the progressive increase in the complexity of response properties of neurons
as one progressed along the visual pathway. Photoreceptors were maximally
activated by unstructured fields of light, ganglion cells incorporated lateral
inhibition to create circularly symmetric center-surround receptive fields,
simple cells in the primary visual cortex had elongated receptive fields,
complex cells maintained the elongation, but added shift-invariance in their
responses, and “hypercomplex” cells appeared to respond to conjunctions of
different oriented elongated structures, such as corners (Hubel & Wiesel 1977,
1998, 2005). All of this suggested (although direct empirical evidence for the
suggestion was scarce) a scheme of hierarchical composition wherein the out-
puts of several units at an earlier stage were combined in systematic ways to
generate the selectivity properties of a later unit. Thus, outputs of photorecep-
tors combined via lateral inhibition circuitry to create ganglion cell receptive
fields (RFs), and by extension, lateral geniculate RFs. Several linearly aligned
LGN RFs were merged to create elongated simple cell RFs, which in turn were
merged disjunctively to produce complex cell RFs, which could then be merged
to produce hypercomplex RFs. This hierarchical scheme could be carried
forward to create increasingly complex receptive field selectivities, culminating
in very particular optimal stimuli, such as the face of a particular person (a “-
grandmother cell”).

In the years since Hubel and Wiesel’s initial reports, some evidence has been
found suggesting that at least some aspects of this scheme may indeed exist in
biology (specifically, the generation of V1 simple cell RFs from LGN circularly
symmetric ones (Lee & Reid, 2011)). However, definitive empirical data
explaining later-stage properties has been hard to come by. This has not
stopped modelers from exploring the possibility of implementing this general
approach for performing the task of shape recognition.

A prominent example of a connectionist model inspired by biological
conjectures is the work on Neocognitrons (Fukushima & Miyake, 1982).
Using a cascade of “simple” and “complex” arrays, which accumulate shift-
(and some measure of scale-) invariance, Neocognitrons are able to learn
to distinguish between simple line patterns such as digits and letters.
Elaborations of this basic scheme to be able to work with real images have
subsequently been developed and shown to perform reasonably well on mod-
estly complex test sets. However, until about 2012, such proposals were
largely of academic interest since they were small in scale (given limited
computational resources), tested on small sets of instances, and their perform-
ance was still fairly brittle. That changed with the demonstration that neural
networks with several hidden layers (making them “deep”), when trained with
very large databases of images, and adjusted iteratively using clever tech-
niques for error backpropagation, can come to perform recognition
surprisingly well.
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34.2.6 Deep (Convolutional) Neural Networks

The foundations for current-day deep networks were largely laid with
Rosenblatt’s development of Perceptrons. Typical deep networks follow the
same general structure as a multi-layer perceptron: sets of simple computing
units arranged in layers, with units in one layer receiving inputs from the
previous one, and generating outputs that feed into the next one in a cascade.
However, a key difference between MLPs and typical convolutional nets used
for visual recognition tasks is one that can be traced back to empirical findings
from visual neurophysiology. The work of researchers like Kuffler, Hubel, and
Wiesel had revealed that neurons in the mammalian retina and cortex are
driven by information in small circumscribed regions of the visual field
(Hubel & Wiesel, 1959; Kuffler, 1953). A given neuron in V1 observes just a
small vignette of the world. The size of this vignette grows progressively as one
moves along the processing hierarchy from V1 to V2 and beyond. Furthermore,
the distribution of synaptic weights linking the inputs to a given neuron was
such as to induce the unit to perform a local filtering operation on the fragment
of the visual image it was receiving. For instance, a particular unit might be
driven by the horizontal orientations in an image patch, while another might
respond to vertical ones. Local connectivity and attendant processing are
consistent with the structure of the visual world we inhabit – there are strong
dependencies between nearby regions of space, and compositions of these local
structures provide strong diagnostic cues about the identities of the objects
present in an image.
This pattern of results, aided by some amount of anatomical pathway

tracing, suggested a basic computational motif implemented repeatedly by
visual circuitry – convolution over local areas and pooling across layers in a
hierarchy. This prompted a modification of the MLP architecture – instead of
having fully connected layers (all units in one layer being connected to each unit
in the subsequent one), there is a series of local convolutional and pooling
operations. This conceptually simple idea underlies typical Convolutional
Neural Networks (CNNs). The approach not only makes the computational
task of training these networks more tractable, but it also has important benefits
such as reducing overfitting to data.
The basic scheme of CNNs is to have sandwiched between input and output

layers a series of convolutional and pooling layers, which are often followed by
fully connected layers for classification. The number of these intervening layers
can be quite large, ranging into the hundreds (see, for instance, He et al., 2016
for ResNet architectures). Techniques like weight-sharing allow for the creation
of “feature maps” while others such as max-pooling build in shift-invariance.
To make this whole machinery work, synaptic weights are iteratively adjusted
via backpropagation of errors. A network starts out with its synaptic weights set
randomly and is then exposed to images and their desired labels. Discrepancies
between generated outputs and expected ones are used to modify the weights
across the network to try to reduce the magnitude of the errors. An interesting
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aspect of this learning procedure is that after sufficient training, it results in
modification of weights in the initial convolutional layers that in effect often
make them be feature detectors exhibiting similarity with those that have been
reported in V1. After training with natural images, the initial convolutional
layers of a deep network will typically exhibit Gabor-like kernels at different
orientations, reminiscent of the V1 receptive fields reported by Hubel and
Wiesel. No handcrafting of these features is required – mere training with
natural imagery, desired labels, and error propagation backwards is sufficient
to discover these features.

Driven by implementational ease afforded by general-purpose graphics pro-
cessing units (GPUs) that were originally intended for fast image rendering in
video games, but were well-suited for the matrix multiplication computations
required for training deep networks, these networks have had notable successes
in terms of their performance on challenging image classification tasks. The first
intimation of their capabilities arrived in 2012, when a rather modest deep net
(with “just” eight network layers) was able to significantly exceed the accuracy of
state-of-the-art conventional computer vision systems on the ImageNet bench-
mark test (Krizhevsky et al., 2012). Whereas previous neural nets had been
tested on very small, and often synthetic, image sets, this was the first demon-
stration of such systems working on a complex classification task for which no
satisfactory alternative solutions were available. Complementing their superior
performance, the networks were also seen as potential models of human vision
given their superficial similarity to neural architecture and, more compellingly,
their ability to match human proficiency on real-world inputs.

Each successive year after the initial demonstration in 2012 brought a steady
improvement in recognition performance of deep networks, driven in large
part by changes in network architectures (increasing depth and more diversity
of connections). The availability of large image data sets over the past decade,
in concert with increasing computational resources, has fueled the develop-
ment of many deep network-based vision systems that can feasibly be deployed
in real-world settings. These include, for instance, face recognition systems
(Schroff et al., 2015), radiological image classifiers (see Yamashita et al., 2018
for an overview), and autonomous driving systems (Chen et al., 2016). In many
of these cases, deep networks have rivaled, if not yet exceeded, human per-
formance. Strengthening the case for deep neural networks (DNNs) as models
of human vision, for instance, Lake et al., (2015), found that DNNs can
successfully generate human category typicality ratings for images, and
Kheradpisheh et al., (2016), comparing humans and DNNs, reported similar
performance and similar error distributions on view-invariant, background-
controlled object recognition.

The reported successes of deep networks on challenging vision problems
appear to suggest that we may finally have on hand a solution to some of the
most challenging aspects of vision. And, by extension, we may also have a
model for biological vision. Let us briefly consider both of these assertions,
rephrased as questions:
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1. Are CNNs good solutions to vision broadly?

2. Are CNNs sufficiently congruent with their biological counterparts
to serve as the latter’s models?

34.2.6.1 CNN Performance

The high performance of CNNs on datasets such as ImageNet (Deng et al.,
2009) or LFW (Huang et al., 2007) has led to the perception of their being
powerful general vision systems. However, further investigations cast doubt on
this claim. The networks appear brittle, dramatically changing their outputs
when confronted with even slight changes in inputs (Geirhos et al., 2018a).
Some of the shortcomings in their performance can, in fact, be predicted from
their architecture. Key amongst these is the compositionality of their represen-
tation with a deliberate discarding of long-range spatial information. In essence,
the network encodes an image class as a collection of local features. Weight-
sharing within a layer and max-pooling across layers leads to the network
gaining shift-invariance, which one might assume would be a benefit.
However, it should be kept in mind that the shift-invariance applies to local
features and is not explicitly enforced across larger image assemblies. Thus, a
collection of local features in permuted locations has a good chance of eliciting
a network response comparable to that from the features in their original
locations in an “intact” image. A Picasso face with grotesquely shifted eyes,
nose and mouth, in other words, may be as good a face as an undistorted one
for a CNN. A further prediction one can make is that if images lack locally
informative structure (like texture and color cues), CNNs will have difficulties
classifying them. This is indeed what one typically finds in working with line-
drawings or blurred and phase-scrambled images. The performance of CNNs
plummets with these kinds of inputs. Even if local textures are present, but
different from those that the network has been trained with, its performance
suffers. With many artistic depictions, this is what is observed – CNNs are poor
at classifying paintings of objects even though their performance with original
photographs may be impressively high (Figure 34.2).

34.2.6.2 Performance and Structure Congruence

The kinds of diminishments of performance mentioned above are essential for
assessing how strong the case is for considering CNNs to be models of human
vision. For many image transformations (high-pass filtering, noise addition,
phase scrambling, blurring), the human visual system displays remarkable
robustness. Even when we have never before experienced a certain image
transformation, we are typically able to generalize to it right away. For
example, we may never have encountered a phase-scrambled image, but the
very first time we see an instance, we are likely to be able to recognize it. The
case for line-drawings is a similar one. (There is an interesting research story
here. Julian Hochberg and his wife, Virginia Brooks, professors at Columbia
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University, decided to raise their newborn son without any exposure to line-
drawings of other pictorial depictions. Despite great operational difficulties,
they persevered and managed to run the study for 18 months, by which time it
was nearly impossible to keep the boy away from books and television and
other sources of artistic depictions. At that point, Hochberg and Brooks
stopped the “controlled rearing” regimen and tested the child’s recognition
performance on continuous-tone and line-drawing images. The key finding
was that the child had no difficulty at all in immediately recognizing the line-
drawings, despite never having seen them before (Hochberg and Brooks, 1962))
This instant generalization to very different depictive styles is typically not
observed with CNNs.

There are other notable points of discord between CNNs and humans.
A particularly striking example comes from “adversarial images.” These are
images created through very subtle perturbations of real inputs. These changes
that are so minute as to be imperceptible to humans (and hence leave human
classification entirely unchanged) can nevertheless lead to dramatic shifts in
DNN classification, leading it to declare with high confidence that the adver-
sarial image is an exemplar of a completely different class relative to the source
image (Szegedy et al., 2014). The vulnerability of CNNs to adversarial attacks,
and human resilience to the same, argues for the possibility that the two systems
may use very different strategies for image representation and recognition.

Additional concerns about CNNs as models of human vision come from
details of their implementation. It is generally accepted that the primate cortex
has about five levels of hierarchy in the visual pathway (Felleman & Van Essen,
1991; Thorpe et al., 1996). Although it is difficult to establish a direct mapping

Figure 34.2 A few instances of images that result in misclassifications from a
conventional CNN (Alexnet trained on ImageNet). The network correctly
classifies an actual image of bell peppers (top left) but errs with the rest of
the inputs.
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between CNN and brain layers, modern CNNs, being equipped with up to
hundreds of layers, appear to exceed estimates derived from neurophysiology.
Furthermore, the connectivity patterns in the biological system are very differ-
ent from those used in CNNs. Intra-cortical connections in the brain can skip
levels, can exist within layers and can also be in the feedback direction (perhaps
more numerously so than in the feedforward direction). Many popular CNN
architectures do not allow for such heterogeneity of connectivity, although
ongoing work is exploring the impact of different kinds of connectivity schemes
(see Section 34.3.3). Finally, the critical error-backpropagation scheme used in
CNNs, typically requiring massive amounts of labeled training data not avail-
able to humans, does not appear to have a straightforward biological counter-
part (Crick, 1989). For all of these reasons, claims of CNNs serving as models
of human vision should be made, and evaluated, with caution.

34.3 Can CNNs Serve a Useful Modeling Purpose?

Given the aforementioned caveats, is it still feasible to use CNNs to
help model some aspects of biological vision? There is reason to believe that the
answer is in the affirmative. A few examples are described below to illustrate
this potential. These examples, in addition to illustrating this potential, also
serve as pointers for potentially further improving CNNs in the future, support-
ing the view that CNNs should not be seen as unalterable systems but rather as
evolving models that can be flexibly adapted, based on new scientific insights.

34.3.1 Assessing Representational Similarity Between CNN Activations
and Neural Responses

One approach in which CNNs may prove useful to help study biological vision
involves probing representational similarity between activations of units in a
CNN on the one hand and patterns of neuronal responses, as measured with,
for instance, functional magnetic resonance imaging (fMRI) or magnetoence-
phalography (MEG), on the other. Comparing measured brain activity with a
neural network’s activations would usually require an explicit correspondence
between elements of the computational model and the recorded data.
Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008) sur-
mounts this challenge by working with an abstraction derived from the activa-
tions (a similarity space defined by activation patterns), rather than the
activations themselves. As part of RSA, for a representation in a given system,
such as a brain or a computational model, a representational dissimilarity
matrix (RDM) is computed. An RDM describes the distances of a representa-
tion’s activations that are elicited by a set of stimuli, thereby capturing what
types of stimuli yield similar and what types of stimuli yield different activa-
tions. These matrices can be extracted for a given neural network and a given
neural recording, as well as different processing stages thereof, and can
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subsequently be compared to assess the similarity between them. This technique
has been adopted broadly and tools to facilitate its use are readily available (see,
for instance, Nili et al., 2014).

The utility of this approach in the context of this chapter is exemplified by
Khaligh-Razavi and Kriegeskorte (2014) who used RSA to compare brain
representations (based on fMRI recordings from humans and cell recordings
from monkeys) to representations of a CNN (specifically, Alexnet) as well as
neuroscientifically inspired models of the visual system and traditional com-
puter vision features. This work yielded several noteworthy results. First, early
layers of the CNN showed representational resemblance to early visual cortex.
Across the layers of the network, this similarity decreased monotonically, but
the similarity to representations in the higher-level inferior temporal (IT) cortex
increased. Further, across the different computational models whose represen-
tational spaces were compared with neural recordings, models that were
equipped with high degrees of similarity to representations in IT tended to
achieve higher performances on object recognition tasks (Khaligh-Razavi &
Kriegeskorte, 2014). Similar associations between object recognition perform-
ance and IT similarity have also been shown in Yamins et al. (2014) and Cadieu
et al. (2014) (for an overview, see also Kriegeskorte, 2015).

Using the RSA framework in a different context, Cichy et al. (2016) com-
pared spatio-temporal brain dynamics, as measured with fMRI and MEG
recordings, to a deep network trained on object categorization. Through their
analyses, the authors identified spatial (based on the fMRI data) and temporal
(based on the MEG data) hierarchical correspondences between brain activity
and deep network activations. An additional examination revealed that while
the chosen architecture resulted in some representational similarity, training on
a categorization task in real-world settings was necessary for the emergence of a
full hierarchical relationship (Cichy et al., 2016).

Overall, these quantitative comparisons are not only of use for testing the
correspondences between a given model and a given neuroimaging recording,
or parts thereof, but also enable researchers to systematically examine the
impact of different architectural and processing choices on modulating the
similarity between biological and computational activations. Determining
which of these choices for a CNN maximize similarity between the two sets of
data for a given collection of stimuli may serve as a powerful way of inferring
underlying biological mechanisms as well as for evaluating the representational
plausibility of CNNs and potential future extensions thereof.

34.3.2 Using CNNs to Examine the Impact of Experiential History
on Subsequent Classification Performance

Another case in which the use of CNNs may help probe biological vision
systems is when seeking to examine the impact of developmental trajectories
and experiential history on later visual recognition ability. While, for practical
and ethical reasons, developmental progressions cannot be easily altered in
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humans, CNNs appear well-suited for a systematic investigation of the conse-
quences of different training regimens on subsequent performance and
internal representations. Part of the appeal of CNNs, in the context of this
investigation, lies in the high degree of input-dependence during learning,
rather than strong reliance on hard-coded rules or parameters set a-priori,
the wide range of image databases they can be trained on, the high level of
classification performance they achieve, and the broad palette of tools avail-
able for evaluating them.
This approach is exemplified in Vogelsang et al. (2018) who investigated how

early experiences with blurred imagery – a hallmark of the visual experience of
infants (see, for instance, Huttenlocher et al., 1982 and Wilson, 1993) – would
impact subsequent classification performance and receptive field structures of a
CNN. This study is motivated by the goal of explaining why children who have
experienced atypical developmental trajectories exhibit a certain pattern of
recognition deficits later in life. Specifically, children who gain sight after being
blind from birth for several months or years, experience difficulties in
recognition tasks requiring configural analysis, such as face identification. The
hypothesis put forward by Vogelsang et al. builds on the observation that such
children experience higher initial acuity (because of the maturity of their retinas
at the time of surgery) than typically developing infants. They argued that this
excessively high initial acuity might have adverse consequences on configural
analysis, by reducing the need for spatial integration.
As a computational test of this hypothesis, the researchers trained different

instances of the Alexnet (Krizhevsky et al., 2012) on a large database of face
images (Ng et al., 2014). The level of Gaussian blur imposed on the training
data was varied, in five steps, from σ ¼ 0 (representing no blur) to σ ¼ 4
(approximating, roughly, the visual acuity observed in typical newborns: 20/
600). The results indicate that the higher the blur level was during training, the
larger the spatial extent of the RFs in the first convolutional layer ended up
being (see Figure 34.3a; for details, see Vogelsang et al., 2018). Figure 34.3b,
depicting the networks’ corresponding performances, reveals that each network
performs best when the test blur is aligned with the blur level that was used
during training and dropped with increasing distance to the training blur. Thus,
none of the training regimens, in isolation, yielded broad generalization pro-
files – though generalization was comparatively better when trained on blurred
than when trained on high-resolution images.
Drawing inspiration from the developmental progression of low to high

acuity in infancy (see, for instance, Huttenlocher et al., 1982 and Wilson,
1993), next, networks were trained using a staged “blurred-to-high-res” regimen
by having 250 epochs of blurred training be followed by 250 epochs of high-
resolution training. To assess potential ordering effects, this regimen was com-
pared to the temporally inverted “high-res-to-blurred”-training, as well as to
training that was either exclusively on blurred (“blurred-to-blurred”) or exclu-
sively on high-resolution imagery (“high-res-to-high-res”), with each regimen
comprising a total of 500 epochs.
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These simulations, making use of staged training regimens, yielded a set of
interesting results. In terms of representations, while initial high-resolution
training followed by subsequent blurred training increased the size of the RFs
in the second stage of training (“high-res-to-blurred”), in the “blurred-to-high-
res”-regimen, the later training on high-resolution imagery did not result in a

Figure 34.3 (a) Effect of uniform training regimens on RFs; depicted are the
five strongest RFs in the first layer of CNNs trained on images blurred with a
Gaussian filter with σ ¼ 0, 1, 2, 3, 4, and corresponding acuities. (b) Effect of
uniform training regimens on performance curves when testing CNN instances
on different levels of blur. (c) Effect of staged training regimens on RF sizes of
CNN instances. (d) Effect of staged training regimens on performance levels
of CNN instances. Reconstructed from Vogelsang et al. (2018).
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shrinkage of the large RFs that were previously learned through training with
initially blurry images. This effect of ordering indicates that once spatially
extended RFs are established, they maintain their large size. Such stability
could not be observed when training commenced with high-resolution images.
The corresponding performance profiles reveal a similar effect of ordering: the
“blurred-to-high-res” training regimen resulted in the most generalized per-
formance curve, as is evident in Figure 34.3d. To contrast this finding, the
regimen that commences training with high-resolution images, and continues
with blurred imagery in the second stage of training, results in the poorest
generalization performance. This is worth noting, as both regimens have been
trained with the identical set of images in aggregate, but in different orders.
Taken together, these results support the idea that initial exposure to blurred

imagery – a hallmark of the developmental trajectory of visual function – may
help improve generalization and set up RFs that are able to carry out integra-
tion over extended spatial areas. These findings lend support to the proposal
that initially immature vision may be a feature of the system rather than a bug
thereof, and point to the potential of improving deep network training by
taking inspiration from human development.
In the broader context of this chapter, the approaches presented here, and in

Section 34.3.1, exemplify possibilities for how CNNs can be used to help
understand some aspects of biological vision as well as potentially improve
computational vision systems.

34.3.3 Exploring Limitations of CNNs and Extending Their Capabilities

Several further investigations have focused on exploring the limitations of
CNNs and examining their remedies – some by suggesting different training
procedures or data, others by structurally moving beyond classical CNNs by,
for instance, incorporating recurrent connectivity patterns.
Exemplifying the former case, Geirhos et al. (2018b) showed that CNNs

trained on the ImageNet database exhibit a bias to recognize images based on
texture, rather than shape information. The authors further showed that this
bias can be eliminated by training CNNs on a stylized version of the ImageNet
in which texture provides no informative cues. This yielded a better fit for
human psychophysical data and revealed emergent performance and
robustness benefits, presumably as a consequence of utilizing a more shape-
based underlying representation.
While Geirhos et al. (2018b) suggested changes to the training, other

researchers have focused on proposing changes to the connectivity patterns.
While processing in the visual system consists of both feedforward and feedback
connections, CNNs operate entirely in a feedforward fashion. As reviewed in
Kreiman et al. (2020), empirical evidence suggests that a fast feedforward sweep
of activity, as can be carried out by CNNs, may suffice for building a coarse
initial representation of the visual scene and succeeding in rapid categorization
tasks. However, more refined aspects of vision may be accomplished through
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additional feedback processes occurring after the initial feedforward sweep. For
instance, recurrent connectivity may not only help gain computational flexibil-
ity and efficiency but also account for perceptual grouping, success with harder
recognition problems such as in occlusion, as well as with visual reasoning
beyond recognition or classification (Kreiman et al., 2020). As another
example, Doerig et al. (2020a) demonstrated that Capsule Neural Networks,
which combine feedforward CNNs with recurrent grouping and segmentation,
are capable of reproducing global shape processing in humans whereas other
models were not (see also Doerig et al., 2020b). More generally, systematically
examining the empirical successes and failures of CNNs may help us under-
stand what visual computations can, or cannot, be carried out easily through
feedforward processing alone. Even beyond the question of feedforward vs.
feedback processing, systematic comparisons between human and computa-
tional systems on psychophysics tasks can provide important insights for future
developments, also in domains not traditionally modelled, such as visual illu-
sions or the temporal dimension of visual perception.

In Sections 34.3.1 through 34.3.3, a few approaches were considered for using
CNNs to help study aspects of biological vision as well as to better understand
and overcome the limitations of standard CNNs by altering learning proced-
ures, input data, or network connectivity. Given this background, it is reason-
able to view CNNs not as unalterable systems, but rather as evolving models
that can be flexibly adapted and improved, depending on the specific demands
and contexts.

34.4 Conclusion

The enterprise of modeling visual functions has deep roots in
philosophy, psychology, and neuroscience. More recently, computer science
has come to play an increasingly prominent role, and has induced a shift from
explaining individual visual phenomena to the formulation of potentially
broader computational mechanisms. Deep neural networks, and their
extensions, are the most recent, and amongst the most impactful develop-
ments in this regard. Engineering efforts are rapidly enhancing the
performance of deep nets to levels that are comparable, or even superior to,
human performance in constrained domains. While significant gaps remain,
specifically in the robustness and generalization abilities of deep networks
relative to humans, these systems are already serving a useful role for model-
ing some empirically observed aspects of vision, typically in the realm of
recognition, as well as recorded neural responses. Further, recent advance-
ments in incorporating a greater diversity of connections, inspired by those in
biological nervous systems, are a promising avenue towards engaging in more
challenging recognition problems and visual reasoning tasks that go beyond
recognition. In addition to this architecture-centric approach, another possi-
bility was also discussed, which involves examining how different training
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regimens influence internal structures in networks and also their eventual
performance. Adopting this approach allows examining whether some seem-
ingly sub-optimal aspects of normal visual development, such as initially poor
acuity, might have adaptive functions. This is potentially a powerful general
approach that can have significant basic and applied/clinical implications,
besides ramifications for machine vision itself, in terms of suggesting effective
ways for training.
Overall, the future appears to hold immense riches for modelers, with current

tools, image databases, and computing resources allowing us to derive insights
that will greatly advance our understanding of how we come to possess the
remarkable visual skills that we do.
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35 Models of Multi-Level
Motor Control
Martin Giese, David Ungarish, and Tamar Flash

35.1 Introduction

A major emphasis in motor control research has been on seeking
unifying principles which can account for the observed characteristics of a
large variety of human movements. Two ubiquitous attributes of human
movements are their stereotypy, and the invariance of certain movement
properties across different motions. These attributes are quite puzzling given
the considerable freedom in generating many different movements. A possible
explanation is that these attributes reflect mechanisms employed by the motor
system to cope with three types of complexities tied with the problem of
movement generation. One source of complexity is that there exist multiplici-
ties of possible coordinate frames, end-effector trajectories, limb posture
sequences, and patterns of muscle activations, that can achieve a given goal.
Another source of complexity is the multiplicity of computational problems
associated with movement generation. These include trajectory planning,
inverse kinematics, inverse dynamics, and neural activations. The third kind
of complexity arises from the complex computational nature of the mechan-
ical and sensory information processing problems, associated with multi-joint
movement generation.

Due to these complexities, motor control research is highly challenging, and
the use of computational models is essential for gaining an understanding of
motor systems. For the sake of making a targeted review of the topic, however,
this chapter will cover only selected aspects of this broad subject. The first topic
to be discussed is that of models of end-effector trajectory planning; accumu-
lating evidence gathered by experimental and theoretical studies has indicated
the significance of characterizing and modeling end-effector movement kin-
ematics, with respect to motion planning, motion perception, and action
observation. Many empirical upper-limb and locomotion studies have demon-
strated that the kinematic profiles of human trajectories are highly stereotyp-
ical across movement repetitions, end-effectors, and subjects. In particular, this
stereotypy characterizes trajectories of the hand and of the body center of
mass, in upper limb and locomotion movements, respectively. Specific types
of temporal and geometrical invariants have been observed in a large variety of
motor tasks, whereby the kinematic features (e.g., end-effector paths and
velocity profiles) are largely independent of spatial and temporal scales.
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Different kinds of models were developed to mathematically describe the
movements and to infer organization principles underlying trajectory planning.
Here two notable families of such models, namely, optimization models and
kinematic power-law models, are briefly reviewed. Next, approaches based on
geometrical invariance theory are described, laying out their role in investi-
gating the nature of movement representations. Another focus of this chapter
deals with motor compositionality and modularity. In recent years, these topics
have attracted great interest, and served as a source of inspiration for many
experimental and modeling studies. The notion of compositionality suggests
that biological movements may emerge from neural processes that construct
complex movements from a limited set of underlying units of action, called
motor primitives, which are adaptively parametrized to fit the needs and goals
of specific motor tasks (d’Avella, Giese, Ivanenko, Schack, & Flash, 2015;
Flash & Hochner, 2005). This principle of compositionality applies across
different hierarchical levels of the motor representation and facilitates a com-
putationally efficient planning and control scheme. The last part of the chapter
focuses on neural network control models, with special emphasis on models
that implement forms of modularity, as well as models developed in relation to
neurophysiological studies.

35.2 Trajectory Planning

35.2.1 Kinematic and Temporal Characteristics of Human Movements

The principles underlying end-effector trajectory planning are investigated
using kinematic analysis of end-effector trajectories represented in task-specific
coordinate frames and by examining their kinematic invariance and variability
across repetitions. For example, the paths of human point-to-point movements
are roughly straight, displaying invariant bell-shaped velocity profiles (see
Figure 35.1) independently of movement amplitude and duration (Abend,
Bizzi, & Morasso, 1982; Flash & Hogan, 1985; Hogan, 1984; Viviani &
McCollum, 1983). Another motor task frequently investigated is drawing,
either by tracing predefined figures, or in a free-form manner. One key finding
from such tasks is a regularity of motion, whereby the end-effector speed is
closely regulated according to the path curvature (Lacquaniti, Terzuolo, &
Viviani, 1983; Viviani & Schneider, 1991) (see Figure 35.1).

Another regularity is that the duration of human movements depends on the
total movement amplitude only sub-linearly, e.g., when two figural forms,
differing only in their spatial scales are drawn, the drawings take roughly the
same time (Kadmon Harpaz, Flash, & Dinstein, 2014; Viviani & Flash, 1995;
Viviani & McCollum, 1983). For instance, when participants are asked to draw
elliptical figures of different sizes (Viviani & Cenzato, 1985), a ten-folded
increase in size produces only a 50 percent extension of execution time.
Related temporal regularities also appear in obstacle avoidance or movements
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constrained to pass through via-points. For a hand trajectory through a single
via-point, the durations of both segments, i.e., between the start and via-point
locations and between the via-point and end-point locations, are each nearly
half the total movement duration, regardless of the relative lengths of the two
segments (Flash & Hogan, 1985). These phenomena were collectively subsumed
under one principle – the Isochrony Principle, although one should differentiate
between global isochrony, which refers to the full movement, and local iso-
chrony, which refers to segments within a movement (Viviani & Flash, 1995).
However, it should be noted that past observations have shown that isochrony
should not be viewed as a strict principle, but rather as a strong tendency
(Viviani & Schneider, 1991).

35.2.2 Optimization Models

The stereotypical kinematic and temporal features of end-effector trajectories
have attracted considerable interest, leading to the development of various
modeling approaches aiming to account for the observed behavior.

