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Preface 

This book follows the earlier authoritative and full-length descriptions of the design and 

implementation of the 4.3BSD and 4.4BSD versions of the UNIX system developed at the 

University of California at Berkeley. Since the final Berkeley release in 1994, several groups have 

continued development of BSD. This book details FreeBSD, the system with the largest set of 

developers and the most widely distributed releases. Although the FreeBSD distribution 

includes nearly 1000 utility programs in its base system and nearly 25,000 optional utilities in 

its ports collection, this book concentrates almost exclusively on the kernel. 

UNIX-like Systems 

UNIX-like systems include the traditional vendor systems such as Solaris and HP-UX; the 

Linux-based distributions such as Red Hat, Debian, Suse, and Slackware; and the BSD-based 

distributions such as FreeBSD, NetBSD, OpenBSD, and Darwin. They run on computers ranging 

from smart phones to the largest supercomputers. They are the operating system of choice for 

most multiprocessor, graphics, and vector-processing systems, and are widely used for the 

original purpose of timesharing. The most common platform for providing network services 

(from FTP to WWW) on the Internet, they are collectively the most portable operating system 

ever developed. This portability is due partly to their implementation language, C [Kernighan & 

Ritchie, 1989] (which is itself a widely ported language), and partly to the elegant design of the 

system. 

Since its inception in 1969 [Ritchie & Thompson, 1978], the UNIX system has developed in 

several divergent and rejoining streams. The original developers continued to advance the state 

of the art with their Ninth and Tenth Edition UNIX inside AT&T Bell Laboratories, and then 

their Plan 9 successor to UNIX. Meanwhile, AT&T licensed UNIX System V as a product before 

merging it with Sun Microsystem’s BSD-based SunOS to produce Solaris. Ninth Edition UNIX, 

System V, and Solaris were all strongly influenced by the Berkeley Software Distributions 

produced by the Computer Systems Research Group (CSRG) of the University of California at 

Berkeley. The Linux operating system, although developed independently of the other UNIX 

variants, implements the UNIX interface. Thus, applications developed to run on other 

UNIX-based platforms can be easily ported to run on Linux. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref09
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Berkeley Software Distributions 

The distributions from Berkeley were the first UNIX-based systems to introduce many 

important features including the following: 

• Demand-paged virtual-memory support 

• Automatic configuration of the hardware and I/O system 

• A fast and recoverable filesystem 

• The socket-based interprocess-communication (IPC) primitives 

• The reference implementation of TCP/IP 

The Berkeley releases found their way into the UNIX systems of many vendors and were used 

internally by the development groups of many other vendors. The implementation of the 

TCP/IP networking protocol suite in 4.2BSD and 4.3BSD, and the availability of those systems, 

played a key role in making the TCP/IP networking protocol suite a world standard. Even the 

non-UNIX vendors such as Microsoft have adopted the Berkeley socket design in their Winsock 

IPC interface. 

The BSD releases have also been a strong influence on the POSIX (IEEE Std 1003.1) 

operating-system interface standard, and on related standards. Several features—such as 

reliable signals, job control, multiple access groups per process, and the routines for directory 

operations—have been adapted from BSD for POSIX. 

Early BSD releases contained licensed UNIX code, thus requiring recipients to have an AT&T 

source license to be able to obtain and use BSD. In 1988, Berkeley separated its distribution into 

AT&T-licensed and freely redistributable code. The freely redistributable code was licensed 

separately and could be obtained, used, and redistributed by anyone. The final freely 

redistributable 4.4BSD-Lite2 release from Berkeley in 1994 contained nearly the entire kernel 

and all the important libraries and utilities. 

Two groups, NetBSD and FreeBSD, sprang up in 1993 to begin supporting and distributing 

systems built from the freely redistributable releases being done by Berkeley. The NetBSD group 

emphasized portability and the minimalist approach, porting the systems to nearly 60 platforms 

and they were determined to keep the system lean to aid embedded applications. The FreeBSD 

group emphasized maximal support for the PC architecture and pushed to ease installation for, 

and market their system to, as wide an audience as possible. 
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In 1995, the OpenBSD group split from the NetBSD group to develop a distribution that 

emphasized security. In 2003, the Dragonfly group split from the FreeBSD group to develop a 

distribution that used a significantly lighter-weight mechanism to support multiprocessing. 

Over the years, there has been a healthy competition among the BSD distributions, with many 

ideas and much code flowing between them. 

Material Covered in this Book 

This book is about the internal structure of the FreeBSD 11 kernel and about the concepts, data 

structures, and algorithms used in implementing FreeBSD’s system facilities. The book covers 

FreeBSD from the system-call level down—from the interface to the kernel to the hardware itself. 

The kernel includes system facilities, such as process management, security, virtual memory, the 

I/O system, filesystems, the socket IPC mechanism, and network protocol implementations. 

Material above the system-call level—such as libraries, shells, commands, programming 

languages, and other user interfaces—is excluded, except for some material related to the 

terminal interface and to system startup. Following the organization first established by 

Organick’s book about Multics [Organick, 1975], this book is an in-depth study of a 

contemporary operating system. 

Where particular hardware is relevant, the book refers to the Intel 32-bit architecture and the 

similar AMD 64-bit architecture. Because FreeBSD has emphasized development on these 

architectures, they are the architectures with the most complete support and so provide a 

convenient point of reference. 

Use by Computer Professionals 

FreeBSD is widely used to support the core infrastructure of many companies worldwide. 

Because it can be built with a small footprint, it is also seeing increased use in embedded 

applications. The licensing terms of FreeBSD do not require the distribution of changes and 

enhancements to the system. The licensing terms of Linux require that all changes and 

enhancements to the kernel be made available in source form at minimal cost. Thus, companies 

that need to control the distribution of their intellectual property build their products using 

FreeBSD. 

This book is of direct use to the professionals who work with FreeBSD systems. Individuals 

involved in technical and sales support can learn the capabilities and limitations of the system; 

applications developers can learn how to interface with the system effectively and efficiently; 

system administrators without direct experience with the FreeBSD kernel can learn how to 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref07
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maintain, tune, and configure the system; and systems programmers can learn how to extend, 

enhance, and interface with the system. 

Readers who will benefit from this book include operating-system implementors, system 

programmers, UNIX application developers, administrators, and curious users. The book can be 

read as a companion to the source code of the system, falling as it does between the manual 

pages and the code in its level of detail. But this book is neither exclusively a UNIX 

programming manual nor a user tutorial. Familiarity with the use of some version of the UNIX 

system (see, for example, Stevens [1992]) and with the C programming language (see, for 

example, Kernighan & Ritchie [1989]) would be extremely useful. The FreeBSD Handbook gives 

a comprehensive introduction to the setting up, operation, and programming of FreeBSD 

[FreeBSD Mall, 2004; FreeBSD.org, 2014]. FreeBSD packaging, designed to be easy to install 

and use for both desktop and laptop users, is available in the PC-BSD distribution [Lavigne, 

2010; PC-BSD.org, 2014]. 

Use in Courses on Operating Systems 

This book is suitable for use as a reference text to provide background for a primary textbook in 

a first-level course on operating systems. It is not intended for use as an introductory 

operating-system textbook; the reader should have already encountered terminology such as 

‘‘memory management,’’ ‘‘process scheduling,’’ and ‘‘I/O systems’’ [Silberschatz et al., 2012]. 

Familiarity with the concepts of network protocols [Comer, 2000; Stallings, 2000; Tanenbaum, 

2010] will be useful for understanding some of the later chapters. 

This book can be used in combination with a copy of the FreeBSD system for more advanced 

operating-systems courses. Students’ assignments can include changes to, or replacements of, 

key system components such as the scheduler, the paging daemon, the filesystems, thread 

signalling, various networking layers, and I/O management. The ability to load, replace, and 

unload modules from a running kernel allows students to experiment without the need to 

compile and reboot the system. By working with a real operating system, students can directly 

measure and experience the effects of their changes. Because of the intense peer review and 

insistence on well-defined coding standards throughout its 35-year lifetime, the FreeBSD kernel 

is considerably cleaner, more modular, and thus easier to understand and modify than most 

software projects of its size and age. Sample course material is available at www.teachbsd.com 

(see description following the index). 

Exercises are provided at the end of each chapter. The exercises are graded into three categories 

indicated by zero, one, or two asterisks. The answers to exercises that carry no asterisks can be 

found in the text. Exercises with a single asterisk require a step of reasoning, critical thinking, or 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref13
http://www.teachbsd.com/
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intuition beyond a concept presented in the text. Exercises with two asterisks present major 

design projects or open research questions. 

Organization 

This text discusses both philosophical and design issues, as well as details of the system’s actual 

implementation. Often, the discussion starts at the system-call level and descends into the 

kernel. Tables and figures are used to clarify data structures and control flow. Pseudocode 

similar to the C language displays algorithms. A bold font identifies program names and 

filesystem pathnames. A bold and italic font introduces glossary terms. An italic font identifies 

the names of system calls, variables, routines, and structure names. Routine names (other than 

system calls) are further identified by the name followed by parentheses (e.g., malloc() is the 

name of a routine, whereas argv is the name of a variable). 

The book is divided into five parts, organized as follows: 

• Part I, Overview    Three introductory chapters provide the context for the complete 

operating system and for the rest of the book. Chapter 1, History and Goals, sketches the 

historical development of the system, emphasizing the system’s research orientation. Chapter 2, 

Design Overview of FreeBSD, describes the services offered by the system and outlines the 

internal organization of the kernel. It also discusses the design decisions that were made as the 

system was developed. Sections 2.3 through 2.15 in Chapter 2 give an overview of their 

corresponding chapters. Chapter 3, Kernel Services, explains how system calls are performed 

and describes in detail several of the basic services of the kernel. 

• Part II, Processes    The first chapter in this part—Chapter 4, Process Management—lays the 

foundation for later chapters by describing the structure of a process, the algorithms used for 

scheduling the execution of the threads that make up a process, and the synchronization 

mechanisms used by the system to ensure consistent access to kernel-resident data structures. 

Chapter 5, Security, explains the security framework used throughout the kernel. It also details 

the security facilities that are available to control process access to the resources on the system 

and to each other. In Chapter 6, Memory Management, the virtual-memory-management 

system is discussed in detail. 

• Part III, I/O System    First, Chapter 7, I/O System Overview, explains the system interface 

to I/O and describes the structure of the facilities that support this interface. Following this 

introduction are four chapters that give the details of the main parts of the I/O system. Chapter 

8, Devices, gives a description of the I/O architecture of the Intel and AMD systems, and 

describes how the I/O subsystem is managed and how the kernel initially maps out and later 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part01.html#part01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part01.html#part01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part02.html#part02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part02.html#part02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part03.html#part03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part03.html#part03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
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manages the arrival and departure of connected devices. Chapter 9, The Fast Filesystem, details 

the data structures and algorithms that implement the original local filesystem as seen by 

application programs, as well as how local filesystems are interfaced with the device interface 

described in Chapter 8. Chapter 10, The Zettabyte Filesystem, describes the filesystem most 

recently added to FreeBSD from the OpenSolaris operating system. Chapter 11, The Network 

Filesystem, explains the latest version 4.2 network filesystem from both the server and client 

perspectives. 

• Part IV, Interprocess Communication    Chapter 12, Interprocess Communication, 

describes the mechanism for providing communication between related or unrelated processes. 

Chapters 13 and 14, Network-Layer Protocols and Transport-Layer Protocols, are closely related 

because the facilities explained in the former are used by the protocols, such as the UDP, TCP, 

and SCTP, explained in the latter. 

• Part V, System Operation    Chapter 15, System Startup and Shutdown, explains system 

initialization at the process level from kernel initialization to user login. 

The book is intended to be read in the order that the chapters are presented, but the parts other 

than Part I are independent of one another and can be read separately. Chapter 15 should be 

read after all the others, but knowledgeable readers may find it useful independently. 

At the end of the book are a glossary with brief definitions of major terms and an index. Each 

chapter contains a Reference section with citations of related material. 

Getting BSD 

All the BSD distributions are available either for downloading from the net or on removable 

media such as CD-ROM or DVD. Information on obtaining source and binaries for FreeBSD can 

be obtained from http://www.FreeBSD.org. The NetBSD distribution is compiled and ready to 

run on most workstation architectures. For more information, contact the NetBSD Project at 

http://www.NetBSD.org/. The OpenBSD distribution is compiled and ready to run on a wide 

variety of workstation architectures and has been extensively vetted for security and reliability. 

For more information, visit the OpenBSD project’s Web site at http://www.OpenBSD.org/. 

You diehards that read to the end of the preface are rewarded by finding out that you can get a 

32-hour introductory video course based on this book, a 40-hour advanced video course based 

on the FreeBSD 5 source code, a 2.5-hour video lecture on the history of BSD, and a 4-CD set 

containing all the releases and the source-control history of BSD from Berkeley. These items are 

described in the advertisements that follow the index. 
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We encourage readers to send us suggested improvements or comments about typographical or 

other errors found in the book; please send electronic mail to 

FreeBSDbook-bugs@McKusick.COM. 
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Part I: Overview 

Chapter 1. History and Goals 

1.1 History of the UNIX System 

The UNIX system has been in wide use for over 40 years and has helped to define many areas of 

computing. Although numerous individuals and organizations have contributed (and still 

contribute) to the development of the UNIX system, this book primarily concentrates on the 

BSD thread of development: 

• Bell Laboratories, which invented UNIX 

• The Computer Systems Research Group (CSRG) at the University of California at Berkeley, 

which gave UNIX virtual memory and the reference implementation of TCP/IP 

• The FreeBSD project, the NetBSD project, the OpenBSD project, and the Dragonfly project, 

which continue the work started by the CSRG 

• The Darwin operating system at the core of Apple’s OS X (Darwin is based on FreeBSD) 

Origins 

The first version of the UNIX system was developed at Bell Laboratories in 1969 by Ken 

Thompson as a private research project to use an otherwise idle PDP-7. Thompson was joined 

shortly thereafter by Dennis Ritchie, who not only contributed to the design and 

implementation of the system, but also invented the C programming language. The system was 

completely rewritten into C, leaving almost no assembly language. The original elegant design of 

the system [Ritchie, 1978] and developments of the first 15 years [Ritchie, 1984a; Compton, 

1985] have made the UNIX system an important and powerful operating system [Ritchie, 1987]. 

Ritchie, Thompson, and other early UNIX developers at Bell Laboratories had worked 

previously on the Multics project [Peirce, 1985; Organick, 1975], which had a strong influence 

on the newer operating system. Even the name UNIX is merely a pun on Multics; in areas where 

Multics attempted to do many tasks, UNIX tried to do only one task but do it well. The basic 

organization of the UNIX filesystem, the idea of using a user process for the command 
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interpreter, the general organization of the filesystem interface, and many other system 

characteristics come directly from Multics. 

Ideas from various other operating systems, such as the Massachusetts Institute of Technology’s 

(MIT’s) CTSS, also have been incorporated. The fork operation to create new processes comes 

from Berkeley’s GENIE (SDS-940, later XDS-940) operating system. Allowing a user to create 

processes inexpensively led to using one process per command rather than commands being run 

as procedure calls, as is done in Multics. 

Research UNIX 

The first major editions of UNIX were the Research systems from Bell Laboratories. In addition 

to the earliest versions of the system, these systems include the UNIX Time-Sharing System, 

Sixth Edition, commonly known as V6, which in 1976 was the first version widely available 

outside of Bell Laboratories. Systems are identified by the edition numbers of the UNIX 

Programmer’s Manual that were current when the distributions were made. 

The UNIX system was distinguished from other operating systems in three important ways: 

1. It was written in a high-level language. 

2. It was distributed in source form. 

3. It provided powerful primitives normally found in only those operating systems that ran on 

much more expensive hardware. 

Most of the system source code was written in C rather than in assembly language. The 

prevailing belief at the time was that an operating system had to be written in assembly 

language to provide reasonable efficiency and to get access to the hardware. The C language 

itself was at a sufficiently high level to allow it to be compiled easily for a wide range of 

computer hardware, without it being so complex or restrictive that systems programmers had to 

revert to assembly language to get reasonable efficiency or functionality. Access to the hardware 

was provided through assembly-language stubs for the 3 percent of the operating-system 

functions—such as context switching—that needed them. Although the success of UNIX does not 

stem solely from its being written in a high-level language, the use of C was a critical first step 

[Kernighan & Ritchie, 1978; Kernighan & Ritchie, 1989; Ritchie et al., 1978]. Ritchie’s C 

language is descended [Rosler, 1984] from Thompson’s B language, which was itself descended 

from BCPL [Richards & Whitby-Strevens, 1980]. C continues to evolve [Tuthill, 1985; ISO, 

2011]. 
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The second important distinction of UNIX was its early release from Bell Laboratories to other 

research environments in source form. By providing source, the system’s founders ensured that 

other organizations would be able not only to use the system, but also to tinker with its inner 

workings. The ease with which new ideas could be adopted into the system always has been key 

to the changes that have been made to it. Whenever a new system that tried to upstage UNIX 

came along, somebody would dissect the newcomer and clone its central ideas into UNIX. The 

unique ability to use a small, comprehensible system, written in a high-level language, in an 

environment swimming in new ideas led to a UNIX system that evolved far beyond its humble 

beginnings. Though recipients of the source code had to be licensed, campus-wide licenses were 

cheaply available to universities. Thus, many people became versed in the way that UNIX 

worked, setting the stage for the open-source world that would follow. 

The third important distinction of UNIX was that it provided individual users with the ability to 

run multiple processes concurrently and to connect these processes into pipelines of commands. 

At the time, only operating systems running on large and expensive machines had the ability to 

run multiple processes, and the number of concurrent processes usually was controlled tightly 

by a system administrator. 

Most early UNIX systems ran on the PDP-11, which was inexpensive and powerful for its time. 

Nonetheless, there was at least one early port of Sixth Edition UNIX to a machine with a 

different architecture: the Interdata 7/32 [Miller, 1978]. The PDP-11 also had an inconveniently 

small address space. The introduction of machines with 32-bit address spaces, especially the 

VAX-11/780, provided an opportunity for UNIX to expand its services to include virtual memory 

and networking. Earlier experiments by the Research group in providing UNIX-like facilities on 

different hardware had led to the conclusion that it was as easy to move the entire operating 

system as it was to duplicate UNIX’s services under another operating system. The first UNIX 

system with portability as a specific goal was UNIX Time-Sharing System, Seventh Edition (V7), 

which ran on the PDP-11 and the Interdata 8/32 and had a VAX variety called UNIX/32V 

TimeSharing, System Version 1.0 (32V). The Research group at Bell Laboratories has also 

developed UNIX Time-Sharing System, Eighth Edition (V8); UNIX TimeSharing System, Ninth 

Edition (V9); and UNIX Time-Sharing System, Tenth Edition (V10). Their 1996 system is Plan 9. 

Regrettably, Bell Laboratories was disbanded after the release of Plan 9. 

AT&T UNIX System III and System V 

After the distribution of Seventh Edition in 1978, the Research group turned over external 

distributions to the UNIX Support Group (USG). USG had previously distributed such systems 

internally as the UNIX Programmer’s Work Bench (PWB), and had sometimes distributed them 

externally as well [Mohr, 1985]. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref20
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USG’s first external distribution after Seventh Edition was UNIX System III (System III) in 1982, 

which incorporated features of Seventh Edition, of 32V, and also of several UNIX systems 

developed by groups other than the Research group. Features of UNIX/RT (a real-time UNIX 

system) were included, as were many features from PWB. USG released UNIX System V 

(System V) in 1983; that system is largely derived from System III. The court-ordered 

divestiture of the Bell Operating Companies from AT&T permitted AT&T to market System V 

aggressively [Bach, 1986; Wilson, 1985]. 

USG metamorphosed into the UNIX System Development Laboratory (USDL), which released 

UNIX System V, Release 2 in 1984. System V, Release 2, Version 4 introduced paging [Jung, 

1985; Miller, 1984], including copy-on-write and shared memory, to System V. The System V 

implementation was not based on the Berkeley paging system. USDL was succeeded by AT&T 

Information Systems (ATTIS), which distributed UNIX System V, Release 3, in 1987. That 

system included STREAMS, an IPC mechanism adopted from V8 [Presotto & Ritchie, 1985]. 

Shortly after the release of UNIX System V as a product, AT&T and Sun Microsystems worked 

together to merge it with Sun Microsystem’s BSD-based SunOS to produce Solaris. Solaris and 

its open-source variant Open Solaris are the primary System V variants of UNIX still in use 

today. 

Berkeley Software Distributions 

The most influential of the non-Bell Laboratories and non-AT&T UNIX development groups was 

the University of California at Berkeley [DiBona et al., 1999]. Software from Berkeley was 

released in Berkeley Software Distributions (BSD)—for example, as 4.4BSD. Berkeley was the 

source of the BSD name, and its distributions were the first distinct identity for the BSD 

operating system. The first Berkeley VAX UNIX work was the addition to 32V of virtual memory, 

demand paging, and page replacement in 1979 by William Joy and Ozalp Babao lu, to produce 

3BSD [Babao lu & Joy, 1981]. The reason for the large virtual-memory space of 3BSD was the 

development of what at the time were large programs, such as Berkeley’s Franz LISP. This 

memory-management work convinced the Defense Advanced Research Projects Agency 

(DARPA) to fund the Berkeley team for the later development of a standard system (4BSD) for 

DARPA’s contractors to use. 

A goal of the 4BSD project was to provide support for the DARPA Internet networking protocols, 

TCP/IP [Comer, 2000]. The networking implementation was general enough to communicate 

among diverse network facilities, ranging from local networks, such as Ethernets and token 

rings, to long-haul networks, such as DARPA’s ARPANET. 
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We refer to all the Berkeley VAX UNIX systems following 3BSD as 4BSD, although there were 

really several releases: 4.0BSD, 4.1BSD, 4.2BSD, 4.3BSD, 4.3BSD Tahoe, and 4.3BSD Reno. 

4BSD was the UNIX operating system of choice for VAXes from the time that the VAX first 

became available in 1977 until the release of System V in 1983. Most organizations would 

purchase a 32V license but would order 4BSD from Berkeley. Many installations inside the Bell 

System ran 4.1BSD (and replaced it with 4.3BSD when the latter became available). A new 

virtual-memory system was released with 4.4BSD. The VAX was reaching the end of its useful 

lifetime, so 4.4BSD was not ported to that machine. Instead, 4.4BSD ran on the newer 68000, 

SPARC, MIPS, and Intel PC architectures. 

The 4BSD work for DARPA was guided by a steering committee that included many notable 

people from both commercial and academic institutions. The culmination of the original 

Berkeley DARPA UNIX project was the release of 4.2BSD in 1983; further research at Berkeley 

produced 4.3BSD in mid-1986. The next releases included the 4.3BSD Tahoe release of June 

1988 and the 4.3BSD Reno release of June 1990. These releases were primarily ports to the 

Computer Consoles Incorporated hardware platform. Interleaved with these releases were two 

unencumbered networking releases: the 4.3BSD Net1 release of March 1989 and the 4.3BSD 

Net2 release of June 1991. These releases extracted nonproprietary code from 4.3BSD; they 

could be redistributed freely in source and binary form to companies and individuals not 

covered by a UNIX source license. The final CSRG release requiring an AT&T source license was 

4.4BSD in June 1993. Following a year of litigation (see Section 1.3), the free-redistributable 

4.4BSDLite was released in April 1994. The final CSRG release was 4.4BSD-Lite Release 2 in 

June 1995. 

UNIX in the World 

The UNIX system is also a fertile field for academic endeavor. Thompson and Ritchie were given 

the Association for Computing Machinery Turing award for the design of the system [Ritchie, 

1984b]. The UNIX system and related, specially designed teaching systems—such as Tunis 

[Ewens et al., 1985; Holt, 1983], XINU [Comer, 1984], and MINIX [Tanenbaum, 1987]—are 

widely used in courses on operating systems. Linus Torvalds reimplemented the UNIX interface 

in his freely redistributable Linux operating system. The UNIX system is ubiquitous in 

universities and research facilities throughout the world, and is ever more widely used in 

industry and commerce. 
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1.2 BSD and Other Systems 

The CSRG incorporated features from not only UNIX systems but from other operating systems. 

Many of the features of the 4BSD terminal drivers are from TENEX/TOPS-20. Job control (in 

concept—not in implementation) is derived from TOPS-20 and from the MIT Incompatible 

Timesharing System (ITS). The virtual-memory interface first proposed for 4.2BSD, and finally 

implemented in 4.4BSD, was based on the file-mapping and page-level interfaces that first 

appeared in TENEX/TOPS-20. The current FreeBSD virtual-memory system (see Chapter 6) 

was adapted from Mach, which was itself an offshoot of 4.3BSD. Multics has often been a 

reference point in the design of new facilities. 

The quest for efficiency was a major factor in much of the CSRG’s work. Some efficiency 

improvements were made because of comparisons with the proprietary VMS operating system 

for the VAX [Joy, 1980; Kashtan, 1980]. 

Other UNIX variants have adopted many 4BSD features. AT&T UNIX System V [AT&T, 1987], 

the IEEE POSIX.1 standard [P1003.1, 1988], and the related National Bureau of Standards (NBS) 

Federal Information Processing Standard (FIPS) have adopted the following: 

• Job control (Chapter 2) 

• Reliable signals (Chapter 4) 

• Multiple file-access permission groups (Chapter 5) 

• Filesystem interfaces (Chapter 9) 

The X/OPEN Group (originally consisting of only European vendors but now including most US 

UNIX vendors) produced the X/OPEN Portability Guide [X/OPEN, and, more recently, the 

Spec 1170 Guide. These documents specify both the kernel interface and many of the utility 

programs available to UNIX system users. When Novell purchased UNIX from AT&T in 1993, it 

transferred exclusive ownership of the UNIX name to X/OPEN. Thus, all systems that want to 

brand themselves as UNIX must meet the X/OPEN interface specifications. To date, no BSD 

system has ever been put through the X/OPEN interface-specification tests, so none of them can 

be called UNIX. The X/OPEN guides have adopted many of the POSIX facilities. The POSIX.1 

standard is also an ISO International Standard, named SC22 WG15. Thus, the POSIX facilities 

have been accepted in most UNIX-like systems worldwide. 

The 4BSD socket interprocess-communication mechanism (see Chapter 12) was designed for 

portability and was immediately ported to AT&T System III, although it was never distributed 
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with that system. The 4BSD implementation of the TCP/IP networking protocol suite (see 

Chapter 14) is widely used as the basis for further implementations on systems ranging from 

AT&T 3B machines running System V to VMS to embedded operating systems such as VxWorks. 

The CSRG cooperated closely with vendors whose systems are based on 4.2BSD and 4.3BSD. 

This simultaneous development contributed to the ease of further ports of 4.3BSD and to 

ongoing development of the system. 

The Influence of the User Community 

Much of the Berkeley development work was done in response to the user community. Ideas and 

expectations came not only from DARPA, the principal direct-funding organization, but also 

from users of the system at companies and universities worldwide. 

The Berkeley researchers accepted not only ideas from the user community but also actual 

software. Contributions to 4BSD came from universities and other organizations in Australia, 

Canada, Europe, Japan, and the United States. These contributions included major features, 

such as autoconfiguration and disk quotas. A few ideas, such as the fcntl system call, were taken 

from System V, although licensing and pricing considerations prevented the use of any code 

from System III or System V in 4BSD. In addition to contributions that were included in the 

distributions proper, the CSRG also distributed a set of user-contributed software. 

An example of a community-developed facility is the public-domain time-zone-handling 

package that was adopted with the 4.3BSD Tahoe release. It was designed and implemented by 

an international group, including Arthur Olson, Robert Elz, and Guy Harris, partly because of 

discussions in the USENET newsgroup comp.std.unix. This package takes 

time-zone-conversion rules completely out of the C library, putting them in files that require no 

system-code changes to change time-zone rules; this change is especially useful with binary-only 

distributions of UNIX. The method also allows individual processes to choose rules rather than 

keeping one ruleset specification systemwide. The distribution includes a large database of rules 

used in many areas throughout the world, from China to Australia to Europe. Distributions are 

thus simplified because it is not necessary to have the software set up differently for different 

destinations, as long as the whole database is included. The adoption of the time-zone package 

into BSD brought the technology to the attention of commercial vendors, such as Sun 

Microsystems, causing them to incorporate it into their systems. This time-zone framework is 

still in use 30 years later. 
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1.3 The Transition of BSD to Open Source 

Up through the release of 4.3BSD Tahoe, all recipients of BSD had to first get an AT&T source 

license. That was because the BSD systems were never released by Berkeley in a binary-only 

format; the distributions always contained the complete source to every part of the system. The 

history of the UNIX system, and the BSD system in particular, had shown the power of making 

the source available to the users. Instead of passively using the system, they actively worked to 

fix bugs, improve performance and functionality, and even add completely new features. 

With the increasing cost of the AT&T source licenses, vendors that wanted to build stand-alone 

TCP/IP-based networking products for the PC market using the BSD code found the per-binary 

costs prohibitive. So they requested that Berkeley break out the networking code and utilities, 

and provide them under licensing terms that did not require an AT&T source license. The 

TCP/IP networking code clearly did not exist in 32/V and thus had been developed entirely by 

Berkeley and its contributors. The BSD-originated networking code and supporting utilities 

were released in June 1989 as Networking Release 1, the first freely redistributable code from 

Berkeley. 

The licensing terms were liberal. A licensee could release the code modified or unmodified in 

source or binary form with no accounting or royalties to Berkeley. The only requirements were 

that the copyright notices in the source file be left intact and that products that incorporated the 

code include in their documentation that the product contained code from the University of 

California and its contributors. Although Berkeley charged a $1000 fee to get a tape, anyone was 

free to get a copy from somebody who already had it. Indeed, several large sites put it up for 

anonymous FTP shortly after it was released. Though the code was freely available, several 

hundred organizations purchased tapes, which helped to fund the CSRG and encouraged further 

development. 

Networking Release 2 

With the success of the first open-source release, the CSRG decided to see how much more of 

BSD they could spring free. Keith Bostic led the charge by soliciting people to rewrite the UNIX 

utilities from scratch based solely on their published descriptions. Their only compensation 

would be to have their name listed among the Berkeley contributors next to the name of the 

utility that they rewrote. The contributions started slowly and were mostly for the trivial utilities. 

But as the list of completed utilities grew, and Bostic continued to hold forth for contributions at 

public events such as Usenix, the rate of contributions continued to grow. Soon the list crossed 
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100 utilities, and within 18 months nearly all the important utilities and libraries had been 

rewritten. 

The kernel proved to be a bigger task because it could not easily be rewritten from scratch. The 

entire kernel was reviewed, file by file, removing code that had originated in the 32/V release. 

When the review was completed, there were only six remaining kernel files that were still 

contaminated and that could not be trivially rewritten. While consideration was given to 

rewriting those six files so that a complete kernel could be released, the CSRG decided to release 

just the less-controversial set. The CSRG sought permission for the expanded release from folks 

higher up in the university administration. After much internal debate and verification of the 

methods used for detecting proprietary code, the CSRG was given permission to do the release. 

The initial thought was to come up with a new name for the second freely redistributable release. 

However, getting a new license written and approved by the university lawyers would have taken 

many months. So, the new release was named Networking Release 2, since that could be done 

with just a revision of the approved Networking Release 1 license agreement. This second, 

greatly expanded, freely redistributable release began shipping in June 1991. The redistribution 

terms and cost were the same as the terms and cost of the first networking release. As before, 

several hundred individuals and organizations paid the $1000 fee to get the distribution from 

Berkeley. 

Closing the gap from the Networking Release 2 distribution to a fully functioning system did not 

take long. Within 6 months of the release, Bill Jolitz had written replacements for the six 

missing files. He promptly released a fully compiled and bootable system for the 386-based PC 

architecture in January 1992, which he called 386/BSD. Jolitz’s 386/BSD distribution was done 

almost entirely on the net. He simply put it up for anonymous FTP and let anyone who wanted it 

download it for free. Within weeks he had a huge following. 

Unfortunately, the demands of keeping a full-time job meant that Jolitz could not devote the 

time needed to keep up with the flood of incoming bug fixes and enhancements to 386/BSD. So 

within a few months of the release of 386/BSD, a group of avid 386/BSD users formed the 

NetBSD group to pool their collective resources to help maintain and later enhance the system. 

By early 1993, they were doing releases that became known as the NetBSD distribution. The 

NetBSD group chose to emphasize the support of as many platforms as possible and continued 

the research-style development done by the CSRG. Until 1998, their distribution was done solely 

over the net with no distribution media available. Their group continues to target primarily the 

hard-core technical users. 

The FreeBSD group was formed a few months after the NetBSD group with a charter to support 

just the PC architecture and to go after a larger and less technically advanced audience, much as 
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Linux had done. They built elaborate installation scripts and began shipping their system on a 

low-cost CD-ROM in December 1993. The combination of ease-of-installation and heavy 

promotion on the net and at major trade shows, such as Comdex, led to a large, rapid growth 

curve. FreeBSD quickly rose to have the largest installed base of all the Networking Release 

2-derived systems. 

FreeBSD also rode the wave of Linux popularity by adding a Linux emulation mode that allows 

Linux binaries to run on the FreeBSD platform. This feature allows FreeBSD users to use the 

ever growing set of applications available for Linux while getting the robustness, reliability, and 

performance of the FreeBSD system. 

In 1995, OpenBSD spun off from the NetBSD group. Their technical focus was aimed at 

improving the security of the system. Their marketing focus was to make the system easier to 

use and more widely available. Thus, they began producing and selling CD-ROMs, with many of 

the ease of installation ideas from the FreeBSD distribution. 

The Lawsuit 

In addition to the groups organized to freely redistribute systems originating from the 

Networking Release 2 tape, a company, Berkeley Software Design Incorporated (BSDI), was 

formed to develop and distribute a commercially supported version of the code. Like the other 

groups, it started by adding the six missing files that Bill Jolitz had written for his 386/BSD 

release. BSDI began selling its system, including both source and binaries, in January 1992 for 

$995. It began running advertisements touting its 99 percent discount over the price charged for 

System V source plus binary systems. Interested readers were told to call 1-800-ITS-UNIX. 

Shortly after BSDI began its sales campaign, it received a letter from UNIX System Laboratory 

(USL) (a mostly owned subsidiary of AT&T spun off to develop and sell UNIX) [Ritchie, 2004]. 

The letter demanded that BSDI stop promoting its product as UNIX and, in particular, that it 

stop using the deceptive phone number. Although the phone number was promptly dropped and 

the advertisements changed to explain that the product was not UNIX, USL was still unhappy 

and filed suit to enjoin BSDI from selling its product. The suit alleged that the BSDI product 

contained USL proprietary code and trade secrets. USL sought to get an injunction to halt 

BSDI’s sales until the lawsuit was resolved claiming that it would suffer irreparable harm from 

the loss of its trade secrets if the BSDI distributions continued. 

At the preliminary hearing for the injunction, BSDI contended that it was simply using the 

sources being freely distributed by the University of California plus six additional files. BSDI 

was willing to discuss the content of any of the six added files but did not believe it should be 
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held responsible for the files being distributed by the University of California. The judge agreed 

with BSDI’s argument and told USL that it would have to restate its complaint based solely on 

the six files or the case would be dismissed. Recognizing that it would have a hard time making a 

case from just the six files, USL decided to refile the suit against both BSDI and the University of 

California. As before, USL requested an injunction on the shipping of Networking Release 2 

from the university and of the BSDI products. 

With the impending injunction hearing just a few short weeks away, preparation began in 

earnest. All the members of the CSRG were deposed, as was nearly everyone employed by BSDI. 

Briefs, counterbriefs, and counter-counterbriefs flew back and forth between the lawyers. The 

staff of the CSRG turned from writing code to writing several hundred pages of material that 

found its way into various briefs. 

In December 1992, Dickinson R. Debevoise, a United States District Judge in New Jersey, heard 

the arguments for the injunction. Although judges usually rule on injunction requests 

immediately, he decided to take it under advisement. On a Friday about 6 weeks later, he issued 

a 40-page opinion in which he denied the injunction and threw out all but two of the complaints 

[Debevoise, 1993]. The remaining two complaints were narrowed to recent copyrights and the 

possibility of the loss of trade secrets. He also suggested that the matter should be heard in a 

state court system before being heard in federal court. 

The University of California took the hint and rushed to California state court the following 

Monday morning with a countersuit against USL. By filing first in California, the university had 

established the locale of any further state court action. Constitutional law requires all state 

filings to be done in a single state to prevent litigants with deep pockets from bleeding 

opponents dry by filing 50 cases against them, one in each state. The result was that if USL 

wanted to take any action against the university in state courts, it would be forced to do so in 

California rather than in its home state of New Jersey. 

The university’s suit claimed that USL had failed in its obligation to provide due credit to the 

university for the use of BSD code in System V as required by the license that it had signed with 

the university [Linzner & MacDonald, 1993]. If the claim were found to be valid, the university 

asked that USL be forced to reprint all its documentation with the appropriate due credit added, 

to notify all its licensees of its oversight, and to run full-page advertisements in major 

publications such as the Wall Street Journal and Fortune magazine, notifying the business 

world of its inadvertent oversight. 

Soon after the filing in state court, USL was bought from AT&T by Novell. The CEO of Novell, 

Ray Noorda, stated publicly that he would rather compete in the marketplace than in court. By 

the summer of 1993, settlement talks had started. Unfortunately, the two sides had dug in so 
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deep that the talks proceeded very slowly. With some further prodding by Ray Noorda on the 

USL side, many of the sticking points were removed, and a settlement was finally reached in 

January 1994. The result was that three files were removed from the 18,000 that made up 

Networking Release 2, and a few minor changes were made to other files. In addition, the 

university agreed to add USL copyrights to about 70 files, although those files continued to be 

freely redistributed. 

4.4BSD 

The newly blessed release was called 4.4BSD-Lite and was released in June 1994 under terms 

identical to those used for the Networking releases. Specifically, the terms allow free 

redistribution in source and binary form, subject only to the constraint that the university 

copyrights remain intact and that the university receive credit when others use the code. 

Simultaneously, the complete system was released as 4.4BSD-Encumbered, which still required 

recipients to have a USL source license. 

The lawsuit settlement also stipulated that USL would not sue any organization using 

4.4BSD-Lite as the base for its system. So all the extant BSD groups—BSDI, NetBSD, and 

FreeBSD—had to restart their code base with the 4.4BSD-Lite sources into which they then 

merged their enhancements and improvements. While this reintegration caused a short-term 

delay in the development of the various BSD systems, it was a blessing in disguise, since it 

forced all the divergent groups to resynchronize with the 3 years of development that had 

occurred at the CSRG since the release of Networking Release 2. 

4.4BSD-Lite Release 2 

The money received from the 4.4BSD-Encumbered and 4.4BSD-Lite releases was used to fund a 

part-time effort to integrate bug fixes and enhancements. These changes continued for 2 years 

until the rate of bug reports and feature enhancements had died down to a trickle. The final set 

of changes was released as 4.4BSD-Lite Release 2 in June 1995. Most of the changes 

incorporated into 4.4BSD-Lite Release 2 eventually made it into the other systems’ source bases. 

Though the license term requiring that due credit be given to the university had been extremely 

helpful in the lawsuit, the university agreed to drop it following the final release. As many people 

began using the BSD-style copyrights for their own code, the proliferation of due-credit clauses 

in open-source software became difficult to determine and unmanageably large. By agreeing to 

drop the due-credit clause, the university hoped to set an example for others using its license. 

Over time, and with much effort from the BSD community, the due-credit clause has been 

dropped from many of the open-source programs that use the BSD-style license. 
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Following the release of 4.4BSD-Lite Release 2, the CSRG was disbanded. After 15 years of 

piloting the BSD ship, it was time to let others with fresh ideas and boundless enthusiasm take 

over. While it might seem best to have a single centralized authority overseeing the system 

development, the idea of having several groups with different charters ensures that many 

different approaches will be tried and that there is no single point of failure. Because the system 

is released in source form, the best ideas can easily be picked up by other groups. Indeed, 

cross-pollination of ideas between open-source projects is common. 

1.4 The FreeBSD Development Model 

Running an open-source project is different from running traditional software development. In 

traditional development, the staff are paid, so it is possible to have managers and a system 

architect that set schedules and direct the programmers’ activities. With open source, the 

developers are volunteers. They tend to be transient, usually doing a project or two before 

finding some other activity on which they prefer to spend their free time. They cannot be 

directed because they only work on what interests them. Because their jobs, families, and social 

lives often take precedence over their work on the project, it is impossible to put together 

schedules. Finally, there is no paid staff to fill the management role of traditional development. 

Thus, a successful open-source-development project must be self-organizing and set up to 

gracefully handle a high turnover of its active developers. 

The development model used by FreeBSD (as well as NetBSD and OpenBSD) was first set in 

motion by the CSRG [McKusick et al., 1989]. The CSRG was always a small group of software 

developers. This resource limitation required careful software-engineering management. 

Careful coordination was needed not only of the CSRG personnel but also of members of the 

general community who contributed to the development of the system. Certain outside 

developers had permission to modify the master copy of the system source directly. People given 

access to the master sources were carefully screened beforehand but were not closely supervised. 

Everyone committing changes to the system source received notification of all changes, allowing 

everyone to be aware of changes going into the system. Everyone was required to have any 

nontrivial changes reviewed by at least one other person before committing them to the tree. 

This model allowed many lines of development to proceed concurrently while still keeping the 

project coherent. 

The FreeBSD project is organized in much the same way as the CSRG. The entire FreeBSD 

project, including all the source code, documentation, bug reports, mailing-list archives, and 

even administrative data, is maintained in a publicly readable source-code-control system. 

Anyone may view the source code and existing bug reports, track progress on fixing bugs, and 

post bug reports. Anyone may join and participate in the numerous FreeBSD mailing lists. There 
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are three groups of people that directly work on FreeBSD: developers, committers, and the core 

team. 

There are 5000 to 6000 developers, each of whom works on some part of the system such as 

maintaining the FreeBSD kernel, continuing development of the 1000 core FreeBSD utilities, 

writing FreeBSD documentation, and updating other open-source software in the FreeBSD ports 

collection. Developers are able to access the source-code repository, but they are not permitted 

to change it. Instead, they must work with a committer or file a problem report to get their 

changes added to the system. 

There are currently 300 to 400 committers. Like the developers, most of them specialize in 

some part of the system. Unlike the developers, they are permitted to make changes to those 

parts of the source-code repository in which they have been authorized to work. All nontrivial 

changes should be reviewed by one or more other committers before being checked into the 

source tree. Most committers are doing work of their own as well as reviewing and committing 

the work of several developers. 

Nomination for advancement from developer to committer is done by the existing committers. 

Most commonly a developer will be nominated by the committer with whom he has been 

working. The nomination, along with a description and evaluation of past work and an initial 

scope of new work, is sent to the core team for approval. 

At the center of the project is the core team. The core team is composed of nine people who are 

elected every 2 years. The candidates for the core team come from the committers and the 

committers elect the core team. The core team acts as the final gatekeepers of the source code. 

They monitor what is being committed and resolve conflicts if two or more committers cannot 

agree on how to solve a particular problem. The core team also approves the advancement of 

developers to committers and (in rare circumstances) temporarily or permanently evicts 

someone from the committer group. The usual reason for departure from the committer group 

is inactivity (making no changes to the system for more than a year). 

The development structure of the FreeBSD project is directly derived from the one that we had 

established at the CSRG. Both the CSRG and FreeBSD use a central source-code-controlled 

repository. The FreeBSD core team is analogous to the CSRG staff. The FreeBSD committers are 

much like the people to whom Berkeley gave accounts on the CSRG development machine that 

allowed them to commit changes to the CSRG sources. And the FreeBSD developers are similar 

to the people that contributed to Berkeley, but they did not have accounts on the CSRG 

development machine. 
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The FreeBSD project has made some important improvements. First, its members recognize 

that even the most dedicated programmer will eventually burn out, lose interest, or otherwise 

decide to move on. There must be some way to let these people gracefully step aside rather than 

letting their inattention create a void at a critical point in the project. So unlike the CSRG model 

of having staff that were dictators for life, FreeBSD went to an elected core that is answerable to 

the committers. A core member who is burned out can decide (or be persuaded) not to run for 

reelection when his or her term ends. Core members who are not serving the interest of the 

committers will not be reelected. Equally important, active and energetic people have plenty of 

opportunity to move up through the ranks. Because the core team is elected, people rise into 

that rank because their peers who are actively working on the project feel that they should have 

the job. This approach works better than advancing because you are good buddies with 

somebody at the top. It also ensures that the core team is made up of those who are good at 

communicating with others, an important skill to have in that position. 

Another significant improvement made by the FreeBSD project is to automate many tasks and 

set up remote mirrors of the source-code repository, Web site, and bug reports. These changes 

have allowed the project to support many more contributors than would have been possible 

under the CSRG model. The FreeBSD project has also managed to become much less 

US–centric by welcoming developers from around the world, including active people in Japan, 

Australia, Russia, South Africa, Ukraine, Hungary, India, Denmark, France, Germany, and the 

United Kingdom, to name just a few of the countries with active FreeBSD development. 

The CSRG used to release new versions of the system about every 2 years. Changes to these 

distributions were rare, typically only small and critical security-or stability-related changes. 

Between versions, the CSRG would do test releases to gain experience with the new features that 

were being developed. 

The FreeBSD project has greatly expanded on the CSRG distribution scheme. At any point in 

time there are at least two FreeBSD distributions. The first is the “stable” release that is 

intended to be used in production environments. The second is the “current” release that 

represents the current state of the FreeBSD system and is intended for use by developers and 

users needing the latest features. 

The stable release changes slowly, and the changes are limited to fixing bugs, improving 

performance, and adding incremental hardware support. The stable system is released three to 

four times per year, although users wishing to upgrade more often can download and install the 

latest stable code as frequently as they need to do so (for example, after a major security patch 

has been made). The stable version of FreeBSD is analogous to the CSRG major-version releases 

except that they are more actively updated and are made available to the users. Like the stable 
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release, snapshots of the current release are created every few months. However, most users of 

the current release update much more frequently (daily updates are common). By having 

mirrored copies of the stable and current distributions available throughout the world, the 

FreeBSD project allows its worldwide user base to stay up to date much more easily than was 

possible with the CSRG distributions. 

About every 2 years, the current branch is forked to create a new stable release. Once the new 

stable branch has proven to be reliable enough for production use, work largely ceases on the 

old stable branch and production users switch over to the new stable release. The mainline 

development continues on the current branch. Nearly all changes are made first to the current 

branch. Only after a change has been tested in the current branch and proven to work in that 

environment is it merged-from-current (MFC-ed) to the stable release. 

One advantage that the CSRG long had over the FreeBSD project was that the CSRG was part of 

the University of California at Berkeley. Since the university is a nonprofit organization, 

contributions made to the CSRG were tax-deductible to the contributor. Some people at the 

FreeBSD project had long felt that they should find a way to let contributors to the project get a 

tax deduction. In 2000, they set up the FreeBSD Foundation, which after 3 years of good 

nonprofit work, was granted 501(c)3 status by the United States taxing authorities. This 

certification means that contributions made to the FreeBSD Foundation can be deducted from 

United States federal and state taxes in the same way as a contribution made to the university 

can be deducted. The ability to get a tax deduction has markedly increased the volume of 

monetary contributions to the FreeBSD project, which has enabled them to fund development of 

parts of the system that are tedious to create but necessary and important. 

Over the past 20 years, the FreeBSD project has grown at a steady but sustainable pace. 

Although Linux has attracted a mass following, FreeBSD continues to hold its place in the 

high-performance-server space. Indeed, Linux has helped to evangelize the viability of open 

source to the corporate marketplace, and FreeBSD has ridden on its coattails. It is far easier to 

convince your management to switch from Linux to FreeBSD than it is to convince them to 

move from Microsoft’s Windows to FreeBSD. Linux has also supplied a steady stream of 

developers for FreeBSD. Until recently, Linux had no central source-code repository, so to 

contribute you had to work for a Linux distributor or you had to get the ear of a member of the 

small set of people who could get changes put into the system. The much more egalitarian and 

merit-based organization of the FreeBSD project has provided a steady influx of high-quality 

developers. The typical new committer to the FreeBSD project is in his or her mid- to late 20s 

and has been programming Linux or other open-source projects for a decade. These people have 

enough experience and maturity that they are quickly able to become effective contributors to 

the project. And the mentoring inherent in the progression of developer to committer ensures 
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that by the time someone has the right to directly commit code to the FreeBSD tree, they 

understand the style and code-clarity guidelines that are critically important to preserving the 

quality, robustness, and maintainability of FreeBSD. 

The goal of the FreeBSD project is to provide software that may be used for any purpose and 

without strings attached. Many of the developers have a significant investment in the code (and 

project) and certainly do not mind a little financial compensation occasionally, but they 

certainly do not insist on it. They believe that their first and foremost mission is to provide code 

to any and all comers, for whatever purpose, so that the code gets the widest possible use and 

provides the greatest possible benefit [Hubbard, 2014]. 
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Chapter 2. Design Overview of FreeBSD 

2.1 FreeBSD Facilities and the Kernel 

The FreeBSD kernel provides four basic facilities: processes, filesystems, communications, and 

system startup. This section outlines where each of these four basic services is described in this 

book: 

1. A process is composed of an address space with one or more threads of control running within 

it. Mechanisms for creating, terminating, and otherwise controlling processes are discussed in 

Chapter 4. The system multiplexes separate virtual-address spaces for each process. This 

memory management is discussed in Chapter 6. 

2. The user interfaces to the filesystem and devices are similar; common aspects are discussed 

in Chapter 7. The organization and management of the devices in the I/O subsystem is described 

in Chapter 8. The filesystem provides operations to manipulate a set of named files, organized in 

a tree-structured hierarchy of directories. The filesystem must organize the storage of these files 

and directories on physical media, such as disks. The role of the traditional fast filesystem in 

doing these tasks is presented in Chapter 9; the role of the Zettabyte filesystem in doing these 

tasks is presented in Chapter 10. Access to files on remote machines is the subject of Chapter 11. 

3. Communication mechanisms provided by traditional UNIX systems include simplex reliable 

byte streams between related processes (see pipes, Section 7.1), and notification of exceptional 

events (see Signals, Section 4.7). FreeBSD also has a general interprocess-communication 

facility. This facility, described in Chapter 12, uses access mechanisms distinct from those of the 

filesystem, but once a connection is set up, a process can access it as though it were a pipe. There 

is a general networking framework, discussed in Chapter 13, that is normally used as a layer 

underlying the IPC facility. Chapter 14 describes particular networking implementations in 

detail. 

4. Any real operating system has operational issues, such as how to start it running. Startup and 

operational issues are described in Chapter 15. 

Sections 2.3 through 2.15 present introductory material related to Chapters 3 through 15. We 

define terms, examine basic system calls, and explore historical developments. Finally, we give 

the reasons for many major design decisions. 
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The Kernel 

The kernel is the part of the system that runs in protected mode and mediates access by all user 

programs to the underlying hardware (e.g., CPU, keyboard, monitor, disks, network links) and 

software constructs (e.g., filesystem, network protocols). The kernel provides the basic system 

facilities; it creates and manages processes and provides functions to access the filesystem and 

communication facilities. These functions, called system calls, appear to user processes as 

library subroutines. These system calls are the only interface that processes have to these 

facilities. Details of the system-call mechanism are given in Chapter 3, as are descriptions of 

several kernel mechanisms that do not execute as the direct result of a process doing a system 

call. 

A kernel, in traditional operating-system terminology, is a small nucleus of software that 

provides only the minimal facilities necessary for implementing additional operating-system 

services. Through much of the 1980s, research operating systems—such as Tunis [Ewens et al., 

1985], Chorus [Rozier et al., 1988], Mach [Accetta et al., 1986], and the V Kernel [Cheriton, 

1988]—attempted to make this division of functionality into more than just a logical one. 

Services such as filesystems and networking protocols were implemented as client application 

processes of the nucleus or kernel. These micro-kernels largely failed because of the high 

overhead of transitioning between kernel processes. 

The FreeBSD kernel is not partitioned into multiple processes. This basic design decision was 

made in the earliest versions of UNIX. The first two implementations by Ken Thompson had no 

memory mapping and thus made no hardware-enforced distinction between user and kernel 

space [Ritchie, 1988]. A message-passing system could have been implemented as readily as the 

actually implemented model of kernel and user processes. The monolithic kernel was chosen for 

simplicity and performance. And the early kernels were small; the inclusion of facilities such as 

networking into the kernel has increased its size, although the kernel is still small compared to 

many of the applications that run on it. 

Users ordinarily interact with the system through a command-language interpreter, called a 

shell, and through additional user application programs. Such programs and the shell are 

implemented with processes rather than being part of the kernel. Details of such programs are 

beyond the scope of this book, which instead concentrates almost exclusively on the kernel. 

Sections 2.3 and 2.4 describe the services provided by the FreeBSD kernel and give an overview 

of the latter’s design. Later chapters describe the detailed design and implementation of these 

services as they appear in FreeBSD. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_431
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec4


 

46 

2.2 Kernel Organization 

In this section, we view the organization of the FreeBSD kernel in two ways: 

1. As a static body of software, categorized by the functionality offered by the modules that make 

up the kernel 

2. By its dynamic operation, categorized according to the services provided to users 

The largest part of the kernel implements the system services that applications access through 

system calls. In FreeBSD, this software has been organized according to the following: 

• Basic kernel facilities: timer and system-clock handling, descriptor management, and process 

management 

• Security features: conventional UNIX model, but also sandboxing, virtualization, event 

auditing, and cryptographic services 

• Memory-management support: paging and swapping 

• Generic system interfaces: the I/O, control, and multiplexing operations performed on 

descriptors 

• Filesystems: files, directories, pathname translation, file locking, and I/O buffer management 

• Terminal-handling support: the pseudo-terminal interface and terminal line disciplines 

• Interprocess-communication facilities: sockets 

• Support for network communication: communication protocols and generic network facilities, 

such as routing 

Most of the software in these categories is machine independent and is portable across different 

hardware architectures. 

The machine-dependent aspects of the kernel are isolated from the mainstream code. In 

particular, none of the machine-independent code contains conditional code for specific 

architectures. When an architecture-dependent action is needed, the machine-independent code 

calls an architecture-dependent function that is located in the machine-dependent code. The 

software that is machine dependent includes the following: 

• Low-level system-startup actions 
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• Trap and fault handling 

• Low-level manipulation of the run-time context of a process 

• Configuration and initialization of hardware devices 

• Run-time support for I/O devices 

Table 2.1 summarizes the machine-independent software that constitutes the FreeBSD kernel 

for the 64-bit AMD architecture. The numbers in column 2 are for lines of C source code, header 

files, and assembly language. Virtually all the software in the kernel is written in the C 

programming language; a mere 0.6 percent is written in assembly language. As the statistics in 

Table 2.2 show, the machine-dependent software, excluding device support, accounts for a 

minuscule 3.8 percent of the kernel. Not shown are the 2,814,900 lines of code for the hundreds 

of supported devices, only a few of which will be loaded into any particular kernel. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02tab01
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Table 2.1 Machine-independent software in the FreeBSD kernel. 

 

Table 2.2 Machine-dependent software for the PC in the FreeBSD kernel. 

In the 10 years since the previous edition of this book, the total size of the kernel has grown from 

798,140 to 1,573,780 lines. The merger of ZFS into FreeBSD represents about a third of this 

growth. The machine-independent code has grown from 689,794 lines (86.4%) to 1,515,700 

lines (96.2%). The machine-dependent code has shrunk from 108,346 lines (13.6%) to 58,077 

lines (3.8%). These statistics do not include the device driver code that has grown from 846,525 

lines to 2,814,900 lines. 
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Only a small part of the kernel is devoted to initializing the system. This code is used when the 

system is bootstrapped into operation and is responsible for setting up the kernel hardware 

and software environment (see Chapter 15). Some operating systems (especially those with 

limited physical memory) discard or overlay the software that performs these functions after 

that software has been executed. The FreeBSD kernel does not reclaim the memory used by the 

startup code because that memory space is barely 0.2 percent of the kernel resources used on a 

typical machine. Also, the startup code does not appear in one place in the kernel—it is scattered 

throughout, and it usually appears in places logically associated with what is being initialized. 

2.3 Kernel Services 

The boundary between the kernel- and user-level code is enforced by hardware-protection 

facilities provided by the underlying hardware. The kernel operates in a separate address space 

that is inaccessible to user processes. Privileged operations—such as starting I/O and halting the 

central processing unit (CPU)—are available to only the kernel. Applications request services 

from the kernel with system calls. System calls are used to cause the kernel to execute 

complicated operations, such as writing data to secondary storage, and simple operations, such 

as returning the current time of day. All system calls appear synchronous to applications: An 

application does not run while the kernel performs the actions associated with a system call. The 

kernel may finish some operations associated with a system call after it has returned. For 

example, a write system call will copy the data to be written from the user process to a kernel 

buffer while the process waits, but it will usually return from the system call before the kernel 

buffer is written to the disk. 

A system call usually is implemented as a hardware trap that changes the CPU’s execution mode 

and the current address-space mapping. Parameters supplied by users in system calls are 

validated by the kernel before being used. Such checking ensures the integrity of the system. All 

parameters passed into the kernel are copied into the kernel’s address space to ensure that 

validated parameters are not changed as a side effect of the system call. System-call results are 

returned by the kernel, either in hardware registers or by their values being copied to 

user-specified memory addresses. Like parameters passed into the kernel, addresses used for 

the return of results must be validated to ensure that they are part of an application’s address 

space. If the kernel encounters an error while processing a system call, it returns an error code 

to the user. For the C programming language, this error code is stored in the global variable 

errno, and the function that executed the system call returns the value -1. 

User applications and the kernel operate independently of each other. FreeBSD does not store 

I/O control blocks or other operating-system-related data structures in the application’s address 

space. Each user-level application is provided an independent address space in which it executes. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_25
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The kernel makes most state changes—such as suspending a process while another is 

running—invisible to the processes involved. 

2.4 Process Management 

FreeBSD supports a multitasking environment. Each task or thread of execution is termed a 

process. In FreeBSD, the process context consists of user-level state, including the contents 

of its address space and the run-time environment, and kernel-level state, which includes 

scheduling parameters, resource controls, and identification information. The context includes 

everything used by the kernel in providing services for the process. Users can create processes, 

control the processes’ execution, and receive notification when the processes’ execution status 

changes. Every process is assigned a unique value, termed a process identifier (PID). This 

value is used by the kernel to identify a process when reporting status changes to a user, and by 

a user when referencing a process in a system call. 

The kernel creates a process by duplicating the context of another process. The new process is 

termed a child process of the original parent process. The context duplicated in process 

creation includes both the user-level execution state of the process and the process’s system 

state managed by the kernel. Important components of the kernel state are described in Chapter 

4. 

The process lifecycle is depicted in Figure 2.1. A process may create a new process that is a copy 

of the original by using the fork system call. The fork call returns twice: once in the parent 

process, where the return value is the process identifier of the child, and once in the child 

process, where the return value is 0. The parent–child relationship induces a hierarchical 

structure on the set of processes in the system. The new process shares all its parent’s resources, 

such as file descriptors, signal-handling status, and memory layout. 

 

Figure 2.1 Process-management system calls. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_288
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Although there are occasions when the new process is intended to be a copy of the parent, the 

loading and execution of a different program is a more useful and typical action. A process can 

overlay itself with the memory image of another program, passing to the newly created image a 

set of parameters, using the system call execve. One parameter is the name of a file whose 

contents are in a format recognized by the system—either a binary-executable file or a file that 

causes the execution of a specified interpreter program to interpret its contents. 

A process may terminate by executing an exit system call, sending 8 bits of exit status to its 

parent. If a process wants to communicate more than a single byte of information with its parent, 

it must either set up an interprocess-communication channel using pipes or sockets, or use an 

intermediate file. Interprocess communication is discussed extensively in Chapter 12. 

A process can suspend execution until any of its child processes terminate using the wait system 

call, which returns the PID and exit status of the terminated child process. A parent process can 

arrange to be notified by a signal when a child process exits or terminates abnormally. Using the 

wait4 system call, the parent can retrieve information about the event that caused termination 

of the child process and about resources consumed by the process during its lifetime. If a 

process is orphaned because its parent exits before it is finished, then the kernel arranges for the 

child’s exit status to be passed back to a special system process, init (see Sections 3.1 and 15.5). 

The details of how the kernel creates and destroys processes are given in Chapter 6. 

Processes are scheduled for execution according to a process-priority parameter. Under the 

default timesharing scheduler, this priority is managed by a kernel-based scheduling algorithm. 

Users can influence the scheduling of a process by specifying a parameter (nice) that weights 

the overall scheduling priority but are still obligated to share the underlying CPU resources 

according to the kernel’s scheduling policy. FreeBSD also has a real-time scheduler. Processes 

running under the real-time scheduler manage their own priority, which is not changed by the 

kernel. The kernel will run the highest priority real-time process to the exclusion of all other 

processes. Thus, real-time processes are not obliged to share the underlying CPU resources. 

Signals 

The system defines a set of signals that may be delivered to a process. Signals in FreeBSD are 

modeled after hardware interrupts. A process may specify a user-level subroutine to be a 

handler to which a signal should be delivered. When a signal is generated, it is blocked from 

further occurrence while it is being caught by the handler. Catching a signal involves saving the 

current process context and building a new one in which to run the handler. The signal is then 

delivered to the handler, which can either abort the process or return to the executing process 
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(perhaps after setting a global variable). If the handler returns, the signal is unblocked and can 

be generated (and caught) again. 

Alternatively, a process may specify that a signal is to be ignored or that a default action, as 

determined by the kernel, is to be taken. The default action of certain signals is to terminate the 

process. This termination may be accompanied by creation of a core file that contains the 

current memory image of the process for use in postmortem debugging. 

Some signals cannot be caught or ignored. These signals include SIGKILL, which kills runaway 

processes, and the job-control signal SIGSTOP. 

A process may choose to have signals delivered on a special stack so that sophisticated software 

stack manipulations are possible. For example, a language supporting co-routines needs to 

provide a stack for each co-routine. The language run-time system can allocate these stacks by 

dividing up the single stack provided by FreeBSD. If the kernel does not support a separate 

signal stack, the space allocated for each co-routine must be expanded by the amount of space 

required to catch a signal. 

All signals have the same priority. If multiple signals are pending simultaneously, the order in 

which signals are delivered to a process is implementation specific. Signal handlers execute with 

the signal that caused their invocation to be blocked, but other signals may yet occur. 

Mechanisms are provided so that processes can protect critical sections of code against the 

occurrence of specified signals. 

The design and implementation of signals are described in Section 4.7. 

Process Groups and Sessions 

Processes are organized into process groups. Process groups are used to control access to 

terminals and to provide a means of distributing signals to collections of related processes. A 

process inherits its process group from its parent process. Mechanisms are provided by the 

kernel to allow a process to alter its process group or the process group of its descendants. 

Creating a new process group is easy; the value of a new process group is ordinarily the process 

identifier of the creating process. 

The group of processes in a process group is sometimes referred to as a job and is manipulated 

by high-level system software, such as the shell. A common kind of job created by a shell is a 

pipeline of several processes connected by pipes, such that the output of the first process is the 

input of the second, the output of the second is the input of the third, and so forth. The shell 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_273


 

53 

creates such a job by forking a process for each stage of the pipeline, and then putting all those 

processes into a separate process group. 

A user process can send a signal to each process in a process group as well as to a single process. 

A process in a specific process group may receive software interrupts affecting the group, 

causing the group to suspend or resume execution, or to be interrupted or terminated. 

A terminal (or more commonly a software emulation of a terminal called a pseudo-terminal) has 

a process-group identifier assigned to it. This identifier is normally set to the identifier of a 

process group associated with the terminal. A job-control shell may create several process 

groups associated with the same terminal; the terminal is the controlling terminal for each 

process in these groups. A process may read from a descriptor for its controlling terminal only if 

the terminal’s process-group identifier matches that of the process. If the identifiers do not 

match, the process will be blocked if it attempts to read from the terminal. By changing the 

process-group identifier of the terminal, a shell can arbitrate a terminal among several different 

jobs. This arbitration is called job control and is described, with process groups, in Section 

4.8. 

Just as a set of related processes can be collected into a process group, a set of process groups 

can be collected into a session. The main uses for sessions are to create an isolated 

environment for a daemon process and its children, and to collect a user’s login shell and the 

jobs that that shell spawns. 

2.5 Security 

The FreeBSD security model has been developed over 40 years of evolving application needs. 

The key insight is that security must be part of system design; it cannot be successfully added 

later. The model addresses many different goals: 

• Support authenticated local and remote access by multiple users, as well as integration with 

distributed authentication and directory services 

• Allow users to define permissions/access control lists to control use of their files by other users 

and groups 

• Support application authors in implementing compartmentalization for the purposes of 

intra-application policy and vulnerability mitigation 

• Implement efficient lightweight virtualization allowing administrators to delegate safe subsets 

of root access to guest operating-system instances 
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• Allow the system administrator to control interactions between multiple users subject to 

various mandatory policies including information flow 

• Permit fine-grained logging of security events in the system such as filesystem operations or 

network accesses 

• Support and implement higher-level cryptographic services such as IPSec, ssh, transport-layer 

security (TLS), and full-disk encryption (GELI) 

Application developers and system administrators can build on these features in a broad variety 

of ways. Software authors can implement features such as application-level sandboxing, 

cryptographic protocols such as https and PGP, or intrusion detection and security monitoring 

tools. System administrators and integrators can build systems or appliances providing Virtual 

Private Networks (VPNs), multiuser file servers, or virtual hosting platforms. These concrete 

goals in turn imply several design principles and elements for the kernel and core 

operating-system components themselves: 

• A self-protecting Trusted Computing Base (TCB) guarantees enough system integrity to 

implement features such as multiple users and key storage 

• Strong process isolation using virtual memory ensures that the kernel is protected from user 

code, and that user processes are protected from one another 

• Identification and instrumentation of security-relevant operations throughout the kernel to 

implement access control, resource limits, and event auditing 

• A coherent privilege model, internal to the kernel, that allows exceptional operations (such as 

system administration, device-driver implementations) to occur in a structured way despite 

being outside the regular access-control model 

• Design abstractions that facilitate future security models, as well as security localization in 

downstream products; for example, clean separation of policy and mechanism, object-oriented 

structure (subject to the limitations of C), and a userspace capability-system model providing 

protection, rather than policy, as the primitive for application compartmentalization 

• Cryptographic primitives, such as secure random number generation and a library of 

encryption and signature functions, that can support many different higher-level 

operating-system features and applications 
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Process Credentials 

The kernel associates a set of process credentials with each process, which contain its 

various UNIX user identifiers (UIDs), group identifiers (GIDs), resource limits, audit properties, 

mandatory access control labels, capability-mode state, etc. Security-relevant operations 

throughout the kernel check these credentials, known as the subject, along with object 

properties (such as file permissions and ownership), before allowing the operation to proceed. 