Optimization theory has played an important role in suggesting what prin-
ciples can account for the selection of a particular trajectory among the vast
number of possibilities. Optimization models assume that the Central Nervous

Figure 35.1 Typical two-dimensional human hand paths, velocity, and
curvature profiles, and their comparison to the trajectories predicted by the
minimum jerk model. (A) The upper graphs show the recorded (solid line)
versus predicted (dashed line) hand paths for point-to-point trajectories. The
lower figure displays the corresponding predicted versus recorded speed and
acceleration profiles (for the x and y components). (B) Comparisons between
recorded (left) and predicted (right) curved trajectories: hand paths (top
row), velocity profiles, x and y components (middle row), and speed versus
curvature profiles (bottom row). Adapted from Flash and Hogan (1985).
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System (CNS) aims at achieving an optimal behavior defined with respect to
biologically relevant objective functions. Several mathematical models,
hypothesizing different optimization principles, have been found to successfully
account for the empirically observed kinematic characteristics. These optimiza-
tion criteria include different kinematic and dynamic costs, such as the maxi-
mization of motion smoothness, for which a notable example is jerk
minimization (Flash & Hogan, 1985; Todorov & Jordan, 1998) (see
Figure 35.1), or the maximization of movement accuracy achieved through
the minimization of end-point or of whole movement variance (Harris &
Wolpert, 1998). Dynamic costs included, for example, minimization of energy
or effort (Guigon, Baraduc, & Desmurget, 2007) or of the rate of change of
joint torques (Uno, Kawato, & Suzuki, 1989). Other studies have pointed out
that the observed stereotypical kinematic features of human movements may
reflect the operation of task-based feedback control (Todorov & Jordan, 2002).
This approach assumes the operation of a feedback controller which optimizes
a compound cost, representing trade-offs between task-dependent accuracy and
the efforts required to generate the movement.

35.2.3 Kinematic Power Laws

One motor regularity of special importance is the relationship between the path
and kinematics of the end-effector, manifested as a strong coupling between
curvature and speed in different motor tasks, whereby speed tends to be slower
in parts of the trajectory where curvature is higher (Binet & Courtier, 1893).
This relationship was mathematically formulated as the “Two-Thirds Power
Law” (Lacquaniti et al., 1983) which states that the angular velocity A tð Þ of
movement is piecewise proportional to the path’s Euclidean curvature k tð Þ,
raised to the power of two-thirds: A tð Þ ¼ Ck tð Þ2=3, where C is the piece-wise
constant velocity gain factor. It is common to formulate this law using tangen-
tial speed V (see Figure 35.2):

V tð Þ ¼ Ck tð Þ�1=3 (35.1)

Some studies suggested that the two-thirds power law arises from purely bio-
mechanical constraints (Gribble & Ostry, 1996; Schaal & Sternad, 2001) or may
even be amplified in the analysis in the presence of noise (Maoz, Portugaly,
Flash, & Weiss, 2006). Other studies, however, demonstrated the status of the
law in the motor system and its role in perception, irrespective of the presence or
absence of mechanical effects (Dayan et al., 2007; Meirovitch, Harris, Dayan,
Arieli, & Flash, 2015). While the two-thirds power law was found to success-
fully describe relatively simple trajectories, such as ellipses, double ellipses etc.,
it was shown that other types of paths such as the cloverleaf, rose-petals, and a
variety of drawing movements, adhere to a more general type of power law,
where the exact value of the exponent depends on global geometrical properties
of the shape, such as rotational symmetry and the number of curvature maxima
(Huh & Sejnowski, 2015; Richardson & Flash, 2002; Viviani & Flash, 1995).
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Overall, these and other studies have demonstrated that the two-thirds and the
generalized power laws are compatible with a large body of data, and thus
established these laws as kinematic regularities in humans and in other
primates, and as markers of biological motion (Huh & Sejnowski, 2015;
Tesio, Rota, & Perucca, 2011). Several studies have investigated whether the
two-thirds power law, or generalized power laws, may emerge from the
optimization of different costs (Harris & Wolpert, 1998; Huh & Sejnowski,
2015; Richardson & Flash, 2002; Todorov & Jordan, 1998; Viviani & Flash,
1995). In particular, Richardson and Flash (2002) and Huh and Sejnowski
(2015) were able to mathematically predict empirical values of the power-law
exponents, by assuming that movement both complies with a generalized power
law, and minimizes the total jerk (third temporal derivative) along the
trajectory. Critically, they showed analytically that the exponents strongly
depend on global geometrical properties of the paths.

35.2.4 Geometrical Approaches

Originally, most motor control studies were based on the use of Euclidean
distance and its derivatives with respect to time (Euclidean velocity, acceler-
ation, etc.), but more recent studies have noted that the two-thirds power law is
equivalent to moving at a constant equi-affine speed (Flash & Handzel, 2007;
Pollick & Sapiro, 1997). This concept suggests that the two-thirds power law
may originate from a motor system’s constraint or a motor representation
respecting some rules of equi-affine geometry. For example, movement could
be planned using equi-affine representation of the movement trajectory in
addition to the task-space constraints. The geometry, as dealt with here, is
defined based on spatial transformations of paths (here described for two-
dimensional movements, but a similar analysis extends to three-dimensional
(Pollick et al., 2009).

An affine transformation consists of scaling, shearing, and rotation of a path.
Equi-affine transformations are a sub-set of the affine transformations, where
the area enclosed by the path is preserved. (Equi-)affine geometry is then
defined as a geometry that does not distinguish between paths that are similar

Figure 35.2 The two-thirds power law (adapted from Viviani & Flash, 1995).
Right: log-log plot of the tangential velocity as a function of the curvature, for
a motion tracing an ellipse. Left: Slope of log-log representation is -0.337,
closely matching the -1/3 slope predicted by the two-thirds power law.
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upto an (equi-)affine transform, i.e., that can be transformed to each other using
an (equi-)affine transformation. This concept is then used to define unique
parametrizations of curves based on geometry. Each geometry has several
differential invariants which include the geometry’s arc-length, curvature, and
different orders of derivative of the geometry’s curvature with respect to its arc-
length. For further details see (Bennequin, Fuchs, Berthoz, & Flash, 2009;
Flash & Handzel, 2007). Thus, for example, for any curve, a constant
Euclidean speed profile defines the Euclidean parametrization, which is agnostic
to rigid transformations. In the equi-affine geometry of curves, the equi-affine
arc-length of a path between two points on a trajectory is measured by integrat-
ing the equi-affine differential invariant dσ which is defined as follows (Flash &
Handzel, 2007):

dσ ¼ k sð Þ13 ds (35.2)

where s is the Euclidean arc-length and k sð Þ is the Euclidean curvature of the
path (equivalent to the rate of change of the tangential vector angle with respect
to the Euclidean arc-length). Indeed, as noted previously (Flash & Handzel,
2007; Pollick & Sapiro, 1997), it can be seen from the above equation that, if the
equi-affine speed is constant, the time derivative of σ is also constant, yielding
the two-thirds power law. Thus, the two-thirds power law predicts that the
movement duration should be proportional to the equi-affine arc-length along
the path.

35.2.5 The Mixture of Geometries (MOG) Model

While the earlier theories discussed above successfully accounted for certain
aspects of motion, they could not account for the entire spatial, kinematic, and
temporal characteristics of two-dimensional trajectories. These theories did not
specify how the brain selects movement durations, what is the nature of the
underlying motion primitives, and critically, the equi-affine description could
not account for the global isochrony principle – a prominent feature of bio-
logical motion. This has led to the understanding that the equi-affine descrip-
tion should be generalized, and to the subsequent development of the mixture of
geometries model (MOG) (Bennequin et al., 2009). According to this model,
movement trajectories are composed of segments, where the velocity profile in
each segment is given by a mixture (weighted tensorial product) of three speed
profiles, which correspond to constant affine, equi-affine, and Euclidean speeds.
Near geometrical singularities, specific mixtures were assumed to be selected to
compensate for time expansion or compression occurring for individual arc-
length parameters. The theory was mathematically formulated using Cartan’s
moving frame method (Cartan, 1937) (see Flash & Handzel, 2007). Formally,
the model predicts the time-dependent speed V within a given path segment, as
emerging from the weighted multiplication of constant affine V0ð Þ, constant
equi-affine V1ð Þ, and constant Euclidean V2ð Þ speeds:
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V ¼ V0
β0V1

β1V2
β2 (35.3)

where V 0 ¼ C0k
�1

3 k
�1

2
1 is the affine speed, V1 ¼ C1k

�1
3 is the equi-affine speed,

V 2 ¼ C2 is the Euclidean speed, and β0, β1, β2 are weight functions weighing the
influence of the three different geometries. The values of all three exponents are
assumed to be piecewise constant and to lie within the range of [0, 1], and
β0 þ β1 þ β2 ¼ 1. Here k and k1 are the Euclidean and the equi-affine curva-
tures (see Bennequin et al., 2009), respectively, and C0,C1,C2 are segment-wise
constant coefficients that represent the affine, equi-affine, and Euclidean con-
stant velocities, respectively. This theory succeeded in accounting for the kin-
ematic and temporal features of recorded movements (see Figure 35.3).
Interestingly, different types of motions were found to be dominated by differ-
ent geometries: while drawing movements were mainly represented by the equi-
affine and affine parametrizations, locomotion trajectories mainly required
equi-affine and Euclidean parametrizations.

35.3 Compositionality

The performance of any complex motor task requires the nervous
system to deal with complicated cognitive, perceptual, and motor execution
problems. A key idea emerging in the recent motor control literature is that
most complex movements are composed of simpler elements or strokes – so-
called motor primitives. These units are assumed to be combined and tempor-
ally concatenated in different ways to produce the seemingly continuous
smooth movements, characteristic of human motor behavior. Different
approaches and computational algorithms have been developed to infer such
elementary building blocks (Abeles et al., 2013; d’Avella et al., 2015; Flash &
Hochner, 2005; Flash et al., 2019), but both the nature and the origins of such
motion primitives are yet far from understood. The above sections reviewed
models dealing with trajectory planning and have laid the foundation for a
geometries-based approach to the inference of kinematic primitives. For further
work on this topic, as well as on approaches combining optimization and
geometric models see (Flash et al., 2019; Meirovitch, 2014). The following
sections will describe research and models focusing on primitives at the muscu-
lar level, i.e., muscle synergies, and on the concept of dynamic movement
primitives, which can be used to model and infer primitives at the kinematic,
muscular, and neural levels.

35.3.1 Muscle Synergies and Learning of Primitives

During the realization of motor actions, the central nervous system activates
typically many muscles, each consisting of a large number of motor units, in a
coordinated fashion. Since the classical work by (Bernstein, 1967) in the fifties,
motor scientists puzzle about the principles that result in such coordinated
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Figure 35.3Mixture of geometries model (adapted from Bennequin et al., 2009). Experiment and modeling. The path (A), Euclidean
velocity profile (B), and mixture coefficients (C), of a single repetition of a drawing trial. (A) Path color corresponds to Euclidean
curvature. (B) Experimental velocity, and velocity obtained by applying the mixture model. (C) The mixing coefficients β0, β1, β2
(weights of affine, equi-affine, and Euclidean geometries, respectively) vs. arclength progression. The modeled velocity in (B) was
obtained using these mixture weights.
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muscle activation. A dominant idea, which still is partly under dispute, is that
the CNS contributes substantially to the solution of the redundancy problem,
which is caused by the fact that a desired motor behavior can often be realized
by multiple different combinations of muscle activations. The solution of the
redundancy problem by a selection of specific combinations of muscle activa-
tions results in a reduction of the effective dimensionality of the solution space.
This fact has been exploited for the investigation of the underlying control
principles by applying dimension reduction methods from machine learning
to signals derived from motor patterns. One prominent idea is the concept of
muscle synergies: The CNS might control small sets of motor modules that in
turn activate whole muscle groups, in a coordinated manner. The control of
high-dimensional motor patterns might thus be organized in terms of a small
number of control units (motor primitives) (d’Avella & Bizzi, 2005; Flash &
Hochner, 2005; Giszter, 2015).

Evidence for this hypothesis was first obtained from physiological studies by
demonstrating that local activation at different levels of the CNS results in
highly coordinated and stereotypical activation patterns of muscle groups,
which might reflect a physiological substrate of such motor modules. For
example, local spinal stimulation in frogs activated multiple muscles in a
coordinated manner (Bizzi, Giszter, Loeb, Mussa-Ivaldi, & Saltiel, 1995). The
effects of this activation can be interpreted as defining a force field with a
particular equilibrium point. Combined stimulation at multiple sites results in
a linear combination of the underlying force fields (Mussa-Ivaldi, Giszter, &
Bizzi, 1994). Similar results have been reported for spinal cord stimulations in
other species, such as rodents or cats. A possible explanation of these observa-
tions is that such force fields are generated by jointly activated muscle groups,
which are part of control units whose number is much smaller than that of the
contracting muscles.

Further evidence for the existence of synergies as the basis of a modular
organization of the motor system has been accumulated in studies that have
applied dimensionality reduction methods to multivariate data of muscle activ-
ity, or other variables (e.g., end-effector kinematic variables, joint elevation
angles, or forces and torques) derived during the execution of motor actions
with many degrees of freedom. Formally, denoting such a measured quantity as
a function of time by xk tð Þ, all recorded measures can be subsumed by a multi-
dimensional trajectory x tð Þ. Many of the applied algorithms for dimensionality
reduction approximate such trajectories by a model that can be mathematically
written in the form:

xk tð Þ � sk0 þ
XM
m¼1

wkmskm t� τkmð Þ (35.4)

This class of models (see Figure 35.4a) is known in mathematics as anechoic
mixing models (Omlor & Giese, 2011). The functions skm(t) are also called
source functions and can be interpreted as motor primitives, which affect the
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measured quantities via a linear combination, and potentially with source-
specific temporal delays, e.g., due to neural latencies. The constants wkm are
the mixing weights, and the constants sk0 define constant baseline signals. The
key assumption of these models is that the number of sources M is relatively
small compared to the number of generated motor behaviors, implying that
high-dimensional motor patterns can be well approximated by a limited number
of these primitives. In the motor-control literature, a variety of algorithms for
the fitting of models of this type have been proposed (for reviews, see Chiovetto,
d’Avella, & Giese, 2016; Singh, Iqbal, White, & Hutchinson, 2018; Tresch,
Cheung, & d’Avella, 2006). Different methods differ in terms of the constraints
for the different model parameters and for the source functions. Models without
delays are also called instantaneous mixtures. Examples are Principal
Components Analysis (PCA), Factor Analysis (FA), and Independent
Component Analysis (ICA). For PCA, the source functions are assumed to be
orthogonal. FA uses a different Gaussian noise model from PCA, while for ICA
the source functions are assumed to be statistically independent. In particular,
applications to muscle activities often make the additional assumption that the
source signals and mixing weights are non-negative. An important algorithm of
this type is Non-negative Matrix Factorization (NMF) (Tresch et al., 2006).
Mixing models without time-delays τkm ¼ 0ð Þ include specifically the frequently

Figure 35.4 Movement primitives defined by unsupervised learning and related
generative models. (A) Anechoic mixture model that includes many popular
synergy models. The panel shows the computation of a single component xk(t)
of the modeled signal by superposition of the delayed source signals skm(t).
(See text for details.) (B) Model for temporal synergies without time delays.
The superscript (n) signifies the movement-specific adaptation of the
parameters for the movement of type n, in this case of the mixing weights w nð Þ

km.
(C) Model for time-varying synergies with vectorial source functions whose
shape remains invariant across the different movement types.
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used model of “temporal synergies,” where the weights wkm are adjusted in a
task-specific manner, while the source functions are assumed to be invariant
over tasks (Figure 35.4b). A further extension has been called “space-by-time
synergies,” a trilinear decomposition, where the mixing weights wkm in
Equation 35.4 are defined by linear combinations of the elements of a fixed
weight vector zl that defines a spatial pattern, and source-specific mixing
weights akml according to the relationship wkm ¼PL

l¼1akmlzl. In this model,
the source functions are not dependent on the signal component (skm � sm for
all m). The signals are thus approximated by products of time-dependent
sources and a fixed spatial vector (Delis, Panzeri, Pozzo, & Berret, 2014). An
important example for the models with time delays are “time-varying synergies”
(Figure 35.4c), where the delays associated with the same source function are all
assumed to be equal (τkm ¼ τm for all k). This model can be rewritten in the
compact form: x tð Þ � s0 þ

PM
m¼1wmsm t� τmð Þ, where it is assumed that the

synergies correspond to task-independent multivariate source functions sm tð Þ
that are scaled and shifted in time for the realization of different behaviors
(Alessandro, Carbajal, & d’Avella, 2013; d’Avella, Saltiel, & Bizzi, 2003;
d’Avella & Tresch, 2002). A number of studies have provided evidence that
the shape of the extracted synergies is only weakly dependent on the applied
extraction algorithm, supporting the interpretation that the extracted compon-
ents reflect a property of the data, rather than being imposed by the specific
algorithm. Another important proposal has also been the distinction between
tonic and phasic synergies that accounts separately for motion components and
constant force components, which are for example necessary to resist gravity
(D’Avella, Fernandez, Portone, & Lacquaniti, 2008).

The described models have been successfully applied to extract a low-
dimensional structure in different types of data, different classes of movements,
and in different species. Examples are the successful fitting of low-dimensional
synergy models to EMG recordings from the frog (Hart & Giszter, 2010), where
synergies correlated with the activity of spinal neurons. In addition, the EMG
signals from cats (Ting & Macpherson, 2005), and the EMG and cortical
activity of monkeys (Overduin, d’Avella, Roh, Carmena, & Bizzi, 2015) have
been analyzed using these methods.

Extensive work exists also on the extraction of such synergies from EMG
signals in humans, e.g., for arm movements (d’Avella, Portone, Fernandez, &
Lacquaniti, 2006), locomotion (Ivanenko, Poppele, & Lacquaniti, 2004;
Merkle, Layne, Bloomberg, & Zhang, 1998), posture responses (Wojtara,
Alnajjar, Shimoda, & Kimura, 2014), or complex full-body movements
(Chiovetto, Berret, & Pozzo, 2010; D’Andola et al., 2013). Similar methods
have also been applied to kinematic data, approximating joint angle trajector-
ies, e.g., for hand movements (Santello, Flanders, & Soechting, 1998), locomo-
tion (Catavitello, Ivanenko, & Lacquaniti, 2018) or emotional full-body motion
or sports movements (Chiovetto & Giese, 2013; Omlor & Giese, 2011). In
addition, such approaches have been used extensively for the characterization
of clinical data, studying the differences between synergies in patients and
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healthy individuals (for review, see Taborri et al., 2018), as well as to analyze
the development of gait patterns in children (e.g., Dominici et al., 2011). A few
studies have also applied such methods to analyze patterns of joint forces
searching for force synergies (e.g., Chvatal, Torres-Oviedo, Safavynia, &
Ting, 2011; Kuo et al., 2013; Russo, D’Andola, Portone, Lacquaniti, &
d’Avella, 2014). An alternative model, based on theoretical considerations
and physiological data, assumes that movement primitives are more appropri-
ately characterized by a superposition of stroke-like patterns (Giszter, 2015).
The concept of synergies remains heavily disputed. Some researchers have

interpreted the existence of such low-dimensional patterns as evidence for
motor modules that are hardwired neuronally, and in fact modern physiological
methods allowed to characterize connectivity patterns of spinal interneurons
that closely match the structure of synergies derived from EMG signals (Takei,
Confais, Tomatsu, Oya, & Seki, 2017). Evidence for modular control by means
of muscle synergies has also been provided by behavioral studies in which
human subjects used myoelectric control to produce simulated force that moved
a mass in a virtual environment. In this environment the normal muscle-to-
force mappings were manipulated, as in a complex surgical rearrangement of
tendons, by altering the mapping between recorded muscle activity and the
simulated force. The introduced EMG to force mappings were either compat-
ible or incompatible with the underlying muscle synergies. The results showed
that adaptation to compatible virtual surgeries that could be realized by
adjusting the combinations of the existing muscle synergies, was considerably
faster and more efficient than adaptation to incompatible virtual surgeries
which required the formation of novel, previously nonexisting synergies
(Berger, Gentner, Edmunds, Pai, & d’Avella, 2013).
Additional studies have emphasized that the neuromuscular low-dimensional

structure might be induced both by biomechanical constraints, task, or as a side
effect of the solution of optimal control problems (Tresch & Jarc, 2009). That
behavioral variability is concentrated along certain lower-dimensional mani-
folds might reflect the fact that the motor system controls just the necessary
directions for accomplishing the task, whereas variability is permitted along
task-irrelevant directions, defining an “uncontrolled manifold” (Scholz &
Schöner, 1999).

35.3.2 Dynamic Movement Primitives

Dynamical systems have been used extensively for the modeling of motor
behavior, addressing different description levels, e.g., to model control loops
close to the effector level or higher up in the motor hierarchy, in order to model
cognitive aspects of sensorimotor control. For example, dynamical systems
have been applied very successfully for the modeling of neural circuits such as
central pattern generators that generate periodic locomotion (Buono &
Golubitsky, 2001; Ijspeert, 2008; McCrea & Rybak, 2008), or for
sensorimotor loops (Poggio & Reichardt, 1976). Also experimental findings
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on the effects of spinal stimulation in frogs or rats, resulting in motor responses
that define convergent force fields (Giszter, Mussa-Ivaldi, & Bizzi, 1993; Tresch
& Bizzi, 1999), seem compatible with a conceptualization of motor control in
terms of a combination of primitives that are defined by dynamical systems.
Finally, nonlinear dynamical systems with attractor solutions have been exten-
sively used for the modeling of motor behavior at the behavioral level (Kelso,
1995). For an in-depth discussion see Chapter 6 in this handbook.

A key problem for the application of dynamical systems for the modeling of
motor behavior is the design of appropriate, typically nonlinear dynamical
models, that capture the relevant behavior, and show in addition appropriate
dynamic stability properties. One approach that integrates a dynamical systems
formulation with the concept of modularity are dynamic movement primitives.
This concept had an influence in motor control in neuroscience, and it has
become very popular in robotics (Hogan & Sternad, 2012; Schaal, 2006).

In general, dynamic movement primitives conceptualize motor behavior as a
trajectory x(t) that is generated as stable solution of a dynamical system or
differential equation. Often these differential equations are adjusted by learning
to be able to generate complex movements, for which the design of a corres-
ponding differential equation is difficult. Complex motor behaviors are realized
by a combination of such primitives, either by sequencing over time, or by
superposition over space, similarly to muscle synergies, or some combination of
both. A central theoretical problem is to guarantee the dynamic stability of such
complex dynamical models, so that the desired behavior is the only stable
solution of the resulting dynamics, since complex nonlinear dynamical systems
in the general case can have many local instabilities, or even chaotic solutions.

To provide a concrete example, discussed here is a popular form of dynamic
movement primitives that has been proposed by Schaal and Ijspeert, and has
been used extensively in robotics. In one version of this model, the dynamical
equation that generates the motor variable x(t) for a point-to-point motion is
given by the differential equation system (Ijspeert, Nakanishi, Hoffmann,
Pastor, & Schaal, 2013):

τ x ̈ tð Þ ¼ a xg � x tð Þ� �� b _x tð Þ þ f yð Þ
τy _y tð Þ ¼ �y tð Þ

(35.5)

All constants (a, b, τ, τy) are positive, and xg signifies a goal point, e.g., defined
by a final posture of a limb. If the function f is zero, the first equation defines a
damped movement from the initial point x 0ð Þ to the goal point, which forms an
attractor of the dynamics for the variable x. In order to control the form of the
trajectory from the initial condition x 0ð Þ to the goal point, a nonlinear function
f(y) is learned by approximation of a training trajectory xtr tð Þ. The second
differential equation just generates a pseudo-time variable y(t), which decays
monotonically from the initial value y0 ¼ y 0ð Þ to the asymptotic value zero.
This equation is also termed canonical dynamics, while the first equation is
called transformation system (Figure 35.5). In the original work, the nonlinear
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function f was chosen as a weighted superposition of Gaussians, centered at
fixed center points ck that sample the interval between zero and y0. This defines
the mathematical form:

f yð Þ ¼
PK

k¼1wk gk yð ÞPK
k’¼1 gk’ yð Þ y with gk yð Þ ¼ exp

y� ckð Þ2
σ2

 !
(35.6)

The weight coefficients wk of the function f are adjusted by learning. For multi-
dimensional movement trajectories x(t) one such dynamical system is specified
separately for each component. There is thus no coupling between the different
degrees of freedom of the controlled movements, in contrast with muscle
synergies. Extensions for the generation of periodic movements have been
proposed (Ijspeert et al., 2013). In this case, the canonical dynamics is given
by a limit cycle oscillator, which produces an oscillation with constant ampli-
tude and a linear increase of phase over time (Figure 35.5, gray curves). The
nonlinear function f is then made dependent in a periodic way on this generated
phase variable. In fact, there has been a theoretical discussion about whether
periodic and nonperiodic movements require a different type and whether the
may even be represented separately in the brain (e.g., Aoi & Funato, 2016;
Schaal, Kotosaka, & Sternad, 2000; Schaal, Sternad, Osu, & Kawato, 2004;
Schöner, 1990).
Work in robotics has massively extended the original concept of dynamic

movement primitives, e.g., by combining it with probabilistic Bayesian infer-
ence (Paraschos, Daniel, Peters, & Neumann, 2018), linking it to reinforcement
learning (e.g., Kober & Peters, 2011; Ruckert & d’Avella, 2013; Schaal, Peters,
Nakanishi, & Ijspeert, 2005), or by investigating the nonlinear stability proper-
ties of such models (Wensing & Slotine, 2016). Further approaches have linked
the concept of dynamic movement primitives and primitives based on
dimensionality reduction as discussed in the previous section (Mukovskiy,
Slotine, & Giese, 2013; Ruckert & d’Avella, 2013). Such methods have been

Figure 35.5 Dynamic movement primitives (schematic illustration). A canonical
dynamics generates a standardized trajectory from an initial state y0 to the
attractor state y ¼ 0 for the modeling of point-to-point movements (black
curve), or a stable oscillation for the modeling of periodic movements (gray
curve). Via a learned nonlinear function f(y) the state of this canonical system
drives a transformation dynamics that generates the output trajectory x(t),
which (for point-to-point movements) has the goal position xg as attractor.
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powerful enough for the online control of coordinated full-body movements of
humanoid robots (Mukovskiy et al., 2017). Other formulations of dynamic
movement primitives have been proposed, which exploit other types of
differential equations, e.g., based on inverse models that map the actual
velocity onto joint forces, parameterized by learned superposition of basis
functions (Thoroughman & Shadmehr, 2000), or based on superpositions of
sub-movements or mechanical impedances (Hogan & Sternad, 2012).

35.4 Neural Control Models

A central goal of motor neuroscience is to determine how neural
activity gives rise to movement. To this end, a traditional investigative
approach is to seek correlations between single cell activity and various motor
variables. The premise of this approach is that motor neurons are tuned to
specific motor parameters such as end-effector velocity or muscle torque, analo-
gously to how early visual neurons are tuned to visual features such as contrast
or orientation. A core prediction of this perspective is that a neuron’s response
should be tied to a certain movement variable, regardless of context or phase in
motion generation. Over past decades, many attempts have been made to
determine what variables are represented by single cell activity. While this
approach has been successful to some degree for subcortical structures, such
as spinal circuits (Fetz, Perlmutter, Prut, Seki, & Votaw, 2002; Yanai, Adamit,
Harel, Israel, & Prut, 2007), findings in the cortex were rather inconclusive;
while some cells were found to represent high level parameters such as move-
ment goal or a target joint configuration (Graziano, 2006; Umilta et al., 2008),
others reportedly represented low-level instantaneous variables, such as torque
or force (Cabel, Cisek, & Scott, 2001; Cheney & Fetz, 1980; Kalaska, Cohen,
Hyde, & Prud’homme, 1989), and velocity (Moran & Schwartz, 1999).
Critically, in many cases it was found that neuronal response is not steadily
tuned to a certain variable, but rather systematically modulated throughout
motion execution (Churchland & Shenoy, 2007b; Sergio & Kalaska, 1998), or
depends on other parameters such as initial position (Caminiti, Johnson, Galli,
Ferraina, & Burnod, 1991). These findings have led researchers to seek other
investigative approaches.

35.4.1 Dynamical Systems Perspective

The previously mentioned findings, along with technological advances which
allowed simultaneous registrations of hundreds of single-cell responses, contrib-
uted to a gradual shift from a single-cell representational approach to an
approach that focuses on the dynamics of the system as a whole. Rather than
attempting to understand the motor system in terms of explicit motor variables,
the dynamical systems (DS) perspective adopts the stance that the motor system
is first and foremost a pattern generator, and as such, should be understood in
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terms of its dynamics (Saxena & Cunningham, 2019; Vyas, Golub, Sussillo, &
Shenoy, 2020). As in reservoir computing approaches (Jaeger & Haas, 2004;
Maass, Natschlager, & Markram, 2002), it is assumed that motor cortex
produces a rich spectrum of stable solutions that evolve in a much lower-
dimensional space, and which can be mapped onto relevant motor variables.
A core insight of this perspective is that, regardless of the precise parameters
that the motor system may encode for (e.g., muscle activations, kinematic
variables), the dimensionality of the encoded parameters is significantly lower
than that of the neural states that encode them. Most investigative efforts in this
domain thus seek to uncover low-dimensional dynamical structures that under-
lie neural correlates of motion. Mathematically, the dynamics of the neural
system are defined by the relation between the neural state and the change in the
state, at each moment in time:

_r tð Þ ¼ f r tð Þð Þ þ u tð Þ (35.7)

where the neural state r tð Þ 2 RN is the instantaneous firing rates of N neurons,
the function f :ð Þ determines the system’s intrinsic dynamics, dictated by recur-
rent neural connectivity, and u tð Þ corresponds to neural input signals. At each
time step the neural state is “read out” and transformed to muscle activations
via downstream neural circuitry, thus converting a trajectory in neural space
into a trajectory in task space. Focusing on the intrinsic dynamics, i.e., analyz-
ing the differential equation _r tð Þ ¼ f r tð Þð Þ, it is evident that (in absence of noise)
the initial state r t0ð Þ ¼ r0 uniquely determines the evolution of the neural system
state for any t � t0. Therefore, a judicious choice of f :ð Þ (e.g., adjusting the
neural connections by means of motor learning) makes it possible to produce
different movement patterns simply by setting the system to different initial
states. Indeed, evidence suggests that such a motion preparation mechanism is
implemented by the motor system. Churchland and colleagues (Churchland,
Yu, Ryu, Santhanam, & Shenoy, 2006) demonstrated that in monkeys perform-
ing a delayed-reaching task, cross-trial neural variability is reduced after target
onset, and in (Churchland & Shenoy, 2007a), the authors showed that disrup-
tion of PMd preparatory activity via electrical micro-stimulation increased
response time but had little effect on the movements themselves. Importantly,
disruptions early into the preparatory period only weakly affected the response
time, while near go-cue disruptions had the largest effect. These findings suggest
that during movement preparation, the neural state makes transitions to a
specific region of state space, which then determines the initial state for
motion-producing neural dynamics. The DS perspective therefore maintains
that preparatory activity is a fundamentally separate process from motion
execution, and reflects a computation whose goal is to bring the system’s state
to a specific position in neural space. This is in sharp contrast to the representa-
tional view, according to which preparatory activity is merely a sub-threshold
version of motor execution activity, as cells’ tuning properties are assumed to be
context-agnostic. However, this raises a problem: if neural preparatory activity
is not sub-threshold, how does the DS view account for the lack of movement
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during motion preparation? Initial hypotheses centered around the idea of a
gating mechanism; however, evidence for this is lacking (Kaufman,
Churchland, & Shenoy, 2013), leading researchers to seek mechanisms which
are intrinsic to the neural activity. Indeed, further investigations have revealed
that neural response patterns during preparation are nearly orthogonal to
responses during movement (Elsayed, Lara, Kaufman, Churchland, &
Cunningham, 2016; Kaufman, Churchland, Ryu, & Shenoy, 2014), thus
allowing the same neural machinery to implement two related but
distinct circuits.

Another result of the DS approach, which links to properties of dynamic
movement primitives, is that the neural population activity during complex
movements can be explained to a substantial degree by an oscillatory dynamics.
This was demonstrated by applying a novel dimensionality reduction technique
to the neural population activity. Researchers have demonstrated that the
neural trajectories during reaching movements have a strong rotational com-
ponent, similar to those observed during rhythmic motion (Churchland et al.,
2012). This is much in line with the premise of the approach, that complex
activity is generated by dynamical structures evolving in much lower-dimen-
sional manifolds, effectively making a link to the idea of dynamic movement
primitives that originally were defined on a purely phenomenological basis, and
not at a neural implementation level. Alongside theoretical contributions, the
DS perspective paved the way for key applications in the field. A prominent
example is LFADS (Sussillo, Jozefowicz, Abbott, & Pandarinath, 2016), an
artificial neural network model which leverages DS principles.

35.4.2 Modularity in Neural Network Models

Early neural network models for motor control have focused on different
specialized circuits within the motor hierarchy, e.g., spinal reflex loops, central
pattern generators, the cerebellum, or motor cortex. Related models were
primarily aiming at reproducing the properties of neurons in the relevant parts
of the central nervous system. In addition, a number of computationally motiv-
ated models have been proposed (for review, see Tanaka, 2016), and principles
from optimal control have been used to train the weights of neural networks for
the computation of control signals (Huh & Todorov, 2009).

Modularity in network models has been addressed in two different ways: with
respect to hierarchical architectures, and with respect to spatial modules that
control subsets of the available motor degrees of freedom, similar to synergies.
A particular interest over the last years has been hierarchical models. Merel,
Botvinick, and Wayne, 2019 provide a review and a discussion of relevant
computational principles. A number of neural network models proposed over-
arching architectures, including for example, of the cerebellum, motor and
premotor cortex, some even exploiting spiking neurons (DeWolf, Stewart,
Slotine, & Eliasmith, 2016). Other physiologically inspired models have been
developed by extending architectures for the control of spinal reflexes, e.g.,
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including also the basal ganglia or the motor cortex (Kim et al., 2017; Teka
et al., 2017). Also, multi-level spiking network models have been developed for
the control of detailed biomechanical models (Sreenivasa, Ayusawa, &
Nakamura, 2016). Beyond such biologically motivated hierarchical models,
recently a variety of approaches from the field of deep learning have been
applied to motor control. For example, deep spiking neural networks have been
used for the representation of motor plans for humanoid robots (Tanneberg,
Paraschos, Peters, & Rueckert, 2016). In another approach, deep auto-encoder
networks have been used to compress the information in trajectories generated
by optimum control in terms of a low-dimensional manifold, combined with a
network that maps task variables onto points in this learned (latent) manifold
(Berniker & Kording, 2015).
Recent work in technical disciplines shows in fact that hierarchical probabil-

istic and neural network models are suitable for the representation and synthesis
of complex body movements (Taubert, Christensen, Endres, & Giese, 2012),
including also applications of deep reinforcement learning (Holden, Saito, &
Komura, 2016). Interestingly, deep recurrent auto-encoder network models
have been shown to reproduce behavioral as well as neural activity data from
the human as well as the monkey motor system (Pandarinath et al., 2018). So
far, only a few neural network models have also tried to embed the concept of
spatial primitives or synergies (e.g., Byadarhaly, Perdoor, & Minai, 2012). One
recent study has demonstrated that an organization of neural networks in terms
of synergy-specific modules might accelerate the learning of novel motor pat-
terns (Hagio & Kouzaki, 2018), pointing to a computational advantage of such
modular architectures.

35.5 Conclusions

This chapter discussed three main aspects of motor production. The
first is trajectory planning, which generally involves high-level representations
of motion planning independently of implementation details. The second
aspect, compositionality and modularity, addresses the generation of classes
of movements and the management of redundancy and complexity in trajectory
generation. The third aspect is that of neural control models, outlining current
ideas of the neural implementation of planning and execution of motion, e.g.,
by populations of neurons in the motor cortex.
For trajectory planning, two complementary approaches have been very

successful in explaining observed motion regularities in terms of basic prin-
ciples. The optimization-based approach assumes that the CNS plans motions
that are optimal with respect to some criterion, different models postulating
different optimality functions. Prominent examples for this approach are (open-
loop) smoothness-maximization models, which aim at maximizing the total
temporal higher-order kinematic derivative throughout the movement (notably,
the minimum jerk principle). Another example is optimal-feedback models,
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which assume a compound criterion representing trade-offs between task-
dependent accuracy and the efforts required to achieve a desired accuracy.
The second complementary approach emphasizes the role of geometric invari-
ances in motion planning. Studies in this line of research seek differential-
geometric representations that account for motor regularities and spatiotem-
poral aspects of movements. These approaches tie together observations and
ideas from optimal control theory and offer a computationally efficient mech-
anism by which the CNS might generate optimal movements. A prominent
model in this field is the Mixture of Geometries model, which successfully
accounts for the kinematic and temporal features of the recorded movements
by combining Euclidean, equi-affine, and full-affine representations in a
piecewise-constant manner.

Another central idea in motor control is that of compositionality and
modularity. These concepts are directly related to muscle synergies and the
organization of complex movements in terms of movement primitives. An
example for this approach is the concept of dynamic movement primitives
which allow the generation of complex movements by the dynamic interaction
between relatively simple typically nonlinear dynamical systems. The exact
form of these primitives is typically learned, e.g., using supervised learning or
Bayesian probabilistic methods, aiming at the generation of a maximally large
class of movements by combination of a limited number of such primitives.

Regarding implementation at the lowest level, the notion of compositionality
has been extensively investigated, exploiting the concept of muscle synergies.
This is the idea that during motion realization the CNS does not control
individual muscles directly, but rather activates modules of muscle groups in
a coordinated manner, thus significantly reducing the dimensionality of control
problem and contributing to the solution of the redundancy problem, i.e., that a
given action can be carried out by several different combinations of
muscle activations.

A fundamental question in motor neuroscience is how the above principles
and mechanisms can be implemented by neurons, e.g., in the spinal cord or the
motor cortex. Current popular models in this field have moved away from a
classical representational approach, where it is analyzed how individual
neurons represent different motor-related variables (e.g., kinematics or muscle
activity), towards a dynamical systems perspective, that tries to understand how
the dynamics of the population activity of many neurons encodes and controls
motor patterns. Specifically, this perspective postulates that the effective dimen-
sionality of the underlying neural dynamics must be significantly lower than
that of the state space defined by the involved neural populations. In addition, it
has been proposed that the neural processes during motion preparation should
be separate from the ones during motion production. These predictions are so
far inline with empirical findings, supporting the view that certain circuits
within the motor-neural system can be viewed as pattern generators that do
not necessarily encode individual motor variables, but rather generate behavior
by dynamic self-organization processes.
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PART V

General Discussion

This final part explores some significant and consequential issues relevant to
computational cognitive sciences and offers some assessments and evaluations.
These chapters provide theoretical or historical perspectives on computational
cognitive sciences.
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36 Model Validation, Comparison,
and Selection
Leslie M. Blaha and Kevin A. Gluck

36.1 Introduction

Science progresses through a generative, competitive do–improve–excel
process. Take as an example what may be considered the earliest attempt at
simulating complex human cognitive processing: the research by Newell, Shaw,
and Simon (1958) on heuristic problem solving. As described by Simon (1996),
the procedure by which “a computer could use heuristic search methods to find
solutions to difficult problems” (p. 206) was known to them with confidence on
December 15, 1955. They executed these processes via human simulation (by
family members and graduate students) in January 1956, then followed that up
with simulation on a computer (the JOHNNIAC, written in IPL-II) on August
9, 1956. This was the theorem-proving model known as the Logic Theorist.

These computational cognitive science pioneers were doing each of these
things for the first time. Of course, that was only the beginning. Just doing it
was not enough. Through 1956 and 1957 they worked on improving problem
solving via computational simulation “. . . by inducing the machine to remem-
ber and use the fact that particular theorems have in the past proved useful to it
in connection with particular proof methods” (Simon, 1996, p. 208).1 A natural
outcome of these improvements was a combination of computational represen-
tations and mechanistic processes excelling as explanations of those complex
cognitive processes. These accomplishments provide examples of the major
themes of this chapter – validation, comparison, selection – from the origin
story of the computational cognitive sciences. By the time the Psychological
Review paper about this groundbreaking work was published, it already
describes their efforts to validate the model against human performance on
the same task, to compare their theory to other theories and alternative model
variants, and to select among those variants the ones that seem increasingly
well-supported by the available data (Newell et al., 1958).

This pattern repeats continuously throughout the computational cognitive
sciences, and all sciences, as the research community asks increasingly sophisti-
cated and diverse questions about what is known and what can be done. The
evidence is all around. The present handbook is filled with examples of the

1 In a letter from Herb Simon to Bertrand Russell, reproduced in Simon’s autobiography, Models
of My Life.
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do–improve–excel process and the substantive progress resulting from model
validation, comparison, and selection. As the breadth and depth of theories
increase, and as models become more complex and capable, the process always
starts with “Can it be done?” There must be that first proof of concept. After
that the goal shifts, and bigger, better, faster, more wins the day. This relentless
evolution drives questions about how to know whether, or the extent to which,
the models are improving. How is this evaluated? Answers to that question are
at the heart of methods associated with model validation, comparison, and
selection, and they are the focus of this chapter.

36.2 Purpose

The purpose of the present chapter is to provide a widely accessible
description of key considerations and methods important in model evaluation,
with special emphasis on validation, comparison, and selection. Achieving that
purpose gets a bit recursive, in that it is helpful in selecting among these
methods to consider the purpose of the model. Similarly, the purpose of the
model can best be understood in the context of the purpose of the science.
A generally accepted position regarding the purpose of science is that it is to

add knowledge and improve understanding of phenomena. Such a conceptual-
ization emphasizes science as the systematic search for fundamental truth.
Rosenbloom (2013) takes a broader position on the purpose of science by
including both improving understanding and shaping the environment. The latter
blurs the traditional line between science and engineering through the Pasteur’s
Quadrant idea (Stokes, 1997) that science may include both purely theoretical
and applied (or use-inspired) aspects.2

Some scientists and philosophers of science specify sub-purposes of science,
such as to observe, experiment, describe, explain, and predict. This recognizes
the multi-faceted, evolving nature of scientific pursuits and the questions asso-
ciated with them. Scientists observe and experiment to produce qualitative and/
or quantitative empirical data. These data are the source of the phenomena they
are trying to understand. They describe those phenomena and start toward the
sub-goal of explanation by developing a theory of why those phenomena exist.
A typical first step, for most, is to express a theory in natural language. Verbal
(or written/narrative) theorizing helps start discussion and debate about a
phenomenon where there is no or little existing theory and helps with reasoning
about potential mechanistic explanations that might be useful. Verbal theories
can even work well as the endpoint of the scientific agenda when there are clear
qualitative boundaries on the predictions of the theory. However, the complex-
ity of cognition usually requires moving to computational/mathematical imple-
mentations to do a more nuanced evaluation and explore the implications of

2 Also important and relevant to this book is Rosenbloom’s proposal that computing is a fourth
great scientific domain, on par with the more established and traditional life, physical, and
social sciences.
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interacting explanatory mechanisms (McClelland, 2009). Formal implementa-
tions of theories also have the benefit of feeding back into future theory-driven
experimentation, in which the models can be used to directly inform the
empirical tests needed to evaluate the theories. Chapter 1 of this handbook
provides additional perspective on verbal theories, computational theories, and
mathematical theories, in relation to complexity and process details. Given
multiple advantages associated with moving beyond the limitations of concep-
tual box-and-arrow theories and verbal models, from this point forward, unless
otherwise indicated, all references tomodels should be interpreted as substantive
models implemented as formal computational systems.

Evaluations of models motivate both new observations and experiments, as
well as iterative improvements to the implementation of the models. Although
the process may start by implementing a single model and evaluating its
validity, if the phenomena are sufficiently interesting or there is some promise
a good model could be useful in shaping the environment and improving the
human experience, then scientists and engineers work to improve the model.
This can lead to comparisons among candidate models and eventually to
selecting leading models that clearly excel. Model evaluation enables the com-
putational cognitive sciences to do–improve–excel.

Clarity of purpose is important throughout the computational cognitive scien-
tific process. Nowhere is this more true than in the context of evaluating models.
Therefore, purpose is a pervasive theme throughout this chapter. Purpose pro-
vides the why behind the what and the selection of the how. Clarity of purpose can
be achieved by asking and answering relevant questions to focus attention and
inform the use of evaluation methods. A starter set of examples includes:

• What is the scope of the phenomena of interest?
• How much is understood about those phenomena?
• Is there a theory of why those phenomena occur?
• Is there a model as an instantiation of that theory?

A positive response to the last of these, the implementation of at least one model
of some phenomenon of interest, is an obvious prerequisite for starting down
the model evaluation path. Somewhat less obvious is the requirement for
verification that the model implementation and its associated data accurately
represent the developer’s conceptual description and specification (Roach,
2009; U.S. Department of Defense, 2011). Model verification processes deter-
mine whether the model is implemented correctly. Was it built right? Is it bug
free? Model implementations should always be verified prior to validation,
comparison, and selection.

36.3 Model Validation

Model validation is evaluating a model for the purpose of determining
the degree to which the model (and its associated data) is an accurate
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representation of the real world from the perspective of its intended uses
(Roach, 2009; U.S. Department of Defense, 2011). This means asking if the
structure of the verbal/textual descriptions is consistent with the underlying
theory, if the formally instantiated mechanisms are appropriate ones, and if
the behavior of the model is consistent with the body of related observations.
Validation is about asking if it is a good model, or in Estes’ (2002) terminology,
an appropriate model. A model is appropriate if it is necessary and sufficient for
prediction of the data. As explained by Estes, a model is sufficient if its predic-
tions match the empirical data. To determine whether that sufficient model is
also necessary requires changing the assumptions of the model and evaluating
whether its predictions still match the empirical data. If the modified model’s
predictions no longer match the empirical data, then there is evidence the model
is necessary, in addition to being sufficient. It is an appropriate model. The use
of the indefinite article, an, rather than the definite article, the, is intentional
when describing appropriateness, due to the identifiability problem (Anderson,
1990). Identifiability is the fundamental challenge that there exists a very large
set of model implementations that make equivalent predictions, rendering it
impossible to identify with certainty the model that is the singular best account
(Bamber & Van Santen, 2000). The most that can be hoped for is to accumulate
evidence that a model is appropriate. It cannot be proven conclusively that it is
The One.
Over the course of the past century, scientists identified many different types of

validity, all of which have some potential relevance to the evaluation of models.
The type of validation most relevant in a specific research effort, or at a point in
time within that research effort, depends on the purpose of the particular model.
Slaney (2017) provides a comprehensive history of validation in psychological
science, especially in psychological and educational testing theory and method-
ology. Some well-known versions of validity include face validity (Mosier, 1947),
criterion, content, and construct validity (Cronbach &Meehl, 1955). Face validity
is a subjective assessment (i.e., Does it seem valid on the face of it?). Criterion
validity is a measure of the degree to which some new item (i.e., test or model)
performs similarly to an external reference criterion that has been determined to
have high validity, such as human performance or a previously developed artifact
that is considered a gold standard. Content validity is an assessment of the degree
to which all relevant aspects of the topic or phenomena of interest have been
addressed. Construct validity is an assessment of whether the implemented arti-
fact, be it a measurement test or a model, is in fact measuring or modeling the
target of interest (i.e., is it achieving its purpose?). Recently, Campbell and Bolton
(2005) introduced application validity to represent the broader aspiration that
some models are intended to be useful beyond their theoretical contributions,
such as in decision support, system design, or training.
Although most of these validity variants have their origins decades ago in

psychometrics, they map conceptually to broader use across the computa-
tional cognitive sciences. For instance, criterion validity maps to an
evaluation of the correspondence between human data and the data produced
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by a model, whether predictive, concurrent, or postdictive. Content validity is
an evaluation of the sufficiency and necessity of the parameters, terms, or
mechanisms implemented in the model. Construct validity maps to a
qualitative evaluation that the model is indeed an implementation of the
cognitive processes of interest. These and other forms of validation have
different methods associated with them that cluster into two broad categories:
qualitative and quantitative validation.

36.3.1 Qualitative Model Validation

An initial model validation question, where most computational modeling
begins, is whether the model produces the phenomenon of interest at all. This
is a qualitative “Does the model do it?” assessment. The base capability is the
criterion of interest.

The most informal version of qualitative model validation is a face validity
assessment by a subject matter expert. This is common in complex, applied
modeling and simulation contexts in which the use of more formal and compre-
hensive model validation approaches can be intractable or prohibitively expen-
sive, and therefore out of scope of the development contracts. Science and
technology can have a lot of influence, in the sense of shaping the environment,
if the right people give the model a thumbs-up. A view of the other side of the
science coin, the science-as-understanding side, allows that among the subset of
formal models that are generative, behavior-producing models, the proof-of-
concept demonstration that a model can produce a behavior serves as a candi-
date explanation of that behavior (Simon, 1992).

The follow-up question, of course, is “How good a model is it?” The domin-
ant approach to answering this question in the second half of the twentieth
century was to compare one or more behavioral metrics of interest in the human
data (e.g., accuracy, response time, choice pattern) to the same metrics pro-
duced by the model, and compute a summary descriptive statistic relating the
two datasets as an evaluation of how similar they are. The more similar, in the
form of higher correlation or lower deviation, the better the model. Although
based on numerical/statistical fit, the conclusion reached is a qualitative one
regarding model validity. If the match of model data to empirical data is
acceptably good, the model is acceptably valid.

Roberts and Pashler (2000) published a critique challenging the usefulness of
this so-called Goodness-of-Fit (GOF) approach to computational cognitive
science, especially critiquing an over-reliance on GOF as an endpoint in
model validation. An assortment of others came to the defense of GOF, not
as an endpoint, but as a useful contributor to the scientific mission when done
responsibly (Rodgers & Rowe, 2002; Schunn & Wallach, 2005; Stewart, 2006).
In the end, there is an important role for GOF in model validation, comparison,
and selection. The topic recurs throughout this chapter.

Model validation should begin with qualitative evaluation. Qualitative evalu-
ation does not mean simply creating a verbal description of model behavior or
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properties; rather, it means leveraging descriptive statistics and data visualiza-
tions to summarize the ranges of model performance, quantify ordinal patterns,
and visually test for consistency with underlying assumptions, or construct
validity. The underlying assumptions to be evaluated will be specific to a model
or a type of data, and will dictate the choices of specific methods. For example,
one might use a quantile-quantile (Q-Q) plot to qualitatively test for data
distribution normality, or test for statistical independence via comparisons of
marginal and joint probability distributions. Evaluating assumptions of select-
ive influence can be done with nonparametric ordinal statistical comparisons,
such as the Kolmogorov-Smirnov test of distribution ordering.3 For more on
methods for assessing statistical properties of data, see Tukey (1977).

36.3.1.1 Parameter Spaces and Simulation

Qualitative evaluation of models requires generating data from the model. In
the case of deterministic models, one set of data is enough for evaluation;
however, it turns out deterministic models are a rare exception in cognitive
science. The stochastic nature of cognition is reflected in the stochastic nature of
model performance, so multiple simulations are needed to capture the central
tendency and variability in a model’s predictions. Indeed, Roberts and Pashler
(2000) argue that without knowing the range of behaviors a model can predict,
researchers are missing the context required to interpret model comparison and
selection results. A recommended practice is to run multiple (sometimes very
large numbers of ) simulations to generate a range of performance. This can be
done through simulation by varying the model’s free parameter ranges, varying
the inputs or simulated task conditions, systematically varying the presence and
absence of key explanatory mechanisms (necessity testing), or combinations of
these (Gluck, Stanley, Moore, Reitter, & Halbrügge, 2010).
A parameter space is defined by the free parameters of a model. Free

parameters are those that vary between conditions, participants, or experi-
ments. Not all parameters in a model are free parameters. A model may have
a constant parameter that is important for model functionality but never varies.
Or it may have a stochastic parameter, such as those representing white noise,
that is governed by a random variable process, but that does not vary with
model conditions. Both of these are not free parameters. The ranges of free
parameters should be varied broadly and systematically, especially early in
working with a model, to gain a comprehensive picture of the model’s predic-
tions. Systematic variation of parameters, such as by factorially combining all
levels of interest of all free parameters, creates a parameter space. The
dimensionality of the space is equal to the number of free parameters. The

3 Delving into the definition and role of selective influence is beyond the scope of this chapter.
Interested readers should consult the extensive body of work in mathematical psychology (e.g.,
Ashby & Townsend, 1980; Dzhafarov, 2003; Dzhafarov, Schweickert, & Sung 2004; Kujala &
Dzhafarov, 2008).
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granularity of the space is defined by the number of values sampled on each
dimension (e.g., if a parameter range is between 0 and 1, is it sampled every .1,
.01, or .001 in that range?).

Graphical representations and other data visualization techniques leveraging
simulations over a parameter space are helpful for characterizing important
aspects of model performance, such as:

1. How variable the model behaviors are (or are not);
2. Which parameters or conditions are associated with higher or lower vari-

ability in the output behaviors;
3. Which parameter ranges are associated with quantitatively and qualitatively

different patterns of behavior;
4. Which parameters or conditions produce behaviors consistent with observed

human behaviors (under the same conditions as the model).

There is no single technique for plotting model predictions that fits all models
and purposes. Good heuristics for selecting a technique are (1) to use a method
of visualization consistent with the way human data are plotted, and (2) to use a
technique that directly relates the data to the theoretical underpinnings support-
ing the model or being tested by the model. When possible, it is useful to plot
both model and empirical data together to evaluate the qualitative similarities
addressing the critical purpose: Does the model reproduce important phenom-
ena in the data? Can it serve as a candidate explanation?

36.3.1.2 Parameter Space Partitioning

Visualizing the breadth of behavioral patterns generated over a model’s
parameter space is important for gaining insights into the flexibility and
potential generalizability of a model, addressing issues such as how many
unique ordinal patterns a model can predict (Myung, Kim, & Pitt, 2000; Pitt,
Kim, Navarro, & Myung, 2006), or how unique the prediction of the specific
pattern in the observed data is amongst the patterns this model generates
(Roberts & Pashler, 2000). Parameter space partitioning (PSP) is a qualitative
evaluation method that makes examining the patterns generated over a par-
ameter space tractable, especially for large parameter spaces (Pitt et al., 2006;
Pitt, Myung, Montenegro, & Pooley, 2008). To use PSP, all the patterns a
model can generate are identified by creating a qualitative or ordinal descrip-
tion, such as X ¼ Y, X > Y, or Y > X. Then the parameter space is divided
into regions defined by these patterns. The model can then be summarized in
terms of numbers of unique patterns or relative prevalence (size of partitions)
of the different patterns (i.e., what is the relative likelihood of different
patterns being observed, given this model explains the process generating
the empirical data?).

An example PSP is illustrated in Figure 36.1. The data are simulated reaction
times from an ACT-R model of fatigue impacts on the psychomotor vigilance
task, in which an observer must press a button as soon as they detect a visual
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counter appearing on the screen (Blaha, Fisher, Walsh, Veksler, &
Gunzelmann, 2016; Walsh, Gunzelmann, & Van Dongen, 2017). The model
has four free parameters: a threshold for utility selection, baseline utility,
fatigue-related decrement, and conflict resolution; a small subset of possible
parameter ranges are used here for illustration. Figure 36.1a plots two
dependent variables of interest: mean reaction time (RTmean) and standard
deviation RT (RTstdev), both measured in seconds. The first step in PSP is to
determine the space of ordinal relationships of interest. For these dependent
measures, there are three relationships of interest: RTmean ¼ RTstdev (diagonal
line), RTmean > RTstdev (lower right triangle), and RTmean < RTstdev (upper left
triangle). Thus, PSP will map regions of the parameter space that produce data
according to these three descriptions. Figure 36.1b shows the PSP plotted for
the two-dimensional space created by the threshold and fatigue decrement
parameters (though the PSP was computed from all four parameters). The
image shows a small region in this parameter space that generates behaviors
where RTmean and RTstdev are equal; a range of parameters (high threshold, low
fatigue decrement) where RTmean is less than RTstdev, and a larger range of
parameters that produce behaviors where RTmean is greater than RTstdev. The
PSP indicates the model can capture all three patterns of data and
RTmean > RTstdev is the most prevalent behavior. The PSP can then be com-
pared post hoc to existing human data (postdiction) or a priori to future model
data (prediction). For example, the prevalent RTmean > RTstdev behavior is

Figure 36.1 PSP applied to data simulated from an ACT-R model of the
psychomotor vigilance task. (A) Mean reaction time plotted against standard
deviation of reaction time showing three possible data patterns (diagonal line
of equality and two gray regions). (B) Partitions of the parameter space into
the regions defined by the qualitative patterns they simulated.
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typical for alert responding, and the parameters associated with the behavior in
the PSP are in the same range as has been fitted to alert participants. The
behaviors where RTmean < RTstdev are associated with ranges of parameters
shown to reflect increasing levels of fatigue, which causes increased response
lapses and a general reaction slowing.

It is important to emphasize that researchers can and should leverage the
simulation and visualization of model outputs for more than post hoc compari-
sons with behavioral patterns observed from humans (Blaha, 2019). They can
be used a priori to derive novel predictions for conditions or stimuli that were
not previously used in experiments and to identify if there are patterns of
behavior predicted by the model that are unrealistic for humans, such as
response times that are too fast. Unrealistic predictions motivate model refine-
ment. One refinement might be the identification of parameter range restrictions
that must be made to keep model behaviors realistic; for example, model
stability in dynamic systems is often maintained by restricting parameters to
be less than or equal to zero, because positive parameters result in nonstable or
chaotic dynamics. Another refinement may be revisiting model instantiation
choices to identify if additional mechanisms or constraints need to be built into
the model.

36.3.1.3 Nonparametric Model Validation

There are some model evaluation techniques grounded in qualitative and non-
parametric evaluation of empirical data patterns. Many of these methods
leverage visual patterns indicative of classes of behavior. Systems factorial
technology relies on the nonparametric survivor interaction contrast (SIC) of
response times to evaluate evidence for parallel and serial information-
processing architectures. The SIC is computed as an interaction (double differ-
ence) of the RT survivor functions from a factorial experimental design,
resulting in a curve over the range of response times (for more technical details,
see Houpt, Blaha, McIntire, Havig, & Townsend, 2014; Townsend & Nozawa,
1995). Broad classes of architectures predict unique SIC signatures, allowing
whole classes to be ruled out for not matching canonical SIC patterns. Example
signatures are shown in Figure 36.2 (see also, Harding, Goulet, Jolin,
Tremblay, Villeneuve & Durand, 2016; Little, Altieri, Fifić, & Yang, 2017).

Other nonparametric methods use benchmark thresholds to define meaning-
ful partitions of behavior. For example, classes of information processing
capacity can be gauged qualitatively by whether the capacity coefficient ratio,
a ratio of response time hazard functions, is equal to, greater than, or less than
1. The three qualitative classes allow for inferences to be drawn about the
plausible and implausible processing mechanisms generating the data (Houpt
et al., 2014). A similar example of a qualitative threshold-based validation
include the race model inequality and related bounds on the distributions of
response times that can be generated by independent parallel processing mech-
anisms (Colonius & Vorberg, 1994; Miller, 1982; Townsend & Eidels, 2011).
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When empirical performance exceeds the bounds (upper or lower), then the
cognitive information-processing mechanisms are not consistent with independ-
ent parallel processing mechanisms, allowing researchers to again rule out
candidate mechanisms and hone in on those that are consistent with the
empirical observations.
Receiver operator characteristic (ROC) curves, which plot hit rates on the

x-axis and false alarm rates on the y-axis, enable evaluation of bias and
discriminability trade-offs in signal detection theory by the shapes of the curves
(Macmillan & Creelman, 2005). Over several observations, hit v. false alarm
points forming curves from lower left to upper right may indicate changing bias
or respond thresholds with a constant sensitivity (known as iso-sensitivity

Figure 36.2 Canonical SIC signatures for four classes of architecture leveraged
in qualitative, nonparametric systems factorial technology analysis. The SIC is
computed as the interaction contrast of survivor functions of response times.
Inferences about architecture are made from the shape of the SIC; when the
SIC does not match a canonical shape, the class of that canonical shape is ruled
out as a candidate process for generating the data.
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curves). Points forming curves moving from upper left to lower right may
indicate changing sensitivity with a constant bias or threshold (iso-bias curves).
Other shapes may indicate both sensitivity and bias are changing between
measurements.