Credential contents are protected by virtue of being in the kernel address space: they can be 

modified only using system calls that impose rules preventing circumvention of security policies. 

FreeBSD implements the UNIX set-user-identity (setuid) and set-group-identity (setgid) 

permissions that allow programs executed by one user to operate with the privileges of another 

user or group. When the kernel detects an execution of such a binary, the process’s credentials 

are modified to have a user or group ID reflecting the file’s own IDs. 

When the file is owned by the root user, it allows elevated privileges to be acquired—but only for 

the purposes of running the program in question. The program can then implement specific 

functions, such as modifying the system password file to change the user’s password, but not the 

password of any other user. However, the technique is not limited to the root user: several users 

and groups serve to own common directories or devices, such as printers or terminals, which 

can be accessed by normal users only through specific binaries. 

Privilege Model 

Privilege refers to the necessary “safety valves” that exist in operating-system design to 

describe exceptions to normal access-control rules; for example: 

• configuring network interfaces and network filtering; 

• mounting, unmounting, and exporting filesystems; 

• accessing or modifying kernel data and modules; 

• overriding ACLs as a system administrator or for backups; or 

• debugging system processes. 

Historically, UNIX implemented a simple privilege model: processes with UID 0 (the root user) 

were able to bypass almost all protections in the system. BSD, and later FreeBSD, have gradually 
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refined this approach through the introduction of securelevels, jails, and mandatory access 

control. 

The privilege model has required a change from a single in-kernel function, suser(), that simply 

checks to see if the current thread has root credentials, to a more complex in-kernel interface 

named priv_check(). Although the user-visible policy remains roughly similar to the UNIX root 

model, internal subdivision into roughly 200 named privileges allows a variety of refinements, 

such as subsetting of rights allowed in jails versus the remainder of the OS, as well as allowing 

MAC policies to have controlled interactions with the privilege model. These changes have also 

proven valuable in meeting the goal of supporting downstream consumers: product localizations 

frequently seek to extend the privilege model, and the privilege space itself is extensible. 

Discretionary Access Control 

Another area of refinement of the original UNIX security model is through the more flexible and 

fine-grained discretionary access control, the specification of protections properties for 

other users by object owners. UNIX allowed read, write, and execute permission controls for the 

file owner, the file group, and everyone else. FreeBSD added access-control lists, in which the 

set of permissions is expanded to read, write, execute, lookup, and administration. These 

expanded permissions can be applied to a list of users each with their own permissions, a list of 

groups each with their own permissions, and access granted for everyone else. This model 

permits full backward compatibility with historical implementations while also providing vastly 

finer-grain control. 

Capability Model 

The Capsicum security framework is a new feature added in FreeBSD 9 to provide sandboxing of 

libraries or modules, either because the code is of untrustworthy origin, or because it is 

suspected that the code might experience vulnerabilities when acting on data of unknown or 

dubious provenance. Capsicum allows the creation of processes that execute with only the 

system rights that they have been explicitly delegated. 

A process running in capability mode can only work with the set of file descriptors that it was 

explicitly granted at creation time, or later delegated via IPC. The creator can further limit the 

set of operations that may be performed on the granted descriptors. For example, it may allow 

I/O on a descriptor, but not the right to change file modes or test for events using select, poll, or 

kqueue. The process is denied access to the system’s global namespaces such as process 

identifiers or the filesystem. Thus the open system call will fail but the openat system call will 

work if given an appropriately privileged descriptor open on a directory from which to start. 
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Jail Lightweight Virtualization 

While FreeBSD operates well under several full-machine virtualization technologies such as Xen 

and its own bhyve hypervisor, FreeBSD jails provide lighter-weight virtual machines at a 

much lower resource commitment. Each jail creates a group of processes with their own 

root-administered environment giving the illusion that it is running on its own dedicated 

hardware. Unlike a full virtual machine emulator that can run any operating system, a jail can 

only provide a FreeBSD kernel environment. However, it can provide that environment much 

more efficiently than a full virtual machine emulator: a single physical machine is typically 

limited to dozens or hundreds of concurrent full virtual machines, while it can support 

thousands of jails simultaneously. 

Three techniques underly the jail implementation: 

• access control, which prevents operations such as inter-jail process debugging; 

• resource subsetting, which limits jails to a specific subset of the hierarchical filesystem 

namespace (via chroot); and 

• true virtualization, in which jails are each presented a unique instance of global system 

namespaces. 

Access control and resource subsetting come at little cost, whereas full virtualization can incur 

substantial kernel-memory overhead. Virtualization is therefore configurable: jails may be 

granted access to a subset of system IP addresses within the global network-stack instance, or 

optional full network-stack virtualization can be configured. 

In a typical configuration, each jail has an independent FreeBSD userspace installation in a 

jail-specific filesystem tree—or for stronger resource isolation at greater resource commitment, 

its own filesystem instance. Each jail will be delegated its own subset of system IP addresses. 

Processes will operate as normal, but will be limited to those addresses; for example, an ISP 

might grant each virtual-domain customer its own virtual FreeBSD installation, with its own 

user account database, and each of which contains a webserver instance binding only the jail’s 

IP addresses. Most operations are permitted within a jail including: 

• running or signalling processes within the jail; 

• changing files within the jail; 

• binding low port numbers on the jail’s IP addresses; and 
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• optionally managing ZFS data sets within a larger volume delegated to the jail. 

Processes running within a jail are not permitted to perform operations that would allow them 

to see or affect anything running outside their jail. This restriction is implemented in large part 

by masking the set of named system privileges available to root processes running within a jail. 

Constrained privileges include: 

• getting information on processes outside the jail; 

• changing kernel variables; 

• mounting or unmounting filesystems; 

• modifying physical network interfaces or configurations; and 

• rebooting the system. 

Mandatory Access Control 

Mandatory access control (MAC) describes a broad class of security policies that allow the 

system administrator (or system integrator) to control systemic behaviors such as information 

flow (for example, multilevel security (MLS)), or fine-grained system-scale rules (such as 

type enforcement (TE)). As there remains significant disagreement about which mandatory 

policies best solve particular practical security problems, FreeBSD implements a framework for 

kernel access-control extensibility, the MAC framework. 

The framework allows policies compiled into the kernel or kernel modules to instrument kernel 

security decisions, but also provides common infrastructure required by many policies such as 

object label storage, policy-agnostic APIs for security management, and tracing/debugging 

features. Kernel subsystems invoke MAC framework entry points at strategic points in kernel 

operation—creation and destruction of objects, before access to operations on objects, and 

system security events such as privilege checks. The framework in turn invokes different policy 

modules, composing their results. 

Security policies are able to control access to a broad set of security-relevant system objects and 

services including filesystem objects such as files/directories, IPC objects such as pipes, and 

access to network sockets. They can also limit interprocess operations such as execution, 

visibility, signalling, and tracing. 

Many policies use security labels to tag processes and objects with additional security metadata 

to be used during access control checks; for example, labels might contain per-object or 
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per-process confidentiality information for MLS to use in blocking illegitimate information flow, 

or domain and type information that will be checked against Type Enforcement rules controlling 

their interactions. 

The MAC framework requires maintaining labels not just on userspace-visible objects acted on 

directly by system calls, but also internal objects such as in-flight network data stored in mbuf 

chains. A key design concern in the framework is performance proportionality: more intrusive 

policies, such as labelled MAC policies, may incur greater expense for labelling, but policies 

using only existing security information, such as process-credential UIDs and file ownership, 

should not. 

FreeBSD includes several sample policy modules such as confidentiality and integrity models, 

but downstream consumers of FreeBSD have used the framework to implement many other 

policies including Apple’s sandboxing models for Mac OS X and iOS, and application 

sandboxing in Juniper’s Junos router operating system. 

Event Auditing 

The original UNIX accounting and the added FreeBSD tracing have been expanded to include 

full auditing to provide accountability and intrusion detection. It is based on Open Basic 

Security Module. When enabled, it generates records for kernel events involving access control, 

authentication, security management, audit management, and user-level audit reports. For each 

event, it records the user credentials that can be augmented with an audit identifier that holds 

terminal and session information to be added to each audit record. 

The volume of the audit trail is controllable using a global audit preselection policy with an 

optional audit mask to subset the global policy. Audit records can be further thinned using the 

auditreduce utility. 

Cryptography and Random-Number Generators 

Contemporary operating systems depend on a variety of cryptographic services: 

• one-way hashes protect user passwords; 

• digital signatures protect software updates and user data from tampering; and 

• symmetric and asymmetric encryption protect user data on disk and the network. 
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All these functions require strong cryptographic foundations. The FreeBSD kernel includes a 

strong cryptographic random number generator, and libraries of encryption, integrity checking, 

and hashing algorithms. These libraries are used by kernel services such as GELI disk 

encryption and IPSec virtual private networks, but also userspace applications such as ssh, GPG, 

and Kerberos. 

FreeBSD employs the Yarrow cryptographic pseudorandom number generator to implement 

both sources of in-kernel randomness and /dev/random. Yarrow reuses existing 

cryptographic primitives such as cryptographic hashes and counter-mode block encryption. The 

key to making the output of Yarrow unguessable is having a good source of truly random seeds; 

Yarrow is able to combine multiple sources of entropy, and tolerate compromise of a subset of 

sources. 

Many CPUs now implement built-in hardware random number generators using oscillator loops 

to generate difficult-to-predict output. The first of these built-in hardware random number 

generators was the VIA generator used since FreeBSD 5.3. More recently, Intel introduced a 

random number generator that is accessed using the rdrand instruction, supported since 

FreeBSD 9.2. Since 10.1, FreeBSD feeds the output of hardware entropy sources through Yarrow 

as it is hard to determine whether these sources are operating correctly, or have perhaps been 

compromised. With FreeBSD 11, Yarrow was replaced by Fortuna, which automates the 

estimation of how and when to use alternate entropy sources. 

FreeBSD makes use of cryptographic services within the kernel such as for providing full-disk 

encryption. These cryptographic services may be implemented in software or by hardware 

accelerators—historically they were found in add-on boards, but increasingly, they are 

implemented via instruction-set extensions. Access to hardware encryption is also exported to 

processes that need to provide large streams of encrypted data. 

These security components combine to meet the requirements of the diverse systems that run 

FreeBSD, ranging across hand-held computing devices, network devices, storage appliances, 

and Internet service providers’ large-scale hosting environments. 

2.6 Memory Management 

Each process has its own private address space. The address space is initially divided into three 

logical segments: text, data, and stack. The text segment is read-only and contains the 

machine instructions of a program. The data and stack segments are both readable and writable. 

The data segment contains the initialized and uninitialized data portions of a program, whereas 

the stack segment holds the application’s run-time stack. The stack segment is extended 
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automatically by the kernel as the process executes. A process can expand or contract its data 

segment by making a system call, whereas a process can change the size of its text segment only 

when the segment’s contents are overlaid with data from the filesystem or when debugging takes 

place. The initial contents of the segments of a child process are duplicates of the segments of a 

parent process. 

The entire contents of a process address space do not need to be resident for a process to 

execute. If a process references a part of its address space that is not resident in main memory, 

the system pages the necessary information into memory. When system resources are scarce, 

the system uses a two-level approach to maintain available resources. If a modest amount of 

memory is available, the system will take memory resources away from processes if these 

resources have not been used recently. Should there be a severe resource shortage, the system 

will resort to swapping the entire context of a process to secondary storage. The demand 

paging and swapping done by the system are effectively transparent to processes. A process 

may, however, advise the system about expected future memory utilization as a performance 

aid. 

BSD Memory-Management Design Decisions 

The support of large, sparse address spaces, mapped files, and shared memory was a 

requirement for 4.2BSD. An interface was specified, called mmap(), that allowed unrelated 

processes to request a shared mapping of a file into their address spaces. If multiple processes 

mapped the same file into their address spaces, changes to the file’s portion of an address space 

by one process would be reflected in the area mapped by the other processes, as well as in the 

file itself. Ultimately, 4.2BSD was shipped without the mmap() interface, because of pressure to 

make other features, such as networking, available. 

Further development of the mmap() interface continued during the work on 4.3BSD. Over 40 

companies and research groups participated in the discussions leading to the revised 

architecture that was described in the Berkeley Software Architecture Manual [McKusick et al., 

1994]. The first UNIX implementation of the interface was done by Sun Microsystems [Gingell 

et al., 1987]. 

Once again, time pressure prevented 4.3BSD from providing an implementation of the interface. 

Although the latter could have been built into the existing 4.3BSD virtual-memory system, the 

developers decided not to put it in because that implementation was nearly 10 years old. 

Furthermore, the original virtual-memory design was based on the assumption that computer 

memories were small and expensive, whereas disks were locally connected, fast, large, and 

inexpensive. Thus, the virtual-memory system was designed to be frugal with its use of memory 
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at the expense of generating extra disk traffic. In addition, the 4.3BSD implementation was 

riddled with VAX memory-management hardware dependencies that impeded its portability to 

other computer architectures. Finally, the virtual-memory system was not designed to support 

the tightly coupled multiprocessors that were becoming increasingly common and important. 

Attempts to improve the old implementation incrementally seemed doomed to failure. A 

completely new design, on the other hand, could take advantage of large memories, conserve 

disk transfers, and have the potential to run on multiprocessors. Consequently, the 

virtual-memory system was completely replaced in 4.4BSD. The 4.4BSD virtual-memory system 

was based on the Mach 2.0 virtual-memory system [Tevanian, 1987], with updates from Mach 

2.5 and Mach 3.0. 

The FreeBSD virtual-memory system is an extensively tuned version of the virtual-memory 

implementation in 4.4BSD. It features efficient support for sharing, a clean separation of 

machine-independent and machine-dependent features, as well as multiprocessor support. 

Processes can map files anywhere in their address space. They can share parts of their address 

space by doing a shared mapping of the same file. Changes made by one process are visible in 

the address space of the other process and also are written back to the file itself. Processes can 

also request private mappings of a file, which prevents any changes that they make from being 

visible to other processes mapping the file or being written back to the file itself. 

Another issue with the virtual-memory system is the way that information is passed into the 

kernel when a read or write system call is made. For these system calls, FreeBSD always copies 

data from the process address space into a buffer in the kernel. The copy is done for several 

reasons: 

• Often, the user data are not page aligned and are not a multiple of the hardware page length. 

• If the page is taken away from the process, it will no longer be able to reference that page. 

Some programs depend on the data remaining in the buffer even after those data have been 

written. 

• If the process is allowed to keep a copy of the page (as it is in current FreeBSD semantics), the 

page must be made copy-on-write. A copy-on-write page is one that is protected against being 

written by being made read-only. If the process attempts to modify the page, the kernel gets a 

write fault. The kernel then makes a copy of the page that the process can modify. Unfortunately, 

the typical process will immediately try to write new data to its output buffer, forcing the data to 

be copied anyway. 
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• When pages are remapped to new virtual-memory addresses, most memory-management 

hardware requires that the hardware address-translation cache be purged selectively. The cache 

purges are often slow. The net effect is that remapping is slower than copying for blocks of data 

less than 4 to 8 Kbyte. 

For read or write operations that are transferring large quantities of data, doing the copy can be 

time consuming. An alternative to doing the copying is to remap the process memory into the 

kernel. The biggest incentives for memory mapping are the needs for accessing big files and for 

passing large quantities of data between processes. The mmap() interface provides a way for 

both of these tasks to be done without copying. 

The mmap system call is not supported between processes running on different machines. Such 

processes must communicate using sockets connected across the network. Thus, sending the 

contents of a file across the network is another common operation where it is desirable to avoid 

copying. Historically, the sending of a file was done by reading the file into an application buffer, 

and then writing that buffer to a socket. This approach required two copies of the data: first 

from the kernel to the application buffer, and then from the application buffer back into the 

kernel to send on the socket. FreeBSD pioneered the sendfile system call that sends data from a 

file down a socket without doing any copying. 

Memory Management Inside the Kernel 

The kernel often does allocations of memory that are needed for only the duration of a single 

system call. In a user process, such short-term memory would be allocated on the run-time stack. 

Because the kernel has a limited run-time stack, it is not feasible to allocate even moderate-size 

blocks of memory on it. Consequently, such memory must be allocated through a more dynamic 

mechanism. For example, when the system must translate a pathname, it must allocate a 

1-Kbyte buffer to hold the name. Other blocks of memory must be more persistent than a single 

system call, and thus could not be allocated on the stack even if there were space. An example is 

protocol-control blocks that remain throughout the duration of a network connection. 

Demands for dynamic memory allocation in the kernel have increased as more services have 

been added. A generalized memory allocator reduces the complexity of writing code inside the 

kernel. Thus, the FreeBSD kernel has a general memory allocator that can be used by any part of 

the system. It has an interface similar to the C library routines malloc() and free() that provide 

memory allocation to application programs [McKusick & Karels, 1988]. Like the C library 

interface, the allocation routine takes a parameter specifying the size of memory that is needed. 

The range of sizes for memory requests is not constrained; however, physical memory is 
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allocated and is not paged. The free routine takes a pointer to the storage being freed, but it does 

not require the size of the piece of memory being freed. 

Some large and persistent allocations, such as the structure that tracks information about a 

process during its lifetime, are not well handled by the general memory allocator. The kernel 

provides a zone allocator for these types of allocations. Each memory type is given its own zone 

from which all its allocations are made. Memory allocated in one zone cannot be used by any 

other zone or by the general memory allocator. The semantics of the interface are similar to the 

general-memory allocator; memory is allocated from a zone with the zalloc() routine and freed 

with the zfree() routine. 

2.7 I/O System Overview 

The basic model of the UNIX I/O system is a sequence of bytes that can be accessed either 

randomly or sequentially. There are no access methods and no control blocks in a typical UNIX 

user process. 

Different programs expect various levels of structure, but the kernel does not impose structure 

on I/O. For instance, the convention for text files is lines of ASCII characters separated by a 

single newline character (the ASCII line-feed character), but the kernel knows nothing about 

this convention. For the purposes of most programs, the model is further simplified to just a 

stream of data bytes, or an I/O stream. It is this single common data form that makes the 

characteristic UNIX tool-based approach work [Kernighan & Pike, 1984]. An I/O stream from 

one program can be fed as input to almost any other program. 

Descriptors and I/O 

UNIX processes use descriptors to reference I/O streams. Descriptors are small unsigned 

integers obtained from the open and socket system calls. The open system call takes as 

arguments the name of a file and a permission mode to specify whether the file should be open 

for reading or for writing, or for both. This system call also can be used to create a new, empty 

file. A read or write system call can be applied to a descriptor to transfer data. The close system 

call can be used to deallocate any descriptor. 

Descriptors represent underlying objects supported by the kernel and are created by system 

calls specific to the type of object. In FreeBSD, seven kinds of objects can be represented by 

descriptors—files, pipes, fifos, sockets, POSIX IPC, event queues, and processes: 
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1. A file is a linear array of bytes with at least one name. A file exists until all of its names are 

deleted explicitly and no process holds a descriptor for it. A process acquires a descriptor for a 

file by opening that file’s name with the open system call. Most I/O devices are accessed as files. 

2. A pipe is a linear array of bytes, as is a file, but it is used solely as an I/O stream, and it is 

unidirectional. It also has no name and thus cannot be opened with open. Instead, it is created 

by the pipe system call, which returns two descriptors, one of which accepts input that is sent to 

the other descriptor reliably, without duplication, and in order. 

3. A fifo is often referred to as a named pipe. A fifo has properties identical to a pipe, except 

that it appears in the filesystem; thus, it can be opened using the open system call. Two 

processes that wish to communicate each open the fifo: one opens it for reading, the other for 

writing. 

4. A socket is a transient object that is used for interprocess communication; it exists only as 

long as some process holds a descriptor referring to it. A socket is created by the socket system 

call, which returns a descriptor for it. There are different kinds of sockets that support various 

communication semantics, such as reliable delivery of data, preservation of message ordering, 

and preservation of message boundaries. 

5. POSIX IPC includes message queues, shared memory, and semaphores. Each type of IPC has 

its own set of system calls that are described in Section 7.2. 

6. An event queue is a descriptor for which an application registers notification requests for a 

wide set of events. The events include arrival of data for a descriptor, availability of space for 

output on a descriptor, completion of asynchronous I/O, various timer-based events, and 

change in status of a set of its processes. An event queue is created by the kqueue system call, 

which returns a descriptor for it. 

7. A process descriptor is used by the Capsicum capability model to control the set of processes 

to which a sandboxed process can have access. A process descriptor is created by specifying the 

RFPROCDESC flag to the rfork system call. Capsicum and its use of process descriptors is 

described in Section 5.8. 

In systems before 4.2BSD, pipes were implemented using the filesystem; when sockets were 

introduced in 4.2BSD, pipes were reimplemented as sockets. For performance reasons, FreeBSD 

no longer uses sockets to implement pipes and fifos. Rather, it uses a separate implementation 

optimized for local communication. 

The kernel keeps a descriptor table for each process, which is a table that the kernel uses to 

translate the external representation of a descriptor into an internal representation. (The 
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descriptor is merely an index into this table.) The descriptor table of a process is inherited from 

that process’s parent, and thus access to the objects to which the descriptors refer also is 

inherited. The main ways that a process can obtain a descriptor are 

1. by opening or creating an object, or 

2. by inheriting from the parent process. 

In addition, socket IPC allows passing descriptors in messages between unrelated processes on 

the same machine. 

Every valid descriptor has an associated file offset in bytes from the beginning of the object. 

Read and write operations start at this offset, which is updated after each data transfer. For 

objects that permit random access, the file offset also may be set with the lseek system call. 

Ordinary files permit random access, and some devices do, too. The remaining descriptor types 

including pipes, fifos, and sockets do not. 

When a process terminates, the kernel reclaims all the descriptors that were in use by that 

process. If the process was holding the final reference to an object, the object’s manager is 

notified so that it can do any necessary cleanup actions, such as final deletion of a file or 

deallocation of a socket. 

Descriptor Management 

Most processes expect three descriptors to be open already when they start running. These 

descriptors are 0, 1, and 2, more commonly known as standard input, standard output, 

and standard error, respectively. Usually, all three are associated with the user’s terminal by 

the login process (see Section 15.4) and are inherited through fork and exec by processes run by 

the user. Thus, a program can read what the user types by reading standard input, and the 

program can send output to the user’s screen by writing to standard output. The standard error 

descriptor also is open for writing and is used for error output, whereas standard output is used 

for ordinary output. 

These (and other) descriptors can be mapped to objects other than the terminal; such mapping 

is called I/O redirection, and all the standard shells permit users to do it. The shell can direct 

the output of a program to a file by closing descriptor 1 (standard output) and opening the 

desired output file to produce a new descriptor 1. It can similarly redirect standard input to 

come from a file by closing descriptor 0 and opening the file. 
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Pipes allow the output of one program to be input to another program without rewriting or even 

relinking of either program. Instead of descriptor 1 (standard output) of the source program 

being set up to write to the terminal, it is set up to be the input descriptor of a pipe. Similarly, 

descriptor 0 (standard input) of the sink program is set up to reference the output of the pipe 

instead of the terminal keyboard. The resulting set of two processes and the connecting pipe is 

known as a pipeline. Pipelines can be arbitrarily long series of processes connected by pipes. 

The open, pipe, and socket system calls produce new descriptors with the lowest unused number 

usable for a descriptor. For pipelines to work, some mechanism must be provided to map such 

descriptors into 0 and 1. The dup system call creates a copy of a descriptor that points to the 

same file-table entry. The new descriptor is also the lowest unused one, but if the desired 

descriptor is closed first, dup can be used to do the desired mapping. Care is required, however: 

If descriptor 1 is desired, and descriptor 0 happens also to have been closed, descriptor 0 will be 

the result. To avoid this problem, the system provides the dup2 system call; it is like dup, but it 

takes an additional argument specifying the number of the desired descriptor (if the desired 

descriptor was already open, dup2 closes it before reusing it). 

Devices 

Hardware devices have filenames and may be accessed by the user via the same system calls 

used for regular files. The kernel can distinguish a device special file or special file, and it 

can determine to what device it refers, but most processes do not need to make this 

determination. Terminals, printers, and tape drives are all accessed as though they were streams 

of bytes, like FreeBSD disk files. Thus, device dependencies and peculiarities are kept in the 

kernel as much as possible, and even in the kernel most of them are segregated in the device 

drivers. 

Processes typically access devices through special files in the filesystem. I/O operations to these 

files are handled by kernel-resident software modules termed device drivers. Most 

network-communication hardware devices are accessible through only the 

interprocess-communication facilities and do not have special files in the filesystem namespace, 

because the raw-socket interface provides a more natural interface than does a special file. 

Device special files are created in the /dev filesystem by their device driver when the hardware 

is first found. The ioctl system call manipulates the underlying device parameters of special files. 

The operations that can be done differ for each device. This system call allows the special 

characteristics of devices to be accessed, rather than overloading the semantics of other system 

calls. For example, there is an ioctl on a sound card to set the audio-encoding format instead of 

there being a special or modified version of write. 
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Socket IPC 

The 4.2BSD kernel introduced an IPC mechanism more flexible than pipes, based on sockets. A 

socket is an endpoint of communication referred to by a descriptor, just like a file or a pipe. Two 

processes can each create a socket and then connect those two endpoints to produce a reliable 

byte stream. Once connected, the descriptors for the sockets can be read or written by processes, 

just as the latter would do with a pipe. The transparency of sockets allows the kernel to redirect 

the output of one process to the input of another process residing on another machine. A major 

difference between pipes and sockets is that pipes require a common parent process to set up 

the communications channel. A connection between sockets can be set up by two unrelated 

processes, possibly residing on different machines. 

Fifos appear as an object in the filesystem that unrelated processes can open and send data 

through in the same way as they would communicate through a pair of sockets. Thus, fifos do 

not require a common parent to set them up; they can be connected after a pair of processes are 

up and running. Unlike sockets, fifos can be used on only a local machine; they cannot be used 

to communicate between processes on different machines. 

The socket mechanism requires extensions to the traditional UNIX I/O system calls to provide 

the associated naming and connection semantics. Rather than overloading the existing interface, 

the developers used the existing interfaces to the extent that the latter worked without being 

changed and designed new interfaces to handle the added semantics. The read and write system 

calls were used for byte-stream-type connections, but six new system calls were added to allow 

sending and receiving addressed messages such as network datagrams. The system calls for 

writing messages include send, sendto, and sendmsg. The system calls for reading messages 

include recv, recvfrom, and recvmsg. In retrospect, the first two in each class are special cases 

of the others; recvfrom and sendto probably should have been added as library interfaces to 

recvmsg and sendmsg, respectively. 

Scatter-Gather I/O 

In addition to the traditional read and write system calls, 4.2BSD introduced the ability to do 

scatter-gather I/O. Scatter input uses the readv system call to allow a single read to be 

placed in several different buffers. Conversely, the writev system call allows several different 

buffers to be written in a single atomic write. Instead of passing a single buffer and length 

parameter, as is done with read and write, the process passes in a pointer to an array of buffers 

and lengths, along with a count describing the size of the array. 
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This facility allows buffers in different parts of a process address space to be written atomically, 

without the need to copy them to a single contiguous buffer. Atomic writes are necessary in the 

case where the underlying abstraction is record based, such as datagrams that output a single 

message on each write request. It is also convenient to be able to read a single request into 

several different buffers (such as a record header into one place and the data into another). 

Although an application can simulate the ability to scatter data by reading the data into a large 

buffer and then copying the pieces to their intended destinations, the cost of 

memory-to-memory copying in such cases often would more than double the running time of 

the affected application. 

Just as send and recv could have been implemented as library interfaces to sendto and recvfrom, 

it also would have been possible to simulate read using readv and write using writev. However, 

read and write are used so much more frequently that the added cost of simulating them would 

not have been worthwhile. 

Multiple Filesystem Support 

With the expansion of network computing, it became desirable to support both local and remote 

filesystems. To simplify the support of multiple filesystems, the developers added a new virtual 

node or vnode interface to the kernel. The set of operations exported from the vnode interface 

appear much like the filesystem operations previously supported by the local filesystem. 

However, they may be supported by a wide range of filesystem types: 

• Local disk-based filesystems 

• Files imported using a variety of remote filesystem protocols 

• Read-only CD-ROM filesystems 

• Filesystems providing special-purpose interfaces, for example, the /dev filesystem 

By using loadable kernel modules (see Section 15.3), FreeBSD allows filesystems to be loaded 

dynamically when the filesystems are first referenced by the mount system call. The vnode 

interface is described in Section 7.3; its ancillary support routines are described in Section 7.4; 

several of the special-purpose filesystems are described in Section 7.5. 

2.8 Devices 

Historically, the device interface was static and simple. Devices were discovered as the system 

was booted and did not change thereafter. A typical disk driver could be written in a few 
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hundred lines of code. As the system has evolved, the complexity of the I/O system has 

increased, with the addition of new functionality. Devices may appear and later disappear while 

the system is running. With increasing complexity and types of I/O buses, the routing of I/O 

requests has become complex. In a multiprocessor, for example, device interrupts must be 

routed to the most appropriate processor, which may not be the same one that previously 

handled the device. An overview of the PC architecture is given in Section 8.1. 

Devices are described by character device drivers. Sections 8.2 through 8.6 introduce the 

structure of device drivers and then detail device drivers for disks, network interfaces, and 

terminals. 

Logical disks may no longer refer to a partition on a single physical disk but instead may 

combine several slices and/or partitions to create a virtual partition on which to build a 

filesystem that spans several disks. The aggregation of physical disk partitions into a virtual 

partition in these ways is referred to as volume management. Rather than building all this 

functionality into all the filesystems or disk drivers, it has been abstracted out into the GEOM 

(geometry) layer. The operation of the GEOM layer is described in Section 8.7. The management 

of the disk subsystem in FreeBSD is described in Section 8.8. 

Autoconfiguration is the procedure carried out by the system to recognize and enable the 

hardware devices present in a system. Historically, autoconfiguration was done just once when 

the system was booted. In current machines, particularly portable machines such as laptop 

computers, devices routinely come and go while the machine is operating. Thus, the kernel must 

be prepared to configure, initialize, and make available hardware when it arrives and to drop 

operations with hardware that has departed. FreeBSD uses a device-driver infrastructure called 

newbus to manage the devices on the system. The newbus architecture is described in Section 

8.9. 

2.9 The Fast Filesystem 

A regular file is a linear array of bytes and can be read and written starting at any byte in the file. 

The kernel distinguishes no record boundaries in regular files, although many programs 

recognize line-feed characters as distinguishing the ends of lines, and other programs may 

impose other structure. No system-related information about a file is kept in the file itself, but 

the filesystem stores a small amount of ownership, protection, and usage information with each 

file. 

A filename component is a string of up to 255 characters. These filenames are stored in a type 

of file called a directory. The information in a directory about a file is called a directory 
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entry and includes, in addition to the filename, a pointer to the file itself. Directory entries may 

refer to other directories, as well as to plain files. A hierarchy of directories and files is thus 

formed, called a filesystem; a small one is shown in Figure 2.2. Directories may contain 

subdirectories, and there is no inherent limitation to the depth with which directory nesting may 

occur. To protect the consistency of the filesystem, the kernel does not permit processes to write 

directly into directories. A filesystem may include not only plain files and directories but also 

references to other objects, such as sockets and fifos. 

 

Figure 2.2 A small filesystem tree. 

The filesystem forms a tree, the beginning of which is the root directory, sometimes referred 

to by the name slash, spelled with a single solidus character (/). The root directory contains 

files; in our example in Figure 2.2, it contains kernel, a copy of the kernel-executable object file. 

It also contains directories; in this example, it contains the usr directory. Within the usr 

directory is the bin directory, which mostly contains executable object code of programs, such 

as the files ls and vi. 

A process identifies a file by specifying that file’s pathname, which is a string composed of zero 

or more filenames separated by slash (/) characters. The kernel associates two directories with 

each process for use in interpreting pathnames. A process’s root directory is the topmost point 

in the filesystem that the process can access; it is ordinarily set to the root directory of the entire 

filesystem. A pathname beginning with a slash is called an absolute pathname and is 

interpreted by the kernel starting with the process’s root directory. 
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A pathname that does not begin with a slash is called a relative pathname and is interpreted 

relative to the current working directory of the process. (This directory also is known by 

the shorter names current directory or working directory.) The current directory itself may 

be referred to directly by the name dot, spelled with a single period (.). The filename dot-dot 

(..) refers to a directory’s parent directory. The root directory is its own parent. 

A process may set its root directory with the chroot system call and its current directory with the 

chdir system call. Any process may do chdir at any time, but chroot is permitted only a process 

with superuser privileges. Chroot is normally used to set up restricted access to the system. 

Using the filesystem shown in Figure 2.2, if a process has the root of the filesystem as its root 

directory and has /usr as its current directory, it can refer to the file vi either from the root with 

the absolute pathname /usr/bin/vi or from its current directory with the relative pathname 

bin/vi. 

System utilities and databases are kept in certain well-known directories. Part of the 

well-defined hierarchy includes a directory that contains the home directory for each 

user—for example, /usr/staff/mckusick and /usr/staff/gnn in Figure 2.2. When users log 

in, the current working directory of their shell is set to the home directory. Within their home 

directories, users can create directories as easily as they can regular files. Thus, a user can build 

arbitrarily complex subhierarchies. 

The user usually knows of only one filesystem, but the system may know that this one virtual 

filesystem is really composed of several physical filesystems, each on a different device. A 

physical filesystem may not span multiple logical devices. Since most physical disk devices are 

divided into several logical devices, there may be more than one filesystem per physical device, 

but there will be no more than one per logical device. Conversely, several physical devices may 

be combined through striping or RAID into a single larger logical device. 

One filesystem—the filesystem that anchors all absolute pathnames—is called the root 

filesystem and is always available. Others may be mounted—that is, they may be integrated 

into the directory hierarchy of the root filesystem. References to a directory that has a filesystem 

mounted on it are converted transparently by the kernel into references to the root directory of 

the mounted filesystem. 

The link system call takes the name of an existing file and another name to create for that file. 

After a successful link, the file can be accessed by either filename. A filename can be removed 

with the unlink system call. When the final name for a file is removed (and the final process that 

has the file open closes it), the file is deleted. 
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Files are organized hierarchically in directories. A directory is a type of file, but, in contrast to 

regular files, a directory has a structure imposed on it by the system. A process can read a 

directory as it would an ordinary file, but only the kernel is permitted to modify a directory. 

Directories are created by the mkdir system call and are removed by the rmdir system call. 

Before 4.2BSD, the mkdir and rmdir system calls were implemented by a series of link and 

unlink system calls being performed. There were three reasons for adding system calls explicitly 

to create and delete directories: 

1. The operation could be made atomic. If the system crashed, the directory would not be left 

half-constructed, as could happen when a series of link operations were used. 

2. When a networked filesystem is being run, the creation and deletion of files and directories 

need to be specified atomically so that they can be serialized. 

3. When supporting non-UNIX filesystems, such as an NTFS filesystem, on another partition of 

the disk, the other filesystem may not support link operations. Although other filesystems might 

support the concept of directories, they probably would not create and delete the directories 

with links, as the UNIX filesystem does. Consequently, they could create and delete directories 

only if explicit directory create and delete requests were presented. 

The chown system call sets the owner and group of a file, and chmod changes protection 

attributes. Stat applied to a filename can be used to read back such properties of a file. The 

fchown, fchmod, and fstat system calls are applied to a descriptor instead of to a filename to do 

the same set of operations. The rename system call can be used to give a file a new name in the 

filesystem, replacing one of the file’s old names. Like the directory-creation and 

directory-deletion operations, the rename system call was added to 4.2BSD to provide atomicity 

to name changes in the local filesystem. Later, it proved useful explicitly to export renaming 

operations to foreign filesystems and over the network. 

The truncate system call was added to 4.2BSD to allow files to be set to an arbitrary size. Thus, 

truncate is poorly named because it may be used to both shorten and lengthen a file. Files may 

have holes in them. Holes are void areas in the linear extent of the file where data have never 

been written. A process can create these holes by positioning the pointer past the current 

end-of-file and writing. Alternatively, a hole may be added to the end of a file by using the 

truncate system call to increase its length. When read, holes are treated by the system as 

zero-valued bytes. 

Once the filesystem had the ability to shorten files, the kernel took advantage of that ability to 

shorten large, empty directories. The advantage of shortening empty directories is that it 

reduces the time spent in the kernel searching them when names are being created or deleted. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_144


 

74 

Newly created files are assigned the user identifier of the process that created them and the 

group identifier of the directory in which they were created. A three-level access-control 

mechanism is provided for the protection of files. The following three levels specify the 

accessibility of a file: 

1. To the user who owns the file 

2. To the group that owns the file 

3. To everybody else 

Each level of access has separate indicators for read permission, write permission, and execute 

permission. If finer granularity access control is needed, FreeBSD 5 also provides ACLs (access 

control lists) to allow specification of read, write, execute, and administrative permission on a 

per-user or per-group level. 

Files are created with zero length and may grow when they are written. While a file is open, the 

system maintains a pointer into the file showing the current location in the file associated with 

the descriptor. This pointer can be moved about in the file in a random-access fashion. 

Processes sharing a file descriptor through a fork or dup system call share the current location 

pointer. Descriptors created by separate open system calls have separate current location 

pointers. 

Filestores 

The user-visible part of the filesystem is its hierarchical naming, locking, quotas, attribute 

management, and protection. But the bulk of the filesystem implementation involves the 

organization and management of the data on the storage media. Laying out the contents of files 

on the storage media is the responsibility of the filestore. By default, FreeBSD uses the 

traditional Berkeley fast filesystem format. The disk is organized into groups of contiguous 

blocks called cylinder groups. Files that are likely to be accessed together, based on their 

locations in the filesystem hierarchy, are stored in the same cylinder group. Files that are not 

expected to be accessed together are moved into different cylinder groups. 

A key responsibility of the filestore is to ensure that the filesystem is always kept in a state in 

which it can be recovered after a hardware or software failure. While recoverability can be 

maintained by using synchronous writes to the disk, the performance of a filesystem using this 

technique would be unacceptably slow. FreeBSD uses a technique called soft updates (see 

Sections 9.6 and 9.8) to ensure recoverability while still delivering good performance and fast 

restart after a system crash. 
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Another useful feature of the FreeBSD filestore is the ability to take a filesystem snapshot 

quickly. Snapshots can be taken every few hours and mounted in a well-known location so that 

users can recover inadvertently deleted files that they created or wrote earlier in the day. 

Snapshots can also be used to allow the creation of consistent archives of filesystems that are in 

continuous active use. Snapshots are described in Section 9.7. 

2.10 The Zettabyte Filesystem 

The Zettabyte filesystem (ZFS) is in a class of filesystems that never overwrite existing data. This 

type of filesystem design was pioneered at Berkeley and a production-capable implementation 

was released as the log-structured filesystem in 4.4BSD. 

The idea of a non-overwriting filesystem is sound and was picked up and greatly enhanced by 

Sun Microsystems, which released it as the Zettabye filesystem in OpenSolaris. The FreeBSD 

Project replaced the little-used log-structured filesystem with ZFS in 2007. Within a few years, 

ZFS became the filesystem of choice for FreeBSD installations with large storage components. 

The design of ZFS provides many benefits: 

• Creation of snapshots (read-only) and clones (writable) is easy and cheap. Many of them can 

be created with no performance hit. 

• The on-disk filesystem state is never inconsistent. A ZFS filesystem moves from one consistent 

state to the next without ever passing through an inconsistent state. 

• All the disks on the machine can be pooled together and the pool of space is then shared 

among all the filesystems. Allocation of the pool space can be controlled through the use of 

several types of quotas and reservations. 

• Massive scale supports petabyte-size storage pools with data structures that allow scalability to 

zettabytes. 

• Provides for fast remote replication and backups. 

• Strong data integrity is provided by checksums and disk-level redundancy through mirroring 

and single, double, and triple parity RAID. 

• Supports a hybrid storage pool by using fast devices such as solid-state disks (SSDs) to cache 

reads and non-volatile memory (NVRAM) to accelerate synchronous writes. 
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ZFS was designed to easily manage and operate enormous filesystems, which it does well. Its 

design assumed that it would have many fast 64-bit CPUs with large amounts of memory to 

support these enormous filesystems. When these resources are available, it works extremely well. 

However, it is neither designed for nor is it well suited to run on resource-constrained systems 

using 32-bit CPUs with less than 8 Gbytes of memory and one small, nearly full disk typical of 

many embedded systems. Thus, the fast filesystem continues to be the filesystem of choice for 

these smaller systems. 

2.11 The Network Filesystem 

Initially, networking was used to transfer data from one machine to another. Later, it evolved to 

allowing users to log in remotely to another machine. The next logical step was to bring the data 

to the user, instead of having the user go to the data—and network filesystems were born. Users 

working locally do not experience the network delays on each keystroke, so they have a more 

responsive environment. 

Bringing the filesystem to a local machine was among the first of the major client–server 

applications. The server is the remote machine that exports one or more of its filesystems. The 

client is the local machine that imports those filesystems. From the local client’s point of view, a 

remotely mounted filesystem appears in the file-tree namespace just like any other locally 

mounted filesystem. Users and programs running on clients can change into directories on the 

remote filesystem and can read, write, and execute binaries within that remote filesystem 

identically to the way they can do these operations on a local filesystem. 

When the client performs an operation on a remote filesystem, the request is packaged and sent 

to the server. The server performs the requested operation and returns either the requested 

information or an error explaining why the request was denied. To get reasonable performance, 

the client must cache frequently accessed data. The complexity of remote filesystems lies in 

maintaining cache consistency between the server and its many clients. 

Although many remote-filesystem protocols have been developed over the years, the most 

pervasive one in use among UNIX systems is the Network Filesystem (NFS), whose protocol and 

most widely used implementation were done by Sun Microsystems. The FreeBSD kernel 

supports the NFS protocol, although the implementation was done independently from the 

protocol specification [Macklem, 1994]. The continued success of NFS has resulted in a 

significant update of the protocol in version 4. The new protocol has little in common with its 

predecessors other than its name and its goal of giving a set of clients shared access to a single 

store of files. It adds several new features including integrated security, better caching, and 
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enhanced file and byte-range locking. Both of the currently used NFS protocols, NFSv3 and 

NFSv4 are described in Chapter 11. 

2.12 Interprocess Communication 

Interprocess communication in FreeBSD is organized in communication domains. The 

most important domains currently supported include the local domain, for communication 

between processes executing on the same machine; the IPv4 domain, for communication 

between processes using the TCP/IP protocol suite (version 4); and the IPv6 domain, which is 

the newest version of the Internet protocols. 

Within a domain, communication takes place between communication endpoints known as 

sockets. As mentioned in Section 2.7, the socket system call creates a socket and returns a 

descriptor; other IPC system calls are described in Chapter 12. Each socket has a type that 

defines its communications semantics; these semantics include properties such as reliability, 

ordering, and prevention of the duplication of messages. 

Each socket has associated with it a communication protocol. This protocol provides the 

semantics required by the socket according to the latter’s type. Applications may request a 

specific protocol when creating a socket or may allow the system to select a protocol that is 

appropriate for the type of socket being created. 

Sockets may have addresses bound to them. The form and meaning of socket addresses are 

dependent on the communication domain in which the socket is created. Binding a name to a 

socket in the local domain causes a file to be created in the filesystem, while binding an IP 

address to a socket only updates an entry in the socket structure. 

Normal data transmitted and received through sockets are untyped. Data-representation issues 

are the responsibility of libraries built on top of the interprocess-communication facilities. 

Networking implementations on UNIX before 4.2BSD usually worked by overloading the 

character-device interfaces. One goal of the socket interface was for naive programs to be able to 

work without change on stream-style connections. Such programs can work only if the read and 

write system calls are unchanged. Consequently, the original interfaces were left intact and were 

made to work on stream-type sockets. A new interface was added for datagram sockets, where a 

destination address must be presented with each send call. 

Implementations of the sockets API exist for pretty much every modern operating system, 

including several that differ greatly from UNIX. 
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FreeBSD also supports several local IPC mechanisms not related to networking, including 

semaphores, message queues, and shared memory. These mechanisms are covered in 

Section 7.2. 

The increasing power of computer systems has lead to the virtualization of many kernel services, 

including those related to IPC. A recent feature of FreeBSD is a virtualized network stack in 

which elements such as sockets, network addresses, and network routing tables may not be 

global across the entire system, but contained within a single network stack instance. The 

purpose of these virtualization features is to allow a system administrator to configure a single 

system to serve several separate networks as might be common at an ISP. 

2.13 Network-Layer Protocols 

Most of the communication domains supported by the socket IPC mechanism provide access to 

network protocols. These protocols are implemented as a separate software layer logically below 

the socket software in the kernel. The kernel provides many ancillary services, such as buffer 

management, message routing, standardized interfaces to the protocols, and interfaces to the 

network interface drivers for the use of the various network protocols. 

Network layer protocols are layered just above or close to the network-interface software that 

manages the networking hardware. The Internet protocols IPv4 and IPv6 are two examples of a 

network layer protocol. FreeBSD has supported multiple protocols since 4.2BSD, providing 

interoperability and resource sharing among the diverse set of machines that exist in the 

Internet. Multiple-protocol support also provides for future changes. Today’s protocols designed 

for 1- and 10-Gbit Ethernets are likely to be inadequate for tomorrow’s 40- to 100-Gbit networks. 

Consequently, the network-communication layer is designed to support multiple protocols. New 

protocols are added to the kernel without the support for older protocols being affected. Older 

applications can continue to operate using the old protocol over the same physical network as is 

used by newer applications running with a newer network protocol. 

The original Internet protocols were not designed with security in mind. Protocols for securing 

the Internet have been added at multiple layers of the network stack, including the network 

layer itself. The IPSec suite of protocols introduces a framework for authenticating packet data 

and making them private at the network layer of the system. 

Network firewalls such as PF and IPFW that need to modify network data as they pass through a 

system are also implemented at the network layer of the kernel software. The FreeBSD kernel 

has several packet-processing frameworks that manipulate network data as they pass through 

the system and that are outside the normal processing of incoming or outgoing network traffic. 
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Other packet-processing frameworks exist for protocol experimentation and to give applications 

high-speed access to raw network packets without any network or transport layer protocol 

processing. 

2.14 Transport-Layer Protocols 

Transport layer protocols are responsible for end-to-end connectivity in a network. The 

Transmission Control Protocol (TCP) remains by far the most commonly used end-to-end 

transport protocol. However, key Internet services, such as the Domain Name System, allow 

users to look up systems by name using the User Datagram Protocol (UDP). The popularity of 

TCP has lead to a continuous set of improvements to the protocol that enhances stability and 

improves performance. FreeBSD includes a framework specific to TCP that allows the tuning of 

certain performance and stability features. Newer transport protocols such as SCTP have added 

features for security and failover across communication paths. The UDP, TCP, and SCTP 

implementations are described in detail in Chapter 14. 

2.15 System Startup and Shutdown 

Bootstrapping (or “booting”) the operating system is a complex multistep process that begins 

with the hardware platform’s BIOS or firmware loading an escalating series of operating-system 

vendor boot loaders, which in turn load a kernel and modules. Once loaded, the kernel begins 

execution and after initialization it starts the first user process, init. The init process is 

responsible for starting the userspace boot process. The startup details vary by hardware 

platform: higher-end servers and workstations will, on the path to kernel load, run a series of 

smaller boot loaders that ultimately start /boot/loader, a scriptable loader environment 

supporting interactive selection of kernels, and network booting via NFS. By contrast, lower-end 

embedded systems often have a kernel that will be loaded directly by firmware without any 

intervening stages. 

The kernel starts by initializing a variety of internal subsystems such as the kernel memory 

allocator and scheduler. It uses platform-specific hardware enumeration methods to identify 

available hardware resources and attach drivers. Different techniques reflect different 

operational models: some hardware buses are self-enumerating (e.g., PCI), whereas other 

require manual description (e.g., many system-on-chip buses). On desktop/server systems, one 

kernel will frequently be used on a variety of machine types from many different vendors. By 

contrast, embedded installations usually have a kernel configured for each target device. On the 

PC, this enumeration is normally done via ACPI, which allows the BIOS to describe the 

processor configuration, bus topology, and directly attached hardware devices. On embedded 
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systems, device enumeration is done via systems such as Flattened Device Trees (FDT) that 

provide a static description of directly attached resources. Unlike ACPI, whose hardware 

descriptors are almost always shipped with the hardware itself, FDT hardware descriptions are 

usually embedded in the kernel. Buses such as PCI can do further dynamic enumeration by 

discovering attached devices such as Ethernet NICs, and bridges to further buses to enumerate. 

The in-kernel boot process is controlled by a system known as SYSINIT, which takes advantage 

of a compiler/linker feature called linker sets. Linker sets allow symbols for data structures and 

functions to be tagged for inclusion in a particular part of the kernel. Subsystem initializers are 

tagged for inclusion in the kernel initialization section along with information on the order in 

which they should be done. When the kernel and its modules are linked, the kernel linker 

iterates through various tagged functions, sorting and then invoking them to start those kernel 

subsystems. A similar SYSUNINIT mechanism exists to perform ordered shutdown of modules 

before unloading them and in preparation for kernel shutdown or reboot. 

The kernel starts by initializing its own data structures, such as its virtual-memory structures 

that describe physical memory. Next, it starts a set of kernel threads that implement services 

such as timers. Devices are enumerated, and device drivers attached. The network stack may 

perform not only per-protocol initialization, but also per-device initialization such as address 

generation and router discovery. The GEOM subsystem will identify storage devices and 

configure transforms such as RAID or encryption via GELI. Encryption services may require the 

user to have entered a passphrase in the boot loader. Eventually, a storage device suitable to use 

as the root filesystem will be discovered and its filesystem then mounted. Additional processors 

are enumerated and their schedulers likewise started. The final kernel-bootstrap step is to create 

the first user process with PID 1, to execute the /sbin/init binary. The init process is 

responsible for executing the startup scripts that perform filesystem checks, configure network 

interfaces, start accounting and quotas, start system daemons such as inetd and sshd, and 

bring the system up to full multiuser operation. 

In multiuser operation, the system may act as a general timesharing system, supporting direct 

or network-based logins by users who then start processes running on their behalf. FreeBSD 

often acts as a server, providing file services and serving Web requests to network clients. All 

these network-based services can be started automatically at boot time. When used as a server, 

there is typically just one human user logged into the system (the administrator). 

Exercises 

2.1 How does a user process request a service from the kernel? 
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2.2 How are data transferred between a process and the kernel? What alternatives are 

available? 

2.3 How does a process access an I/O stream? List three types of I/O streams. 

2.4 What are the four steps in the lifecycle of a process? 

2.5 Why are process groups provided in FreeBSD? 

2.6 Describe four machine-dependent functions of the kernel. 

2.7 Describe the difference between an absolute and a relative pathname. 

2.8 Give three reasons why the mkdir system call was added to 4.2BSD. 

2.9 Define scatter-gather I/O. Why is it useful? 

2.10 What is the difference between a pipe and a socket? 

2.11 Describe how to create a group of processes in a pipeline. 

*2.12 List the three system calls that were required to create a new directory foo in the current 

directory before the addition of the mkdir system call. 

*2.13 Explain the difference between interprocess communication and networking. 
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Chapter 3. Kernel Services 

3.1 Kernel Organization 

The FreeBSD kernel can be viewed as a service provider to user processes. Processes usually 

access these services through system calls. Some services, such as process scheduling and 

memory management, are implemented as processes that execute in kernel mode or as routines 

that execute periodically within the kernel. In this chapter, we describe how kernel services are 

provided to user processes, and we explain some of the ancillary processing done by the kernel. 

Then we describe the basic kernel services provided by FreeBSD and provide details of their 

implementation. 

System Processes 

All FreeBSD user-level processes originate from a single process that is crafted by the kernel at 

startup. Table 3.1 lists the most important of the processes that are created immediately and 

exist always. They are kernel processes, and they function wholly within the kernel. Kernel 

processes execute code that is compiled into the kernel’s load image and operate with the 

kernel’s privileged execution mode. Often these processes have many threads. For example, the 

intr process starts a kernel thread for each device to handle interrupts for that device. 
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Table 3.1 Permanent kernel processes. 

After creating the kernel processes, the kernel creates the first process to execute a program in 

user mode; it serves as the parent process for all subsequent processes. The first user-mode 

process is the init process—historically, process 1. This process does administrative tasks, such 

as spawning getty processes for each terminal on a machine, collecting exit status from 

orphaned processes, and handling the orderly shutdown of a system from multiuser to 

single-user operation. The init process is a user-mode process, running outside the kernel (see 

Section 15.4). 

System Entry 

Entrances into the kernel can be categorized according to the event or action that initiates them: 

• Hardware interrupt 
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• Hardware trap 

• Software-initiated trap 

Hardware interrupts arise from external events, such as an I/O device needing attention or a 

clock reporting the passage of time. (For example, the kernel depends on the presence of a 

real-time clock or interval timer to maintain the current time of day, to drive process scheduling, 

and to initiate the execution of system timeout functions.) Hardware interrupts occur 

asynchronously and may not relate to the context of the currently executing process. 

Hardware traps may be either synchronous or asynchronous but are related to the current 

executing process. Examples of hardware traps are those generated as a result of an illegal 

arithmetic operation, such as dividing by zero. 

Software-initiated traps are used by the system to force the scheduling of an event, such as 

process rescheduling or network processing, as soon as possible. Software-initiated traps are 

implemented by setting a flag that is checked whenever a process is preparing to exit from the 

kernel. If the flag is set, the software-interrupt code runs instead of exiting from the kernel. 

System calls are a special case of a software-initiated trap—the machine instruction used to 

initiate a system call typically causes a hardware trap that is handled specially by the kernel. 

Run-Time Organization 

The kernel can be logically divided into a top half and a bottom half, as shown in Figure 3.1. 

The top half of the kernel provides services to processes in response to system calls or traps. 

This software can be thought of as a library of routines shared by all processes. The top half of 

the kernel executes in a privileged execution mode, in which it has access both to kernel data 

structures and to the context of user-level processes. The context of each process is contained in 

two areas of memory reserved for process-specific information. The first of these areas is the 

process structure, which has historically contained the information that is necessary even if 

the process has been swapped out. In FreeBSD, this information includes the identifiers 

associated with the process, the process’s rights and privileges, its descriptors, its memory map, 

pending external events and associated actions, maximum and current resource utilization, and 

many other things. The second is the thread structure, which has historically contained the 

information that is not necessary when the process is swapped out. In FreeBSD, the 

thread-structure information of each process includes the hardware thread state block (TSB), its 

kernel stack, and minor additional information for debugging and creating a core dump. 

Deciding what was to be stored in the process structure and the thread structure was far more 

important in previous systems than it was in FreeBSD. As memory became a less limited 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_300
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resource, most of the thread structure was merged into the process structure for convenience 

(see Section 4.2). 

 

Figure 3.1 Run-time structure of the kernel. 

The bottom half of the kernel comprises routines that are invoked to handle hardware interrupts. 

Activities in the bottom half of the kernel are synchronous with respect to the interrupt 

source but are asynchronous, with respect to the top half, and the software cannot depend on 

having a specific (or any) process running when an interrupt occurs. Thus, the state information 

for the process that initiated the activity is not available. The top and bottom halves of the kernel 

communicate through data structures, generally organized around work queues. 

The FreeBSD kernel is rarely preempted to run another user process while executing in the top 

half of the kernel—for example, while executing a system call—although it will explicitly give up 

the processor if it must wait for an event or for a shared resource. Its execution may be 

interrupted, however, by the need to run a real-time process or by interrupts for the bottom half 

of the kernel. When an interrupt is received, the kernel process that handles that device is 

scheduled to run. Normally these device-interrupt processes have a higher priority than user 

processes or processes running in the top half of the kernel. Thus, when an interrupt causes a 

device-interrupt process to be made runnable, it will usually preempt the currently running 

process. When a process running in the top half of the kernel wants to add an entry to the work 

list for a device, it needs to ensure that it will not be preempted by that device part way through 

linking the new element onto the work list. In FreeBSD, the work list is protected by a mutex. 

Any process (top or bottom half) seeking to modify the work list must first obtain the mutex. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_16
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Once held, any other process seeking to obtain the mutex will wait until the process holding it 

has finished modifying the list and released the mutex. 

Processes cooperate in the sharing of system resources, such as the disks and memory. The top 

and bottom halves of the kernel also work together in implementing certain system operations, 

such as I/O. Typically, the top half will start an I/O operation, and then relinquish the processor; 

then the requesting process will sleep, awaiting notification from the bottom half that the I/O 

request has completed. 

Entry to the Kernel 

When a process enters the kernel through a trap or an interrupt, the kernel must save the 

current machine state before it begins to service the event. For the PC, the machine state that 

must be saved includes the program counter, the user stack pointer, the general-purpose 

registers, and the processor status longword. The PC trap instruction saves the program counter 

and the processor status longword as part of the exception stack frame; the user stack pointer 

and registers must be saved by the software trap handler. If the machine state were not fully 

saved, the kernel could change values in the currently executing program in improper ways. 

Since interrupts may occur between any two user-level instructions (and on some architectures 

between parts of a single instruction), and because they may be completely unrelated to the 

currently executing process, an incompletely saved state could cause correct programs to fail in 

mysterious and not easily reproducible ways. 

The exact sequence of events required to save the process state is completely machine 

dependent, although the PC provides a good example of the general procedure. A trap or system 

call will trigger the following events: 

• The hardware switches into kernel (supervisor) mode, so that memory-access checks are made 

with kernel privileges, references to the stack use the per-process kernel stack, and privileged 

instructions can be executed. 

• The hardware pushes onto the per-process kernel stack the program counter, processor status 

longword, and information describing the type of trap. (On architectures other than the PC, this 

information can include the system-call number and general-purpose registers as well.) 

• An assembly-language routine saves all state information not saved by the hardware. On the 

PC, this information includes the general-purpose registers and the user stack pointer, also 

saved onto the per-process kernel stack. 
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After this preliminary state saving, the kernel calls a C routine that can freely use the 

general-purpose registers as any other C routine would, without concern about changing the 

unsuspecting process’s state. 

There are three major kinds of handlers, corresponding to particular kernel entries: 

1. Syscall() for a system call 

2. Trap() for hardware traps and for software-initiated traps other than system calls 

3. The appropriate device-driver interrupt handler for a hardware interrupt 

Each type of handler takes its own specific set of parameters. For a system call, they are the 

system-call number and an exception frame. For a trap, they are the type of trap, the relevant 

floating-point and virtual-address information related to the trap, and an exception frame. (The 

exception-frame arguments for the trap and system call are not the same. The PC hardware 

saves different information based on different types of traps.) For a hardware interrupt, the only 

parameter is a unit (or board) number. 

Return from the Kernel 

When the handling of the system entry is completed, the user-process state is restored, and 

control returns to the user process. Returning to the user process reverses the process of 

entering the kernel: 

• An assembly-language routine restores the general-purpose registers and user-stack pointer 

previously pushed onto the stack. 

• The hardware restores the program counter and program status longword, and switches to 

user mode, so that future references to the stack pointer use the user’s stack pointer, privileged 

instructions cannot be executed, and memory-access checks are done with user-level privileges. 

Execution then resumes at the next instruction in the user’s process. 

3.2 System Calls 

The most frequent trap into the kernel (after clock processing) is a request to do a system call. 

System performance requires that the kernel minimize the overhead in fielding and dispatching 

a system call. The system-call handler must do the following work: 



 

90 

• Verify that the parameters to the system call are located at a valid user address, and copy them 

from the user’s address space into the kernel 

• Call a kernel routine that implements the system call 

Result Handling 

Eventually, the system call returns to the calling process, either successfully or unsuccessfully. 

On the PC architecture, success or failure is returned as the carry bit in the user process’s 

program status longword: If it is zero, the return was successful; otherwise, it was unsuccessful. 

On many machines, return values of C functions are passed back through a general-purpose 

register (for the PC, data register EAX). The routines in the kernel that implement system calls 

return the values that are normally associated with the global variable errno. After a system call, 

the kernel system-call handler leaves this value in the register. If the system call failed, a C 

library routine moves that value into errno, and sets the return register to -1. The calling process 

is expected to notice the value of the return register, and then to examine errno. The mechanism 

involving the carry bit and the global variable errno exists for historical reasons derived from 

the PDP-11. 

There are two kinds of unsuccessful returns from a system call: those where kernel routines 

discover an error and those where a system call is interrupted. The most common case is a 

system call that is interrupted when it has relinquished the processor to wait for an event that 

may not occur for a long time (such as terminal input), and a signal arrives in the interim. When 

signal handlers are initialized by a process, they specify whether system calls that they interrupt 

should be restarted or whether the system call should return with an interrupted system call 

(EINTR) error. 

When a system call is interrupted, the signal is delivered to the process. If the process has 

requested that the signal abort the system call, the handler then returns an error, as described 

previously. If the system call is to be restarted, however, the handler resets the process’s 

program counter to the machine instruction that caused the system-call trap into the kernel. 

(This calculation is necessary because the program-counter value that was saved when the 

system-call trap was done is for the instruction after the trap-causing instruction.) The handler 

replaces the saved program-counter value with this address. When the process returns from the 

signal handler, it resumes at the program-counter value that the handler provided and 

reexecutes the same system call. 

Restarting a system call by resetting the program counter has certain implications. First, the 

kernel must not modify any of the input parameters in the process address space (it can modify 
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the kernel copy of the parameters that it makes). Second, it must ensure that the system call has 

not performed any actions that cannot be repeated. For example, in the current system, if any 

characters have been read from the terminal, the read must return with a short count. Otherwise, 

if the call were to be restarted, the already-read bytes would be lost. 

Returning from a System Call 

While the system call is running or sleeping with signals blocked, a signal may be posted to the 

process, or another process may attain a higher scheduling priority. After the system call 

completes, the system-call exit code checks to see whether either event has occurred. 

The system-call exit code first checks for a posted signal. Such signals include signals that 

interrupted the system call, as well as signals that arrived while a system call was in progress but 

were held pending until the system call completed. Signals that are ignored, by default or by 

explicit programmatic request, are never posted to the process. Signals with a default action 

have that action taken before the process runs again (i.e., the process may be stopped or 

terminated as appropriate). If a signal is to be caught (and is not currently blocked), the 

system-call exit code arranges to have the appropriate signal handler called rather than have the 

process return directly from the system call. After the signal handler returns, the process will 

resume execution at system-call return (or system-call execution, if the system call is being 

restarted). 

After checking for posted signals, the system-call exit code checks to see whether any process 

has a priority higher than that of the currently running one. If such a process exists, the 

system-call exit code calls the context-switch routine to cause the higher-priority process to run. 

At a later time, the current process will again have the highest priority and will resume 

execution by returning from the system call to the user process. 

If a process has requested that the system do profiling, the system-call exit code also calculates 

the amount of time that has been spent in the system call—that is, the system time accounted to 

the process between the latter’s entry into and exit from the kernel. This time is charged to the 

routine in the user’s process that made the system call. 

3.3 Traps and Interrupts 

Traps, like system calls, occur synchronously for a process. Traps normally occur because of 

unintentional errors, such as division by zero or indirection through an invalid pointer. The 

process becomes aware of the problem either by catching a signal or by being terminated. Traps 
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can also occur because of a page fault, in which case the system makes the page available and 

restarts the process without the process being aware that the fault occurred. 

The trap handler is invoked like the system-call handler. First, the process state is saved. Next, 

the trap handler determines the trap type and then arranges to post a signal or to cause a pagein 

as appropriate. Finally, it checks for pending signals and higher-priority processes, and exits like 

the system-call handler except that it has no return value. 

I/O Device Interrupts 

Interrupts from I/O and other devices are handled by interrupt routines that are loaded as part 

of the kernel’s address space. These routines handle the console terminal interface, one or more 

clocks, and several software-initiated interrupts used by the system for low-priority clock 

processing and for networking facilities. 

Unlike traps and system calls, device interrupts occur asynchronously. The process that 

requested the service is unlikely to be the currently running process and may no longer exist! 

The process that started the operation will be notified that the operation has finished when that 

process runs again. As occurs with traps and system calls, the entire machine state must be 

saved, since any changes could cause errors in the currently running process. 

Device-interrupt handlers run only on demand. Unlike the pre-multiprocessing versions of 

FreeBSD, modern FreeBSD kernels create a thread context for each device driver. Thus, just as 

one process cannot access the context of the previously running process, interrupt handlers 

cannot access any of the context of the previously running interrupt handler. The stack normally 

used by the kernel is part of a process context. Since each device has its own context, it also has 

its own stack on which to run. 

Interrupts in pre-multiprocessing FreeBSD systems had no context, so they had to run to 

completion without sleeping. In modern FreeBSD kernels, interrupts can block to wait for 

resources. However, while blocked they cannot be invoked with another event, so to reduce the 

chance for lost interrupts, most handlers still run to completion without sleeping. 

An interrupt handler is never invoked from the top half of the kernel. Thus, it must get all the 

information it needs from the data structures that it shares with the top half of the 

kernel—generally, its global work queue. Similarly, all information provided to the top half of 

the kernel by the interrupt handler must be communicated the same way. 
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Software Interrupts 

Many events in the kernel are driven by hardware interrupts. For high-speed devices such as 

network controllers, these interrupts are scheduled at a high priority. A network controller must 

quickly acknowledge receipt of a packet and reenable the controller to accept more packets to 

avoid losing closely spaced packets. However, the further processing of passing the packet to the 

receiving process, although time-consuming, does not need to be done quickly. Thus, the further 

processing can be scheduled at a lower priority, so critical operations will not be blocked from 

executing longer than necessary. 

The mechanism for performing lower-priority processing is called a software interrupt. 

Typically, a high-priority interrupt creates a queue of work to be done at a lower-priority level. 

As with hardware devices in FreeBSD, each software interrupt has a process context associated 

with it. The software-interrupt processes are generally given a lower scheduling priority than the 

device-driver processes but a higher priority than those given to user processes. Whenever a 

hardware interrupt arrives, the process associated with the device driver will attain the highest 

priority and be scheduled to run. When there are no device-driver processes that are runnable, 

the highest priority software-interrupt process will be scheduled to run. If there are no 

software-interrupt processes that are runnable, then the highest priority user process will run. If 

either a software-interrupt process or a user process is running when an interrupt arrives and 

makes its device-driver process runnable, the scheduler will preempt the software-interrupt or 

user process to run the device-driver process. 

The delivery of network packets to destination processes is handled by a packet-processing 

function that runs at a lower priority than the network-controller device driver. As packets come 

in, they are put onto a work queue and the controller is immediately reenabled. Between packet 

arrivals, the packet-processing process works to deliver the packets. Thus, the controller can 

accept new packets without having to wait for the previous packet to be delivered. In addition to 

network processing, software interrupts are used to handle time-related events and process 

rescheduling. 

3.4 Clock Interrupts 

The system is driven by a clock that interrupts at regular intervals. Each interrupt is referred to 

as a tick. On the PC, the clock ticks 1000 times per second. At each tick, the system updates the 

current time of day as well as user-process and system timers. 

Handling 1000 interrupts per second can be time consuming. To reduce the interrupt load, the 

kernel computes the number of ticks in the future at which an action may need to be taken. It 
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then schedules the next clock interrupt to occur at that time. Thus, clock interrupts typically 

occur much less frequently than the 1000 ticks-per-second rate implies. This reduced interrupt 

rate is particularly helpful for systems with limited power budgets such as laptop computers and 

embedded systems as it allows them to spend much more time in low-power-consumption sleep 

mode. 

Interrupts for clock ticks are posted at a high hardware-interrupt priority. After switching to the 

clock-device process, the hardclock() routine is called. It is important that the hardclock() 

routine finish its job quickly: 

• If hardclock() runs for more than one tick, it will miss the next clock interrupt. Since 

hardclock() maintains the time of day for the system, a missed interrupt will cause the system to 

lose time. 

• Because of hardclock()’s high interrupt priority, nearly all other activity in the system is 

blocked while hardclock() is running. This blocking can cause network controllers to miss 

packets. 

So the time spent in hardclock() is minimized, less critical time-related processing is handled by 

a lower-priority software-interrupt handler called softclock(). In addition, if multiple clocks are 

available, some time-related processing can be handled by other routines supported by alternate 

clocks. On the PC there are two additional clocks that run at a different frequency than the 

system clock: the statclock(), which runs at 127 ticks per second to collect system statistics, and 

the profclock(), which runs at 8128 ticks per second to collect profiling information. 

The work done by hardclock() is as follows: 

• If the currently running process has a virtual or profiling interval timer (see Section 3.6), it 

decrements the timer and delivers a signal if the timer has expired. 

• It increments the current time of day by the number of ticks since the previous call to 

hardclock(). 

• If the system does not have a separate clock for process profiling, the hardclock() routine does 

the operations normally done by profclock(), as described in the next section. 

• If the system does not have a separate clock for statistics gathering, the hardclock() routine 

does the operations normally done by statclock(), as described in the next section. 

• If softclock() needs to be run, it makes the softclock process runnable. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec6
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Statistics and Process Scheduling 

On historic FreeBSD systems, the hardclock() routine collected resource-utilization statistics 

about what was happening when the clock interrupted. These statistics were used to do 

accounting, to monitor what the system was doing, and to determine future scheduling priorities. 

In addition, hardclock() forced context switches so that all processes would get a share of the 

CPU. 

This approach has weaknesses because the clock supporting hardclock() interrupts on a regular 

basis. Processes can become synchronized with the system clock, resulting in inaccurate 

measurements of resource utilization (especially CPU) and inaccurate profiling [McCanne & 

Torek, 1993]. It is also possible to write programs that deliberately synchronize with the system 

clock to outwit the scheduler. 

On architectures with multiple high-precision, programmable clocks—such as the PC—a 

statistics clock is run at a different frequency than the time-of-day clock. The FreeBSD statclock() 

runs at 127 ticks per second and is responsible for accumulating resource usage to processes. At 

each tick, it charges the currently running process with a tick; if the process has accumulated 

four ticks, it recalculates its priority. If the new priority is less than the current priority, it 

arranges for the process to be rescheduled. Thus, processes that become synchronized with the 

system clock still have CPU time accounted to them. 

The statclock() also collects statistics on what the system was doing at the time of the tick 

(sitting idle, executing in user mode, or executing in system mode). Finally, it collects basic 

information on system I/O, such as which disk drives are currently active. 

To allow the collection of more accurate profiling information, FreeBSD supports a profiling 

clock. When one or more processes are requesting profiling information, the profiling clock is 

set to run at a tick rate that is relatively prime to the main system clock (8128 ticks per second 

on the PC). At each tick, it checks to see if one of the processes that it has been asked to profile is 

running. If so, it obtains the current location of the program counter and increments a counter 

associated with that location in the profiling buffer associated with the process. 

Timeouts 

The remaining time-related processing involves processing timeout requests and periodically 

reprioritizing processes that are ready to run. These functions are handled by the softclock() 

routine. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref04
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When hardclock() completes, if there were any softclock() functions to be done, hardclock() 

schedules the softclock process to run. 

The primary task of the softclock() routine is to arrange for the execution of periodic events, 

such as the following: 

• Process real-time timer (see Section 3.6) 

• Retransmission of dropped network packets 

• Watchdog timers on peripherals that require monitoring 

• System process-rescheduling events 

An important event is the scheduling that periodically raises or lowers the CPU priority for each 

process in the system based on that process’s recent CPU usage (see Section 4.4). The 

rescheduling calculation is done once per second. The scheduler is started at boot time, and each 

time that it runs, it requests that it be invoked again 1 second in the future. 

On a heavily loaded system with many processes, the scheduler may take a long time to 

complete its job. Posting its next invocation 1 second after each completion may cause 

scheduling to occur less frequently than once per second. However, as the scheduler is not 

responsible for any time-critical functions, such as maintaining the time of day, scheduling less 

frequently than once a second is normally not a problem. 

The data structure that describes waiting events is called the callout queue. Figure 3.2 shows 

an example of the callout queue. When a process schedules an event, it specifies a function to be 

called, a pointer to be passed as an argument to the function, and the number of clock ticks until 

the event should occur. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec6
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Figure 3.2 Timer events in the callout queue. 

The kernel maintains an array of queue headers, each representing a particular time. There is a 

pointer that references the queue header for the current time, marked “now” in Figure 3.2. The 

queue header that follows the currently referenced one represents events that are one tick in the 

future. The queue header after that is two ticks in the future. The list wraps around, so if the last 

queue header in the list represents time t, then the first queue header in the list represents time 

t + 1. The queue header immediately preceding the currently referenced one represents the time 

furthest in the future. In Figure 3.2 there are 200 queue headers, so the queue header 

immediately preceding the one marked “now” represents events that are 199 ticks in the future. 

Each time the hardclock() routine runs, it increments the callout queue-head pointer. If the 

queue is not empty, it schedules the softclock() process to run. The softclock() process scans the 

events in the current queue. It compares the current time to the time stored in the event 

structure. If the times match, the event is removed from the list and its requested function is 

called, being passed the argument specified when it was registered. 

When an event n ticks in the future is to be posted, its queue header is calculated by taking the 

index of the queue labelled “now” in Figure 3.2, adding n to it, and then taking the resulting 

value modulo the number of queue headers. If an event is to occur further in the future than the 

number of queue headers, then it will end up on a list with other events that are to happen 

sooner. Thus, the actual time of the event is stored in its entry so that when the queue is scanned 

by softclock(), it can determine which events are current and which are to occur in the future. In 

Figure 3.2, the second entry in the “now” queue will be skipped on the current scan of the queue, 

but it will be handled 200 ticks in the future when softclock() next processes this queue. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02
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An argument is provided to the callout-queue function when it is called so that one function can 

be used by multiple processes. For example, there is a single real-time timer function that sends 

a signal to a process when a timer expires. Every process that has a real-time timer running 

posts a timeout request for this function; the argument that is passed to the function is a pointer 

to the process structure for the process. This argument enables the timeout function to deliver 

the signal to the correct process. 

Timeout processing is more efficient when the timeouts are specified in ticks. Time updates 

require only an integer decrement, and checks for timer expiration require only an integer 

comparison. If the timers contained time values, decrementing and comparisons would be more 

complex. The approach used in FreeBSD is based on the work of Varghese & Lauck [1987]. 

Another possible approach is to maintain a heap with the next-occurring event at the top 

[Barkley & Lee, 1988]. 

3.5 Memory-Management Services 

The memory organization and layout associated with a FreeBSD process is shown in Figure 3.3. 

Each process begins execution with three memory segments: text, data, and stack. The data 

segment is divided into initialized data and uninitialized data (also known as bss). The text is 

read-only and is normally shared by all processes executing the file, whereas the data and stack 

areas can be written by, and are private to, each process. The text and initialized data for the 

process are read from the executable file. 
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Figure 3.3 Layout of a FreeBSD process in memory and on disk. 

An executable file is distinguished by being a plain file (rather than a directory, special file, or 

symbolic link) and by having one or more of its execute bits set. Each executable file has an exec 

header containing a magic number that specifies the type of the executable file. FreeBSD 

supports multiple executable formats including the following: 

1. Files that must be read by an interpreter 

2. Files that are directly executable including AOUT, ELF, and gzipped ELF 

An executable file is initially parsed by the image activation (imgact) framework. The header of 

a file to be executed is passed through a list of registered image activators to find a matching 

format. When a matching format is found, the corresponding image activator prepares the file 

for execution. 

Files falling into the first classification have as their magic number (located in the first 2 bytes of 

the file) the two-character sequence #! followed by the pathname of the interpreter to be used. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_165


 

100 

This pathname is currently limited by a compile-time constant to 128 characters. For example, 

#!/bin/sh refers to the Bourne shell. The image activator that will be selected is the one that 

handles the invocation of interpreters. It will load and run the named interpreter, passing the 

name of the file that is to be interpreted as an argument. To prevent loops, FreeBSD allows only 

one level of interpretation, and a file’s interpreter may not itself be interpreted. 

For performance reasons, most files fall into the second classification and are directly executable. 

Information in the header of a directly executable file includes the architecture and operating 

system for which an executable was built and whether it is statically linked or uses shared 

libraries. The selected image activator can use information such as knowledge of the operating 

system for which an executable was compiled to configure the kernel to use the proper system 

call interpretation when running the program. For example, an executable built to run on Linux 

can be seamlessly run on FreeBSD by using the system-call dispatch vector that provides 

emulation of the Linux system calls. 

The header also specifies the sizes of text, initialized data, uninitialized data, and additional 

information for debugging. The debugging information is not used by the kernel or by the 

executing program. Following the header is an image of the text, followed by an image of the 

initialized data. Uninitialized data are not contained in the executable file because they can be 

created on demand using zero-filled memory. 

To begin execution, the kernel arranges to have the text portion of the file mapped into the low 

part of the process address space starting at the beginning of the second page of the virtual 

address space. The first page of the virtual address space is marked as invalid so that attempts to 

read or write through a null pointer will fault. The initialized data portion of the file is mapped 

into the address space following the text. An area equal to the uninitialized data region is 

created with zero-filled memory after the initialized data region. The stack is also created from 

zero-filled memory. Although the stack should not need to be zero filled, early UNIX systems 

made it so. In an attempt to save some startup time in 4.2BSD, the developers modified the 

kernel to not zero-fill the stack, leaving the random previous contents of the page instead. But 

concerns about surreptitious misuse of data from previously running programs and 

unrepeatable errors in previously working programs lead to restoration of the zero filling of the 

stack by the time that 4.3BSD was released. 

Copying into memory the entire text and initialized data portion of a large program causes a 

long startup latency. FreeBSD avoids this startup time by demand paging the program into 

memory rather than preloading the program. In demand paging, the program is loaded in small 

pieces (pages) as it is needed rather than all at once before it begins execution. The system does 

demand paging by dividing up the address space into equal-size areas called pages. For each 
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page, the kernel records the offset into the executable file of the corresponding data. The first 

access to an address on each page causes a page-fault trap in the kernel. The page-fault handler 

reads the correct page of the executable file into the process memory. Thus, the kernel loads 

only those parts of the executable file that are needed. Chapter 6 explains paging details. 

It might seem more efficient to load the whole process at once rather than in many little pieces. 

However, most processes use less than half of their address space during their entire execution 

lifetime. The reason for the low utilization is that typical user commands have many options, 

only a few of which are used on any invocation. The code and data structures that support the 

unused options are not needed. Thus, the cost of loading the subset of pages that are used is 

lower than the cost of initially loading the whole process. In addition to the time saved by 

avoiding the loading of the entire process, demand paging also reduces the amount of physical 

memory that is needed to run the process. 

The uninitialized data area can be extended with zero-filled pages using the system call sbrk, 

although most user processes use the library routine malloc(), a more programmer-friendly 

interface to sbrk. This allocated memory, which grows from the top of the original data segment, 

is called the heap. On the PC, the stack grows down from the top of memory, whereas the heap 

grows up from the bottom of memory. 

Above the user stack are areas of memory that are created by the system when the process is 

started. Directly above the user stack is the number of arguments (argc), the argument vector 

(argv), and the process environment vector (envp) set up when the program was executed. 

Following them are the argument and environment strings themselves. Next is the signal code, 

used when the system delivers signals to the process. At the top is the ps_strings structure, used 

by ps to locate the argv of the process. 

Historically, most executables were statically linked. In a statically linked binary, all the library 

routines and system-call entry stubs are loaded into the binary image at the time that it is 

compiled. Today, most binaries are dynamically linked. A dynamically linked binary contains 

only the compiled application code and a list of the routines (library and system-call entry stubs) 

that it needs. When the executable is run, a set of shared libraries containing the routines that it 

needs to use are mapped into its address space as part of its startup. The first time that it calls a 

routine, that routine is located in the shared library and a dynamic linkage is created to it. 

When the dynamic loader does the mmap system call to allocate space for the shared libraries, 

the kernel must find a place within the process address space to place them. The convention in 

FreeBSD is to place them just below the administrative lower limit for the stack. Since the stack 

will not be permitted to grow below the administrative stack size limit, there is no danger of the 

shared libraries being overwritten. A side effect of this implementation is that the stack limit 
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cannot be safely changed after a binary begins running. Ideally, a bigger stack limit can be set by 

the process (such as the shell) before it starts the application. However, applications that know 

at startup that they will need a bigger stack can increase their stack limit and then call the exec 

system call on themselves to restart with their shared libraries relocated at the bottom of their 

new stack limit. 

An alternative would be to place the shared libraries just above the heap limit. However, this 

would mean that the heap limit could not be increased once the binary began running. As 

applications much more frequently want to increase their heap size than their stack size, the 

stack limit was selected as the appropriate location to place the shared libraries. 

A process requires the use of some global system resources. The kernel maintains a linked list of 

processes that has an entry for each process in the system. Among other data, the process 

entries record information on scheduling and on virtual-memory allocation. Because the entire 

process address space, including the kernel stack for the process, may be swapped out of main 

memory, the process entry must record enough information to be able to locate the process and 

to bring that process back into memory. In addition, information needed while the process is 

swapped out (e.g., scheduling information) must be maintained in the process entry rather than 

in the thread structure to avoid the kernel swapping in the process only to decide that it is not at 

a high enough priority to be run. 

Other global resources associated with a process include space to record information about 

descriptors and page tables that record information about physical-memory utilization. 

3.6 Timing Services 

The kernel provides several different timing services to processes. These services include timers 

that run in real time and timers that run only while a process is executing. 

Real Time 

The system’s time offset since January 1, 1970, Universal Coordinated Time (UTC), also known 

as the Epoch, is returned by the system call gettimeofday. Most modern processors (including 

the PC processors) maintain a battery-backup time-of-day register. This clock continues to run 

even if the processor is turned off. When the system boots, it consults the processor’s 

time-of-day register to find out the current time. The system’s time is then maintained by the 

clock interrupts. At each interrupt, the system increments its global time variable by an amount 

equal to the number of microseconds per tick. For the PC, running at 1000 ticks per second, 

each tick represents 1000 microseconds. 
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External Representation 

Time is always exported from the system as microseconds, rather than as clock ticks, to provide 

a resolution-independent format. Internally, the kernel is free to select whatever tick rate best 

trades off clock-interrupt-handling overhead with timer resolution. As the tick rate per second 

increases, the resolution of the system timers improves, but the time spent dealing with 

hardclock interrupts increases. As processors become faster, the tick rate can be increased to 

provide finer resolution without adversely affecting user applications. Systems with real-time 

constraints often run the clock at 5000 or 10,000 ticks per second. As explained in Section 3.4, 

the kernel can usually eliminate most of the interrupts associated with a high tick rate. 

All filesystem (and other) timestamps are maintained in UTC offsets from the Epoch. 

Conversion to local time, including adjustment for daylight saving time, is handled externally to 

the system in the C library. 

Adjustment of the Time 

Often, it is desirable to maintain the same time on all the machines on a network. It is also 

possible to keep more accurate time than that available from the basic processor clock. For 

example, hardware is readily available that listens to the set of radio stations that broadcast UTC 

synchronization signals in the United States. When processes on different machines agree on a 

common time, they will wish to change the clock on their host processor to agree with the 

networkwide time value. One possibility is to change the system time to the network time using 

the settimeofday system call. Unfortunately, the settimeofday system call will result in time 

running backward on machines whose clocks were fast. Time running backward can confuse 

user programs (such as make) that expect time to invariably increase. To avoid this problem, 

the system provides the adjtime system call [Mills, 1992]. The adjtime system call takes a time 

delta (either positive or negative) and changes the rate at which time advances by 10 percent, 

faster or slower, until the time has been corrected. The operating system does the speedup by 

incrementing the global time by 1100 microseconds for each tick and does the slowdown by 

incrementing the global time by 900 microseconds for each tick. Regardless, time increases 

monotonically, and user processes depending on the ordering of file-modification times are not 

affected. However, time changes that take tens of seconds to adjust will affect programs that are 

measuring time intervals by using repeated calls to gettimeofday. 
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Interval Time 

The system provides each process with three interval timers. The real timer decrements in real 

time. An example of use for this timer is a library routine maintaining a wakeup-service queue. 

A SIGALRM signal is delivered to the process when this timer expires. The real-time timer is run 

from the timeout queue maintained by the softclock() routine (see Section 3.4). 

The profiling timer decrements both in process virtual time (when running in user mode) and 

when the system is running on behalf of the process. It is designed to be used by processes to 

profile their execution statistically. A SIGPROF signal is delivered to the process when this timer 

expires. Each time that profclock() runs, it checks to see whether the currently running process 

has requested a profiling timer; if it has, profclock() decrements the timer and sends the process 

a signal when zero is reached. 

The virtual timer decrements in process virtual time. It runs only when the process is executing 

in user mode. A SIGVTALRM signal is delivered to the process when this timer expires. The 

virtual timer is also implemented in profclock() as the profiling timer is, except that it 

decrements the timer for the current process only if it is executing in user mode and not if it is 

running in the kernel. 

3.7 Resource Services 

All systems have limits imposed by their hardware architecture and configuration to ensure 

reasonable operation and to keep users from accidentally (or maliciously) creating resource 

shortages. At a minimum, the hardware limits must be imposed on processes that run on the 

system. It is usually desirable to limit processes further, below these hardware-imposed limits. 

The system measures resource utilization and allows limits to be imposed on consumption 

either at or below the hardware-imposed limits. 

Process Priorities 

The default scheduling policy in the FreeBSD system is managed by the share scheduler that 

gives CPU scheduling priority to processes that have not used CPU time recently. This priority 

scheme tends to favor processes that execute for only short periods of time—for example, 

interactive processes. The priority selected for each process is maintained internally by the 

kernel. The calculation of the priority is affected by the per-process nice variable. Positive nice 

values mean that the process is willing to receive less than its share of the processor. Negative 

values of nice mean that the process wants more than its share of the processor. Most processes 
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run with the default nice value of zero, asking neither higher nor lower access to the processor. 

It is possible to determine or change the nice currently assigned to a process, to a process group, 

or to the processes of a specified user. Many factors other than nice affect scheduling, including 

the amount of CPU time that the process has used recently, the amount of memory that the 

process has used recently, and the current load on the system. 

In addition to the share scheduler described here, the FreeBSD system also has a real-time 

scheduler available. The real-time scheduler allows processes to precisely control their order of 

execution and the amount of time given to each process. The details of the share and real-time 

scheduling algorithms are described in Section 4.4. 

Resource Utilization 

As a process executes, it uses system resources such as the CPU and memory. The kernel tracks 

the resources used by each process and compiles statistics describing this usage. The statistics 

managed by the kernel are available to a process while the latter is executing. When a process 

terminates, the statistics are made available to its parent via the wait family of system calls. 

The resources used by a process are returned by the system call getrusage. The resources used 

by the current process, or by all the terminated children of the current process, may be 

requested. The following information is included: 

• The amount of user and system time used by the process 

• The memory utilization of the process 

• The paging and disk I/O activity of the process 

• The number of voluntary and involuntary context switches taken by the process 

• The amount of interprocess communication done by the process 

The resource-usage information is collected at locations throughout the kernel. The CPU time is 

collected by the statclock() function, which is called either by the system clock in hardclock(), or, 

if an alternate clock is available, by the alternate-clock interrupt process. The kernel scheduler 

calculates memory utilization by sampling the amount of memory that an active process is using 

at the same time that it is recomputing process priorities. The vm_fault() routine recalculates 

the paging activity each time that it starts a disk transfer to fulfill a paging request (see Section 

6.11). The I/O activity statistics are collected each time that the process has to start a transfer to 
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fulfill a file or device I/O request, as well as when the general system statistics are calculated. 

The IPC communication activity is updated each time that information is sent or received. 

Resource Limits 

The kernel also supports limiting certain per-process resources. These resources include the 

following: 

• The maximum amount of CPU time that can be accumulated 

• The maximum bytes that a process can request be locked into memory 

• The maximum size of a process’s data segment 

• The maximum size of a process’s stack segment 

• The maximum amount of private physical memory that a process may have at any given 

moment 

• The maximum amount of private or shared physical memory that a process may have at any 

given moment 

• The maximum amount of physical memory that a process may have dedicated to socket buffers 

• The maximum size of a file that can be created by a process 

• The maximum size of a core file that can be created by a process 

• The maximum number of simultaneous open files for a process 

• The maximum number of simultaneous processes allowed to a user 

For each resource controlled by the kernel, two limits are maintained: a soft limit and a hard 

limit. All users can alter the soft limit within the range of 0 to the corresponding hard limit. All 

users can (irreversibly) lower the hard limit, but only the superuser can raise the hard limit. If a 

process exceeds certain soft limits, a signal is delivered to the process to notify it that a resource 

limit has been exceeded. Normally, this signal causes the process to terminate, but the process 

may either catch or ignore the signal. If the process ignores the signal and fails to release 

resources that it already holds, further attempts to obtain more resources will result in errors. 

Resource limits are generally enforced at or near the locations that the resource statistics are 

collected. The CPU time limit is enforced in the process context-switching function. The stack 
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and data-segment limits are enforced by a return of allocation failure once those limits have 

been reached. The file-size limit is enforced by the filesystem. 

Filesystem Quotas 

In addition to limits on the size of individual files, the kernel optionally enforces limits on the 

total amount of space that a user or group can use on a filesystem. Our discussion of the 

implementation of these limits is deferred to Section 9.4. 

3.8 Kernel Tracing Facilities 

Operating-system kernels are large and complex pieces of software, encompassing thousands of 

lines of mainly C code, organized into dozens of subsystems and including hundreds of device 

drivers. Understanding what is happening within the operating system while it is running is 

important not only to developers of the code but also to the much larger group of people who 

use the system every day to get their work done. FreeBSD includes several facilities that allows 

users and administrators of the system to understand what is happening inside the system as it 

executes. 

System-Call Tracing 

The ktrace facility allows a user to get a detailed trace of the order of, arguments to, and results 

from all the system calls done by an application. This information includes such important 

details as pathnames being looked up, type and timing of signals being posted, and even the 

contents of all input and output operations. 

The facility is available for any application without the need for prior compilation or inclusion of 

special hooks. Thus, it can be particularly helpful when trying to debug an application for which 

the source code is unavailable. 

Tracing can be flexibly applied. It can be started at the time an application begins running or to 

an already running application. It can be applied to individual processes, to all the processes in a 

process group, or through inheritance to all current or future children processes. 

The traces are generated in a compact binary format to keep them as dense as possible. The use 

of a binary format also minimizes the time spent collecting and writing the information while 

the application runs and avoids the need to do string processing in the kernel. The binary dump 

is converted to a human-readable format using the kdump program that converts the system 
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call numbers to names, ioctl values to their macro names, system error numbers to their 

standard error strings, and displays the running time between and during system calls. 

A similar facility is provided by the truss command popularized in System V and Solaris. 

Rather than having specialized hooks inside the kernel to collect tracing information, it collects 

its information by stopping and restarting the processes being monitored using the ptrace 

system call. As a result, it has higher overhead and provides less information than ktrace. 

DTrace 

The information collected by ktrace is limited to the set of information available from its fixed 

set of hooks in the kernel. Further, this set of hooks has to be limited to those pieces of 

information deemed to be most generally useful. If ktrace collected every possibly useful bit of 

information, it would generate an overwhelming amount of data for even trivial applications. Its 

other major limitation is that it collects information only about system calls. When trying to 

track down bugs or performance problems, one needs to analyze the entire software stack that 

includes the application itself, the libraries that it uses, and the system calls that it makes. The 

DTrace facility was developed to address all these issues [Cantrill et al., 2004]. Originally 

written for Sun’s Solaris operating system, DTrace support was added to FreeBSD 8, and is 

present by default in kernels starting with FreeBSD 10. 

DTrace greatly expands the set of information from system calls by adding thousands of hooks, 

referred to as tracepoints, that can identify many details of what is happening. To avoid the 

resulting avalanche of data, each tracepoint can be configured to conditionally collect and 

output its information. DTrace defines the D language that allows application developers and 

systems administrators to write a small D-language program to describe the information that 

they want to collect. They can specify the tracepoint that they are interested in inspecting and 

refine the information that they output. For example, a D program might monitor a routine that 

changes a reference counter to collect the highest value that it ever reached, or collect the total 

number of times that a resource was referenced rather than just blindly outputting some 

information every time the routine is called. Only those tracepoints that are useful to the 

analysis are activated, while all others are left dormant. With its ability to trigger only a small 

number of tracepoints at anyone one time, DTrace can collect detailed information on a narrow 

set of interesting events with low overhead and carefully bounded output. 

The tracing information is expanded into the rest of the software stack by adding DTrace 

tracepoints to the system libraries and to the application itself. A standard set of tracepoints is 

available with no programming effort required by the library or application developers. The 

standard tracepoints are the set of all functions in a library, application, or the kernel itself, and 
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include the ability to capture parameter information at every subroutine call and return. In 

addition to these function boundary tracepoints, many system libraries have had additional 

application-specific hooks added by their developers. 

The tracing functionality in DTrace is implemented using probes and providers. A probe is a 

specific tracepoint within the running kernel, such as a function boundary, while a provider is a 

kernel module that supports a set of probes. The DTrace system was designed to be extended so 

that new kernel modules or services could have tracepoints that were not envisioned by the 

original authors. The providers found in FreeBSD are listed in Table 3.2. The mac_framework, 

sched, and vfs providers are unique to FreeBSD. A complete discussion of DTrace providers and 

how they are used by developers and administrators can be found in Gregg & Mauro [2011]. In 

this section, we describe only how DTrace interacts with the FreeBSD kernel and do not discuss 

how to use DTrace in general. 

 

Table 3.2 FreeBSD DTrace providers. 

Before the advent of DTrace, any system to which logging or tracing was added demonstrated a 

significant probe effect. Consider what happens when a function contains a conditional 

statement that determines whether to report a statistic. Whether or not the statistic is reported, 

the effect of having the conditional statement in the function, compared to no conditional 

statement being present at all, is measurable. The overhead seen by having the conditional 

statement is called the probe effect. 

DTrace implements its probes by patching the executable when a probe is activated. For 

example, to monitor a call to a routine, the first instruction of the called routine is replaced with 
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a call to the probe. The probe then collects its information, executes the instruction its call 

replaced, and returns to the instruction following the one that it patched. When the probe is 

deactivated, the original patched-instruction location with the call to the probe is replaced with 

the instruction that was originally at that location. This technique avoids any probe effect for 

inactive probes. Debuggers, such as lldb, use the same technique to add breakpoints to the 

program they are debugging. Patching an instruction stream that is currently executing is both 

tricky to do safely, and an explicit violation of the security and privacy of data structures on the 

system; thus, super-user privileges are required to enable kernel probes. DTrace is safe to use in 

production systems as it ensures that its patches to the program or kernel cannot cause either to 

behave incorrectly. An example of a precaution taken by DTrace to ensure safe operation is that 

it will not instrument a jump table, an operation that could easily lead to a system failure. 

As part of the kernel build process, a separate program, ctfconvert, is executed against all the 

kernel’s object files to generate updated object files that can be understood by DTrace. The 

ctfconvert program takes information from the debugging section of an object file and creates 

a new section .SUNW_ctf that contains type information for each function’s arguments that can 

be used by DTrace. Every type that appears in the .SUNW_ctf section of the object file is 

converted into data that can be used by the function boundary trace provider to associate data 

types with function arguments, allowing userspace D scripts to interrogate function arguments 

in much the same way as the debugger allows a programmer to inspect program data with 

associated type information. All functions found in the debugging section are exposed to the 

user as individual trace-points. The FreeBSD kernel contains over 45,000 function boundary 

tracepoints, or fbt probes, each of which can be triggered on entry to or exit from a routine in the 

kernel. Because the generation of the function boundary tracing probes happens automatically 

at system build time, new probes come into existence whenever new code is added to the 

FreeBSD kernel, relieving developers of the need to add tracepoints to the system by hand, and 

to keep the tracepoints up to date with other code changes. Function boundary tracepoints can 

change with each release of the operating system, which means that function boundary 

tracepoints may change or disappear, so cannot be depended upon in scripts when upgrading 

across major releases, for example, from FreeBSD 9 to FreeBSD 10. Compiler optimization or 

the redefinition of a function as static can also cause a function boundary tracepoint to 

disappear. Statically defined tracepoints (SDT) do not change unless they are specifically 

updated by a programmer and are therefore considered stable across major releases. 

Tracepoints are reached through DTrace providers, each of which is a kernel module that 

exposes a uniform interface to the rest of the kernel. All DTrace providers expose a uniform API 

via a set of function pointers embedded in a DTrace-provider operations structure, dtrace_pops. 

Each provider registers itself with the DTrace system by calling the dtrace_register() routine 

that allows DTrace to track all the available providers and expose them to the user through the D 
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programming language. The dtrace_register() routine passes the dtrace_pops structure for the 

provider as one of its arguments. Provider operations include enabling, disabling, suspending, 

and resuming probes, as well as retrieving argument names and values, from within the probe. 

DTrace understands not only functions but also basic types, such as integers, strings, and 

programmer-defined structures. 

When the fbt module is loaded, tracepoints are created for the kernel using the kernel’s linker 

functions. The fbt_provide_module_function() routine is responsible for disassembling the 

entry and exit points of each function in the kernel as well as all the loaded modules, building up 

a list of fbt_probe_t structures that contain the address of the functions that can be probed. The 

fbt_probe_t structure contains three key components used by DTrace when turning tracing on 

or off. The fbtp_patchpoint is the address of the instruction that needs to be replaced when 

tracing is enabled or disabled. When the fbt_provide_module_function() runs, it determines 

the address of the instruction that must later be replaced with a function call to the DTrace 

system during active tracing. The address of that instruction is stored in fbtp_patchpoint. At the 

same time, the instruction that must be replaced during tracing is put into the fbtp_savedval 

element of the structure and the instruction that will be used to cause the entry point to change 

is placed into fbtp_patchval. Whenever the DTrace command enables a tracepoint, the 

fbtp_patchpoint is set to the instruction stored in fbtp_patchval. When tracing is turned off, the 

instruction stored in fbtp_savedval is again placed back into fbtp_patchpoint. Storing the 

instructions during module load time makes the fbt_enable() and fbt_disable() routines shorter 

and safer than they would be if the functions to be traced had to be disassembled whenever the 

user enabled a trace-point. 

While the automatic generation of tracepoints for functions is a powerful feature of DTrace, the 

ability to add specific tracepoints not associated with a function boundary is an important part 

of the system. Any subsystem or collection of subsystems can be encapsulated as a provider to 

be monitored by developers and administrators. The collection of locking statistics for 

individual threads is an example of a DTrace provider that was written by hand into the kernel’s 

source code. The DTrace lockstat provider piggybacks on the preexisting lockstat statistics 

collection by adding a probe to each of the lockstat macros. 

The FreeBSD kernel provides several synchronization primitives, referred to collectively as locks, 

that are described fully in Section 4.3. To track the locking and unlocking actions of the kernel at 

a low level, it is necessary to know more than just the lock that is being requested. We often 

want to know if it was necessary to wait for the lock, and if so, which other thread blocked us 

from getting it. The information we want from a locking operation is not evident from the 

parameters to the lock call, but is embedded within the code implementing the lock. Locking 

statistics are collected by manually placing macros at key points in the locking-implementation 
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code to record data about the lock when it is acquired or released. These locking statistics reside 

in the lockstat provider. The macros for collecting the lockstat statistics are written generically 

enough that they can be used in all the locking primitives in the system. When a lock is acquired, 

the macro is given a pointer to the lock object, a Boolean flag telling whether the lock was 

contested, the time that the thread started waiting for the the lock, and the kernel file name and 

the line number within the function from which the lock primitive was called. The macros call 

an appropriate function to collect statistics on how often the lock is acquired, average time that 

it is held, how often it is contested, and when it is contested, as well as the average time that the 

blocked thread had to wait. These statistics identify the contested locks in the kernel. One 

important way of improving system performance is to use finer-grain locking for the most highly 

contested locks in the system. For example, a single global lock controlling access to a hash table 

might be replaced with one lock per hash chain. 

The lockstat DTrace provider is only available if the lockstat lock profiling has been compiled 

into the kernel. Each probe is defined by a lockstat_probe structure that contains the function 

and name of the probe, which is exported to the user as well as a probe number and probe 

identifier that the lockstat provider uses when the probes fire. 

The macro shown in Figure 3.4 is placed into various locking functions to record data whenever 

a lock is acquired. The lockstat information is collected by the 

lock_profile_obtain_lock_success() function. The remainder of the macro implements the 

lockstat provider probe. The probe is active if its entry in the lockstat_probemap is non-NULL, 

which occurs only when a probe is activated via the lockstat provider’s lockstat_enable() routine. 

Configuring the kernel to collect lockstat statistics introduces a fixed amount of overhead. The 

lockstat DTrace provider introduces a variable amount of overhead depending on which probes 

are active at any time. 

 

Figure 3.4 Lockstat probe macro. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig04
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Kernel Tracing 

Any large software system usually includes a logging system to aid in debugging problems that 

arise after the software has been released and FreeBSD is no different. The kernel tracing facility 

(KTR) is a set of logging facilities that can be compiled into the kernel with a configuration 

option. This tracing facility primarily helps debug the kernel as compared to the other tracing 

described in this section that primarily helps debug user-level processes. 

Before the addition of KTR, developers would sprinkle calls to printf() throughout their code, 

and conditionally compile them in or out of the kernel using 

#ifdef DEBUG 

printf() 

#endif DEBUG 

statements. The KTR system introduced a single logging system for the kernel that could be 

shared by the entire source base and centrally controlled from kernel configuration files. 

Kernel trace events are described by a ktr_entry structure, shown in Figure 3.5. Each entry 

contains a timestamp, the CPU on which the event occurred, the file and line of source code 

from which the event was logged, a programmer specified description, a pointer to the thread 

that executed the event, and up to six parameters. 

 

Figure 3.5 Kernel trace-entry structure. 

Calls into the kernel tracing system are implemented as a set of macros, shown in Figure 3.6. 

Unlike the printf() routine, the kernel tracing facility does 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig06


 

114 

 

Figure 3.6 Kernel tracing macros. 

not allow for a variable number of arguments. Variable argument parsing is computationally 

expensive, and is not appropriate for a kernel logging facility because the extra CPU time 

expended might prevent developers from catching timing-related problems. 

When support for the KTR system is compiled into the kernel, there is a statically sized array, 

used as a circular buffer, that contains all the trace events. It is important to size the event buffer 

correctly as it is possible to overwrite entries before they are read out of the kernel if many 

events are logged in a short amount of time. 

If enabling KTR recorded all the more than the 1700 defined events, the system would grind to a 

near halt. Thus, the rate of event generation is controlled by tagging each event with a 

programmer-defined event mask. The event mask collects a related set of events so that 

recording them can be turned on or off as a group. When a kernel with KTR is first booted, the 

system’s event mask is cleared so that no events are recorded. The event mask is set either from 

user level, using the debug.ktr.mask sysctl, or in the boot configuration file /boot/loader.conf, 

if events are to be recorded from the time the system boots. 

Kernel tracing events can be recorded to disk using the asynchronous logging facility which runs 

as a kernel resident thread. It reads events from the kernel trace buffer and writes them to a file 

specified by the user using a sysctl. Writing events to a file, whether on local disk or a remote 

filesystem, introduces extra I/O load onto the system, which may make it inappropriate for 

finding timing-related problems in the system. 

Exercises 

3.1 Describe three types of system activity. 

3.2 When can a routine executing in the top half of the kernel be preempted? When can it be 

interrupted? 
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3.3 Why are routines executing in the bottom half of the kernel precluded from using 

information located in the current user process? 

3.4 Why does the system defer as much work as possible from high-priority interrupts to 

lower-priority software-interrupt processes? 

3.5 What determines the shortest (nonzero) time period that a user process can request when 

setting a timer? 

3.6 How does the kernel determine the system call for which it has been invoked? 

3.7 How are initialized data represented in an executable file? How are uninitialized data 

represented in an executable file? Why are the representations different? 

3.8 Describe how the “#!” mechanism can be used to make programs that require emulation 

appear as though they were normal executables. 

3.9 What facilities does the DTrace facility provide that is not available in the ktrace facility? 

*3.10 Describe the security implications of not zero filling the stack region at program startup. 

*3.11 Why is the conversion from UTC to local time done by user processes rather than in the 

kernel? 

*3.12 What is the advantage of having the kernel rather than an application restart an 

interrupted system call? 

*3.13 Describe a scenario in which the timer-wheel algorithm used for the callout queue does 

not work well. Suggest an alternative data structure that runs more quickly than does the 

timer-wheel algorithm for your scenario. 

*3.14 The SIGPROF profiling timer was originally intended to replace the profil system call to 

collect a statistical sampling of a program’s program counter. Give two reasons why the profil 

facility had to be retained. 

**3.15 What weakness in the process-accounting mechanism makes the latter unsuitable for use 

in a commercial environment? 

References 

Barkley & Lee, 1988. 



 

116 

R. E. Barkley & T. P. Lee, “A Heap-Based Callout Implementation to Meet Real-Time Needs,” 

USENIX Association Conference Proceedings, pp. 213–222, June 1988. 

Cantrill et al., 2004. 

B. M. Cantrill, M. W. Shapiro, & A. H. Leventhal, “Dynamic Instrumentation of Production 

Systems,” USENIX Annual Technical Conference, General Track, June 2004. 

Gregg & Mauro, 2011. 

B. Gregg & J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD, 

Pearson Education, Upper Saddle River, NJ, 2011. 

McCanne & Torek, 1993. 

S. McCanne & C. Torek, “A Randomized Sampling Clock for CPU Utilization Estimation and 

Code Profiling,” USENIX Association Conference Proceedings, pp. 387–394, January 1993. 

Mills, 1992. 

D. L. Mills, “The NTP Time Synchronization Protocol,” RFC 1305, available from 

http://www.faqs.org/rfcs/rfc1305.html, March 1992. 

Varghese & Lauck, 1987. 

G. Varghese & T. Lauck, “Hashed and Hierarchical Timing Wheels: Data Structures for the 

Efficient Implementation of a Timer Facility,” Proceedings of the Eleventh Symposium on 

Operating Systems Principles, pp. 25–38, November 1987. 

http://www.faqs.org/rfcs/rfc1305.html


 

117 

 

Part II: Processes 

Chapter 4. Process Management 

4.1 Introduction to Process Management 

A process is a program in execution. A process has an address space containing a mapping of 

its program’s object code and global variables. It also has a set of kernel resources that it can 

name and on which it can operate using system calls. These resources include its credentials, 

signal state, and its descriptor array that gives it access to files, pipes, sockets, and devices. Each 

process has at least one and possibly many threads that execute its code. Every thread 

represents a virtual processor with a full context worth of register state and its own stack 

mapped into the address space. Every thread running in the process has a corresponding kernel 

thread, with its own kernel stack that represents the user thread when it is executing in the 

kernel as a result of a system call, page fault, or signal delivery. 

A process must have system resources, such as memory and the underlying CPU. The kernel 

supports the illusion of concurrent execution of multiple processes by scheduling system 

resources among the set of processes that are ready to execute. On a multiprocessor, multiple 

threads of the same or different processes may execute concurrently. This chapter describes the 

composition of a process, the method that the system uses to switch between the process’s 

threads, and the scheduling policy that it uses to promote sharing of the CPU. It also introduces 

process creation and termination, and details the signal and process-debugging facilities. 

Two months after the developers began the first implementation of the UNIX operating system, 

there were two processes: one for each of the terminals of the PDP-7. At age 10 months, and still 

on the PDP-7, UNIX had many processes, the fork operation, and something like the wait 

system call. A process executed a new program by reading in a new program on top of itself. The 

first PDP-11 system (First Edition UNIX) saw the introduction of exec. All these systems allowed 

only one process in memory at a time. When a PDP-11 with memory management (a KS-11) was 

obtained, the system was changed to permit several processes to remain in memory 

simultaneously, to reduce swapping. But this change did not apply to multiprogramming 

because disk I/O was synchronous. This state of affairs persisted into 1972 and the first 

PDP-11/45 system. True multiprogramming was finally introduced when the system was 

rewritten in C. Disk I/O for one process could then proceed while another process ran. The basic 

structure of process management in UNIX has not changed since that time [Ritchie, 1988]. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref05
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The threads of a process operate in either user mode or kernel mode. In user mode, a thread 

executes application code with the machine in a nonprivileged protection mode. When a thread 

requests services from the operating system with a system call, it switches into the machine’s 

privileged protection mode via a protected mechanism and then operates in kernel mode. 

The resources used by a thread are split into two parts. The resources needed for execution in 

user mode are defined by the CPU architecture and typically include the CPU’s general-purpose 

registers, the program counter, the processor-status register, and the stack-related registers, as 

well as the contents of the memory segments that constitute FreeBSD’s notion of a program (the 

text, data, shared library, and stack segments). 

Kernel-mode resources include those required by the underlying hardware such as registers, 

program counter, and the stack pointer. These resources also include the state required for the 

FreeBSD kernel to provide system services for a thread. This kernel state includes parameters 

to the current system call, the current process’s user identity, scheduling information, and so on. 

As described in Section 3.1, the kernel state for each process is divided into several separate data 

structures, with two primary structures: the process structure and the thread structure. 

The process structure contains information that must always remain resident in main memory, 

along with references to other structures that remain resident, whereas the thread structure 

tracks information that needs to be resident only when the process is executing such as its 

kernel run-time stack. Process and thread structures are allocated dynamically as part of process 

creation and are freed when the process is destroyed as it exits. 

Multiprogramming 

FreeBSD supports transparent multiprogramming: the illusion of concurrent execution of 

multiple processes or programs. It does so by context switching—that is, by switching 

between the execution context of the threads within the same or different processes. A 

mechanism is also provided for scheduling the execution of threads—that is, for deciding 

which one to execute next. Facilities are provided for ensuring consistent access to data 

structures that are shared among processes. 

Context switching is a hardware-dependent operation whose implementation is influenced by 

the underlying hardware facilities. Some architectures provide machine instructions that save 

and restore the hardware-execution context of a thread or an entire process including its 

virtual-address space. On others, the software must collect the hardware state from various 

registers and save it, then load those registers with the new hardware state. All architectures 

must save and restore the software state used by the kernel. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_476
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Context switching is done frequently, so increasing the speed of a context switch noticeably 

decreases time spent in the kernel and provides more time for execution of user applications. 

Since most of the work of a context switch is expended in saving and restoring the operating 

context of a thread or process, reducing the amount of the information required for that context 

is an effective way to produce faster context switches. 

Scheduling 

Fair scheduling of threads and processes is an involved task that is dependent on the types of 

executable programs and on the goals of the scheduling policy. Programs are characterized 

according to the amount of computation and the amount of I/O that they do. Scheduling policies 

typically attempt to balance resource utilization against the time that it takes for a program to 

complete. In FreeBSD’s default scheduler, which we shall refer to as the timeshare scheduler, a 

process’s priority is periodically recalculated based on various parameters, such as the amount 

of CPU time it has used, the amount of memory resources it holds or requires for execution, etc. 

Some tasks require more precise control over process execution called real-time scheduling. 

Real-time scheduling must ensure that threads finish computing their results by a specified 

deadline or in a particular order. The FreeBSD kernel implements real-time scheduling using a 

separate queue from the queue used for regular timeshared processes. A process with a 

real-time priority is not subject to priority degradation and will only be preempted by another 

thread of equal or higher real-time priority. The FreeBSD kernel also implements a queue of 

threads running at idle priority. A thread with an idle priority will run only when no other 

thread in either the real-time or timeshare-scheduled queues is runnable and then only if its idle 

priority is equal to or greater than all other runnable idle-priority threads. 

The FreeBSD timeshare scheduler uses a priority-based scheduling policy that is biased to favor 

interactive programs, such as text editors, over long-running batch-type jobs. Interactive 

programs tend to exhibit short bursts of computation followed by periods of inactivity or I/O. 

The scheduling policy initially assigns a high execution priority to each thread and allows that 

thread to execute for a fixed time slice. Threads that execute for the duration of their slice have 

their priority lowered, whereas threads that give up the CPU (usually because they do I/O) are 

allowed to remain at their priority. Threads that are inactive have their priority raised. Jobs that 

use large amounts of CPU time sink rapidly to a low priority, whereas interactive jobs that are 

mostly inactive remain at a high priority so that, when they are ready to run, they will preempt 

the long-running lower-priority jobs. An interactive job, such as a text editor searching for a 

string, may become compute-bound briefly and thus get a lower priority, but it will return to a 

high priority when it is inactive again while the user thinks about the result. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_448
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Some tasks, such as the compilation of a large application, may be done in many small steps in 

which each component is compiled in a separate process. No individual step runs long enough 

to have its priority degraded, so the compilation as a whole impacts the interactive programs. To 

detect and avoid this problem, the scheduling priority of a child process is propagated back to its 

parent. When a new child process is started, it begins running with its parent’s current priority. 

As the program that coordinates the compilation (typically make) starts many compilation 

steps, its priority is dropped because of the CPU-intensive behavior of its children. Later 

compilation steps started by make begin running and stay at a lower priority, which allows 

higher-priority interactive programs to run in preference to them as desired. 

The system also needs a scheduling policy to deal with problems that arise from not having 

enough main memory to hold the execution contexts of all processes that want to execute. The 

major goal of this scheduling policy is to minimize thrashing—a phenomenon that occurs 

when memory is in such short supply that more time is spent in the system handling page faults 

and scheduling processes than in user mode executing application code. 

The system must both detect and eliminate thrashing. It detects thrashing by observing the 

amount of free memory. When the system has little free memory and a high rate of new memory 

requests, it considers itself to be thrashing. The system reduces thrashing by marking the least 

recently run process as not being allowed to run, allowing the pageout daemon to push all the 

pages associated with the process to backing store. On most architectures, the kernel also can 

push to backing store the kernel stacks of all the threads of the marked process. The effect of 

these actions is to cause the process and all its threads to be swapped out (see Section 6.12). The 

memory freed by blocking the process can then be distributed to the remaining processes, which 

usually can then proceed. If the thrashing continues, additional processes are selected to be 

blocked from running until enough memory becomes available for the remaining processes to 

run effectively. Eventually, enough processes complete and free their memory that blocked 

processes can resume execution. However, even if there is not enough memory, the blocked 

processes are allowed to resume execution after about 20 seconds. Usually, the thrashing 

condition will return, requiring that some other process be selected for being blocked (or that an 

administrative action be taken to reduce the load). 

4.2 Process State 

Every process in the system is assigned a unique identifier termed the process identifier 

(PID). PIDs are the common mechanism used by applications and by the kernel to reference 

processes. PIDs are used by applications when the latter send a signal to a process and when 

receiving the exit status from a deceased process. Two PIDs are of special importance to each 

process: the PID of the process itself and the PID of the process’s parent process. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_440
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The layout of process state is shown in Figure 4.1. The goal is to support multiple threads that 

share an address space and other resources. A thread is the unit of execution of a process; it 

requires an address space and other resources, but it can share many of those resources with 

other threads. Threads sharing an address space and other resources are scheduled 

independently and in FreeBSD can all execute system calls simultaneously. The process state in 

FreeBSD is designed to support threads that can select the set of resources to be shared, known 

as variable-weight processes [Aral et al., 1989]. 

 

Figure 4.1 Process state. 

Each of the components of process state is placed into separate substructures for each type of 

state information. The process structure references all the substructures directly or indirectly. 

The thread structure contains just the information needed to run in the kernel: information 

about scheduling, a stack to use when running in the kernel, a thread state block (TSB), and 

other machine-dependent state. The TSB is defined by the machine architecture; it includes the 

general-purpose registers, stack pointers, program counter, processor-status word, and 

memory-management registers. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
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The first threading models that were deployed in systems such as FreeBSD 5 and Solaris used an 

N:M threading model in which many user level threads (N) were supported by a smaller number 

of threads (M) that could run in the kernel [Simpleton, 2008]. The N:M threading model was 

light-weight but incurred extra overhead when a user-level thread needed to enter the kernel. 

The model assumed that application developers would write server applications in which 

potentially thousands of clients would each use a thread, most of which would be idle waiting for 

an I/O request. 

While many of the early applications using threads, such as file servers, worked well with the 

N:M threading model, later applications tended to use pools of dozens to hundreds of worker 

threads, most of which would regularly enter the kernel. The application writers took this 

approach because they wanted to run on a wide range of platforms and key platforms like 

Windows and Linux could not support tens of thousands of threads. For better efficiency with 

these applications, the N:M threading model evolved over time to a 1:1 threading model in which 

every user thread is backed by a kernel thread. 

Like most other operating systems, FreeBSD has settled on using the POSIX threading API often 

referred to as Pthreads. The Pthreads model includes a rich set of primitives including the 

creation, scheduling, coordination, signalling, rendezvous, and destruction of threads within a 

process. In addition, it provides shared and exclusive locks, semaphores, and condition variables 

that can be used to reliably interlock access to data structures being simultaneously accessed by 

multiple threads. 

In their lightest-weight form, FreeBSD threads share all the process resources including the PID. 

When additional parallel computation is needed, a new thread is created using the 

pthread_create() library call. The pthread library must keep track of the user-level stacks being 

used by each of the threads, since the entire address space is shared including the area normally 

used for the stack. Since the threads all share a single process structure, they have only a single 

PID and thus show up as a single entry in the ps listing. There is an option to ps that requests it 

to list a separate entry for each thread within a process. 

Many applications do not wish to share all of a process’s resources. The rfork system call creates 

a new process entry that shares a selected set of resources from its parent. Typically, the signal 

actions, statistics, and the stack and data parts of the address space are not shared. Unlike the 

lightweight thread created by pthread_create(), the rfork system call associates a PID with each 

thread that shows up in a ps listing and that can be manipulated in the same way as any other 

process in the system. Processes created by fork, vfork, or rfork initially have just a single 

thread structure associated with them. A variant of the rfork system call is used to emulate the 

Linux clone() functionality. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref07
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The Process Structure 

In addition to the references to the substructures, the process entry shown in Figure 4.1 contains 

the following categories of information: 

• Process identification: the PID and the parent PID 

• Signal state: signals pending delivery and summary of signal actions 

• Tracing: process tracing information 

• Timers: real-time timer and CPU-utilization counters 

The process substructures shown in Figure 4.1 have the following categories of information: 

• Process-group identification: the process group and the session to which the process belongs 

• User credentials: the real, effective, and saved user and group identifiers; credentials are 

described more fully in Chapter 5 

• Memory management: the structure that describes the allocation of virtual address space used 

by the process; the virtual-address space and its related structures are described more fully in 

Chapter 6 

• File descriptors: an array of pointers to file entries indexed by the process’s open file 

descriptors; also, the open file flags and current directory 

• System call vector: the mapping of system call numbers to actions; in addition to current and 

deprecated native FreeBSD executable formats, the kernel can run binaries compiled for several 

other UNIX variants such as Linux and System V Release 4 by providing alternative system call 

vectors when such environments are requested 

• Resource accounting: the rlimit structures that describe the utilization of the many resources 

provided by the system (see Section 3.7) 

• Statistics: statistics collected while the process is running that are reported when it exits and 

are written to the accounting file; also includes process timers and profiling information if the 

latter is being collected 

• Signal actions: the action to take when a signal is posted to a process 

• Thread structure: the contents of the thread structure (described at the end of this section) 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
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The state element of the process structure holds the current value of the process state. The 

possible state values are shown in Table 4.1. When a process is first created with a fork system 

call, it is initially marked as NEW. The state is changed to NORMAL when enough resources are 

allocated to the process for the latter to begin execution. From that point onward, a process’s 

state will be NORMAL until the process terminates. Its thread(s) will fluctuate among 

RUNNABLE—that is, preparing to be or actually executing; SLEEPING—that is, waiting for an 

event; and STOPPED—that is, stopped by a signal or the parent process. A deceased process is 

marked as ZOMBIE until it has freed its resources and communicated its termination status to 

its parent process. 

 

Table 4.1 Process states. 

The system organizes process structures into two lists. Process entries are on the zombproc list 

if the process is in the ZOMBIE state; otherwise, they are on the allproc list. The two queues 

share the same linkage pointers in the process structure, since the lists are mutually exclusive. 

Segregating the dead processes from the live ones reduces the time spent both by the wait 

system call, which must scan the zombies for potential candidates to return, and by the 

scheduler and other functions that must scan all the potentially runnable processes. 

Most threads, except the currently executing thread (or threads if the system is running on a 

multiprocessor), are also in one of three queues: a run queue, a sleep queue, or a turnstile 

queue. Threads that are in a runnable state are placed on a run queue, whereas threads that are 

blocked while awaiting an event are located on either a turnstile queue or a sleep queue. Stopped 

threads awaiting an event are located on a turnstile queue, a sleep queue, or they are on no 

queue. The run queues are organized according to thread-scheduling priority and are described 

in Section 4.4. The sleep and turnstile queues are organized in a data structure that is hashed by 

an event identifier. This organization optimizes finding the sleeping threads that need to be 

awakened when a wakeup occurs for an event. The sleep and turnstile queues are described in 

Section 4.3. 

The p_pptr pointer and related lists (p_children and p_sibling) are used in locating related 

processes, as shown in Figure 4.2. When a process spawns a child process, the child process is 

added to its parent’s p_children list. The child process also keeps a backward link to its parent 
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in its p_pptr pointer. If a process has more than one child process active at a time, the children 

are linked together through their p_sibling list entries. In Figure 4.2, process B is a direct 

descendant of process A, whereas processes C, D, and E are descendants of process B and are 

siblings of one another. Process B typically would be a shell that started a pipeline (see Sections 

2.4 and 4.8) including processes C, D, and E. Process A probably would be the 

system-initialization process init (see Sections 3.1 and 15.4). 

 

Figure 4.2 Process-group hierarchy. 

CPU time is made available to threads according to their scheduling class and scheduling 

priority. As shown in Table 4.2, the FreeBSD kernel has two kernel and three user scheduling 

classes. The kernel will always run the thread in the highest-priority class. Any kernel-interrupt 

threads will run in preference to anything else followed by any runnable real-time threads. Any 

top-half-kernel threads are run in preference to runnable threads in the share and idle classes. 

Runnable timeshare threads are run in preference to runnable threads in the idle class. The 

priorities of threads in the real-time and idle classes are set by the applications using the rtprio 

system call and are never adjusted by the kernel. The bottom-half interrupt priorities are set 

when the devices are configured and never change. The top-half priorities are set based on 

predefined priorities for each kernel subsystem and never change. 

 

Table 4.2 Thread-scheduling classes. 
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The priorities of threads running in the timeshare class are adjusted by the kernel based on 

resource usage and recent CPU utilization. A thread has two scheduling priorities: one for 

scheduling user-mode execution and one for scheduling kernel-mode execution. The 

td_user_pri field associated with the thread structure contains the user-mode scheduling 

priority, whereas the td_priority field holds the current scheduling priority. The current priority 

may be different from the user-mode priority when the thread is executing in the top half of the 

kernel. Priorities range between 0 and 255, with a lower value interpreted as a higher priority 

(see Table 4.2). User-mode priorities range from 120 to 255; priorities less than 120 are used 

only by real-time threads or when a thread is asleep—that is, awaiting an event in the 

kernel—and immediately after such a thread is awakened. Threads asleep in the kernel are given 

a higher priority because they typically hold shared kernel resources when they awaken. The 

system wants to run them as quickly as possible once they get a resource so that they can use the 

resource and return it before another thread requests it and gets blocked waiting for it. 

When a thread goes to sleep in the kernel, it must specify whether it should be awakened and 

marked runnable if a signal is posted to it. In FreeBSD, a kernel thread will be awakened by a 

signal only if it sets the PCATCH flag when it sleeps. The msleep() interface also handles sleeps 

limited to a maximum time duration and the processing of restartable system calls. The msleep() 

interface includes a reference to a string describing the event that the thread awaits; this string 

is externally visible—for example, in ps. The decision of whether to use an interruptible sleep 

depends on how long the thread may be blocked. Because it is complex to handle signals in the 

midst of doing some other operation, many sleep requests are not interruptible; that is, a thread 

will not be scheduled to run until the event for which it is waiting occurs. For example, a thread 

waiting for disk I/O will sleep with signals blocked. 

For quickly occurring events, delaying to handle a signal until after they complete is 

imperceptible. However, requests that may cause a thread to sleep for a long period, such as 

waiting for terminal or network input, must be prepared to have its sleep interrupted so that the 

posting of signals is not delayed indefinitely. Threads that sleep interruptibly may abort their 

system call because of a signal arriving before the event for which they are waiting has occurred. 

To avoid holding a kernel resource permanently, these threads must check why they have been 

awakened. If they were awakened because of a signal, they must release any resources that they 

hold. They must then return the error passed back to them by sleep(), which will be EINTR if the 

system call is to be aborted after the signal or ERESTART if it is to be restarted. Occasionally, an 

event that is supposed to occur quickly, such as a disk I/O, will get held up because of a 

hardware failure. Because the thread is sleeping in the kernel with signals blocked, it will be 

impervious to any attempts to send it a signal, even a signal that should cause it to exit 

unconditionally. The only solution to this problem is to change sleep()s on hardware events that 

may hang to be interruptible. 
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In the remainder of this book, we shall always use sleep() when referring to the routine that puts 

a thread to sleep, even when one of the mtx_sleep(), sx_sleep(), rw_sleep(), or t_sleep() 

interfaces is the one that is being used. 

The Thread Structure 

The thread structure shown in Figure 4.1 contains the following categories of information: 

• Scheduling: the thread priority, user-mode scheduling priority, recent CPU utilization, and 

amount of time spent sleeping; the run state of a thread (runnable, sleeping); additional status 

flags; if the thread is sleeping, the wait channel, the identity of the event for which the thread 

is waiting (see Section 4.3), and a pointer to a string describing the event 

• TSB: the user- and kernel-mode execution states 

• Kernel stack: the per-thread execution stack for the kernel 

• Machine state: the machine-dependent thread information 

Historically, the kernel stack was mapped to a fixed location in the virtual address space. The 

reason for using a fixed mapping is that when a parent forks, its runtime stack is copied for its 

child. If the kernel stack is mapped to a fixed address, the child’s kernel stack is mapped to the 

same addresses as its parent kernel stack. Thus, all its internal references, such as frame 

pointers and stack-variable references, work as expected. 

On modern architectures with virtual address caches, mapping the kernel stack to a fixed 

address is slow and inconvenient. FreeBSD removes this constraint by eliminating all but the 

top call frame from the child’s stack after copying it from its parent so that it returns directly to 

user mode, thus avoiding stack copying and relocation problems. 

Every thread that might potentially run must have its stack resident in memory because one task 

of its stack is to handle page faults. If it were not resident, it would page fault when the thread 

tried to run, and there would be no kernel stack available to service the page fault. Since a 

system may have many thousands of threads, the kernel stacks must be kept small to avoid 

wasting too much physical memory. In FreeBSD on the Intel architecture, the kernel stack is 

limited to two pages of memory. Implementors must be careful when writing code that executes 

in the kernel to avoid using large local variables and deeply nested subroutine calls to avoid 

overflowing the run-time stack. As a safety precaution, some architectures leave an invalid page 

between the area for the run-time stack and the data structures that follow it. Thus, overflowing 

the kernel stack will cause a kernel-access fault instead of disastrously overwriting other data 
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structures. It would be possible to simply kill the process that caused the fault and continue 

running. However, the cleanup would be difficult because the thread may be holding locks or be 

in the middle of modifying some data structure that would be left in an inconsistent or invalid 

state. So the FreeBSD kernel panics on a kernel-access fault because such a fault shows a 

fundamental design error in the kernel. By panicking and creating a crash dump, the error can 

usually be pinpointed and corrected. 

4.3 Context Switching 

The kernel switches among threads in an effort to share the CPU effectively; this activity is 

called context switching. When a thread executes for the duration of its time slice or when it 

blocks because it requires a resource that is currently unavailable, the kernel finds another 

thread to run and context switches to it. The system can also interrupt the currently executing 

thread to run a thread triggered by an asynchronous event, such as a device interrupt. Although 

both scenarios involve switching the execution context of the CPU, switching between threads 

occurs synchronously with respect to the currently executing thread, whereas servicing 

interrupts occurs asynchronously with respect to the current thread. In addition, 

interprocess context switches are classified as voluntary or involuntary. A voluntary context 

switch occurs when a thread blocks because it requires a resource that is unavailable. An 

involuntary context switch takes place when a thread executes for the duration of its time slice 

or when the system identifies a higher-priority thread to run. 

Each type of context switching is done through a different interface. Voluntary context switching 

is initiated with a call to the sleep() routine, whereas an involuntary context switch is forced by 

direct invocation of the low-level context-switching mechanism embodied in the mi_switch() 

and setrunnable() routines. Asynchronous event handling is triggered by the underlying 

hardware and is effectively transparent to the system. 

Thread State 

Context switching between threads requires that both the kernel- and user-mode context be 

changed. To simplify this change, the system ensures that all of a thread’s user-mode state is 

located in the thread structure while most kernel state is kept elsewhere. The following 

conventions apply to this localization: 

• Kernel-mode hardware-execution state: Context switching can take place in only kernel mode. 

The kernel’s hardware-execution state is defined by the contents of the TSB that is located in the 

thread structure. 
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• User-mode hardware-execution state: When execution is in kernel mode, the user-mode state 

of a thread (such as copies of the program counter, stack pointer, and general registers) always 

resides on the kernel’s execution stack that is located in the thread structure. The kernel ensures 

this location of user-mode state by requiring that the system-call and trap handlers save the 

contents of the user-mode execution context each time that the kernel is entered (see Section 

3.1). 

• The process structure: The process structure always remains resident in memory. 

• Memory resources: Memory resources of a process are effectively described by the contents of 

the memory-management registers located in the TSB and by the values present in the process 

and thread structures. As long as the process remains in memory, these values will remain valid 

and context switches can be done without the associated page tables being saved and restored. 

However, these values need to be recalculated when the process returns to main memory after 

being swapped to secondary storage. 

Low-Level Context Switching 

The localization of a process’s context in that process’s thread structure permits the kernel to 

perform context switching simply by changing the notion of the current thread structure and (if 

necessary) process structure, and restoring the context described by the TSB within the thread 

structure (including the mapping of the virtual address space). Whenever a context switch is 

required, a call to the mi_switch() routine causes the highest-priority thread to run. The 

mi_switch() routine first selects the appropriate thread from the scheduling queues, and then 

resumes the selected thread by loading its context from its TSB. 

Voluntary Context Switching 

A voluntary context switch occurs whenever a thread must await the availability of a resource or 

the arrival of an event. Voluntary context switches happen frequently in normal system 

operation. In FreeBSD, voluntary context switches are initiated through a request to obtain a 

lock that is already held by another thread or by a call to the sleep() routine. When a thread no 

longer needs the CPU, it is suspended, awaiting the resource described by a wait channel, and 

is given a scheduling priority that should be assigned to the thread when that thread is 

awakened. This priority does not affect the user-level scheduling priority. 

When blocking on a lock, the wait channel is usually the address of the lock. When blocking for a 

resource or an event, the wait channel is typically the address of some data structure that 

identifies the resource or event for which the thread is waiting. For example, the address of a 
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disk buffer is used while the thread is waiting for the buffer to be filled. When the buffer is filled, 

threads sleeping on that wait channel will be awakened. In addition to the resource addresses 

that are used as wait channels, there are some addresses that are used for special purposes: 

• When a parent process does a wait system call to collect the termination status of its children, 

it must wait for one of those children to exit. Since it cannot know which of its children will exit 

first, and since it can sleep on only a single wait channel, there is a quandary about how to wait 

for the next of multiple events. The solution is to have the parent sleep on its own process 

structure. When a child exits, it awakens its parent’s process-structure address rather than its 

own. Thus, the parent doing the wait will awaken independently of which child process is the 

first to exit. Once running, it must scan its list of children to determine which one exited. 

• When a thread does a sigsuspend system call, it does not want to run until it receives a signal. 

Thus, it needs to do an interruptible sleep on a wait channel that will never be awakened. By 

convention, the address of the signal-actions structure is given as the wait channel. 

A thread may block for a short, medium, or long period of time depending on the reason that it 

needs to wait. A short wait occurs when a thread needs to wait for access to a lock that protects a 

data structure. A medium wait occurs while a thread waits for an event that is expected to occur 

quickly such as waiting for data to be read from a disk. A long wait occurs when a thread is 

waiting for an event that will happen at an indeterminate time in the future such as input from a 

user. 

Short-term waits arise only from a lock request. Short-term locks include mutexes, read-writer 

locks, and read-mostly locks. Details on these locks are given later in this section. A requirement 

of short-term locks is that they may not be held while blocking for an event as is done for 

medium- and long-term locks. The only reason that a thread holding a short-term lock is not 

running is that it has been preempted by a higher-priority thread. It is always possible to get a 

short-term lock released by running the thread that holds it and any threads that block the 

thread that holds it. 