The key to many of the nonparametric validation techniques is that theoret-
ical foundations identify the critical discriminating patterns and theory-driven
experimental methodology dictates the types of data needed and the appropri-
ate statistics to be computed to facilitate use of the qualitative analytics. For the
types of questions these are designed to answer, they can provide powerful
research tools for model evaluation.

36.3.2 Quantitative Model Validation

Quantitative model evaluations are often collectively referred to as Goodness-
of-Fit (GOF) techniques. GOF is a quantitative measure expressing how well a
model accounts for a set of empirical data. For some researchers, GOF
approaches are preferred for identifying the best fitting model, determined as
the one with the closest match to data. The approach is relevant to both the
validation of a single model and to model comparison. For the validation of a
single model, GOF is one way to quantitatively address questions like: which
parameter values in the space of possible parameter values produce behaviors
closest to the data, or when the model produces a numerically close approxima-
tion of the observed behaviors.

GOF metrics tend to fall into two categories. One set of metrics quantifies
the closeness or distance of model performance to observed data. The other set
quantifies the likelihood that a set of observations would be produced by the
model under a given set of parameters and conditions. Selection between these
methods is often dictated by the nature of the data, the formalism (computa-
tional, statistical) of the model, and the goals of the researchers. This chapter
reviews the basics of the tools and refers readers to textbooks by Busemeyer
and Diederich (2010) and by Farrell and Lewandowsky (2018) for
extensive details.

36.3.2.1 Closeness

Quantifying model closeness begins with identification of a discrepancy func-
tion; this function provides a single numerical summary statistic of difference
between observations and the model predictions (Broomell et al., 2011; van
Zandt, 2000; also referred to as objective function in Busemeyer & Diederich,
2010). A popular choice is to measure the error between each predicted obser-
vation and the true observation in the data. Define a set of J empirical
observations as D ¼ dj

� �
; define the set of J model predictions, or data points

generated by the model, as P ¼ pj
� �

. A common set of statistics are based on
the sum of squared errors, defined as
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SSE ¼
XJ
i¼1

pi � dið Þ2: (36.1)

Popular variations include the mean squared error MSE ¼ SSE
J and the root

mean squared errorRMSE ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
MSE

p
. Note RMSE is often also referred to as

Root Mean Squared Deviation or RMSD, but as Pitt, Myung, and Zhang
(2002) point out, RMSD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE= J � kð Þp
(not just divided by J), thereby

providing a penalty term for the number of parameters, k, similar to other
information criteria as discussed below. A known pitfall of all these least
squares metrics is that all errors are treated equally; consequently, some
researchers prefer a weighted least-squares approach, in which deviations
are weighted by the inverse variance of the model predictions:

WSSE ¼ PJ
i¼1

pi�di
σpi

� �2
. Busemeyer and Diederich (2010) note that WSSE is

mathematically equivalent to the Pearson chi-square statistic.

36.3.2.2 Likelihood

Another set of discrepancy functions is defined by the likelihood function:

L Mj Dð Þ ¼ f DjMð Þ ¼
YJ
i¼1

f dijMð Þ: (36.2)

The likelihood function is used to estimate the probability that a model, M,
generated a set of observations, D. The greater the likelihood value, the less
discrepancy there is between the data and model. Because likelihood values tend
to get rather small, especially as the amount of data increases, it is more
common to use the log likelihood transform, preserving the ordinal character-
istics of the likelihood functions. Frequently, researchers take a further step to
compute the G2 statistic, defined as twice the negative log likelihood for a
model:

G2
m ¼ �2 ln Lmð Þ: (36.3)

G2 is often preferred as a measure of lack of fit, rather than the maximum
likelihood estimate, because G2 follows a chi-square distribution with k degrees
of freedom, where k is the number of free parameters in the model, and
therefore G2 lends itself to statistical hypothesis testing.
Used alone or in combination, GOF metrics are summary statistics that

might be leveraged as a complement to the summary statistics on the behaviors
of interest (e.g., overall accuracy, choice proportions, mean response time, etc.).
Fit statistics could be combined with the visualization and exploratory data
techniques discussed in the qualitative model validation section to explore the
characteristics of a model. Gluck et al. (2010) leveraged such a combination of
large-scale simulations over a parameter space, RMSE estimates of GOF for
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each simulation, as well as visualization of the resulting surfaces, to evaluate the
necessity of model assumptions in producing model behaviors best explaining
the data under study. In this case, the data were from the Dynamic Stocks and
Flows model competition (Lebiere, Gonzalez, & Warwick, 2010). Through this
process, they demonstrated how Estes’ (2002) criteria of necessity and suffi-
ciency of model components can be tested. GOF metrics also have a critical role
to play in the validation of a single model through the estimation of best fitting
parameters, which should be done prior to making any model comparisons or
selections.

36.3.3 Parameter Estimation

Inferences about models are closely related to the parameters used in them,
particularly a model’s content and criterion validity. As discussed with PSP,
different combinations of parameter values may produce different patterns of
behaviors. Models may have narrow parameter ranges that produce valid or
human-like levels of performance, and even with wide ranges of parameters,
some models may only make limited ranges of predictions (Veksler, Myers, &
Gluck, 2015). Ensuring relevant and valid inferences requires shifting from
broad explorations of model properties to selecting the model parameteriza-
tions that suit one’s modeling purposes. The goal of parameter estimation is to
identify the parameters that provide the best fit to the empirical observations
under study.

Although qualitative evaluations of models can be done with default or other
experimenter-based choices of parameters, or engage large parameters spaces,
there are a number of reasons to rely on objective, quantitative evaluation and
optimization of parameters. If one’s purpose is comparing different models,
perhaps to seek resolution between competing theories, then it is critical to
ensure the best fitting parameters for each model are selected prior to such
comparison. This ensures comparison of each model’s best accounts of the
phenomena. There is strong potential to falsely reject a model due to poor fits
or arbitrarily chosen parameters. This can be avoided through rigorous
parameter estimation.

Parameter estimation is similarly critical if one’s purpose is to make add-
itional inferences about cognitive states or psychological diagnoses based on the
parameters themselves. In substantive theoretical models, the parameters of a
model are proxies for psychological constructs or mechanisms, such as degree of
fatigue, strength of attention, or risk-seeking/-aversion preference. Researchers
may use parameter estimates to compare groups of participants (control vs.
manipulation, young vs. old, trained vs. novice, etc.), or researchers might seek
to correlate parameter estimates with other psychometric scale or assessment
measures. A growing interest in technologies for training and decision support
requires robust and accurate parameter estimates for predicting states of inter-
est and providing appropriately targeted interventions.
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36.3.3.1 The Parameter Search Process

The mechanics of parameterization are conceptually straightforward.
A researcher must define:

1. The free parameters in a model;
2. The plausible ranges for those parameters;
3. An appropriate fit statistic with criteria for what defines best fit;
4. A method of searching the fit statistics over the parameter ranges to meet

the criteria.

Thus, parameter estimation is the first point in model evaluation requiring
maximization or minimization of GOF, because conceptually it is the
parameter values that optimize GOF that provide the best account of the data.
If working with any of the least-squares statistics like those reviewed above
(SSE, MSE, RMSE, RMSD), then the best fitting parameters will be those that
minimize GOF. If using a likelihood-based fit statistic, the best fitting param-
eters will be those that maximize GOF.

36.3.3.2 Parameter Space Search-Based Estimation

For parameter estimation, additional consideration must be given to the way
the parameter space is to be searched. Deep explanations of the mechanics of
these techniques is beyond the scope of this chapter, but it will summarize the
major classes of techniques, highlighting some connections to other evaluation
methods. Parameter estimation methods trade off in computational complexity
and time; some are applicable to all types of computational models and others
require closed form, well-defined objective functions to optimize. Readers
interested in a more thorough treatment are referred to Busemeyer and
Diederich (2010) and Farrell and Lewandowsky (2018).
All computational models can take advantage of parameter space search

estimation. In fact, if one uses PSP and similar visualizations to explore
simulated behaviors, one has already taken the first steps toward search-based
estimation. In estimation through search, a parameter space is created as
described above. Then behavior is simulated at least once (more to compute
confident estimates of central tendency and variability) for each parameter
vector in the space. These simulations give the patterns of behavior the model
produces over those ranges of parameters. A GOF statistic is then computed
for every sample in the parameter space against the empirical sample. The
multidimensional surface created by these GOF statistics can be thought of as
an error/likelihood surface. The best fitting parameters are those at the point
of minimal error/maximum likelihood. It is clear that given the potential
combinatorial explosion of the parameter space for models with many
parameters sampled at a fine granularity, this is a computationally
intensive process.
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36.3.3.3 Nonlinear Parameter Optimization

Several techniques are available that implement potentially more efficient,
nonlinear sampling of the error surface to converge on best fitting parameters.
These gain efficiency by following trajectories that move toward the best GOF
parameter set instead of exhaustively testing every point in the parameter
space. A number of techniques are collectively referred to as gradient descent
techniques such as Gauss-Newton descent (Gallant, 1987; Peressini, Sullivan,
& Uhl, Jr., 1988) or simplex techniques (e.g., Nelder & Mead, 1965), which
seek to move in a strictly downward direction on the error surface toward the
minimum. Another class of techniques falls under simulated annealing that
move in a combination of upward and downward directions on the surface to
avoid local minima and nonlinearities to converge on the best fitting param-
eters (Kirkpatrick, Gelatt, & Vecchi, 1983). Other researchers leverage pre-
quential (one-step-ahead) estimation techniques (Dawid, 1984; Shiffrin, Lee,
Kim, & Wagenmakers, 2008), Bayesian estimation methods (Chechile, 2010),
or even genetic algorithms. A more detailed treatment of these techniques can
be found, with sample R code, in Farrell and Lewandowsky (2018) with
additional discussion in Busemeyer and Diederich (2010) and in van Zandt
(2000).

It is important to note that use of these optimization-based techniques often
requires a likelihood function, closed form objective function, or some other
well-defined mathematical formulation for implementation; they may not be
readily applicable to some computational models defined in cognitive or other
logical architectures. It is also important to note these optimization techniques
are not considered to be a part of the cognitive model. A change in optimiza-
tion technique does not equate to a change in the cognitive model itself.
However, if changing optimization techniques results in a different
parameterization or a change in the distribution(s) of predicted performance,
it may result in a substantive change in how the model fares in its
ongoing evaluation.

36.3.4 Cross-Validation

Predictive validity, or the ability of a model to predict novel, unseen data, is
another dimension of interest. For some researchers, generalizability of a
model, where a single model can serve as a candidate explanation for situations
it was not originally designed for, is the target goal of developing general
theories of cognition. The above model validation and parameter space explor-
ation techniques give some indication of the broadness of results that could be
captured by a model. But they do not yet offer a metric of how well a model
accounts for novel empirical data.

Cross-validation is the process of predicting (and measuring model
discrepancy to) a novel set of data using a model with parameters fitted to a
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known set of data; this is also referred to as out-of-sample prediction (Gronau
& Wagenmakers, 2019; Shiffrin et al., 2008). Where the GOF perspective
leverages all available data to estimate model parameters and weigh evidence
for model appropriateness, cross-validation is a computational resampling
approach to model validation that targets predictive validity. It is motivated
by the assumption that if a model represents the true generating process for a
phenomenon of interest, then it will be able to predict well all samples of data
from that phenomenon. Cross-validation is a repetitive process of (1) partition-
ing the data into nonoverlapping training and test sets; (2) optimizing
parameter estimates to the training set; and (3) computing prediction error to
the test set (Hastie, Tibshirani, & Friedman, 2009). This is done over several
partitions of the data to generate a distribution of cross-validation statistics to
minimize the role of sampling error/noise in the model inferences. The model
or parameterization that minimizes prediction error is interpreted as the
preferred model.
Some popular choices of data partitioning are Leave-One-Out (LOO) and K-

fold cross-validation. In the LOO procedure, a single data point is placed into
the test set; the model is fit to all the remaining data and then used to predict
that single test point. This is repeated for all points in the data set (Geisser,
1975; Stone, 1974, 1977). K-fold cross-validation similarly iterates over data
partitions, but the data are partitioned into K roughly equal sets and then each
set is used in turn as the test set against K-1 models trained separately on all the
remaining partitions. This gives an approximation of the expected prediction
error across training sets drawn from similar or future experiments (Hastie
et al., 2009). Other ways of partitioning the data include split-half cross-valid-
ation (first half of the data is the training set, second half is the test set) and split-
sample cross-validation (random selections of data withheld as the training and
test sets). Note that cross-validation of this nature is all done with a single set of
data; generalization to novel data sets is not considered. However, the same
process of fitting to an existing set and then testing fit on a novel set (say, from
another experiment) is a desirable way to improve and excel in cognitive
modeling (see Pitt & Myung, 2002).
An advantage of cross-validation is that it can be used to evaluate predictive

validity for any type of computational cognitive model, regardless of
formalisms. Researchers only need a way to optimize the model for a training
set and then assess that model’s approximation to the test set. For a discussion
of some of the pitfalls of overreliance on cross-validation though, see Navarro
(2019).

36.3.5 Model Flexibility Analysis

Veksler, Myers, and Gluck (2015) suggested a method for analyzing model
flexibility based on the proportion of a hypothetical data space (i.e., space of
possible data patterns) a model can actually produce. Their proposal is that
this analysis and the proportional phi ϕð Þ metric it produces be used to
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complement rather than to replace other quantitative model evaluation
metrics, such as GOF statistics. Model Flexibility Analysis (MFA) is an
indication of how meaningful other measures are in light of the flexibility of
the model. This is related to the concepts of quantitative and qualitative
testability introduced by Bamber and Van Santen (1985, 2000). They defined
a model to be quantitatively testable if its predictions were highly precise, and
qualitatively testable if not precise but at least falsifiable (see Bamber and Van
Santen, 1985, for precision criteria). They argue that prior to any comparison,
the adequacy of a model should be assessed without regard to other models so
that a model’s ability to capture an observed result is contextualized appro-
priately in the range of possible behaviors (consistent with the argument of
Roberts & Pashler, 2000).

MFA estimates parametric flexibility, rather than flexibility resulting from
stochastic properties of the model. For each unique combination of parameter
values, MFA requires a single predicted point in the data space. Assuming a
model with k free parameters and predictions generated for j unique values of
each parameter in a given simulation, there will be a total of jk predicted points
in the n-dimensional data space for that simulation, where n is the number of
behavioral measures of interest in this simulation. Given the universal interval
UIi (all hypothetical values of each measure of interest i), the total size of the
potential data space is:

Yn
i¼1

UIi (36.4)

The proportion, ϕ, of the n-dimensional potential data space can be estimated
from the predicted points by placing a grid on top of the potential data space
and reporting the proportion of grid cells that include model predictions. Thus,
intuitively, MFA values range from zero to one, as one would expect from a
proportionality measure. MFA is introduced here in the model validation
portion of the chapter because it is appropriate and useful in the context of
individual model evaluation. It can also be used to support model comparison
and selection, which is a convenient segue to Section 36.4.

36.4 Model Comparison and Selection

Model validation is fundamental to the entire endeavor of computa-
tional cognitive science. There is no hope of progress in the absence of validity.
Even at the earliest, simplest stage of the process, with perhaps nothing but a
single dataset or cognitive process of interest and the kernel of an idea for how
to model it – when still wondering if it can be done – the very act of doing it is to
engage in model validation. However, as noted in the introduction to this
chapter, just doing it is rarely enough. The goal evolves. That first qualitative
or quantitative validation of that first model sets a new goal. Perhaps you have
an idea for an alternate model implementation, or someone else has such an
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idea. With such comparands, you enter the phase of comparison and selection.
This is where the purpose changes from doing to improving.
Model comparison does not necessarily have to be competitive. For example,

Gluck and Pew (2005) describe a substantial research investment in develop-
ment of and comparisons among architecture-based human behavior models.
That multi-year effort provided multiple, iterative opportunities for develop-
ment of models, sharing of implementation details, and cross-fertilization of
approaches with a focus on comparison rather than competition. The Dynamic
Stocks and Flows Model Comparison Challenge (Lebiere, et al., 2010) was
similarly committed to the idea of learning and improving together through
comparison across models, although they did actually select some “winners” for
participation in a symposium and a journal special issue. An advantage of
noncompetitive comparisons is they place the emphasis on explanatory mech-
anism and advancing the science through improved understanding of what
works, rather than on bragging rights.
This is not to suggest there is anything wrong with competition. When

improving and starting to excel, it is natural to want to compete. Indeed, there
have been some impressive organized competitions in the computational cogni-
tive science community. A well-known example is the Choice Prediction
Competition (Erev et al., 2010). Even when not an organized event, competition
among ideas and implementations is good for advancing the field. The value of
model competition is not actually in the fame and fortune it brings, but rather in
the body of work it creates by bringing models to common data sets and
challenge problems. Winning the competition is not the end of the story; it is
the start of the next improve phase. The winner resets the baseline and moves
the goal. This brief diversion into the topic of competition was in the service of
making the point that competition is not required for comparison. By contrast,
implicit in the notion of “selection” is that the emphasis is on competition
among models.
Model comparison and selection is the process of evaluating the relative

match between a number of candidate models and at least one set of observed
data. Model comparison is the process of evaluating behavior and fit of multiple
models to make claims about their relative merits as accounts of the underlying
cognitive processes. Model selection uses validation and comparison outcomes
to examine the merits of competing models against criteria for accepting
candidate explanations or for refining theory (Weaver, 2008). Due to inherent
uncertainties regarding which candidate model best represents the underlying
cognitive processes that generated observed data, model selection can be
thought of as an inductive inference problem generalizing from empirical fit
with specific data to overall theory and all instances (Pitt et al., 2008); for some
researchers, the primary purpose of model selection is identifying which model
has the strongest capacity to predict new data. Model selection is therefore
conducted in the context of a specific type of task or against an existing set of
empirical observations (compared with global, graphical exploration of
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models). Although sometimes a single model must be chosen for another
purpose (e.g., measurement), much of the value to improving cognitive model-
ing is derived from the process and leveraging multiple tools for comprehensive,
multifaceted comparisons.

Having established good candidate models through validation and estab-
lished close approximations through parameter estimation, researchers seek to
compare models that likely produce very similar patterns of behavior.
Qualitative evaluation may not be adequate to reject candidate models or to
provide evidence for which model(s) to prefer under different circumstances.
When two or more models of interest make qualitatively similar predictions,
then quantitative comparisons must be relied upon to either identify the model
offering the best numerical approximations to empirical evidence or to
identify the conditions under which the models might produce unique
behavioral patterns.

36.4.1 Comparison Through Goodness-of-Fit

Researchers often seek techniques that help to balance optimizing model fit
and model complexity with a target objective of identifying the least complex
model that provides the closest approximation (best fit). Many popular
choices rely on selection through GOF statistics. The logic behind GOF-
based selection is that the model providing the closest fit offers a closer
approximation of the underlying cognitive processes amongst the alternatives
under consideration (Pitt & Myung, 2002; Roberts & Pashler, 2000).
However, GOF measures alone are not sensitive to the sources of variation
in the data, and GOF-based model selection does not prevent selection of
models that overfit data. It is possible to develop a saturated model, with
numbers of free parameters equal to or greater than the number of empirical
observations, that perfectly recreates the observed data. Thus, it is desirable in
modeling to strike a balance among accuracy (minimizing the discrepancy
between empirical and model behaviors), parsimony (capturing a phenom-
enon with minimal ad hoc assumptions and few parameters; Busemeyer &
Diederich, 2010; Pitt & Myung, 2002; Vandekerckhove, Matzke, &
Wagenmakers, 2015), and complexity.

The research community has found it challenging to settle on a definition
and formalization of complexity that is useful across the range of modeling
approaches used in the computational cognitive sciences (e.g., the nine mod-
eling paradigms represented in Part II of this handbook). Complexity is often
described as the number of free parameters, interdependencies among com-
ponents of a model, or the functional form of a model. Less complex models
are preferred, due to the general scientific heuristic preference for parsimony.
Some make the mistake of conflating complexity with flexibility. Flexibility is
better understood and measured as the range of outcomes a model can
produce (Veksler et al., 2015). It is possible for a more complex model to
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have a less flexible performance space, so using these terms interchangeably
simply creates more confusion among those developing and using
these methods.
In summary, GOF approaches are useful tools, but caution should be taken

to evaluate GOF numerical results in the context of the qualitative patterns
produced by the models to ensure consistency with the theoretical perspectives
and the empirical observations.

36.4.1.1 Nested Model Comparison

One consideration for selecting a model comparison method is whether or not
the two or more models of interest are nested. Nested models refer to the case
where one model of interest is a reduced version of another model of interest.
This often occurs when one free parameter is held constant in one model
(reduced model) and compared to the model where the same parameter is a
free/varying parameter (full model). Toward Estes’ (2002) goal of establishing
necessity and sufficiency of all model components, nested model comparisons
play an important role in testing the necessity of each parameter in contributing
to a model’s explanatory capacity. For an example of nested model comparison
of free parameters’ contributions in the context of general recognition theory,
see Thomas (2001).
When working in a nested model situation, and the models allow for the

computation of likelihood fit statistics, it is possible to take advantage of a
property of the G2 statistic: it is chi-square distributed. The likelihood ratio test
follows from this, testing the contribution of the extra free parameter(s) in the
full model over the restricted model by computing a test statistic from the
difference in log likelihood values of each model:

χ2 ¼ G2
restricted � G2

full ¼ �2 ln Lrestrictedð Þ � �2 ln Lfull
� �� �

: (36.5)

This test statistic is approximately chi-square distributed with degrees of free-
dom equal to the difference in the number of free parameters. Given a desired
Type I error rate, the obtained χ2 can be tested for statistical significance; the
null hypothesis of this test is that there is no difference between the likelihood of
the two models. Thus, the likelihood ratio test evaluates if the additional free
parameters result in a large enough improvement in model likelihood to war-
rant the additional complexity in the model.

36.4.1.2 Information Criteria

It is more common that researchers are interested in comparing nonnested
models, meaning models that are derived in different formalisms or with
different proposed mechanisms to account for the same cognitive phenomena
of interest. In this case, the likelihood ratio test is not appropriate. There are
several other available techniques to compare the accounts these models
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provide of the data. All of these techniques incorporate elements attempting to
balance accuracy and parsimony (Vandekerckhove et al., 2015).

Information criteria build on GOF statistics to facilitate model comparison.
Information criteria are unbiased GOF estimators that simultaneously account
for both the discrepancy between empirical data and model predictions and for
the number of free parameters (complexity) of the model. One of the most
commonly used is Akaike’s Information Criterion (AIC; Akaike, 1973, 1974;
Bozdogan 1990, 2000), defined for model m as

AICm ¼ G2
m þ 2km (36.6)

where km is the number of free model parameters. Another widely used metric is
the Bayesian Information Criterion (BIC); for a single model, BIC is defined as

2BICm ¼ G2
m þ 2km ln Jð Þ (36.7)

where km is again the number of free parameters and J is the number of
observations used in computing the model’s likelihood estimate (Schwarz,
1978). For comparing two models, BIC is defined as

BICAB ¼ G2
A � G2

B

� �� kA � kBð Þ ln Jð Þ (36.8)

where kA and kB are the free parameters for models A and B, respectively
(Schwarz, 1978). Positive values of this formula provide evidence that model A
is a more likely model than B. The BIC penalty term incorporates the number
of parameters and also scales with the size of the data, making it a more
consistent estimator of the true generating model than the AIC, which does
not include such a scaling term. However, a variation of AIC has been proposed
for small samples, referred to as corrected AIC (Burnham & Anderson,
2002):AICcorrected ¼ G2 þ 2k J

J�k�1

� �
. Other variations of information criteria

have been developed, such as the information-theoretic measure of complexity
(ICOMP; Bozdogan, 2000), but the AIC and BIC are currently most prevalent
in computational cognitive science.

Information criteria approaches are popular because they are relatively
simple and transparent to implement and interpret. Comparison of models
can be done by computing AIC, BIC, ICOMP, etc., and rank ordering the
results. Selection is equally straightforward: compute the desired statistic, and
identify which model produces the smallest value.

36.4.1.3 Weighting Evidence for Models

Several researchers have noted that, especially when the minimal criteria
values are close, it is not always clear how much preference should be given
to one model over another. A solution to this is to compute relative model
evidence weights. Vandekerckhove et al. (2015, pp. 306–307) define a general
version of this approach that can be applied to any information criterion
statistic. First, the difference in information criteria statistics between every

Model Validation, Comparison, and Selection 1185

https://doi.org/10.1017/9781108755610.042 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.042


model of interest Mi, i ¼ 1, . . . ,m, to the smallest information criterion is
computed:

Δi ¼ ICi � min ICð Þ: (36.9)

Then this value is transformed back to the likelihood scale and normalized:

wi ¼ exp �Δi=2ð ÞPM
m¼1 exp �Δm=2ð Þ : (36.10)

These weights, referred to as Akaike weights if AIC is used or Schwarz weights
if BIC is used, can then be interpreted as relative preference or degree of
evidence supporting preference of one model over another (see also Burnham
& Anderson, 2002).

36.4.1.4 Bayes Factor

It is increasingly popular to move away from absolute GOF comparison alone
and toward methods that weigh the relative amount of evidence in favor of
different models, as is possible with the Akaike and Schwarz weights. Bayes
factor enables exactly such a comparison. It is defined as the ratio of marginal
likelihood functions for two models (Kass & Raftery, 1995):

BFAB ¼ p yjMAð Þ
p yjMBð Þ : (36.11)

The log of the Bayes factor is interpreted as the weight of evidence for the data
being produced by model A over model B (Shiffrin et al., 2008;
Vandekerckhove et al., 2015); evidence in this case is the probability that the
model is a compelling candidate explanation for the observed data because it
has a high likelihood of having generated the data compared to other candi-
dates. To aid in communication about the strength of available evidence,
Jeffreys (1961) suggested a heuristic categorization of Bayes factor levels for
interpretation of evidence strength, as summarized in Vandekerckhove et al.
(2015). In this system, a ratio greater than 100 is considered extreme evidence in
favor of model A, values of 30–100 very strong evidence, 10–30 strong, 3–10
moderate, 1–3 anecdotal, and 1 being no evidence in favor of either; the values
ranging from 1 down to less than 1/100th are anecdotal to extreme evidence in
favor of model B. From this perspective, model comparison shifts from trying
to find the models with the best GOF to those that offer stronger evidence of
being good candidate explanations.

36.4.1.5 Minimum Description Length

Alternative conceptualizations of high accuracy, parsimonious models are
emerging that move away from the statistical error perspective of the
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information criteria approaches. Minimum description length (MDL), for
example, is a GOF statistic inspired by information compression. Information
complexity is reflected in the length of a program that describes that infor-
mation; if more efficient code can be developed, meaning the length of the
program is shorter than the information itself, then it should be preferred.
Compression is possible when regularities or repeated patterns in data can be
extracted and used to create an efficient description. The implication for cogni-
tive models is the more a model can compress data, the more it can offer an
efficient representation of the underlying regularities in the cognitive processes.
MDL describes the information compression offered by a model. MDL is
defined by:

MDL ¼ � ln Lð Þ þ k
2
ln

J
2π

	 

þ ln

ð
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det I θð Þ½ �

p
(36.12)

where I θð Þ is the Fisher information matrix and θ is the model parameters
(Grünwald, 2000; Pitt, Myung & Zhang, 2002; Rissanen, 1996). For model
comparison and selection, the goal is to minimize MDL, identifying the model
compressing the data to the greatest degree. Minimizing MDL is conceptually
similar to maximizing likelihood (see Grünwald, 2000; Myung,
Balasubramanian, & Pitt, 2000; Pitt et al., 2002). Vitányi and Li (2000) argued
that the model giving the shortest description is most likely the true model. Such
promise in this technique has spurred development of the related methods of
normalized maximum likelihood (NML; Myung, Navarro, & Pitt, 2006;
Rissanen, 2001; Shiffrin et al., 2008). Both NML and MDL can be tricky to
estimate for some models, requiring them to be quantitative and able to be
expressed by a parametric family of probability distributions (Pitt et al., 2002)
or the ability to estimate likelihoods for fitting any possible data, even beyond
existing observations (Shiffrin et al., 2008).

36.4.1.6 Facilitating Comparison With Likelihood Functions

A number of the methods for assessing and comparing models rely on likeli-
hood function estimates. This presents a challenge to computational modeling
where cognitive mechanisms are instantiated only in cognitive architectures or
other coding languages without a formal mathematical expression from which a
likelihood function can be derived in a straightforward way. But this is also
spurring additional research on mappings between formal representations for
models, to take advantage of different evaluation techniques. Recently, Weaver
(2008) and Fisher, Houpt, and Gunzelmann (2020) developed mappings from
computational models defined in the ACT-R cognitive architecture to
likelihood functions. This direction allowed both efforts to explore the necessity
and sufficiency of model components for those specific cases. Taken as meth-
odological blueprints, they may enable additional systematic model compari-
sons that have not previously been straightforward, bridging some cognitive
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modeling approaches. The field will likely see additional future developments in
this area.