A short-term lock is managed by a turnstile data structure. The turnstile tracks the current 

owner of the lock and the list of threads waiting for access to the lock. Figure 4.3 shows how 

turnstiles are used to track blocked threads. Across the top of the figure is a set of hash headers 

that allow a quick lookup to find a lock with waiting threads. If a turnstile is found, it provides a 

pointer to the thread that currently owns the lock and lists of the threads that are waiting for 

exclusive and shared access. The most important use of the turnstile is to quickly find the 

threads that need to be awakened when a lock is released. In Figure 4.3, Lock 18 is owned by 

thread 1 and has threads 2 and 3 waiting for exclusive access to it. The turnstile in this example 

also shows that thread 1 holds contested Lock 15. 
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Figure 4.3 Turnstile structures for blocked threads. 

A turnstile is needed each time a thread blocks on a contested lock. Because blocking is common, 

it would be prohibitively slow to allocate and free a turnstile every time one is needed. So each 

thread allocates a turnstile when it is created. As a thread may only be blocked on one lock at 

any point in time, it will never need more than one turnstile. Turnstiles are allocated by threads 

rather than being incorporated into each lock structure because there are far more locks in the 
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kernel than there are threads. Allocating one turnstile per thread rather than one per lock 

results in lower memory utilization in the kernel. 

When a thread is about to block on a short-term lock, it provides its turnstile to be used to track 

the lock. If it is the first thread to block on the lock, its turnstile is used. If it is not the first 

thread to block, then an earlier thread’s turnstile will be in use to do the tracking. The additional 

turnstiles that are provided are kept on a free list whose head is the turnstile being used to track 

the lock. When a thread is awakened and is being made runnable, it is given a turnstile from the 

free list (which may not be the same one that it originally provided). When the last thread is 

awakened, the free list will be empty and the turnstile no longer needed, so it can be taken by 

the awakening thread. 

In Figure 4.3, the turnstile tracking Lock 18 was provided by thread 2 as it was the first to block. 

The spare turnstile that it references was provided by thread 3. If thread 2 is the first to be 

awakened, it will get the spare turnstile provided by thread 3 and when thread 3 is awakened 

later, it will be the last to be awakened so will get the no-longer-needed turnstile originally 

provided by thread 2. 

A priority inversion occurs when a thread trying to acquire a short-term lock finds that the 

thread holding the lock has a lower priority than its own priority. The owner and list of blocked 

threads tracked by the turnstile allows priority propagation of the higher priority from the 

thread that is about to be blocked to the thread that holds the lock. With the higher priority, the 

thread holding the lock will run, and if, in turn, it is blocked by a thread with lower priority, it 

will propagate its new higher priority to that thread. When finished with its access to the 

protected data structure, the thread with the temporarily raised priority will release the lock. As 

part of releasing the lock, the propagated priority will be dropped, which usually results in the 

thread from which the priority was propagated getting to run and now being able to acquire the 

lock. 

Processes blocking on medium-term and long-term locks use sleepqueue data structures rather 

than turnstiles to track the blocked threads. The sleepqueue data structure is similar to the 

turnstile except that it does not need to track the owner of the lock. The owner need not be 

tracked because sleepqueues do not need to provide priority propagation. Threads blocked on 

medium- and long-term locks cannot proceed until the event for which they are waiting has 

occurred. Raising their priority will not allow them to run any sooner. 

Sleepqueues have many similarities to turnstiles including a hash table to allow quick lookup of 

contested locks and lists of the threads blocked because they are awaiting shared and exclusive 

locks. When created, each thread allocates a sleepqueue structure. It provides its sleepqueue 
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structure when it is about to be put to sleep and is returned a sleepqueue structure when it is 

awakened. 

Unlike short-term locks, the medium- and long-term locks can request a time limit so that if the 

event for which they are waiting has not occurred within the specified period of time, they will 

be awakened with an error return that indicates that the time limit expired rather than the event 

occurring. Finally, long-term locks can request that they be interruptible, meaning that they will 

be awakened if a signal is sent to them before the event for which they are waiting has occurred. 

Suspending a thread takes the following steps in its operation: 

1. Prevents events that might cause thread-state transitions. Historically a global scheduling 

lock was used, but it was a bottleneck. Now each thread uses a lock tied to its current state to 

protect its per-thread state. For example, when a thread is on a run queue, the lock for that run 

queue is used; when the thread is blocked on a turnstile, the turnstile’s lock is used; when a 

thread is blocked on a sleep queue, the lock for the wait channels hash chain is used. 

2. Records the wait channel in the thread structure and hashes the wait-channel value to check 

for an existing turnstile or sleepqueue for the wait-channel. If one exists, links the thread to it 

and saves the turnstile or sleepqueue structure provided by the thread. Otherwise places the 

turnstile or sleepqueue onto the hash chain and links the thread into it. 

3. For threads being placed on a turnstile, if the current thread’s priority is higher than the 

priority of the thread currently holding the lock, propagates the current thread’s priority to the 

thread currently holding the lock. For threads being placed on a sleepqueue, sets the thread’s 

priority to the priority that the thread will have when the thread is awakened and sets its 

SLEEPING flag. 

4. For threads being placed on a turnstile, sort the thread into the list of waiting threads such 

that the highest priority thread appears first in the list. For threads being placed on a sleepqueue, 

place the thread at the end of the list of threads waiting for that wait-channel. 

5. Calls mi_switch() to request that a new thread be scheduled; the associated mutex is released 

as part of switching to the other thread. 

A sleeping thread is not selected to execute until it is removed from a turnstile or sleepqueue 

and is marked runnable. This operation is done either implicitly as part of a lock being released, 

or explicitly by a call to the wakeup() routine to signal that an event has occurred or that a 

resource is available. When wakeup() is invoked, it is given a wait channel that it uses to find the 

corresponding sleepqueue (using a hashed lookup). It awakens all threads sleeping on that wait 

channel. All threads waiting for the resource are awakened to ensure that none are inadvertently 
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left sleeping. If only one thread were awakened, it might not request the resource on which it 

was sleeping. If it does not use and release the resource, any other threads waiting for that 

resource will be left sleeping forever. A thread that needs an empty disk buffer in which to write 

data is an example of a thread that may not request the resource on which it was sleeping. Such 

a thread can use any available buffer. If none is available, it will try to create one by requesting 

that a dirty buffer be written to disk and then waiting for the I/O to complete. When the I/O 

finishes, the thread will awaken and will check for an empty buffer. If several are available, it 

may not use the one that it cleaned, leaving any other threads to sleep forever as they wait for 

the cleaned buffer. 

In instances where a thread will always use a resource when it becomes available, wakeup_one() 

can be used instead of wakeup(). The wakeup_one() routine wakes up only the first thread that 

it finds waiting for a resource as it will have been asleep the longest. The assumption is that 

when the awakened thread is done with the resource, it will issue another wakeup_one() to 

notify the next waiting thread that the resource is available. The succession of wakeup_one() 

calls will continue until all threads waiting for the resource have been awakened and had a 

chance to use it. Because the threads are ordered from longest to shortest waiting, that is the 

order in which they will be awakened and gain access to the resource. 

When releasing a turnstile lock, all waiting threads are released. Because the threads are 

ordered from highest to lowest priority, that is the order in which they will be awakened. Usually 

they will then be scheduled in the order in which they were released. When threads end up being 

run concurrently, the adaptive spinning (described later in this section) usually ensures that 

they will not block. And because they are released from highest to lowest priority, the highest 

priority thread will usually be the first to acquire the lock. There will be no need for, and hence 

no overhead from, priority propagation. Rather, the lock will be handed down from the highest 

priority threads through the intermediate priorities to the lowest priority. 

To avoid having excessive numbers of threads awakened, kernel programmers try to use locks 

and wait channels with fine-enough granularity that unrelated uses will not collide on the same 

resource. For example, they put locks on each buffer in the buffer cache rather than putting a 

single lock on the buffer cache as a whole. 

Resuming a thread takes the following steps in its operation: 

1. Removes the thread from its turnstile or sleepqueue. If it is the last thread to be awakened, 

the turnstile or sleepqueue is returned to it. If it is not the last thread to be awakened, a turnstile 

or sleepqueue from the free list is returned to it. 
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2. Recomputes the user-mode scheduling priority if the thread has been sleeping longer than 

one second. 

3. If the thread had been blocked on a turnstile, it is placed on the run queue. If the thread had 

been blocked on a sleepqueue, it is placed on the run queue if it is in a SLEEPING state and if its 

process is not swapped out of main memory. If the process has been swapped out, the swapin 

process will be awakened to load it back into memory (see Section 6.12); if the thread is in a 

STOPPED state, it is not put on a run queue until it is explicitly restarted by a user-level process, 

either by a ptrace system call (see Section 4.9) or by a continue signal (see Section 4.7). 

If any threads are placed on the run queue and one of them has a scheduling priority higher than 

that of the currently executing thread, it will also request that the CPU be rescheduled as soon as 

possible. 

Synchronization 

The FreeBSD kernel supports both symmetric multiprocessing (SMP) and nonuniform 

memory access (NUMA) architectures. An SMP architecture is one in which all the CPUs are 

connected to a common main memory while a NUMA architecture is one in which the CPUs are 

connected to a non-uniform memory. With a NUMA architecture, some memory is local to a 

CPU and is quickly accessible while other memory is slower to access because it is local to 

another CPU or shared between CPUs. Throughout this book, references to multiprocessors and 

multiprocessing refer to both SMP and NUMA architectures. 

A multiprocessing kernel requires extensive and fine-grained synchronization. The simplist 

form of synchronization is a critical section. While a thread is running in a critical section, it can 

neither be migrated to another CPU nor preempted by another thread. A critical section protects 

per-CPU data structures such as a run queue or CPU-specific memory-allocation data structures. 

A critical section controls only a single CPU, so it cannot protect systemwide data structures; 

one of the locking mechanisms described below must be used. While critical sections are useful 

for only a limited set of data structures, they are beneficial in those cases because they have 

significantly lower overhead than locks. A critical section begins by calling critical_enter() and 

continues until calling the function critical_exit(). 

Table 4.3 shows the hierarchy of locking that is necessary to support multiprocessing. The 

column labelled Sleep in Table 4.3 shows whether a lock of that type may be held when a thread 

blocks for a medium- or long-term sleep. 
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Table 4.3 Locking hierarchy. 

Although it is possible to build locks using single-memory operations [Dekker, 2013], to be 

practical, the hardware must provide a memory interlocked compare-and-swap instruction. The 

compare-and-swap instruction must allow two operations to be done on a main-memory 

location—the reading and comparing to a specified compare-value of the existing value followed 

by the writing of a new value if the read value matches the compare-value—without any other 

processor being able to read or write that memory location between the two memory operations. 

All the locking primitives in the FreeBSD system are built using the compare-and-swap 

instruction. 

Mutex Synchronization 

Mutexes are the primary method of short-term thread synchronization. The major design 

considerations for mutexes are as follows: 

• Acquiring and releasing uncontested mutexes should be as fast as possible. 

• Mutexes must have the information and storage space to support priority propagation. In 

FreeBSD, mutexes use turnstiles to manage priority propagation. 

• A thread must be able to acquire a mutex recursively if the mutex is initialized to support 

recursion. 

Mutexes are built from the hardware compare-and-swap instruction. A memory location is 

reserved for the lock. When the lock is free, the value of MTX_UNOWNED is stored in the 

memory location; when the lock is held, a pointer to the thread owning the lock is stored in the 
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memory location. The compare-and-swap instruction tries to acquire the lock. The value in the 

lock is compared with MTX_UNOWNED; if it matches, it is replaced with the pointer to the 

thread. The instruction returns the old value; if the old value was MTX_OWNED, then the lock 

was successfully acquired and the thread may proceed. Otherwise, some other thread held the 

lock so the thread must loop doing the compare-and-swap until the thread holding the lock (and 

running on a different processor) stores MTX_OWNED into the lock to show that it is done with 

it. 

There are currently two flavors of mutexes: those that block and those that do not. By default, 

threads will block when they request a mutex that is already held. Most kernel code uses the 

default lock type that allows the thread to be suspended from the CPU if it cannot get the lock. 

Mutexes that do not sleep are called spin mutexes. A spin mutex will not relinquish the CPU 

when it cannot immediately get the requested lock, but it will loop, waiting for the mutex to be 

released by another CPU. Spinning can result in deadlock if a thread interrupted the thread that 

held a mutex and then tried to acquire the mutex. To protect an interrupt thread from blocking 

against itself during the period that it is held, a spin mutex runs inside a critical section with 

interrupts disabled on that CPU. Thus, an interrupt thread can run only on another CPU during 

the period that the spin mutex is held. 

Spin mutexes are specialized locks that are intended to be held for short periods of time. A 

thread may hold multiple spin mutexes, but it is required to release the mutexes in the opposite 

order from which they were acquired. A thread may not go to sleep while holding a spin mutex. 

On most architectures, both acquiring and releasing an uncontested spin mutex are more 

expensive than the same operation on a nonspin mutex. Spin mutexes are more expensive than 

blocking locks because spin mutexes have to disable or defer interrupts while they are held to 

prevent races with interrupt handling code. As a result, holding spin mutexes can increase 

interrupt latency. To minimize interrupt latency and reduce locking overhead, FreeBSD uses 

spin mutexes only in code that does low-level scheduling and context switching. 

The time to acquire a lock can vary. Consider the time to wait for a lock needed to search for an 

item on a list. The thread holding the search lock may have to acquire another lock before it can 

remove an item it has found from the list. If the needed lock is already held, it will block to wait 

for it. A different thread that tries to acquire the search lock uses adaptive spinning. Adaptive 

spinning is implemented by having the thread that wants the lock extract the thread pointer of 

the owning thread from the lock structure. It then checks to see if the thread is currently 

executing. If so, it spins until either the lock is released or the thread stops executing. The effect 

is to spin so long as the current lock holder is executing on another CPU. The reasons for taking 

this approach are many: 
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• Locks are usually held for brief periods of time, so if the owner is running, then it will probably 

release the lock before the current thread completes the process of blocking on the lock. 

• If a lock holder is not running, then the current thread has to wait at least one context switch 

time before it can acquire the lock. 

• If the owner is on a run queue, then the current thread should block immediately so it can lend 

its priority to the lock owner. 

• It is cheaper to release an uncontested lock with a single atomic operation than a contested 

lock. A contested lock has to find the turnstile, lock the turnstile chain and turnstile, and then 

awaken all the waiters. So adaptive spinning reduces overhead on both the lock owner and the 

thread trying to acquire the lock. 

The lower cost for releasing an uncontested lock explains the algorithm used to awaken waiters 

on a mutex. Historically, the mutex code would only awaken a single waiter when a contested 

lock was released, which left the lock in a contested state if there were more than one waiter. 

However, leaving a contested lock ensured that the new lock holder would have to perform a 

more expensive unlock operation. Indeed, all but the last waiter would have an expensive unlock 

operation. In the current FreeBSD system, all the waiters are awakened when the lock is 

released. Usually they end up being scheduled sequentially, which results in them all getting to 

do cheaper unlock operations. If they do all end up running concurrently, they will then use 

adaptive spinning and will finish the chain of lock requests sooner since the context switches to 

awaken the threads are performed in parallel rather than sequentially. This change in behavior 

was motivated by documentation of these effects noted in Solaris Internals [McDougall & Mauro, 

2006]. 

It is wasteful of CPU cycles to use spin mutexes for resources that will be held for long periods of 

time (more than a few microseconds). For example, a spin mutex would be inappropriate for a 

disk buffer that would need to be locked throughout the time that a disk I/O was being done. 

Here, a sleep lock should be used. When a thread trying to acquire a medium- or long-term lock 

finds that the lock is held, it is put to sleep so that other threads can run until the lock becomes 

available. 

Spin mutexes are never appropriate on a uniprocessor since the only way that a resource held by 

another thread will ever be released will be when that thread gets to run. Spin mutexes are 

always converted to sleep locks when running on a uniprocessor. As with the multi-processor, 

interrupts are disabled while the spin mutexes are held. Since there is no other processor on 

which the interrupts can run, interrupt latency becomes much more apparent on a uniprocessor. 
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Mutex Interface 

The mtx_init() function must be used to initialize a mutex before it can be used. The mtx_init() 

function specifies a type that the witness code uses to classify a mutex when doing checks of lock 

ordering. It is not permissible to pass the same mutex to mtx_init() multiple times without 

intervening calls to mtx_destroy(). 

The mtx_lock() function acquires a mutual exclusion lock for the currently running kernel 

thread. If another kernel thread is holding the mutex, the caller will sleep until the mutex is 

available. The mtx_lock_spin() function is similar to the mtx_lock() function except that it will 

spin until the mutex becomes available. A critical section is entered when the spin mutex is 

obtained and is exited when the spin mutex is released. Interrupts are blocked on the CPU on 

which the thread holding the spin mutex is running. No other threads, including interrupt 

threads, can run on the CPU during the period that the spin mutex is held. 

It is possible for the same thread to acquire a mutex recursively with no ill effects if the 

MTX_RECURSE bit was passed to mtx_init() during the initialization of the mutex. The witness 

module verifies that a thread does not recurse on a non-recursive lock. A recursive lock is useful 

if a resource may be locked at two or more levels in the kernel. By allowing a recursive lock, a 

lower layer need not check if the resource has already been locked by a higher layer; it can 

simply lock and release the resource as needed. 

The mtx_trylock() function tries to acquire a mutual exclusion lock for the currently running 

kernel thread. If the mutex cannot be immediately acquired, mtx_trylock() will return 0; 

otherwise the mutex will be acquired and a nonzero value will be returned. The mtx_trylock() 

function cannot be used with spin mutexes. 

The mtx_unlock() function releases a mutual exclusion lock; if a higher-priority thread is 

waiting for the mutex, the releasing thread will be put to sleep to allow the higher-priority 

thread to acquire the mutex and run. A mutex that allows recursive locking maintains a 

reference count showing the number of times that it has been locked. Each successful lock 

request must have a corresponding unlock request. The mutex is not released until the final 

unlock has been done, causing the reference count to drop to zero. 

The mtx_unlock_spin() function releases a spin-type mutual exclusion lock; the critical section 

entered before acquiring the mutex is exited. 

The mtx_destroy() function destroys a mutex so the data associated with it may be freed or 

otherwise overwritten. Any mutex that is destroyed must previously have been initialized with 

mtx_init(). It is permissible to have a single reference to a mutex when it is destroyed. It is not 
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permissible to hold the mutex recursively or have another thread blocked on the mutex when it 

is destroyed. If these rules are violated, the kernel will panic. 

Normally, a mutex is allocated within the structure that it will protect. For long-lived structures 

or structures that are allocated from a zone (structures in a zone are created once and used 

many times before they are destroyed), the time overhead of initializing and destroying it is 

insignificant. For a short-lived structure that is not allocated out of a zone, the cost of initializing 

and destroying an embedded mutex may exceed the time during which the structure is used. In 

addition, mutexes are large and may double or triple the size of a small short-lived structure (a 

mutex is often the size of a cache line, which is typically 128 bytes). To avoid this overhead, the 

kernel provides a pool of mutexes that may be borrowed for use with a short-lived structure. The 

short-lived structure does not need to reserve space for a mutex, just space for a pointer to a 

pool mutex. When the structure is allocated, it requests a pool mutex to which it sets its pointer. 

When it is done, the pool mutex is returned to the kernel and the structure freed. An example of 

a use of a pool mutex comes from the poll system call implementation that needs a structure to 

track a poll request from the time the system call is entered until the requested data arrives on 

the descriptor. 

Lock Synchronization 

Interprocess synchronization to a resource typically is implemented by associating it with a lock 

structure. The kernel has several lock managers that manipulate a lock. The operations provided 

by all the lock managers are: 

• Request shared: Get one of many possible shared locks. If a thread holding an exclusive lock 

requests a shared lock, some lock managers will downgrade the exclusive lock to a shared lock 

while others simply return an error. 

• Request exclusive: When all shared locks have cleared, grant an exclusive lock. To ensure that 

the exclusive lock will be granted quickly, some lock managers stop granting shared locks when 

an exclusive lock is requested. Others grant new shared locks only for recursive lock requests. 

Only one exclusive lock may exist at a time, except that a thread holding an exclusive lock may 

get additional exclusive locks if the canrecurse flag was set when the lock was initialized. Some 

lock managers allow the canrecurse flag to be specified in the lock request. 

• Request release: Release one instance of a lock. 

In addition to these basic requests, some of the lock managers provide the following additional 

functions: 
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• Request upgrade: The thread must hold a shared lock that it wants to have upgraded to an 

exclusive lock. Other threads may get exclusive access to the resource between the time that the 

upgrade is requested and the time that it is granted. Some lock managers allow only a limited 

version of upgrade where it is granted if immediately available, but do not provide a mechanism 

to wait for an upgrade. 

• Request exclusive upgrade: The thread must hold a shared lock that it wants to have upgraded 

to an exclusive lock. If the request succeeds, no other threads will have received exclusive access 

to the resource between the time that the upgrade is requested and the time that it is granted. 

However, if another thread has already requested an upgrade, the request will fail. 

• Request downgrade: The thread must hold an exclusive lock that it wants to have downgraded 

to a shared lock. If the thread holds multiple (recursive) exclusive locks, some lock managers 

will downgrade them all to shared locks; other lock managers will fail the request. 

• Request drain: Wait for all activity on the lock to end, and then mark it decommissioned. This 

feature is used before freeing a lock that is part of a piece of memory that is about to be released. 

Locks must be initialized before their first use by calling their initialization function. Parameters 

to the initialization function may include the following: 

• A top-half kernel priority at which the thread should run if it was blocked before it acquired the 

lock 

• Flags such as canrecurse that allow the thread currently holding an exclusive lock to get 

another exclusive lock rather than panicking with a “locking against myself” failure 

• A string that describes the resource that the lock protects, referred to as the wait channel 

message 

• An optional maximum time to wait for the lock to become available 

Not all types of locks support all these options. When a lock is no longer needed, it must be 

released. 

As shown in Table 4.3, the lowest-level type of lock is the reader-writer lock. The reader-writer 

lock operates much like a mutex except that a reader-writer lock supports both shared and 

exclusive access. Like a mutex, it is managed by a turnstile so it cannot be held during a 

medium- or long-term sleep and provides priority propagation for exclusive (but not shared) 

locks. Reader-writer locks may be recursed. 
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Next up in Table 4.3 is the read-mostly lock. The read-mostly lock has the same capabilities and 

restrictions as reader-writer locks while they also add priority propagation for shared locks by 

tracking shared owners using a caller-supplied tracker data structure. Read-mostly locks are 

used to protect data that are read far more often than they are written. They work by trying the 

read without acquiring a lock assuming that the read will succeed and only fall back to using 

locks when the assumption fails. Reads usually happen more quickly but at a higher cost if the 

underlying resource is modified. The routing table is a good example of a read-mostly data 

structure. Routes are rarely updated, but are read frequently. 

The remaining types of locks all permit medium- and long-term sleeping. None of these locks 

support priority propagation. The shared-exclusive locks are the fastest of these locks with the 

fewest features. In addition to the basic shared and exclusive access, they provide recursion for 

both shared and exclusive locks, the ability to be interrupted by a signal, and limited upgrade 

and downgrade capabilities. 

The lock-manager locks are the most full featured but also the slowest of the locking schemes. In 

addition to the features of the shared-exclusive locks, they provide full upgrade and downgrade 

capabilities, the ability to be awakened after a specified interval, the ability to drain all users in 

preparation for being deallocated, and the ability to pass ownership of locks between threads 

and to the kernel. 

Condition variables are used with mutexes to wait for conditions to occur. Threads wait on 

condition variables by calling cv_wait(), cv_wait_sig() (wait unless interrupted by a signal), 

cv_timedwait() (wait for a maximum time), or cv_timedwait_sig() (wait unless interrupted by 

a signal or for a maximum time). Threads unblock waiters by calling cv_signal() to unblock one 

waiter, or cv_broadcast() to unblock all waiters. The cv_waitq_remove() function removes a 

waiting thread from a condition-variable wait queue if it is on one. 

A thread must hold a mutex before calling cv_wait(), cv_wait_sig(), cv_timedwait(), or 

cv_timedwait_sig(). When a thread waits on a condition, the mutex is atomically released 

before the thread is blocked, and then atomically reacquired before the function call returns. All 

waiters must use the same mutex with a condition variable. A thread must hold the mutex while 

calling cv_signal() or cv_broadcast(). 

Deadlock Prevention 

The highest-level locking primitive prevents threads from deadlocking when locking multiple 

resources. Suppose that two threads, A and B, require exclusive access to two resources, R1 and 

R2, to do some operation as shown in Figure 4.4. If thread A acquires R1 and thread B acquires 
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R2, then a deadlock occurs when thread A tries to acquire R2 and thread B tries to acquire R1. To 

avoid deadlock, FreeBSD maintains a partial ordering on all the locks. The two partial-ordering 

rules are as follows: 

1. A thread may acquire only one lock in each class. 

2. A thread may acquire only a lock in a higher-numbered class than the highest-numbered class 

for which it already holds a lock. 

 

Figure 4.4 Partial ordering of resources. 

Figure 4.4 shows two classes. Class 1 with resources R1, R1′, and R1″. Class 2 with resources R2, 

R2′, and R2″. In Figure 4.4, Thread A holds R1 and can request R2 as R1 and R2 are in different 

classes and R2 is in a higher-numbered class than R1. However, Thread B must release R2 before 

requesting R1, since R2 is in a higher class than R1. Thus, Thread A will be able to acquire R2 

when it is released by Thread B. After Thread A completes and releases R1 and R2, Thread B will 

be able to acquire both of those locks and run to completion without deadlock. 

Historically, the class members and ordering were poorly documented and unenforced. 

Violations were discovered when threads would deadlock and a careful analysis was done to 

figure out what ordering had been violated. With an increasing number of developers and a 

growing kernel, the ad hoc method of maintaining the partial ordering of locks became 

untenable. A witness module was added to the kernel to derive and enforce the partial ordering 

of the locks. The witness module keeps track of the locks acquired and released by each thread. 

It also keeps track of the order in which locks are acquired relative to each other. Each time a 

lock is acquired, the witness module uses these two lists to verify that a lock is not being 

acquired in the wrong order. If a lock order violation is detected, then a message is output to the 

console detailing the locks involved and the locations in the code in which they were acquired. 
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The witness module also verifies that no locks that prohibit sleeping are held when requesting a 

sleep lock or voluntarily going to sleep. 

The witness module can be configured to either panic or drop into the kernel debugger when an 

order violation occurs or some other witness check fails. When running the debugger, the 

witness module can output the list of locks held by the current thread to the console along with 

the filename and line number at which each lock was last acquired. It can also dump the current 

order list to the console. The code first displays the lock order tree for all the sleep locks. Then it 

displays the lock order tree for all the spin mutexes. Finally, it displays a list of locks that have 

not yet been acquired. 

4.4 Thread Scheduling 

The FreeBSD scheduler has a well-defined set of kernel-application programming interfaces 

(kernel APIs) that allow it to support different schedulers. Since FreeBSD 5.0, the kernel has 

had two schedulers available: 

• The ULE scheduler first introduced in FreeBSD 5.0 and found in the file 

/sys/kern/sched_ule.c [Roberson, 2003]. The name is not an acronym. If the underscore in 

its filename is removed, the rationale for its name becomes apparent. This scheduler is used by 

default and is described later in this section. 

• The traditional 4.4BSD scheduler found in the file /sys/kern/sched_4bsd.c. This scheduler 

is still maintained but no longer used by default. 

Because a busy system makes millions of scheduling decisions per second, the speed with which 

scheduling decisions are made is critical to the performance of the system as a whole. Other 

UNIX systems have added a dynamic scheduler switch that must be traversed for every 

scheduling decision. To avoid this overhead, FreeBSD requires that the scheduler be selected at 

the time the kernel is built. Thus, all calls into the scheduling code are resolved at compile time 

rather than going through the overhead of an indirect function call for every scheduling 

decision. 

The Low-Level Scheduler 

Scheduling is divided into two parts: a simple low-level scheduler that runs frequently and a 

more complex high-level scheduler that runs at most a few times per second. The low-level 

scheduler runs every time a thread blocks and a new thread must be selected to run. For 

efficiency when running thousands of times per second, it must make its decision quickly with a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref06


 

145 

minimal amount of information. To simplify its task, the kernel maintains a set of run queues 

for each CPU in the system that are organized from high to low priority. When a task blocks on a 

CPU, the low-level scheduler’s sole responsibility is to select the thread from the highest-priority 

non-empty run queue for that CPU. The high-level scheduler is responsible for setting the 

thread priorities and deciding on which CPU’s run queue they should be placed. Each CPU has 

its own set of run queues to avoid contention for access when two CPUs both need to select a 

new thread to run at the same time. Contention between run queues occurs only when the 

high-level scheduler decides to move a thread from the run queue of one CPU to the run queue 

of another CPU. The kernel tries to avoid moving threads between CPUs as the loss of its 

CPU-local caches slows it down. 

All threads that are runnable are assigned a scheduling priority and a CPU by the high-level 

scheduler that determines in which run queue they are placed. In selecting a new thread to run, 

the low-level scheduler scans the run queues of the CPU needing a new thread from highest to 

lowest priority and chooses the first thread on the first nonempty queue. If multiple threads 

reside on a queue, the system runs them round robin; that is, it runs them in the order that 

they are found on the queue, with equal amounts of time allowed. If a thread blocks, it is not put 

back onto any run queue. Instead, it is placed on a turnstile or a sleepqueue. If a thread uses up 

the time quantum (or time slice) allowed it, it is placed at the end of the queue from which it 

came, and the thread at the front of the queue is selected to run. 

The shorter the time quantum, the better the interactive response. However, longer time quanta 

provide higher system throughput because the system will incur less overhead from doing 

context switches and processor caches will be flushed less often. The time quantum used by 

FreeBSD is adjusted by the high-level scheduler as described later in this subsection. 

Thread Run Queues and Context Switching 

The kernel has a single set of run queues to manage all the thread scheduling classes shown in 

Table 4.2. The scheduling-priority calculations described in the previous section are used to 

order the set of timesharing threads into the priority ranges between 120 and 223. The real-time 

threads and the idle threads priorities are set by the applications themselves but are constrained 

by the kernel to be within the ranges 48 to 79 and 224 to 255, respectively. The number of 

queues used to hold the collection of all runnable threads in the system affects the cost of 

managing the queues. If only a single (ordered) queue is maintained, then selecting the next 

runnable thread becomes simple but other operations become expensive. Using 256 different 

queues can significantly increase the cost of identifying the next thread to run. The system uses 

64 run queues, selecting a run queue for a thread by dividing the thread’s priority by 4. To save 

time, the threads on each queue are not further sorted by their priorities. 
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The run queues contain all the runnable threads in main memory except the currently running 

thread. Figure 4.5 shows how each queue is organized as a doubly linked list of thread structures. 

The head of each run queue is kept in an array. Associated with this array is a bit vector, 

rq_status, that is used in identifying the nonempty run queues. Two routines, runq_add() and 

runq_remove(), are used to place a thread at the tail of a run queue, and to take a thread off the 

head of a run queue. The heart of the scheduling algorithm is the runq_choose() routine. The 

runq_choose() routine is responsible for selecting a new thread to run; it operates as follows: 

1. Ensures that our caller acquired the lock associated with the run queue. 

2. Locates a nonempty run queue by finding the location of the first nonzero bit in the rq_status 

bit vector. If rq_status is zero, there are no threads to run, so selects an idle loop thread. 

3. Given a nonempty run queue, removes the first thread on the queue. 

4. If this run queue is now empty as a result of removing the thread, clears the appropriate bit in 

rq_status. 

5. Returns the selected thread. 

 

Figure 4.5 Queueing structure for runnable threads. 

The context-switch code is broken into two parts. The machine-independent code resides in 

mi_switch(); the machine-dependent part resides in cpu_switch(). On most architectures, 

cpu_switch() is coded in assembly language for efficiency. 
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Given the mi_switch() routine and the thread-priority calculations, the only missing piece in the 

scheduling facility is how the system forces an involuntary context switch. Remember that 

voluntary context switches occur when a thread calls the sleep() routine. Sleep() can be invoked 

only by a runnable thread, so sleep() needs only to place the thread on a sleep queue and to 

invoke mi_switch() to schedule the next thread to run. Often, an interrupt thread will not want 

to sleep() itself but will be delivering data that will cause the kernel to want to run a different 

thread than the one that was running before the interrupt. Thus, the kernel needs a mechanism 

to request that an involuntary context switch be done at the conclusion of the interrupt. 

This mechanism is handled by setting the currently running thread’s TDF_NEEDRESCHED flag 

and then posting an asynchronous system trap (AST). An AST is a trap that is delivered to 

a thread the next time that thread is preparing to return from an interrupt, a trap, or a system 

call. Some architectures support ASTs directly in hardware; other systems emulate ASTs by 

checking an AST flag at the end of every system call, trap, and interrupt. When the hardware 

AST trap occurs or the AST flag is set, the mi_switch() routine is called instead of the current 

thread resuming execution. Rescheduling requests are made by the sched_lend_user_prio(), 

sched_clock(), sched_setpreempt(), and sched_affinity() routines. 

With the advent of multiprocessor support, FreeBSD can preempt threads executing in kernel 

mode. However, such preemption is generally not done for threads running in the timesharing 

class, so the worst-case real-time response to events when running with the timeshare scheduler 

is defined by the longest path through the top half of the kernel. Since the system guarantees no 

upper bounds on the duration of a system call, when running with just the timeshare scheduler 

FreeBSD is decidedly not a hard real-time system. 

Real-time and interrupt threads do preempt lower-priority threads. The longest path that 

preemption is disabled for real-time and interrupt threads is defined by the longest time a 

spinlock is held or a critical section is entered. Thus, when using real-time threads, microsecond 

real-time deadlines can be met. The kernel can be configured to preempt timeshare threads 

executing in the kernel with other higher-priority timeshare threads. This option is not used by 

default as the increase in context switches adds overhead and does not help make timeshare 

threads response time more predictable. 

Timeshare Thread Scheduling 

The goal of a multiprocessing system is to apply the power of multiple CPUs to a problem, or set 

of problems, to achieve a result in less time than it would run on a single-processor system. If a 

system has the same number of runnable threads as it does CPUs, then achieving this goal is 

easy. Each runnable thread gets a CPU to itself and runs to completion. Typically, there are 
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many runnable threads competing for a few processors. One job of the scheduler is to ensure 

that the CPUs are always busy and are not wasting their cycles. When a thread completes its 

work, or is blocked waiting for resources, it is removed from the processor on which it was 

running. While a thread is running on a processor, it brings its working set—the instructions it is 

executing and the data on which it is operating—into the CPU’s memory cache. Migrating a 

thread has a cost. When a thread is moved from one CPU to another, its CPU-cache working set 

is lost and must be removed from the CPU on which it was running and then loaded into the 

new CPU to which it has been migrated. The performance of a multiprocessing system with a 

naive scheduler that does not take this cost into account can fall beneath that of a 

single-processor system. The term processor affinity describes a scheduler that only 

migrates threads when necessary to give an idle processor something to do. 

A multiprocessing system may be built with multiple processor chips. Each processor chip may 

have multiple CPU cores, each of which can execute a thread. The CPU cores on a single 

processor chip share many of the processor’s resources, such as memory caches and access to 

main memory, so they are more tightly synchronized than the CPUs on other processor chips. 

Handling processor chips with multiple CPUs is a derivative form of load balancing among 

CPUs on different chips. It is handled by maintaining a hierarchy of CPUs. The CPUs on the 

same chip are the cheapest between which to migrate threads. Next down in the hierarchy are 

processor chips on the same motherboard. Below them are chips connected by the same 

backplane. The scheduler supports an arbitrary depth hierarchy as dictated by the hardware. 

When the scheduler is deciding to which processor to migrate a thread, it will try to pick a new 

processor higher in the hierarchy because that is the lowest-cost migration path. 

From a thread’s perspective, it does not know that there are other threads running on the same 

processor because the processor is handling them independently. The one piece of code in the 

system that needs to be aware of the multiple CPUs is the scheduling algorithm. In particular, 

the scheduler treats each CPU on a chip as one on which it is cheaper to migrate threads than it 

would be to migrate the thread to a CPU on another chip. The mechanism for getting tighter 

affinity between CPUs on the same processor chip versus CPUs on other processor chips is 

described later in this section. 

The traditional FreeBSD scheduler maintains a global list of runnable threads that it traverses 

once per second to recalculate their priorities. The use of a single list for all runnable threads 

means that the performance of the scheduler is dependent on the number of tasks in the system, 

and as the number of tasks grow, more CPU time must be spent in the scheduler maintaining 

the list. 
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The ULE scheduler was developed during FreeBSD 5.0 with major work continuing into 

FreeBSD 9.0, spanning 10 years of development. The scheduler was developed to address 

shortcomings of the traditional BSD scheduler on multiprocessor systems. A new scheduler was 

undertaken for several reasons: 

• To address the need for processor affinity in multiprocessor systems 

• To supply equitable distribution of load between CPUs on multiprocessor systems 

• To provide better support for processors with multiple CPU cores on a single chip 

• To improve the performance of the scheduling algorithm so that it is no longer dependent on 

the number of threads in the system 

• To provide interactivity and timesharing performance similar to the traditional BSD scheduler. 

The traditional BSD scheduler had good interactivity on large timeshare systems and single-user 

desktop and laptop systems. However, it had a single global run queue and consequently a 

single global scheduler lock. Having a single global run queue was slowed both by contention for 

the global lock and by difficulties implementing CPU affinity. 

The priority computation relied on a single global timer that iterated over every runnable thread 

in the system and evaluated its priority while holding several highly contended locks. This 

approach became slower as the number of runnable threads increased. While the priority 

calculations were being done, processes could not fork or exit and CPUs could not context 

switch. 

The ULE scheduler can logically be thought of as two largely orthogonal sets of algorithms; 

those that manage the affinity and distribution of threads among CPUs and those that are 

responsible for the order and duration of a thread’s runtime. These two sets of algorithms work 

in concert to provide a balance of low latency, high throughput, and good resource utilization. 

The remainder of the scheduler is event driven and uses these algorithms to implement various 

decisions according to changes in system state. 

The goal of equalling the exceptional interactive behavior and throughput of the traditional BSD 

scheduler in a multiprocessor-friendly and constant-time implementation was the most 

challenging and time consuming part of ULE’s development. The interactivity, CPU utilization 

estimation, priority, and time slice algorithms together implement the timeshare scheduling 

policy. 
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The behavior of threads is evaluated by ULE on an event-driven basis to differentiate interactive 

and batch threads. Interactive threads are those that are thought to be waiting for and 

responding to user input. They require low latency to achieve a good user experience. Batch 

threads are those that tend to consume as much CPU as they are given and may be background 

jobs. A good example of the former is a text editor, and for the latter, a compiler. The scheduler 

must use imperfect heuristics to provide a gradient of behaviors based on a best guess of the 

category to which a given thread fits. This categorization may change frequently during the 

lifetime of a thread and must be responsive on timescales relevant to people using the system. 

The algorithm that evaluates interactivity is called the interactivity score. The interactivity score 

is the ratio of voluntary sleep time to run time normalized to a number between 0 and 100. This 

score does not include time waiting on the run queue while the thread is not yet the highest 

priority thread in the queue. By requiring explicit voluntary sleeps, we can differentiate threads 

that are not running because of inferior priority versus those that are periodically waiting for 

user input. This requirement also makes it more challenging for a thread to be marked 

interactive as system load increases, which is desirable because it prevents the system from 

becoming swamped with interactive threads while keeping things like shells and simple text 

editors available to administrators. When plotted, the interactivity scores derived from a matrix 

of possible sleep and run times becomes a three-dimensional sigmoid function. Using this 

approach means that interactive tasks tend to stay interactive and batch tasks tend to stay 

batched. 

A particular challenge is complex X Window applications such as Web browsers and office 

productivity packages. These applications may consume significant resources for brief periods of 

time, however the user expects them to remain interactive. To resolve this issue, a 

several-second history of the sleep and run behavior is kept and gradually decayed. Thus, the 

scheduler keeps a moving average that can tolerate bursts of behavior but will quickly penalize 

timeshare threads that abuse their elevated status. A longer history allows longer bursts but 

learns more slowly. 

The interactivity score is compared to the interactivity threshold, which is the cutoff point for 

considering a thread interactive. The interactivity threshold is modified by the process nice 

value. Positive nice values make it more challenging for a thread to be considered interactive, 

while negative values make it easier. Thus, the nice value gives the user some control over the 

primary mechanism of reducing thread-scheduling latency. 

A thread is considered to be interactive if the ratio of its voluntary sleep time versus its run time 

is below a certain threshold. The interactivity threshold is defined in the ULE code and is not 
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configurable. ULE uses two equations to compute the interactivity score of a thread. For threads 

whose sleep time exceeds their run time, Eq 4.1 is used: 

 

When a thread’s run time exceeds its sleep time, Eq. 4.2 is used instead: 

 

The scaling factor is the maximum interactivity score divided by two. Threads that score below 

the interactivity threshold are considered to be interactive; all others are noninteractive. The 

sched_interact_update() routine is called at several points in a threads existence—for example, 

when the thread is awakened by a wakeup() call—to update the thread’s run time and sleep time. 

The sleep- and run-time values are only allowed to grow to a certain limit. When the sum of the 

run time and sleep time pass the limit, they are reduced to bring them back into range. An 

interactive thread whose sleep history was not remembered at all would not remain interactive, 

resulting in a poor user experience. Remembering an interactive thread’s sleep time for too long 

would allow the thread to get more than its fair share of the CPU. The amount of history that is 

kept and the interactivity threshold are the two values that most strongly influence a user’s 

interactive experience on the system. 

Priorities are assigned according to the thread’s interactivity status. Interactive threads have a 

priority that is derived from the interactivity score and are placed in a priority band above batch 

threads. They are scheduled like real-time round-robin threads. Batch threads have their 

priorities determined by the estimated CPU utilization modified according to their process nice 

value. In both cases, the available priority range is equally divided among possible interactive 

scores or percent-cpu calculations, both of which are values between 0 and 100. Since there are 

fewer than 100 priorities available for each class, some values share priorities. Both 

computations roughly assign priorities according to a history of CPU utilization but with 

different longevities and scaling factors. 

The CPU utilization estimator accumulates run time as a thread runs and decays it as a thread 

sleeps. The utilization estimator provides the percent-cpu values displayed in top and ps. ULE 

delays the decay until a thread wakes to avoid periodically scanning every thread in the system. 

Since this delay leaves values unchanged for the duration of sleeps, the values must also be 

decayed before any user process inspects them. This approach preserves the constant-time and 

event-driven nature of the scheduler. 
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The CPU utilization is recorded in the thread as the number of ticks, typically 1 millisecond, 

during which a thread has been running, along with window of time defined as a first and last 

tick. The scheduler attempts to keep roughly 10 seconds of history. To accomplish decay, it waits 

until there are 11 seconds of history and then subtracts one-tenth of the tick value while moving 

the first tick forward 1 second. This inexpensive, estimated moving-average algorithm has the 

property of allowing arbitrary update intervals. If the utilization information is inspected after 

more than the update interval has passed, the tick value is zeroed. Otherwise, the number of 

seconds that have passed divided by the update interval is subtracted. 

The scheduler implements round-robin through the assignment of time slices. A time slice is a 

fixed interval of allowed run time before the scheduler will select another thread of equal 

priority to run. The time slice prevents starvation among equal priority threads. The time slice 

times the number of runnable threads in a given priority defines the maximum latency a thread 

of that priority will experience before it can run. To bound this latency, ULE dynamically adjusts 

the size of slices it dispenses based on system load. The time slice has a minimum value to 

prevent thrashing and balance throughput with latency. An interrupt handler calls the scheduler 

to evaluate the time slice during every statclock tick. Using the stat-clock to evaluate the time 

slice is a stochastic approach to slice accounting that is efficient but only grossly accurate. 

The scheduler must also work to prevent starvation of low-priority batch jobs by higher-priority 

batch jobs. The traditional BSD scheduler avoided starvation by periodically iterating over all 

threads waiting on the run queue to elevate the low-priority threads and decrease the priority of 

higher-priority threads that had been monopolizing the CPU. This algorithm violates the desire 

to run in constant time independent of the number of system threads. As a result, the run queue 

for batch-policy timeshare threads is kept in a similar fashion to the system callwheel, also 

known as a calendar queue. A calendar queue is one in which the queue’s head and tail rotate 

according to a clock or period. An element can be inserted into a calendar queue many positions 

away from the head and gradually migrate toward the head. Because this run queue is special 

purpose, it is kept separately from the real-time and idle queues while interactive threads are 

kept along with the real-time threads until they are no longer considered interactive. 

The ULE scheduler creates a set of three arrays of queues for each CPU in the system. Having 

per-CPU queues makes it possible to implement processor affinity in a multiprocessor system. 

One array of queues is the idle queue, where all idle threads are stored. The array is arranged 

from highest to lowest priority. The second array of queues is designated the realtime queue. 

Like the idle queue, it is arranged from highest to lowest priority. 

The third array of queues is designated the timeshare queue. Rather than being arranged in 

priority order, the timeshare queues are managed as a calendar queue. A pointer references the 
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current entry. The pointer is advanced once per system tick, although it may not advance on a 

tick until the currently selected queue is empty. Since each thread is given a maximum time slice 

and no threads may be added to the current position, the queue will drain in a bounded amount 

of time. This requirement to empty the queue before advancing to the next queue means that the 

wait time a thread experiences is not only a function of its priority but also the system load. 

Insertion into the timeshare queue is defined by the relative difference between a thread’s 

priority and the best possible timeshare priority. High-priority threads will be placed soon after 

the current position. Low-priority threads will be placed far from the current position. This 

algorithm ensures that even the lowest-priority timeshare thread will eventually make it to the 

selected queue and execute in spite of higher-priority timeshare threads being available in other 

queues. The difference in priorities of two threads will determine their ratio of run-time. The 

higher-priority thread may be inserted ahead of the lower-priority thread multiple times before 

the queue position catches up. This run-time ratio is what grants timeshare CPU hogs with 

different nice values, different proportional shares of the CPU. 

These algorithms taken together determine the priorities and run times of timesharing threads. 

They implement a dynamic tradeoff between latency and throughput based on system load, 

thread behavior, and a range of effects based on user-scheduling decisions made with nice. 

Many of the parameters governing the limits of these algorithms can be explored in real time 

with the sysctl kern.sched tree. The rest are compile-time constants that are documented at the 

top of the scheduler source file (/sys/kern/sched_ule.c). 

Threads are picked to run, in priority order, from the realtime queue until it is empty, at which 

point threads from the currently selected timeshare queue will be run. Threads in the idle 

queues are run only when the other two arrays of queues are empty. Real-time and interrupt 

threads are always inserted into the realtime queues so that they will have the least possible 

scheduling latency. Interactive threads are also inserted into the realtime queue to keep the 

interactive response of the system acceptable. 

Noninteractive threads are put into the timeshare queues and are scheduled to run when the 

queues are switched. Switching the queues guarantees that a thread gets to run at least once 

every pass around the array of the timeshare queues regardless of priority, thus ensuring fair 

sharing of the processor. 

Multiprocessor Scheduling 

A principal goal behind the development of ULE was improving performance on multiprocessor 

systems. Good multiprocessing performance involves balancing affinity with utilization and the 
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preservation of the illusion of global scheduling in a system with local scheduling queues. These 

decisions are implemented using a CPU topology supplied by machine-dependent code that 

describes the relationships between CPUs in the system. The state is evaluated whenever a 

thread becomes runnable, a CPU idles, or a periodic task runs to rebalance the load. These 

events form the entirety of the multiprocessor-aware scheduling decisions. 

The topology system was devised to identify which CPUs were symmetric multi-threading peers 

and then made generic to support other relationships. Some examples are CPUs within a 

package, CPUs sharing a layer of cache, CPUs that are local to a particular memory, or CPUs 

that share execution units such as in symmetric multi-threading. This topology is implemented 

as a tree of arbitrary depth where each level describes some shared resource with a cost value 

and a bitmask of CPUs sharing that resource. The root of the tree holds CPUs in a system with 

branches to each socket, then shared cache, shared functional unit, etc. Since the system is 

generic, it should be extensible to describe any future processor arrangement. There is no 

restriction on the depth of the tree or requirement that all levels are implemented. 

Parsing this topology is a single recursive function called cpu_search(). It is a path-aware, 

goal-based, tree-traversal function that may be started from arbitrary subtrees. It may be asked 

to find the least- or most-loaded CPU that meets a given criteria, such as a priority or load 

threshold. When considering load, it will consider the load of the entire path, thus giving the 

potential for balancing sockets, caches, chips, etc. This function is used as the basis for all 

multiprocessing-related scheduling decisions. Typically, recursive functions are avoided in 

kernel programming because there is potential for stack exhaustion. However, the depth is fixed 

by the depth of the processor topology that typically does not exceed three. 

When a thread becomes runnable as a result of a wakeup, unlock, thread creation, or other event, 

the sched_pickcpu() function is called to decide where it will run. ULE determines the best CPU 

based on the following criteria: 

• Threads with hard affinity to a single CPU or short-term binding pick the only allowed CPU. 

• Interrupt threads that are being scheduled by their hardware interrupt handlers are scheduled 

on the current CPU if their priority is high enough to run immediately. 

• Thread affinity is evaluated by walking backwards up the tree starting from the last CPU on 

which it was scheduled until a package or CPU is found with valid affinity that can run the 

thread immediately. 

• The whole system is searched for the least-loaded CPU that is running a lower-priority thread 

than the one to be scheduled. 
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• The whole system is searched for the least-loaded CPU. 

• The results of these searches are compared to the current CPU to see if that would give a 

preferable decision to improve locality among the sleeping and waking threads as they may 

share some state. 

This approach orders from most preferential to least preferential. The affinity is valid if the sleep 

time of the thread was shorter than the product of a time constant and a largest-cache-shared 

level in the topology. This computation coarsely models the time required to push state out of 

the cache. Each thread has a bitmap of allowed CPUs that is manipulated by cpuset and is 

passed to cpu_search() for every decision. The locality between sleeper and waker can improve 

producer/consumer type threading situations when they have shared cache state but it can also 

cause underutilization when each thread would run faster given its own CPU. These examples 

exemplify the types of decisions that must be made with imperfect information. 

The next major multiprocessing algorithm runs when a CPU idles. The CPU sets a bit in a 

bitmask shared by all processors that says that it is idle. The idle CPU calls tdq_idled() to search 

other CPUs for work that can be migrated, or stolen in ULE terms, to keep the CPU busy. To 

avoid thrashing and excessive migration, the kernel sets a load threshold that must be exceeded 

on another CPU before some load will be taken. If any CPU exceeds this threshold, the idle CPU 

will search its run queues for work to migrate. The highest-priority work that can be scheduled 

on the idle CPU is then taken. This migration may be detrimental to affinity but improves many 

latency-sensitive workloads. 

Work may also be pushed to an idle CPU. Whenever an active CPU is about to add work to its 

own run queue, it first checks to see if it has excess work and if another CPU in the system is idle. 

If an idle CPU is found, then the thread is migrated to the idle CPU using an interprocessor 

interrupt (IPI). Making a migration decision by inspecting a shared bitmask is much faster 

than scanning the run queues of all the other processors. Seeking out idle processors when 

adding a new task works well because it spreads the load when it is presented to the system. 

The last major multiprocessing algorithm is the long-term load balancer. This form of migration, 

called push migration, is done by the system on a periodic basis and more aggressively 

offloads work to other processors in the system. Since the two scheduling events that distribute 

load only run when a thread is added and when a CPU idles, it is possible to have a long-term 

imbalance where more threads are running on one CPU than another. Push migration ensures 

fairness among the runnable threads. For example, with three runnable threads on a 

two-processor system, it would be unfair for one thread to get a processor to itself while the 

other two had to share the second processor. To fulfill the goal of emulating a fair global run 

queue, ULE must periodically shuffle threads to keep the system balanced. By pushing a thread 
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from the processor with two threads to the processor with one thread, no single thread would 

get to run alone indefinitely. An ideal implementation would give each thread an average of 66 

percent of the CPU available from a single CPU. 

The long-term load balancer balances the worst path pair in the hierarchy to avoid socket-, 

cache-, and chip-level imbalances. It runs from an interrupt handler in a randomized interval of 

roughly 1 second. The interval is randomized to prevent harmonic relationships between 

periodic threads and the periodic load balancer. In much the same way a stochastic sampling 

profiler works, the balancer picks the most- and least-loaded path from the current tree position 

and then recursively balances those paths by migrating threads. 

The scheduler must decide whether it is necessary to send an IPI when adding a thread to a 

remote CPU, just as it must decide whether adding a thread to the current CPU should preempt 

the current thread. The decision is made based on the current priority of the thread running on 

the target CPU and the priority of the thread being scheduled. Preempting whenever the pushed 

thread has a higher priority than the currently running thread results in excessive interrupts and 

preemptions. Thus, a thread must exceed the timesharing priority before an IPI is generated. 

This requirement trades some latency in batch jobs for improved performance. 

A notable omission to the load balancing events is thread preemption. Preempted threads are 

simply added back to the run queue of the current CPU. An additional load-balancing decision 

can be made here. However, the runtime of the preempting thread is not known and the 

preempted thread may maintain affinity. The scheduler optimistically chooses to wait and 

assume affinity is more valuable than latency. 

Each CPU in the system has its own set of run queues, statistics, and a lock to protect these 

fields in a thread-queue structure. During migration or a remote wakeup, a lock may be 

acquired by a CPU other than the one owning the queue. In practice, contention on these locks is 

rare unless the workload exhibits grossly overactive context switching and thread migration, 

typically suggesting a higher-level problem. Whenever a pair of these locks is required, such as 

for load balancing, a special function locks the pair with a defined lock order. The lock order is 

the lock with the lowest pointer value first. These per-CPU locks and queues resulted in nearly 

linear scaling with well-behaved workloads in cases where performance previously did not 

improve with the addition of new CPUs and occasionally have decreased as new CPUs 

introduced more contention. The design has scaled well from single CPUs to 512-thread network 

processors. 
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Adaptive Idle 

Many workloads feature frequent interrupts that do little work but need low latency. These 

workloads are common in low-throughput, high-packet-rate networking. For these workloads, 

the cost of waking the CPU from a low-power state, possibly with an IPI from another CPU, is 

excessive. To improve performance, ULE includes a feature that optimistically spins, waiting for 

load when the CPU has been context switching at a rate exceeding a set frequency. When this 

frequency lowers or we exceed the adaptive spin count, the CPU is put into a deeper sleep. 

Traditional Timeshare Thread Scheduling 

The traditional FreeBSD timeshare-scheduling algorithm is based on multilevel feedback 

queues. The system adjusts the priority of a thread dynamically to reflect resource 

requirements (e.g., being blocked awaiting an event) and the amount of resources consumed by 

the thread (e.g., CPU time). Threads are moved between run queues based on changes in their 

scheduling priority (hence the word “feedback” in the name multilevel feedback queue). 

When a thread other than the currently running thread attains a higher priority (by having that 

priority either assigned or given when it is awakened), the system switches to that thread 

immediately if the current thread is in user mode. Otherwise, the system switches to the 

higher-priority thread as soon as the current thread exits the kernel. The system tailors this 

short-term-scheduling algorithm to favor interactive jobs by raising the scheduling 

priority of threads that are blocked waiting for I/O for 1 or more seconds and by lowering the 

priority of threads that accumulate significant amounts of CPU time. 

The time quantum is always 0.1 second. This value was empirically found to be the longest 

quantum that could be used without loss of the desired response for interactive jobs such as 

editors. Perhaps surprisingly, the time quantum remained unchanged over the 30-year lifetime 

of this scheduler. Although the time quantum was originally selected on centralized timesharing 

systems with many users, it has remained correct for decentralized laptops. While laptop users 

expect a response time faster than that anticipated by the original timesharing users, the shorter 

run queues on the single-user laptop made a shorter quantum unnecessary. 

4.5 Process Creation 

In FreeBSD, new processes are created with the fork family of system calls. The fork system call 

creates a complete copy of the parent process. The rfork system call creates a new process entry 

that shares a selected set of resources from its parent rather than making copies of everything. 

The vfork system call differs from fork in how the virtual-memory resources are treated; vfork 
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also ensures that the parent will not run until the child does either an exec or exit system call. 

The vfork system call is described in Section 6.6. 

The process created by a fork is termed a child process of the original parent process. From 

a user’s point of view, the child process is an exact duplicate of the parent process except for two 

values: the child PID and the parent PID. A call to fork returns the child PID to the parent and 

zero to the child process. Thus, a program can identify whether it is the parent or child process 

after a fork by checking this return value. 

A fork involves three main steps: 

1. Allocating and initializing a new process structure for the child process 

2. Duplicating the context of the parent (including the thread structure and virtual-memory 

resources) for the child process 

3. Scheduling the child process to run 

The second step is intimately related to the operation of the memory-management facilities 

described in Chapter 6. Consequently, only those actions related to process management will be 

described here. 

The kernel begins by allocating memory for the new process and thread entries (see Figure 4.1). 

These thread and process entries are initialized in three steps: One part is copied from the 

parent’s corresponding structure, another part is zeroed, and the rest is explicitly initialized. The 

zeroed fields include recent CPU utilization, wait channel, swap and sleep time, timers, tracing, 

and pending-signal information. The copied portions include all the privileges and limitations 

inherited from the parent, including the following: 

• The process group and session 

• The signal state (ignored, caught, and blocked signal masks) 

• The p_nice scheduling parameter 

• A reference to the parent’s credential 

• A reference to the parent’s set of open files 

• A reference to the parent’s limits 

The child’s explicitly set information includes: 
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• The process’s signal-actions structure 

• Zeroing the process’s statistics structure 

• Entry onto the list of all processes 

• Entry onto the child list of the parent and the back pointer to the parent 

• Entry onto the parent’s process-group list 

• Entry onto the hash structure that allows the process to be looked up by its PID 

• A new PID for the process 

The new PID must be unique among all processes. Early versions of BSD verified the uniqueness 

of a PID by performing a linear search of the process table. This search became infeasible on 

large systems with many processes. FreeBSD maintains a range of unallocated PIDs between 

lastpid and pidchecked. It allocates a new PID by incrementing and then using the value of 

lastpid. When the newly selected PID reaches pidchecked, the system calculates a new range of 

unused PIDs by making a single scan of all existing processes (not just the active ones are 

scanned—zombie and swapped processes also are checked). 

The final step is to copy the parent’s address space. To duplicate a process’s image, the kernel 

invokes the memory-management facilities through a call to vm_forkproc(). The vm_forkproc() 

routine is passed a pointer to the initialized process structure for the child process and is 

expected to allocate all the resources that the child will need to execute. The call to 

vm_forkproc() returns through a different execution path directly into user mode in the child 

process and via the normal execution path in the parent process. 

Once the child process is fully built, its thread is made known to the scheduler by being placed 

on the run queue. The alternate return path will set the return value of fork system call in the 

child to 0. The normal execution return path in the parent sets the return value of the fork 

system call to be the new PID. 

4.6 Process Termination 

Processes terminate either voluntarily through an exit system call or involuntarily as the result 

of a signal. In either case, process termination causes a status code to be returned to the parent 

of the terminating process (if the parent still exists). This termination status is returned through 

the wait4 system call. The wait4 call permits an application to request the status of both 

stopped and terminated processes. The wait4 request can wait for any direct child of the parent, 
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or it can wait selectively for a single child process or for only its children in a particular process 

group. Wait4 can also request statistics describing the resource utilization of a terminated child 

process. Finally, the wait4 interface allows a process to request status codes without blocking. 

Within the kernel, a process terminates by calling the exit() routine. The exit() routine first kills 

off any other threads associated with the process. The termination of other threads is done as 

follows: 

• Any thread entering the kernel from userspace will thread_exit() when it traps into the kernel. 

• Any thread already in the kernel and attempting to sleep will return immediately with EINTR 

or EAGAIN, which will force them back out to userspace, freeing resources as they go. When the 

thread attempts to return to userspace, it will instead hit exit(). 

The exit() routine then cleans up the process’s kernel-mode execution state by doing the 

following: 

• Canceling any pending timers 

• Releasing virtual-memory resources 

• Closing open descriptors 

• Handling stopped or traced child processes 

With the kernel-mode state reset, the process is then removed from the list of active 

processes—the allproc list—and is placed on the list of zombie processes pointed to by 

zombproc. The process state is changed to show that no thread is currently running. The exit() 

routine then does the following: 

• Records the termination status in the p_xstat field of the process structure 

• Bundles up a copy of the process’s accumulated resource usage (for accounting purposes) and 

hangs this structure from the p_ru field of the process structure 

• Notifies the deceased process’s parent 

Finally, after the parent has been notified, the cpu_exit() routine frees any machine-dependent 

process resources and arranges for a final context switch from the process. 

The wait4 call works by searching a process’s descendant processes for ones that have entered 

the ZOMBIE state (e.g., that have terminated). If a process in ZOMBIE state is found that 
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matches the wait criterion, the system will copy the termination status from the deceased 

process. The process entry then is taken off the zombie list and is freed. Note that resources used 

by children of a process are accumulated only as a result of a wait4 system call. When users are 

trying to analyze the behavior of a long-running program, they will find it useful to be able to 

obtain this resource usage information before the termination of a process. Although the 

information is available inside the kernel and within the context of that program, there is no 

interface to request it outside that context until process termination. 

4.7 Signals 

Signals were originally designed to model exceptional events, such as an attempt by a user to kill 

a runaway program. They were not intended to be used as a general 

interprocess-communication mechanism, and thus no attempt was made to make them 

reliable. In earlier systems, whenever a signal was caught, its action was reset to the default 

action. The introduction of job control brought much more frequent use of signals and made 

more visible a problem that faster processors also exacerbated: If two signals were sent rapidly, 

the second could cause the process to die, even though a signal handler had been set up to catch 

the first signal. At this time, reliability became desirable, so the developers designed a new 

framework that contained the old capabilities as a subset while accommodating new 

mechanisms. 

The signal facilities found in FreeBSD are designed around a virtual-machine model, in 

which system calls are considered to be the parallel of a machine’s hardware instruction set. 

Signals are the software equivalent of traps or interrupts, and signal-handling routines do the 

equivalent function of interrupt or trap service routines. Just as machines provide a mechanism 

for blocking hardware interrupts so that consistent access to data structures can be ensured, the 

signal facilities allow software signals to be masked. Finally, because complex run-time stack 

environments may be required, signals, like interrupts, may be handled on an alternate 

application-provided run-time stack. These machine models are summarized in Table 4.4 
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Table 4.4 Comparison of hardware-machine operations and the corresponding software 

virtual-machine operations. 

FreeBSD defines a set of signals for software and hardware conditions that may arise during 

the normal execution of a program; these signals are listed in Table 4.5. Signals may be 

delivered to a process through application-specified signal handlers or may result in default 

actions, such as process termination, carried out by the system. FreeBSD signals are designed to 

be software equivalents of hardware interrupts or traps. 
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Table 4.5 Signals defined in FreeBSD. 

Each signal has an associated action that defines how it should be handled when it is delivered 

to a process. If a process contains more than one thread, each thread may specify whether it 

wishes to take action for each signal. Typically, one thread elects to handle all the 

process-related signals such as interrupt, stop, and continue. All the other threads in the process 

request that the process-related signals be masked out. Thread-specific signals such as 

segmentation fault, floating point exception, and illegal instruction are handled by the thread 

that caused them. Thus, all threads typically elect to receive these signals. The precise 

disposition of signals to threads is given in the later subsection on posting a signal. First, we 

describe the possible actions that can be requested. 

The disposition of signals is specified on a per-process basis. If a process has not specified an 

action for a signal, it is given a default action (see Table 4.5) that may be any one of the 

following: 

• Ignoring the signal 

• Terminating all the threads in the process 

• Terminating all the threads in the process after generating a core file that contains the 

process’s execution state at the time the signal was delivered 
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• Stopping all the threads in the process 

• Resuming the execution of all the threads in the process 

An application program can use the sigaction system call to specify an action for a signal, 

including these choices: 

• Taking the default action 

• Ignoring the signal 

• Catching the signal with a handler 

A signal handler is a user-mode routine that the system will invoke when the signal is 

received by the process. The handler is said to catch the signal. The two signals SIGSTOP and 

SIGKILL cannot be masked, ignored, or caught; this restriction ensures that a software 

mechanism exists for stopping and killing runaway processes. It is not possible for a process to 

decide which signals would cause the creation of a core file by default, but it is possible for a 

process to prevent the creation of such a file by ignoring, blocking, or catching the signal. 

Signals are posted to a process by the system when it detects a hardware event, such as an illegal 

instruction, or a software event, such as a stop request from the terminal. A signal may also be 

posted by another process through the kill system call. A sending process may post signals to 

only those receiving processes that have the same effective user identifier (unless the sender is 

the superuser). A single exception to this rule is the continue signal, SIGCONT, which always 

can be sent to any descendant of the sending process. The reason for this exception is to allow 

users to restart a setuid program that they have stopped from their keyboard. 

Like hardware interrupts, each thread in a process can mask the delivery of signals. The 

execution state of each thread contains a set of signals currently masked from delivery. If a 

signal posted to a thread is being masked, the signal is recorded in the thread’s set of pending 

signals, but no action is taken until the signal is unmasked. The sigprocmask system call 

modifies the set of masked signals for a thread. It can add to the set of masked signals, delete 

from the set of masked signals, or replace the set of masked signals. Although the delivery of the 

SIGCONT signal to the signal handler of a process may be masked, the action of resuming that 

stopped process is not masked. 

Two other signal-related system calls are sigsuspend and sigaltstack. The sigsuspend call 

permits a thread to relinquish the processor until that thread receives a signal. This facility is 

similar to the system’s sleep() routine. The sigaltstack call allows a process to specify a run-time 

stack to use in signal delivery. By default, the system will deliver signals to a process on the 
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latter’s normal run-time stack. In some applications, however, this default is unacceptable. For 

example, if an application has many threads that have carved up the normal run-time stack into 

many small pieces, it is far more memory efficient to create one large signal stack on which all 

the threads handle their signals than it is to reserve space for signals on each thread’s stack. 

The final signal-related facility is the sigreturn system call. Sigreturn is the equivalent of a 

user-level load-processor-context operation. The kernel is passed a pointer to a 

(machine-dependent) context block that describes the user-level execution state of a thread. The 

sigreturn system call restores state and resumes execution after a normal return from a user’s 

signal handler. 

Posting of a Signal 

The implementation of signals is broken up into two parts: posting a signal to a process and 

recognizing the signal and delivering it to the target thread. Signals may be posted by any 

process or by code that executes at interrupt level. Signal delivery normally takes place within 

the context of the receiving thread. When a signal forces a process to be stopped, the action can 

be carried out on all the threads associated with that process when the signal is posted. 