36.4.2 Comparison Through Model Mimicry

In evaluating two or more models’ relative strengths and weaknesses, it is
helpful to explore the conditions under which they produce similar and distinct
behaviors. When two models make similar predictions, it is possible that some
sets of empirical data will be fit equally well by those models. Those data are no
longer diagnostic for helping tease apart theoretical nuances or for providing
evidence for/against different candidate explanations for them. The degree to
which models produce identical patterns of behavior is known as model mim-
icry (Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). There are several
techniques for exploring ways models mimic each other that inform comparison
and selection.
Evaluation of model mimicry through formal evaluation offers a powerful

way to identify the conditions under which two models are mathematically
identical. For example, Townsend and Ashby (1983) demonstrated that for
certain classes of parallel processing models, a serial model can always be
defined that is mathematically identical to it. This poses a challenge to the
interpretation of empirical results, like those in memory and visual search,
claiming conditions eliciting parallel or serial behaviors (see Townsend, 1990).
When models are mathematically identical, the situation is one of complete
nonidentifiability. The implication is that there is no type of experiment or
empirical evidence that can differentiate the models. They are equally
appropriate.

36.4.2.1 Cross-Fitting

Mimicry can be evaluated by studying the degree to which models fit the same
data patterns. One way to directly assess this is through model cross-fitting.
Conceptually similar to cross-validation, cross-fitting computes the degree to
which one model can fit data generated from another with known parameters.
The difference in approach is that not only is the ability of a model to fit and
predict data it generated measured (traditional cross-validation), all the
models are fit to all of each other’s simulated data. Given that Model A is
used to generate a set of data, the key question is: Will the best fitting model
for those data be Model A or an alternative model? Fit in this case is usually
based on the GOF approaches outlined above. For example, Cohen,
Sanborn, and Shiffrin (2008) used maximum likelihood GOF measures com-
paring the cross-fits for power law and exponential models of forgetting,
leveraging the cross-fitting technique of parametric bootstrapping
(Wagenmakers et al., 2004). An advantage of cross-fitting is that the ground
truth of the process generating each data set is known, providing a high
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degree of confidence in inferences about the patterns of behavior that might
cause researchers to draw erroneous conclusions or where there is not strong
model identifiability.

36.4.2.2 Model Landscaping

Additional insights about relative fits from a combination of cross-fitting and
empirical GOF are enabled by model landscaping (Navarro, Pitt, & Myung,
2004). As illustrated in Figure 36.3, this is a visual and quantitative method
comparing the GOF of two models over a range of behaviors. The basic
approach is to take a range of data sets, perhaps a combination of empirical
data, model simulations, and samples over partitions from a method like PSP,
and compute the GOF for each model to each data set. Then a scatterplot is
created with the value of the fit statistic from model A on the x-axis and the fit
statistic from model B on the y-axis. Any fits falling on the diagonal line of
identity then indicate data for which the two models fit equally well. Points

Figure 36.3 Notional model landscape plot for two hypothetical models, A and
B, fitted to the same data set. Points on the diagonal indicate equally good fits
of Model A and Model B to the data. Points below the line indicate a better fit
from Model A; points above the line are from a better fit by Model B.
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below the line are better fit by model A, and points above the line are better fit
by model B. The layout of the data in this space is the model landscape.
Visually, this facilitates identifying overall trends in the models’ fits as well as
the degree of overlap between them, which may indicate equally good or
equally poor fits and the potential for mimicry. In the Figure 36.3 notional
example, more points fall below the diagonal, indicating model A better fits the
data than model B more frequently, for example. Additionally, Navarro and
colleagues show that when maximum likelihood is the fit statistic used to create
the landscape, city-block distance can be leveraged to compute a metric of how
much better, on average, one model fits the range of data than the other. This
might be useful in a series of pair-wise landscape analyses to assess the relative
performance of a set of models, such as the tournament-style series of pair-wise
analyses suggested by Broomell et al. (2011).

36.4.2.3 Representability

Model mimicry demonstrates that to make strong inferences, researchers need
to rely on data that are representative and diagnostic of model behaviors that
can facilitate making distinctions between candidate models. That is, the data
need to have a high probability of being generated by a model (representative-
ness; Navarro, et al., 2004) and have a higher likelihood of being generated and
fit by the true process model. And, the data need to come from empirical
conditions capable of discriminating between competing models (diagnosticity;
Broomell et al., 2011; Broomell, Sloman, Blaha, & Chelen, 2019). Emerging
techniques for Adaptive Optimization of Experiments seek to address exactly
this by dynamically adjusting experimental parameters to efficiently generate
data with high likelihood of being both representative and diagnostic to accel-
erate model comparison and selection (Kim, Pitt, Lu, Steyvers, & Myung, 2014;
Myung & Pitt, 2009; Yang, Pitt, Ahn, & Myung, 2021).

36.4.3 Choosing a Selection Method

A researcher’s purpose for model comparison and selection activities informs
the choice of methods that are appropriate to meet that purpose. A distinction
must be made between methods that emphasize evaluation of models against
existing data and the goals of generalization or prediction about unknown or
as-yet unobserved data. Nested model comparisons and similar chi-squared-
based significance tests of GOF follow a null-hypothesis significance testing
(NHST) approach, where the null hypothesis is that two models offer an
equally good fit to the data (are equivalent). These approaches support evalu-
ation of construct, criterion, and content validity, as well as evaluation of
appropriateness (Estes, 2002) in the context of evaluation against known data
samples (which may be empirical or simulated). Because NHST provides a
description of model likelihood in the context only of the current data sample,
the test statistics and associated p-values, confidence levels, etc. do not offer
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inferences about generalizability to novel data (Bakan, 1966). It is arguable
that NHST approaches are not applicable to model selection when a research-
er’s purpose is predictive validity. Identifying which model amongst those
offering a validated explanation for generating the current data makes the
best out-of-sample predictions should leverage methods that contextualize the
current fit in the broader space of possible model behaviors. Methods such as
MDL, AIC, and BIC can support this when viewed not just as GOF metrics
but as asymptotic estimates of a model’s predictive accuracy. The complexity
terms in these metrics can be interpreted as a correction on a predictive
accuracy loss function. The choice of metric then reflects the perspective a
researcher wishes to adopt about current model correctness: information
criteria (AIC, BIC) assume one of the models is correct and seek to identify
which, whereas MDL assumes all models are wrong and seeks one offering the
least misspecification. Interpreting model complexity as a bias correction term
further differentiates complexity from the concept of flexibility and breadth of
model predictions. The variable applicability of methods reinforces that
researchers need to be clear in their evaluation purposes to select the
appropriate tools.

36.5 Publication and/or Accreditation

Having gone through the process of implementing, validating, compar-
ing, and selecting a model, a final natural step is to use that model for the
purpose for which it was intended. At the discovery end of basic science, where
the purpose is primarily a contribution toward documenting phenomena and
improving understanding of them, the final step is a peer-reviewed publication.
A set of reviewers and an editor make a decision about whether the model is a
worthy contribution. That is the typical practice in the computational cognitive
sciences. This handbook is replete with examples of models deemed worthy
of publication.

In applied science, engineering, and advanced technology development,
where the purpose is to shape the environment by changing a process or
outcome in some way, the next step with a model would be accreditation.
Accreditation is the official certification that a model, simulation, or federation
of models and simulations and its associated data is acceptable for use for a
specific purpose (U.S. Department of Defense, 2011). Note this definition is
very similar to the definition for validation, in that it emphasizes use for a
specific purpose. The key difference is in the official certification. This requires
someone (an official) with the authority to sign off on the model and accept the
risk that comes along with that action. Accreditation plays an important role in
approving models for use in real-world applications, especially when the use
context is consequential.

Unfortunately, there are no policies or standard practices, or even nonstan-
dard practices, for model accreditation in the computational cognitive sciences
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today. This is a barrier to relevance and decreases awareness, interest and
uptake in cognitive science. An enduring challenge for computational cognitive
science is to make models simultaneously usable, useful, and understandable at
scales relevant in the wild. Perhaps if the research community is able to move
that needle in the coming years, the next edition of this handbook will warrant a
description of emerging techniques and guidelines for model accreditation.

36.6 Conclusion

As progress occurs in modeling, moving through the do–improve–
excel spiral of science, the models get more ambitious, more cumulative, and
often more complex. This makes validation, comparison, and selection more
challenging. The associated methodologies increase in complexity and com-
putational resource demand right along with the models. Luckily, this pro-
gress also involves the inheritance of a lot of earlier evidence. The evidence
comes from formal proofs about model properties and collections of empirical
evaluations providing foundational validation regarding underlying mechan-
isms at the core of the models and theories. Computational cognitive science
has been an active area of research since the 1950s, so there is some confidence
that if researchers are developing or applying models in existing formalisms
that have already documented extensive formal validation – such as using an
established cognitive architecture like ACT-R (Anderson, 2007), Clarion
(Sun, 2016), EPIC (Kieras & Meyer, 1997), or Soar (Laird, 2012), or an
established mathematical framework like signal detection theory or evidence
accumulator models – then there is no need to repeat all those earlier valid-
ation efforts. Better to stand on the shoulders of the validated models that
came before.
With a seventy-year foundation, one might think progress would be rapid

and accelerating. Paradoxically, given that a purpose of modeling is to improve
understanding, as models become more complete and realistic they also become
harder to understand.4 Unfortunately, there is little consensus in cognitive
science regarding the nature of understanding (Hough & Gluck, 2019), and
no standard methods have been developed in the computational cognitive
sciences for measuring the extent to which a model improves understanding.
This creates a headwind that slows progress in the field. Yet, with the recent
push for methodological changes in the behavioral sciences amidst the “repli-
cation crisis,” a new discussion of ways to build better theories is emerging.
Included among these are formal advances in the ways one can leverage models
to extend and contribute to theories with the explicit intention of explaining and
advancing understanding of cognitive capacities (Blokpoel & van Rooij, 2021;
Devezer, Navarro, Vandekerckhove, & Buzbas, 2020; Navarro, 2021;

4 This is known as Bonini’s Paradox (Dutton & Starbuck, 1971).
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Smaldino, 2019). In the spirit of science as a cumulative and integrative
endeavor, some have started to call for the development of a standard model
of the mind (Laird, Lebiere, & Rosenbloom, 2017). Others have promoted
methodological cross-fertilization and unification (Gunzelmann, 2019).
Examples include a special issue of the journal Cognitive Science on the topic
of model comparison that was organized by Gluck, Bello, and Busemeyer
(2008) and a target article (along with a number of responses) in
Computational Brain & Behavior on the topic of robust modeling in cognitive
science (Lee, Criss, Devezer, et al., 2019).

It is admirable, though difficult, to convince scientists to move more in the
direction of common, standard practices. Those who are discovering and
innovating tend to be resistant to the imposition of standards. By contrast,
those who are applying models outside the laboratory tend to be frustrated by
the absence of standards. This difference in perspective is entirely reasonable
and to be expected when different people are pursuing different purposes. It is
also a factor in what is often referred to as “the valley of death” between the
laboratory and the field.

Fortunately, there is a useful middle ground between unfettered exploration
and rigid imposition of standards. That middle ground is found in proposals for
guidelines and good practices. Fum, Del Missier, and Stocco (2007) adopted
this approach with a set of guidelines for model validation, comparison, and
selection, summarized here as follows:

Validation Guidelines

• Use both deviation (e.g., RMSD) and trend (e.g., r2) statistical measures
• Consider data variability in addition to central tendency
• Avoid overfitting
• Interpret Goodness-of-Fit in relativistic rather than absolute terms
• Minimize the number of free parameters

Comparison and Selection Guidelines

• Prefer models based on general cognitive theories
• Prefer simpler models
• Prefer interesting and counterintuitive models
• Prefer precise and easily falsifiable models
• Prefer integrated models

The Fum et al. (2007) guidelines reflect a combination of metascientific prin-
ciples (e.g., parsimony) accumulated over centuries, as well as particular pref-
erences (e.g., integrated models based on general cognitive theories) that
emerged in a portion of the computational cognitive sciences in recent decades.
Implicit in the Fum et al. guidelines, as well as nearly all treatments of model
evaluation methods, is the importance of model verification, ensuring a model’s
implementation and the associated data are error free. Thus, a recommended
addition to these guidelines is:
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• Carefully verify the model implementation is correct

More prospectively, Lee et al. (2019) proposed a set of practices for the field to
consider adopting in the future, in the interest of making modeling in cognitive
science more transparent, trusted, and robust. Their proposal is inspired via
analogy from ongoing methodological reform movements in many fields, and
especially experimental psychology, to address the “crises of confidence” cur-
rently plaguing the sciences. Lee et al. propose the following new practices:

• Pre-registering models
• Post-registering exploratory model development
• Conducting detailed evaluation
• Publishing Registered Modeling Reports

The content of this chapter has been focused on detailed evaluation methods,
with Lee et al.’s other recommended practices occurring mostly before and after
the validation, comparison, and selection processes described here.
Near the end of their paper, Lee et al. (2019) make the important point that

“Ultimately, the test of the usefulness of a theory or model is whether it works
in practical applications, and people have confidence in models that can be
demonstrated to work” (p. 8). As noted in the previous section of this chapter,
the accreditation processes common in many applied modeling and simulation
contexts are entirely absent in the computational cognitive sciences. Therefore,
as a final prospective recommendation:

• Accrediting models for use in practical applications that matter

Progress takes many forms. Regardless of the specific formalism used by any
particular researcher or team, when engaged in the computational cognitive
sciences, real progress will depend critically on model evaluation. This chapter
provided a description of key considerations and methods important in model
evaluation, with special emphasis on evaluation in the forms of validation,
comparison, and selection. Major sub-topics included Qualitative and
Quantitative Validation, Parameter Estimation, Cross-Validation, Goodness
of Fit, and Model Mimicry. The chapter included definitions of an assortment
of key concepts, relevant equations, and descriptions of best practices and
important considerations in the use of these model evaluation methods. The
chapter concluded with important high-level considerations regarding emerging
directions and opportunities for continuing improvement in model evaluation.
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37 Philosophical Issues
in Computational Cognitive
Sciences
Mark Sprevak

37.1 Introduction

In 1962, Wilfred Sellars wrote: “The aim of philosophy, abstractly
formulated, is to understand how things in the broadest possible sense of the
term hang together in the broadest possible sense of the term” (Sellars, 1962,
p. 35). On this view, philosophical issues are marked out not by having some
uniquely philosophical subject matter, but in terms of the overall scope of the
enquiry. When one turns to philosophical issues, what one is doing is taking a
step back from some of the details of the science and considering how matters
hang together relative to the broad ambitions and goals that motivated the
scientific enquiry in the first place. In the case of the computational cognitive
sciences, this may involve asking such questions as: Are there aspects of
cognition or behavior that are not amenable to computational modeling?
How do distinct computational models of cognition and behavior fit together
to tell a coherent story about cognition and behavior? What exactly does a
specific computational model tell (or fail to tell) us about cognition and behav-
ior? What distinguishes computational models from alternative approaches to
modeling cognition and behavior? How does a computational model connect
to, and help to answer, our pre-theoretical questions about what minds are and
how they work?

Progress in answering these questions may come from any or all sides. It
would be a mistake to think that philosophical issues are somehow only within
the purview of academic philosophers. Anyone who takes computational mod-
eling seriously as an attempt to study cognition is likely to want to know the
answers to these questions and is also liable to be able to contribute to the
project of answering them. What philosophers bring to this joint project is a set
of conceptual tools and approaches that have been developed in other domains
to address structurally similar issues. They also have the luxury of being allowed
to think and write about the big questions.

Sellars had a relatively narrow conception of what it meant to understand
how things hang together. He interpreted this as an attempt to reconcile two
separate images that one has of how the world works: the scientific image
(which describes the posits of the natural sciences – cells, molecules, atoms,
forces, etc.) and the manifest image (which describes the posits of human
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common-sense understanding of the world – persons, thoughts, feelings, ideas,
etc.) (Sellars, 1962). This chapter adopts a somewhat looser interpretation of the
project. Models in the computational cognitive sciences are often partial, pro-
visional, and selected from many possible alternatives that are also consistent
with the data. It would be misleading to think that current computational
cognitive science contains a single, coherent account that is “the” scientific
image of cognition. Similar concerns could also be raised about our manifest
image of the world in light of observations of cross-cultural differences in
human folk understanding and conceptualizations of the world (Barrett, 2020;
Henrich et al., 2010; Nisbett, 2003). The view adopted in this chapter is that the
philosopher’s goal is to understand how the many (and varied) current
approaches to computational modeling of cognition hang together, both with
each other, with work in the other sciences (including neuroscience, cellular
biology, evolutionary biology, and the social sciences), and with our various
pre-theoretical folk questions and insights regarding the mind. There is no prior
commitment here to a single, well-defined scientific image or manifest image,
but rather the ambition to understand how the various perspectives we have on
cognition and behavior cohere and allow us to understand what minds are and
how they work (Sprevak, 2016).
Under this broad heading, there is a huge range of work. This includes

consideration of how to interpret the terms of specific computational models –
about which parameters one should be a “realist” or an “instrumentalist”
(Colombo & Seriès, 2012; Rescorla, 2016); how to make sense of theoretical
concepts that appear across multiple models, like the notion of a cognitive
“module” (Carruthers, 2006; Samuels, 1998); analysis and formalization of gen-
eral features of experimental methodology in computational neuroscience
(Glymour, 2001; Machery, 2013); identification of differences between computa-
tional approaches and rival approaches to modeling cognition (Eliasmith, 2003;
Gelder, 1995); consideration of how techniques in machine learning and AI might
inform work in computational neuroscience (Buckner, 2021; Sullivan, 2019);
interpretation of experimental results that function as evidence for specific com-
putational models (Apperly & Butterfill, 2009; Block, 2007; Shea & Bayne, 2010);
and consideration of how computational models of cognition connect to wider
questions about the nature of the human mind, its subjective experiences, its
evolutionary history, and the kinds of social and technological structures that it
builds (Clark, 2016; Dennett, 2017; Godfrey-Smith, 2016; Sterelny, 2003).
The primary focus here will, by necessity, be narrower than the full extent of

issues within this diverse intellectual landscape. This chapter focuses on chal-
lenges raised to computational modeling that arise from philosophical work on
the nature of cognition and consciousness.

37.1.1 Overview of the Chapter

When building a computational model in the cognitive sciences, researchers
generally aim to build a model of some prescribed subdomain within cognition
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or behavior (e.g., of face recognition, cheater detection, word segmentation, or
depth perception). Splitting up human cognition into various smaller domains
raises questions about how one should do this. This is the problem of how one
should individuate our cognitive capacities and overt behavior (M. L. Anderson,
2014; Barrett & Kurzban, 2006; Machery, forthcoming). It also raises questions
about how the separate models of individual cognitive subdomains that one
hopes to obtain will subsequently be woven together to create a coherent,
integrated understanding of cognition. This concerns the issue of how one
should unify models of distinct aspects of cognition (Colombo & Hartmann,
2017; Danks, 2014; Eliasmith, 2013).

This chapter focuses on a set of issues that are related, but posterior, to the
two just mentioned. These concern possible gaps left by this strategy for
modeling cognition. If this strategy were in an ideal world to run to completion,
would there be any aspects of cognition or behavior that would be missing from
the final picture? Are there any aspects of cognition for which we should not
expect to obtain a computational model? Are there cognitive domains that are,
for some reason, “no go” areas for computational modeling? The chapter
examines three possible candidates: semantic content (in Section 37.2),
phenomenal consciousness (in Section 37.3), and central reasoning (in Section
37.4). In each case, philosophers have argued that there are good reasons to
believe that one cannot obtain an adequate computational model of the domain
in question.

These “no go” arguments may be subdivided further into in principle and in
practice arguments. In principle arguments aim to show that it is impossible for
any computational model to account for the cognitive capacity in question. In
practice arguments are weaker. They aim only to show that, given our current
state of knowledge, we should not expect to discover such a model – an
adequate model might exist, but we should not expect to find it, at least in the
foreseeable future.

37.2 Semantic Content: Searle’s Chinese Room Argument

John Searle’s Chinese room argument is one of the oldest and most
notorious “no go” arguments concerning computational modeling of cognition.
The precise nature of its intended target has been liable to shift between
different presentations of the argument. Searle has claimed in various contexts
that the argument shows that understanding, semantic content, intentionality,
and consciousness cannot adequately be captured by a computational model
(according to him, all these properties are linked; see Searle, 1992, pp. 127–197).
In his original formulation, Searle’s target was understanding, and specifically
our ability to understand simple stories. He considered whether a computa-
tional model would adequately be able to account for this cognitive capacity.
More precisely, he considered whether such a model would be able to explain
the difference between understanding and not understanding a simple story
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(Searle, 1980; cf. models of understanding in Schank & Abelson, 1977;
Winograd, 1972).

37.2.1 The Chinese Room Argument

Searle’s argument consisted in a thought experiment concerning implementa-
tion of the computation. Imagine a monolingual English speaker inside a room
with a rule-book and sheets of paper. The rule-book contains instructions in
English on what to do if presented with Chinese symbols. The instructions
might take the form: “If you see Chinese symbol X on one sheet of paper and
Chinese symbol Y on another, then write down Chinese symbol Z on a third
sheet of paper.” Pieces of paper with Chinese writing are passed into the room
and the person inside follows the rules and passes pieces of paper out. Chinese
speakers outside the room label the sheets that are passed in “story” and
“questions”, respectively, and the sheets that come out “answers to questions.”
Imagine that the rule-book is as sophisticated as you like, and certainly sophis-
ticated enough that the responses that the person inside the room gives are
indistinguishable from those of a native Chinese speaker. Does the person inside
the room thereby understand Chinese? Searle claims that they do not (for
discussion of the reliability of his intuition here, see Block, 1980; Maudlin,
1989; Wakefield, 2003).
Searle observes that the Chinese room is a computer, and he identifies the

rule-book with the (symbolic) computation that it performs. He then reminds us
that the thought experiment does not depend on the particular rule-book used:
it does not matter how sophisticated the rule-book, the person inside the room
would still be shuffling Chinese symbols without understanding what they
mean. Since any symbolic computational process can be described by some
rule-book, the thought experiment shows that the person inside the Chinese
room will not understand the meaning of the Chinese expressions they manipu-
late no matter which symbolic computation they perform. Therefore, we can
conclude that the performance of a symbolic computation is insufficient, by
itself, to account for the difference between the system performing the compu-
tation understanding and not understanding what the Chinese expressions
mean. Searle infers from this that any attempt to model understanding purely
in terms of a formal, symbolic computation is doomed to failure. According to
him, the reason why is that a formal computational model cannot induce
semantic properties, which are essential to accounting for a semantically laden
cognitive process like understanding (Searle, 1980, p. 422).

37.2.2 The Problem of Semantic Content

Many objections have been raised to Searle’s Chinese room argument (for a
summary, see Cole, 2020). However, it is notable that despite the argument’s
many defects, the main conclusion that Searle drew has been left largely
unchallenged by subsequent attacks. This is that manipulation of formal symbols
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is insufficient to generate the semantic properties associated with cognitive
processes like understanding. In Searle’s terms, the Chinese room thought
experiment, whatever its specific shortcomings, is an illustration of a valid
general principle that “syntax is not sufficient for semantics” (Searle, 1984).
Note that “syntax” here does not refer to the static grammatical properties of
symbols or well-formedness of linguistic expressions, but refers to the algorith-
mic rules by which symbolic expressions are manipulated or transformed during
a computation. “Semantics” refers specifically to the denotational aspects of the
meaning associated with symbolic expressions – their intentional properties,
i.e., what they refer to in the world.

Searle is not alone in making this claim. Putnam (1981) argued that
manipulating symbols (mere “syntactic play”) cannot determine what a com-
putation’s symbols refer to, or whether they carry any referential semantic
content at all (pp. 10–11). Burge (1986), building on earlier work by Putnam
and himself on referring terms in natural language, noted that a physical
duplicate of a computer placed in a different physical environment might
undergo exactly the same formal transitions, but have different meaning
attached to its symbolic expressions based on its relationship to different envir-
onmental properties. Fodor (1978) described two physically identical devices
that undergo the same symbol-shuffling processes, one of which runs a simula-
tion of the Six-Day War (with its symbols referring to tank divisions, jet planes,
and infantry units) and the other runs a simulation of a chess game (with its
symbols referring to knights, bishops, and pawns). Harnad (1990) argued that
all computational models based on symbol processing face a “symbol
grounding” problem: although some of their symbols might have their semantic
content determined by their formal relationship to other symbols, that sort of
process has to bottom out somewhere with symbolic expressions that have their
meaning determined in some other way (e.g., by causal, nonformal relationships
to external objects in the environment in perception or motor control).

These considerations are also not confined to symbolic computational models
of cognition. Similar observations could be made about computational models
that are defined over numerical values or over probabilities. Consider artificial
neural networks. These computational models consist in collections of abstract
nodes and connections that chain together long sequences of mathematical
operations on numerical activation values or connection weights (adding,
multiplying, thresholding values). What do these numerical activation values
or connection weights mean? How do they relate to distal properties or objects
in the environment? As outside observers, we might interpret numerical values
inside an artificial neural network as referring to certain things (just as, in a
similar fashion, we might interpret certain symbolic expressions in a classical,
symbolic computation as referring to certain things). Independent of our inter-
preting attitudes however, the mathematical rules that define an artificial neural
network do not fix this semantic content. The rules associated with an artificial
neural network describe how numerical values are transformed during a com-
putation (during inference or learning), but they do not say what those numbers
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(either individually or taken in combination) represent in the world. Numerical
rules no more imbue an artificial neural network with semantic content than do
the symbolic rules that operate over expressions for a classical, symbolic com-
putation (cf. Searle, 1990). Computational models that operate over probabil-
ities or probability distributions face a similar kind of problem. These models
are normally defined in terms of operations on probability distributions (under-
stood as ensembles of numerical values that satisfy the requirements for a
measure of probability). These distributions might be interpreted by us as
external observers as probabilities of certain events occurring, but the math-
ematical rules governing the transformation of these distributions do not usu-
ally, by themselves, determine what those distal events are.
It is worth emphasizing that there is no suggestion here that computational

and semantic aspects of cognition are wholly independent. It is likely that some
symbolic expressions get their meaning fixed via their formal computational
role (plausibly, this is the case for expressions that represent logical connectives
like AND and OR). What is being claimed is that not all semantic content can
be determined in this way, by formal computational role. An adequate account
of semantic aspects of cognition will need to include not only formal relation-
ships among computational states, but also nonformal relationships between
those computational states and distal states in the external environment (for
discussion of this point in relation to procedural semantics or conceptual-role
semantics, see Block, 1986; Harman, 1987; Johnson-Laird, 1978).

37.2.3 Theories of Content

A lesson that philosophers have absorbed from this is that a computational
model will need to be supplemented by another kind of model in order to
adequately account for cognition’s semantic properties. The project of
modeling cognition should correspondingly be seen as possessing at least two
distinct branches. One branch consists in describing the formal computational
transitions or functions associated with a cognitive process. The other branch
connects the abstract symbols or numerical values described in the first branch
to distal objects in the environment via semantic relations (see Chalmers, 2012,
pp. 334–335). This two-pronged approach is most clearly laid out in the writings
of Jerry Fodor. Fodor argued that one should sharply distinguish between one’s
computational theory (which describes the dynamics of abstract computational
vehicles) and one’s theory of content (which describes how those vehicles get
associated with specific distal representational content). It would be a mistake
to think that one’s computational theory can determine semantic properties or
vice versa (see Fodor, 1998, pp. 9–12). (Fodor makes this observation in his
response to the Chinese room argument (1980), essentially conceding that
Searle’s conclusion about pure syntax is correct but obvious.)
What does a theory of content look like? Fodor argued that a good theory of

content should try to answer two questions about human cognition: (S1) How
do its computational states get their semantic properties? (S2) Which specific
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semantic contents do they have? Fodor also suggested that a theory of content
suitable for fulfilling the explanatory ambitions of computational cognitive
science should be naturalistic. What this last condition means is that the answers
a theory of content gives to questions S1 or S2 should not employ semantic or
intentional concepts. A theory of content should explain how semantic content
in cognition arises, and how specific semantic contents get determined, in terms
of the kinds of nonsemantic properties and processes that typically feature in
the natural sciences (e.g., physical, causal processes that occur inside the brain
or the environment). A theory of content should not attempt to answer S1 or S2
by, for example, appealing to the semantic or mental properties of external
observers or the intentional mental states of the subject themselves (Fodor,
1990, p. 32; Loewer, 2017).

Fodor developed his own naturalistic theory of content, which he called the
“asymmetric dependency theory.” This theory claimed that semantic content in
cognition is determined by a complex series of law-like relationships obtaining
between current environmental stimuli and formal symbols inside the cognitive
agent (Fodor, 1990). In contrast, teleological theories of content attempt to
naturalize content by appeal to conditions that were rewarded during past
learning, or that were selected for in the cognitive agent’s evolutionary history
(Dretske, 1995; Millikan, 2004; Papineau, 1987; Ryder, 2004). Use-based theor-
ies of content attempt to naturalize content by appeal to isomorphisms between
multiple computational states in the cognitive agent and states of the world,
claiming that their structural correspondence accounts for how the computa-
tional states represent (Ramsey, 2007; Shagrir, 2012; Swoyer, 1991).
Information-theoretic theories of content attempt to naturalize content by
appeal to Shannon information (Dretske, 1981); recent variants of this approach
propose that semantic content is determined by whichever distal states maximize
mutual information with an internal computational state (Isaac, 2019; Skyrms,
2010; Usher, 2001) – this echoes methods used by external observers in cognitive
neuroscience to assign representational content to neural responses in the sens-
ory or motor systems (Eliasmith, 2005; Rolls & Treves, 2011; Usher, 2001). Shea
(2018) provides a powerful naturalistic theory of content that weaves together
elements of all the approaches above and suggests that naturalistic semantic
content is determined by different types of condition in different contexts.