A signal is posted to a single process with the psignal() routine or to a group of processes with 

the gsignal() routine. The gsignal() routine invokes psignal() for each process in the specified 

process group. The actions associated with posting a signal are straightforward, but the details 

are messy. In theory, posting a signal to a process simply causes the appropriate signal to be 

added to the set of pending signals for the appropriate thread within the process, and the 

selected thread is then set to run (or is awakened if it was sleeping at an interruptible priority 

level). 

The disposition of signals is set on a per-process basis. The kernel first checks to see if the signal 

should be ignored, in which case it is discarded. If the process has specified the default action, 

then the default action is taken. If the process has specified a signal handler that should be run, 

then the kernel must select the appropriate thread within the process that should handle the 

signal. When a signal is raised because of the action of the currently running thread (for 

example, a segment fault), the kernel will only try to deliver it to that thread. If the thread is 

masking the signal, then the signal will be held pending until it is unmasked. When a 

process-related signal is sent (for example, an interrupt), then the kernel searches all the 

threads associated with the process, searching for one that does not have the signal masked. The 

signal is delivered to the first thread that is found with the signal unmasked. If all threads 

associated with the process are masking the signal, then the signal is left in the list of signals 

pending for the process for later delivery. 
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Each time that a thread returns from a call to sleep() (with the PCATCH flag set) or prepares to 

exit the system after processing a system call or trap, it uses the cursig() routine to check 

whether a signal is pending delivery. The cursig() routine determines the next signal that should 

be delivered to a thread by inspecting the process’s signal list, p_siglist, to see if it has any 

signals that should be propagated to the thread’s signal list, td_siglist. It then inspects the 

td_siglist field to check for any signals that should be delivered to the thread. If a signal is 

pending and must be delivered in the thread’s context, it is removed from the pending set, and 

the thread invokes the postsig() routine to take the appropriate action. 

The work of psignal() is a patchwork of special cases required by the process-debugging and 

job-control facilities and by intrinsic properties associated with signals. The steps involved in 

posting a signal are as follows: 

1. Determine the action that the receiving process will take when the signal is delivered. This 

information is kept in the p_sigignore and p_sigcatch fields of the process’s process structure. 

If a process is not ignoring or catching a signal, the default action is presumed to apply. If a 

process is being traced by its parent—that is, by a debugger—the parent process is always 

permitted to intercede before the signal is delivered. If the process is ignoring the signal, 

psignal()’s work is done and the routine can return. 

2. Given an action, psignal() selects the appropriate thread and adds the signal to the thread’s 

set of pending signals, td_siglist, and then does any implicit actions specific to that signal. For 

example, if the signal is the continue signal, SIGCONT, any pending signals that would normally 

cause the process to stop, such as SIGTTOU, are removed. 

3. Next, psignal() checks whether the signal is being masked. If the thread is currently masking 

delivery of the signal, psignal()’s work is complete and it may return. 

4. If the signal is not being masked, psignal() must either perform the action directly or arrange 

for the thread to execute so that the thread will take the action associated with the signal. Before 

setting the thread to a runnable state, psignal() must take different courses of action depending 

on the state of the thread as follows: 

SLEEPING 

The thread is blocked awaiting an event. If the thread is sleeping noninterruptibly, then nothing 

further can be done. Otherwise, the kernel can apply the action—either directly or indirectly—by 

waking up the thread. There are two actions that can be applied directly. For signals that cause a 

process to stop, all the threads in the process are placed in the STOPPED state, and the parent 

process is notified of the state change by a SIGCHLD signal being posted to it. For signals that 
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are ignored by default, the signal is removed from the signal list and the work is complete. 

Otherwise, the action associated with the signal must be done in the context of the receiving 

thread, and the thread is placed onto the run queue with a call to setrunnable(). 

STOPPED 

The process is stopped by a signal or because it is being debugged. If the process is being 

debugged, then there is nothing to do until the controlling process permits it to run again. If the 

process is stopped by a signal and the posted signal would cause the process to stop again, then 

there is nothing to do, and the posted signal is discarded. Otherwise, the signal is either a 

continue signal or a signal that would normally cause the process to terminate (unless the signal 

is caught). If the signal is SIGCONT, then all the threads in the process that were previously 

running are set running again. Any threads in the process that were blocked waiting on an event 

are returned to the SLEEPING state. If the signal is SIGKILL, then all the threads in the process 

are set running again no matter what, so that they can terminate the next time that they are 

scheduled to run. Otherwise, the signal causes the threads in the process to be made runnable, 

but the threads are not placed on the run queue because they must wait for a continue signal. 

RUNNABLE, NEW, ZOMBIE 

If a thread scheduled to receive a signal is not the currently executing thread, its 

TDF_NEEDRESCHED flag is set, so that the signal will be noticed by the receiving thread as 

soon as possible. 

Delivering a Signal 

Most actions associated with delivering a signal to a thread are carried out within the context of 

that thread. A thread checks its td_siglist field for pending signals at least once each time that it 

enters the system by calling cursig(). 

If cursig() determines that there are any unmasked signals in the thread’s signal list, it calls 

issignal() to find the first unmasked signal in the list. If delivering the signal causes a signal 

handler to be invoked or a core dump to be made, the caller is notified that a signal is pending, 

and the delivery is done by a call to postsig(). That is, 

Click here to view code image 

if (sig = cursig(curthread)) 

    postsig(sig); 
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Otherwise, the action associated with the signal is done within issignal() (these actions mimic 

the actions carried out by psignal()). 

The postsig() routine has two cases to handle: 

1. Producing a core dump 

2. Invoking a signal handler 

The former task is done by the coredump() routine and is always followed by a call to exit() to 

force process termination. To invoke a signal handler, postsig() first calculates a set of masked 

signals and installs that set in td_sigmask. This set normally includes the signal being delivered, 

so that the signal handler will not be invoked recursively by the same signal. Any signals 

specified in the sigaction system call at the time the handler was installed also will be included. 

The postsig() routine then calls the sendsig() routine to arrange for the signal handler to execute 

immediately after the thread returns to user mode. Finally, the signal in td_siglist is cleared and 

postsig() returns, presumably to be followed by a return to user mode. 

The implementation of the sendsig() routine is machine dependent. Figure 4.6 shows the flow of 

control associated with signal delivery. If an alternate stack has been requested, the user’s stack 

pointer is switched to point at that stack. An argument list and the thread’s current user-mode 

execution context are stored by the kernel on the (possibly new) stack. The state of the thread is 

manipulated so that, on return to user mode, a call will be made immediately to a body of code 

termed the signal-trampoline code. This code invokes the signal handler (between steps 2 

and 3 in Figure 4.6) with the appropriate argument list, and, if the handler returns, makes a 

sigreturn system call to reset the thread’s signal state to the state that existed before the signal. 

The signal-trampoline code, sigcode() contains several assembly-language instructions that are 

copied onto the thread’s stack when the signal is about to be delivered. It is the responsibility of 

the trampoline code to call the registered signal handler, handle any possible errors, and then 

return the thread to normal execution. The trampoline code is implemented in assembly 

language because it must directly manipulate CPU registers, including those relating to the stack 

and return value. 
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Figure 4.6 Delivery of a signal to a process. Step 1: The kernel places a signal context on the 

user’s stack. Step 2: The kernel places a signal-handler frame on the user’s stack and arranges to 

start running the user process in the sigtramp() code. When the sigtramp() routine starts 

running, it calls the user’s signal handler. Step 3: The user’s signal handler returns to the 

sigtramp() routine, which pops the signal-handler context from the user’s stack. Step 4: The 

sigtramp() routine finishes by calling the sigreturn system call, which restores the previous user 

context from the signal context, pops the signal context from the stack, and resumes the user’s 

process at the point at which it was running before the signal occurred. 

4.8 Process Groups and Sessions 

Each process in the system is associated with a process group. The group of processes in a 

process group is sometimes referred to as a job and is manipulated as a single entity by 

processes such as the shell. Some signals (e.g., SIGINT) are delivered to all members of a 

process group, causing the group as a whole to suspend or resume execution, or to be 

interrupted or terminated. 

Sessions were designed by the IEEE POSIX.1003.1 Working Group with the intent of fixing a 

long-standing security problem in UNIX—namely, that processes could modify the state of 

terminals that were trusted by another user’s processes. A session is a collection of process 
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groups, and all members of a process group are members of the same session. In FreeBSD, when 

a user first logs onto the system, he is entered into a new session. Each session has a 

controlling process, which is normally the user’s login shell. All subsequent processes 

created by the user are part of process groups within this session, unless he explicitly creates a 

new session. Each session also has an associated login name, which is usually the user’s login 

name. This name can be changed by only the superuser. 

Each session is associated with a terminal, known as its controlling terminal. Each 

controlling terminal has a process group associated with it. Normally, only processes that are in 

the terminal’s current process group read from or write to the terminal, allowing arbitration of a 

terminal between several different jobs. When the controlling process exits, access to the 

terminal is taken away from any remaining processes within the session. 

Newly created processes are assigned process IDs distinct from all already-existing processes 

and process groups, and are placed in the same process group and session as their parent. Any 

process may set its process group equal to its process ID (thus creating a new process group) or 

to the value of any process group within its session. In addition, any process may create a new 

session, as long as it is not already a process-group leader. 

Process Groups 

A process group is a collection of related processes, such as a shell pipeline, all of which have 

been assigned the same process-group identifier. The process-group identifier is the same 

as the PID of the process group’s initial member; thus, process-group identifiers share the 

namespace of process identifiers. When a new process group is created, the kernel allocates a 

process-group structure to be associated with it. This process-group structure is entered into a 

process-group hash table so that it can be found quickly. 

A process is always a member of a single process group. When it is created, each process is 

placed into the process group of its parent process. Programs such as shells create new process 

groups, usually placing related child processes into a group. A process can change its own 

process group or that of one of its child process by creating a new process group or by moving a 

process into an existing process group using the setpgid system call. For example, when a shell 

wants to set up a new pipeline, it wants to put the processes in the pipeline into a process group 

different from its own so that the pipeline can be controlled independently of the shell. The shell 

starts by creating the first process in the pipeline, which initially has the same process-group 

identifier as the shell. Before executing the target program, the first process does a setpgid to set 

its process-group identifier to the same value as its PID. This system call creates a new process 

group, with the child process as the process-group leader of the process group. As the shell 
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starts each additional process for the pipeline, each child process uses setpgid to join the 

existing process group. 

In our example of a shell creating a new pipeline, there is a race condition. As the additional 

processes in the pipeline are spawned by the shell, each is placed in the process group created by 

the first process in the pipeline. These conventions are enforced by the setpgid system call. It 

restricts the set of process-group identifiers to which a process may be set to either a value equal 

to its own PID or to a value of another process-group identifier in its session. Unfortunately, if a 

pipeline process other than the process-group leader is created before the process-group leader 

has completed its setpgid call, the setpgid call to join the process group will fail. As the setpgid 

call permits parents to set the process group of their children (within some limits imposed by 

security concerns), the shell can avoid this race by making the setpgid call to change the child’s 

process group both in the newly created child and in the parent shell. This algorithm guarantees 

that, no matter which process runs first, the process group will exist with the correct 

process-group leader. The shell can also avoid the race by using the vfork variant of the fork 

system call that forces the parent process to wait until the child process either has done an exec 

system call or has exited. In addition, if the initial members of the process group exit before all 

the pipeline members have joined the group—for example, if the process-group leader exits 

before the second process joins the group, the setpgid call could fail. The shell can avoid this 

race by ensuring that all child processes are placed into the process group without calling the 

wait system call, usually by blocking the SIGCHLD signal so that the shell will not be notified of 

a child exit until after all the children have been placed into the process group. As long as a 

process-group member exists, even as a zombie process, additional processes can join the 

process group. 

There are additional restrictions on the setpgid system call. A process may join process groups 

only within its current session (discussed in the next section), and it cannot have done an exec 

system call. The latter restriction is intended to avoid unexpected behavior if a process is moved 

into a different process group after it has begun execution. Therefore, when a shell calls setpgid 

in both parent and child processes after a fork, the call made by the parent will fail if the child 

has already made an exec call. However, the child will already have joined the process group 

successfully, and the failure is innocuous. 

Sessions 

Just as a set of related processes are collected into a process group, a set of process groups are 

collected into a session. A session is a set of one or more process groups and may be associated 

with a terminal device. The main uses for sessions are to collect a user’s login shell and the jobs 

that it spawns and to create an isolated environment for a daemon process and its children. Any 
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process that is not already a process-group leader may create a session using the setsid system 

call, becoming the session leader and the only member of the session. Creating a session also 

creates a new process group, where the process-group ID is the PID of the process creating the 

session, and the process is the process-group leader. By definition, all members of a process 

group are members of the same session. 

A session may have an associated controlling terminal that is used by default for 

communicating with the user. Only the session leader may allocate a controlling terminal for the 

session, becoming a controlling process when it does so. A device can be the controlling 

terminal for only one session at a time. The terminal I/O system (described in Section 8.6) 

synchronizes access to a terminal by permitting only a single process group to be the foreground 

process group for a controlling terminal at any time. Some terminal operations are restricted to 

members of the session. A session can have at most one controlling terminal. When a session is 

created, the session leader is dissociated from its controlling terminal if it had one. 

A login session is created by a program that prepares a terminal for a user to log into the system. 

That process normally executes a shell for the user, and thus the shell is created as the 

controlling process. An example of a typical login session is shown in Figure 4.7. 

 

Figure 4.7 A session and its processes. In this example, process 3 is the initial member of the 

session—the session leader—and is referred to as the controlling process if it has a controlling 

terminal. It is contained in its own process group, 3. Process 3 has spawned two jobs: One is a 

pipeline composed of processes 4 and 5, grouped together in process group 4, and the other one 

is process 8, which is in its own process group, 8. No process-group leader can create a new 

session; thus, process 3, 4, or 8 could not start its own session, but process 5 would be allowed 

to do so. 

The data structures used to support sessions and process groups in FreeBSD are shown in 

Figure 4.8. This figure parallels the process layout shown in Figure 4.7. The pg_members field 

of a process-group structure heads the list of member processes; these processes are linked 

together through the p_pglist list entry in the process structure. In addition, each process has a 
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reference to its process-group structure in the p_pgrp field of the process structure. Each 

process-group structure has a pointer to its enclosing session. The session structure tracks 

per-login information, including the process that created and controls the session, the 

controlling terminal for the session, and the login name associated with the session. Two 

processes wanting to determine whether they are in the same session can traverse their p_pgrp 

pointers to find their process-group structures and then compare the pg_session pointers to see 

whether the latter are the same. 

 

Figure 4.8 Process-group organization. 
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Job Control 

Job control is a facility first provided by the C shell [Joy, 1994] and today is provided by most 

shells. It permits a user to control the operation of groups of processes termed jobs. The most 

important facilities provided by job control are the abilities to suspend and restart jobs and to 

do the multiplexing of access to the user’s terminal. Only one job at a time is given control of the 

terminal and is able to read from and write to the terminal. This facility provides some of the 

advantages of window systems, although job control is sufficiently different that it is often used 

in combination with window systems. Job control is implemented on top of the process group, 

session, and signal facilities. 

Each job is a process group. Outside the kernel, a shell manipulates a job by sending signals to 

the job’s process group with the killpg system call, which delivers a signal to all the processes in 

a process group. Within the system, the two main users of process groups are the terminal 

handler (Section 8.6) and the interprocess-communication facilities (Chapter 12). Both facilities 

record process-group identifiers in private data structures and use them in delivering signals. 

The terminal handler, in addition, uses process groups to multiplex access to the controlling 

terminal. 

For example, special characters typed at the keyboard of the terminal (e.g., control-C or 

control-\) result in a signal being sent to all processes in one job in the session; that job is in the 

foreground, whereas all other jobs in the session are in the background. A shell may change 

the foreground job by using the tcsetpgrp() function, implemented by the TIOCSPGRP ioctl on 

the controlling terminal. Background jobs will be sent the SIGTTIN signal if they attempt to 

read from the terminal, normally stopping the job. The SIGTTOU signal is sent to background 

jobs that attempt an ioctl system call that would alter the state of the terminal. The SIGTTOU 

signal is also sent if the TOSTOP option is set for the terminal, and an attempt is made to write 

to the terminal. 

The foreground process group for a session is stored in the t_pgrp field of the session’s 

controlling terminal tty structure (see Section 8.6). All other process groups within the session 

are in the background. In Figure 4.8, the session leader has set the foreground process group for 

its controlling terminal to be its own process group. Thus, its two jobs are in the background, 

and the terminal input and output will be controlled by the session-leader shell. Job control is 

limited to processes contained within the same session and to the terminal associated with the 

session. Only the members of the session are permitted to reassign the controlling terminal 

among the process groups within the session. 
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If a controlling process exits, the system revokes further access to the controlling terminal and 

sends a SIGHUP signal to the foreground process group. If a process such as a job-control shell 

exits, each process group that it created will become an orphaned process group: a process 

group in which no member has a parent that is a member of the same session but of a different 

process group. Such a parent would normally be a job-control shell capable of resuming stopped 

child processes. The pg_jobc field in Figure 4.8 counts the number of processes within the 

process group that have the controlling process as a parent. When that count goes to zero, the 

process group is orphaned. If no action were taken by the system, any orphaned process groups 

that were stopped at the time that they became orphaned would be unlikely ever to resume. 

Historically, the system dealt harshly with such stopped processes: They were killed. In POSIX 

and FreeBSD, an orphaned process group is sent a hangup and a continue signal if any of its 

members are stopped when it becomes orphaned by the exit of a parent process. If processes 

choose to catch or ignore the hangup signal, they can continue running after becoming 

orphaned. The system keeps a count of processes in each process group that have a parent 

process in another process group of the same session. When a process exits, this count is 

adjusted for the process groups of all child processes. If the count reaches zero, the process 

group has become orphaned. Note that a process can be a member of an orphaned process 

group even if its original parent process is still alive. For example, if a shell starts a job as a 

single process A, that process then forks to create process B, and the parent shell exits; then 

process B is a member of an orphaned process group but is not an orphaned process. 

To avoid stopping members of orphaned process groups if they try to read or write to their 

controlling terminal, the kernel does not send them SIGTTIN and SIGTTOU signals, and 

prevents them from stopping in response to those signals. Instead, their attempts to read or 

write to the terminal produce an error. 

4.9 Process Debugging 

FreeBSD provides a simple facility for controlling and debugging the execution of a process. This 

facility, accessed through the ptrace system call, permits a parent process to control a child 

process’s execution by manipulating user- and kernel-mode execution states. In particular, with 

ptrace, a parent process can do the following operations on a child process: 

• Attaches to an existing process to begin debugging it 

• Reads and writes address space and registers 

• Intercepts signals posted to the process 

• Single steps and continues the execution of the process 
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• Terminates the execution of the process 

The ptrace call is used almost exclusively by program debuggers, such as lldb. 

When a process is being traced, any signals posted to that process cause it to enter the 

STOPPED state. The parent process is notified with a SIGCHLD signal and may interrogate the 

status of the child with the wait4 system call. On most machines, trace traps, generated when 

a process is single stepped, and breakpoint faults, caused by a process executing a breakpoint 

instruction, are translated by FreeBSD into SIGTRAP signals. Because signals posted to a traced 

process cause it to stop and result in the parent being notified, a program’s execution can be 

controlled easily. 

To start a program that is to be debugged, the debugger first creates a child process with a fork 

system call. After the fork, the child process uses a ptrace call that causes the process to be 

flagged as “traced” by setting the P_TRACED bit in the p_flag field of the process structure. The 

child process then sets the trace trap bit in the process’s processor status word and calls execve 

to load the image of the program that is to be debugged. Setting this bit ensures that the first 

instruction executed by the child process after the new image is loaded will result in a hardware 

trace trap, which is translated by the system into a SIGTRAP signal. Because the parent process 

is notified about all signals to the child, it can intercept the signal and gain control over the 

program before it executes a single instruction. 

Alternatively, the debugger may take over an existing process by attaching to it. A successful 

attach request causes the process to enter the STOPPED state and to have its P_TRACED bit set 

in the p_flag field of its process structure. The debugger can then begin operating on the 

process in the same way as it would with a process that it had explicitly started. 

An alternative to the ptrace system call is the /proc filesystem. The functionality provided by 

the /proc filesystem is the same as that provided by ptrace; it differs only in its interface. The 

/proc filesystem implements a view of the system process table inside the filesystem and is so 

named because it is normally mounted on /proc. It provides a two-level view of process space. 

At the highest level, processes themselves are named, according to their process IDs. There is 

also a special node called curproc that always refers to the process making the lookup request. 

Each node is a directory that contains the following entries: 

ctl 

A write-only file that supports a variety of control operations. Control commands are written as 

strings to the ctl file. The control commands are: 
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attach 

Stops the target process and arranges for the sending process to become the debug control 

process. 

detach 

Continues execution of the target process and remove it from control by the debug process (that 

need not be the sending process). 

run 

Continues running the target process until a signal is delivered, a breakpoint is hit, or the target 

process exits. 

step 

Single steps the target process, with no signal delivery. 

wait 

Waits for the target process to come to a steady state ready for debugging. The target process 

must be in this state before any of the other commands are allowed. 

The string can also be the name of a signal, lowercase and without the SIG prefix, in which case 

that signal is delivered to the process. 

dbregs 

Sets the debug registers as defined by the machine architecture. 

etype 

The type of the executable referenced by the file entry. 

file 

A reference to the vnode from which the process text was read. This entry can be used to gain 

access to the symbol table for the process or to start another copy of the process. 

fpregs 
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The floating point registers as defined by the machine architecture. It is only implemented on 

machines that have distinct general-purpose and floating-point register sets. 

map 

A map of the process’s virtual memory. 

mem 

The complete virtual memory image of the process. Only those addresses that exist in the 

process can be accessed. Reads and writes to this file modify the process. Writes to the text 

segment remain private to the process. Because the address space of another process can be 

accessed with read and write system calls, a debugger can access a process being debugged with 

much greater efficiency than it can with the ptrace system call. The pages of interest in the 

process being debugged are mapped into the kernel address space. The data requested by the 

debugger can then be copied directly from the kernel to the debugger’s address space. 

regs 

Allows read and write access to the register set of the process. 

rlimit 

A read-only file containing the process’s current and maximum limits. 

status 

The process status. This file is read-only and returns a single line containing multiple 

space-separated fields that include the command name, the process id, the parent process id, 

the process group id, the session id, the controlling terminal (if any), a list of the process flags, 

the process start time, user and system times, the wait channel message, and the process 

credentials. 

Each node is owned by the process’s user and belongs to that user’s primary group, except for 

the mem node, which belongs to the kmem group. 

In a normal debugging environment, where the target does a fork followed by an exec by the 

debugger, the debugger should fork and the child should stop itself (with a self-inflicted 

SIGSTOP, for example). The parent should issue a wait and then an attach command via the 

appropriate ctl file. The child process will receive a SIGTRAP immediately after the call to exec. 
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Users wishing to view process information often find it easier to use the procstat command 

than to figure out how to extract the information from the /proc filesystem. 

Exercises 

4.1 For each state listed in Table 4.1, list the system queues on which a process in that state 

might be found. 

4.2 Why is the performance of the context-switching mechanism critical to the performance of a 

highly multiprogrammed system? 

4.3 What effect would increasing the time quantum have on the system’s interactive response 

and total throughput? 

4.4 What effect would reducing the number of run queues from 64 to 32 have on the scheduling 

overhead and on system performance? 

4.5 Give three reasons for the system to select a new process to run. 

4.6 Describe the three types of scheduling policies provided by FreeBSD. 

4.7 What type of jobs does the timeshare scheduling policy favor? Propose an algorithm for 

identifying these favored jobs. 

4.8 When and how does thread scheduling interact with memory-management facilities? 

4.9 After a process has exited, it may enter the state of being a ZOMBIE before disappearing 

from the system entirely. What is the purpose of the ZOMBIE state? What event causes a 

process to exit from ZOMBIE? 

4.10 Suppose that the data structures shown in Table 4.3 do not exist. Instead, assume that 

each process entry has only its own PID and the PID of its parent. Compare the costs in space 

and time to support each of the following operations: 

a. Creation of a new process 

b. Lookup of the process’s parent 

c. Lookup of all of a process’s siblings 

d. Lookup of all of a process’s descendants 
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e. Destruction of a process 

4.11 What are the differences between a mutex and a lock-manager lock? 

4.12 Give an example of where a mutex lock should be used. Give an example of where a 

lock-manager lock should be used. 

4.13 A process blocked without setting the PCATCH flag may never be awakened by a signal. 

Describe two problems a noninterruptible sleep may cause if a disk becomes unavailable while 

the system is running. 

4.14 Describe the limitations a jail puts on the filesystem namespace, network access, and 

processes running in the jail. 

*4.15 In FreeBSD, the signal SIGTSTP is delivered to a process when a user types a “suspend 

character.” Why would a process want to catch this signal before it is stopped? 

*4.16 Before the FreeBSD signal mechanism was added, signal handlers to catch the SIGTSTP 

signal were written as 

Click here to view code image 

catchstop() 

{ 

    prepare to stop; 

    signal(SIGTSTP, SIG_DFL); 

    kill(getpid(), SIGTSTP); 

    signal(SIGTSTP, catchstop); 

} 

This code causes an infinite loop in FreeBSD. Why does it do so? How should the code be 

rewritten? 

*4.17 The process-priority calculations and accounting statistics are all based on sampled data. 

Describe hardware support that would permit more accurate statistics and priority calculations. 

*4.18 Why are signals a poor interprocess-communication facility? 

**4.19 A kernel-stack-invalid trap occurs when an invalid value for the kernel-mode stack 

pointer is detected by the hardware. How might the system gracefully terminate a process that 

receives such a trap while executing on its kernel-run-time stack? 
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**4.20 Describe alternatives to the test-and-set instruction that would allow you to build a 

synchronization mechanism for a multiprocessor FreeBSD system. 

**4.21 A lightweight process is a thread of execution that operates within the context of a 

normal FreeBSD process. Multiple lightweight processes may exist in a single FreeBSD process 

and share memory, but each is able to do blocking operations, such as system calls. Describe 

how lightweight processes might be implemented entirely in user mode. 
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Chapter 5. Security 

Security is an integral part of contemporary operating-system design, from supporting multiple 

users and limiting their interactions via access-control, to mitigating software vulnerabilities via 

sandboxing, and implementing cryptographic protection of network and disk data. The FreeBSD 

security model addresses a broad range of use cases spanning classic UNIX servers and 

workstations, storage appliances, network routers and switches, Internet Service Provider 

hosting environments, and even hand-held devices. The security model has tracked these 

evolving needs through 30 years of contributions from active security research and development 

communities. 

The kernel is the heart of FreeBSD’s Trusted Computing Base (TCB), the minimum subset of 

system components that must be secure for the system as a whole to be secure. The kernel 

protects itself from userspace interference using processor rings and virtual memory; these CPU 

features also support the UNIX process model, which isolates application instances from one 

another. Processes not only offer robustness in the face of application bugs, but also provide the 

underlying assumption of isolation required to implement access control. The kernel also 

maintains a tamper-proof credential for each process that holds security information such as the 

user and groups on whose behalf the process acts. These credentials are used as inputs to 

interprocess and discretionary access controls such as filesystem permissions, which in turn 

allow administrators, application authors, and users to specify policies for data sharing in the 

system. More recent additions to the FreeBSD security feature set include lightweight jail 

virtualization, mandatory access control, the Capsicum capability model (used for sandboxing), 

and security event auditing (or logging). 

The kernel’s low-level security features are the foundation on which more complex userspace 

security models can be based. For example, while the kernel itself has no notion of user 

authentication, process credentials, root privilege, and filesystem permissions collectively 

protect the password file and allow controlled switching of users at login. As network security 

has become more important and threat models have expanded to include physical theft of 

computer systems, kernel cryptographic features such as secure pseudorandom number 

generation, encryption, and integrity checking have been introduced. These security features 

support contemporary cryptographic protocols such as IPSec, ssh, and full-disk encryption. 

In this chapter, we consider the underlying model and its practical implementation; these 

design principles and low-level services directly affect the subsystems described throughout the 

remaining chapters. 
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5.1 Operating-System Security 

Operating-system security is a broad topic spanning the kernel, filesystem layout, and userspace 

applications. Historic notions of operating-system security centered on authentication, access 

control, and security-event auditing—features explored and largely standardized between the 

1960s and 1990s. These features limit and account for user access to data, and were initially 

found only in high-end computing systems with hardware support for memory protection: 

mainframes, minicomputers, servers, and later high-end workstations [Saltzer & Schroeder, 

1975]. By the end of the 1990s, higher-end technologies had become available to personal 

workstations and notebook computers, and during the early 2000s, tablets and smart phones. 

Fundamental new technologies emerged in the consumer space including digital subscriber 

lines, local-area networks (LANs) wide-area networks (WANs), and wireless networking, 

making personal computing devices the epicenter, rather than the periphery, of computer 

security. 

As a result, requirements for operating-system security have expanded to include features 

previously found only in research or high-assurance trusted systems. They also incorporate new 

technologies necessary to address the world of distributed systems that was unanticipated by 

earlier development. Some of these features center on the concept of a trusted computing 

base (TCB)—that self-protecting core in the operating system that provides confidence in its 

security [Anderson, 1972]. Others place individual computer systems securely in a global 

network context through services built on cryptography and cryptographic protocols, also 

products of the 1980s and 1990s. 

BSD, and later FreeBSD, have been central to this evolution, as they provide a bridge for 

advanced operating systems from the traditional world of mainframe computers, first to 

commodity server hardware and personal computers (PCs), and later to a variety of embedded 

and mobile devices. FreeBSD has developed and adopted new security features to support the 

security requirements of personal workstations, network servers, and derived systems including 

the security models found in Juniper’s Junos operating system (used throughout Juniper’s 

router, switch, and firewall products) and Apple’s Mac OS X and iOS operating systems (used on 

Apple Mac computers, and also the iPhone, iPod Touch, and iPad mobile devices) [Watson, 

2013]. 

FreeBSD provides the following security features: 

• a self-protecting Trusted Computing Base (TCB) spanning kernel and userspace; 

• kernel isolation and process separation based on virtual memory; 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref21


 

185 

• authentication and multiplexing of multiple simultaneous users; 

• discretionary and mandatory access-control models; 

• sandboxing facilities to contain potentially malicious code; 

• a range of mitigation techniques such as stack protection; 

• security-event auditing for accountability and intrusion detection; 

• Yarrow-based /dev/random supporting hardware and software entropy sources; 

• support for Trusted Platform Modules (TPMs); 

• a cryptographic framework supporting hardware and software implementations; 

• support for full-disk encryption and cryptographic integrity protection; 

• distributed authentication models (e.g., Kerberos, x.509 certificates); 

• cryptographically protected network protocols (e.g., ssh, TLS, IPSec); and 

• binary updates to remedy vulnerabilities discovered after release. 

This chapter focuses on the kernel’s security model and facilities—foundations for userspace 

security, including the ubiquitous multiuser UNIX model. 

5.2 Security Model 

The core of the FreeBSD security model is a trusted, self-protecting kernel hosting a user 

process model. Discretionary and mandatory access control constrain communication 

between processes and access to network and storage facilities. The privilege model allows 

controlled violation of access-control policies for the purposes of system operation and 

management. Collectively, these features support the definition of FreeBSD’s TCB: a 

self-protecting core of the operating system that allows safe execution of untrustworthy code for 

mutually distrusting users. Other features, such as mandatory access control, a 

capability-system model, security event auditing, lightweight virtualization, and cryptographic 

features both reinforce and build on these low-level elements. 
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Process Model 

The kernel relies on two hardware features to implement process isolation: virtual addressing, 

which constructs independent virtual-memory address spaces for each process, and rings, which 

restrict access to privileged CPU protection features while in user mode that otherwise might 

allow breaking out of process confinement. System calls (e.g., syscall on MIPS and sysenter on 

recent X86), virtual-memory traps, and interrupts allow transitions to and from the privileged 

kernel; system calls occur via hardware-supported call gates that allow safe transition of control 

from an untrusted user process to kernel execution on the same CPU. The kernel is permitted 

access to user process memory, but user processes are allowed neither access to kernel memory, 

nor to the memory of other processes. Exceptions are granted for the purposes of privileged 

system management, debugging, and certain types of interprocess communication (e.g., shared 

memory objects). 

For most of the history of UNIX systems, only two hardware rings have been employed: user 

and supervisor modes. More recently, full system virtualization has popularized the use of 

additional rings, in which a hypervisor hosts a general-purpose operating-system kernel in 

much the same way that an operating-system kernel hosts user processes. FreeBSD is able to 

run on several such virtualization systems, and even host virtual machines itself, but they are 

not considered further in this chapter, which focuses on security within a single operating 

system instance. 

Discretionary and Mandatory Access Control 

Kernel services such as the filesystem, interprocess communication, and networking bridge 

process isolation. They are constrained by access-control policies, which include 

discretionary access control (DAC) and mandatory access control (MAC). As the 

name suggests, DAC protects objects at the discretion of the object owner—for example, file 

permissions or access control lists (ACLs). In contrast, MAC allows system administrators 

to impose mandatory rules across all processes. MAC policies often take the form of 

information-flow-based models (e.g., for confidentiality) or rule-based models (e.g., to constrain 

the scope of an application program to certain operations regardless of the user that runs it). 

Separation of policy and enforcement is a key design goal, preventing code duplication (and 

associated bugs), making it easier to extend the security model as requirements change, and 

facilitating security review. Access-control implementation is therefore split across two places in 

the kernel: centralized implementations of policies, and more widely distributed enforcement 

points in various subsystems. For example, the function vaccess_acl_posix1e() in 
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subr_acl_posix1e.c implements POSIX.1e ACL evaluation centrally, but is invoked by several 

individual filesystems to check accesses. Mandatory access control and system privilege checks 

are similarly structured. 

Access control policies depend on the process credential to hold security metadata associated 

with a process, such as user IDs and MAC labels, that can be compared with metadata on 

filesystem objects, IPC objects, and other processes during access-control decision making. 

Credentials are maintained and protected within the kernel address space so that modifications 

can only be made in keeping with the security policy. 

Trusted Computing Base (TCB) 

One critical function of access control is protecting the integrity of the TCB itself from 

unauthorized modification that might render other security protections moot. The FreeBSD TCB 

consists of the boot loader, kernel, and userspace libraries and programs required to support 

boot to multi-user mode, user login, and system administration functions (e.g., setuid-root 

binaries). In practice, the TCB includes a significant fraction of the integrated FreeBSD 

userspace, from /sbin/init, /etc/rc.d, and the libraries and tools necessary to run them, such 

as /lib/libc.so, and /bin/sh, to user login and management components such as 

/usr/sbin/sshd and /usr/bin/passwd. In a typical FreeBSD installation, protection of the 

TCB occurs primarily through careful configuration of system users and file ownership: most 

system files are owned by the root user, and cannot be unmodified by any other users. 

Mandatory access-control policies, such as the Biba integrity model discussed in this chapter, 

supplements this discretionary form of access control. 

Other Kernel-Security Features 

Other key concepts described in this chapter include the kernel’s privilege model, that allows 

selective exemption from access-control rules for the purposes of system bootstrap, 

management, and debugging. FreeBSD also implements a hybrid-capability-system model, 

Capsicum, which provides APIs for application compartmentalization (running code 

within a sandbox). Complex, security-aware applications such as Web browsers use Capsicum 

to limit access to ambient authority, or the full rights of a user, for risky portions of their 

functionality (e.g., Web-page rendering). FreeBSD jails build on access-control and privilege 

features to provide operating-system virtualization. Security-event auditing logs 

security-critical events for administrator review and automated intrusion detection systems. 

Low-level cryptographic features in the kernel, such as the kernel’s cryptography framework and 
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Yarrow random number generator, support higher-level services such as GELI disk encryption 

and the IPSec network protocol. 

5.3 Process Credentials 

Process credentials represent the notion of a subject for a variety of security and 

resource-management purposes: they hold UNIX security metadata such as User IDs (UIDs) 

and Group IDs (GIDs), MAC labels, event auditing state, and references to current jail state and 

resource limits. These fields collectively encapsulate the rights that a process has within the 

system, which will vary based on the user owning the process, the groups of which the user is a 

member, the jail the process is in, the binary that the process is executing, and other properties, 

such as resource limits and MAC policies that may provide (or limit) finer-grained rights on a 

per-process basis. When the kernel makes an access-control decision during a system call or in a 

trap handler, the authorizing credential is checked against object properties such as file owners, 

permissions, and labels. It is also checked against global policies to determine whether the 

operation should be allowed to proceed. 

User credentials, stored in the kernel ucred structure, are stored in kernel memory to protect 

them from undesired modification by user processes; they can be modified only according to 

system access-control rules. Each proc structure points to its process credential via the p_ucred 

field. Individual threads within a process also have credential references via their td_ucred field. 

Per-thread credentials act as a thread-local cache of the process credential that can be accessed 

read-only without acquiring the process lock, avoiding contention. Avoiding lock contention is 

particularly important during system calls that perform many access-control checks. For 

example, pathname lookup uses the credential to determine the portion of the file permissions 

bitmask that applies, and what privileges override it, for each looked-up intermediate directory. 

Thread credentials are synchronized with the process credential by calling 

cred_update_thread() whenever system calls or traps enter the kernel, or when a thread 

modifies the process credential. This model allows system calls and traps to use a consistent 

credential for their duration, avoiding race conditions when credentials change (e.g., because of 

setuid in another thread) that might otherwise lead to inconsistent behavior. However, an 

important result of this design choice is that downgrading of privilege by one thread will not 

immediately affect in-flight operations in other threads, such as long-running I/O operations, 

that will continue using the credential present when the system call began. 
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The Credential Structure 

Credentials are represented by the ucred structure, illustrated in Figure 5.1. The credential 

incorporates traditional UNIX IDs, including the effective, real, and saved UIDs and GIDs, and a 

variable-length list of additional GIDs, described by cr_ngroups (number of additional groups 

present), cr_groups (pointer to the group array), and cr_agroups (number of groups that will 

fit in the currently allocated array). Historically, the additional group list was a fixed-size array 

in the credential, but was moved to external, variable-size storage as larger group lists became 

common. The credential also includes a flags field, cr_flags, that currently stores a single flag, 

CRED_FLAG_CAPMODE, indicating that the process is in a Capsicum-capability-mode 

sandbox, discussed later in this chapter. 

 

Figure 5.1 The credential structure. 

Credentials reference two additional classes of external data structures. Peruser resource usage 

policy and accounting utilize reference-counted data structures pointed to by cr_uidinfo, 

cr_ruidinfo, and cr_loginclass. Several optional security features conditionally allocate storage, 
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including MAC (cr_label), security event auditing (cr_audit), and jail (cr_prison). 

Reference-counted shared objects not only save space by avoiding storing the same information 

for many credentials, but also provide for live reconfiguration of global subject state, such as 

changes to a jail’s configuration. 

Credential Memory Model 

To conserve space, the credential structure is reference counted, copy-on-write, using the cr_ref 

field; any credential with a reference count greater than 1 is immutable. Modifications to 

credentials require that the original first be duplicated, then any updates done on the new 

instance, with the old credential reference replaced with the new one when ready. As credentials 

are rarely modified, this model conserves kernel memory and reduces cache footprint. Kernel 

functions managing credentials are shown in Table 5.1. 

 

Table 5.1 Functions for managing credentials. 

Access-Control Checks 

Access-control checks accept a thread (almost always the current thread) or an explicit 

credential as an argument. The latter form handles cases where processes authorize operations 

in asynchronous contexts. For example, credentials are cached with each open file descriptor 

and propagated with I/O to the buffer cache. This propagation allows them to be used 

asynchronously with NFS write-behind. 

Credentials cached with sockets likewise allow asynchronous packet delivery to be authorized by 

the firewall based on socket ownership. In both cases, authorization decisions may be made in 
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threads whose credentials differ from the original context, but that act on behalf of the earlier 

(potentially less-privileged) context. 

5.4 Users and Groups 

Users and groups are inputs to several types of basic UNIX access control: interprocess access 

control that determines whether one process may signal, debug, or otherwise observe, another; 

discretionary access control, that includes file permissions and ACLs; and resource accounting 

and limits, that allow tracking and control of resource utilization. Users and groups are named 

by two independent 32-bit number spaces called user identifiers (UIDs) and group 

identifiers (GIDs). Users and groups are typically assigned to represent real-world users and 

the projects or organizations of which they are members. Pseudo-users are sometimes assigned 

to represent system roles, such as the superuser (root user), or the execution of services, 

such as the mail system, allowing them to be assigned ownership of files, resource limits, etc. 

Likewise, groups delegate access to system objects, such as the right to dial out on modems or 

the right to read audit trail files. 

UIDs and GIDs are assigned by an external administrative authority, and are pushed into the 

kernel via system calls, such as at user login or when file ownership is set. Using an outside 

administrative authority allows user and group information to originate from databases in the 

filesystem, or from distributed directory services such as NIS or LDAP. In effect, the kernel user 

and group credential is a cache of authoritative data elsewhere—a property that must be 

understood by administrators because of its implications on deletion of users, removal from 

groups, etc. For example, removing a user from a group list in /etc/group does not affect 

existing user processes, which will continue to hold that GID in their credential. Likewise, 

deletion of a user from /etc/master.passwd does not terminate processes he or she may own, 

nor revoke his or her access to filesystem objects. 

The credential of the first process, init, has its UID and GID fields set to zero. Zero is a reserved 

UID normally termed the superuser (usually given the user name root), that is trusted by the 

system and is permitted to do any supported kernel operation. Each additional process created 

with fork will inherit the credential of its parent, including its UIDs and GIDs. 

User and group identifiers may then be manipulated using system calls such as setuid and setgid, 

subject to access-control rules, or may be set as a result of executing a set-user-identifier or 

set-group-identifier program. Credential manipulation rules are carefully structured so that 

privilege, once given up, can be reacquired only by executing authorized programs. When a user 

logs in, the login program (see Section 15.4) sets the UID and GIDs before running the user’s 

login shell; thus, all later processes will inherit the appropriate identifiers. 
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UIDs and GIDs are stored with both subjects (process credentials) and objects (e.g., files and 

shared memory objects) to identify ownership for the purposes of resource accounting, resource 

limits, checking system privileges, and access control. As with processes, a set of controlled 

system calls, such as chown and chgrp, manipulates file-object ownership. Use of file ownership 

is described in Section 15.7. 

Setuid and Setgid Binaries 

Often, it is desirable to grant a user additional privileges. For example, a user who wants to send 

mail must be able to append the message to another user’s mailbox file. Making the target 

mailbox writable by all users would permit a user other than its owner to modify messages in it 

(whether maliciously or unintentionally). To solve this problem, the kernel allows the creation of 

programs that are granted additional privileges while they are running—also a privileged 

operation. Programs that run with a different UID are called set-user-identifier (setuid) 

programs; programs that run with an additional group privilege are called 

set-group-identifier (setgid) programs [Ritchie, 1979]. When a setuid or setgid program is 

executed, the rights of the process are augmented to include those of the additional UID or GID 

associated with the program. The UID of the program is termed the effective UID of the 

process, whereas the original UID of the process is termed the real UID. Similarly, executing a 

setgid program augments a process’s permissions with those of the program’s GID, and the 

effective GID and real GID are defined accordingly. 

Systems can use setuid and setgid programs to provide controlled access to files or services. For 

example, the program that adds mail to a user’s mailbox runs with the privileges of the 

superuser, which allow it to write to any file in the system. Thus, users do not need permission 

to write to other users’ mailboxes, but can still do so by running this program. Naturally, such 

programs must be written carefully to have only a limited set of functionality! 

The kernel stores a process’s UID and GIDs in the process credential. Historically, GIDs were 

implemented as one distinguished GID (the effective GID) and a supplementary array of GIDs, 

which were logically treated as one set of GIDs. In FreeBSD, the distinguished GID is the first 

entry in the array of GIDs. 

FreeBSD implements the setgid facility by setting the zeroth element of the supplementary 

groups array of the process that executed the setgid program to the group of the file. Because of 

the additional group, the setgid program may be able to access more files than can a user 

process that runs a program without the special privilege. To avoid losing the privileges 

associated with the group in the zeroth array element when running a setgid program, the login 

program duplicates the zeroth array element into the first array element when initializing the 
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user’s supplementary group array. Thus, when a setgid program is run and modifies the zeroth 

element, the user does not lose any privileges as the group that had been contained in the zeroth 

array element is still available in the first array element. 

The setuid facility is implemented by the effective UID of the process being changed from that of 

the user to that of the program being executed. As with setgid, the protection mechanism will 

now permit access without any change or special knowledge that the program is running setuid. 

Since a process can have only a single UID at a time, it is possible to lose some privileges while 

running setuid. The previous real UID is still maintained as the real UID when the new effective 

UID is installed. The real UID, however, is not used for any validation checking. 

A setuid process may wish to revoke its special privilege temporarily while it is running. For 

example, it may need its special privilege to access a restricted file at only the start and end of its 

execution. During the rest of its execution, it should have only the real user’s privileges. In 

earlier versions of BSD, revocation of privilege was done by switching of the real and effective 

UIDs. Since only the effective UID is used for access control, this approach provided the desired 

semantics and a place to hide the special privilege. The drawback of this approach was that it 

was easy to lose track of the real and effective UIDs. 

In FreeBSD, an additional identifier called the saved UID records the identity of setuid 

programs. When a program is exec’ed, its effective UID is copied to its saved UID. The first line 

of Table 5.2 shows an unprivileged program for which the real, effective, and saved UIDs are all 

those of the real user. The second line of Table 5.2 shows a setuid program being run that causes 

the effective UID to be set to its associated special-privilege UID. The special-privilege UID has 

also been copied to the saved UID. 

 

Table 5.2 Actions affecting the real, effective, and saved UIDs. 
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The seteuid system call sets only the effective UID; it does not affect the real or saved UIDs. The 

seteuid system call is permitted to set the effective UID to the value of either the real or the 

saved UID. Lines 3 and 4 of Table 5.2 show how a setuid program can give up and then reclaim 

its special privilege while continuously retaining its correct real UID. Lines 5 and 6 show how a 

setuid program can run a subprocess without granting the latter the special privilege. First, it 

sets its effective UID to the real UID. Then, when it exec’s the subprocess, the effective UID is 

copied to the saved UID, and all access to the special-privilege UID is lost. A similar saved GID 

mechanism permits processes to switch between the real GID and the initial effective GID. 

5.5 Privilege Model 

In FreeBSD, user processes are permitted access to kernel-managed objects (such as files and 

IPC primitives) subject to access-control policy; as described in the previous section, privileges 

are collectively granted to the root user. Privilege refers to a set of rights that, implicitly or 

explicitly, connote the ability to bypass the system access-control policy. We consider these two 

cases separately. 

Implicit Privilege 

Implicit privilege arises out of configuration of the system and its access-control policies, and 

describes rights held by a user or process that would allow it to violate integrity of the TCB or 

another security policy. Implicit privilege is best explained through an example: integrity of the 

system boot depends on the integrity of the kernel loaded from disk. In traditional UNIX 

systems, including FreeBSD in its default configuration, the kernel is owned by the root user, 

and protected by restrictive file permissions. If the kernel file were owned by a malicious user, 

or the permissions were not configured correctly, then system integrity could be violated. As a 

result, the root user is implicitly trusted to maintain the correct configuration and support 

integrity of the system. Implicit trust is not a property of the structure of the kernel 

access-control model, but an application of it. 

Physical access to a system also holds implicit privilege in many computer systems, as access to 

the system might, for example, allow tampering with storage devices without passing through 

OS protections. 
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Explicit Privilege 

In general, rights granted solely by access-control policies are enough to operate the system in 

its steady state. However, certain cases require that user processes be given additional explicit 

privilege that exempts them from access control to do critical system functions including: 

• Kernel management operations that have global consequences across the system, such as 

rebooting, or configuring IPv4 addresses on a network interface. 

• Kernel management operations that effectively grant kernel privilege, such as the loading of 

kernel modules. Misuse of these functions would violate integrity of the TCB. 

• System management operations that imply system privileges, such as maintenance of system 

binaries (including the kernel). 

• Configuring access-control policies and, particularly, setting up process credentials during the 

login process. 

• Higher-level management operations that depend on bypassing per-object protections, such as 

backing up the system, or changing the owner or permissions on a file in the role of system 

administrator. 

• Certain classes of debugging operations that offer insight into global behaviors normally 

limited to avoid information leaks, such as using DTrace or hardware-performance-monitoring 

counters on the kernel itself. 

FreeBSD’s privilege model is an outlet for these cases by allowing processes to execute with 

elevated privilege—i.e., outside the confines of the access-control policy. FreeBSD contains an 

explicit enumeration of kernel privileges in sys/priv.h, and call sites around the kernel invoke 

the functions priv_check() and priv_check_cred(), passing both an authorizing credential and 

the privilege requested to test centrally for privileges (an instance of the separation of policy and 

enforcement). Table 5.3 illustrates several examples of named privileges that support system 

management, credential management, and overriding discretionary access control. However, 

FreeBSD does not currently have a mechanism for fine-grained delegation of privileges to 

arbitrary processes—it instead relies on a simple check of the effective or, in certain cases 

involving resource limits, the real UID for the root user, sometimes known as the superuser 

policy. As the system starts its first process with a UID of 0, the implicit authority of the root 

user allows the system bootstrap to take place naturally, with privileges dropped when the login 

process switches to another UID. 
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Table 5.3 Example kernel privileges. 

The privilege model is augmented by FreeBSD jails, which restrict access to certain privileges for 

root users within jails, as discussed later in this chapter. Further, pluggable mandatory 

access-control policies can restrict or grant access to privileges. For example, the Biba integrity 

policy limits access to most, but not all, system privileges when the root user is executing a 

process without the policy’s own notion of privilege. The limited system privilege allows Biba to 

restrict loading kernel modules when executing at low integrity, while still allowing overriding of 

discretionary access-control rules, subject to the integrity policy. The current privilege interfaces 

have been designed to support future introduction of a general-purpose and fine-grained 

privilege model. 
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5.6 Interprocess Access Control 

Interprocess operations are system calls that allow one process (the subject) to monitor, manage, 

or debug another process (the target). As these operations bypass process isolation, they are 

subject to access control. Interprocess access controls are particularly tricky to enforce: ease of 

monitoring is in direct competition with information flow-centric controls (e.g., the historic 

choice to allow users to list each others’ processes in UNIX), and it proves difficult to reason 

about the implied set of rights gained access to when debugging a second process. Interprocess 

access control is centralized in kern_prot.c, and falls into several categories. 

Visibility 

Process visibility controls access to sysctl nodes, such as those used by ps to list processes, and 

system calls, such as sched_getparam. The subject is always a process credential (cr_cansee), 

or process (p_cansee), and the target is the individual process being monitored. 

The behavior of cr_cansee is controlled by two global tunables: see_other_uids, which limits 

process visibility between users; and see_other_gids, which limits visibility between processes 

with nonoverlapping group sets. For reasons of both ease-of-use and historic compatibility, 

displaying processes owned by other users and groups is enabled by default. Privilege can 

override both of these features. 

Two other aspects are considered when authorizing process visibility: jail and MAC. Jail 

requires that, if the subject process is in a jail, then the target process must also be in the same 

jail. For information-flow MAC policies such as Biba or Multilevel Security, checks determine 

whether information may flow from the target to the subject. 

Signals 

Controls on signal delivery are much more complex than those on visibility: checks vary 

depending on whether the subject process, or just its credential, is available; signals may be 

authorized based on a common login session, not just the credentials involved; control depends 

on which specific signal is being sent; and application races in signal-handling have led to past 

security vulnerabilities, complicating access-control logic. 

Two functions, cr_cansignal() and p_cansignal(), check signal delivery based on a subject 

credential or thread, target process, and signal number. The p_cansignal() function allows 

SIGCONT if the processes share a tty, and allows SIGTHR and other threading-related signals 

within groups of processes acting as a thread group. It then invokes cr_cansignal(). 
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The cr_cansignal() function enforces a variety of checks, all of which must pass: if the subject is 

in a jail, then the object must be in the same jail; MAC must authorize signal delivery (e.g., via 

information flow checks); and UID and GID visibility rules are checked. If a process has changed 

credential since the last execve, that is, P_SUGID is set in the process’s flags, then only certain 

signals can be delivered—for example, SIGKILL but not SIGTHR to prevent manipulation of 

internal process state. Finally, credentials are checked: if neither of the subject’s real or effective 

UIDs match the target’s real or saved UIDs, then privilege is required. 

Scheduling Control 

Scheduling checks occur when one process attempts to manipulate the scheduling properties of 

another process—for example, assigning a process to a CPU set, or changing its scheduling 

priority. p_cansched() accepts a subject thread and target process, and does a similar set of 

checks to signal delivery: jail protections are enforced, MAC is queried, UID and GID visibility 

constraints are enforced, and the subject real and effective UIDs are compared to the target’s 

real UID. Privilege overrides UID-based checks. 

Waiting on Process Termination 

The wait4 system call allows a parent process to wait for a child process termination; interfering 

with this mechanism, regardless of visibility and information flow goals, can have serious 

consequences for the correctness of shells or the init process, which must reap zombie 

processes to reclaim resources. Only jail and MAC checks are enforced here: a parent process is 

allowed to collect child termination information regardless of UID and GID differences. 

Debugging 

Control of debugging and tracing interfaces requires great care to avoid inappropriately granting 

a subject access to a target process’s rights, confidential mappings, or data (e.g., passwords or 

private keys) in the target process address space. Thus, the rules authorizing debugging are 

complicated and are employed by various subsystems including conventional process debugging 

(ptrace), kernel tracing (ktrace), and also certain process-monitoring features, such as the sysctl 

nodes providing access to target process-address-space layout and file-descriptor information. 

First, the global unprivileged_proc_debug tunable is checked to determine whether debugging 

features are available to unprivileged users (they are by default). Then, jail and MAC policies are 

allowed to authorize the operation, followed by UID and GID visibility rules. 
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The next category of checks is concerned with whether the subject process has a superset of the 

rights present in the target process—that is, whether full control of a target process grants the 

subject additional rights. First, the target process-group set is checked to ensure it is a subset of 

the subject’s; then, the effective, real, and saved UIDs are similarly compared. Finally, credential 

change in the target (which might indicate that rights or data had been inherited from a UID no 

longer in the credential) is checked. Privilege can override any of these checks. 

Two further rules are enforced: first, that debugging the init process is only permitted when the 

securelevel is less than or equal to zero; and second, that processes mid-exec cannot be 

debugged, as their credentials (or other properties) may be in a state of flux that could lead to an 

inconsistent access-control result. 

5.7 Discretionary Access Control 

Discretionary access control (DAC) allows each user to control the access rights granted 

over his or her objects to other users of the system. DAC is often contrasted with MAC: in DAC, 

object owners share (or not) access to objects at their own discretion, whereas in MAC, the 

system administrator determines when users are able to share data. The primary focus of DAC is 

filesystem objects: files, directories, fifos, and special devices. However, DAC controls access to 

System V and POSIX shared memory segments, semaphores, and queues. 

FreeBSD has historically implemented the UNIX permissions model, in which each file or 

directory is associated with a short bitmask of rights, or file permissions. This model is simple, 

easy-to-understand, and consumes minimal resources: per-file 32-bit UID and GID inode fields 

are supplemented by a 32-bit file mode specifying rights granted to the file’s group, and any 

other users on the system. More recently, access control lists (ACLs) have offered greater 

flexibility, at some cost to performance and administrative complexity, allowing object owners 

to specify rights for additional users and groups. FreeBSD supports two flavors of ACLs: 

POSIX.1e (more compatible with historic file permissions) and NFSv4 (more compatible with 

Windows and its CIFS protocol) [P1003.1e, 1998; Shepler et al., 2003]. 

The Virtual-Filesystem Interface and DAC 

In early UNIX versions, the UNIX filesystem was solely responsible for implementing 

discretionary access control: it stored file ownership information, maintained the file 

permissions bitmask, and made checks when operations requiring authorization occurred. As 

the number of filesystem types increased, code implementing common access-control checks 

was centralized. Today, many virtual-filesystem interface (VFS)–linked kernel components, 

including system calls such as open and execve, IPC implementations such as local domain 
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sockets and POSIX message queues, and the NFS server, request DAC checks before initiating 

I/O operations. Filesystems also invoke checks directly; for example, when performing 

pathname lookup or modifying file attributes. 

Historically, a single vnode operation, VOP_ACCESS(), accepted a bitmask of coarse-grained 

VFS permissions that reflected underlying UNIX mode bits: VEXEC, VWRITE (optionally with 

VAPPEND), VREAD, and VADMIN. When NFSv4 ACLs were introduced, new VFS permissions 

were required reflecting finer-grained NFSv4 ACL permissions. For example, previously 

VWRITE encapsulated both the rights to modify a file’s data and to unlink an entry within a 

directory, reflecting similar behavior in the UNIX file permissions bitmask. In NFSv4 ACLs, 

ACL_WRITE_DATA and ACL_DELETE_CHILD are separate permissions; as a result, VWRITE 

has now been subdivided into VWRITE and VDELETE_CHILD. A complete list of current 

permissions appears in Table 5.4. 

 

Table 5.4 VFS-layer access-control permissions passed to vaccess(). 

VOP_ACCESS() continues to accept the older, more limited set of VFS permissions; a new 

vnode operation, VOP_ACCESSX(), accepts finer-grained permissions. All filesystems 

implement one of these two operations, relying on the VFS layer to provide a wrapper function 

where required: vop_stdaccessx(), for example, maps fine-grained VFS permissions into 

historic ones supported by older filesystems using vfs_unixify_accmode(). Filesystems 

implementing NFSv4 ACLs must implement the newer VOP_ACCESSX(). 
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In addition to a VFS permissions bitmask, the vnode operations also accept the file or directory 

to be operated on, a process credential, and thread pointer. 

Internal use of the same abstraction allows filesystems to implement multiple access-control 

models more easily: for example, UFS’s ufs_accessx() selects between POSIX.1e and NFSv4 

ACLs on a per-mountpoint basis (for a discussion of UFS, see Chapter 9). Internal to these 

vnode operations, the filesystem will load any necessary metadata (e.g., ACLs), and make 

filesystem-specific checks (e.g., file flags). Most filesystems rely on a subset of three 

model-specific but filesystem-independent authorization functions: vaccess() for UNIX 

permissions, vaccess_acl_posix1e() for POSIX.1e ACLs, or vaccess_acl_nfs4() for NFSv4 ACLs. 

Filesystems pass on the process credential from the vnode operation, but also extract and 

directly pass file metadata such as file type, owner, group, and mode, along with any ACLs 

required by the model. Access-control implementations compare credential data and VFS 

permissions bitmask with file ownership, UNIX mode bits, and ACL entries, returning success 

(0) or an errno value on failure. 

Object Owners and Groups 

All objects supporting DAC have an owner and group represented by a UID and GID pair stored 

as object metadata. For filesystem objects, the UID and GID are stored in the inode’s i_uid and 

i_gid fields. For IPC objects, the UID and GID are stored as fields of the in-memory data 

structure describing the object. 

Users have full access to objects they own, and can set the group field, permissions, and optional 

ACLs to control access by other users and groups. The semantics of the object GID depend on 

the ACL model used. For UNIX permissions, an object’s group controls whether processes 

owned by other users will be affected by the group or “other” entries in the object’s file 

permissions. 

When a process creates a new object, the object inherits the process’s effective UID as its owner. 

New files and directories inherit their groups from their parent directory at creation time. New 

IPC objects inherit their group from the creating process’s effective GID. File UIDs and GIDs 

can be modified after creation using the chown, fchown, and lchown system calls. Changing a 

file’s UID requires privilege (e.g., root access). A file’s GID can be set by its owner to any group 

of which that user is a member. 
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UNIX Permissions 

In the UNIX permissions model, each object has associated file permissions that describe the 

rights granted to the object’s owner, group, and “other”. In UFS, file permissions are stored as 

the lower 12 bits of the 16-bit file mode stored in the i_mode field; the remainder holds the 

inode’s file type. A file’s ownership and permissions can be queried using the stat, lstat, and 

fstat system calls; permissions may be set using the chmod, lchmod, and fchmod system calls. 

When processes create filesystem objects, they specify initial permissions as an argument to the 

system call. Requested permissions will be masked by a process’s umask, which specifies the 

maximum creation-time permissions that may be set on any object created by the process. 

Interpretation of the umask depends on whether ACLs are enabled on the filesystem. However, 

the commonly used umask of 022 allows new objects to be readable by any user on the system, 

but prevents them from being world-writable unless explicitly set that way using a separate 

system call. 

File permissions are interpreted in the context of the accessing credential’s effective UID, 

effective GID, and additional groups. These identifiers are compared with the i_uid and i_gid to 

select which portion of the file’s permissions bitmask will be used in authorization. Each file has 

three sets of permission bits for read, write, or execute permission for each of owner, group, and 

“other”. If the target object is a directory, then the read bit authorizes listing of entries in the 

directory, and the execute bit authorizes lookup of further files and subdirectories under it. 

The vaccess() function combines credential, requested VFS permissions (mapped as shown in 

Table 5.5), and file owner, group, and permissions bitmask as follows: 

1. If the UID of the file is the same as the effective UID of the thread, only the owner 

permissions apply; the group and other permissions are not checked. 

2. If the UIDs do not match, but the GID of the file matches an effective or additional GID of the 

thread, only the group permissions apply; the owner and other permissions are not checked. 

3. Only if the UID and GIDs of the thread fail to match those of the file are the permissions for 

all others checked. If these permissions do not allow the requested operation, it will fail. 
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Table 5.5 Mapping of VFS permissions to UNIX permissions. 

If the permissions present are insufficient to authorize the requested access, privilege will be 

checked and may override DAC protections. 

Three additional mode bits relate to the UNIX security model. The setuid and setgid bits control 

credential UID and GID transition on execution of a binary as discussed earlier in the chapter. 

There is one further quirk: the sticky bit. If present in a directory’s permissions, the bit 

prevents users from unlinking children files or subdirectories that they do not own. This feature 

is used almost exclusively for the shared /tmp directory. 

Access Control Lists (ACLs) 

UNIX permissions allow users to protect or share data with little storage or performance 

overhead; however, the expressiveness of the model is limited. Group permissions are the only 

means by which a file owner can differentiate rights granted to specific users from rights 

granted to any other users of the system—but each file is limited to a single group. Any time a 

file or directory must have permissions assigned to a previously unused combination of users, a 

new group must be created—which under UNIX requires system-administrator intervention. In 

multiuser environments where UNIX groups represent projects or teams, the permissions 

model is unable to easily describe common setups such as having a directory be readable and 
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writable by one group, read-only for a second group, but inaccessible to other users of the 

system. 

File permissions may be seen as a degraded form of access control list (ACL): a per-object list of 

users, groups, and their individual assigned permissions. A full ACL implementation provides 

greater expressive power at the cost of increased complexity, storage overhead, and performance 

overhead. FreeBSD supports two ACL models: POSIX.1e, which emphasizes compatibility with 

UNIX permissions; and NFSv4, a newer model improving interoperability between the network 

filesystem (NFS) and Windows, now also used by Mac OS X. UFS supports simple UNIX 

permissions (the default), POSIX.1e ACLs, and NFSv4 ACLs. ZFS supports only NFSv4 ACLs 

(for a discussion of ZFS, see Chapter 10). Different ACL models may have markedly different 

semantics: not only may different rights be expressed, and different compatibility behavior be 

present for traditional UNIX permissions, but semantics such as the effect of entry ordering can 

differ. For example, POSIX.1e ACLs, as described by the user, are ordering independent (and 

will be sorted internally); in contrast, NFSv4 ACLs are interpreted differently based on the order 

in which entries are specified. 

Each ACL is described by an acl data structure containing an array of acl_entry structures, 

illustrated in Figure 5.2. Each entry consists of a tag, ID, file permissions, entry type, and flags. 

The tag and ID identify the principal described by the entry—typically a UID or GID. The 

entry_type and flags fields are used only for NFSv4 ACLs: the former indicates whether a 

particular ACL entry grants or denies rights; the latter indicates how the ACL entry will be 

inherited. The perm field contains a bitmask of granted or denied rights specific to the ACL 

model. 

 

Figure 5.2 ACLs consist of a struct acl embedding instances of struct acl_entry. 

System-call APIs are portable across models: the same system calls check, delete, get, and set 

ACLs on filesystem objects, as illustrated in Table 5.6. Each system call accepts an object name 

or file descriptor, a pointer to an acl structure in user memory, and an ACL type. ACLs set on 

files must be of the appropriate type, and valid for the target (e.g., default ACLs may be set only 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab06


 

205 

on directories); userspace programs can test an ACL for both internal consistency and 

applicability to a specific filesystem object via the aclcheck() system calls. Table 5.7 lists 

currently supported types; others may be added in the future as further ACL models are 

introduced. ACL models may allow more than one ACL to be set on a file at a time: for example, 

POSIX.1e supports both access and default ACLs on directories, controlling (respectively) access 

control and ACL inheritance. 

 

Table 5.6 ACL system calls are portable across different ACL models. 

 

Table 5.7 ACL models may support multiple types of ACL. 

ACL-aware filesystems implement three ACL-related vnode operations: VOP_GETACL(), 

VOP_SETACL(), and VOP_ACLCHECK(). The ACL implementation is split across 

filesystem-independent VFS code and individual filesystems implementations. Code portable 

across ACL models and filesystems may be found in vfs_acl.c, and includes ACL system-call 

code and utility functions for managing ACL memory. Model-specific ACL code may be found in 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab07


 

206 

subr_acl_posix1e.c and subr_acl_nfs4.c. These files include functions for ACL evaluation 

replacing vaccess(). They check the validity of ACLs, and implement new-file/directory creation 

(e.g., ACL inheritance and mode initialization). 

ACL-aware filesystems include three adaptations to implement ACLs: they provide 

filesystem-specific storage of ACLs by implementing VOP_GETACL() and VOP_SETACL(); they 

invoke VFS-layer ACL utility functions during file creation to ensure that the file mode and ACLs 

on a new object are properly initialized; and they invoke VFS-layer vaccess() variations, passing 

loaded ACLs as needed to implement access-control checks for various ACL models. 

UFS is able to store the file owner, group, and permissions in each file’s inode because of their 

small size (4 bytes each). ACLs, however, are substantially larger (several hundred bytes); 

instead, they are stored in extended attributes outside of the inode. As a result, additional disk 

accesses are required to read and update ACLs. UFS uses system extended attributes, which 

prevents direct modification of ACL contents, even by the file owner. To centralize as much 

access-control logic as possible, UFS performs internal checks using the VOP_ACCESSX() 

vnode operation. ufs_vaccessx() loads ACLs and then invokes vaccess(), vaccess_acl_posix1e(), 

or vaccess_acl_nfs4() depending on the ACL model enabled on the filesystem. 

POSIX.1e Access Control Lists 

POSIX.1e ACLs extend UNIX permissions to provide greater expressive power, at the cost of 

greater complexity, storage requirements, and performance overheads. As in the file 

permissions model, files and directories have an owner UID, an associated GID, and file 

permissions bitmask that holds permissions for the owner, group, and “other”, that make up the 

canonical entries in a file’s ACL. POSIX.1e allows these permissions to be supplemented with 

further file permissions reflecting read, write, and execute rights for both additional users and 

additional groups. 

All files and directories have access ACLs that direct access control during pathname lookup and 

file open. The access ACL directly solves many of the problems experienced with UNIX 

permissions in multi-user environments: the file owner can add additional entries that assign 

specific rights to multiple users and groups without encountering the single-group limit or 

requiring administrator intervention to create groups when working with small sets of users. 

In POSIX.1e, ACLs have six possible tag values illustrated in Table 5.8. The object owner, group, 

and “other” entries are the canonical entries inherited from the UNIX model. The mask entry 

plays a key role in compatibility with the permissions model. Applications continue to request 

simple file permissions via open, mkdir; set rights and masks via chmod and umask; and 
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retrieve file modes via stat. Likewise, users may reasonably expect reasonable behavior when 

seeing permissions listed by ls or set via the chmod command. When only canonical entries are 

present on a file or directory, then the group bits in set or retrieved via permissions will affect 

the object-group ACL entry. However, if any additional user or group entries exist in an ACL, 

then a new mask entry will be present, whose value will be set or retrieved instead. During ACL 

evaluation, the mask entry limits the maximum rights granted by any noncanonical ACL entry. 

As a result, setting a conservative umask or file permissions will cause rights set via additional 

user and group fields to be limited to those the user specified for the file group. Likewise, the 

file-mode output of ls will provide a conservative (overly permissive) estimate of rights granted 

by any ACL present on the file, preferring to err on the side of suggesting less, rather than 

greater, protection than is actually present. 

 

Table 5.8 POSIX.1e ACL entry tags. 

POSIX.1e ACL evaluation is implemented by vaccess_acl_posix1e() in subr_acl_posix1e.c. 

VFS permissions are mapped to POSIX.1e ACL permissions as shown in Table 5.9. It replaces 

vaccess()’s checks with the following algorithm that returns a result for the first ACL entry to 

match the thread’s credential: 

1. The file or directory’s access ACL (type ACL_TYPE_ACCESS) is searched for object-owner, 

mask, and “other” entries, to be consulted at various points in evaluation. 

2. If the credential’s effective UID matches the object-owner ACL entry, then the access request 

is checked against the entry’s permissions. If sufficient, success is returned. If insufficient, 

appropriate privilege is checked to supplement the entry’s permissions; if sufficient, success is 

returned. Otherwise, access is denied and no further entries are consulted. 

3. If the credential’s effective UID matches an additional user ACL entry, then the access request 

is checked against the entry’s permissions—limited to those also granted by the ACL mask entry. 

If sufficient, success is returned. If insufficient, appropriate privilege is checked to supplement 
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the entry’s permissions; if sufficient, success is returned. Otherwise, access is denied and no 

further entries are consulted. 

4. If either one of the credential’s effective or additional GIDs matches the object-group entry or 

any of the additional group ACL entries, then the access request is checked against the entry’s 

permissions—limited to those also granted by the ACL mask entry. If any entry is sufficient, 

success is returned. 

5. If no group entries were sufficient without privilege, then any matching group entries will be 

retried with appropriate privilege checked to supplement the entry’s permissions; if sufficient, 

success is returned. Otherwise, if there were any matching groups, access is denied and no 

further entries are consulted. 

6. Finally, the ACL “other” entry will be consulted; if sufficient, success is returned. If 

insufficient, appropriate privilege is checked to supplement the entry’s permissions; if sufficient, 

success is returned. Otherwise, access is denied. 

 

Table 5.9 Mapping of VFS permissions to POSIX.1e ACL permissions. 

A mask entry will always be present if any noncanonical ACL entries are present, and it applies 

to all entries but the object’s owner and “other” entries. When multiple group entries match a 

credential, then best match, rather than first match, selects an entry. Privilege is checked for a 

matching entry only if the entry’s permissions are insufficient—this limitation of privilege 
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checking avoids unnecessary exercise of privilege, which in the future may be recorded in 

event-audit records. 

In addition, directories may have default ACLs (type ACL_TYPE_DEFAULT) used when new 

objects are created in the directory; these entries are combined with the system-call mode field 

and process umask by acl_posix1e_newfilemode(). FreeBSD implements the behavior specified 

by POSIX.1e by allowing the umask to restrict all rights granted in the resulting ACL; this 

behavior differs from Linux in which the directory’s mask entry is allowed to override the umask. 

Both models have merit: strict adherence to POSIX.1e causes users and applications aware of 

the permissions model to always get conservative behavior when setting the umask and file 

modes; allowing the mask to override the umask makes it possible to create project directories 

in which the directory owner need not worry about how process umasks are set for other users 

and can, instead, ensure that (for example) files are always group writable. 

The UFS implementation of POSIX.1e ACLs uses the inode UID, GID, mode fields to hold 

canonical ACL entries. If an extended ACL is present, then additional entries are placed in an 

extended attribute. If an ACL mask entry is present, then the group permissions in the inode 

mode will be used for the mask entry, and permissions for the object-group entry will be stored 

in the extended attribute instead. This approach is consistent with file permissions passed via 

the system-call interface that also uses group bits for the file mask, and avoids 

extended-attribute operations when implementing stat and chmod. 

NFSv4 Access Control Lists 

Whereas POSIX.1e ACLs are designed for UNIX compatibility, the primary design consideration 

for NFSv4 ACLs is compatibility with Windows clients accessing a UNIX server via the Network 

File System or CIFS protocols. As such, NFSv4 ACLs are modeled on those found in Windows’ 

filesystem NTFS. Largely because of inclusion of ZFS, FreeBSD has adopted Solaris semantics 

for NFSv4 ACLs. There are necessarily design tradeoffs: where in POSIX.1e ACLs, compatibility 

for users and applications that were aware only of the UNIX permissions model was a key goal, 

in NFSv4 ACLs, users may experience unexpected behavior as ACL entries override more 

UNIX-like expectations. For example, an ACL entry on a file granting deletion rights may 

override a lack of write permission on its parent directory, to provide greater compatibility with 

the Windows model. 

In the NFSv4 ACL model, filesystem objects each have a single ACL of type ACL_TYPE_NFS4. 

In contrast to UNIX permissions and POSIX.1e ACLs, NFSv4 ACL evaluation takes into account 

all entries that match the credential’s effective UID, effective GID, and additional groups, not 

just the first entry that matches the credential. 
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The set of tags supported by NFSv4 ACL entries is similar to those in POSIX.1e ACLs (see Table 

5.10). An additional tag ACL_EVERYONE allows object owners to specify rights applicable to all 

users and groups. There is no notion of an ACL_MASK entry in NFSv4, although changes to file 

mode do affect ACL interpretation, and the mode is updated to reflect ACL changes. 

 

Table 5.10 NFSv4 ACL entry tags. 

NFSv4 defines four types of ACL entries: allow entries, deny entries, audit entries, and alarm 

entries. Only allow and deny entries are implemented in FreeBSD; setting ACL entries of other 

types will return an error. NFSv4 ACLs are defined as deny by default: operations not explicitly 

authorized by ACL entries will be rejected. Further, explicit deny entries can block access that 

might otherwise be granted by other allow entries. An exception to deny by default in the 

FreeBSD implementation is that file owners are always allowed to get and set the file’s mode and 

ACL, regardless of ACL contents. Table 5.11 contains a complete list of mappings from VFS 

permissions to NFSv4 ACL permissions. 
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Table 5.11 Mapping of VFS permissions to NFSv4 ACL permissions. 

NFSv4 ACL evaluation is implemented in vaccess_acl_nfs4(). The function begins by 

determining the set of NFSv4 ACL permissions that must be granted: 

1. access_mask is initialized to the set of NFSv4 permissions corresponding to the requested 

VFS permissions, calculated by _access_mask_from_accmode(). 

2. If the filer owner is equal to the credential’s effective UID, then ACL_READ_ACL, 

ACL_WRITE_ACL, ACL_READ_ATTRIBUTES, and ACL_WRITE_ATTRIBUTES are removed 

from access_mask. 

3. If the target object is not a directory and ACL_APPEND_DATA is requested, then it is 

replaced with ACL_WRITE_DATA. 

Next, vaccess_acl_nfs4() must determine whether or not the ACL and other properties, such as 

file mode and ownership, would grant the request: 

4. _acl_denies() is invoked to iterate over and evaluate ACL entries: its conclusion will be 

stored in a local variable denied. Each time a matching allow entry is encountered, any rights it 

grants are removed from access_mask. If at any point a matching entry is encountered that 

denies remaining permissions in access_mask, then denied will be set to EPERM, with 

_acl_denies() returning immediately. If, while iterating over entries, access_mask reaches 0, 
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denied will be set to 0, with _acl_denies() returning immediately. If the end of the ACL is 

reached without access_mask reaching 0, then denies will be set to EPERM, reflecting a 

default-deny model. 

After _acl_denies() returns, several other factors are considered that may deny access: 

5. If the original operation request included VADMIN, and the effective UID is not equal to the 

file owner, then denied will be set to EPERM. 

6. If VEXEC has been requested, the object is not a directory, and the operation has not already 

been denied, then the equivalent file permissions for the ACL is calculated by 

acl_nfs4_sync_mode_from_acl(). Following the same rule enforced in execve, if the file mode 

does not include S_IXUSR, S_IXGRP, or S_IXOTH, then denied will be set to EACCES. 

If after these tests denied is 0 (success), then vaccess_acl_nfs4() will return success. Otherwise, 

it continues: 

7. If VEXPLICIT_DENY was set, and _acl_denies() did not fail because of a deny entry, then 

success can be returned. This test is used only during file unlink, where finding a 

VDELETE_CHILD deny entry can block unlink of a child in a directory, but failing to find an 

allow entry is not sufficient to cause it to fail: general write permission on the parent directory is 

also able to authorize unlink in the UNIX model. 

8. Appropriate privilege will then be checked for any remaining ungranted rights, which may 

cause vaccess_acl_nfs4() to return success. 

9. Finally, an error value is selected: if the operation would have required ownership of the file 

or directory, or involves unlinking, then EPERM will be returned; otherwise, EACCES will 

reflect a DAC failure. 

Unlike POSIX.1e ACLs, ACL inheritance is combined in the single NFSv4 ACL, rather than 

stored in a separate default ACL. Per-ACL-entry flags indicate whether the entry is to be 

inherited by new files or subdirectories, and whether or not the entry is used for access control 

or just inheritance. acl_nfs4_compute_inherited_acl() computes the ACL of a newly created 

filesystem object given the parent’s ACL and system-call requested permissions (combined with 

umask). acl_nfs4_inherit_entries() allows an entry to be inherited if it is not an object-owner, 

object-group, or everyone entry; if the entry is tagged as inheritable by directories or files; if the 

object is not a directory, then only file-inheritable entries are used; and if the entry type must be 

either allow or deny. 
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As with POSIX.1e ACLs, some effort has gone into UFS to allow what NFSv4 terms trivial ACLs 

to be stored only using inode fields; only if more complex ACLs are defined will they overflow 

into extended attributes. acl_nfs4_is_trivial() performs this calculation before writing out an 

ACL by first converting the ACL to a file mode, then converting it back to an ACL and 

determining whether it is semantically identical to the original ACL. Two NFSv4 ACLs are 

semantically identical if they have the same number of entries, and each entry has identical tag, 

ID, permissions, entry type, and flags. 

5.8 Capsicum Capability Model 

Through the mid-2000s, operating-system security research focused on multi-user systems: 

discretionary and mandatory access-control models, fine-grained privilege, auditing, and 

virtualization. As UNIX systems were scaled down for use in personal and mobile devices, such 

as laptop computers, phones, tablets, and embedded and appliance devices, the aims of local OS 

security changed significantly. Rather than control the interactions of multiple users, developers 

instead sought to limit the rights of applications, or even components of applications, to protect 

a single user, the system owner, from application vulnerabilities exploited by malicious content 

originating from the Internet. Conventional OS security notions such as users and groups 

sometimes found use in these environments (Android), and as well as in mandatory 

access-control schemes (iOS, SELinux), but have proven mediocre tools for the particular 

problem of application compartmentalization, sometimes referred to as privilege 

separation. 

Application compartmentalization decomposes programs into multiple isolated components 

each running with different rights such that compromise of one component yields only its 

individual rights, rather than the the total rights of the composed application, mitigating the 

effects of a security vulnerability. In early work pioneered by Provos et al. [2002], and similar 

work by Kilpatrick [2003], the goal was to reduce the exposure of all-powerful root privilege to 

attacks in which arbitrary code execution was available to attackers (e.g., buffer overflows). In 

later application-level work by Reis & Gribble [2009], and OS work by Watson et al. [2010], 

compartmentalization is also applied to complex, security-aware applications without access to 

system privilege, such as Web browsers. The argument for this approach is straightforward: in 

computer systems with a single user, that user’s access to his or her own data overshadows the 

importance of historic root access as all critical data on the system is available to the user 

without local privilege escalation. 

Capsicum is a capability-based scheme first shipped in FreeBSD 9 to provide improved OS 

support for application compartmentalization. Capsicum adopts ideas from historic capability 

systems in which ambient authority is deemphasized: rather than allowing all processes to 
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name all system objects, and then performing explicit access control based on permissions or 

labels, sandboxes gain access to objects through program-driven delegation. This approach 

matches the requirements of security-aware applications that must support their own 

distributed system or user-facing security models such as the World Wide Web’s same-origin 

policy or powerboxes that grant file access to sandboxes via a privileged file-open dialog box. 

Capsicum Application Structure 

While simple Capsicum-enabled applications may consist of a single sandboxed process, in 

practice most complex applications consist of a set of tightly interconnected processes 

collectively known as a logical application. Often, one process will have ambient authority, 

acting as a gateway and source of global rights that will be selectively delegated to one or more 

sandboxed processes encapsulating specific protection domains. For example, the Capsicumized 

gunzip, illustrated in Figure 5.3, consists of two processes. The first process executes the main 

loop, walking a series of pathname arguments on the command line with the ambient authority 

required to open files by pathname. It selectively delegates open file descriptors to a second 

sandboxed process that reads data from a read-only input capability, performs potentially risky 

decompression operations on the data, and writes the decompressed data to a write-only output 

capability. In the event of a vulnerability in the decompression logic allowing arbitrary code 

execution, the attacker gains access to only the delegated capabilities rather than ambient 

authority that would allow access to all the user’s files. 

 

Figure 5.3 Compartmentalized gunzip using Capsicum. 

Trade-offs necessarily exist in multiprocess sandboxing designs: the security benefits of 

finer-grained compartmentalization must be weighed against context switch and interprocess 

communication performance overhead; and debugging multiprocess programs is substantially 

more difficult. For example, gunzip could be refined to use a new sandbox for each file being 

decompressed, further limiting the data and capabilities leaked as a result of an exploit in one of 
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several files passed on the same command line. However, this restriction comes at the cost of 

additional per-file process creation and destruction. Capsicum has proven effective for use in a 

variety of high-risk applications, but research into the best approaches for applying 

compartmentalization to software along with methods for decreasing overhead, remains active. 

Capability Systems 

Capsicum is a hybrid capability system that blends ideas from historic capability-system 

research with a contemporary UNIX design. In capability systems, tasks do operations on all 

resources via capabilities—unforgeable tokens of authority. In capability-based operating 

systems, capabilities are communications endpoints that refer to objects; invocations on the 

capability are implemented via message passing to a process that implements the underlying 

object. Capabilities consist of not just a reference to an object, but also a mask of rights limiting 

the set of methods that can be invoked via the capability. Applications are constructed from sets 

of processes linked by capabilities; each process embodies a protection domain consisting of 

access to a subset of overall capabilities in the system. By minimizing capabilities held by each 

process, the scope of damage in the presence of a fault—or an exploited vulnerability—is also 

minimized. 

Capabilities are unforgeable in that their integrity is protected by the TCB that prevents tasks 

from bypassing the protection model by constructing capabilities to arbitrary objects. For 

OS-based schemes, capabilities are maintained in kernel; userspace code uses per-process 

indices to identify on which capability a system call should operate. Processes can obtain 

capabilities by creating a new object, inheriting a capability from the parent process, being 

explicitly delegated the capability by another process (e.g., via message passing), or by deriving 

it from another capability that they already hold. Refinement allows processes to create new 

capabilities to objects for which they already hold a capability; rights on the new capability must 

be a subset of rights on the original capability. 

Capability systems support the construction of both hierarchical and nonhierarchical security 

relationships between pairs of communicating processes. Hierarchical relationships are those in 

which one process holds a struct subset of rights of the other (asymmetric distrust). 

Nonhierarchical relationships are those in which the two processes have nonidentical sets of 

rights, and yet neither is a strict subset of the other (symmetric distrust). Both types of 

relationships are valuable in application compartmentalization. 

Conventional sandboxing is hierarchical in that the sandbox has a strict subset of rights relative 

to the ambient process that created it—for example, as seen in our earlier gunzip example. An 

example of a useful nonhierarchical relationship is that found in an assured pipeline between 
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two processes implementing a protocol proxy between two network interfaces. Each is granted 

the right to communicate on its own interface, and to communicate with the other process; 

however, neither has permission to access directly the other’s network interface. This restriction 

allows both processes to enforce rules defensively on messages sent and received on its interface 

even if the other process has been compromised. 

Capsicum extends UNIX semantics to introduce capability-system behavior in three ways: file 

descriptors are modified to have capability-like properties; a new capability mode is added that 

restrict process use of ambient authority; and new capability-based primitives, such as process 

descriptors, are introduced to translate UNIX services into forms that are more suitable for 

capability-based software designs. 

Capabilities 

In UNIX, file descriptors have many of the properties of capabilities: the kernel protects their 

integrity making them unforgeable, they encapsulate not just a reference to an object, but also 

reference-specific access rights, and may be inherited across fork or passed between processes 

using UNIX domain sockets. Despite these similarities, there are significant differences that 

require modification to the file-descriptor model to build a capability system. Perhaps the most 

important is that only a few of the many file-descriptor system calls are controlled by the 

existing per-descriptor f_flag access-right mask. For example, a read-only descriptor returned 

by open will not permit write I/O operations to be done; however, the fchmod system call is 

allowed regardless of open-time flags. There is also no way to refine rights on a file descriptor 

after it has been created but before delegating it on to other processes. 

In Capsicum, these problems are solved by introducing a new type of file descriptor, the 

capability, that allows rights to be restricted and refined in a fine-grained manner suitable for 

delegation to sandboxes. Capability rights, a selection of which is illustrated in Table 5.12, 

correspond to common operations on file descriptors. Once held, capabilities for objects may be 

passed as arguments to any system calls to which the original file descriptors could be passed, 

subject to appropriate rights being present. There is no one-to-one mapping of system calls to 

rights: system calls may require more than one right and a single right may authorize more than 

one system call. For example, the write, writev, pwrite, and pwritev system calls all require 

CAP_WRITE to authorize a write on the file descriptor. However, pwrite and pwritev also 

require CAP_SEEK as they write to locations other than the file descriptor’s current offset. lseek, 

in contrast, requires only CAP_SEEK. 
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Table 5.12 Selection of capability rights. 

Capabilities are created using the cap_rights_limit system call, similar to dup2, which accepts 

an existing file descriptor (possibly already a capability) and a requested access-rights mask, 

returning a new capability with the new mask. The operation fails if the requested mask includes 

any rights not already held on the argument capability, enforcing a monotonic decrease in 

rights. 

Capabilities are implemented via a struct filecaps embedded in each file-descriptor array entry, 

struct filedescent. The capability rights for a descriptor include a mask of basic CAP_ rights that 

authorize system calls on the descriptor, as shown in Figure 5.4. It also includes whitelists of 

specific ioctl and fcntl commands that are permitted. ioctl operations are device-specific, and so 

the regular mask on system calls alone provides insufficient granularity to usefully delegate 

device nodes to sandboxes. For example, the whitelist allows the high-availability storage 

daemon (hastd) to delegate kernel GEOM_GATE devices while permitting only suitable ioctl 

commands. 
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Figure 5.4 Each file-descriptor array entry has a capability mask that controls access. 

Capabilities are evaluated when a file descriptor is looked up in a system call, typically in fget(), 

which accepts a mask of required capability rights for the operation as an argument. fget() 

invokes cap_rights() to extract the set of rights for a file descriptor, and then passes it to 

cap_check() to confirm that the rights are sufficient to authorize the current system call on this 

specific object. 

Capability Mode 

In strict capability systems, global capabilities are assigned to the first process, from which all 

other capabilities will be directly or indirectly derived and then distributed through descendent 

processes as the system runs. In UNIX, access to global namespaces, such as the filesystem 

namespace accessible via open, gives processes the ability to acquire undelegated capabilities. 

Capsicum therefore differentiates between regular UNIX processes, which retain ambient 

authority, and those in capability mode, for which global namespace access is denied. 
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Capability-mode processes must be delegated any rights they are to use, supporting fine-grained 

sandboxing based on a capability model. This hybrid approach allows portions of applications to 

run with the full rights of the user, but other components may have access to only explicitly 

delegated files, directories, devices, or network connections. 

A process enters capability mode by invoking the cap_enter system call that sets the 

CRED_FLAG_CAPMODE flag on the cr_flags field of the process credential. A child process 

created with fork inherits the parent process credential, and so also inherits the capability-mode 

flag. Processes may query whether they are in capability mode using cap_getmode, but there is 

no system call to clear the flag and exit capability mode. Within capability mode, all system calls 

must implement capability discipline: their actions must be scoped to the current process or an 

object named using file-descriptor arguments. 

System calls that naturally implement capability discipline when used with regular files and 

directory descriptor arguments are left unfettered: for example, the read and write system calls 

are not limited in capability mode. Similarly, certain system calls act only on the local process, 

such as getuid and signal, and are also not limited in capability mode. These calls are listed in 

capabilities.conf, which causes the SYF_CAPENABLED flag to be set in their system call 

descriptions when the kernel is compiled. When a capability-mode process invokes a system call 

without the SYF_CAPENABLED flag set, ECAPMODE will be returned by the system-call 

handler. 

Certain system calls implement multiple functions, only some of which follow capability 

discipline. Their use may be permitted in capability mode, but certain aspects of their function 

are restricted. For example, shm_open is permitted in capability mode, but only to create 

anonymous, rather than named, shared memory objects. Likewise, while the open system call is 

entirely blocked because of its dependence on the global filesystem namespace, openat is 

permitted as long as it is used only to open files “under” the passed directory descriptor, rather 

than relative to the filesystem root or current working directory. Implementing filesystem 

subtree delegation proves tricky because of concurrency, and because the only effective 

technique appears to be to prevent use of “..” in capability-mode path lookup. 

System calls implement restrictions using IN_CAPABILITY_MODE(), which checks whether 

the current thread should be limited. Sometimes checks are per-system call, such as in 

shm_open, but frequently, checks are done centrally, such as in namei(), which implements 

checks that lookups are under, rather than outside of, delegated directory descriptors for openat, 

fchmodat, etc. 
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5.9 Jails 

Jail, first introduced in FreeBSD 4.0, is a lightweight operating-system based virtualization 

framework that allows safe delegation of subsets of a FreeBSD system to guest root users [Kamp 

& Watson, 2000]. Administrators of guest instances, known as jails, can hold root access, 

manage their own users and groups, install third-party software packages, and perform a variety 

of other administrative activities safely without putting the host system at risk. When configured 

to use ZFS, guest administrators can also manage data sets, set quotas, and prepare snapshots, 

all localized to their individual jail. Combined with more recent IPC and network-stack 

virtualization features, administrators can be granted the ability to manage networking 

properties such as routing, VLANs, and firewalls. As of FreeBSD 9.0, enhanced resource control 

allows resource limits to be set and strictly enforced for jails, including on CPU time, resident 

memory use, open files, swap use, number of processes, and number of threads. 

Jails see widespread use in confining integrated system-scale applications, such as 

database/Web server combinations, where independently run services may require root 

privilege but must also safely cohabit a single server system. They are an especially popular tool 

for Internet Service Providers (ISPs) as customers can be granted administrative rights 

(including root privilege) for systems they manage, while also allowing high-density 

hosting—hundreds and even thousands of virtual instances on a single server. Security and 

hosting density are frequently cited benefits of virtualization, but there are others—not least, 

larger numbers of smaller and more specialized installations can be easier to manage, especially 

where applications have complex and sensitive package dependencies making combined 

upgrades tricky. 

Jail’s origins lie in the chroot, or change root, system call, which transforms a process’s 

filesystem namespace by modifying the process-local root vnode (fd_rdir) to differ from the 

boot-time global root vnode. chroot saw early use in facilitating reproducible software builds, 

but in the 1990s it became a popular technique for confining system daemons such as 

anonymous FTP servers. The technique proved neither particularly convenient, nor particularly 

secure. In practice, changing a process’s root directory proves tricky, as applications often 

require access to system configuration files, libraries, and IPC channels reached via the 

filesystem namespace. These requirements sometimes lead to replication of system content into 

a per-application root; for example, when BIND’s named daemon runs chroot’ed for security, it 

requires its own devfs mount. 

More importantly, chroot is by design a namespace transformation rather than a security tool: 

countless nonfilesystem system calls exist that permit access to global resources that may either 

allow “escape” from chroot’s constraints, or the ability to negatively impact system operation in 
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ways that a sandboxing model would ideally not allow. For example, several supported 

architectures have machine-dependent system calls unrestricted by chroot that provide direct 

access to the hardware I/O space for root-owned processes. Finally, relevant to both usability 

and security, chroot required root privilege, as the ability to change the filesystem namespace 

affects the security of setuid binaries that rely on the sanctity of system directories such as 

/usr/lib and /etc for correct—and secure—operation; being able to change where these paths 

point can lead to security vulnerabilities. 

Capsicum has now replaced chroot as the preferred means of confinement within a single 

application by virtue of an unprivileged sandboxing primitive and application-centered security 

model. Jails address the other important use case for chroot: the virtualization-like effect of 

giving a set of applications their own filesystem namespace. Jail reuses ideas from chroot for 

lightweight filesystem virtualization; it also addresses potential “escape” techniques and 

restricts or denies use of system services that might allow processes in a jail to have more global 

effects. This latter notion is necessarily configurable as the desirable limits on availability and 

scope of system services vary with the specific requirements of a deployment environment and 

its applications. 

Jails are collections of processes with a common set of namespace transformations (including 

filesystem root), virtualized networking and IPC subsystems, and mutual visibility for 

interprocess operations. Within the kernel, each jail is represented by a reference-counted 

prison structure as illustrated in Figure 5.5. Each process is in exactly one jail by virtue of the 

cr_prison pointer in its process credential. At boot, the first user process, init, is placed in the 

statically allocated prison0. As with other credential properties, jail references are inherited 

across exec and fork, and so a new process will be in the same jail as its parent unless it is 

explicitly changed. Jails can be nested, which is represented by a tree of prison structures linked 

by their pr_children, pr_sibling, and pr_parent fields. Jails extend chroot with a number of 

restrictions that: 

• Prevent further use of chroot from allowing “escape” by differentiating between each process’s 

current root directory (fd_rdir) and jail root directory (fd_jdir). Both will be tested for (and 

blocked) when evaluating “..” lookups. With the introduction of nested jails, pr_parent pointers 

must be walked to check the root of each ancestor jail. 

• Limit the set of privileges available to root-owned processes in jail; for example, the 

restrictions do not permit loading of kernel modules or direct kernel-memory access. 
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Figure 5.5 Prison structures are the in-kernel representations of jails. 

• Block interprocess operations on processes not in the same jail; for example, they do not allow 

a jailed process to signal processes outside the jail, or in another jail, using kill, or attach a 

debugger to them using ptrace. 

• Do not allow processes in a jail to bind sockets to IPv4 and IPv6 addresses that have not been 

delegated to the jail. Likewise, they force loopback network requests to connect only to sockets 

bound in the jail. 

• Prevent jailed processes from opening terminal devices already in use by another jail, in order 

to prevent capture or forgery of user input via a pseudo-terminal. 

• Limit use of the mount system call to jail-safe filesystems, marked as VFCF_JAIL in their VFS 

declaration: nullfs, tmpfs, procfs devfs, and ZFS. 

Jail implements these protections using several strategies across various kernel subsystems. 

Entirely blocked services (such as jail-unsafe filesystems) are protected by calls to jailed() on the 

process’s credential. The centralized priv_check() function calls out to prison_priv_check() to 

validate privileges requested by a jail against a whitelist; examples are shown in Table 5.13. 
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Certain constraints are implemented by rewriting system-call arguments; for example, the use 

of IP addresses is scoped by rewriting sockaddr_in arguments to bind and connect to replace 

INADDR_ANY with the jail’s own IP address. Finally, system calls such as ptrace have their 

arguments checked for appropriate scope: p_candebug() checks that if an invoking process is in 

a jail, that the target process is in the same jail. Pseudo-terminal access is likewise scoped by 

tagging opened terminal devices with the jail of the process that first opened them; later 

attempts to open a device will fail if the process is not in the same jail. 

 

Table 5.13 Example privileges permitted and denied to jailed processes. 

The simplest way for a process to create a new jail is via the jail system call, which takes a jail 

structure specifying a new root directory, hostname, jail name, and lists of IPv4 and IPv6 

addresses. The jail program is careful to close any open directory descriptors and resources 

from outside of the jail that might allow escape before executing the requested binary. Each jail 
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is assigned a unique jail ID (JID), which can then be specified as an argument to other system 

calls that will act on the jail after creation. Processes can attach to an existing jail using the 

jail_attach system call, which allows new commands to be injected into the jail from outside; 

extreme care is also required to prevent the undesirable leakage of resources into the jail. Jails 

can be destroyed using the jail_remove system call, which will terminate any processes in the 

jail. 

In FreeBSD 8.0, new system calls were introduced to ease management of increasingly flexible 

and configurable jails. The jail_get and jail_set system calls allow getting and setting sets of 

name-value variables on an existing jail by JID. Possible option names are shown in Table 5.14. 

In FreeBSD 8, jail was also integrated with the experimental VIMAGE facility, which allows IPC 

and network-stack virtualization, described in greater detail in Chapter 12 and Chapter 13. With 

this feature enabled, jailed root users can manage per-jail firewalls and routing tables, as well as 

use packet-sniffing tools such as tcpdump. Instead of delegating IP addresses, virtual (or real) 

network interfaces are assigned to jails. 
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Table 5.14 Jail options used with jail_get() and jail_set(). 

Unlike hypervisor-based virtualization systems such as bhyve, jails share a single kernel across 

all instances; this allows significantly greater efficiency than virtual-machine approaches, 

supports more integrated scheduling and memory management, and facilitates sharing between 

virtual machines through regular OS-based IPC primitives such as pipes and sockets. Through 

nullfs mounts and ZFS copy-on-write features, jail storage footprints can be minimized—while 

also easing management of many virtual systems. On the other hand, jail-based virtualization is 

more visible to guest administrators who cannot upgrade the kernel version, use tools that 

require access to kernel memory, or directly access hardware. Jails also share a larger common 

TCB than hypervisor-based solutions such as Xen, where common attack surfaces between 

mutually distrusting guests are limited to a narrower hypercall interface and common 

paravirtualized backend drivers (described in Chapter 8). Since their development, the approach 

promoted by FreeBSD jails has also been adopted in other systems, including Solaris Zones and 

Linux Containers. 

5.10 Mandatory Access-Control Framework 

Mandatory access control (MAC) describes a class of security models in which system or 

security-administrator-defined policies constrain the behavior and interactions of all system 

users. Whereas in DAC, object owners protect (or share) objects at their own discretion, MAC 
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enforces systemwide security invariants regardless of user preference. The security research 

literature has defined a diverse set of mandatory security policies, the most influential of which 

are described in the next section. There is also significant user-community interest in 

product-specific security customization for appliance and embedded systems, such as firewalls 

and smart phones. However, it is neither desirable to integrate all possible security models 

directly into FreeBSD, nor to encourage extensive and difficult-to-maintain local modifications 

of the OS kernel within every FreeBSD-derived product. 

The MAC framework offers a logical solution to this problem: a kernel access-control-extension 

infrastructure able to represent many different policies, offering improved maintainability and 

significant flexibility supported by the OS vendor [Watson et al., 2003; Watson, 2012]. Similar 

to the device-driver framework and VFS, the MAC framework allows policies compiled into the 

kernel, or encapsulated in kernel modules, to modify the kernel security policy using 

well-defined kernel-programming interfaces (KPIs). Policy modules can augment kernel 

access-control decisions, and make use of common policy infrastructure, such as object labelling, 

to avoid code replication or the need for direct kernel modification. Unlike filesystem stacking, 

previously proposed for access-control extension, the framework supports enforcement of 

ubiquitous policies spanning a broad range of kernel object types, from files to network 

interfaces. The framework also supports tight integration of access-control policies with the 

kernel concurrency model, unlike system-call interposition, another widely discussed technique 

for kernel access-control extension [Watson, 2007]. 

Mandatory Policies 

Early mandatory security models focused on information flow, and require ubiquitous 

enforcement across all kernel services. Bell and LaPadula’s multilevel security (MLS), 

protects confidentiality by controlling information flow through the operating system [Bell & 

LaPadula, 1973]. The Biba integrity policy is the logical dual of MLS, protecting integrity [Biba, 

1977]. Fraser’s low-watermark mandatory access control (LOMAC) is an integrity policy that 

tracks the dynamic flow of taint through a system [Fraser, 2000]. These models are concerned 

with maintaining invariants by permitting or denying operations that lead to the upgrade or 

downgrade of information. To have this effect, they place security labels holding 

policy-specific metadata on both subjects (credentials) and objects (files, sockets, etc.) to 

support access-control decisions. 

In MLS, subject labels capture the user’s security clearance and object labels capture an objects 

classification; in Biba and LOMAC, labels represent subject and object integrity. 

Information-flow control is imposed by controlling use of read and write functions; for example, 

in MLS, a user with a SECRET clearance is not permitted to “write down” secret data to a file 
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marked UNCLASSIFIED; likewise, a user with a SECRET clearance is not permitted to “read up” 

top-secret data from a file marked TOP SECRET. Integrity models instead prevent the upward 

flow of lower-integrity data, blocking the upward write of data from low-integrity subjects to 

higher-integrity files. Biba prevents “read down” by blocking read operations on lower-integrity 

files, whereas LOMAC allows “read down” operations to succeed, but downgrades the subject 

label of the reader, preventing later writes to higher-integrity objects, maintaining the same 

information flow invariant. 

Boebert’s Type Enforcement (TE) and Badger’s Domain and Type Enforcement (DTE) have also 

proven influential, with TE seeing widespread deployment in SELinux and McAfee’s 

FreeBSD-based Sidewinder firewall [Boebert & Kain, 1985; Badger et al., 1995; Loscocco & 

Smalley, 2001]. Both models are flexible and fine-grained, with subjects and objects labelled 

with symbolic domains and types. An administrator-controlled rule set defines how these labels 

are interpreted, authorizing permitted interactions and domain transitions. Processes in the 

user_d domain might be allowed to read, but not write, objects of type system_t, regardless of 

filesystem ownership and permissions. Transitions between domains occur by executing 

specially labelled programs in a similar way to setuid binaries, subject to policy. Processes can 

also transition between domains dynamically, again subject to policy. 

Finally, a broad class of hardening policies are also relevant, which take less principled 

approaches, but offer direct control over OS-level services and features in a more 

system-centered way, rather than relying on abstract information-flow or label-centered 

approaches. For example, the ugidfw filesystem firewall policy allows a global set of 

system-administrator-defined rules to control the interactions of users, groups, and 

files/directories like a network firewall. This policy is similar, notionally, to TE, but applies only 

to the filesystem, and relies on existing UID and GID elements of the process credential rather 

than on supplemental security labels. 

Guiding Design Principles 

The dual goals of explicit access-control extensibility and engagement with downstream system 

vendors lead to several philosophical and programmatic design principles: 

1. Do not commit to a particular access-control policy as there is no consensus on a single true 

policy or even policy language. Policy is therefore captured by C code that can compute results 

dynamically, perhaps based on a configurable policy or labels, or that can implement purely 

static decisions. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref05
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2. Avoid policy-specific intrusions into kernel subsystems: encapsulate these details behind 

policy-agnostic kernel interfaces. This approach leads naturally to an object-centered design: 

access-control checks are relative to a subject (process credential), object, and method. 

3. To avoid code redundancy, provide policy-agnostic infrastructure such as access-control 

instrumentation points, label storage, label APIs, and tracing. Where possible, user APIs are also 

policy-agnostic to permit shared command-line tools. 

4. Policy authors determine their own security and performance trade-offs. The MAC 

framework supports heavy-weight policy designs (such as the ubiquitous labelling of network 

packets required by Biba and MLS), but only policies using those functions need pay for them. 

5. Support multiple simultaneous and independent policies. Most commercial trusted systems 

include at least two different mandatory policies: MLS for confidentiality, and Biba for TCB 

protection. This approach allows third parties to extend the security model while base OS 

policies are in place. Where possible, provide predictable, deterministic, and ideally sensible 

compositions of simultaneously loaded policies. 

6. Impose structures that simplify assurance arguments. In the parlance of Anderson, the MAC 

framework acts as a reference monitor: tamper-proof, always invoked, and small enough to 

be subjected to analysis and tests [Anderson, 1972]. The goals of tamper resistance and 

nonbypassability are done through enforcement of access-control policies by the kernel. The 

goal of analyzability is done through separation of policy and mechanism. Access-control 

policies can be validated separately from the services they protect and the framework that allows 

their enforcement. 

7. Design for an increasingly concurrent operating system kernel. As even hand-held systems 

have grown native parallelism, and demands on kernel scalability have grown, new security 

policies need not only to behave correctly, but also scale with the kernel features they protect. 

Architecture of the MAC Framework 

The MAC framework architecture, illustrated in Figure 5.6, consists of a thin service layer 

linking security-aware user applications, kernel services, and access-control-policy modules. 

Policies employ the framework’s infrastructure to instrument policy-relevant kernel security 

decisions, store and retrieve security labels on objects, and dynamically compose with other 

loaded modules. In addition, the MAC framework implements a set of DTrace probes that 

support debugging and profiling using the D script language, see Section 3.8. The framework 

also exposes policy-independent but security-aware system calls so that policy-agnostic 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_323
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https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec8
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monitoring and management tools, such as getfmac and setfmac, can query and manipulate 

labels on objects. Several different interfaces are defined: 

 

Figure 5.6 The MAC framework is a pluggable framework for kernel policy augmentation. 

• The kernel services entry-point KPI is invoked by kernel services, such as the Virtual File 

System (VFS) and interprocess communication (IPC), to notify the MAC framework of object 

events such as allocation and destruction, and to do access-control checks. Roughly 240 entry 

points are defined, most representing specific methods on particular object classes; generally, 

access-control entry points take the perspective that a subject (typically represented by a process 

credential) is invoking a method on an object. Kernel subsystems are responsible for providing 

opaque storage for labels on their objects in the form of a void * pointer to be maintained by the 

framework. 

• The policy entry-point KPI sits between the MAC framework and registered policies. Many 

policy entry points correspond directly to kernel entry points, albeit with explicit label 

references added to the argument set. These label references are supplemented by policy 

life-cycle events and a library of infrastructure functions available to policies, such as memory 

allocation and label storage. Policy modules need to implement and invoke those KPIs that they 

require, and the specifics of how object labels are stored is opaque to policies to insulate them 

from changes in kernel implementation details. 



 

230 

• The label-management API allows userspace programs to query and set security labels on 

various object types including files, sockets, and processes without knowing the details of loaded 

policies. 

• A set of DTrace probes allow framework operations to be monitored using D scripts: probes 

are available on entry and return from every MAC framework access-control entry point, 

providing access to arguments and return values so that decisions can be monitored or 

manipulated. 

Framework Startup 

To meet the nonbypassability requirements of a reference monitor, the MAC framework must be 

initialized and ready to handle access-control checks by the time the first user process, init, 

begins execution. Ubiquitously labelled policies, such as Biba and MLS, require that the 

framework be available significantly earlier to maintain security labels on all kernel objects from 

inception. As a result, the framework is initialized early in boot—shortly after the kernel memory 

allocator, console, and locking primitives become available, but before device probing and 

process creation have begun. Initialization occurs in several phases: 

1. Framework data structures, locks, and memory allocation are initialized. 

2. Policies compiled into the kernel or loaded before boot are registered. 

3. The global mac_late is set, indicating that from this point onward, kernel objects controlled 

by the framework may be allocated. 

4. The MAC framework steady state is entered and kernel boot continues. 

Policies loaded after mac_late are not assured complete access to all events on all controlled 

objects, and are unable to rely on label memory being present for objects allocated prior to 

policy registration. These constraints are compatible with many UNIX-centric policies, and even 

some labelling policies, but not policies such as MLS and Biba that require ubiquitous labelling 

and control to enforce information-flow constraints. In practice, no special behavior currently 

appears to be necessary at kernel shutdown. 

Policy Registration 

Policies must register with the MAC framework to instrument access-control decisions, receive 

object life-cycle events, label object classes, and access framework services. The kernel linker 

identifies MAC policies in the kernel and modules using the linker set facility. Each policy 
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declares a set of properties including whether or not the policy may be attached after boot (i.e., 

after mac_late is set), and whether the policy may be unloaded. These properties are stored in a 

statically allocated per-policy data structure, mac_policy_conf, illustrated in Figure 5.7, along 

with a reference to the complete set of policy entry points, stored in a mac_policy_ops 

structure. 

 

Figure 5.7 MAC policies are described by mac_policy_conf and mac_policy_ops structures. 

When an entry point is invoked by a kernel service, the set of loaded policies is stabilized for the 

lifetime of that invocation; attempts to change the set of loaded policies must wait to let in-flight 

invocations drain before continuing. This design ensures consistent implementation of 

access-control checks, and the prevention of implementation races such as use of code in a 

policy after its containing module has been unloaded. 

Figure 5.8 illustrates the policy life cycle: MAC policy mpo_init() and mpo_destroy() entry 

points are invoked, respectively, during policy registration and deregistration. Exclusive 

framework locks are held over both entry points to ensure that all steady-state entry-point 

invocations on the policy are bracketed by the two events, allowing safe policy initialization and 

cleanup. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig07
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Figure 5.8 MAC policies have an explicit life cycle. 

Framework Entry-Point Design Considerations 

The kernel service entry point KPI is the means by which kernel subsystems, such as filesystems 

and the network stack, engage the reference monitor in security-relevant events and decisions. 

Wherever possible, the MAC framework takes the perspective that kernel subsystems implement 

objects whose instances may be labelled, and that policies may be adequately enforced through 

controls on method invocation. This approach is a natural fit for the kernel architecture, which 

often takes on an object-oriented structure, despite an absence of supporting language features 

in C. 

In most cases, selection of the objects to protect is a straightforward result of analyzing the APIs 

offered to userspace via system calls: methods on sockets, pipes, and files seem natural to 

protect using the framework. In other cases, design choices are less clear: should all sysctl 

management-information base (MIB) nodes be independent objects each with their own labels, 

or should they be treated collectively as a single object with read and write methods? The MAC 

framework takes the latter approach on the basis that sysctl nodes frequently provide access to 

many individual back-end objects, as is the case with nodes that export process information for 

use by ps. Here, it is the underlying process labels that are used for authorization. 

Once objects have been identified, selecting and placing entry points also requires careful 

thought: the more granular the KPI, the more expressive policies can be—however, this 

granularity is at the cost of policy complexity. A consistent approach to placing entry-point 

invocations is also important: the fewer the calling sites, the easier they are to validate—however, 

too few invocations lead to inadequate protection. MAC entry-point design is necessarily 

somewhat subjective, but generally requires placing the checks deep enough to allow both 

adequate insight into object types, and a single enforcement point for a particular level of 

abstraction. 

As an example: in early versions of the MAC framework, access-control checks for files were 

done in the filesystems themselves—in later versions, these access-control checks were moved to 

the common VFS code invoking all filesystems to provide more consistent protection and 

simpler implementation. Placing VFS access control too high in the call stack for I/O system 

calls, however, would place them before file descriptors are differentiated into specific object 

types such as vnodes and sockets. Filesystems are necessarily involved in the storage strategy for 

persistent labels within the filesystem, but where possible, rely on common infrastructure code 

in the MAC framework to implement common models, such as extended attribute-based storage. 

Similarly, the labelling of vnodes rather than the on-demand provision of labels by filesystems 
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when policies make access-control decisions was motivated by a desire to share abstractions 

across filesystems and provide a uniform caching model. 

Policy Entry-Point Considerations 

Most policy entry points are entered because of invocation of a corresponding kernel-service 

entry point: 

• Object life-cycle events, such as socket creation and destruction 

• Access-control requests checking a subject’s use of a method on an object 

• General and sometimes subject-free decision requests 

Policy entry-point KPIs have been designed with great care to provide enough information so 

that policies can meet functional goals while also discouraging unsafe constructions that might, 

for example, lead to concurrency vulnerabilities, or excess dependence on kernel-internal binary 

interfaces that are subject to change between minor releases. Thus, it is desirable to limit 

policy-module exposure to kernel-internal data structures where not specifically required for 

policy semantics. It is simultaneously desirable to offer the flexibility to use those internal 

structures where required to avoid policy developers simply bypassing formal KPIs, which 

would be counter to the maintainability goals of the MAC framework. 

Structuring the MAC framework to prevent bugs in policy modules, and the framework itself, is 

a central concern. Where possible, the framework employs language types to detect programmer 

errors; its structure also enables static analysis (such as completeness checking on controlling 

access to classes) through its use of symbols. Programmability and binary compatibility goals 

sometimes come into conflict. Earlier versions of the framework, prior to the advent of C99 

sparse-static-structure initialization, declared policy entry points via an array of integer 

entry-point names and function pointers cast to void *. On face value, this approach offered 

stronger binary compatibility by allowing new entry points to be defined without disrupting 

current data-structure layouts. However, it also discards type information for arguments to 

entry-point functions. When we experimentally switched to explicit, typed entry-point functions, 

we discovered a number of previously unnoticed bugs in policy modules that had been 

incorrectly interpreting their arguments. 
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Kernel Service Entry-Point Invocation 

To understand how the MAC framework is integrated into the kernel, and its relationship with 

policies, we will consider an example in the form of access-control checks that occur when a file 

is read. An excerpt from vn_write(), the kernel function implementing the write system call on 

files, is shown in Figure 5.9. When the MAC framework is compiled into the kernel, vn_write() 

calls mac vnode check write() to authorize the request. The framework will return 0 to allow the 

write to continue, or in the event that one or more policies denies the request, a nonzero errno 

value is returned. In most cases, the framework is able to select the error number returned to 

userspace; this approach allows policies to indicate, for example, whether an error is a result of 

violation of a policy’s rules (EACCES) or holds inadequate privilege (EPERM). 

 

Figure 5.9 Example MAC framework invocation from VFS. 

vn_write() passes several arguments into the entry point: the credential authorizing the write 

(active_cred), the credential cached in the file descriptor at the time of file open (file_cred), and 

the vnode on which the write is being done (vp). The stability of arguments to entry points is 

ensured by the kernel synchronization model’s interaction with the calling code. Credential 

contents are copy-on-write, and references held by the calling thread and file descriptor prevent 

them from being garbage collected. The vnode is protected by a reference count, and vnode data, 

including the MAC label on the vnode, is stabilized by the vnode lock; vn_write() holds the lock 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig09
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over both check and use to ensure adequate atomicity. This construction avoids several critical 

races that might occur when using other security extension approaches, such as system-call 

interposition. 

The arguments excluded from entry-point invocation are as interesting as those included. For 

example, vn_write()’s data pointer is not passed into the entry point as the data it references 

resides in the user address space where it cannot be accessed race-free with respect to the 

file-write operation that will follow. Similar design choices throughout the kernel service KPI 

discourage the expression of policies that cannot be safely represented within the kernel 

synchronization model. 

Policy Composition 

Kernel entry points correspond to one (or more) policy-level entry points, and will invoke any 

policy implementations of those entry points on each call. Policy entry-point invocation is 

nontrivial: access to the policy list must be synchronized to prevent races with policy load and 

unload, the subset of policies interested in the event must have their entry point 

implementations called, and the results of those calls must be sensibly composed. With one 

exception, the granting of system privileges, MAC framework polices are only able to restrict, 

not grant, rights, which leads to a simple composition in which the set of rights granted is the 

intersection of those granted by the base system and any registered policies. This meta-policy is 

simple, deterministic, predictable by developers, and above all, useful. 

Policy entry points may be placed in three broad categories based on return type: event 

notifications that do not return a value, access-control checks that return an errno value, and 

decision functions that return a Boolean. The composition policy requires that for an 

access-control check to succeed, all policies expressing interest in the entry point must return 

success; as policies may return different error numbers in response to the same access-control 

check, a composition function, mac_error_select(), orders and selects from among available 

error values, as illustrated in Figure 5.10. Invocation of policy entry points and composition of 

the results are done using a set of composition macros that combine synchronization, selective 

policy invocation, and composition: 

• MAC_POLICY_PERFORM() broadcasts event notifications to all interested policies. Events 

may relate to policy changes, label management, policy management, or kernel object life-cycle 

events. 

• MAC_POLICY_CHECK() composes access-control results returned by multiple policies. Each 

policy contributes an errno value; these values are composed using mac_error_select(), a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig10
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function that encodes an ordering of failure classes. Success is returned only if all interested 

policies accept the request. 

• MAC_POLICY_BOOLEAN() composes boolean values returned by entry points augmenting 

general kernel decisions. A boolean “and” is used during IP fragment reassembly; for example, 

all interested policies must accept a fragment for it to be matched with a reassembly queue. 

 

Figure 5.10 MAC policy results are combined using an explicit composition meta-policy. 

• MAC_POLICY_GRANT(), added in FreeBSD 7, is used in allowing policies to grant privileges. 

In contrast to MAC_POLICY_CHECK(), its composition function returns success if any 

interested policy returns 0. 

Some MAC framework operations invoke more than one entry point. For example, a label-set 

system call will need to allocate and initialize temporary label storage for the object type, copy in 

and internalize the userspace version of the label, perform an access control check, set the label, 

and free the temporary storage, each of which requires a separate policy entry-point invocation. 

This sequence supports one of the more interesting aspects of policy composition: a two-phase 

commit on relabelling operations. This approach allows one policy to provide access-control 

logic limiting the setting of labels associated with another policy on an object; for example, the 

Biba policy can prevent MLS labels from being set on a high-integrity object by a low-integrity 

subject. 
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Object Labelling 

Several access-control policies of interest require additional policy-specific meta-data associated 

with subjects (process credentials), and often some or all objects (files, pipes, network interfaces, 

etc.). This metadata is referred to as a label, and provides subject- or object-specific information 

required to make access-control decisions. For example, Biba labels subjects and objects with 

integrity levels, and MLS labels subjects with clearance information and objects with 

data-classification levels and compartments. The MAC framework provides a policy-agnostic 

label abstraction for kernel objects, system calls for querying and setting those labels (subject to 

control by policies), and persistent storage for labels on filesystem objects. 

As shown in Figure 5.11, policy modules control label content and semantics—not just in terms 

of the bytes stored, but also the runtime requirements for memory management, 

synchronization, and persistence. For example, policies might store independent label data for 

every object, or might reference-count a central data structure referred to by many different 

subjects. Providing label infrastructure avoids the need for policy authors to replicate label 

storage facilities, and by integrating the label model with the kernel’s synchronization model, 

avoids race conditions. 

 

Figure 5.11 Policies impose semantics on the MAC framework’s opaque label facility. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig11
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Label Life Cycle and Memory Management 

The MAC framework represents label storage using label, which can be converted into 

policy-specific data for policies requesting label storage on an object type. In-memory kernel 

data structures for labelled kernel objects, including process credentials, virtual filesystem 

nodes, and IPC objects, are extended to hold references to labels, which are managed by the 

MAC framework. Table 5.15 enumerates the kernel data structures that have label storage; for 

some types, such as vnode, a label pointer is added to the data structure itself, referencing label 

storage allocated and managed by the framework; where kernel data structures already support 

a metadata scheme, such as mbuf tags, that facility holds the label data. 

 

Table 5.15 Kernel object types supporting MAC labels. 

The label structure is opaque to both kernel subsystems and MAC policies; the former invoke 

kernel-service entry points to manage the field, and the latter employ two accessor functions, 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab15
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mac_label_get() and mac_label_set() to retrieve and set policy-specific opaque values of type 

uintptr_t, which is large enough to hold a pointer or an integer. Internally, the MAC framework 

implements label as an array of uintptr_t indexed by a per-policy slot number allocated on 

policy load if requested by the policy. However, that mechanism may be changed in the future. 

As of FreeBSD 8, labels are allocated only when a policy specifically registers an initialization 

entry-point function for that object’s label. As a result, policies loaded after boot may find that 

label structures are not present for objects instantiated before the policy was loaded, and must 

be able to handle that case. Alternatively, policies can be marked as unloadable after boot. 

In the FreeBSD kernel, data-structure allocation occurs in a number of forms; most frequently, 

the slab allocator is used (described in Section 6.3), which caches partially initialized instances 

of objects to avoid complete reinitialization on each reuse. In other cases, the kernel’s malloc() 

allocator is used, in which case full object reinitialization occurs on each allocation. In rare cases, 

a subsystem manages its own memory cache in more complex ways, such as the vnode cache, 

that leaves structures fully initialized and available for continued use until the memory is 

reclaimed because of pressure from the pageout daemon. The memory model for each labelled 

object is reflected in MAC framework and policy entry points, requiring variation in the 

handling of labels across object types. 

Differing dispositions with respect to waiting for memory allocation under pressure are also 

propagated to MAC framework label allocation in the form of arguments, indicating whether 

sleeping is permitted, that are also exposed to policy entry points; failing to allocate a label will 

also lead to object allocation failure. Contexts that prevent sleeping include interrupt threads 

and kernel threads holding nonsleepable locks; in both of these scenarios, allowing 

unconditional (and therefore potentially sleeping) memory allocations could lead to deadlock; 

thus, allocations must be allowed to fail, with effects on the complexity of calling code, which 

must be able to handle that failure. 

Kernel object allocation is significantly more complex than simply allocating memory: once 

memory is available, its fields must be initialized, including locks, and it must be hooked up to 

namespaces, etc. Similarly, label allocation is notionally separate from object creation and object 

association, the two mechanisms by which MAC policies may initialize their own label state in a 

given security context. 

Object creation occurs when an API to create a new object is invoked: for example, a call to open 

may create a new file, socket a new socket, and pipe a new pipe. In these scenarios, the security 

properties of the new object (including any policy-specific MAC label data) will be initialized 

from sources such as the creating process’s credential or the security properties of a parent 

object (such as a parent directory). 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3
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Object association occurs when the kernel associates an instance of a kernel data structure with 

an existing underlying object in persistent storage, for which the kernel data structure is simply 

a cache. For example, a specific file will have a vnode allocated for it only after it is pulled into 

the in-memory working set of the filesystem, and may be detached from the vnode if it falls out 

of the working set and the vnode must be reused for another file. In that scenario, label 

association occurs at the point where the vnode is associated with the on-disk file, at which 

point MAC policies are given the opportunity to set up policy-specific label states, perhaps 

derived from the mount point from which the file is being loaded, or from extended attributes 

from the on-disk file. Both the source of file label data and its interpretation are policy specific, 

but the MAC framework provides the necessary entry points to interpret and propagate label 

data as required. For kernel services such as the filesystem, creation and association operations 

implemented by policy modules are permitted to fail, in turn propagating failure back to the 

kernel service. This design prevents creation of a file if, for example, storage for its security label 

cannot be allocated in the filesystem. 

Object destruction, which may represent the destruction of an actual object (such as a process 

exiting), or simply the recycling of in-memory storage for some persisting object (such as a file 

falling out of the vnode cache), also triggers the destruction of the object’s label. The MAC 

framework is given the opportunity to release storage for the label, permitting policies to free 

any allocated storage or references associated with that label. 

Label Synchronization 

Where supported by the semantics of kernel locking, the MAC framework allows policy modules 

to borrow existing kernel locks on labelled objects. This design offers not only the benefit of 

improved performance by reducing the number of locks and locking operations, but also allows 

label access to be synchronized with object access, avoiding time-of-check-to-time-of-use races. 

Locking protocols are documented for each policy entry point, and enforced by locking 

assertions in debugging versions of the kernel, allowing policy developers to rely on 

synchronization properties. 

In some cases, these semantics are insufficient for policy requirements: for example, if a policy 

shares mutable label data between multiple objects (such as a reference-counted sandbox 

descriptor), then additional synchronization may be required to protect policy data. Similar 

concerns may arise where read-write locking is used on an object, and a policy needs to mutate 

the label (taint tracking in LOMAC, for example) while only a read lock is held by the framework; 

here, the policy must provide supplemental locking to ensure mutual exclusion on label data. 
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Another interesting case is the process credential, which itself is a reference-counted, read-only 

object—an important performance optimization that reduces the memory overhead of credential 

data, and also allows for lock-free and thread-local use of credentials in almost all access-control 

scenarios. When the kernel needs to modify credentials, it will do a copy-on-write, allocating a 

new credential, copying old data, and modifying required fields; however, this design means 

that much of the time, credential data is shared among not just threads, but also processes. 

Performing credential copy-on-write cannot be done in arbitrary contexts because of memory 

allocation constraints and lock order, so the LOMAC policy uses an additional process label, 

protected by its own locks, to tag processes for taint propagation asynchronously on the next 

system-call return. However, existing object locking usually is able to protect label data for 

objects. The mac test module validates that framework expectations for locking and label life 

cycles in entry points are maintained. Detailed coverage of specific object behavior can be found 

in Watson [2012]. 

Policy-Agnostic Label Management from Userspace 

The MAC framework supports label manipulation by two classes of applications: those aware of 

MAC but unaware of specific policies, and those intended to manage the labels of specific MAC 

policies. 

Policy-agnostic but MAC-aware applications, including traditional UNIX monitoring tools such 

as /bin/ps, /bin/ls, and /sbin/ifconfig, have been extended to display subject and object 

label information. New commands, such as /bin/getfmac and /bin/setfmac, have been 

added to set the MAC labels on system objects such as files. The system login process has also 

been extended to set labels on process credentials based on user classes defined in 

/etc/login.conf. These programs all treat labels in an abstract, policy-agnostic manner. The 

user-land framework relies on a configuration file, /etc/mac.conf, to determine 

administrator-defined defaults for labels to query and list on files, interfaces, and processes. 

Policy-specific applications are aware of the semantics of specific security policies, and if 

applicable, the security labels they place on objects. Depending on the nature of the the 

application, developers may choose to use the policy-agnostic interfaces provided by the MAC 

framework, or new policy-specific interfaces exported specifically by the policy. For example, 

applications that are aware of the semantics of MLS labels may perform labelling operations 

involving only MLS label elements via policy-agnostic labelling interfaces. On the other hand, 

the ugidfw policy module exports a rule list via the kernel sysctl management interface. 

To implement these functions, the kernel provides new system calls and socket options to 

support querying and setting labels in a policy-agnostic format, including mac_get_file, 
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mac_get_fd, mac_set_file, and mac_set_fd, that get and set labels on files and file descriptors. 

Applications handle MAC labels via the opaque mac_t type, which is implemented as a string 

buffer internally. 

Labels manipulated by applications are multipart, consisting of a series of name and value pairs, 

allowing label components from different policies to be manipulated simultaneously (and with 

mutual atomicity) up and down the software stack. Applications can convert labels to and from 

an explicit text format for printing and user input; however, label parsing is generally left up to 

the kernel, a design trade-off that appears acceptable, but motivated an expansion of safe 

string-handling routines in the kernel. The string “biba/low,mls/10,” for example, describes a 

label that consists of two elements: a low-integrity Biba label, and an MLS label of sensitivity 10. 

Applications may address all of the elements available on an object or any subset. In earlier 

MAC framework designs, we intended to allow the userspace framework for labels to be 

run-time extended using plug-in modules, as is the case for the kernel, but this design was 

abandoned in favor of a simpler approach. 

5.11 Security Event Auditing 

Security event auditing, often referred to simply as audit, is the secure, reliable, fine-grained, 

and configurable logging of security-relevant system events. Events of potential interest include 

security-related user authentication and authorization activities, as well as administrative events 

that affect system security, such as network interface reconfiguration or rebooting. Historically, 

OS vendors have provided audit facilities to support forensic analysis following compromise; 

however, FreeBSD’s audit system has been designed more broadly to also allow live intrusion 

detection and general-purpose system monitoring. For the purposes of this section, we are 

concerned primarily with the kernel portions of the audit implementation and their effect on 

general kernel design. 

The FreeBSD event-auditing system was developed jointly by Apple and the FreeBSD Project 

during Common Criteria certification of Mac OS X, targeting the Common Access Protection 

Profile (CAPP). FreeBSD userspace audit libraries and tools are loosely compatible with Sun’s 

Basic Security Module (BSM) APIs, and are separately distributed as OpenBSM. Its 

BSM-compatible APIs and file format have been significantly extended to support 

operating-system portability and operating-system features not present in Solaris—e.g., 

Capsicum in FreeBSD and catalogue operations in Mac OS X; it has also made byte-order 

independent. The FreeBSD and Mac OS X kernel audit implementations are also derived from 

the OpenBSM code base [Watson & Salamon, 2006]. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref24


 

243 

Audit Events and Records 

Auditable events are those that the audit system is able to log, which include kernel-centered 

activity (e.g., filesystem and network accesses) and user-level events (e.g., authentication). CAPP 

requires that the set of auditable events in an operating system include any exercise of the 

system’s access-control policies, authentication, security management, and audit management. 

The kernel audit framework is primarily focused on capturing events originating in system calls, 

which reflect the actions of subjects (processes) on controlled kernel objects. User processes, 

such as login and su, may also submit audit records describing user-level events using the 

audit system call. The act of submitting an audit record via audit is also an auditable event that 

may need to be logged. 

Each audited security event is described by an audit record that contains information on the 

subject responsible for the event (e.g., the process, user, and where they were logged in from), 

any objects affected by the event (e.g., files), and event-specific data (e.g., the new mode set on a 

file by chmod). Records are stored sequentially to files, referred to as audit trails. Auditing is 

subject to an audit pre-selection policy that specifies the subset of auditable events that will 

actually be logged—without this feature, even casual system usage would generate vast 

quantities of log data, filling disks rapidly, and severely impact performance. Audit trails can 

also be reduced, or filtered post-capture, to remove generated records that may be of less 

interest over time. For example, administrators might have a policy of keeping detailed 

file-access logs for 1 month, but login information for 12 months. Here, the auditreduce 

command thins the longs incrementally. 

CAPP also describes attributable events, which may be traced back to an authenticated user—for 

example, a file access by a logged-in user, and nonattributable events that occur as part of 

system operation—for example, the starting of a security-relevant daemon during system boot. 

The idea of attribution required adding a new audit UID (AUID) in the process credential, 

illustrated in Figure 5.12. The AUID tracks the authenticated user who initiated an event, 

regardless of any UID changes that may have occurred as a result of executing setuid binaries. 

The process credential has also been extended to include the audit terminal and audit session 

that will be tagged onto each audit record generated for the process, and the audit mask, which 

together with global-audit configuration, will control which events will be audited for the 

process. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig12
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Figure 5.12 Audit-related additions to the process credential. 

BSM Audit Records and Audit Trails 

BSM audit trails are binary files made up of a sequence of machine-readable tokens, as 

illustrated in Figure 5.13. Tokens have a type, captured by its token ID, and a value, whose 

parsing is type-specific; omission of a length field from most token types makes unrecognized 

tokens unparseable—arguably a weakness to the design, but one that saves considerable space. 

Records begin with one of several possible header tokens that will include the total length of the 

record, a timestamp, and an event type indicating what the record describes—for example, 

whether it is a open system call or event submitted by login. The header is followed by a series 

of data tokens holding credential information, arguments and return values for the event, and at 

the end, a trailer token terminating the record. In addition to record-oriented tokens, audit trail 

files also begin and end with stand-alone file tokens that contain start and stop timestamps. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig13
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Figure 5.13 Records consist of tokens holding state, arguments, and return values. 

While the FreeBSD kernel generates BSM directly, internal data structures used for the majority 

of in-kernel processing are not BSM-specific, so they could be easily replaced to add support for 

a new file format. However, records submitted by userspace via the audit system call also 

contain BSM. 

Kernel-Audit Implementation 

Key components of the kernel-audit implementation are illustrated in Figure 5.14 and include 

the following: 

• System calls to set the global-audit configuration, including global pre-select parameters for 

unattributed events and trail rotation; this global-audit configuration is mostly used by auditd 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig14
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Figure 5.14 The audit daemon and login process configure audit state for user processes. 

• Extensions to the process credential to hold the AUID and audit masks, managed with new 

system calls used by programs such as login and sshd 

• System-call entry code that performs initial pre-selection and optionally allocates an audit 

record for the thread 

• System-call instrumentation that captures arguments to the event, such as file paths or UIDs 

• System-call return code that performs further pre-selection, once the system call return value 

is known, and commits the record to the global-audit queue 

• The audit worker thread, responsible for managing delivery of records to the active audit trail 

and audit pipes; it also processes audit-trail rotation requests synchronously 

• Audit pipe code responsible for further pipe-specific filtering that instruments both system call 

entry and return ioctls to configure filtering 

Mandatory monitoring and high reliability are both key requirements for the audit system: if an 

event is configured to be audited, then either the event occurs and is audited, or it must not be 

allowed to occur. Nonbypassability is implemented by performing auditing in the TCB; that is, 
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the kernel and trustworthy user processes; access to the audit trail is strictly controlled to ensure 

integrity and confidentiality. Reliability, however, has a host of further implications, including 

the need to track remaining disk storage carefully to ensure that records for in-progress events 

can be stored. These requirements are quite different from those implemented by the system log 

daemon, syslogd, that is intended for public log data, submittable by any user, and which will 

drop records rather than affect system availability when they are submitted too quickly or fill the 

disk. 