No naturalistic theory of content has yet proved entirely adequate, and
naturalizing content remains more of an aspiration than an attained solution.
Among the challenges faced by current approaches are allowing for the possi-
bility of misrepresentation; avoiding introducing unacceptably large amounts of
indeterminacy in cognitive semantic content; and providing a sufficiently gen-
eral theory of cognitive semantic content that will cover not only the represen-
tations involved in perception and motor control but also more abstract
representations like DEMOCRACY, TIMETABLE, and QUARK (see
Adams & Aizawa, 2021; Neander & Schulte, 2021; Shea, 2013).

Some philosophers have suggested the need for a different approach to
explaining semantic content in the computational cognitive sciences. Egan
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(2014) argues that we should assume, at least as a working hypothesis, that
cognitive semantic content cannot be naturalized. This is not because the
semantic content in question is determined by some magical, nonnaturalistic
means, but because the way in which we ascribe semantic content to formal
computational models is an inherently messy matter that is influenced by
endless, unsystematizable pragmatic concerns (Chomsky, 1995; Egan, 2003).
Semantic content determination is just not the sort of subject matter that lends
itself to description by any concise nonintentional theory – one is unlikely to
find a naturalistic theory of semantic content for similar reasons that one is
unlikely to find a concise nonintentional theory of jokes, excuses, or anec-
dotes. Egan suggests that pragmatic ascription of semantic content to
computational models nevertheless plays a residual role in scientific explan-
ation by functioning as an “intentional gloss” that relates formal computa-
tional models to our informal, nonscientific descriptions of behavioral success
and failure (Egan, 2010).
A different approach to Egan’s suggests that ascriptions of semantic content

to computational models should be treated as a kind of idealization or fiction
within computational cognitive science (Chirimuuta, forthcoming; Mollo, 2021;
Sprevak, 2013). This builds on a broader trend of work in philosophy of science
that emphasizes the value of idealizations and fictions in all domains of scien-
tific modeling, from particle physics to climate science. Idealizations and fic-
tions should be understood not necessarily as defects in a model, but as
potentially valuable compromises that provide benefits with respect to under-
standing, prediction, and control that would be unavailable from a scientific
model that is restricted to literal truth telling (Elgin, 2017; Morrison, 2014;
Potochnik, 2017).
While philosophers do not agree about how to answer S1 and S2, there is

near consensus that a purely computational theory would not be adequate.
A computational model of cognition must be supplemented by something
else – a naturalistic theory of content, an intentional gloss, or a reinterpret-
ation of scientific practice – that explains how the (symbolic or numerical)
states subject to computational rules gain their semantic content. Moreover,
this is widely assumed to be an in principle limitation to what a computational
model of cognition can provide. It is not a shortcoming that can be remedied
by moving to a new computational model or one with more sophisticated
formal rules.

37.2.4 Content and Physical Computation

The preceding discussion operated under the assumption that a computational
model is defined exclusively in terms of formal rules (whether those be symbolic
or numerical). This fits with one way in which computational models are
discussed in the sciences. Mathematicians, formal linguists, and theoretical
computer scientists often define a computational model as a purely abstract,
notional entity (e.g., a set-theoretic construction such as a Turing machine,
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Boolos et al., (2002)). However, researchers in the applied sciences and in
engineering often talk about their computational models in a different way. In
these contexts, a computational model is often also tied to its implementation in
a particular physical system. Part of a researcher’s intention in proposing such a
model is to suggest that the formal transitions in question are implemented
in that specific physical system. In the case of the computational cognitive
sciences, formal transitions are normally assumed to be implemented (at
some spatiotemporal scale) in the cognitive agent’s physical behavior or
neural responses.

If a formal computation is physically implemented, the physical states that
are manipulated will necessarily stand in some nonformal relations to distal
entities in the world. Physically implemented computations cannot help but
stand in law-like causal relations to objects in their environment, or have a
history (and one that might involve past learning and evolution). Given this, it
is by no means obvious that a physically implemented computation, unlike a
purely formal abstract computation, is silent about, or does not determine,
assignment of semantic content. Understanding whether and how physical
implementation relates to semantic content is a substantial question and one
that is distinct from those considered above (for various proposals about the
relationship between physically implemented computation and semantic con-
tent, see Dewhurst, 2018; Lee, 2018; Mollo, 2018; Piccinini, 2015, pp. 26–50;
Rescorla, 2013; Shagrir, 2020; Sprevak, 2010). At the moment, there is no
consensus among philosophers about whether, and to what extent, physical
implementation constrains the semantics of a computation’s states.
Consequently, it is worth bearing in mind that Searle’s observation that
“syntax is not sufficient for semantics,” even if true for the purely formal
computations that he had in mind, may not apply to the physically imple-
mented computations proposed in many areas of the computational cognitive
sciences (see Boden, 1989; Chalmers, 1996, pp. 326–327; Dennett, 1987,
pp. 323–326).

37.3 Phenomenal Consciousness: The Hard Problem

“Consciousness” may refer to many different kinds of mental phenom-
ena, including sleep and wakefulness, self-consciousness, reportability, infor-
mation integration, and allocation of attention (see Gulick, 2018 for a survey).
This section focuses exclusively on a “no go” argument concerning phenomenal
consciousness. “Phenomenal consciousness” refers to the subjective, qualitative
feelings that accompany some aspects of cognition. When you touch a piece of
silk, taste a raspberry, or hear the song of a blackbird, over and above any
processes of classification, judgment, report, attentional shift, control of behav-
ior, and planning, you also undergo subjective sensations. There is something it
feels like to do these things. Some philosophers reserve the term “qualia” to
refer to these feelings (Tye, 2018). The hard problem of consciousness is to
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explain why phenomenal feelings accompany certain aspects of cognition and
to account for their distribution across our cognitive life (Chalmers, 1996,
pp. 3–1; 2010a).

37.3.1 The Conceivability Argument Against Physicalism

The conceivability argument against physicalism is a “no go” argument phrased
in terms of the conceivability of a philosophical zombie. A philosophical
zombie is a hypothetical being who is a physical duplicate of a human and
who lives in a world that is a physical duplicate of our universe – a world with
the same physical laws and the same instances of physical properties. The
difference between our world and the zombie world is that the agents in the
zombie world either lack conscious experience or have a different distribution of
phenomenal experiences across their mental life from our own. A zombie’s
cognitive processes occur “in the dark” or they are accompanied by different
phenomenal experiences from our own (e.g., it might experience the qualitative
feeling we associate with tasting raspberries when it tastes blueberries and
vice versa).
It is irrelevant to the conceivability argument whether a philosophical zombie

could come into existence in our world, has ever existed, or is ever likely to exist.
What matters is only whether one can coherently conceive of such a being. Can
one imagine a physical duplicate of our world where a counterpart of a human
either lacks phenomenal consciousness or has a different distribution of phe-
nomenal experiences from one’s own? Many philosophers have argued that this
is indeed conceivable (Chalmers, 1996, pp. 96–97; Kripke, 1980, pp. 144–155;
Nagel, 1974). By this, they do not mean that zombies could exist in our world,
or that we should entertain doubts about whether other humans are zombies.
What they mean is that the idea of a zombie is a coherent one – it does not
contain a contradiction; it is unlike the idea of a married bachelor or the highest
prime number.
The next step in the conceivability argument is to say that our ability to

conceive of a scenario is a reliable guide to whether it is possible. If a world in
which zombies exist is conceivable, then we should believe, pending evidence to
the contrary, that it corresponds to a genuine possibility. However, if a zombie
world is possible, then the distribution of physical properties and physical laws
could be exactly as it is in our world and the beings of that world either lack
phenomenal experience or have different phenomenal experiences from our
own. That means that in our world there must be some additional ingredient,
over and above the physical facts, that is responsible for the existence and
distribution of our phenomenal experiences. Something other than the
physical laws and physical properties must explain the difference between our
world and a zombie world. Our phenomenal consciousness cannot be deter-
mined only by the physical facts because those facts hold also in the zombie
world. Advocates of the conceivability argument conclude that a theory of
consciousness that appeals exclusively to physical facts is unable to explain
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the existence and distribution of our phenomenal experiences (Chalmers, 1996,
pp. 93–171; 2010b).

According to the conceivability argument, a physicalist theory cannot answer
the following questions: (C1) How does our phenomenal conscious experience
arise at all? (C2) Why are our phenomenal conscious experiences distributed in
the way they are across our mental life? No matter which physical facts one
cites, none adequately answer C1 or C2 because the same physical facts could
have obtained and those conscious experiences be absent or different, as they
are in a zombie world. This raises the question of what – if not the totality of
physical facts – is responsible for the existence and distribution of our phenom-
enal experiences. Advocates of the conceivability argument have various sug-
gestions at this point, all of which involve expanding or revising our current
scientific ontology. The focus of this chapter will not be on those options, but
only on the negative point that phenomenal consciousness is somehow out of
bounds for current approaches to modeling cognition (see Chalmers, 2010c,
pp. 126–137, for a survey of nonphysicalist options).

37.3.2 The Conceivability Argument Against
Computational Functionalism

The conceivability argument against physicalism may be modified to generate a
“no go” argument against computational accounts of phenomenal
consciousness.

The primary consideration here is that a hypothetical zombie who is our
computational duplicate seems to be conceivable. This is a being who performs
exactly the same computation as we do but who either lacks conscious experi-
ence or has a different distribution of conscious experiences from our own.
Similar reasoning to justify both the conceivability and possibility of such a
being applies as in the case of the original conceivability argument against
physicalism. It seems possible to imagine a being implementing any computa-
tion one chooses, or computing any function, and for this to fail to be accom-
panied by a phenomenal experience, or for it to be accompanied by a
phenomenal experience different from our own. No matter how complex the
rules of a computation, nothing about it seems to necessitate the existence or
distribution of specific subjective experiences. One might imagine a silicon or
clockwork device functioning as a computational duplicate of a human –

undergoing the same computational transitions – but its cognitive life remaining
“all dark” inside, or being accompanied by different subjective experiences from
our own (for analysis of such thought experiments, see Block, 1978; Dennett,
1978; Maudlin, 1989). As with the original conceivability argument, it does not
matter whether a computational zombie could exist in our world; what matters
is only whether a world with such a being is conceivable.

A separate consideration is that the original conceivability argument appears
to entail a “no go” conclusion concerning any computational model of
consciousness that has a physical implementation (Chalmers, 1996, p. 95).
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Plausibly, any world that is a physical duplicate of our world is a world that is
also a duplicate in terms of the physical computations that are performed. It
seems reasonable to assume that the physical facts about a world fix which
physical computations occur in that world. According to the original conceiv-
ability argument, a world that is a physical duplicate of ours could be one in
which there is no consciousness or consciousness is distributed differently.
Putting these two claims together, a world that is a duplicate of ours in terms
of the physical computations performed could be one in which phenomenal
consciousness is absent or differently distributed. Hence, in our world there
must be some extra factor, over and above any physical computations, that
explains the existence and distribution of our phenomenal experiences.
A scientific model that appeals only to physical computations – which are
shared with our zombie counterparts – would be unable to explain the existence
and distribution of our phenomenal experiences.
It is worth stressing that the conceivability argument places no barrier against

a computational or physical model explaining access consciousness. “Access
consciousness” refers to the aspects of consciousness associated with report-
ability and information sharing: storage of information in working memory,
information sharing across various processes of planning, reporting, control of
action, decision making, and so on (Block, 1990, 2007). Baars (1988) proposed
Global Workspace Theory (GWT) as a way in which information from differ-
ent cognitive processes comes together. Dehaene and colleagues developed
GWT and provided a possible neural implementation (Dehaene et al., 2006;
Dehaene & Changeux, 2004, 2011). A theory of this kind might be able to
account for how and why certain pieces of information get shared and play a
greater role in driving thought, action, and report. However, advocates of the
conceivability argument claim that a model of access consciousness cannot
explain phenomenal consciousness. Following similar reasoning to that
described in the previous section, they argue that one can conceive of a system
having access consciousness, but it still lacking phenomenal consciousness or
having a different distribution of phenomenal experience to our own. Access
consciousness does not necessitate the occurrence of phenomenal feelings (for a
contrary view, see Cohen & Dennett, 2011). For these researchers, explaining
access consciousness is classified under the heading of an “easy problem” of
consciousness (Chalmers, 2010a).

37.3.3 Naturalistic Dualism

It is important to understand the extent of the intended “no go” claim about
phenomenal consciousness. What is claimed is that solving the hard problem is
beyond the ability of a physical or computational model of consciousness. This
does not mean, however, that a physical or computational account can tell us
nothing about phenomenal consciousness. Chalmers (2010a, 2010d) argues that
a computational or physical model can, for example, tell us a great deal about
correlations between physical/computational states and our phenomenal
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experiences. The conceivability argument does not deny that such correlations
exist, and measurement of brain activity shows ample evidence of correlations
between brain states and phenomenal experience. Describing and systematizing
these correlations may have considerable value to science in terms of allowing
us to categorize, predict, and control our phenomenal states. Such a model
cannot, however, explain why phenomenal experience occurs, for it cannot rule
out the possibility that the same physical or computational states could occur
without any conscious accompaniment.

An analogy might help to clarify this point. Suppose that one were to begin a
correlational study of the phenomena of lightning and thunder. One might
build a statistical model that captures the relationship between observations
of the two phenomena. In a similar fashion, one might engage in a correlational
study of brain states and phenomenally conscious states and attempt to capture
their relationship. In both cases, something would be missing from the model
that is produced. What would be missing is an understanding of how and why
the two variables are linked. Lightning typically co-occurs with thunder, but not
always, and no pattern of lightning necessitates an observation of thunder
(atmospheric conditions might cause sound waves to be refracted or deadened
before they reach the observer). This gap in the model can be rectified by
introducing further physical variables (e.g. distributions of electrical charges
in the air, measurements of air density and temperature). In an enlarged, more
detailed, physical model, it should be possible to explain why observations of
lightning are correlated with observations of thunder, and how and why such
correlations might fail to obtain. In the case of phenomenal consciousness, the
conceivability argument claims to show that this kind of remedy is not avail-
able. The “explanatory gap” between the two variables cannot be filled by
introducing extra physical variables into one’s model. No matter how many
physical variables one adds, the model will still not entail the occurrence of
phenomenal experiences – for, according to the conceivability argument, all
these physical variables could be the same and the consciousness experience be
absent or different. A physical/computational model of consciousness can
provide us with a description of the correlates of consciousness, but it cannot
provide an explanation of why those correlates are accompanied by
phenomenal experience.

37.3.4 Eliminativism and Related Replies

Not all philosophers accept the reasoning behind the conceivability argument.
Dennett argues that one can easily be misled by “intuition pumps” like zombie
thought experiments. These can work on our imagination like viewing a picture
by M. C. Escher: we appear to see something new and remarkable, but only
because certain considerations have been omitted or played up and we have
failed to spot some hidden inconsistency in the imagined scenario. Dennett
suggests that a more reasonable conclusion to draw is not that phenomenal
consciousness is a “no go” domain for computational modeling of cognition but
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that the project of trying, from the armchair, to set a limit on what a physical/
computational model can and cannot explain is deeply misconceived (Dennett,
2013). For all we know, a truly thorough, mature conceptualization of a
physical or computational duplicate of our world, imagined down to the
smallest detail, would rule out the possibility that there could be zombies
(Dennett, 1995, 2001).
Dennett’s remarks about the reliability of our intuitions about zombies may

dampen one’s confidence in the “no go” argument. However, this by itself does
not block the argument. In order to do this, Dennett also commits to the more
speculative, positive claim that if we were to successfully wrap our heads around
some future correct computational model of consciousness, then we would see
that it must bring all aspects of consciousness along with it. Advocates of the
conceivability argument, while typically open to the idea that zombie intuitions
are not apodictically certain (we might be deluding ourselves about the conceiv-
ability of a zombie world), tend to pour scorn on this latter contention. No
matter how complex a computational model is, they say, it simply is not clear
how it could entail that specific conscious experiences occur (Strawson, 2010).
The idea that, somewhere in the space of all possible computational models,
some model exists that entails conscious experience is, according to these critics,
pure moonshine or physicalist dogma (Strawson, 2018).
A position one might be driven towards, and which Dennett defends in his

(1991) book, is that certain aspects of consciousness – namely, the first-person
felt aspects targeted by zombie thought experiments – are not real. This
amounts to a form of eliminativism about phenomenal consciousness (Irvine
& Sprevak, 2020). Such positions face a heavy intuitive burden. The existence
and character of our feelings of phenomenal consciousness seem to be among
the things about which we are most certain. Denying these subjective “data,”
which are accessible to anyone via introspection, may strike one as unaccept-
able. Nevertheless, past scientific theories have prompted us to abandon other
seemingly secure assumptions about the world. If it can be shown that when we
introspect on our experience we are mistaken, then perhaps eliminativism can
be defended. The potential benefits of eliminativism about phenomenal con-
sciousness are considerable: the hard problem of consciousness and the chal-
lenge posed by the conceivability argument would dissolve. If there is no
phenomenal consciousness, then there is nothing for a computational model
to explain.
Unfortunately, in addition to the difficulty just mentioned, a further problem

faces eliminativist accounts. This is to explain how the (false) data we have
about the existence and character of our phenomenal consciousness arise in the
first place. This is the so-called illusion problem (Frankish, 2016). Some
researchers claim that our impression that we have phenomenal consciousness
is caused by misfiring of mechanisms of our internal information processing and
self report (Clark 2000; Dennett, 1991; Frankish, 2016; Graziano, 2016).
However, such accounts tend to explain only why we believe or act as if we
have phenomenal consciousness. It is not clear how the hypothesized
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mechanisms generate the felt first-person illusion of consciousness (Chalmers,
1996, pp. 184–191). In other words, it is not clear how unreliable introspective
mechanisms could generate the false impression of phenomenal consciousness,
any more than reliable introspective mechanisms could generate the true
impression of phenomenal consciousness. The challenge that an eliminativist
faces is to show that the illusion problem is easier to solve by computational or
physical means than the hard problem of consciousness (see Prinz, 2016).

37.4 Central Reasoning: The Frame Problem

A third major target for philosophical “no go” arguments is central
reasoning. This concerns our ability to engage in reliable, general-purpose
reasoning over a large and open-ended set of representations, including our
common-sense understanding of the world. Modeling human-level central
reasoning is closely tied to the problem of creating a machine with artificial
general intelligence (AGI). Current AI systems tend to function only within
relatively constrained problem domains (e.g., detecting credit card fraud, rec-
ognizing faces, winning at Go). They generally perform poorly, or not at all, if
the nature of their problem changes, or if relevant contextual or background
assumptions change (Lake et al., 2017; Marcus & Davis, 2019). In contrast,
humans are relatively robust and flexible general-purpose reasoners. They can
rapidly switch between different tasks without significant interference or
relearning, they can deploy relevant information across tasks, and they tend
to be aware of how their reasoning should be adjusted when background
assumptions and context change.

Small fragments of human-level central reasoning have been computationally
modeled using various logics, heuristics, and other formalisms (J. R. Anderson,
2007; Davis &Morgenstern 2004; Gigerenzer et al., 1999; e.g., McCarthy, 1990;
Newell & Simon, 1972). However, modeling human-level central reasoning in
full – in particular, accounting for its flexibility, reliability, and deep common-
sense knowledge base – remains an unsolved problem. Philosophers have
attempted to argue that this lacuna is no accident, but arises because central
reasoning is in a certain respect a “no go” area for computational accounts
of cognition.

37.4.1 The Frame Problem

Philosophers often describe their “no go” arguments about central reasoning as
instances of the frame problem in AI. This can be misleading as “the frame
problem” refers to a more narrowly defined problem specific to logic-based
approaches to reasoning in AI. The frame problem in AI concerns how a logic-
based reasoner should represent the effects of actions without having to repre-
sent all of an action’s noneffects (McCarthy & Hayes, 1969). Few actions
change every property in the world – eating a sandwich does not (normally)
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change the location of Australia. However, the information that Eat
(Sandwich) does not change Position(Australia) is not a logical truth but
something that needs to be encoded somehow, either explicitly or implicitly,
in the system’s knowledge base. Introducing this kind of “no change” infor-
mation in the form of extra axioms that state every noneffect of every action –

“frame axioms” – is unworkable. As the number of actions Nð Þ and properties
Mð Þ increases, the system would need to store approximately NM axioms. The
frame problem in AI concerns how to encode this “no change” information
more efficiently. The challenge is normally interpreted as the problem of for-
malizing a general inference rule that an action does not change a property
unless the reasoning system has evidence to the contrary. Formalizing this rule
poses numerous technical hurdles, and it has stimulated important develop-
ments in nonmonotonic logics, but it is widely regarded as a solved issue within
logic-based AI (Lifschitz 2015; Shanahan 1997, 2016).
A number of philosophers, inspired by the original frame problem, have

suggested that there are broader and more fundamental difficulties with
explaining human-level central reasoning with computation. They do not,
however, agree about the precise nature of these difficulties, their scope, or
their severity. A number of proposals – confusingly also called the “frame
problem” – can be found in Pylyshyn (1987) and Ford & Pylyshyn (1996).
Useful critical reflections on this work are found in Chow (2013), Samuels
(2010), Shanahan (2016), and Wheeler (2008). The remainder of this section
summarizes two attempts by philosophers to pinpoint the problem with model-
ing human-level central reasoning.

37.4.2 Dreyfus’s Argument

The first argument was developed by Hubert Dreyfus (1972, 1992). Dreyfus
initially targeted classical, symbolic computational approaches to central
reasoning. The sort of computational model he had in mind was exemplified
by Douglas Lenat’s Cyc project. This project aimed to encode all of human
common-sense knowledge in a giant symbolic database of representations over
which a logic-based system could run queries to produce general-purpose
reasoning (Lenat & Feigenbaum, 1991). Dreyfus argued that no model of this
kind could capture human-level general-purpose reasoning. This was for two
main reasons.
First, it would be impossible to encode all of human common-sense know-

ledge with a single symbolic database. Drawing on ideas from Heidegger,
Merleau-Ponty, and the later Wittgenstein, Dreyfus suggested that any attempt
to formalize human common-sense knowledge will fail to capture a background
of implicit assumptions, significances, and skills that are required in order for
that formalization to be used effectively. These philosophers defended the idea
that common-sense knowledge presupposes a rich background of implicit
know-how. Fragments of this know-how can be explicitly articulated in a set
of symbolic rules, but not all of it at once. Attempts to formalize all of human
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common-sense knowledge in one symbolic system will, for various reasons,
leave gaps, and attempts to fill those gaps will introduce further gaps elsewhere.
The goal of formalizing the entirety of human common-sense knowledge in
symbolic terms will run into the same kinds of problems that caused Husserl’s
twentieth-century phenomenological attempt to describe explicitly all the prin-
ciples and beliefs that underlie human intelligent behavior to fail (Dreyfus,
1991; Dreyfus & Dreyfus, 1988). (Searle makes a similar point regarding what
he calls the “Background” in Searle, 1992, pp. 175–196.)

Second, even if human common-sense knowledge could be encoded in a
single symbolic database, the computational system would find itself unable
to use that information efficiently. Potentially, any piece of information from
the database could be relevant to any task. Without knowledge about the
specific problems the system was facing, there would be no way to screen off
any piece of knowledge as irrelevant. Because the database would be so large,
the system would not be able to consider every piece of information it had in
turn and explore all its potential implications. How, then, would it select which
symbolic representations were relevant to a specific problem at hand? In order
to answer this, it would need to know which specific problem it was facing –

about its context and which background assumptions it was safe to make. But
how would it know this? Unless the programmer had told it the answer, the only
way would seem to be to deploy its database of common-sense knowledge to
infer the type of situation it was in and the nature of the problem it now faced.
But that leads one back to the original question of how it was to use infor-
mation in that database efficiently. In order to deploy its vast database effi-
ciently, the system would have to know which pieces of knowledge were
relevant to the problem at hand. In order to know that, it would have to know
what that problem was. But in order to know this, it would need to be able to
use its database of knowledge efficiently, which it cannot do because it would
not know which pieces of knowledge were relevant. Dreyfus concludes that any
computational model that attempts to perform central reasoning would be
trapped in an endless loop of attempting to determine context and relevance
(Dreyfus, 1992, pp. 206–224).

Dreyfus claimed that these two problems affect any classical, symbolic
computational attempt to model human-level general-purpose reasoning. In
later work, Dreyfus attempted to extend his “no go” argument to other kinds
of computational model – connectionist networks trained under supervised
learning and reinforcement learning. He cautiously concluded that although
these models might avoid the first problem (connectionist networks are not
committed to formalizing knowledge with symbolic representations), they are
still affected by something similar to the second problem. Our current methods
for training connectionist networks and reinforcement-learning systems tend to
tune these models to relatively narrow problem domains. Such systems have not
shown the flexibility to reproduce human-level general-purpose central
reasoning; they tend to be relatively brittle (Dreyfus, 1992, pp. xxxiii–xliii;
2007). It is worth noting that the character of Dreyfus’s argument changes here
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from that of an in-principle “no go” (it is impossible for any classical, symbolic
computational model to account for central reasoning) to more of a hedged
prediction based on what has been achieved by machine-learning methods to
date (we do not – yet – know of a method to train a connectionist network to
exhibit human-level flexibility in general-purpose reasoning).
Dreyfus proposed that central reasoning should be modeled using a dynam-

ical, embodied approach to cognition that has come to be known as
“Heideggerian AI.” The details of such a view are unclear, but broadly speak-
ing the idea is that the relevant inferential skills and embodied knowledge for
general-purpose reasoning are coordinated and arranged such that they are
solicited by the external situation and current context to bring certain subsets
of knowledge to the fore. The resources needed to determine relevance therefore
do not lie in a computation inside our heads, but are somehow encoded in the
dynamical relationship between ourselves and the external world (Haugeland,
1998). Wheeler (2005, 2008) develops a version of Heideggerian AI that takes
inspiration from the situated robotics movement (Brooks 1991). Dreyfus (2007)
argues for an alternative approach based around the neurodynamics work of
Freeman (2000). Neither has yet produced a working model that performs
appreciably better at modeling human-like context sensitivity than more con-
ventional computational alternatives.

37.4.3 Fodor’s Argument

Jerry Fodor argued that two related problems prevent a computational model
from being able to account for human-level central reasoning. He called these
the “globality” problem and the “relevance” problem (Fodor, 1983, 2000,
2008). Like Dreyfus, Fodor focused primarily on how these problems affect
classical, symbolic models of central reasoning. Fodor believed that a nonsym-
bolic model (e.g., a connectionist system) would be unsuited to modeling
human-level central reasoning because it cannot account for the systematicity
and compositionality that he considered necessary features of human thought
(Fodor, 2008; for that argument, see Fodor & Lepore, 1992; Fodor & Pylyshyn,
1988). (For discussion of connectionist approaches to central reasoning, see
Samuels, 2010, pp. 289–290.)
The globality problem concerns how a reasoning system computes certain

epistemic properties that are relevant to general-purpose reasoning: simplicity,
centrality, and conservativeness of representations. Fodor suggested that these
properties are “global,” by which he meant that they may depend on any
number of the system’s other representations. They are not features that super-
vene exclusively on intrinsic properties of the individual representation of which
they are predicated. A representation might count as simple in one context – for
example, relative to one set of surrounding beliefs – but complex in another.
The simplicity of a representation is not an intrinsic property of a representa-
tion. Hence, its simplicity cannot depend solely on a representation’s intrinsic,
local syntactic properties. Fodor claimed that a classical computational process
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is sensitive only to the intrinsic, local syntactic properties of the representations
it manipulates. Therefore, any central reasoning that requires sensitivity to
global properties cannot be a classical computational process.

Fodor’s globality argument has been roundly criticized (e.g., by Ludwig &
Schneider, 2008; Samuels, 2010; Schneider 2011). Critics point out that
computations may be sensitive, not only to the intrinsic properties of individ-
ual representations, but also to syntactic relationships between representa-
tions: for example, how a representation’s local syntactic properties relate to
the local syntactic properties of other representations and how they relate to
the system’s rules of syntactic processing. The failure of an epistemic property
like simplicity to supervene on a representation’s intrinsic, local syntactic
properties does not mean that simplicity cannot be tracked or evaluated by
a computational process. Simplicity may supervene on, and be reliably
tracked by following, the syntactic relationships between representations.
Fodor anticipates this response, however – in Fodor (2000) he labels it M
(CTM). He argues that solving the globality problem in this way runs into his
second problem.

The second problem arises when a reasoning system needs to make an
inference based on a large number of representations, any combination of
which may be relevant to the problem at hand. Typically, only a tiny fraction
of these representations will be relevant to the inference. The relevance problem
is to determine the membership of this fraction. Humans tend to be good at
focusing in on only those representations from their entire belief set that are
relevant to their current context or task. But we do not know how they do this.
Echoing the worries raised by Dreyfus, Fodor says we do not know of a
computational method that is able to pare down the set of all the system’s
representations to only those relevant to the current task.

37.4.4 Responses to the Problems

Some philosophers have responded to these problems by emphasizing the role
of heuristics in relevance determination. They point to the computational
methods used by Internet search engines, which, although far from perfect,
often do a decent job of returning relevant results from very large datasets. They
also stress that humans sometimes fail to deploy relevant information or that
they use irrelevant information when reasoning (Carruthers, 2006; Clark, 2002;
Lormand, 1990; Samuels, 2005, 2010). These two considerations might increase
our confidence that human-level central reasoning – and in particular, the
relevance problem – might be tackled by computational means. However, it
does not cut much ice unless one can say which heuristics are used and how the
observed success rate of humans is produced. Heuristics might, at some level,
inform human central reasoning, but unless one can say precisely how they do
this – and ideally produce a working computational model that exhibits levels of
flexibility and reliability similar to those seen in human reasoning – it is hard to
say that one has solved the problem (see Chow, 2013, pp. 315–321).
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Shanahan and Baars (2005) and Schneider (2011) suggest that the issues that
Dreyfus and Fodor raise can be resolved within GWT. GWT is a proposed
large-scale computational architecture in which multiple “specialist” cognitive
processes compete for access to a global workspace where central reasoning
takes place. Access to the global workspace is controlled by “attention-like”
processes (Baars, 1988). Mashour et al. (2020) and Dehaene and Changeux
(2004) describe a possible neural basis for GWT. Goyal et al. (2021) suggest
GWT as a way to enable several special-purpose AI systems to share infor-
mation and coordinate decision making. GWT is a promising architecture, but
it is unclear whether it can function as a response to the arguments of Dreyfus
and Fodor. The model does not explain the mechanism by which information
from specialist processes is regulated so as to be relevant to the current context
and the contents of the central workspace. Baars and Franklin (2003) suggest
there is an interplay between “executive functions,” “specialist networks,” and
“attention codelets” that control access to the global workspace, but exactly
how these components work to track relevance is left unclear. As with the
suggestion about heuristics, GWT is not (or not yet) a worked-out solution to
the relevance-determination problem (see Sprevak, 2019, pp. 557–558).
A notable feature of the “no go” arguments that target human-level central

reasoning is that, unlike the “no go” arguments of Sections 37.2 and 37.3, they
do not straightforwardly generalize across the space of all computational
models. Both Dreyfus’s and Fodor’s arguments consist in pointing out prob-
lems with specific computational approaches to central reasoning – primarily,
with classical, symbolic models and current connectionist and reinforcement-
learning approaches. The persuasive force of what they say against untried or
as-yet unexplored computational approaches is unclear. Skeptics might see in
their arguments evidence that central reasoning is unlikely to ever yield to a
computational approach – Dreyfus and Fodor both suggest that the track
record of failure of computational models should lead one to infer that no
future computational model will succeed. Fans of computational modeling
might respond that explaining central reasoning is an extremely hard research
problem and it should not be surprising if it has not yet been solved by
computational methods. The landscape of as-yet untried computational
methods is very large and, pending evidence to the contrary, we should not
presume that central reasoning cannot yield to a computational model
(Samuels, 2010, pp. 288–292).

37.5 Conclusion

This chapter describes a small sample of philosophical issues in the
computational cognitive sciences. Its focus has been “no go” arguments
regarding three distinct aspects of human cognition: semantic content,
phenomenal consciousness, and central reasoning. One might worry that the
project of placing limits on what the computational cognitive sciences can
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achieve is rash given their relatively early state of development. But this would
be to misinterpret how the “no go” arguments function. These arguments
attempt to formalize objections – of different types and different strengths –

to the assumption that every aspect of cognition can be adequately explained
with computation. This need not shut down debate on the topic, but can serve
as an opening move and a potentially helpful spur. The project bears directly on
questions about the estimated plausibility of future research programs within
the cognitive sciences, the motivations for pursuing them, and the rationale for
devoting resources to computational vs. noncomputational approaches. Such
judgments cannot be avoided; they are made regularly within the cognitive
sciences. They are also best made on a considered basis, with reasons mar-
shalled and assessed. Philosophical work in this area can help to systematize
evidence and provide decision makers with reason-based considerations about
what challenges the computational cognitive sciences are likely to face.
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38 An Evaluation of
Computational Modeling
in Cognitive Sciences
Margaret A. Boden

38.1 Introduction

Computer modeling of specific psychological processes began over fifty
years ago, with work on checkers playing, logical problem solving, and learn-
ing/conditioning (Boden, 2006, 6.iii, 10.i.c–e, 12.ii). Some of this work involved
what is now called GOFAI, or Good Old-Fashioned AI (Haugeland, 1985,
p. 112), and some involved what is now called connectionist AI (see Chapter 1
of this handbook). In addition, cyberneticians were modeling very general
principles believed to underlie intelligent behavior. Their physical simulations
included robots representing reflex and adaptive behavior, self-organizing
“homeostatic” machines, and chemical solutions undergoing dynamical change
(Boden, 2006: 4.v.e, 4.viii).
There was no ill-tempered rivalry between symbolists and connectionists

then, as there would be later. The high points – or the low points, perhaps –
of such passionate rivalry appeared on both sides of this intellectual divide.
The first prominent attack was Marvin Minsky and Seymour Papert’s (1969)

critique of Perceptrons, an early form of connectionism (Rosenblatt, 1958).
This caused something of a scandal at the time, and is often blamed – to some
extent, unjustly (Boden, 2006, 12.iii.e) – for the twenty-year connectionist
“winter,” in which virtually all the DARPA funds for AI were devoted to
symbolic approaches.
Some ten years after Minsky and Papert, Douglas Hofstadter (1979, 1983/

1985) published a fundamental critique of symbolism, which aroused signifi-
cant excitement even in the media. In particular, he criticized the static nature
of concepts as viewed by traditional AI, arguing instead that they are con-
stantly changing, or “fluid.” Hofstadter’s attack on classical AI was soon
echoed by the newly popular research on PDP, or parallel distributed process-
ing, networks (McClelland, Rumelhart, and PDP Group, 1986; Rumelhart,
McClelland, and PDP Group, 1986;). But the old “enemy” counterattacked:
in response to the PDP challenge, an uncompromising defence of symbolism
was mounted by Jerry Fodor and Zenon Pylyshyn (1988). As for Minsky and
Papert themselves, they defiantly reissued their book – with a new “Prologue”
and “Epilogue,” refusing to back down from their original position (Minsky &
Papert, 1988).
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The connectionist/symbolist divide was not the only one to cause people’s
tempers to rise. Another source of controversy was the (continuing) debate over
situated cognition and robotics. The situationists stressed instant reactivity and
embodiment, and played down the role of representations (Agre & Chapman,
1987, 1991; Brooks, 1991a,b). Their opponents argued that representations and
planning are essential for the higher mental processes, at least (Kirsh, 1991;
Vera & Simon, 1993). (Ironically, one of the first to stress the reactive nature of
much animal, and human, behavior had been the high-priest of symbolism
himself, Simon, 1969, chapter 3.)

This explicitly anti-Cartesian approach often drew from the phenomeno-
logical philosophers Martin Heidegger and Maurice Merleau-Ponty, as well
as the later Wittgenstein (Clark, 1997; Wheeler, 2005). Indeed, these writers had
inspired one of the earliest, and most venomous, attacks on AI and cognitive
science (Dreyfus, 1965, 1972). Given the fact that phenomenological
(“Continental”) approaches have gained ground even among analytically
trained philosophers over the last twenty years (McDowell, 1994), there are
many people today who feel that Hubert Dreyfus had been right all along (e.g.,
Haugeland, 1996). Predictably, however, many others disagree.

Much of the interest – and certainly much of the excitement – in the past forty
years of research on cognitive modeling has been in the see-sawing dialectics of
these two debates. But in the very earliest days, the debates had hardly begun.
When they did surface, they were carried out with less passion, and far less
rhetorical invective. For at that time, the few afficionados shared a faith that all
their pioneering activities were part of the same intellectual endeavor (Blake &
Uttley, 1959; Feigenbaum & Feldman, 1963). This endeavor, later termed
cognitive science, was a form of psychology (and neuroscience, linguistics,
anthropology, and philosophy of mind) whose substantive theoretical concepts
would be drawn from cybernetics and AI (Boden, 2006, 1.i–ii).

However, sharing a faith and expressing it persuasively are two different
things. The nascent cognitive science needed a manifesto, to spread the ideas
of the people already starting to think along these lines and to awaken others to
the exciting possibilities that lay in the future. That manifesto, “Plans and the
Structure of Behavior,” appeared in 1960. Written by George Miller, Eugene
Galanter, and Karl Pribram (henceforth: MGP), it offered an intriguing – not
to say intoxicating – picture of future computational psychology.

It promised formal rigor: psychological theories would be expressed as AI-
inspired Plans made up of TOTE-units (Test, Operate, Test, Exit). It also
promised comprehensiveness. All psychological phenomena were included:
animal and human; normal and pathological; cognitive and motivational/emo-
tional; instinctive and learnt; perception, language, problem solving, and
memory were covered – or anyway, briefly mentioned. In those behaviorist-
dominated days, MGP’s book made the blood race in its readers’ veins.

The manifesto had glaring faults, visible even without the benefit of hindsight.
It was unavoidably simplistic, for its authors had only half a dozen interesting
computer models to draw on, plus Noam Chomsky’s (1957) formal-generative
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theory of language. It was strongly biased towards symbolic AI, although con-
nectionism was mentioned in the footnotes; the reason was that serial order,
hierarchical behavior, and propositional inference were then better modeled by
GOFAI – as they still are today (see below). Although the concept of infor-
mational feedback was prominent, the cyberneticists’ concern with dynamical
self-organization was ignored. The book was careless in various ways: for
instance, MGP’s concept of “Image” was said by them to be very important,
but was hardly discussed. And, last but not least, it was hugely over-optimistic.
Nevertheless, it was a work of vision. It enthused countless people to start

thinking about the mind in a new manner. A good way of assessing today’s
computational psychology, then, is to compare it withMGP’s hopes: how far have
they been achieved, and how far are we even on the road to their achievement?
Before addressing those questions directly, an important point must be made.

A computational psychology is one whose theoretical concepts are drawn from
cybernetics and AI. Similarly, computational anthropology and neuroscience
focus on the information processing that is carried out in cultures or brains
(Boden, 2006, chapters 8 and 14). So cognitive scientists do not use computers
merely as tools to do their sums (as other scientists, including many noncomputa-
tional psychologists, often do), but also as inspiration about the nature of mental
processes. However, whereas they all rely on computational ideas – interpreted
very broadly here, to include symbolic, connectionist, situationist, and/or dynam-
ical approaches – they do not all get involved in computer modeling.
Sometimes, this is merely a matter of personal choice: some computational

psychologists lack the skills and/or resources that are required to build com-
puter models. In such cases, other researchers may attempt to implement the
new theory. Often, however, the lack of implementation is due to the forbidding
complexity of the phenomena being considered. Computational theories of
hypnosis, for example, or of the structure of the mind as a whole, are not
expressed as functioning computer models (although, as we will see in Section
38.3, some limited aspects of them may be fruitfully modeled).
Accordingly, this chapter will discuss nonmodeled computational theories as

well as programmed simulations and robots. After all, the theoretical concepts
concerned are not based on mere speculative hand-waving: they are grounded
in the theorists’ experience with working AI systems. What is more, MGP
themselves, despite all their brash optimism, were not suggesting that personal-
ity or paranoia would one day be modeled in detail. Rather, they were arguing
that computational concepts could enable us to see how such phenomena are
even possible. As remarked in Section 38.6 below, the demystification of
puzzling possibilities is what science in general is about.

38.2 The Cognitive Aspects of Cognitive Science

The widely accepted name for this field is a misnomer: cognitive science
is not the science of cognition. Or rather, it is not the science of cognition alone.
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In the beginning, indeed, a number of computer simulations were focused on
social and/or emotional matters (Colby, 1964, 1967; Tomkins &Messick, 1963).
But the difficulties in modeling multi-goal and/or interacting systems were too
great. In addition, experimental psychology, largely inspired by information
theory, was making important advances in the study of cognition: specifically,
perception, attention, and concept formation (Broadbent, 1952a,b, 1958;
Bruner, Goodnow, & Austin 1956). In neuropsychology, Donald Hebb’s
(1949) exciting ideas about cell-assemblies were more readily applied to con-
cepts and memory than to motivation and psychopathology, which he discussed
only briefly. And the early AI scientists were more interested in modeling
cognitive matters: logic, problem solving, game playing, learning, vision, or
language (including translation). As a result, the early advances – and most of
the later advances too – concerned cognition.

Among the most significant work, which inspired MGP and whose influence
still persists, was that of Allen Newell and Herbert Simon (Newell, Shaw, &
Simon, 1957, 1958, 1959). These men provided examples of heuristic program-
ming, wherein essentially fallible rules of thumb can be used to guide the system
through the search space (itself a novel, and hugely important, concept). They
showed how means-end-analysis can be used to generate hierarchically struc-
tured plans for problem solving. And Simon’s stress on “bounded” rationality
was especially important for psychologists. (For a very different account of
bounded rationality, see Gigerenzer, 2004; Gigerenzer & Goldstein, 1996.)

Planning became the focus of a huge amount of research in AI and computa-
tional psychology. Increasing flexibility resulted: for instance, self-monitoring
and correction, expressing plans at various levels of abstraction, and enabling
the last-minute details to be decided during execution (Boden, 1977/1987,
chapter 12). In addition, the flexibility exemplified by rapid reaction to inter-
rupts was modeled by Newell and Simon using their new methodology of
production systems (1972). Here, goals and plans were represented not by
explicit top-down hierarchies but by a host of implicitly related if-then rules.
This work was even more closely grounded in psychological experiments (and
theories about the brain) than their earlier models had been, and led to a wide
range of production-system models of thought and motor behavior – from
arithmetic, through typing, to seriation. Today, technologically motivated AI
plans may comprise tens of thousands of steps.

Another advance seeks to defuse the first of the two often vitriolic debates
identified in Section 38.1. For although GOFAI and connectionist approaches
are often presented as mutually exclusive, there are some interesting hybrid
systems. In psychology, for instance, GOFAI plans have been combined with
connectionist pattern-recognition and associative memory in computer models
of human action and clinical apraxias (Norman & Shallice, 1980). Similarly,
deliberative planning is being combined with reactive (“situated”) behavior in
modern robots (Sahota & Mackworth, 1994). Indeed, there is now a very wide
range of hybrid systems, in both psychological and technological AI (Sun, 2001;
Sun & Bookman, 1994). In other words, MGP’s notion of plans as hierarchies
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of TOTE-units has been greatly advanced – with the hierarchy often being
implicit, and the “Test” often being carried out by reactive and/or
connectionist mechanisms.
The appeal of hybrid systems is that they can combine the advantages of both

symbolic and connectionist approaches. For these two methodologies have
broadly complementary strengths and weaknesses. As remarked above, serial
order, hierarchical behavior, and propositional inference are better modeled by
GOFAI. Indeed, much of the more recent connectionist research has attempted
to provide (the first two of ) these strengths to PDP systems (e.g., Elman, 1990,
1993; for other examples, see Boden, 2006, 12.viii–ix). In addition, symbolic
models can offer precision (but many – though not all – “crash” in the presence
of noise), whereas PDP offers multiple constraint satisfaction and graceful
degradation (but is ill-suited to precise calculation wherein 2+2 really does
equal 4, and not 3.999 or probably 4).
Vision, too, was a key research area for computational modeling – not least

because experimental psychologists had already learnt a lot about it. The work
on “scene analysis” in the 1960s and 1970s used top-down processing to
interpret line-drawings of simple geometrical objects (Boden, 1977/1987, chap-
ters 8–9). This fitted well with then-current ideas about the psychology of
perception (Bruner, 1957), and some aspects of human vision were successfully
explained in this way (Gregory, 1966, 1967).
In general, however, that approach was unrealistic. For example, if the

computer input was a gray-scale image from a camera (as opposed to a line
drawing), it would be converted into a line drawing by some line-finding
program. Gibsonian psychologists complained that a huge amount of potential
information was being lost in this way, and David Marr (among others)
suggested that this could be captured by bottom-up connectionist processes
designed/evolved to exploit the physics of the situation (Marr, 1976, 1982;
Marr & Hildreth, 1980). (Marr went on to criticize top-down AI in general,
and what he saw as the theoretically unmotivated “explanations” offered by
psychologists such as Newell and Simon (Marr, 1977). To simulate, he insisted,
was not necessarily to explain.)
Work on low-level vision, including enactive vision (wherein much of the

information comes as a result of the viewer’s own movements, whether of eyes
and/or body), has given rich returns over the past quarter-century (Hogg,
1996). But top-down models have been overly neglected. The recognition of
indefinitely various objects, which must involve top-down processing exploit-
ing learnt categories, is still an unsolved problem. However, the complexity of
visual processing, including the use of temporary representations at a number
of levels, is now better appreciated. Indeed, computational work of this type
has been cited as part-inspiration for neuroscientific accounts of “dual-pro-
cess” vision (Goodale & Milner, 1992; Milner & Goodale, 1993; Sloman,
1978, 1989).
As for language, which MGP (thanks to Chomsky) had seen as a prime

target for their approach, this has figured prominently. Both Chomsky’s
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(1957) formalist discussion of grammar and Terry Winograd’s (1972) GOFAI
model of parsing influenced people to ask computational questions about
psychology in general, and about language use and development in particular
(e.g., Miller & Johnson-Laird, 1976). But neither work was sufficiently tract-
able to be used as a base for computer models in later psycholinguistic
research. (One exception was a model of parsing grounded in Chomskyan
grammar, which attempted to explain “garden-path” sentences in terms of a
limited working memory buffer: Marcus, 1979.) Other types of modeling (such
as ATNs: Augmented Transition Networks – see Woods, 1973), and other
theories of grammar, were preferred.

All aspects of language use are now being studied in computational terms.
With respect to syntax, many models have utilized a theory that is more
computationally efficient than Chomskyan grammar (Gazdar et al., 1985).
With respect to semantics, psychological models (and experiments) have been
based in work ranging from conceptual dependencies (Schank, 1973), through
the theory of scripts (Bransford & Johnson, 1972; Schank & Abelson, 1977), to
formal model-theoretic logic (Johnson-Laird, 1983). The use of language (and
imagery) in problem solving has been explored in the theory of “mental
models” (Johnson-Laird, 1983). More recently, both situation semantics and
blending theory have offered cognitive versions of linguistics and analogical
thinking that are deeply informed by the computational approach (Barsalou,
1999; Fauconnier & Turner, 2002). And with respect to pragmatics, computa-
tionalists have studied (for instance) speech-acts, focus, and plan-recognition in
conversation (Cohen & Perrault, 1979; Cohen, Morgan, & Pollack, 1990;
Grosz, 1977).

Machine translation has made significant advances, but has become increas-
ingly statistical and corpus-based: it is an exercise in technological AI.
Reference to machine translation reminds us that language, with its many
ambiguities and rich associative subtleties, has long been regarded as the
Achilles’ heel of AI. But if perfect use/translation of elegant natural language
is in practice (or even in principle) impossible for an AI system, it does not
follow that useful language processing is impossible too.

Still less does it follow that psychologists cannot learn anything about natural
language by using a computational approach. What is more, important lessons
about psychology in general may be learnt in this way.

For instance, a connectionist program simulating the development of the past
tense was seen by its authors as a challenge to psychological theories based on
nativism and/or formalist rule realism (Rumelhart & McClelland, 1986). This
network learnt to produce the past tense of verbs in something apparently like
the way in which children do so – including the temporary over-regularization
of irregulars (e.g., “goed” instead of “went”) that Chomskyans had explained in
terms of innate rules. This received (and still receives) attack and defence from
Chomskyans and nonChomskyans respectively, including attention from devel-
opmentalists concerned with the growth of representational trajectories in
general (Clark & Karmiloff-Smith, 1993; Pinker & Prince, 1988; Plunkett &
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Marchman, 1993). The verdict is not clear-cut, for further similarities and also
differences have been found when comparing network and child. Nevertheless,
this is a good example of the use of computational models not only to throw
light on specific psychological phenomena but also to explore foundational
issues in theoretical psychology.
The computationally inspired, but nonprogrammed, theories of linguistic

communication include blending theory, mentioned above. But perhaps the
best example is Daniel Sperber and Deirdre Wilson’s wide-ranging work on
relevance (1986). This uses ideas about the efficiency of information processing
to explain how we manage to interpret verbal communications, including those
which seem to “break the rules” in various ways. There is no question of
capturing the full extent of Sperber and Wilson’s theory in a computer model:
language understanding is far too complex for that. But “toy” examples can be
modeled. Moreover, their theoretical insights were grounded in their generally
computational approach. In other words, even if individual examples of
relevance-recognition cannot usually be modeled, their psychological possibility
can be computationally understood (see Section 38.6).
Problem solving, vision, and language are obvious candidates for cognitive

psychology, whether computational or not. But MGP had set their sights even
higher, to include – for example – hypnosis and hallucination (MGP, 1960,
103f., 108–112). Recently, these phenomena too have been theorized by
cognitive scientists.
For example, Zoltan Dienes and Josef Perner (2007) have explained

hypnosis in terms of “cold control,” wherein inference and behavior are
directed by executive control but without conscious awareness. Conscious
awareness, in their theory, involves higher-order thoughts (HOTs) that are
reflexively accessible to (and reportable by) the person concerned. These
authors outline computational mechanisms whereby hypnosis of varying
types can occur, due to the suppression of HOTs of intention. In doing so,
they explain many puzzling facts observed by experimentalists over the years
(such as the greater difficulty of inducing positive, as opposed to negative,
hallucinations).
The most important topic about which MGP had little or nothing to say was

development (see Chapter 23 on developmental psychology by Shultz &
Nobandegani in this handbook). And indeed, for many years, most cognitive
scientists ignored development as such. Most assimilated it to learning – as in
the past-tense learner. A few used ideas from developmental psychology with-
out considering their specifically developmental aspects – as Alan Kay, when
designing human–computer interfaces, borrowed Jerome Bruner’s classification
of “cognitive technologies” and Jean Piaget’s stress on construction and learn-
ing-by-doing (Boden, 2006, 13.v). A few Piagetians tried to model stage-
development (e.g., Young, 1976). But even they failed to take Piaget’s core
concept of epigenesis fully on board.
By the end of the century, that had changed. Epigenesis was now a word to

conjure with even in robotics, never mind developmental psychology (see
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Chapter 23 in this handbook). Forty years of “Piagetian” research in psych-
ology (Elman et al., 1996; Karmiloff-Smith, 1979, 1986) and neuroscience
(Changeux, 1985; Johnson, 1993) had led to theories, and computer models,
in which epigenesis was a key feature. Instead of pre-programmed and sudden
stage-changes, development was conceptualized as a progression of detailed
changes due in part to successive environmental influences. The simplistic
nature–nurture controversy was rejected, as it had been by Piaget himself.
Instead, the concept of innateness was enriched and redefined. This theoretical
advance involved both (connectionist) computer modeling and the interdiscip-
linary integration of empirical research: an example of cognitive science at
its best.

Researchers who took epigenesis seriously were naturally skeptical about
modularity theories. The picture of the mind as a set of functionally isolated,
inherited, and domain-specific modules had been suggested by Chomsky, cham-
pioned by Jerry Fodor, and supported by evolutionary psychologists in general
(Boden, 2006, 7.vi.d–e and i). Fodor (1983), in particular, expressed this
twentieth-century version of “faculty psychology” in computational terms.
The epigeneticists just mentioned, and especially Annette Karmiloff-Smith
(1992), argued that the modularity apparent in the adult develops gradually,
both before and after birth, from a source (i.e., a brain) that is much more
plastic than orthodox modularity theorists had claimed.

To say that Fodor pictured the mind as a set of modules is not quite accurate.
For he also posited “higher mental processes” – of inference, association,
interpretation, and creative thinking – which lead each of us to accept an
idiosyncratic collection of beliefs (and desires, intentions, hopes . . . ). These
thought processes, he said, are domain-general and highly interactive: were that
not so, most poems (for instance) simply could not be written, and most
everyday conversations could not happen either.

However, his view was that such matters (unlike the functioning of modules)
are wholly beyond the reach of computational psychology. Since any two
concepts can be combined in an intelligible image or belief, it follows that
predicting (or even explaining post hoc) just why someone arrived at this belief
rather than that one is impossible, in the general case. And since – according to
him – computational psychology is “the only psychology we’ve got,” indeed the
only psychology it is even worth wanting, there is no hope of ever having a
scientific explanation of beliefs, or of the propositional attitudes in general. In
short, modules are as good as it gets: the psychology of cognition is a much less
wide-ranging enterprise than one had thought.

Whether Fodor was right, here, depends on one’s philosophical views about
scientific explanation, whether computational or not. Must it involve detailed
predictions of specific events (such as accepting a new belief, or interpreting an
analogy)? Or is it enough that it shows how certain general classes of event,
some of which may be prima facie very puzzling, are possible? (And why certain
other imaginable events are impossible?) We will return to this question in
Section 38.6.
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38.3 Emotions and Motivation

It is part of the human condition that we have many different, some-
times incompatible, motives and desires and that we are subject to a range of
emotions that seem to interfere with rational problem solving.
These banalities were touched on byMGP, and remarked by several others at

the outset of computational psychology (e.g., Simon, 1967). But such matters
could then be modeled only to a very limited degree. It was difficult enough to
write programs dealing with one goal (and its attendant subgoals . . .), never
mind more. And it was challenging enough to deal with problems of a well-
understood (“logical”) kind, in a relatively tractable (“rational”) way.
In that context, conflicting motives and disturbing emotions seemed to be

computational luxuries that no sensible programmer could afford. Simon him-
self, in his (and Newell’s) huge book of 1972, mentioned emotions only in
passing. This is largely why cognitive science is widely (though mistakenly)
thought be the science only of cognition.
However, these matters could not be ignored forever. There were two reasons

for this. First, emotions and motivation exist, so should feature in any compre-
hensive psychological approach. Second, they are intimately connected with
cognitive phenomena, such as language and problem solving – so much so, that
a fully adequate model of cognition would not be a model of cognition alone.
Indeed, both computationalists and neuroscientists have pointed out that, in
multi-motive creatures such as ourselves, “pure” problem solving could not
occur without emotional prioritizing.
The neuroscientists based this conclusion on clinical evidence. For example,

the brain- damaged patient “Elliot” was, in effect, utterly incompetent – despite
his intellect being unimpaired (Damasio, 1994). Asked to perform an individual
sub-task, he could do so easily. He could even work out all the relevant plans for
the task as a whole and foresee the tests that (according to MGP) would be
required in executing them. He could compare the possible consequences of
different actions, construct contingency plans, and take moral principles and
social conventions into account while doing so. What he could not do was choose
sensibly between alternative goals, or stick with a plan once he had chosen it, or
assess other people’s motives and personality effectively. His clinician felt that his
deficit was not cognitive, but emotional. For he was unable to decide that one
goal was more desirable than another (and showed no emotional reaction even to
the most dreadful events happening in stories or real life). Hence his inability to
embark on a plan of action, and/or to persevere with it if he did so.
Some cognitive scientists had long used principled computational arguments

to arrive at a similar conclusion, namely, that rationality depends on emotion –

which is not to deny that emotional response can sometimes make us act
irrationally. By the end of the century, emotion had become a hot topic in AI
and other areas of cognitive science, including the philosophy of mind (e.g.,
Evans, 2001; Evans & Druse, 2004). Even technological AI researchers were
modeling emotional interrupts and prioritizing (Picard, 1997).
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Among the most deeply thought-out research on emotion was a longstanding
theory, and a computer model, developed by Aaron Sloman’s group (Wright &
Sloman, 1997; Wright, Sloman, & Beaudoin, 1996). Their program simulates
the behavioral effects of several theoretically distinct varieties of anxiety. It
represents a nursemaid dealing with several hungry, active babies, with an open
door leading onto a water-filled ditch. She has seven different motives (which
include feeding a baby if she believes it to be hungry, building a protective fence,
and putting a baby behind the fence if it is nearing the ditch), and is subject to
continual perceptual and emotional interrupts – which prompt appropriate
changes-of-plan.

Different types of anxiety arise, because she has to distinguish between
important and trivial goals, and decide on urgency and postponement.
(Feeding a baby is important but not highly urgent, whereas preventing it from
falling into a ditch is both.) Since she cannot deal with everything at once, nor
pursue all her motives at once, she must schedule her limited resources effect-
ively – which is what emotion, according to Sloman, is basically about (see
Section 38.4).

Such research is a huge advance on the models of emotion that were written
over thirty years ago. These simulated the distortions of belief that are charac-
teristic of neurosis and paranoia (Colby, 1964, 1975), and the effects of various
(Freudian) types of anxiety on speech (Clippinger, 1977). Even though the
virtual nursemaid does not form verbal beliefs, the role of anxiety in her mental
economy is captured with some subtlety – and is grounded in an ambitious
theory of mental architecture in general (see Section 38.4).

It is widely believed not only that cognitive science does not deal with
emotions, but also that – in principle – it could not. In part, this belief springs
from the notion that emotions are feelings, and that computation cannot
explain (and computers cannot experience) feelings. Whether conscious qualia
(such as feelings) can be computationally explained is touched on in Section
38.5. Here, it must be said that emotions are not just feelings, but also schedul-
ing mechanisms that have evolved to enable rational action in conflict-ridden
minds – which mechanisms, as we have seen, can be computationally
understood.

In part, however, the widespread belief that emotions – and their close
cousins, moods – are beyond the reach of computational psychology rests on
the fact that they appear to depend less on connections than on chemistry. In
other words, the neuroscientists tell us that chemical endorphins, and perhaps
also rapidly diffusing small molecules such as nitric oxide, underlie very general
psychological changes – such as alterations in mood. Since computation (so this
objection goes) can model only specific decisions or neural connections, it is
fundamentally ill-suited to represent moods.

This objection has been countered by the development of computational
systems called GasNets (Philippides, Husbands, & O’Shea, 1998; Philippides
et al., 2005). In a nutshell, these are neural networks wherein the behavior of an
individual unit can vary according to the location and concentration of
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(simulated) rapidly diffusing chemicals. The behavior of the system as a whole
differs in distinct chemical circumstances, even though the neural connectivities
do not change. GasNets are very different from GOFAI systems, and even from
orthodox neural networks – not to mention abstract models defined in terms of
Turing-computation (see Section 38.6). As a result, they are able to simulate
mental phenomena that seem intuitively to lie outside the range of computa-
tional psychology.
GasNets and the virtual nursemaid reflect, respectively, the differing phe-

nomenology of moods and emotions. Anxiety, for example, is normally directed
onto a specific intentional object: that this baby will go hungry, or that one fall
into the ditch. Admittedly, free-floating anxiety does seem to occur – but it is
atypical. Moods (such as elation or depression), on the other hand, have no
particular object but affect everything one does while in their grip. That,
perhaps, is just what one would expect if their neurological base is some widely
diffusing chemical, as opposed to the activation of a specific neural circuit or
cell assembly. Whether these speculative remarks are correct or not, however,
the point is that these computer models show the potential scope of computa-
tional explanation to be much wider than most people assume.