Figure 5.15 illustrates the arrangement of queues in the system, each with different size and 

reliability properties. Individual threads may carry up to two audit records describing 

in-progress activities: an active kernel audit record, and an optional user-audit record submitted 

via audit. On system-call return, audit records are submitted to the global queue that is both 

reliable and bounded in length to prevent outstripping of available disk space. Once the audit 

worker thread has removed a record from the global queue, it will convert the record to BSM 

and optionally deliver it to the global-audit trail, based on global and per-process configuration, 

and to any open audit pipes, subject to either global configuration or per-pipe configuration, 

depending on how the pipe has been configured. 

 

Figure 5.15 Records pass through a series of reliable and lossy kernel queues. 

Figure 5.16 illustrates the data structures involved: the thread structure points at the current 

kaudit_record, if any, for the in-flight system call. This structure describes both a 

kernel-originated record, whose fields are stored in audit_record, with a bitmask showing 

which fields have been set so that they can be converted to tokens, and k_udata, that points at 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig16
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the BSM record as submitted from userspace. The global audit_queue is simply a linked list of 

outstanding records, along with metadata on queue limits and length. 

 

Figure 5.16 Per-thread in-flight audit record and global-audit record queue. 

5.12 Cryptographic Services 

The FreeBSD kernel integrates several low-level cryptographic services, including a framework 

supporting software and hardware implementations of common encryption and cryptographic 

hash functions, and a Yarrow-based cryptographic pseudo-random number generator. 

Higher-level services, such as full-disk encryption (GBDE and GEOM), the GSSAPI 

implementation used for NFS, and IPSec, depend integrally on these low-level cryptographic 

services to provide local and distributed security. Random numbers support many other kernel 

services, some with significant security implications; the kernel is well-placed to collect entropy 

inputs to pseudo-random number generation. Cryptographic and random-number generation 

services are also made available to userspace via /dev/crypto, /dev/random, and the 

kern.arandom sysctl. 
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Cryptographic Framework 

Underlying cryptographic services such as GELI and IPSec is a set of APIs and libraries that 

support cryptography. The cryptographic subsystem in FreeBSD supports both symmetric and 

asymmetric cryptography. Symmetric cryptography, used by IPSec, uses the same key to encrypt 

data as it does to decrypt it. Asymmetric cryptography, which implements public-key encryption, 

uses one key to encrypt data and another key to decrypt it. This section describes how 

symmetric cryptography is implemented as it relates to a specific client, IPSec. 

The cryptographic subsystem was ported from OpenBSD and optimized for a fully preemptive 

multiprocessing kernel [Leffler, 2003]. In FreeBSD, cryptographic algorithms exist either in 

software or in special-purpose hardware. The software module that provides support for 

cryptography is implemented in exactly the same way as the drivers for cryptographic hardware. 

This similarity means that, from the cryptography subsystem’s point of view, the software and 

hardware drivers are the same. Upper-level consumers of the cryptography subsystem, such as 

IPSec, are all presented with the same API whether the cryptographic operations they request 

are being done in hardware or software. 

The cryptography subsystem is implemented by two sets of APIs and two kernel threads. One set 

of APIs is used by software that wishes to use cryptography; the other set is used by 

device-driver writers to provide an interface to their hardware. The model of computation 

supported by the cryptographic subsystem is one of job submission and callbacks where 

consumers submit work to a queue and supply a pointer to a function that will be called when 

the job is completed. 

Before a cryptography consumer can submit work to the cryptography subsystem, it must first 

create a session. A session is a way of encapsulating information about the type of work that the 

consumer is requesting. It is also a way of controlling the amount of resources consumed on the 

device, since some devices have a limitation to the amount of concurrent work they can support. 

A consumer creates a session using the crypto_newsession() routine that returns either a valid 

session identifier or an error. 

Once the consumer has a proper session identifier, it then requests a cryptographic descriptor, 

shown in Figure 5.17. The consumer fills in the fields of the cryptographic descriptor, including 

supplying an appropriate callback in the crp_callback element. When the descriptor is ready, it 

is handed to the cryptographic subsystem via the crypto_dispatch() routine that puts it on a 

queue to be processed. When the work is complete, the callback is invoked. All callbacks have 

this form: 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig17
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Click here to view code image 

int (*crp_callback)( 

    struct cryptop *arg); 

 

Figure 5.17 Cryptographic descriptor. 

If an error has occurred, the error code is contained in the crp_etype field of the cryptographic 

descriptor that is passed to the callback. 

A set of device drivers provides the low-level interface to specialized cryptographic hardware. 

Each driver provides three function pointers to the cryptographic subsystem when it registers 

itself. Driver registration is done via a call to the crypto_register() routine. 

Click here to view code image 

crypto_register( 

    u_int32_t driverid, 

    int alg, 

    u_int16_t maxoplen, 

    u_int32_t flags, 

    int (*newsession)(void*, u_int32_t*, struct cryptoini*), 

    int (*freesession)(void*, u_int64_t), 

    int (*process)(void*, struct cryptop *, int), 

    void *arg); 

The newsession() or freesession() routines are called by the cryptographic subsystem whenever 

the crypto_newsession() or crypto_freesession() routines are called by a consumer. The 

process() routine is called by the crypto_proc() kernel thread to pass operations into the device. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05_images.html#p207pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05_images.html#p207pro02
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The lower half of the cryptographic subsystem uses two software interrupt threads and two 

queues to control the underlying hardware. Whenever there are requests on the crp_q queue, 

the crypto_proc() thread dequeues them and sends them to the underlying device, using the 

crypto_invoke() routine. Once invoked, the underlying hardware has the responsibility to 

handle the request. The only requirement is that when the hardware has completed its work, the 

device driver associated with the hardware must invoke crypto_done() that either enqueues the 

callback on the crp_ret_q queue or, more rarely, directly calls the consumer’s callback. The 

crp_ret_q queue is provided because the crypto_done() routine often will be called from an 

interrupt context, and running the consumer’s callback with interrupts locked out will degrade 

the interactive performance of the system. When running in an interrupt context, the callback 

will be queued and then handled later by the crypto_ret_proc software interrupt thread. This 

use of queues and software interrupt threads effectively decouples the kernel from any possible 

performance issues introduced by a variety of cryptographic hardware. 

Unfortunately, there are several problems with the system just described: 

• Using multiple threads requires two context switches per cryptographic operation. The context 

switches are nontrivial and severely degrade throughput. 

• Some callback routines do little work, and so moving all callbacks out of the device driver’s 

interrupt-service routine adds another context switch that is expensive and unnecessary. 

• The dispatch queue batches operations, but many consumers of the cryptographic subsystem, 

including IPSec, do not batch operations, so this shunting of work into the dispatch queue is 

unnecessary overhead. 

To address these performance problems, several changes were made to the cryptographic 

subsystem. Cryptographic drivers are now supplied a hint if there is more work to follow when 

work is submitted to them. The drivers can decide whether to batch work based on this hint and, 

where requests are not batched, completely bypass the crp_q queue. Cryptographic requests 

whose callback routines are short mark their requests so that the underlying device executes 

them directly instead of queueing them on the crypto_ret_q queue. The optimization of 

bypassing the crypto_req_q queue is especially useful to consumers of the /dev/crypto device, 

whose callback routine awakens only the thread that wrote to it. All these optimizations are 

described more fully in Leffler [2003]. 

Random-Number Generator 

Random (or unpredictable) numbers are relied on throughout the FreeBSD kernel and 

userspace. For example, some network protocols use randomly generated identifiers rather than 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref10
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globally managed identifiers to benefit from unique names for hosts and users (e.g., UUIDs) 

while avoiding the cost of global registries. Strong random numbers—those unpredictable to 

even a motivated adversary—are of particular importance to security and robustness. They 

generate: 

• PIDs, and stack canaries, used for exploit mitigation; 

• IP IDs, TCP initial sequence numbers (ISN), and the key for TCP SYN cookies (described in 

Section 14.3); 

• authentication and encryption keys and initialization vectors (IV)s used in network protocols: 

kernel includes IPSec, and SCTP; userspace includes TLS, ssh, Kerberos, and GSSAPI; 

• authentication and encryption keys, IVs used for GELI and GBDE; 

• initial UFS inode generation numbers for NFS file handles; 

• salt for cryptographic hashes used in the system password database; and 

• keys, IVs, and nonces for third-party applications such as pretty-good privacy (PGP) e-mail 

encryption. 

Computers are by design highly deterministic, making unpredictable numbers hard to acquire in 

the volumes that may be required by software. Even when in-hardware random-number 

generators are present, there are open questions about their effectiveness as they can suffer 

biases and supply-chain attacks that are difficult to identify or mitigate. Software developers 

therefore rely on pseudo-random number generators (PRNGs) to generate sequences of 

numbers that, given a smaller secret key (or seed) as an initial input, will prove effectively 

unpredictable to attackers. Seeds are generated by collecting entropy from around the system to 

which attackers will not have access: explicit hardware entropy sources, the layout and probe 

time of hardware busses and peripherals present in the system, unique serial numbers, and 

unpredictable timings from the system—e.g., interpacket and interrupt arrival times. 

While the kernel is well-placed to collect entropy, generating and protecting seeds are 

technically challenging: weak or improperly protected seeds may allow attackers to reduce the 

search space for keys (or even completely reconstruct past pseudo-random sequences). Given 

adequate processing and a strong cryptographic number generator, however, not all inputs to 

the seed need be unpredictable, so systems can safely include sources that might be accessible to 

some attackers. For example, interpacket arrival times contribute usefully to the seed even if 

some adversaries might be able to sniff the same wireless network. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec3
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Entropy is fed into the in-kernel random-number generator, which provides a stream of 

pseudo-random bytes for in-kernel use. Entropy is exported to userspace via /dev/random 

and the kern.arandom sysctl. Sometimes the generator provides the random data directly—for 

example, read system calls on /dev/random. In other cases, differing security and 

performance trade-offs allow use of a cheaper generator seeded from the strong generator; for 

example, the arc4random() interface used in the network stack, and the kern.arandom sysctl 

used for stack-canary initialization by the C runtime. 

A key concern in random-number generator designs is perfect forward secrecy (PFS), which 

guarantees that information about random numbers produced at a later time cannot attack 

random numbers generated earlier in the sequence. For example, PFS prevents adversaries that 

may gain access to a system following a theft (or via export of random numbers) from gaining an 

advantage in breaking keys that protect on-disk storage or communications with another party 

the previous day. PFS is done through intermittently reseeding the generator with new entropy; 

the reseeding interval controls the window over which an attacker who has compromised the 

system can derive information about earlier random sequences. Some care must be taken, 

however: if entropy is mixed into the generator too frequently, then an attacker may be able to 

gain information about the entropy source by inspecting generator output over time. 

To address these concerns, FreeBSD employs the Yarrow cryptographic pseudo-random number 

generator to generate sequences of random numbers for use throughout the system [Kelsey et al., 

1999; Murray, 2002]. Yarrow itself has four major components: an entropy accumulator that 

gathers entropy samples in one of two pools using a cryptographic hash; a reseed mechanism 

that, at routine intervals, reseeds the generator key; a generation mechanism that generates a 

pseudo-random sequence from the key; and reseed control that determines at what interval 

reseeding from fresh entropy should occur. These structures are directly reflected in the 

software implementation. 

An important design choice in Yarrow is using existing strong cryptographic primitives, such as 

triply-DES and SHA-1 in the design, which comes at significant performance cost, but avoids use 

of custom cryptographic primitives that have seen less cryptanalysis. The FreeBSD 

implementation supports multiple cryptographic hashes and encryption algorithms, an 

extension to the original design; by default, AES and SHA-256 are used—both defined after 

Yarrow was published. 

FreeBSD is able to collect entropy samples, which include both a timestamp and 

context-dependent data (e.g., packet headers). Configurable entropy sources include: 

• low-level hardware interrupt processing, 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref12
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• scheduling of a hardware interrupt to a thread, 

• scheduling of a software interrupt (SWIs) to a thread, 

• packet headers injected via Ethernet interfaces, 

• packet headers injected via point-to-point interfaces, 

• attach times during boot-time hardware enumeration, 

• keyboard and mouse input, 

• hardware random-number sources, such as Intel’s rdrand instruction, and 

• entropy preserved in a file across reboot. 

Entropy gathering occurs throughout the kernel. Individual sources will check whether they are 

enabled before invoking random_harvest(). A timestamp is collected, typically via the 

high-precision cycle counter available in most contemporary CPU designs. However, some older 

architectures may not support the cycle counter, in which case a slower real-time clock will be 

used. Sources also pass a pointer to optional data, its length, an estimated number of bits of 

entropy in the sample, and the entropy source type. 

The function random_harvestq_internal() enqueues entropy samples to a global linked list, 

with further processing deferred to a dedicated kernel thread to avoid performing 

computationally intensive hashes in performance-sensitive contexts such as interrupt handling. 

If the queue is full, then the sample is discarded to bound memory use. random_kthread() 

wakes up 10 times a second to drain the pending queue of samples and inject them into Yarrow 

via random_process_event(). random_kthread() also samples high-volume dedicated 

hardware entropy sources such as rdrand at the same interval by invoking 

live_entropy_sources_feed(). This sampling interval, combined with limits on linked-list size, 

bounds the total amount of entropy that can be collected each second, and therefore limits the 

amount of CPU capacity that will be spent on computationally expensive hashing. 

As entropy events arrive in Yarrow, they are alternately injected into either the slow pool or the 

fast pool, which each consist of an instance of the selected cryptographic hash function. The 

maximum entropy that a pool can store is limited by the width of the hash: 160 bits for SHA-1 

and 256 bits for SHA-256 The complete sample, including data and timestamp, is passed to the 

hash, and the entropy estimate provided by the caller updates the per-source running estimate. 

The fast pool will reseed Yarrow when any one source has contributed at least 100 bits of 

accumulated entropy. The slow pool will reseed Yarrow when any two sources have both 
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contributed at least 160 bits of accumulated entropy. Yarrow’s authors call for the use of 

statistical tests to help measure entropy gathered from sources. However, devising valid 

statistical tests has proven to be tricky and they are the most criticized aspect of the algorithm. 

FreeBSD relies solely on a programmer estimate of entropy in each sample. 

This approach spreads entropy from different sources over time to prevent a particularly fast, 

low-quality (or even compromised) source of entropy from diluting the pool—while still allowing 

strong fast-moving sources to reseed frequently. When a reseed occurs, the contents of the 

fast-pool hash are always included; slow-pool contents are only included when a slow reseed is 

triggered. The cryptographic hash is applied multiple times to ensure that if hash context and 

key size differ, then all bits of stored entropy are evenly distributed over all bits of keying 

material. 

Yarrow’s generator runs only when randomness is required, as opposed to entropy 

accumulation, which runs whenever entropy samples are available. Thus, generator cost is 

proportional to randomness consumed, whereas accumulator cost is proportional to entropy 

sampled, and there is greater tolerance for the performance overhead of a contemporary 

encryption algorithm versus a cheaper cryptographic hash. Yarrow’s seed is not used directly as 

a key; instead, it is used by generator_gate() to generate a short-lived current key. This 

approach prevents the same encryption key from being used too many times, which might 

otherwise allow output cycles to arise in the PRNG. Key generation feeds output bits from the 

PRNG back in as keying material; as it does not introduce any new entropy, it does not 

constitute reseeding. By default, the key will be regenerated every 10 output blocks. 

When a read system call occurs on /dev/random, Yarrow is queried to determined whether it 

has been seeded; if not, it will block. If it has been seeded, then it is invoked to do counter-mode 

encryption using the current key. While some systems differentiate random and urandom 

devices, offering blocking and nonblocking entropy sources, FreeBSD simply provides the 

output of Yarrow directly to both device nodes, so once unblocked by seeding, Yarrow will 

provide unlimited randomness on either device. 

The /dev/random framework offers significant pluggability and flexibility, allowing both new 

entropy sources and new cryptographic PRNGs to be introduced. In the current implementation, 

FreeBSD passes all entropy sources through Yarrow, but can be configured to allow direct use of 

hardware randomness sources if desired. Direct use of hardware randomness may be suitable on 

low-end embedded devices where cryptographic schemes are particularly expensive, or where a 

high level of trust can be placed in hardware sources. The authors of Yarrow have since 

published a new scheme, Fortuna, that may in the long term replace Yarrow in FreeBSD; the 

framework should allow both implementations to live side by side, with compile-time or 
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run-time selection. Another potential future direction would be to replicate PRNG instances 

across CPUs, rather than using a single instance that requires communication between 

processors. 

5.13 GELI Full-Disk Encryption 

GELI is a GEOM class that offers cryptographic privacy and integrity protection for storage 

devices that might be lost or stolen. Its primary concern is ensuring that, once a shutdown has 

occurred, confidential data cannot be recovered from the disk without access to suitable 

cryptographic keys or passphrases. A secondary concern is detecting corruption of on-disk data 

if the device is recovered. 

Confidentiality and Integrity Protection 

Confidentiality is ensured by applying symmetric encryption to each sector before it is written to 

the disk, and decryption when the sector is read back in. While a provider is active (e.g., while 

the filesystem is mounted), its encryption keys are held in memory; when the provider is 

detached, or on system shutdown, keying material is discarded. GELI can also be configured to 

discard keying material when a system is suspended, requiring that it be present when the 

notebook is resumed to load further data from disk. Encryption occurs at measurable 

computational cost, but requires only one additional sector of metadata storage (at the end of 

the device) to support any number of data sectors. The default (and recommended) encryption 

algorithm is the advanced-encryption standard (AES) AESXTS, an AES-derived block cipher 

designed for use with storage devices. 

Optional integrity protection is done by calculating keyed cryptographic hashes for disk sectors 

on write; sector hashes are validated on each read from disk. Sector-level verification failures 

are coerced into read failures that must be handled by the filesystem or application. Integrity 

checking comes with additional computational costs, but also requires that hash values be 

stored for each on-disk sector. The hash cannot be stored within a 512-byte sector while 

maintaining filesystem sector-size expectations; to mitigate this overhead, GELI coalesces 

multiple 512-byte sectors into 4-Kbyte sectors with one hash in each underlying disk sector, 

resulting in about an 11 percent storage overhead. The recommended cryptographic hash is 

HMAC SHA-256; integrity protection is disabled by default. GELI makes use of the kernel 

cryptographic framework, and is therefore able to use offloaded or CPU-accelerated 

cryptography, substantially improving performance. 
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Key Management 

Each GELI partition is protected by two underlying cryptographic keys: a data-encryption key 

and an initialization-vector key that collectively make up the GELI per-provider master key. 

Separate per-block keys for data encryption, initialization vectors (IVs), and integrity checking 

are generated from the master key using cryptographic hashes rather than using the master key 

directly. This approach avoids reusing the same keys for multiple purposes (e.g., confidentiality 

and authentication), a practice heavily discouraged in contemporary cryptography. 

Master keys are stored encrypted on the disk and must be decrypted before the provider can be 

attached. Typical use decrypts the master key using one or both of a passphrase entered on the 

console (“something you know”) and a keyfile stored on a removable USB device (“something 

you have”). Up to two copies of the master keying material, encrypted using different 

passphrases or keyfiles, may be stored in on-disk metadata. This approach allows, for example, 

the daily user of a corporate notebook to specify one passphrase and key, but the employer to 

retain its own recovery passphrase or key in a vault to be used if the user passphrase is forgotten 

or USB stick is lost. GELI can also operate with randomly generated keys for swap partitions, 

entirely preventing data persistence across reboot. 

Protecting the master key on-disk is critical to the security of GELI. Instances of the master are 

protected on disk with a derived key generated by passing a concatenation of the on-disk keyfile, 

on-disk salt, and user passphrase (optionally strengthened using PKCS#5v2) through unkeyed 

HMAC SHA-512. The master-key encryption key is generated by running HMAC SHA-512 over 

the string “\x01” keyed with the derived key. The same encryption algorithm and key length are 

used for the master key as are configured for block storage. The decrypted master key is 

validated by passing the derived key into HMAC SHA-512 over the string “\x00” and comparing 

it with the decrypted verification hash. The comparison will fail if the passphrase or keyfile do 

not match on-disk storage. 

Once decrypted, the master keys are stored in memory for the lifetime of the provider. The 

implementation is careful to zero memory that holds keys once they are no longer required. 

Zeroing memory is especially important for the passphrase and keyfile, which are not used after 

the GELI instance has attached. 

Starting GELI 

GELI providers are attached automatically at system boot, or explicitly at runtime using the 

/sbin/geli command. During boot, suitably configured instances will be discovered using 

GELI’s taste method, g_eli_taste(), which will be called as GEOM itself discovers new devices 
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and partitions. After boot, the ioctl system call is used by /sbin/geli to trigger GELI’s config 

method, g_eli_config(), which will configure a new GELI provider for a device or partition. 

Only GELI instances marked as G_ELI_FLAG_BOOT will be automatically started; required 

key files must have been preloaded by the boot loader, and GELI may need to suspend the boot 

before root-filesystem mount to interactively requested a user passphrase. For post-boot 

attachment, keying material and passphrase are passed explicitly in the configuration request. 

After the root filesystem has been mounted, auto-starting new GELI instances is disabled, and 

only a user-driven configuration is supported. 

GELI’s metadata is found in the last sector of the underlying device or partition. GELI supports 

several multiple on-disk layout versions, allowing backward compatibility despite an evolving 

feature set; version 7 of the disk trailer appears in Figure 5.18. The metadata includes the 

encrypted master keys protecting all data stored in the GELI instance. Other information, such 

as the encryption algorithm, key length, and salt, is unencrypted. Metadata is decoded by 

g_eli_taste() into a g_eli_metadata structure that initializes the g_eli_softc data structure, 

shown in Figure 5.19, which holds information about the attached provider. 

 

Figure 5.18 GELI v7 on-disk metadata, including encrypted master keys. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig19
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Figure 5.19 The g_eli_softc structure describes active GELI sessions. 

Cryptographic Block Protection 

GELI uses per-sector IVs to prevent identical data written to different sectors from having the 

same ciphertext, which might allow attackers to gain insight into on-disk layout and content. 

With most encryption algorithms, the per-sector IV is calculated by passing HMAC SHA-256, 

keyed with the master key’s IV generation key, over the little-endian representation of the 

sector’s byte offset. GELI caches a partially calculated version of the hash in its softc structure 

for performance reasons. AES-XTS, the default encryption algorithm, takes sector number as a 

direct argument, and so does not require explicit IV calculations by GELI. 

Recent versions of GELI vary per-sector encryption keys across the disk to limit direct reuse of 

the underlying master-key data-encryption key. A key number is associated with each 512 Mbyte 

chunk of the disk; keys are calculated by passing a concatenation of the string “ekey” with the 

little-endian representation of the key number to HMAC SHA-512 keyed with the master-key 

data-encryption key. Because this calculation is expensive, GELI maintains a red-black tree of 

cached calculated key value. Entries in the cache are reference-counted so that the cryptographic 

framework can prevent cache entries from being freed while they are in use. 

When suitably configured, GELI will generate and check keyed cryptographic hashes on sector 

data. This approach imposes an additional metadata overhead for each block; to minimize this 

overhead, GELI providers with authentication enabled will typically be configured to use larger 

(4-Kbyte) block sizes, reducing overhead. As with per-block encryption keys and IVs, per-block 
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authentication keys are generated by passing a concatenation of the provider’s data-encryption 

key and sector offset in bytes through SHA-256. As the hash of the data-encryption key is 

common to all blocks, a partially calculated hash is stored in the softc, which is combined with 

the per-block offset during I/O. 

I/O Model 

All GELI I/O activity originates in either g_eli_taste(), when GEOM discovers a new partition 

during the boot, or g_eli_start(), which is invoked each time a new I/O request for the provider 

is delivered down the storage stack from another layered GEOM provider, a filesystem, or direct 

access to a /dev node by a user process. When a read operation is fielded, GELI will issue an 

I/O operation to the underlying storage provider and then invoke the crypto framework to 

decrypt (and optionally authenticate) the resulting data. When a write operation is fielded, GELI 

will optionally hash and then encrypt the data using the crypto framework before issuing I/O to 

the underlying storage provider. Interactions with both the underlying provider and crypto 

framework are asynchronous: GELI provides callback functions that will be invoked when the 

operation completes. Both success and failure are returned to GEOM by invoking g_io_request() 

that will, in turn, trigger notification to the GEOM consumer that initiated the I/O operation. 

GELI creates a pool of per-CPU worker threads to process cryptographic operations to avoid 

congesting the GEOM thread that would otherwise synchronously execute I/O start and 

completion events including encryption, decryption, and hashing. The g_eli_worker() routine 

implements the thread worker body, which sleeps on the g_eli_softc structure pointer and 

extracts new work from sc_queue using g_eli_takefirst() when signalled. A GELI instance is 

marked as suspended by g_eli_suspend_one(), which it does by setting 

G_ELI_FLAG_SUSPEND in sc_flags. Once suspended, all I/O requests will be stalled. 

Suspension clears softc keying material, which must be restored before I/O can be resumed. I/O 

is resumed by g_eli_ctl_resume() clearing the G_ELI_FLAG_SUSPEND flag. 

Limitations 

As with all security features, GELI must be used with an awareness of its threat model and 

guarantees. For example, integrity protection can detect sector data that was written without 

access to a master key for the provider. It is unable, however, to detect “replay attacks” in which 

an older version of a sector replaces a newer version, as both will pass integrity checks. Multiple 

losses of the same storage device therefore leave the disk vulnerable to rewinding—a difficult 

problem to address, and one that GELI documents as outside of its threat model. GELI also 

excludes a number of other attacker models including: 
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• Online snooping of encrypted I/O traffic on its way to the disk rather than offline analysis, for 

example, tcpdump of iSCSI traffic carrying GELI-protected data. 

• Social engineering to gain access to the key or passphrase. Any encryption scheme that 

depends on a remembered passphrase can be broken if the person can be tricked into giving up 

the passphrase. It does, however, provide significant benefit in limiting the access of an attacker 

who has acquired a stolen notebook. 

Exercises 

5.1 Describe the difference between discretionary and mandatory access controls. 

5.2 How do definitions of “implicit privilege” and “explicit privilege” affect TCB protection in 

FreeBSD? What are the potential risks and benefits to implementing a flexible, fine-grained 

privilege model? 

5.3 Is it possible for a file to have UNIX permissions set such that its owner cannot read it, even 

though a group can? Is this situation possible if the owner is a member of the group that can 

read the file? Explain your answers. 

*5.4 How do distributed authentication and authorization systems, such as Kerberos or NFS, 

interact with local authentication and access control? 

*5.5 When should distributed-filesystem access-control enforcement occur on the client, and 

when on the server? 

*5.6 Access control has changed significantly between historic DAC and MAC models, and more 

contemporary approaches such as Capsicum. What similar considerations might apply to the 

more traditional audit framework present in FreeBSD? 

**5.7 FreeBSD uses a model in which the first process starts with complete privilege, which is 

discarded as events such as user authentication take place. This model has proven a problem in 

the past when system login services, such as sshd, have had security vulnerabilities that yielded 

root privilege. How might the model be restructured so that user authentication takes place 

without any privilege, and privilege is escalated rather than dropped? 

**5.8 What sort of hardware support would make it more efficient for the kernel to implement 

the FreeBSD security policies? 
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**5.9 This chapter has primarily considered the protection of objects maintained by a single 

instance of the operating system, such as local files and IPC objects. As virtualization becomes 

more prevalent, how might hypervisor and operating system access-control models interact? 
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Chapter 6. Memory Management 

6.1 Terminology 

A central component of any operating system is the memory-management system. As the 

name implies, memory-management facilities are responsible for the management of memory 

resources available on a machine. These resources are typically layered in a hierarchical fashion, 

with memory-access times inversely related to their proximity to the CPU (see Figure 6.1). The 

primary memory system is main memory; the next level of storage is secondary storage or 

backing storage. Main-memory systems usually are constructed from random-access 

memories, whereas secondary stores are placed on disk drives. In certain workstation 

environments, the common two-level hierarchy is a three-level hierarchy, with the addition of 

file-server machines or network-attached storage connected to a workstation via a local-area 

network [Gingell et al., 1987]. 

 

Figure 6.1 Hierarchical layering of memory. 

Each level in this hierarchy may have its own hierarchy. For example, there are usually several 

layers of caches between the CPU and the main memory. The secondary storage often has 

dynamic- or flash-memory caches to speed access to the moving-head disk drives. 

In a multiprogrammed environment, it is critical for the operating system to share available 

memory resources effectively among the processes. The operation of any memory-management 

policy is directly related to the memory required for a process to execute. That is, if a process 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_221
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must reside entirely in main memory for it to execute, then a memory-management system 

must be oriented toward allocating large units of memory. On the other hand, if a process can 

execute when it is only partially resident in main memory, then memory-management policies 

are likely to be substantially different. Memory-management facilities usually try to optimize the 

number of runnable processes that are resident in main memory. This goal must be considered 

with the goals of the scheduler (Section 4.4) so that conflicts that can adversely affect overall 

system performance are avoided. 

Although the availability of secondary storage permits more processes to exist than can be 

resident in main memory, it also requires additional algorithms that can be complicated. Space 

management typically requires algorithms and policies different from those used for main 

memory, and a policy must be devised for deciding when to move processes between main 

memory and secondary storage. 

Processes and Memory 

Each process operates in a virtual address space that is defined by the architecture of the 

underlying hardware on which it executes. A virtual address space is a range of memory 

locations that a process references independently of the physical memory present in the system. 

In other words, the virtual address space of a process is independent of the physical address 

space of the CPU. For a machine to support virtual memory, we also require that the whole of a 

process’s virtual address space does not need to be resident in main memory for that process to 

execute. 

References to the virtual address space—virtual addresses—are translated by hardware into 

references to physical memory. This operation, termed address translation, permits 

programs to be loaded into physical memory at any location without requiring 

position-dependent virtual addresses in the program to be changed. This relocation of 

position-dependent addressing is possible because the addresses known to the program do not 

change. Address translation and virtual addressing are also important in efficient sharing of a 

CPU, because they permit context switching to be done quickly. 

When multiple processes are coresident in main memory, we must protect the physical memory 

associated with each process’s virtual address space to ensure that one process cannot alter the 

contents of another process’s virtual address space unless they explicitly choose to share parts of 

their address space. This protection is implemented in hardware and is usually tightly coupled 

with the implementation of address translation. Consequently, the two operations usually are 

defined and implemented together as hardware termed the memory-management unit 

(MMU). 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
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Virtual memory can be implemented in many ways, some of which are software based, such as 

overlays. Most effective virtual-memory schemes are, however, hardware based. In these 

schemes, the virtual address space is divided into fixed-size units, termed pages, as shown in 

Figure 6.2. Virtual-memory references are resolved by the address-translation unit to a page in 

main memory and an offset within that page. Hardware protection is applied by the 

memory-management unit on a page-by-page basis. 

 

Figure 6.2 Paged virtual-memory scheme. 

Paging 

Address translation provides the implementation of virtual memory by decoupling the virtual 

address space of a process from what is contained in the physical address space of the CPU. 

Each page of virtual memory is marked as resident or nonresident in main memory. If a 

process references a location in virtual memory that is not resident, a hardware trap termed a 

page fault is generated. The servicing of page faults, or paging, permits processes to execute 

even if they are only partially resident in main memory. 

Coffman & Denning [1973] characterize paging systems by three important policies: 

1. When the system loads pages into memory—the fetch policy 

2. Where the system places pages in memory—the placement policy 
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3. How the system selects pages to be removed from main memory when pages are unavailable 

for a placement request—the replacement policy 

The performance of modern computers is heavily dependent on one or more high-speed 

hardware caches to reduce the need to access the much slower main memory. The placement 

policy should ensure that contiguous pages in virtual memory make the best use of the 

processor-memory cache and the address-translation cache [Kessler & Hill., 1992]. FreeBSD 

uses superpages to ensure good placement. Under a pure demand-paging system, a 

demand-fetch policy is used, in which only the missing page is fetched, and replacements occur 

only when main memory is full. In practice, paging systems do not implement a pure 

demand-paging algorithm. Instead, the fetch policy often is altered to do prepaging—fetching 

pages of memory other than the one that caused the page fault—and the replacement policy is 

invoked before main memory is full. 

Replacement Algorithms 

The replacement policy is an important aspect of any paging system. There are many algorithms 

from which we can select in designing a replacement strategy for a paging system. Much 

research has been carried out in evaluating the performance of different page-replacement 

algorithms [Jiang et al., 2005; Bansal & Modha, 2004; Belady, 1966; Marshall, 1979; King, 

1971]. 

A process’s paging behavior for a given input is described in terms of the pages referenced over 

the time of the process’s execution. This sequence of pages, termed a reference string, 

represents the behavior of the process at discrete times during the process’s lifetime. 

Corresponding to the sampled references that constitute a process’s reference string are 

real-time values that reflect whether the associated references resulted in a page fault. A useful 

measure of a process’s behavior is the fault rate, which is the number of page faults 

encountered during processing of a reference string, normalized by the length of the reference 

string. 

Page-replacement algorithms typically are evaluated in terms of their effectiveness on reference 

strings that have been collected from execution of real programs. Formal analysis can also be 

used, although it is difficult to do unless many restrictions are applied to the execution 

environment. The most common metric used in measuring the effectiveness of a 

page-replacement algorithm is the fault rate. 

Page-replacement algorithms are defined by the criteria that they use for selecting pages to be 

reclaimed. For example, the optimal replacement policy [Denning, 1970] states that the 
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“best” choice of a page to replace is the one with the longest expected time until its next 

reference. Clearly, this policy is not applicable to dynamic systems, as it requires a priori 

knowledge of the paging characteristics of a process. The policy is useful for evaluation purposes, 

however, as it provides a yardstick for comparing the performance of other page-replacement 

algorithms. 

Practical page-replacement algorithms require a certain amount of state information that the 

system uses in selecting replacement pages. This state typically includes the reference pattern of 

a process, sampled at discrete time intervals. On some systems, this information can be 

expensive to collect [Babao lu & Joy, 1981]. As a result, the “best” page-replacement algorithm 

may not be the most efficient. 

Working-Set Model 

The working-set model helps identify the set of pages that a process is actively using. The 

working-set model assumes that processes exhibit a slowly changing locality of reference. 

For a period of time, a process operates in a set of subroutines or loops, causing all its memory 

references to refer to a fixed subset of its address space, termed the working set. The process 

periodically changes its working set, abandoning certain areas of memory and beginning to 

access new ones. After a period of transition, the process defines a new set of pages as its 

working set. In general, if the system can provide the process with enough pages to hold that 

process’s working set, the process will experience a low page-fault rate. If the system cannot 

provide the process with enough pages for the working set, the process will run slowly and will 

have a high page-fault rate. 

Precise calculation of the working set of a process is impossible without a priori knowledge of 

that process’s memory-reference pattern. However, the working set can be approximated by 

various means. One method of approximation is to track the number of pages held by a process 

and that process’s page-fault rate. If the page-fault rate increases above a high watermark, the 

working set is assumed to have increased, and the number of pages held by the process is 

allowed to grow. Conversely, if the page-fault rate drops below a low watermark, the working set 

is assumed to have decreased, and the number of pages held by the process is reduced. 

Swapping 

Swapping is the term used to describe a memory-management policy in which entire 

processes are moved to and from secondary storage when main memory is in short supply. 

Swap-based memory-management systems usually are less complicated than are demand-paged 

systems, since there is less bookkeeping to do. However, pure swapping systems typically are 
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less effective than are paging systems, since the degree of multiprogramming is lowered by the 

requirement that processes be fully resident to execute. Swapping is sometimes combined with 

paging in a two-tiered scheme, whereby paging satisfies memory demands until a severe 

memory shortfall requires drastic action, in which case swapping is used. 

In this chapter, a portion of secondary storage that is used for paging or swapping is termed a 

swap area or swap space. The hardware devices on which these areas reside are termed 

swap devices. 

Advantages of Virtual Memory 

There are several advantages to the use of virtual memory on computers capable of supporting 

this facility properly. Virtual memory allows large programs to be run on machines with 

main-memory configurations that are smaller than the program size. On machines with a 

moderate amount of memory, it allows more programs to be resident in main memory to 

compete for CPU time, as the programs do not need to be completely resident. When programs 

use sections of their program or data space for some time, leaving other sections unused, the 

unused sections do not need to be present. Also, the use of virtual memory allows programs to 

start up faster, since they generally require only a small section to be loaded before they begin 

processing arguments and determining what actions to take. Other parts of a program may not 

be needed at all during individual runs. As a program runs, additional sections of its program 

and data spaces are paged in as needed (demand paging). Finally, there are many algorithms 

that are more easily programmed by sparse use of a large address space than by careful packing 

of data structures into a small area. Such techniques are too expensive for use without virtual 

memory, but they may run much faster when that facility is available, without using an 

inordinate amount of physical memory. 

On the other hand, the use of virtual memory can degrade performance. It is more efficient to 

load a program all at one time than to load it entirely in small sections on demand. There is a 

cost for each operation, including saving and restoring state and determining which page must 

be loaded, so some systems use demand paging for only those programs that are larger than 

some minimum size. 

Hardware Requirements for Virtual Memory 

Nearly all versions of UNIX have required some form of memory-management hardware to 

support transparent multiprogramming. To protect processes from modification by other 

processes, the memory-management hardware must prevent programs from changing their own 

address mapping. The FreeBSD kernel runs in a privileged mode (kernel mode or system 
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mode) in which memory mapping can be controlled, whereas processes run in an unprivileged 

mode (user mode). There are several additional architectural requirements for support of 

virtual memory. The CPU must distinguish between resident and nonresident portions of the 

address space, must suspend programs when they refer to nonresident addresses, and must 

resume programs’ operation once the operating system has placed the required section in 

memory. Because the CPU may discover missing data at various times during the execution of 

an instruction, it must provide a mechanism to save the machine state so that the instruction 

can be continued or restarted later. This ability to restart an instruction is called a precise 

exception. The CPU may implement restarting by saving enough state when an instruction 

begins that the state can be restored when a fault is discovered. Alternatively, instructions could 

delay any modifications or side effects until after any faults would be discovered so that the 

instruction execution does not need to back up before restarting. On some computers, 

instruction backup requires the assistance of the operating system. 

Most machines designed to support demand-paged virtual memory include hardware support 

for the collection of information on program references to memory. When the system selects a 

page for replacement, it must save the contents of that page if they have been modified since the 

page was brought into memory. The hardware usually maintains a per-page flag showing 

whether the page has been modified. Many machines also include a flag recording any access to 

a page for use by the replacement algorithm. 

6.2 Overview of the FreeBSD Virtual-Memory System 

The FreeBSD virtual-memory system is based on the Mach 2.0 virtual-memory system 

[Tevanian, 1987; Rashid et al., 1987], with updates from Mach 2.5 and Mach 3.0. The Mach 

virtual-memory system was adopted because it features efficient support for sharing and a clean 

separation of machine-independent and machine-dependent features, as well as multiprocessor 

support. Although parts of the original Mach abstractions persist, little of the code still remains. 

None of the original Mach system-call interface remains. It has been replaced with the interface 

first proposed for 4.2BSD that has been widely adopted by the UNIX industry; the FreeBSD 

interface is described in Section 6.5. 

The virtual address space of most architectures is divided into two parts: address space 

dedicated to the kernel at high addresses and address space dedicated to run user processes at 

low addresses. A typical address space layout is shown in Figure 6.3. Here, the kernel and its 

associated data structures reside at the top of the address space. The initial text and data areas 

of the user process start near the beginning of memory. By default, the first 4 or 8 Kbyte of 

memory are kept off-limits to the process. The reason for this restriction is to limit the ability to 

convert a kernel null-pointer dereference into a privilege escalation attack. This restriction also 
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eases program debugging; indirecting through a null pointer will cause an invalid address fault 

instead of reading or writing the program text. 

 

Figure 6.3 Layout of virtual address space. 

Memory allocations made by the running process using the malloc() library routine are done in 

the memory that starts immediately following the data area and grows to higher addresses. The 

argument vector and environment vectors are at the top of the user portion of the address space. 

The user’s stack starts just below these vectors and grows to lower addresses. 

For a process running on an architecture with 64 bits of address space, its stack is mapped so far 

above its malloc() arena that the two spaces should never run into each other as the process 

would run out of memory resources long before the two address spaces would meet. 

For processes running on 32-bit architectures, the top 1 Gbyte of the address space is reserved 

for use by the kernel. Systems with many small processes making heavy use of kernel facilities 

such as networking can be configured to use the top 2 Gbyte for the kernel. The remaining 3 

Gbyte or 2 Gbyte of address space is available for use by processes. Unless administratively 

limited, the stack and malloc() arena of a process can each grow until they meet. 

The kernel’s address space on a 64-bit architecture is usually large enough to support a fixed 

and permanent mapping to all the physical memory on the machine. This direct mapping to the 

physical address space greatly simplifies many kernel operations since the kernel can always 

directly read any page of physical memory. 
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On a 32-bit architecture, the physical memory usually exceeds the address space dedicated to 

the kernel. Thus, the kernel must set aside part of its address space to temporarily map in 

physical pages that it needs to read. Each time that it wants to read a new physical page, it must 

find an existing page that it can unmap to make room for the new page. It must then manipulate 

its memory mapping, invalidating the old mapping and any caching associated with that 

mapping, and then enter the new mapping. The cost of cache invalidation on multiprocessor 

machines is high because the cache on every CPU must be invalidated. 

User Address-Space Management 

The virtual-memory system implements protected address spaces into which can be mapped 

data sources (objects) such as files, or private and anonymous pieces of swap space. Physical 

memory is used as a cache of recently used pages from these objects and is managed by a global 

page-replacement algorithm. 

In FreeBSD and other modern UNIX systems that support the mmap system call, address-space 

usage is less structured. Shared library implementations may place text or data arbitrarily, 

rendering the notion of predefined regions obsolete. By default, shared libraries are placed just 

above the run-time configured maximum heap area. 

At any time, the currently executing process is mapped into the virtual address space. When the 

system decides to context switch to another process, it must save the information about the 

current-process address mapping, then load the address mapping for the new process to be run. 

The details of this address-map switching are architecture dependent. Most architectures need 

to change only a few memory-mapping registers that point to the base, and to give the length of 

memory-resident page tables. 

Both the kernel and user processes use the same basic data structures for the management of 

their virtual memory. The data structures used to manage virtual memory are as follows: 

vmspace 

Structure that encompasses both the machine-dependent and machine-independent structures 

describing a process’s address space 

vm_map 

Highest-level data structure that describes the machine-independent virtual address space 

vm_map_entry 
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Structure that describes the mapping from a virtually contiguous range of addresses that share 

protection and inheritance attributes to the backing-store vm_object 

vm_object 

Structure that describes a source of data such as physical memory or other resources containing 

instructions or data 

shadow vm_object 

Special vm_object that represents modified copy of original data, described in Section 6.5. 

vm_page 

The lowest-level data structure that represents the physical memory being used by the 

virtual-memory system 

In the remainder of this section, we describe briefly how all these data structures fit together. 

The remainder of this chapter describes the details of the structures and how the structures are 

used. 

Figure 6.4 shows a typical process address space and associated data structures. The vmspace 

structure encapsulates the virtual-memory state of a particular process, including the 

machine-dependent and machine-independent data structures, as well as statistics. The 

machine-dependent vm_pmap structure is opaque to all but the lowest level of the system and 

contains all information necessary to manage the memory-management hardware. This pmap 

layer is the subject of Section 6.13 and is ignored for the remainder of the current discussion. 

The machine-independent data structures include the address space that is described by a 

vm_map structure. The vm_map points to an ordered linked list of vm_map_entry structures, 

a binary-search tree for speeding up lookups during memory allocation and page-fault handling, 

and a pointer to the associated machine-dependent vm_pmap structure contained in the 

vmspace. A vm_map_entry structure describes a virtually contiguous range of addresses that 

have the same protection and inheritance attributes. Every vm_map_entry points to a chain of 

vm_object structures that describes sources of data (objects) that are mapped at the indicated 

address range. At the tail of the vm_object chain is the original mapped data object, usually 

representing a persistent data source, such as a file. Interposed between that vm_object and the 

map entry are zero or more transient shadow vm_objects that represent modified copies of the 

original data. These shadow vm_objects are discussed in detail in Section 6.5. 
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Figure 6.4 Data structures that describe a process address space. 

Each vm_object structure contains an ordered list of vm_page structures representing the 

physical-memory cache of the vm_object. A vm_page structure is most commonly and quickly 

found using the radix tree maintained for each vm_object. The page is keyed within this radix 

tree by its logical offset from the start of the vm_object. The cached pages are also kept in an 

ordered list to provide fast iteration over all the pages within a range of virtual addresses. The 

vm_page structure also records the type of, and a pointer to, the pager structure (not shown) 

that contains information on how to page in or page out data from its backing store. 

At boot time, the kernel allocates an array of vm_page structures with an entry for every page of 

physical memory managed by the virtual-memory system where page N is entry N in the array. 

The structure also contains the status of the page (e.g., modified or referenced) and links for 

various paging queues. 

All structures have the necessary interlocks for multithreading in a multiprocessor environment. 

The locking is fine grained, with at least one lock per instance of a data structure. Many of the 

structures have different locks protecting their individual fields. 

6.3 Kernel Memory Management 

For 64-bit address-space architectures, the kernel is always permanently mapped into the high 

part of every process address space. However, for 32-bit address-space architectures, there are 

two ways in which the kernel’s memory can be organized. The most common is for the kernel to 

be permanently mapped into the high part of every process address space. In this model, 
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switching from one process to another does not affect the kernel portion of the address space. 

The alternative organization is to switch between having the kernel occupy the whole address 

space and mapping the currently running process into the address space. Having the kernel 

permanently mapped does reduce the amount of address space available to a large process (and 

the kernel), but it also reduces the cost of data copying. Many system calls require data to be 

transferred between the currently running user process and the kernel. With the kernel 

permanently mapped, the data can be copied via the efficient block-copy instructions. If the 

kernel is alternately mapped with the process, data copying requires either the use of temporary 

mappings or the use of special instructions that copy to and from the previously mapped 

address space. Both of these approaches are up to a factor of 2 slower than the standard 

block-copy instructions. Since up to one-third of the kernel time is spent in copying between the 

kernel and user processes, slowing this operation by a factor of 2 significantly slows system 

throughput. 

When the kernel is permanently mapped into the address space, it is able to freely read and 

write the address space of the user process but the converse is not true. The kernel’s range of 

virtual address space is marked inaccessible to all user processes. Writing is restricted so user 

processes cannot tamper with the kernel’s data structures. Reading is restricted so user 

processes cannot watch sensitive kernel data structures, such as the terminal input queues, that 

include such things as users typing their passwords. 

Usually, the hardware dictates which organization can be used. All the architectures supported 

by FreeBSD map the kernel into the top of the address space. 

When the system boots, the first task that the kernel must do is to set up data structures to 

describe and manage its address space. Table 6.1 lists the kernel’s hierarchy of allocators to 

manage its address space. The relationship of the elements of the hierarchy are shown in Figure 

6.5. The remainder of this section describes this hierarchy starting from the low-level vm_map 

up to the per-CPU-level buckets. 
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Table 6.1 Kernel memory allocator hierarchy. 

 

Figure 6.5 Kernel memory allocator hierarchy. 

Kernel Maps and Submaps 

Like any process, the kernel has a vm_map with a corresponding set of vm_map_entry 

structures that describe the use of a range of addresses (see Figure 6.6). Submaps are a special 

kernel-only construct used to isolate and constrain address-space allocation for kernel 

subsystems. One use is in subsystems that require contiguous pieces of the kernel address space. 

To avoid intermixing of unrelated allocations within an address range, that range is covered by a 

submap, and only the appropriate subsystem can allocate from that map. Maps associate data 

objects with similar sizes and lifetimes to minimize internal and external fragmentation 

respectively. Parts of the kernel may also require addresses with particular alignments or even 

specific addresses. Both can be ensured by use of submaps. Finally, submaps can be used to 

limit statically the amount of address space and hence the physical memory consumed by a 

subsystem. 
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Figure 6.6 Kernel address-space maps. 

An example layout of the kernel map is shown in Figure 6.6. The kernel’s address space is 

described by the vm_map structure shown in the upperleft corner of the figure. Pieces of the 

address space are described by the vm_map_entry structures that are linked in ascending 

address order from K0 to K8 on the vm_map structure. Here, the kernel text, initialized data, 

uninitialized data, and initially allocated data structures reside in the range K0 to K1 and are 

represented by the first vm_map_entry. The next vm_map_entry is associated with the 

address range from K2 to K6. This piece of the kernel address space is being managed via a 

submap headed by the referenced vm_map structure. This submap currently has two parts of its 

address space used: the address range K2 to K3, and the address range K4 to K5. These two 

address ranges represent the kernel exec arguments arena and the pipe buffer arena, 

respectively. The final part of the kernel address space is being managed in the kernel’s main 

map, the address range K7 to K8 representing the kernel I/O staging area. 
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Kernel Address-Space Allocation 

The virtual-memory system implements a set of primitive functions for allocating and freeing 

the page-aligned, page-size virtual-memory ranges that the kernel uses. These ranges may be 

allocated either from the main kernel-address map or from a submap. The allocation routines 

take a map and size as parameters but do not take an address. Thus, specific addresses within a 

map cannot be selected. There are different allocation routines for obtaining pageable and 

nonpageable memory ranges. 

Pageable kernel virtual memory is allocated with kmap_alloc_wait(). A pageable range has 

physical memory allocated on demand, and this memory can be written out to backing store by 

the pageout daemon (described in Section 6.12) as part of the latter’s normal replacement policy. 

The kmap_alloc_wait() function will block until address space is available. The 

kmap_free_wakeup() function deallocates kernel pageable memory and wakes up any 

processes waiting for address space in the specified map. Currently, pageable kernel memory is 

used for temporary storage of exec arguments and for pipe buffering. 

A nonpageable, or wired, range has physical memory assigned at the time of the call, and this 

memory is not subject to replacement by the pageout daemon. Wired pages never cause a page 

fault as that might result in a blocking operation. Wired memory is allocated from either the 

general allocator malloc(), or the zone allocator described in the last two subsections of this 

section. 

The base functions used by the general and zone allocators for allocating wired memory are 

kmem_malloc() and kmem_free(). Normally, the allocator will block to wait for memory to be 

freed to satisfy the allocation if memory is not immediately available. The allocator has a 

nonblocking option that protects callers against inadvertently blocking. Callers that hold 

non-sleepable locks use the nonblocking option so they will fail if insufficient physical memory 

is available to fill the requested range. This nonblocking option is used when allocating memory 

at interrupt time and during other critical sections of code. 

Historically, the two general-purpose allocators used kernel submaps to manage their address 

space. In FreeBSD 10, the management of the allocators address space was replaced with the 

vmem resource manager first described in Solaris [Bonwick, 1994; Bonwick & Adams, 2001]. At 

system boot, the kernel address ranges associated with the wired-memory arena are fully 

allocated in a single large piece and that piece of kernel memory is then managed by the vmem 

resource allocator. 
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The motivation for the change to vmem is that the kernel-map allocator tends to fragment its 

address space badly over time. The time to find a free piece of space goes up logarithmically with 

the number of allocated pieces that it is managing. By contrast, vmem allocates space in 

constant-time. The kernel-map allocator uses a first-fit strategy while vmem uses an 

approximation to a best-fit strategy. Best fit results in lower fragmentation and less wasted 

memory. 

The data structures that vmem uses to manage its address-space arena are shown in Figure 6.7. 

The granularity that it manages are single pages of memory. Shown across the bottom of Figure 

6.7 is the set of pages that it is managing. The arena is broken up into the free memory (hashed) 

and allocated memory (white). Each piece of free or allocated memory is described by a 

boundary tag. All the boundary tags are linked together in a segment list sorted from lowest to 

highest address. 

 

Figure 6.7 Vmem data structures. Key: bt—boundary tag. 

The boundary tags that reference allocated memory are kept in a hash table using their starting 

address as their hash key. When a piece of memory is freed, its boundary tag is looked up and 

removed from the hash table. If either (or both) of its neighbors on the sorted list of boundary 

tags is free, they can be coalesced. The resulting free piece is then placed on the appropriate 

freelist. When coalescing has occurred, any unneeded boundary tags are freed. Taking the 

memory off the hash list when it is freed helps to detect multiple attempts to free the same 
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memory. A second attempt to free it will not find it on the hash list and can issue an appropriate 

error. 

The boundary tags that reference free memory are on power-of-two freelists where freelist[n] is 

a list of free segments that are in the range 2n to 2n+1–1. To allocate a segment, we search the 

appropriate freelist for a segment large enough to satisfy the allocation. This approach, called 

segregated fit, approximates best fit because any segment on the chosen freelist is a good fit 

[Wilson et al., 1995]. 

Approximations to best fit are appealing because they exhibit low fragmentation in practice for a 

wide variety of workloads [Johnstone & Wilson, 1998]. 

The algorithm for selecting a free segment depends on the allocation policy specified in the 

allocation request. Given a requested size in the range 2n to 2n+1–1, the following policies are 

available: 

• VM_BESTFIT: Search for the smallest segment on freelist[n] that can satisfy the allocation. If  

none are found, search for the smallest segment on freelist[n + 1] that can satisfy the allocation. 

• VM_INSTANTFIT: If the size is exactly 2n, take the first segment on freelist[n]. Otherwise, 

take the first segment on freelist[n+1]. Any segment on this freelist is necessarily large enough 

to satisfy the allocation, yielding constant-time performance with a reasonably good fit. Instant 

fit is the default in FreeBSD because it guarantees constant-time performance, provides low 

fragmentation in practice, and is easy to implement. 

• VM_NEXTFIT: Ignore the freelists altogether and search the arena for the next free segment 

after the one previously allocated. This option is not supported in FreeBSD 10. The vmem in 

Solaris supports it for allocating resources like process identifiers. 

There are many other techniques for choosing a suitable free segment in logarithmic time such 

as keeping all free segments in a size-sorted tree. For a through survey, see Wilson et al. [1995]. 

Each vmem arena is protected by a single lock as allocations from the vmem arena are 

infrequent. Most of the allocations are done by the general-purpose allocators that are described 

in the last two subsections. The general purpose allocators manage their own arenas bringing 

memory in from vmem when needed, and returning it to vmem when prompted to do so by the 

pageout daemon. Thus, the fine-grained locking for handling multi-threaded allocations are in 

these general purpose allocators. 
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The Slab Allocator 

A slab is a collection of items of identical size. Figure 6.8 shows how slabs are allocated from the 

vmem layer. As required by the vmem layer, each slab is a multiple of the page size. The size of 

the slab is dependent on the size of the objects that it will contain. If a slab contains N objects, 

then the internal fragmentation is at most 1/N. Thus, the choice of slab size can control the 

amount of internal fragmentation. However, larger slabs are more likely to cause external 

fragmentation since the probability of being able to reclaim a slab decreases as the number of 

objects per slab increases. 

 

Figure 6.8 Slab data structures. 

In the Solaris implementation of vmem, the size selected for the slab when allocating large 

objects must be big enough to hold at least eight of the objects so that waste is at most 12.5 

percent. Objects smaller than an eighth of a page are allocated on a single-page slab. 

FreeBSD 11 does not implement the Solaris policy. It limits the slab size to a single page unless 

the object itself needs more than one page. Here, the allocation will be the number of pages 

required to hold one object. Historically, the reason for the single-page limitation was to reduce 

fragmentation in the kernel submap used by the slab allocator. Since the running time for the 

kernel-map allocator was logarithmic in the number of map entries, the time to allocate memory 

for the slab was affected by fragmentation. Going to primarily single-page requests mitigated 

this bad behavior. 

With the addition of the vmem allocator, these concerns have been reduced because it allocates 

in constant-time regardless of fragmentation. However, the FreeBSD developers chose to gain 

more operational experience with the vmem allocator before putting it out in a production 

release with a more challenging workload. 
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Figure 6.8 shows three slabs. The top two slabs place the header that describes the slab 

internally to the memory that holds the objects. The bottom slab places the header that 

describes the slab in a separate allocation external to the memory that holds the objects. The 

decision on whether to place the header internally or externally is based primarily on the size of 

the objects. An external header is used if doing so makes it possible to fit an extra object in the 

memory. For example, if an object is a power-of-2 size, then an internal header would allow one 

fewer objects per slab than would be possible if an external header were used. 

Most slabs have some unused space. FreeBSD 11 always puts the unused space at the end. In 

Solaris, the unused space is sprinkled between the front and back in cache-alignment sized steps 

to improve cache line utilization (hardware caching is described in Section 6.11). For example, if 

the cache line is 64 bytes and the slab has 160 unused bytes, the slabs will start the object 

allocations at 0-, 64-, and 128-byte offsets. Solaris reports significant performance improvement 

using this scheme [Bonwick & Adams, 2001]. 

When an object is freed, the zone manager must determine the slab to which it belongs to be 

able to return it. In Solaris, the slab is found using a hash table that maps the address of the 

object to its corresponding slab header in the same way that the vmem system uses a hash table 

to find the appropriate boundary tag. Instead of using a hash table, FreeBSD stores a pointer in 

the vm_page structure that refers back to the slab header. The vm_page structure is found by 

using pmap_kextract() to get the physical page address from the slab’s virtual address. The 

physical address indexes the array of vm_page structures. Since every slab uses at least one 

page, there is always a vm_page structure available to store the back pointer. Because wired 

memory is not on any page queue, the existing page-queue linkage field can be used for this 

purpose. Thus, no extra space must be added to the vm_page structure to support this 

functionality. 

Because the kernel must allocate a vm_page structure for every physical page of memory on the 

machine, it is desirable to keep the vm_page structure as small as possible. To keep their size 

small, vm_page structures do not contain a mutex to control access to their fields like most 

other kernel data structures. Rather, there is a pool of mutexes from which a vm_page selects a 

lock using a hash of its address. The result is some lock contention when multiple pages hash to 

the same lock, but is far better than a single global lock. 

The off-page slab header in Figure 6.8 shows its important fields. Slabs are allocated and 

managed by kegs, described later in this section. Kegs use the linkage fields to track the slabs 

that they are managing. The use of objects is tracked using the bitmask and the freecount. The 

bitmask has one bit per object, set when it is free and cleared if it is in use. The freecount tracks 

the number of available objects in the slab. When it reaches zero, all the objects have been 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig08
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allocated. Finally the data-start field points to the starting location of the first object in the slab. 

If the objects are offset from the beginning of the slab, the data-start pointer will reflect the 

offset. 

The Keg Allocator 

A keg is a collection of slabs of items of identical size. Slabs are allocated to the keg as necessary. 

Figure 6.9 shows how the keg data structure manages its collection of slabs. The keg tracks the 

number of pages in each of its slabs, the number of objects held in each of its slabs, and a list of 

its client zones. Typically, a keg has a single client zone, but it may have more than one. The keg 

maintains its slabs in three lists: 

• Those whose objects are currently all allocated 

• Those whose objects are currently partially allocated 

• Those whose objects are currently all free 

 

Figure 6.9 Keg data structure. 

When an allocation request is made to a keg, it first tries to allocate from a slab on its partially 

allocated list. If the partially allocated list has no slabs, it tries to allocate from a slab on its fully 

populated slab list. If the fully populated slab list has no slabs, it calls the vmem layer to allocate 

a new slab of its selected number of pages. The slab is broken up into the number of objects that 

it can hold as described above. The newly allocated slab has the requested object removed and is 

placed on the partially allocated list. 

When an item is freed, it is returned to the slab from which it came. If it is the first object to be 

freed, the slab will move from the empty list to the partial list. If it is the last object to be freed, 

the slab will move from the partial list to the fully populated list. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig09
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Items in a keg with a single client zone are type stable. The memory in the keg will not be used 

for any other purpose. A structure in the keg need only be initialized the first time that it is 

handed out for use. Later uses may assume that the initialized values will retain their contents 

as of the previous free. 

Objects are handed out and returned as needed. Only when the pageout daemon does a memory 

callback is an unused slab of objects uninitialized and the slab freed. A callback is provided on 

each object in the slab to allow any persistent state to be cleaned up before the slab memory is 

freed. 

The Zone Allocator 

A zone manages a set of objects in one or more kegs. The zone allocator keeps track of the active 

and free items, and provides functions for allocating items from the zone and for releasing them 

back to make them available for later use. Figure 6.10 shows how the zone allocator manages the 

objects in its zone. A zone typically gets its objects from a single keg, though it may source its 

objects from multiple kegs. The role of the zone is to fill buckets with objects that it then makes 

available to service allocation requests. 

 

Figure 6.10 Zone and bucket data structures. 

The details of a bucket are shown on the right of Figure 6.10. A bucket holds an array of pointers 

to available objects. The size field gives the size of the array and count is the number of available 

objects in the array. The count is equal to size when the array is full and zero when it is empty. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig10
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Unlike the global lock used by vmem and the slab allocator, each zone and its keg have their own 

locks, so different zones can be accessed simultaneously without blocking. As described in the 

next two subsections on kernel malloc() and the kernel zone allocator, most zones are used for 

specific objects such as vnodes, process entries, etc. A set of zones are used by malloc() to supply 

power-of-two sized objects ranging in size from 16 bytes to the number of bytes in a page. Since 

each power-of-2 has its own zone, allocations for one power-of-2 size does not block allocations 

for other power-of-2 sizes. 

High demand on a single zone can still lead to lock contention. To aid performance on 

multiprocessor systems, a zone provides separate buckets of objects to each CPU on the system. 

Each CPU is able to allocate or free objects from its two buckets without the need for any lock. 

The only requirement is that it needs to put a critical section around the insertion and removal 

of an object from one of its buckets. As described in Section 4.3, a critical section prevents the 

currently running thread from being preempted or moved to a different CPU. 

As described in Section 4.4, the scheduler uses processor affinity to try to keep a thread running 

on the same CPU. Objects such as process entries allocated from the CPU’s bucket are more 

likely to already be in the cache for that processor. Thus, accesses to that structure are likely to 

be faster than they would be if the object was drawn from a global pool. 

Each CPU holds two buckets of size M, its current allocation bucket and its previous allocation 

bucket. The reason for holding two buckets is to ensure that the CPU can allocate or free at least 

M objects before it needs to get the zone lock to replenish its supply or to return a full bucket. If 

it had only one bucket with just one object in it and two allocation requests, it would service the 

first from its bucket and then need to get a new bucket to service the second allocation request. 

If it then had two free requests, it would put the first object in its now-full bucket and then 

would need to replace that bucket with an empty bucket to return the second object. 

By having two buckets, it can simply switch the two buckets to continue servicing requests. If 

both buckets become full, it can turn in a full one and replace it with an empty one. Or, if both 

become empty, it can turn in an empty one and replace it with a full one. Once it has turned in 

one bucket, it will be able to service at least M allocation or free requests before having to 

replace one of its buckets. 

The zone keeps a list of full buckets. When a CPU requests a full bucket, the zone returns one 

from its list. If the list becomes empty, the zone allocates an empty bucket (from a bucket zone) 

and requests that its keg fill it with objects. When a CPU has emptied a bucket, it returns it to its 

bucket zone. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
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The level of contention for the keg lock can be controlled by the size of the bucket. If the number 

of objects held by a bucket doubles, the number of requests to the keg drops by at least half. 

FreeBSD tunes the size of the bucket based on the measured contention. Low rates of contention 

get smaller buckets; high rates of contention get larger buckets. 

The contention is measured by doing a trylock() for the keg lock when it is needed. If the 

trylock() fails because some other CPU has the lock, the thread does a blocking lock. Once it gets 

the lock, it increments the desired bucket size for its keg. Unlike the Solaris implementation, it is 

not necessary to notify every CPU that the bucket size has changed. The size of each bucket is 

stored in its header, so the bucket size can change over time. As new buckets are created, they 

will have the larger size. Eventually, the older and smaller buckets will be retired and all the 

buckets will have the new size. The more actively a bucket is used, the more quickly it will be 

replaced, so the remaining small buckets are not involved in creating lock contention. 

Zones only release memory when requested to do so by the paging daemon. Thus, if there is a 

spike in demand for a zone, it will have a long list of full buckets. When the paging daemon 

requests that memory be handed back, the zone walks its list of full buckets and, for each bucket, 

returns all its objects to its keg and frees the bucket. In turn, the keg returns the objects to its 

slabs. Once the return of objects from the zone to the keg is completed, the keg returns all the 

slabs on its full list to vmem. The vmem layer then unwires and frees its areas of unused pages 

so that they are available for other uses. When allocating the freed areas in the future, the vmem 

layer must first request that the kernel mapping layer populate them with wired pages. 

During periods of heavy paging activity, the paging daemon can request that the size of buckets 

be reduced. If memory becomes critically low, the paging daemon can request that the per-CPU 

caches be flushed. Per-CPU cache flushing requires binding a flushing thread to each CPU in 

succession so that it can access the private per-CPU bucket pointers. 

The zone allocator provides the uma_zone_set_max() function to set the upper limit of items in 

the zone. The limit on the total number of items in the zone includes the allocated and free items, 

including the items in the per-CPU caches. On multiprocessor systems, it may not be possible to 

allocate a new item for a particular CPU because the limit has been hit and all the free items are 

in the caches of the other CPUs. It is not possible to reclaim buckets from the CPU caches 

because the caches are not protected by locks. Only a thread running on the CPU itself can enter 

a critical section to manipulate the cache. 
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Kernel Malloc 

The kernel provides a generalized nonpageable memory-allocation and freeing mechanism that 

can handle requests of arbitrary size, as well as allocate memory at interrupt time. Malloc() is 

the preferred way to allocate kernel memory other than large, fixed-size structures that are 

better handled by the zone allocator. This mechanism has an interface similar to that of the 

well-known memory allocator provided for applications programmers through the C library 

routines malloc() and free(). Like the C library interface, the allocation routine takes a 

parameter specifying the size of memory that is needed. The range of sizes for memory requests 

are not constrained. The free routine takes a pointer to the storage being freed, but it does not 

require the size of the piece of memory being freed. 

Often, the kernel needs a memory allocation for the duration of a single system call. In a user 

process, such short-term memory would be allocated on the run-time stack. Because the kernel 

has a limited run-time stack, it is not feasible to allocate even moderate blocks of memory on it. 

Consequently, such memory must be allocated dynamically. For example, when the system must 

translate a pathname, it must allocate a 1-Kbyte buffer to hold the name. Other blocks of 

memory must be more persistent than a single system call and have to be allocated from 

dynamic memory. Examples include protocol control blocks that remain throughout the 

duration of a network connection. 

The design specification for a kernel memory allocator is similar, but not identical, to the design 

criteria for a user-level memory allocator. One criterion for a memory allocator is that it make 

good use of the physical memory. Use of memory is measured by the amount of memory needed 

to hold a set of allocations at any point in time. Percentage utilization is expressed as 

 

Here, requested is the sum of the memory that has been requested and not yet freed; required is 

the amount of memory that has been allocated for the pool from which the requests are filled. 