38.4 Full-Fledged Humanity

Sloman’s work on anxiety is just a small part of a much wider project,
namely, his attempt to sketch the computational architecture of the mind – and
possible minds (Sloman, 1978, 2000).
Other examples of architectural research include ACT-R (Anderson, 1983,

1996), SOAR (Laird, Newell, & Rosenbloom, 1987; Rosenbloom, Laird, &
Newell, 1993), and Clarion (Sun 2006; Sun, Peterson, & Merrill, 2001). These
systems are both more and less ambitious than the other two just mentioned.
“More,” because they are largely/fully implemented. “Less,” because the range
of psychological phenomena they model is narrower than those discussed by
Minsky and Sloman (although Clarion, unlike the others, models social inter-
action and emotion: see Chapter 32 in this handbook). In a nutshell, they are
much more concerned with cognition than emotion, and with effective problem
solving rather than irrationality or psychopathology. In that sense, they are less
relevant to “full-fledged humanity,” however impressive they may be as imple-
mented problem-solving systems.
Minsky and Sloman each see the mind as a “society,” or “ecology,” of agents

or subsystems, both evolved and learnt (Minsky, 1985; Sloman, 2003). Their
overall designs, if successful, should not only illuminate the relation between
cognition, motivation, and emotion, but also show how various types of essen-
tially human psychology (and psychopathology) are possible.
For instance, consider the many debilitating effects of grief after bereavement

(tearfulness, distractibility, lack of concentration, pangs of guilt, feelings of
“meaninglessness” . . .), and the need for many months to engage in mourning.
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These phenomena are familiar to psychiatrists and psychotherapists – and,
indeed, to most ordinary people. But being familiar is not the same as being
theoretically intelligible. Why (and how) does grief affect us in such a variety of
different ways? Why is so much time required for effective mourning? And what
is “effective” mourning, anyway? These questions have been addressed in a
highly illuminating way by Sloman, in the context of his architectural theory
(Wright, Sloman, & Beaudoin, 1996). (If this seems counterintuitive, it is worth
remarking that the journal editor who published his paper on grief is a psych-
iatrist, well acquainted from clinical practice with the ravages of this
phenomenon.)

There is no question, in the foreseeable future, of implementing Sloman’s or
Minsky’s systems as a whole. Improved versions of the nursemaid program, and
equally limited models of other dimensions of their discussions, are about as
much as we can hope for. A skeptic might infer, therefore, that these ambitious
mind-mapping projects are mere handwaving.

Compared with a fully functioning computer model, they are. However, one
must recognize that the concepts used, and the hypotheses suggested, by both
Sloman and Minsky are based on many years of experience with working AI
systems – not to mention many years of thinking about architectural problems.
They have been tried and tested separately countless times, in a host of AI
models. The question is whether their integration, as sketched by these two
researchers, is plausible.

Success would involve more than computational plausibility, of course. It
also requires consistency with the empirical evidence provided by psychology.
So, if one could show that the data about hypnosis (for example), or grief,
simply cannot be fitted within a particular architectural story, then that story
would have to be modified. No matter how many improvements were made, of
course, no implementation could in practice match the richness of a human
mind (see Section 38.6). That drawback may be excused, however: if physicists
are allowed to use inclined planes, psychologists also should be allowed to
simplify their theoretical problems. Only if some psychological phenomena
remain utterly untouched by the inclined-planes approach can it be criticized
as a matter of principle.

It is often argued that consciousness is one such phenomenon, which could
not ever be illuminated or explained by a computational approach. In rebutting
this view, one does not have to endorse the possibility of “machine conscious-
ness” – though some computationalists do so (e.g., Aleksander, 2000), and
several conferences on “Machine Consciousness” have been held in recent
years. One does not even have to endorse the denial of qualia – though, again,
some cognitive scientists do (Dennett, 1991, chapter 12). One need only point
out that “conscious” and “consciousness” are terms covering a mixed bag of
psychological phenomena (Zelazo, Moscovitch, & Thompson, 2007). These
range from attention, through deliberate thinking, to self-reflection – even
including the nonreciprocal co-consciousness typical of “multiple personality.”
Each of these has been hugely illuminated by computational approaches
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(Boden, 2006, 6.i.c–d, 6.iii, 7.i.h, and 7.iv). Indeed, these topics are what, in fact,
the conferences on machine consciousness are mostly about.
In short, even if – and it is a philosophically controversial “if” – computa-

tional psychology cannot explain the existence of qualia, it can explain many
other aspects of consciousness. (What is more, if it cannot do this, then neuro-
physiology cannot do so either. Brain-scans are not the solution, for correlation
is not the same as explanation – Boden, 2006, x–xi.)
One important aspect of human beings that is acknowledged – and

explained – by theories of computational architecture such as these is freedom.
To cut a long story short (see also Boden, 2006, 7.i.g), freedom is a flexibility of
action that is not due to any fundamental indeterminacy, but is possible only
because of the cognitive and motivational complexity of adult human minds.
Various cognitive scientists argued this in the early days (e.g., Boden, 1972,
327–333; Minsky, 1965, section 9; Sloman, 1974). Now, with increased under-
standing of the computational complexities concerned, the argument can be
made more fully (e.g., Dennett, 1984; Minsky, 1985; Arbib & Hesse, 1986,
93–99).

38.5 Social Interaction

Implicit in MGP’s manifesto was the notion that cognitive science
could cover social, as well as individual, psychology. And indeed, some of the
early computational theories dealt with this theme. A prime example, system-
atizing the possible interactions between two people in different roles, was
offered by the social psychologist Robert Abelson (1973). However, the topic
was soon dropped (except in some models of conversation – e.g., Cohen &
Perrault, 1979; Grosz, 1977), as it became clear that modeling even one purpos-
ive system was difficult enough. In the 1990s, however, interest in social inter-
action and distributed cognition burgeoned.
Distributed representation had already surfaced as PDP connectionism,

wherein networks composed of many different units achieve a satisfactory result
by means of mutual communications between those units. This is a form of
distributed cognition, in that no single unit has access to all of the relevant data
and no single unit can represent (“know”) the overall result. But PDP method-
ology was mostly used to model pattern recognition and learning (one highly
controversial result was the network that learnt to produce the past tense: see
Section 38.2). It was hardly ever used to model social phenomena, because
individual PDP units are too simple to be comparable to social beings.
One apparent exception is the work of the anthropologist Edwin Hutchins

(1995). He uses communicating networks of PDP networks to study the
collective problem solving that is involved in navigating a ship. The huge
amount, and diversity, of knowledge required is distributed among the various
crew members (and also in the nature, and spatial placement, of the instru-
ments on board). Not even the captain knows it all. Moreover, the computer
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modeling showed that different patterns of communication between the crew
members would lead to different types of success and failure. In some cases,
then, failure was due not to “human error” on the part of a particular
individual, but to an unfortunate choice – or an accepted tradition – of
communicative strategy. However, this is a study of (distributed) cognition,
not of social phenomena as such.

The main root of the growing interest in distributed social cognition is
technological AI’s late-century concern with “agents” (Sun, 2006). This term
was introduced into AI in the very early days, by Oliver Selfridge (1959). He
himself used it to cover both very simple reactive “demons” and (potentially)
more complex, mindlike subsystems. Since then, the term has increasingly been
used to denote the latter (Boden, 2006, 13.iii.d).

Today’s AI agents, then, include the members of groups of interacting robots,
and – in particular – software agents cooperating within complex computer
programs. Mindlike “softbots” are designed to enter into communications and
negotiations of various types. Their activities include recognizing, representing,
and aiding the goals and plans of other agents (including the human user);
making deals, voting, and bargaining; asking and answering questions; and
offering unsolicited but appropriate information to other agents (or, again, the
human user).

It could fairly be said, however, that such agents – like the participants in
most computer models, and many psychological theories (such as Abelson’s), of
social interaction – are conceptualized as solitary individuals, who can affect
and communicate with other individuals who happen to be around but whose
nature is potentially solipsistic. There is no suggestion that they, or human
beings either, are essentially social.

The tension between individualistic and social views of the person, or self, is
an old one. The key question is whether individual selves constitute society or
whether they are largely constituted (not just influenced) by it. Opposing views
are fiercely debated not only in political philosophy (e.g., Popper, 1957) but
also in social science – including, of course, social psychology (Hollis, 1977;
Mead, 1934).

Some modeling work by Ezequiel Di Paolo (1998, 1999) has specifically
countered the individualistic viewpoint. In a nutshell, Di Paolo showed that
cooperation need not depend (as Abelson, for instance, had assumed) on shared
goals, nor on the attribution of intentions to the “partner.” He showed, too,
that communication need not be thought of (as is usual in cognitive science, and
in the multi-agent systems mentioned above) as the transfer of information from
the mind of one agent who has it to the mind of another agent who does not. In
one version of his model, for instance, the agents evolved cooperative activity
without having internal representations of the task or of each other; the reward
could not be gained by a sole agent, but was achieved only by a sequence of
alternating actions of both agents.

Di Paolo is not the first to model cooperation and coordination between
agents lacking representations of each other’s intentions and plans (e.g.,
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Goldberg & Mataric, 1999; Sun & Qi, 2000). But he explicitly draws an
unorthodox philosophical moral, arguing that his work casts serious doubts
on mainstream AI and cognitive science (Di Paolo, 1999, chapter 10). On the
one hand, it does not rely on internal states within the agents, so goes against
the representationalist assumptions of most cognitive scientists (including most
connectionists). On the other hand, it goes against the individualistic bias of the
field. Often, critics who complain that cognitive science is overly individualistic
mean merely that the field, especially AI and computational psychology, has
only very rarely considered social systems – these being understood as groups of
two or more interacting (but potentially solitary) individuals. Di Paolo, by
contrast, argues that an “individual” human being is in fact essentially social,
so that orthodox cognitive science is not simply overly narrow in practice but
radically inadequate in principle.
This fundamental debate cannot be resolved here: as remarked above, it has

exercised social and political philosophers for over a century. For present
purposes, the point is that although computer modeling has not yet paid much
attention to social processes, it is not in principle impossible to do so. Indeed,
Di Paolo’s work shows that cooperation and communication between agents
can be modeled even when they are conceptualized in an essentially
“nonindividualistic” way.

38.6 Conclusion

Computational modeling has a long way to go. There are many
unanswered questions, plus some we do not even know just how to pose. One
of those is the nature of computation as such. Alan Turing’s definition is still the
clearest, but it is not best suited to describe the practice of working AI scientists
(Sloman, 2002). A number of people have suggested alternatives (e.g.,
Copeland, 2002; Scheutz, 2002; Smith, 1996).
This relates to a common criticism of computer-based approaches to the

mind/brain. Critics often point out that crude analogies have repeatedly been
drawn from contemporary technology, each of which has bitten the dust as
knowledge has advanced. (Within living memory: steam engines, telegraphs,
even jukeboxes . . . .) Why should computers not eventually bite the dust too?
The short answer (distilled from Chrisley, 1999) is that computer science,

here, is comparable to physics. Physicalists do not insist that everything can be
explained (even in principle) by today’s physics, but that everything is in
principle explicable by whatever the best theory of physics turns out to be.
Similarly, cognitive scientists believe that the mind/brain – which certainly
cannot be fully understood in terms of today’s computational concepts – is in
principle intelligible in terms of whatever turns out to be the best theory of what
computers can do. “What computers can do” has already been enriched way
beyond MGP’s imaginings. Very likely, it will in future be enriched beyond our
current imaginings, too.

1242 margaret a. boden

https://doi.org/10.1017/9781108755610.044 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.044


A second common objection is that it is absurd to suggest that the subtle
idiosyncrasies of human lives could be represented, still less predicted, in a
computer program. The very idea is felt to be insidiously dehumanizing.

But who ever said that they could? Certainly not MGP. Even those
(noncomputational) psychologists who specialize in individual differences,
or in clinical psychotherapy, do not claim to be able to predict or explain
every detail of individual minds. When such prediction/explanation does
take place, it is usually based on human intuition/empathy rather than
scientific theory (another longstanding opposition in psychology: Meehl,
1954).

Indeed, science in general is not primarily about prediction. Rather, it is
about the identification and explanation of abstract structural possibilities – and
impossibilities (Sloman, 1978, chapters 2–3; see also Boden, 2006, 7.iii.d).
Correlational “laws” and event predictions are sometimes available (as in most
areas of physics), but they are a special case.

This, then, is the answer to Fodor’s pessimism about the scope of computa-
tional psychology (see Section 38.2). He was right to say that we will never be
able to predict every passing thought of a given individual. The human mind –

as computational studies have helped us to realize – is far too rich for that.
Nevertheless, to understand how mental phenomena are even possible is a
genuine scientific advance.

The key problem faced by MGP was to show how such phenomena are
possible. (As they put it, how to interpret the hyphen between the S and the
R.) They waved their hands shamelessly in sketching their answer. But the
overview of cognitive science given above should suffice to show that significant
progress has been made since then.
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Introductory Note

References such as ‘178–79’ indicate (not necessarily continuous) discussion of a topic across a
range of pages. Wherever possible in the case of topics with many references, these have either been
divided into sub-topics or only the most significant discussions of the topic are listed. Because the
entire work is about “computational cognitive sciences,” the use of this term (and certain others
which occur constantly throughout the book) as an entry point has been restricted. Information will
be found under the corresponding detailed topics.
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Adaptive Control of Thought, Rational, 16, see
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affective phenomena, 976–977, 985, 1018, 1020
affective processes, 973, 994–995, 998, 1012
affective processing, 974–975, 996, 998–1000
affective realism, 975
affective responses, 807, 982
affective states, 614, 974, 977, 982, 987, 993,
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1078–1079
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decision, 504, 510
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honor, 815
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learning, 310, 846
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multiple, 744–745, 840, 1066
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AIC (Akaike’s Information Criterion), 1185
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1116
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BPTT (backpropagation through time), 627,
636
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algorithms (cont.)
learning, 32, see learning, algorithms.
LISA/DORA, 464, 467
MCMC, 117, 126, 787
MCMC (Markov-chain Monte Carlo), 117,

126, 787
popular, 119, 129
RL, 742, 1048, 1050
search, 15, 302
spatial, 490, 492
three-step, 197

ambiguity, 52, 56, 242, 890, 892–893, 898–899,
902, 914, 931, 935, 938, 1065

lexical, 932
reduced relative clause, 893, 906
referential, 56, 931
residual, 938–939
structural, 893–895, 902
syntactic, 896

amplitude, 218, 227, 256–257, 265–268, 307,
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distribution, 256–257, 259, 265
fixed, 340
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system, 452, 454, 457–458

analogs, 462–467, 476, 1020
analysis
Bayesian, 83, 726
cost-benefit, 666, 685
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pre-semantic, 936–937
rational, 84, 278–279, 286, 897
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semantic, 927, see semantic analysis.
syntactic, 144, 894–898, 903, 905, 933, 937
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anger, 288, 977–978, 980–983, 986, 988–989,
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moral, 994
animals, 350–351, 359, 426–427, 433–435, 437,

439, 529–530, 618, 718–719, 723–724,
742–743, 752–753, 870, 934–935

conditioning, 711, 720, 723
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ANNs, 29, see artificial neural networks.
anthropology, 23, 795, 1067
cognitive, 3, 21

anticipatory behavior, 703, 706, 708, 715,
722–723

anxiety, 862, 866, 869–872, 877, 881, 980–981,
1016–1017

disorders, 869, 871, 873
intensity, 1017

applied models, 975–976, 990–991, 1003, 1018
appraisal, 974, 984–985, 994, 997, 1001, 1003,
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neural information processing, 666, 862–863
neural interaction, 215–217, 230–231
neural machinery, 38, 614, 1151
neural mechanisms, 219, 400, 416, 568, 619,

622, 624, 665, 681, 997
neural models, 234, 503, 598, 1054
neural nets, 319–321, 379, 386, 454
neural network architectures, 33, 60, 341, 854
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665–666, 668–670, 676, 796, 802,
809–810, 820–821, 1151–1152
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artificial, 29, 127, 334, 341, 353, 769, 771,
779, 1021, 1205–1206

deep, 32–34, 36–37, 64–66, 158, 235, 302,
306–307, 358, 1051, 1129
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feedforward, 235, 387, 787
recurrent, 211–212, 304, 613, 619–620, 626,

679, 688, 743
simple, 376, 809, 1115

neural nodes, 223, 264–265
neural plausibility, 38–40
neural population activity, 613, 1151
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410–411
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neural representations, 164, 226–227, 231, 283,

288
joint, 221, 223

neural responses, 416, 727, 1124, 1129, 1151,
1207, 1209

neural signals, 598, 684
neural states, 589, 1150
neural structures, 401, 404, 622
neural systems, 30–32, 38–39, 285, 624, 1150
neural-network approaches, 786, 788, 790
neural-network simulations, 771, 779, 786
neuroanatomical constraints, 65, 67
neuroanatomy, 30, 62, 67, 401, 417
neurocomputational models, 908, 911–913
neuroeconomics, 3, 503, 739, 752, 1079
neuromodulator dopamine, 613, 615, 618
neuromodulators, 688–689, 739, 750–751
neuronal activity, 611, 667, 868
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neurons, 65–67, 211–212, 214, 223, 308–311,

314–316, 318–321, 323–325, 334–339,
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individual, 212, 214, 234, 294, 339, 598, 615,

621, 1119, 1153
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motor, 212, 1149
output, 313, 315, 322, 617, 622
PFC, 622, 634, 637–638, 646
populations of, 214, 216, 302, 598, 718, 780,

867, 1152
postsynaptic, 339, 410–411
presynaptic, 339, 411
radial-basis function, 309, 321
ridge, 309, 322
simple, 31, 305
spiking, 235, 283, 286, 410, 1151
striatal, 360–362, 748–749

neurophysiological measures, 891, 902
neurophysiology, 684, 1020–1021, 1120, 1124
neuropsychology, cognitive, 60–62
neuroticism, 819, 822, 977, 1007
neurotransmitter dopamine, 350
neurotransmitters, 339, 688, 750
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next word prediction, 900, 911
NGOMSL (Natural GOMS Language),

1091–1093

NLG (natural language generation), 921
NLP, 921, see natural language processing.
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NMDA (N-methyl-D- aspartate), 616–618,
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receptors, 617, 624, 634, 868
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nodes, 94–95, 120–121, 152, 158, 221, 224, 265,

532, 797, 800, 802, 809, 819, 821, 893
behavior, 819, 821
category, 389, 802
class, 379, 382
concept, 221, 225
hidden, 265, 382, 385, 387
individual, 532, 802, 809
input, 245, 376–377, 807
intention, 227–228
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output, 245, 283, 376, 387, 807

NoGo pathways, 634–635, 638, 749
noise, 36, 40, 65–66, 220–221, 575–576, 580,

582–583, 599, 804, 810, 812, 868, 961
context, 575–577, 579, 582
item, 575, 582–583

non-formal relationships, 1205–1206
nonlinear dynamical systems, 211, 1147, 1153
nonlinear functions, 631, 1147–1148
nonlinear parameter optimization, 1179
non-logical operators, 534–535
non-monotonic logics, 478, 1216
non-monotonicity effects, 433, 435, 441
non-physical actions, 150
noradrenaline, 688, 742, 750–751, 753
norm judgments, 1050–1051
normal distribution, 63, 585
normative behavior, 1042, 1097, 1102
normative beliefs, 1044–1045
normative goals, 1044–1045
normative tasks, 1097, 1099
norms, 439, 813, 924, 965, 989, 999, 1011,

1037–1039, 1042, 1044–1046,
1050–1052, 1054–1055, 1071, 1116

moral, 1039, 1044, 1052
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psychiatric, 867, 879

novel predictions, 44, 47, 250, 467, 803, 807,
1173
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437–438, 440, 443

novices, 277, 293, 350, 534, 1103, 1177
nuclei, 412, 622, 637
caudate, 404–405, 407–409, 874–875
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medial dorsal, 404–405, 637
output, 621, 639, 646
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numerators, 112, 429–430, 902
numerical rules, 1206, 1208
numerical values, 495, 1205–1206

object categories, 374, 776
object categorization, 776, 1125
object composition, 954, 958–959
object labels, 456, 776
object properties, 439–440, 776
object recognition, 155, 333, 392, 1118
performance, 1125
tasks, 308, 1125
visual, 32, 64–65, 456

object replacement, 954, 958–959
object replacement and object composition,

954, see OROC.
object units, 463
object variables, 177, 182–184, 201
objective functions, 1138, 1175, 1178–1179
objective probabilities, 512–513
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580–582, 599, 982, 1068, 1171, 1175,
1182–1183, 1186
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observers, 578, 802, 816, 1050, 1052, 1115,

1171, 1205, 1213
external, 1206–1207

obsessive-compulsive disorders, 754, see OCD.
obstacle avoidance, 1136
Occam’s razor, Bayesian, 93–94
OCD (obsessive-compulsive disorders), 754,

872–875
OHE (outgroup homogeneity effect), 804–805
omissions, 181, 704, 720, 1102–1103
online measures, 890, 892
ontological knowledge, 923, 929, 935, 939, 954
ontological semantics, 923, 937
ontologies, 147–150, 162, 932, 934–935, 937,

940–943
open questions, 614, 666, 672, 681, 687, 689,

907, 976, 1018–1019

operating conditions, 1094, 1104
operator types, 1091–1092
operators, 14, 142, 147–148, 200, 256, 264,

277–278, 287, 292, 376, 1090–1092,
1098–1100, 1103

epistemic, 201
human, 1090, 1093–1095, 1098, 1102
logical, 376
mental, 1091
non-logical, 534–535
transition, 256–257, 259, 264
unitary, 256–259

opinion dynamics, 811, 1072, 1074, 1077
optimal behavior, 744, 862, 1138
optimal decisions, 255, 851–852
optimal filtering, 743
optimal state value function, 356–357
optimal strategies, 401–402, 571, 1068
optimization, 303, 331, 548–549, 551–552, 554,

624, 1139, 1141, 1152, 1177
mechanisms, 549, 551–552
models, 1136–1137

options
choice, 503, 512, 514, 517
pairs, 500, 511, 515
response, 518–519, 571–572

optogenetic stimulation, 361–362, 750
order effects, 248–252
ordering, 386, 769, 928, 1185
internal, 308

orderings, preference, 513, 518, 1045
ordinal patterns, 1170–1171
organizational decisions, 1068–1069, 1072,

1077
organizational performance, 849, 1070, 1077
organizational structures, 1069–1070,

1076–1077
orientation, 174, 213, 221–225, 327, 376, 927,

1121, 1149
horizontal, 224, 1120
local, 212, 221–222
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OROC (object replacement and object
composition), 954, 958–959, 964

orthodox logic, 474–478, 481
oscillation, 262–264, 870, 1148
outcomes, 95–98, 226–227, 502–505, 511–514,

536, 636, 682–686, 704–726, 1075
aggregate, 533, 556
aversive, 871, 873
expected, 681–682, 684, 712, 720
negative, 529, 546, 550, 685, 873, 1052
pairs of, 504–505, 508
positive, 519, 529, 543–544, 547–548
predicted, 681, 683
predictions, 681, 684
probability, 512, 988
reward, 635, 674, 753
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out-of-distribution generalization, 624, 648
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771–772, 839–844, 908–909, 950–953

activations, 265, 382, 389, 771, 778
behavioral, 820–821, 823
BG, 625, 638, 646, 648–649
creative, 953–954, 960, 966
encoding, 587, 591
functions, 839–840, 842, 844
gates, 617, 631, 637
gating, 613, 615, 622–623, 637–639, 644–645,

650
layers, 31, 34–36, 51, 57, 61, 302, 318, 337,

379, 382, 627–629, 904–905, 910, 912
neurons, 313, 315, 322, 617, 622
nodes, 245, 283, 376, 387, 807
nuclei, 621, 639, 646
representations, 38, 62, 900
target, 38, 294, 335, 350, 771
units, 32, 35–36, 52, 319, 442, 671, 776, 900
vectors, 50, 456–457
weights, 629, 772

overfitting, 20, 307, 881, 1193
overt behavior, 548–551, 1203

PAD, 983, 991–992, 1001, 1003, 1010–1011
pairwise combinations, 223, 377, 921
paradigms, experimental, 282, 291, 580, 776
Parallel Constraint Satisfaction, 45, see PCS.
parallel constraint satisfaction network, 458,

808
parallel constraint satisfaction processes, 45
Parallel Distributed Processing, 29, see PDP.
parallel firing, 280, 285
parallel loops, 619, 747
parallel organization, 745
parallel processing, 43, 48, 306, 841, 1118
parallelism, 50, 289–291, 898, 923
parallelogram models, 457
parallels, 29, 42, 45, 279–280, 285, 289, 291,

293, 321–322, 726, 728, 745–748,
896–897

parameter estimates, 574, 1177–1178, 1180
parameter estimation, 88–91, 100–101, 104,

1177–1178, 1183, 1194
parameter optimization, nonlinear, 1179
parameter space, 391, 881, 1170–1172, 1176,

1178–1179
parameter space partitioning, 1171, see PSP.
parameter values, 94, 116, 233, 410–411, 417,

574, 580, 778, 1014, 1016, 1175,
1177–1178, 1181

parameterization, 102–105, 117, 391, 823,
1178–1180

parameters, 96–97, 103–104, 108–109, 122–124,
129–130, 261, 509–510, 580–582, 586,

741–742, 1070, 1170–1173, 1175–1179,
1183–1185

adaptive, 335, 338
best fitting, 580–582, 592, 1177–1179
causal strength, 104, 116
control, 823–824
free, 32, 38, 276, 381–382, 387, 389, 391, 406,

410, 414, 417, 1170–1172, 1176–1178,
1181, 1183–1185

network, 304, 339
scaling, 679, 952–953
sensitivity, 381, 389
strength, 104, 116
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paranoid personality, 795, 819
parents, 95, 97–98, 144, 148, 744
multiple, 102

parietal cortex, 224, 362, 364, 464
parse trees, 82, 893–897
parsers, 474, 477, 893–895, 898, 901, 937
parsimony, 785, 797, 1183, 1185, 1193
parsing
human, 895–896
incremental, 894, 901, 927
syntactic, 534, 893, 937

partial derivatives, 304, 628
partially observable Markov decision process

(POMDP), 357, 739, 871–872
partners, 816–818, 823–824
part-of-speech-tagging errors, 943
passing activation, 218, 771, 797
past experience, 509, 548, 567, 599, 671, 876
past learning, 719, 772, 1207, 1209
past participles, 893, 898–899
past tense, 30, 45–50, 279, 552
formation, 46, 48
forms, 46–47
model, 45, 48–50, 57, 67

paths, 158, 310, 388, 520, 535, 543, 812, 881–882,
948, 1037, 1044, 1091, 1093, 1136–1142

pathways, 334, 362, 400–401, 585, 634–636,
669–670, 679–680, 745, 748, 875

color, 669
direct, 362, 748
indirect, 362, 748–749
NoGo, 634–635, 638, 749
ventral, 62, 65, 912
visual, 1119, 1123

pattern generators, 1146, 1149, 1151, 1153
pattern recognition, 32, 83, 302–303, 464, 467,

1116
patterning, negative, 715–717, 728
patterns, 38, 52–53, 60–61, 158, 213–214, 308,

390, 581–582, 589, 616–618, 771–772,
809, 818–819, 1070, 1171

activation, 15, 29, 51, 54, 62, 215, 217, 220,
229, 302, 462, 468, 900, 904–905,
908–910
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complex, 1066, 1070
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of behavior, 46, 59, 818, 1171, 1173,

1177–1178, 1183, 1189
of connectivity, 32–34, 59, 216, 221, 223–224,

616, 797, 800, 1124, 1128, 1146
ordinal, 1170–1171
performance, 374, 387, 390
qualitative, 1172, 1184
reverse, 61, 818
spatial, 216, 1145
standard, 617, 817
subthreshold, 217, 219
training, 772, 777, 787
visual, 303, 1173
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payoffs, expected, 666, 685–686
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Working Memory), 612, 626, 634, 636,
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model, 614, 634–635, 637–638
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458, 503, 518, 808
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34, 38, 42, 56, 59, 65, 304, 532, 667
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peaks, 215–222, 225–227, 230, 233, 719
self-stabilized, 217–220
single, 219–220
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penguins, 189, 427–428, 430, 433
perception
auditory, 212, 1095
bistable, 257–258
group, 803–804
human, 288, 789
letter, 42–45, 66
social, 800, 805
visual, 43, 540, 1117

perceptions, 29, 33, 43–45, 190, 193, 803–804,
839–840, 842–843, 867, 975–976,
979–981, 1114–1115

social, 796, 798–799
perceptrons, 33, 303, 1115–1117, 1120
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perceptual representation memory system, 402
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organizational, 849, 1070, 1077
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recognition, 575, 581, 1121, 1123
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performers, 744, 898–899, 906
peripheral nervous system, 983
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dynamics, 819–820, 826
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psychology, 795, 826
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personnel processes, 848
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PFC neurons, 622, 634, 637–638, 646
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phases, 46–47, 463, 529, 533, 541, 548–549, 589,
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neuromodulation, 636, 638
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empirical, 413, 417, 436, 509, 555–556, 580
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mental, 204, 1209
modeled, 1018, 1021
moral, 1037–1038, 1053, 1055
of interest, 878, 963, 1167–1169, 1180
personality, 823, 825
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physical properties, 439, 1210
physical systems, 211, 243, 1209
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predictiveness principle, 710–711, 713
predictors, 91, 376, 389, 391, 709, 711, 724, 901
preference accumulation, 256, 506, 518, 520
preference evolution, 246, 258, 262–263
preference orderings, 513, 518, 1045
preference oscillation, 262–264
preference reversals, 253, 509, 512, 515, 517
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