An allocator requires more memory than requested because of fragmentation and a need to have 

a ready supply of free memory for future requests. A perfect memory allocator would have a 

utilization of 100 percent. In practice, a 50 percent utilization is considered good [Korn & Vo, 

1985]. 

Good memory utilization in the kernel is more important than in user processes. Because user 

processes run in virtual memory, unused parts of their address space can be paged out. Thus, 

pages in the process address space that are part of the required pool and are not being requested 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref15
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do not need to tie up physical memory. Since the kernel malloc arena is not paged, all pages in 

the required pool are held by the kernel and cannot be used for other purposes. To keep the 

kernel-utilization percentage as high as possible, the kernel should release unused memory in 

the required pool rather than hold it, as is typically done with user processes. 

The most important criterion for a kernel memory allocator is that it be fast. A slow memory 

allocator will degrade the system performance because memory allocation is done frequently. 

Speed of allocation is more critical when executing in the kernel than it is in user code because 

the kernel must allocate many data structures that user processes can allocate cheaply on their 

run-time stack. In addition, the kernel represents the platform on which all user processes run, 

and if it is slow, it will degrade the performance of every process that is running. 

Another problem with a slow memory allocator is that programmers of frequently used kernel 

interfaces will think that they cannot afford to use the memory allocator as their primary one. 

Instead, they will build their own memory allocator on top of the original by maintaining their 

own pool of memory blocks. Multiple allocators reduce the efficiency with which memory is 

used. The kernel ends up with many different free lists of memory instead of a single free list 

from which all allocations can be drawn. For example, consider the case of two subsystems that 

need memory. If they have their own free lists, the amount of memory tied up in the two lists 

will be the sum of the greatest amount of memory that each of the two subsystems has ever used. 

If they share a free list, the amount of memory tied up in the free list may be as low as the 

greatest amount of memory that either subsystem used. As the number of subsystems grows, the 

savings from having a single free list grow. 

The kernel memory allocator uses a hybrid strategy. Small allocations are done using a 

power-of-2 list strategy. Using the zone allocator, the kernel creates a set of zones with one for 

each power-of-two between 16 and the page size. The allocation simply requests a block of 

memory from the appropriate zone. Usually, the zone will have an available piece of memory in 

one of the buckets of the CPU on which it is running that it can return. Only if the CPUs buckets 

are both empty will the zone allocator have to do a full allocation. As described in the zone 

allocator subsection, when forced to do an additional allocation, it fills a whole bucket with the 

appropriately sized pieces. This strategy speeds future allocations because several pieces of 

memory become available as a result of the call into the allocator. 

Freeing a small block is also fast. The memory is simply returned to the zone from which it 

came. 

Because of the inefficiency of power-of-2 allocation strategies for allocations larger than a page, 

the allocation method for blocks larger than a page is based on allocating pieces of memory in 

multiples of pages. The algorithm switches to the slower but more memory-efficient strategy for 
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allocation sizes larger than a page using the vmem allocator. This value is chosen because the 

power-of-2 algorithm yields sizes of 2, 4, 8, 16, . . ., n pages, whereas the large block algorithm 

that allocates in multiples of pages yields sizes of 2, 3, 4, 5, . . ., n pages. Thus, for allocations of 

greater than one page, the large block algorithm will use less than or equal to the number of 

pages used by the power-of-2 algorithm, so the threshold between the large and small allocators 

is set at one page. 

Large allocations are first rounded up to be a multiple of the page size. The allocator then uses 

the algorithm described in the previous subsection to find space in the vmem arena. 

Because the size is not specified when a block of memory is freed, the allocator must keep track 

of the sizes of the pieces that it has handed out. Many allocators increase the allocation request 

by a few bytes to create space to store the size of the block in a header just before the allocation. 

However, this strategy doubles the memory requirement for allocations that request a 

power-of-two-size block. Therefore, the kernel memory allocators store the size externally. For 

allocations up to the size of a page that are allocated from a zone, the zone allocator associates 

the size information with the memory page. Locating the allocation size outside the allocated 

block improved utilization far more than expected. The reason is that many allocations in the 

kernel are for blocks of memory whose size is exactly a power of 2. The size of these requests 

would be nearly doubled if the more typical strategy were used. Now they can be accommodated 

with no wasted memory. 

The allocator can be called from anywhere in the kernel. Clients show their willingness (and 

ability) to wait with a flag to the allocation routine. For clients that are willing to wait, the 

allocator guarantees that their request will succeed. Thus, these clients do not need to check the 

return value from the allocator. If memory is unavailable and the client cannot wait, the 

allocator returns a null pointer. These clients must be prepared to cope with this (typically 

infrequent) condition. Clients that cannot wait because they hold a short-term lock often release 

it, wait for memory to become available, then reacquire their lock. The other strategy is to give 

up and hope to succeed later. 

Kernel Zone Allocator 

Some commonly allocated items in the kernel such as process, thread, vnode, and control-block 

structures are not well handled by the general purpose malloc() interface. These structures 

share several characteristics: 

• They tend to be large and hence wasteful of space. For example, the process structure is about 

550 bytes, which when rounded up to a power-of-2 size requires 1024 bytes of memory. 
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• They tend to be common. Because they are individually wasteful of space, collectively they 

waste too much space compared to a denser representation. 

• They are often linked together in long lists. If the allocation of each structure begins on a page 

boundary, then the list pointers will all be at the same offset from the beginning of the page. 

When traversing these structures, the linkage pointers will all be competing for a small set of 

hardware cache lines causing many steps along the list to produce a cache miss, making the list 

traversal slow. 

• These structures often contain many lists and locks that must be initialized before use. If there 

is a dedicated pool of memory for each structure, then these substructures need to be initialized 

only when the pool is first created rather than after every allocation. 

For these reasons, FreeBSD allocates a separate zone for each of these kernel structures. Thus, 

there is a zone that contains only process structures, another that contains only vnodes, etc. 

A new zone is created with the uma_zcreate() function. It must specify the size of the items to 

be allocated and register two sets of functions. The first set is called whenever an item is 

allocated or freed from the zone. These routines typically track the number of allocated items. 

The second set is called whenever memory is allocated or freed from the zone’s keg. When a new 

slab of memory is allocated to the zone’s keg, all the locks and list heads for each object in the 

new slab are initialized. When making allocations from the zone, the kernel knows that the locks 

and list heads are already initialized and ready for use. Similarly, they need not be destroyed 

when the structure is freed. Only when memory is reclaimed from the zone’s keg is it necessary 

to destroy the locks. 

Items are allocated with uma_zalloc(), which takes a zone identifier returned by uma_zcreate(). 

Items are freed with uma_zfree(), which takes a zone identifier and a pointer to the item to be 

freed. No size is needed when allocating or freeing, since the item size was set when the zone 

was created. 

The creation of separate zones runs counter to the desire to keep all memory in a single pool to 

maximize utilization efficiency. However, the benefits from segregating memory for the set of 

structures for which the zone allocator is appropriate outweighs the efficiency gains from 

keeping them in the general pool. The zone allocator minimizes the waste of the separate pools 

by freeing memory from a zone based on a reduction in demand for objects from the zone and 

when notified of a memory shortage by the pageout daemon. 
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6.4 Per-Process Resources 

As we have already seen, a process requires a process entry and a kernel stack. The next major 

resource that must be allocated is its virtual memory. The initial virtual-memory requirements 

are defined by the header in the process’s executable. These requirements include the space 

needed for the program text, the initialized data, the uninitialized data, and the run-time stack. 

During the initial startup of the program, the kernel will build the data structures necessary to 

describe these four areas. Most programs need to allocate additional memory. The kernel 

typically provides this additional memory by expanding the uninitialized data area. 

Most FreeBSD programs use shared libraries. The header for the executable will describe the 

libraries that it needs (usually the C library, and possibly others). The kernel is not responsible 

for locating and mapping these libraries during the initial execution of the program. Finding, 

mapping, and creating the dynamic linkages to these libraries is handled by an interpreter 

specified in the header. For ELF binaries, the interpreter is /libexec/ld-elf.so. This startup 

code runs before control is passed to the main entry point of the program. 

FreeBSD Process Virtual-Address Space 

The initial layout of the address space for a process is shown in Figure 6.11. As discussed in 

Section 6.2, the address space for a process is described by that process’s vmspace structure. 

The contents of the address space are defined by a list of vm_map_entry structures, each 

structure describing a region of virtual address space that resides between a start and an end 

address. A region describes a range of memory that is being treated in the same way. For 

example, the text of a program is a region that is read-only and executable, and is demand paged 

from the file on disk that contains it. Thus, the vm_map_entry also contains the protection 

mode to be applied to the region that it describes. Each vm_map_entry structure also has a 

pointer to the vm_object that provides the initial data for the region. Finally, each 

vm_map_entry structure has an offset that describes where within the vm_object the mapping 

begins. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig11
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Figure 6.11 Layout of an address space. 

The example shown in Figure 6.11 represents a process just after it has started execution. The 

first two map entries both point to the same vm_object; here, that vm_object is the executable. 

The executable consists of two parts: the text of the program that resides at the beginning of the 

file and the initialized data area that follows at the end of the text. Thus, the first 

vm_map_entry describes a read-only region that maps the text of the program. The second 

vm_map_entry describes the copy-on-write region that maps the initialized data of the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig11
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program that follows the program text in the file (copy-on-write is described in Section 6.6). The 

offset field in the entry reflects this different starting location. The third and fourth 

vm_map_entry structures describe the uninitialized data and stack areas, respectively. Both of 

these areas are represented by anonymous vm_objects. An anonymous vm_object provides 

a zero-filled page on first use and arranges to store modified pages in the swap area if memory 

becomes tight. Anonymous vm_objects are described in more detail later in this section. 

Page-Fault Dispatch 

When a process attempts to access a piece of its address space that is not currently resident, a 

page fault occurs. The page-fault handler in the kernel is presented with the virtual address that 

caused the fault and the type of access that was attempted (execute, read, or write). The fault is 

handled with the following four steps: 

1. Find the vmspace structure for the faulting process; from that structure, find the 

binary-search tree for its vm_map_entries. 

2. Look up the faulting address. If the lookup fails, the faulting address is not within any valid 

part of the address space for the process, so send the process a segment fault signal. Lookups are 

done using Tarjan and Sleator’s top-down splay algorithm. This algorithm reorders the tree so 

that the most recently found entry is moved to the top of the tree. Recently found entries remain 

near the top of the tree. The benefit of this algorithm is that it takes advantage of the frequent 

locality of page faults. The drawback is that lookups often need to exclusively acquire the tree’s 

lock to do the permutation causing lock contention between page-faulting threads sharing the 

same address space. 

3. Having found a vm_map_entry that contains the faulting address, convert that address to an 

offset within the underlying vm_object. Calculate the offset within the vm_object as 

Click here to view code image 

object_offset = fault_address 

    - vm_map_entry->start_address 

    + vm_map_entry->object_offset 

Subtract off the start address to give the offset into the region mapped by the vm_map_entry. 

Add in the object_offset to give the absolute offset of the page within the vm_object. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p247pro01
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4. Present the absolute object_offset to the underlying vm_object, which allocates a vm_page 

structure and uses its pager to fill the page. The vm_object then returns a pointer to the 

vm_page structure, which is mapped into the faulting location in the process address space. 

Once the appropriate page has been mapped into the faulting location, the page-fault handler 

returns and reexecutes the faulting instruction. 

Mapping to Vm_objects 

A vm_object holds information about either a file or an area of anonymous memory. Whether a 

file is mapped by a single process in the system or by many processes in the system, it will 

always be represented by a single vm_object. Thus, the vm_object is responsible for 

maintaining all the state about those pages of a file that are resident. All references to that file 

will be described by vm_map_entry structures that reference the same vm_object. A vm_object 

never stores the same page of a file in more than one physical-memory page, so all mappings 

will get a consistent view of the file. 

A vm_object stores the following information: 

• A collection of the pages for that vm_object that are currently resident in main memory; a 

page may be mapped into multiple address spaces, but it is always claimed by exactly one 

vm_object 

• A count of the number of vm_map_entry structures or other vm_objects that reference the 

vm_object 

• The size of the file or anonymous area described by the vm_object 

• The number of memory-resident pages held by the vm_object 

• For shadow objects, a pointer to the next vm_object in the chain (shadow objects are described 

in Section 6.5) 

• The type of pager for the vm_object; the pager is responsible for providing the data to fill a 

page and for providing a place to store the page when it has been modified (pagers are covered 

in Section 6.10) 

There are three types of vm_objects in the system: 

• Named vm_objects represent files; they may also represent hardware devices that are able to 

provide mapped memory such as frame buffers. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_256
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec10
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• Anonymous vm_objects represent areas of memory that are zero filled on first use; they are 

abandoned when they are no longer needed. 

• Shadow vm_objects hold private copies of pages that have been modified; they are abandoned 

when they are no longer referenced. 

Shadow and all anonymous vm_objects (other than POSIX shmem) are often referred to as 

“internal” vm_objects in the source code. The type of a vm_object is defined by the type of pager 

that it uses to fulfill page-fault requests. 

A named vm_object uses the device pager if it maps a hardware device, the vnode pager if it is 

backed by a file in the filesystem, or the swap pager if it backs a POSIX shmem object. The 

device pager services a page fault by returning the appropriate physical address for the device 

being mapped. Since the device memory is separate from the main memory on the machine, it 

will never be selected by the pageout daemon. Thus, the device pager never has to handle a 

pageout request. 

The vnode pager provides an interface to vm_objects that represent files in the filesystem. The 

vnode pager keeps a reference to a vnode that represents the file being mapped in the vm_object. 

The vnode pager services a pagein request by doing a read on the vnode; it services a pageout 

request by doing a write to the vnode. Thus, the file itself stores the modified pages. In cases 

where it is not appropriate to modify the file directly, such as an executable that does not want 

to modify its initialized data pages, the kernel must interpose a shadow vm_object between the 

vm_map_entry and the vm_object representing the file; see Section 6.5. 

Anonymous or POSIX shmem vm_objects use the swap pager. An anonymous or POSIX shmem 

vm_object services pagein requests by getting a page of memory from the free list and zeroing 

that page. When a pageout request is made for a page for the first time, the swap pager is 

responsible for finding an unused page in the swap area, writing the contents of the page to that 

space, and recording where that page is stored. If a pagein request comes for a page that had 

been previously paged out, the swap pager is responsible for finding where it stored that page 

and reading back the contents into a free page in memory. A later pageout request for that page 

will cause the page to be written out to the previously allocated location. 

Shadow vm_objects also use the swap pager. They work just like anonymous or POSIX shmem 

vm_objects, except that the swap pager does not need to provide their initial pages. The initial 

pages are created by the vm_fault() routine by copying existing pages in response to 

copy-on-write faults. 

Further details on the pagers are given in Section 6.10. 
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Vm_objects 

Each virtual-memory vm_object has a pager type, pager handle, and pager private data 

associated with it. The vm_objects that map files have a vnode-pager type associated with them. 

The handle for the vnode-pager type is a pointer to the vnode on which to do the I/O, and the 

private data is the size of the vnode at the time that the mapping was done. Every vnode that 

maps a file has a vm_object associated with it. When a fault occurs for a file that is mapped into 

memory, the vm_object associated with the file can be checked to see whether the faulted page 

is resident. If the page is resident, it can be used. If the page is not resident, a new page is 

allocated, and the vnode pager is requested to fill the new page. 

Caching in the virtual-memory system is done by a vm_object that is associated with a file or 

region that it represents. Each vm_object contains pages that are the cached contents of its 

associated file or region. All vm_objects are reclaimed as soon as their reference count drops to 

zero. Pages associated with reclaimed vm_objects are moved to the free list. Each vm_object 

that represents anonymous memory is reclaimed as part of cleaning up a process as it exits. 

However, vm_objects that refer to files are persistent. When the reference count on a vnode 

drops to zero, it is stored on a least recently used (LRU) list known as the vnode cache; 

vnodes are described in Section 7.3. The vnode does not release its vm_object until the vnode is 

reclaimed and reused for another file. Unless there is pressure on the memory, the vm_object 

associated with the vnode will retain its pages. If the vnode is reactivated and a page fault occurs 

before the associated page is freed, that page can be used rather than being reread from disk. 

This cache is similar to the text cache found in earlier versions of BSD in that it provides 

performance improvements for short-running but frequently executed programs. Frequently 

executed programs include those used to list the contents of directories, show system status, or 

perform the intermediate steps involved in compiling a program. For example, consider a 

typical application that is made up of multiple source files. Each of several compiler steps must 

be run on each file in turn. The first time that the compiler is run, the executable files associated 

with its various components are read in from the disk. For each file compiled thereafter, the 

previously created executable files are found, as well as any previously read header files, 

alleviating the need to reload them from disk each time. 

Vm_objects to Pages 

When the system is first booted, the kernel looks through the physical memory on the machine 

to find out how many pages are available. After the physical memory that will be dedicated to 

the kernel has been deducted, all the remaining pages of physical memory are described by 
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vm_page structures. These vm_page structures are all initially placed on the memory free list. 

As the system starts running and processes begin to execute, they generate page faults. Each 

page fault is matched to the vm_object that covers the faulting piece of address space. The first 

time that a piece of a vm_object is faulted, it must allocate a page from the free list and must 

initialize that page either by zero-filling it or by reading its contents from the filesystem. That 

page then becomes associated with the vm_object. Thus, each vm_object has its current set of 

vm_page structures linked to it. 

If memory becomes scarce, the paging daemon will search for pages that have not been used 

actively. Before these pages can be used by a new vm_object, they must be removed from all the 

processes that currently have them mapped, and any modified contents must be saved by the 

vm_object that owns them. Once cleaned, the pages can be removed from the vm_object that 

owns them and can be placed on the free list for reuse. The details of the paging system are 

described in Section 6.12. 

6.5 Shared Memory 

In Sections 6.2 and 6.4, we explained how the address space of a process is organized. This 

section shows the additional data structures needed to support shared address space between 

processes. Traditionally, the address space of each process was completely isolated from the 

address space of all other processes running on the system. The only exception was read-only 

sharing of program text. All interprocess communication was done through well-defined 

channels that passed through the kernel: pipes, sockets, files, and special devices. The benefit of 

this isolated approach is that, no matter how badly a process destroys its own address space, it 

cannot affect the address space of any other process running on the system. Each process can 

precisely control when data are sent or received; it can also precisely identify the locations 

within its address space that are read or written. The drawback of this approach is that all 

interprocess communication requires at least two system calls: one from the sending process 

and one from the receiving process. For high volumes of interprocess communication, especially 

when small packets of data are being exchanged, the overhead of the system calls dominates the 

communications cost. 

Shared memory provides a way to reduce interprocess-communication costs dramatically. Two 

or more processes that wish to communicate map the same piece of read–write memory into 

their address space. Once all the processes have mapped the memory into their address space, 

any changes to that piece of memory are visible to all the other processes, without any 

intervention by the kernel. Thus, interprocess communication can be achieved without any 

system-call overhead other than the cost of the initial mapping. The drawback to this approach 

is that, if a process that has the memory mapped corrupts the data structures in that memory, 
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all the other processes mapping that memory also see the corrupted data structures. In addition, 

there is the complexity faced by the application developer who must develop data structures to 

control access to the shared memory and must cope with the race conditions inherent in 

manipulating and controlling such data structures that are being accessed concurrently. 

Some UNIX variants have a kernel-based semaphore mechanism to provide the needed 

serialization of access to the shared memory. However, both getting and setting such 

semaphores require system calls. The overhead of using such semaphores is comparable to that 

of using the traditional interprocess-communication methods. Unfortunately, these semaphores 

have all the complexity of shared memory, yet confer little of its speed advantage. The primary 

reason to introduce the complexity of shared memory is for the commensurate speed gain. If 

this gain is to be obtained, most of the data-structure locking needs to be done in the shared 

memory segment itself. The kernel-based semaphores should be used for only those rare cases 

where there is contention for a lock and one process must wait. Consequently, modern 

interfaces, such as POSIX Pthreads, are designed such that the semaphores can be located in the 

shared memory region. The common case of setting or clearing an uncontested semaphore can 

be done by the user process, without calling the kernel. There are two cases where a process 

must perform a system call. If a process tries to set an already-locked semaphore, it must call 

the kernel to block until the semaphore is available. This system call has little effect on 

performance because the lock is contested, so it is impossible to proceed, and the kernel must be 

invoked to do a context switch anyway. If a process clears a semaphore that is wanted by 

another process, it must call the kernel to awaken that process. Since most locks are uncontested, 

the applications can run at full speed without kernel intervention. 

Mmap Model 

When two processes wish to create an area of shared memory, they must have some way to 

name the piece of memory that they wish to share, and they must be able to describe its size and 

initial contents. The system interface describing an area of shared memory accomplishes all 

these goals by using files as the basis for describing a shared memory segment. A process creates 

a shared memory segment by using 

Click here to view code image 

void *addr = mmap( 

    void *addr,      /* base address */ 

    size_t len,      /* length of region */ 

    int prot,        /* protection of region */ 

    int flags,       /* mapping flags */ 
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    int fd,          /* file to map */ 

    off_t offset);   /* offset to begin mapping */ 

to map the file referenced by descriptor fd, starting at file offset offset into its address space, 

starting at addr and continuing for len bytes with access permission prot. The flags parameter 

allows a process to specify whether it wants to make a shared or private mapping. Changes 

made to a shared mapping are written back to the file and are visible to other processes. 

Changes made to a private mapping are not written back to the file and are not visible to other 

processes. Two processes that wish to share a piece of memory request a shared mapping of the 

same file into their address space. Thus, the existing and well-understood filesystem namespace 

identifies shared objects. The contents of the file are used as the initial value of the memory 

segment. All changes made to the mapping are reflected back into the contents of the file, so 

long-term state can be maintained in the shared memory region, even across invocations of the 

sharing processes. 

Some applications want to use shared memory purely as a short-term 

interprocess-communication mechanism. They need an area of memory that is initially zeroed 

and whose contents are abandoned when they are done using it. Such processes want neither to 

pay the relatively high startup cost associated with paging in the contents of a file to initialize a 

shared memory segment nor to pay the shutdown costs of writing modified pages back to the file 

when they are done with the memory. Although FreeBSD does provide the limited and quirky 

naming scheme of the System V shmem interface as a rendezvous mechanism for such 

short-term shared memory (see Section 7.2), the designers ultimately decided that all naming of 

memory objects for mmap should use the filesystem namespace. To provide an efficient 

mechanism for short-term shared memory, mappings that do not require stability across system 

reboots use the MAP_NOSYNC flag to avoid the overhead of periodic syncing of dirty pages. 

When this flag is specified, dirty pages are only written to the filesystem when memory is in high 

demand. 

When a mapping is no longer needed, it can be removed using 

Click here to view code image 

munmap(void *addr, size_t len); 

The munmap system call removes any mappings that exist in the address space, starting at addr 

and continuing for len bytes. There are no constraints between previous mappings and a later 

munmap. The specified range may be a subset of a previous mmap, or it may encompass an area 

that contains many mmap’ed files. When a process exits, the system does an implied munmap 

over its entire address space. 
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During its initial mapping, a process can set the protections on a page to allow reading, writing, 

and/or execution. The process can change these protections later by using 

Click here to view code image 

mprotect(const void *address, int length, int protection); 

This feature can be used by debuggers when they are trying to track down a memory-corruption 

bug. By disabling writing on the page containing the data structure that is being corrupted, the 

debugger can trap all writes to the page and verify that they are correct before allowing them to 

occur. 

Traditionally, programming for real-time systems has been done with specially written 

operating systems. In the interests of reducing the costs of real-time applications and of using 

the skills of the large body of UNIX programmers, companies developing real-time applications 

now use UNIX-based systems for writing these applications. Two fundamental requirements of 

a real-time system are guaranteed maximum latencies and predictable execution times. 

Predictable execution time is difficult to provide in a virtual-memory-based system, since a page 

fault may occur at any point in the execution of a program, resulting in a potentially large delay 

while the faulting page is retrieved from the disk or network. To avoid paging delays, the system 

allows a process to force its pages to be resident, and not paged out, by using 

Click here to view code image 

mlock(const void *address, size_t length); 

As long as the process limits its accesses to the locked area of its address space, it can be sure 

that it will not be delayed by page faults. To prevent a single process from acquiring all the 

physical memory on the machine to the detriment of all other processes, the system imposes a 

resource limit to control the amount of memory that may be locked. Typically, this limit is set to 

no more than one-third of the physical memory, and it may be set to zero by a system 

administrator who does not want random processes to be able to monopolize system resources. 

When a process has finished with its time-critical use of an mlock’ed region, it can release the 

lock on the pages using 

Click here to view code image 

munlock(const void *address, size_t length); 
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After the munlock call, the pages in the specified address range are still accessible, but they may 

be paged out if memory is needed and they are not accessed. 

An application may need to ensure that certain records are committed to disk without forcing 

the writing of all the dirty pages of a file done by the fsync system call. For example, a database 

program may want to commit a single piece of metadata without writing back all the dirty blocks 

in its database file. A process does this selective synchronization using 

Click here to view code image 

msync(void *address, int length, int flags); 

Only those modified pages within the specified address range are written back to the filesystem. 

The msync system call has no effect on anonymous regions. 

Shared Mapping 

When multiple processes map the same file into their address space, the system must ensure 

that all the processes view the same set of memory pages. As shown in Sections 6.2 and 6.4, each 

file that is being used actively by a client of the virtual-memory system is represented by a 

vm_object. Each mapping that a process has to a piece of a file is described by a vm_map_entry 

structure. An example of two processes mapping the same file into their address space is shown 

in Figure 6.12. When a page fault occurs in one of these processes, the process’s vm_map_entry 

references the vm_object to find the appropriate page. Since all mappings reference the same 

vm_object, the processes will all get references to the same set of physical memory, thus 

ensuring that changes made by one process will be visible in the address spaces of the other 

processes as well. 
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Figure 6.12 Multiple mappings to a file. 

Two processes sharing a mapping do not have to place it at the same virtual address in their 

address spaces. Moreover, a process may have two or more vm_map entries to the same file (or 

region of that file) in its address space. For example, when running an executable, a process has 

a vm_map entry referencing the text portion of the executable and a vm_map entry referencing 

the initialized-data portion of the executable. 

Private Mapping 

A process may request a private mapping of a file. A private mapping has two main effects: 

1. Changes made to the memory mapping the file are not reflected back into the mapped file. 

2. Changes made to the memory mapping the file are not visible to other processes mapping the 

file. 

An example of the use of a private mapping would be during program debugging. The debugger 

will request a private mapping of the program text so that, when it sets a breakpoint, the 

modification is not written back into the executable stored on the disk and is not visible to the 

other (presumably nondebugging) processes executing the program. 

The kernel uses shadow vm_objects to prevent changes made by a process from being reflected 

back to the underlying vm_object. The use of a shadow vm_object is shown in Figure 6.13. 

When the initial private mapping is requested, the file vm_object is mapped into the 

requesting-process address space, with copy-on-write semantics. 
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Figure 6.13 Use of a shadow vm_object for a private mapping. 

If the process attempts to write a page of the vm_object, a page fault occurs and traps into the 

kernel. If this fault is the first for the private mapping to the vm_object, then a new shadow 

vm_object must be created. First, a new shadow vm_object is allocated with a pager type of 

swap (pagers are described in Section 6.10). The new shadow vm_object is set to point to the 

original vm_object that it will shadow. The faulting vm_map_entry is then changed to 

reference the shadow vm_object. The kernel makes a copy of the page to be modified and hangs 

it from the shadow vm_object. In this example, process A has modified page 0 of the file 

vm_object. The kernel has copied page 0 to the shadow vm_object that is being used to provide 

the private mapping for process A. 

If free memory is limited, it would be better simply to move the modified page from the file 

vm_object to the shadow vm_object. The move would reduce the immediate demand on the free 

memory, because a new page would not have to be allocated. The drawback to this optimization 

is that, if there is a later access to the file vm_object by some other process, the kernel will have 

to allocate a new page. The kernel will also have to pay the cost of doing an I/O operation to 

reload the page contents. In FreeBSD, the virtual-memory system never moves a page from a file 

vm_object rather than copying it. 

When a page fault for the private mapping occurs, the kernel traverses the list of vm_objects 

headed by the vm_map_entry, looking for the faulted page. The first vm_object in the chain 

that has the desired page is the one that is used. If the search gets to the final vm_object on the 

chain without finding the desired page, then the page is requested from that final vm_object. 

Thus, pages on a shadow vm_object will be used in preference to the same pages in the file 

vm_object itself. The details of page-fault handling are given in Section 6.11. 

When a process removes a mapping from its address space (either explicitly from an munmap 

request or implicitly when the address space is freed on process exit), pages held by its shadow 

vm_object are not written back to the file vm_object. The shadow-vm_object pages are simply 

placed back on the memory free list for immediate reuse. 

When a process forks, it does not want changes to its private mappings made after it forked to 

be visible in its child; similarly, the child does not want its changes to be visible in its parent. 

The result is that each process needs to create a shadow vm_object if it continues to make 

changes in a private mapping. When process A in Figure 6.13 forks, a set of shadow-vm_object 

chains is created, as shown in Figure 6.14. In this example, process A modified page 0 before it 

forked and then later modified page 1. Its modified version of page 1 hangs off its new shadow 

vm_object, so those modifications will not be visible to its child. Similarly, its child has modified 

page 0. If the child were to modify page 0 in the original shadow vm_object, that change would 
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be visible in its parent. Thus, the child process must make a new copy of page 0 in its own 

shadow vm_object. 

 

Figure 6.14 Shadow-object chains. 

If the system runs short of memory, the kernel may need to reclaim inactive memory held in a 

shadow vm_object. The kernel assigns to the swap pager the task of backing the shadow 

vm_object. The swap pager sets up data structures (described in Section 6.10) that can describe 

the entire contents of the shadow vm_object. It then allocates enough swap space to hold the 

requested shadow pages and writes them to that area. These pages can then be freed for other 

uses. If a later page fault requests a swapped-out page, then a new page of memory is allocated 

and its contents are reloaded with an I/O from the swap area. 
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Collapsing of Shadow Chains 

When a process with a private mapping removes that mapping either explicitly with an munmap 

system call or implicitly by exiting, its parent or child process may be left with a chain of shadow 

vm_objects. Usually, these chains of shadow vm_objects can be collapsed into a single shadow 

vm_object, often freeing up memory as part of the collapse. Consider what happens when 

process A exits in Figure 6.14. First, shadow vm_object 3 can be freed along with its associated 

page of memory. This deallocation leaves shadow vm_objects 1 and 2 in a chain with no 

intervening references. Thus, these two vm_objects can be collapsed into a single shadow 

vm_object. Since they both contain a copy of page 0, and since only the page 0 in shadow 

vm_object 2 can be accessed by the remaining child process, the page 0 in shadow vm_object 1 

can be freed along with shadow vm_object 1 itself. 

If the child of process A were to exit instead, then shadow vm_object 2 and the associated page 

of memory could be freed. Shadow vm_objects 1 and 3 would then be in a chain that would be 

eligible for collapse. Here, there are no common pages, so vm_object 3 would retain its own 

page 1 and acquire page 0 from shadow vm_object 1. Vm_object 1 would then be freed. In 

addition to merging the pages from the two vm_objects, the collapse operation requires a 

similar merger of any swap space that has been allocated by the two vm_objects. If page 2 had 

been copied to vm_object 3 and page 4 had been copied to vm_object 1, but these pages were 

later reclaimed, the pager for vm_object 3 would hold a swap block for page 2, and the pager for 

vm_object 1 would hold a swap block for page 4. Before freeing vm_object 1, its swap block for 

page 4 would have to be moved over to vm_object 3. 

A performance problem can arise if either a process or its children repeatedly fork. Without 

some intervention, they can create long chains of shadow vm_objects. If the processes are 

long-lived, the system does not get an opportunity to collapse these shadow-vm_object chains. 

Traversing these long chains of shadow vm_objects to resolve page faults is time consuming, 

and many inaccessible pages can build up forcing the system to needlessly page them out to 

reclaim them. 

One alternative would be to calculate the number of live references to a page after each 

copy-on-write fault. When only one live reference remained, the page could be moved to the 

shadow vm_object that still referenced it. When all the pages had been moved out of a shadow 

vm_object, it could be removed from the chain. For example, in Figure 6.14, when the child of 

process A wrote to page 0, a copy of page 0 was made in shadow vm_object 2. At that point, the 

only live reference to page 0 in vm_object 1 was from process A. Thus, the page 0 in vm_object 1 

could be moved to vm_object 3. That would leave vm_object 1 with no pages, so it could be 

reclaimed leaving vm_objects 2 and 3 pointing at the file vm_object directly. Unfortunately, this 
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strategy would add considerable overhead to the page-fault handling routine which would 

noticeably slow the overall performance of the system, so FreeBSD does not make this 

optimization. 

FreeBSD uses a lower-cost heuristic to reduce the copying of shadow pages. When a page of a 

top-level shadow object is faulted, the kernel checks whether a lower-level shadow object 

contains a copy of the page. If that lower-level shadow object has the page and is referenced only 

by the top-level shadow object, (i.e., in principle the chain could be collapsed) the page is moved 

rather than copied from the lower-level shadow object to the top-level shadow object and 

mapped with write access. 

Private Snapshots 

When a process makes read accesses to a private mapping of a vm_object, it continues to see 

changes made to that vm_object by other processes that are writing to the vm_object through 

the filesystem or that have a shared mapping to the vm_object. When a process makes a write 

access to a private mapping of an vm_object, a snapshot of the corresponding page of the 

vm_object is made and is stored in the shadow vm_object, and the modification is made to that 

snapshot. Thus, further changes to that page made by other processes that are writing to the 

page through the filesystem or that have a shared mapping to the vm_object are no longer 

visible. However, changes to unmodified pages of the vm_object continue to be visible. This mix 

of changing and unchanging parts of the file can be confusing. 

To provide a more consistent view of a file, a process may want to take a snapshot of the file at 

the time that it is initially privately mapped. Historically, both Mach and 4.4BSD provided a 

copy vm_object whose effect was to take a snapshot of a vm_object at the time that the private 

mapping was set up. The copy vm_object tracked changes to a vm_object by other processes 

and kept original copies of any pages that changed. Only Mac OS/X implemented copy 

vm_objects, and there are no major applications that depend on them. The copy-vm_object 

code in the virtual-memory system was large and complex, and it noticeably slowed 

virtual-memory performance. Consequently, copy vm_objects were deemed unnecessary and 

were removed from FreeBSD as part of the early cleanup and performance work done on the 

virtual-memory system. Applications that want to get a snapshot of a file can do so by reading it 

into their address space or by making a copy of it in the filesystem and then referring to the 

copy. 
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6.6 Creation of a New Process 

Processes are created with a fork system call. The fork is usually followed shortly thereafter by 

an exec system call that overlays the virtual address space of the child process with the contents 

of an executable image that resides in the filesystem. The process then executes until it 

terminates voluntarily by exiting or involuntarily by receiving a signal. In Sections 6.6 to 6.9, we 

trace the management of the memory resources used at each step in this cycle. 

A fork system call duplicates the address space of an existing process, creating an identical child 

process. The fork set of system calls is the only way that new processes are created in FreeBSD. 

Fork duplicates all the resources of the original process (except for its kqueue descriptors) and 

copies that process’s address space. 

The virtual-memory resources of the process that must be allocated include the child’s process 

structure and its associated substructures, and its kernel stack. In addition, the kernel can be 

requested through the procctl system call to reserve storage (either memory, filesystem space, or 

swap space) used to back the process. The general outline of the implementation of a fork is as 

follows: 

• If requested to do so, reserve virtual address space for the child process 

• Allocate a process entry and thread structure for the child process, and fill it in 

• Copy to the child the parent’s process group, credentials, file descriptors, limits, and signal 

actions 

• Allocate a new kernel stack, copying the bottom frame that returns from the system call in the 

current one to initialize it 

• Allocate a vmspace structure 

• Duplicate the address space by creating copies of the parent vm_map_entry structures 

marked copy-on-write 

• Arrange for the child process to return 0, to distinguish its return value from the new PID that 

is returned to the parent process 

The allocation and initialization of the process structure, and the arrangement of the return 

value, were covered in Chapter 4. The remainder of this section discusses the other steps 

involved in duplicating a process. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
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Reserving Kernel Resources 

The first resource to be reserved when an address space is duplicated is the required virtual 

address space. To avoid running out of memory resources, the kernel must ensure that it does 

not promise to provide more virtual memory than it is able to deliver. The total virtual memory 

that can be provided by the system is limited to the amount of physical memory available for 

paging plus the amount of swap space that is provided. A few pages are held in reserve to stage 

I/O between the swap area and main memory. 

The reason for this restriction is to ensure that processes get synchronous notification of 

memory limitations. Specifically, a process should get an error back from a system call (such as 

sbrk, fork, or mmap) if there are insufficient resources to allocate the needed virtual memory. If 

the kernel promises more virtual memory than it can support, it can deadlock trying to service a 

page fault. Trouble arises when it has no free pages to service the fault and no available swap 

space to save an active page. Here, the kernel has no choice but to send a kill signal to the 

process unfortunate enough to be page faulting. Such asynchronous notification of insufficient 

memory resources is unacceptable. 

Excluded from this limit are those parts of the address space that are mapped read-only, such as 

the program text. Any pages that are being used for a read-only part of the address space can be 

reclaimed for another use without being saved because their contents can be refilled from the 

original source. Also excluded from this limit are parts of the address space that map shared 

files. The kernel can reclaim any pages that are being used for a shared mapping after writing 

their contents back to the filesystem from which they are mapped. Here, the filesystem is being 

used as an extension of the swap area. Finally, any piece of memory that is used by more than 

one process (such as an area of anonymous memory being shared by several processes) needs to 

be counted only once toward the virtual-memory limit. 

The limit on the amount of virtual address space that can be allocated causes problems for 

applications that want to allocate a large piece of address space but want to use the piece only 

sparsely. For example, a process may wish to make a private mapping of a large database from 

which it will access only a small part. Because the kernel has no way to guarantee that the access 

will be sparse, when requested to reserve space, it takes the pessimistic view that the entire file 

will be modified and denies the request if it has insufficient resources. 

Tracking the outstanding virtual memory accurately and determining when to limit further 

allocation is a complex task. Because most processes use only about half of their virtual address 

space, limiting outstanding virtual memory to the sum of process address spaces is needlessly 

conservative. However, allowing greater allocation runs the risk of running out of 
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virtual-memory resources. Although FreeBSD calculates the outstanding-memory load, it only 

enforces a total memory limit if the vm.overcommit sysctl has been enabled. Because the 

vm.overcommit follows the conservative approach of limiting outstanding virtual memory to the 

sum of process address spaces, vm.overcommit is turned off by default. Thus, it does not 

enforce any total memory limit so it can be made to promise more than it can deliver. When 

memory resources run out, it picks a process to kill favoring processes with large memory use. 

An important future enhancement will be to develop a heuristic for better determining when 

virtual-memory resources are in danger of running out and need to be limited. As a stopgap 

measure, FreeBSD 10 added the procctl system call that can be accessed using the protect 

utility to allow the system administrator to identify processes that are critical to system 

operation and should not be considered as candidates to be killed. 

Duplication of the User Address Space 

The next step in fork is to allocate and initialize a new process structure. This operation must be 

done before the address space of the current process is duplicated because it records state in the 

process structure. From the time that the process structure is allocated until all the needed 

resources are allocated, the parent process is locked against swapping to avoid deadlock. The 

child is in an inconsistent state and cannot yet run or be swapped, so the parent is needed to 

complete the copy of its address space. To ensure that the child process is ignored by the 

scheduler, the kernel sets the process’s state to NEW during the entire fork procedure. 

Historically, the fork system call operated by copying the entire address space of the parent 

process. When large processes fork, copying the entire user address space is expensive and 

wasteful if the fork is followed immediately by an exec, which discards all the existing pages 

before allocating the new pages for the program that it has been requested to run. All the pages 

that are on secondary storage must be read back into memory to be copied. If there is not 

enough free memory for both complete copies of the process, this memory shortage will cause 

the system to begin paging to create enough memory to do the copy (see Section 6.12). The copy 

operation may result in parts of the parent and child processes being paged out, as well as the 

paging out of parts of unrelated processes. 

The technique used by FreeBSD to create processes without this overhead is called 

copy-on-write. Rather than copy each page of a parent process, both the child and parent 

processes resulting from a fork are given references to the same physical pages. The page tables 

are changed to prevent either process from modifying a shared page. Instead, when a process 

attempts to modify a page, the kernel is entered with a protection fault. On discovering that the 

fault was caused by an attempt to modify a shared page, the kernel simply copies the page and 

changes the protection field for the page to allow modification once again. Only pages modified 
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by one of the processes need to be copied. Because processes that fork typically overlay the child 

process with a new image with exec shortly thereafter, this technique significantly improves the 

performance of fork. 

Using copy-on-write for fork is done by traversing the list of vm_map_entry structures in the 

parent and creating a corresponding entry in the child. Each entry must be analyzed and the 

appropriate action taken: 

• If the entry maps a shared region, the child can take a reference to it. 

• If the entry maps a privately mapped region (such as the data area or stack), the child must 

create a copy-on-write mapping of the region. The parent must be converted to a copy-on-write 

mapping of the region. If either process later tries to write the region, it will create a shadow 

object to hold the modified pages. 

With the virtual-memory resources allocated, the system sets up the kernel-and user-mode state 

of the new process. It then clears the NEW flag and places the process’s thread on the run queue; 

the new process can then begin execution. 

Creation of a New Process Without Copying 

When a process (such as a shell) wishes to start another program, it will generally fork, do a few 

simple operations such as redirecting I/O descriptors and changing signal actions, and then 

start the new program with an exec. In the meantime, the parent shell suspends itself with wait 

until the new program completes. For such operations, it is not necessary for both parent and 

child to run simultaneously, and therefore only one copy of the address space is required. This 

frequently occurring set of system calls led to the implementation of the vfork system call. 

Although it is extremely efficient, vfork has peculiar semantics and is generally considered to be 

an architectural blemish. 

The implementation of vfork will always be more efficient than the copy-on-write 

implementation because the kernel avoids copying the address space for the child. Instead, the 

kernel simply passes the parent’s address space to the child and suspends the parent. The child 

process does not need to allocate any virtual-memory structures, receiving the vmspace 

structure and all its pieces from its parent. The child process returns from the vfork system call 

with the parent still suspended. The child does the usual activities in preparation for starting a 

new program, then calls exec. Now the address space is passed back to the parent process, rather 

than being abandoned, as in a normal exec. Alternatively, if the child process encounters an 

error and is unable to execute the new program, it will exit. Again, the address space is passed 

back to the parent instead of being abandoned. 
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With vfork, the entries describing the address space do not need to be copied, and the 

page-table entries do not need to be set to read-only and then cleared of read-only. Vfork is 

likely to remain more efficient than copy-on-write or other schemes that must duplicate the 

process’s virtual address space. The architectural quirk of the vfork call is that the child process 

may modify the contents and even the size of the parent’s address space while the child has 

control. Although modification of the parent’s address space is bad programming practice, some 

programs have been known to take advantage of this quirk. 

6.7 Execution of a File 

The exec system call was described in Sections 2.4 and 3.1; it replaces the address space of a 

process with the contents of a new program obtained from an executable file. During an exec, 

the target executable image is validated and then the arguments and environment are copied 

from the current process image into a temporary area of pageable-kernel virtual memory. 

To do an exec, the system must allocate resources to hold the new contents of the virtual address 

space, set up the mapping for this address space to reference the new image, and release the 

resources being used for the existing virtual memory. 

The first step is to check whether the kernel has been requested to reserve memory resources for 

the new executable image. If it has, a space reservation must be made for the space needed by 

the new executable. Exec does this reservation without first releasing the currently assigned 

space, because the system must be able to continue running the old executable until it is sure 

that it will be able to run the new one. If the system released the current space and the memory 

reservation failed, the exec would be unable to return to the original process. Once the 

reservation is made, the address space and virtual-memory resources of the current process are 

then freed as though the process were exiting; this mechanism is described in Section 6.9. 

Now the process has only a kernel stack. The kernel now allocates a new vmspace structure and 

creates the list of four or five vm_map_entry structures: 

1. A copy-on-write, fill-from-file entry maps the text segment. A copy-on-write mapping is used, 

rather than a read-only one, to allow active text segments to have debugging breakpoints set 

without affecting other users of the binary. 

2. A private (copy-on-write), fill-from-file entry maps the initialized data segment. 

3. An anonymous zero-fill-on-demand entry maps the uninitialized data segment. 

4. An anonymous zero-fill-on-demand entry maps the stack segment. 
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5. For dynamically loaded binaries (most of them), a copy-on-write, fill-from-file entry maps the 

runtime loader. Execution will begin in the loader that will map the needed shared libraries, link 

the program with the libraries, and finish by invoking the program. 

No further operations are needed to create a new address space during an exec system call; the 

remainder of the work involves copying the arguments and environment out to the top of the 

new stack. Initial values are set for the registers: The program counter is set to the entry point, 

and the stack pointer is set to point to the argument vector. The new process image is then ready 

to run. 

6.8 Process Manipulation of Its Address Space 

Once a process begins execution, it has several ways to manipulate its address space. The system 

has always allowed processes to expand their uninitialized data area (usually done with the 

malloc() library routine). The stack is grown on an as-needed basis. The FreeBSD system also 

allows a process to map files and devices into arbitrary parts of its address space and to change 

the protection of various parts of its address space, as described in Section 6.5. This section 

describes how these address-space manipulations are done. 

Change of Process Size 

A process can change its size during execution by explicitly requesting more data space with the 

sbrk system call. Also, the stack segment will be expanded automatically if an invalid address 

fault is encountered because of an attempt to grow the stack below the end of the stack region. 

In either case, the size of the process address space must be changed. The size of the request is 

always rounded up to a multiple of page size. New pages are marked fill-with-zeros, since there 

are no contents initially associated with new sections of the address space. 

The first step of enlarging a process’s size is to check whether the new size would violate the size 

limit for the process segment involved. If the new size is in range, the following steps are taken 

to enlarge the data area: 

1. Verify that the address space of the requested size immediately following the current end of 

the data area is not already mapped. 

2. If requested, verify that the virtual-memory resources are available. 

3. If the existing vm_map_entry is the only reference to the swap vm_object, increment the 

vm_map_entry’s ending address by the requested size and increase the size of the swap 
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vm_object by the same amount. If the swap vm_object has two or more references (as it would 

after a process forked), a new vm_map_entry must be created with a starting address 

immediately following the end of the previous fixed-size entry. Its ending address is calculated 

to give it the size of the request. It will be backed by a new swap vm_object. Until this process 

forks again, the new entry and its swap vm_object will be able to continue growing. 

If the change is to reduce the size of the data segment, the operation is easy: Any memory 

allocated to the pages that will no longer be part of the address space is freed. The ending 

address of the vm_map_entry is reduced by the size. If the requested size reduction is bigger 

than or equal to the range defined by the vm_map_entry, the entire entry is freed, and the 

remaining reduction is applied to the vm_map_entry that precedes it. This algorithm is applied 

until the entire reduction has been made. Future references to these addresses will result in 

invalid address faults, as access is disallowed when the address range has been deallocated. 

File Mapping 

The mmap system call requests that a file be mapped into an address space. The system call may 

request either that the mapping be done at a particular address or that the kernel pick an 

unused area. If the request is for a particular address range, the kernel first checks to see 

whether that part of the address space is already in use. If it is in use, the kernel first does an 

munmap of the existing mapping, then proceeds with the new mapping. 

The kernel implements the mmap system call by traversing the list of vm_map_entry 

structures for the process. The various types of overlap to consider are shown in Figure 6.15. The 

five types are as follows: 

1. The new mapping exactly overlaps an existing mapping. The old mapping is deallocated as 

described in Section 6.9. The new mapping is created in its place as described in the paragraph 

following this list. 

2. The new mapping is a subset of the existing mapping. The existing mapping is split into three 

pieces (two pieces if the new mapping begins at the beginning or ends at the end of the existing 

mapping). The existing vm_map_entry structure is augmented with one or two additional 

vm_map_entry structures: one mapping the remaining part of the existing mapping before the 

new mapping, and one mapping the remaining part of the existing mapping following the new 

mapping. Its overlapped piece is replaced by the new mapping, as described in the paragraph 

following this list. 
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Figure 6.15 Five types of overlap that the kernel must consider when adding a new address 

mapping. 

3. The new mapping is a superset of an existing mapping. The old mapping is deallocated as 

described in Section 6.9, and a new mapping is created as described in the paragraph following 

this list. 

4. The new mapping starts partway into and extends past the end of an existing mapping. The 

existing mapping has its length reduced by the size of the unmapped area. Its overlapped piece 

is replaced by the new mapping, as described in the paragraph following this list. 

5. The new mapping extends into the beginning of an existing mapping. The existing mapping 

has its starting address incremented and its length reduced by the size of the covered area. Its 

overlapped piece is replaced by the new mapping, as described in the paragraph following this 

list. 

In addition to these five basic types of overlap, a new mapping request may span several existing 

mappings. Specifically, a new request may be composed of zero or one of type 4, zero to many of 

type 3, and zero or one of type 5. When a mapping is shortened, any shadow pages associated 

with it are released because they are no longer needed. 

Once the old mapping to the address range has been removed, the kernel allocates a 

vm_map_entry to describe the new mapping to the address range. If the vm_object being 

mapped is already being mapped by another process, the new vm_map_entry gets a reference 

to the existing vm_object. This reference is obtained in the same way, as described in Section 

6.6, when a new process is being created and needs to map each of the regions in its parent. If 

this request is a mapping of a file, then the kernel sets the new vm_map_entry to reference its 

vm_object. If this is a mapping to an anonymous region, then the kernel sets the new 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec9
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vm_map_entry to reference its vm_object but sets the MAP_ENTRY_NEEDS_COPY flag so 

that a new shadow vm_object will be created if a page in the vm_object is modified. 

Change of Protection 

A process may change the protections associated with a region of its virtual memory by using the 

mprotect system call. The size of the region to be protected may be as small as a single page. 

Because the kernel depends on the hardware to enforce the access permissions, the granularity 

of the protection is limited by the underlying hardware. A region may be set for any combination 

of read, write, and execute permissions. Many architectures do not distinguish between read 

and execute permissions; on such architectures, the execute permission is treated as read 

permission. 

The kernel implements the mprotect system call by finding the existing vm_map_entry 

structure or structures that cover the region specified by the call. If the existing permissions are 

the same as the request, then no further action is required. Otherwise, the new permissions are 

compared to the maximum protection value associated with the vm_map_entry. The maximum 

value is set at mmap time and reflects the maximum value allowed by the underlying file. If the 

new permissions are valid, one or more new vm_map_entry structures may have to be set up to 

describe the new protections. The set of overlap conditions that must be handled is similar to 

that described in the previous subsection. Any vm_map_entries wholly contained within the 

mprotect’ed range can simply change their permissions. For vm_map_entries that have to be 

split, the vm_map_entry on the unchanged address range retains it old permissions and the 

vm_map_entry on the mprotect’ed address range changes to the new permissions. Instead of 

replacing the vm_object underlying the new vm_map_entry structures, these vm_map_entry 

structures still reference the same vm_object; the difference is that they grant different access 

permissions to it. 

6.9 Termination of a Process 

The final change in process state that relates to the operation of the virtual-memory system is 

exit; this system call terminates a process, as described in Chapter 4. The part of exit that is 

discussed here is the release of the virtual-memory resources of the process. There are two sets 

of virtual-memory resources that need to be freed: 

1. The user portions of the address space, both memory and swap space 

2. The kernel stack 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
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The first set of resources is freed in exit. The kernel stack is freed in wait. The release of the 

kernel stack is delayed because it must be used until the process relinquishes the processor for 

the final time. 

The first step—freeing the user address space—is identical to the one that occurs during exec to 

free the old address space. The free operation proceeds entry by entry through the list of 

vm_map_entry structures associated with the address space. The first step in freeing an entry is 

to call the machine-dependent routines to unmap and free up any page table or data structures 

that are associated with the vm_map_entry. The next step is to traverse its list of shadow 

vm_objects. If the entry is the last reference to a shadow vm_object, then any physical pages or 

swap space that is associated with the vm_object can be freed. If the shadow vm_object is still 

referenced by other vm_map_entry structures, its resources cannot be freed. Finally, if the 

underlying vm_object referenced by the vm_map_entry is losing its last reference, then that 

vm_object is a candidate for deallocation. If it is a vm_object that will never have any chance of 

a future reuse (such as an anonymous vm_object associated with a stack or uninitialized data 

area), then its resources are freed as though it were a shadow vm_object. However, if the 

vm_object is associated with a vnode (e.g., it maps a file such as an executable), the vm_object 

will persist until the vnode is reused for another purpose. Until the vnode is reused, the 

vm_object and its associated pages will be available for reuse by newly executing processes or by 

processes mapping in a file. 

With all its resources free, the exiting process finishes detaching itself from its process group 

and notifies its parent that it is done. The process has now become a zombie process—one with 

no resources. Its parent will collect its exit status with a wait call. Because the process structure 

and kernel stack are allocated using the zone allocator, they will normally be retained for future 

use by another process rather than being broken down and their memory pages reclaimed. Thus, 

there is nothing for the virtual-memory system to do when wait is called: All virtual-memory 

resources of a process are removed when exit is done. On wait, the system just returns the 

process status to the caller, releases the process structure and kernel stack back to the zone 

allocator, and frees the space in which the resource-usage information was kept. 

6.10 The Pager Interface 

The pager interface provides the mechanism by which data are moved between backing store 

and physical memory. The FreeBSD pager interface is an evolution of the interface present in 

Mach 2.0 as evolved by 4.4BSD. The interface is page based, with all data requests made in 

multiples of the page size. The vm_page structures are passed around as descriptors providing 

the backing-store offset and physical-memory address of the desired data. This interface should 

not be confused with the Mach 3.0 external paging interface [Young, 1989], where pagers are 
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typically user applications outside the kernel and are invoked via asynchronous remote 

procedure calls using the Mach interprocess-communication mechanism. The FreeBSD 

interface is internal in the sense that the pagers are compiled into the kernel and pager routines 

are invoked via simple function calls. 

Each virtual-memory vm_object has a pager type, pager handle, and pager private data 

associated with it. Conceptually, the pager describes a logically contiguous piece of backing store, 

such as a chunk of swap space or a disk file. The pager type identifies the pager responsible for 

supplying the contents of pages within the vm_object. Each pager registers a set of functions 

that define its operations. These function sets are stored in an array indexed by pager type. 

When the kernel needs to perform a pager operation, it uses the pager type to index into the 

array of pager functions and then selects the routine that it needs such as getting or putting 

pages. For example, 

Click here to view code image 

(*pagertab[object->type]->pgo_putpages) 

    (object, vmpage, count, flags, rtvals); 

writes count pages starting with page vmpage from object. 

A pager type is specified when a vm_object is created to represent a file, device, or piece of 

anonymous memory. The pager manages the vm_object throughout its lifetime. When a page 

fault occurs for a virtual address mapping a particular vm_object, the fault-handling code 

allocates a vm_page structure and converts the faulting address to an offset within the 

vm_object. This offset is recorded in the vm_page structure, and the page is added to the 

collection of pages cached by the vm_object. The page frame and vm_object are then passed to 

the underlying pager routine. The pager routine is responsible for filling the page referenced by 

the vm_page structure with the appropriate contents for that offset of the vm_object that it 

represents. 

The pager is also responsible for saving the contents of a dirty page if the system decides to write 

out the page to backing store. When the pageout daemon decides that a particular page is no 

longer needed, it requests the vm_object that owns the page to free the page. The vm_object 

first passes the page with the associated logical offset to the underlying pager to be saved for 

future use. The pager is responsible for finding an appropriate place to save the page and doing 

any I/O necessary for the save. When it is done, the pager marks the page as clean and notifies 

the vm_object that the page has been written so that the pageout daemon can move the 

vm_page structure to the cache or free list for future use. 
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There are seven routines associated with each pager type; see Table 6.2. The pgo_init() routine 

is called at boot time to do any one-time type-specific initializations, such as allocating a pool of 

private pager structures. The pgo_alloc() routine associates a pager with a vm_object as part of 

the creation of the vm_object. The pgo_dealloc() routine disassociates a pager from a 

vm_object as part of the destruction of the vm_object. 

 

Table 6.2 Operations defined by a pager. 

The pgo_getpages() function is called to return one or more pages of data from a pager. The 

main use of this routine is by the page-fault handler. The pgo_putpages() function writes back 

one or more pages of data. This routine is called by the pageout daemon to write back one or 

more pages asynchronously, and by msync to write back one or more pages synchronously or 

asynchronously. Both the get and put routines are called with an array of pointers to vm_page 

structures and a count indicating the affected pages. 

The pgo_haspage() routine queries a pager to see whether it has data at a particular 

backing-store offset. This routine is used in the clustering code of the page-fault handler to 

determine whether pages on either side of a faulted page can be read in as part of a single I/O 

operation. It is also used when collapsing chains of vm_objects to determine if the allocated 

pages of a shadow vm_object completely obscure the allocated pages of the vm_object that it 

shadows. 

The four most commonly used pagers supported by the system are described in the next four 

subsections. 
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Vnode Pager 

The vnode pager handles vm_objects that provide the physical memory for caching data from 

files in a filesystem. Whenever a file is opened either explicitly by open or implicitly by exec, the 

system must find an existing vnode that represents it or, if there is no existing vnode for the file, 

allocate a new vnode for it. Part of allocating a new vnode is to allocate a vm_object to hold the 

pages of the file and to associate the vnode pager with the vm_object. The vm_object handle is 

set to point to the vnode and the private data stores the size of the file. Any time the vnode 

changes size, the vm_object is informed by a call to vnode_pager_setsize(). 

When a pagein request is received by the vnode pager pgo_getpages() routine, it is passed an 

array of pointers to physical pages, the size of the array, and the index into the array of the page 

that is required to service the page fault. Only the required page must be read, but the 

pgo_getpages() routine is encouraged to provide as many of the others as it can easily read at 

the same time. For example, if the required page is in the middle of the block of a file, the 

filesystem will usually read the entire file block since the file block can be read with a single I/O 

operation. The larger read will fill in the required page along with the pages surrounding it. 

The kernel has two types of I/O operations: mapped and unmapped. Mapped I/O requires that 

the physical pages be mapped into the kernel’s address space. The I/O is done using a 

physical-I/O buffer that maps the pages to be read into the kernel address space long enough for 

the pager to call the device-driver strategy routine to load the pages with the file contents. Once 

the pages are filled, the kernel mapping can be dropped, the physical-I/O buffer can be released, 

and the pages can be returned. 

Unmapped I/O does not require the physical pages to be mapped into the kernel’s address space. 

Many devices have the ability to do I/O on unmapped pages through the use of a hardware I/O 

map. For these devices, it is not necessary for the kernel to map them into its address space. 

Rather the vm_page structures can be passed directly to the device. The device can copy the 

physical page numbers into its I/O map and proceed with the I/O operation. The details of using 

the hardware I/O map are described in Section 8.8. 

When the vnode pager is asked to save a page to be freed, it simply arranges to write the page 

back to the part of the file from which the page came. The request is made with the 

pgo_putpages() routine, which is passed an array of pointers to physical pages, the size of the 

array, and the index into the array of the page that must be written. Only the required page must 

be written, but the pgo_putpages() routine is encouraged to write as many of the others as it 

can easily handle at the same time. The filesystem will write out all the pages that are in the 

same filesystem block as the required page. As with the pgo_getpages() routine, the pages are 
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mapped into the kernel long enough to do the write operation only if the device to which they 

are being written does not have the ability to do I/O on unmapped pages. 

If a file is being privately mapped, then modified pages cannot be written back to the filesystem. 

Such private mapping must use a shadow vm_object with a swap pager for all pages that are 

modified. Thus, a privately mapped vm_object will never be asked to save any dirty pages to the 

underlying file. 

Historically, the BSD kernel had separate caches for the filesystems and the virtual memory. 

FreeBSD has eliminated the filesystem buffer cache by replacing it with the virtual-memory 

cache. Each vnode has a vm_object associated with it, and the blocks of the file are stored in the 

pages associated with the vm_object. The file data is accessed using the same pages whether 

they are mapped into an address space or accessed via read and write. An added benefit of this 

design is that the filesystem cache is no longer limited by the address space in the kernel that 

can be dedicated to it. Absent other demands on the system memory, it can all be dedicated to 

caching filesystem data. 

The ZFS filesystem integrated from OpenSolaris is the one exception to the integrated buffer 

cache. ZFS has its own set of memory that it manages by itself. Files that are mmap’ed from ZFS 

must be copied to the virtual-memory managed memory. In addition to requiring two copies of 

the file in memory, extra copying occurs every time an mmap’ed ZFS file is being accessed 

through the read and write interfaces. As detailed in Section 10.5, ZFS would require extensive 

restructuring to integrate its buffer cache into the virtual-memory infrastructure. 

Device Pager 

The device pager handles vm_objects representing memory-mapped hardware devices. 

Memory-mapped devices provide an interface that looks like a piece of memory. An example of 

a memory-mapped device is a frame buffer, which presents a range of memory addresses with 

one word per pixel on the screen. The kernel provides access to memory-mapped devices by 

mapping the device memory into a process’s address space. The process can then access that 

memory without further operating-system intervention. Writing to a word of the frame-buffer 

memory causes the corresponding pixel to take on the appropriate color and brightness. The 

device pager can also be used to create user-level mappings of kernel buffers. For example, a 

network driver can make its buffers available to a user-level application to allow the application 

to access their contents directly. 

The device pager is fundamentally different from the other three pagers described in this section 

in that it does not fill provided physical-memory pages with data. Instead, it creates and 
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manages its own vm_page structures, each of which describes a page of the device space. The 

head of the list of these pages is kept in the pager private-data area of the vm_object. This 

approach makes device memory look like wired physical memory. Thus, no special code should 

be needed in the remainder of the virtual-memory system to handle device memory. 

When a device object is mapped, the device-pager allocation routine will validate the desired 

range by calling the device d_mmap() routine. If the device allows the requested access for all 

pages in the range, an empty page list is created in the private-data area of the vm_object that 

manages the device mapping. The device-pager allocation routine does not create vm_page 

structures immediately—they are created individually by the pgo_getpages() routine as they are 

referenced. The reason for this late allocation is that some devices export a large memory range 

in which either not all pages are valid or the pages may not be accessed for common operations. 

Complete allocation of vm_page structures for these sparsely accessed devices would be 

wasteful. 

The first access to a device page will cause a page fault and will invoke the device-pager 

pgo_getpages() routine. The device pager creates a vm_page structure, initializes the latter 

with the appropriate vm_object offset and a physical address returned by the device d_mmap() 

routine, and flags the page as fictitious. This vm_page structure is added to the collection of all 

such allocated pages for the vm_object. Since the fault code has no special knowledge of the 

device pager, it has preallocated a physical-memory page to fill and has associated that 

vm_page structure with the vm_object. The device-pager routine removes that vm_page 

structure from the vm_object, returns the structure to the free list, and inserts its own vm_page 

structure in the same place. 

The device-pager pgo_putpages() routine expects never to be called and will panic if it is. This 

behavior is based on the assumption that device-pager pages are never entered into any of the 

paging queues and hence will never be seen by the pageout daemon. However, the device-pager 

must be prepared to be called if an application does an msync on a part of its address space that 

is mapped to a range of device memory. Although there is nothing that needs to be done, this 

operation brings up an exception to the higher-level virtual-memory system’s ignorance of 

device memory: The vm_object page-cleaning routine will skip pages that are flagged as 

fictitious. 

Finally, when a device is unmapped, the device-pager deallocation routine is invoked. This 

routine deallocates all the vm_page structures that it allocated. 
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Physical-Memory Pager 

The physical-memory pager handles vm_objects that contain nonpagable memory. It is used to 

make a copy of the current time-of-day structure accessible to user processes to permit them to 

get the time of day without the need to do a system call. It is also used for a page of data that the 

kernel shares with all processes that contains the signal trampoline code. The trampoline code 

used to be placed at the top of the stack for each process. To make stack overflow exploits more 

difficult, the stack region is marked as nonexecutable. So the trampoline code was moved to a 

kernel text page that is made read-only and executable to every process. The System V 

shared-memory interface uses the physical-memory pager when it has been configured to use 

nonpagable memory instead of the default swappable memory. 

The first access to a physical-memory-pager page will cause a page fault and will invoke the 

pgo_getpages() routine. Like the swap pager, the physical-memory pager zero-fills pages when 

they are first faulted. Unlike the swap pager, the page is marked as unmanaged so that it will not 

be considered for replacement by the pageout daemon. Unmanaged pages never require finding 

all the instances of their mappings, so the associated data structure used to find all mappings 

(described in Section 6.13) need not be allocated. Marking its pages unmanaged makes the 

memory for the physical-memory pager look like wired physical memory. Thus, no special code 

is needed in the remainder of the virtual-memory system to handle physical-memory-pager 

memory. 

The pgo_putpages() routine of the physical-memory-pager does not expect to be called, and it 

panics if it is. This behavior is based on the assumption that physical-memory-pager pages are 

never entered into any of the paging queues and hence will never be seen by the pageout 

daemon. However, it is possible to msync a range of memory backed by the physical-memory 

pager. This operation brings up an exception to the higher-level virtual-memory system’s 

ignorance of physical-memory-pager memory: The vm_object page-cleaning routine will skip 

pages that are flagged as unmanaged. 

Finally, when a vm_object using a physical-memory pager is freed, each of its pages has its 

unmanaged flag cleared and is released back to the list of free pages. 

Swap Pager 

The term swap pager refers to two functionally different pagers. In the most common use, swap 

pager refers to the pager that is used by vm_objects that manage anonymous memory. This 

pager has sometimes been referred to as the default pager because it is the pager that is used if 

no other pager has been requested. It provides what is commonly known as swap space: 
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nonpersistent backing store that is zero filled on first reference. When an anonymous vm_object 

is first created, it is assigned the default pager. The default pager allocates no resources and 

provides no storage backing. The default pager handles page faults (pgo_getpage()) by zero 

filling and page queries (pgo_haspage()) as not held. The expectation is that free memory will 

be plentiful enough that it will not be necessary to swap out any pages. The vm_object will 

simply create zero-filled pages during the process lifetime that can all be returned to the free list 

when the process exits. When a vm_object is freed with the default pager, no pager cleanup is 

required since no pager resources were allocated. 

However, on the first request by the pageout daemon to remove an allocated page from an 

anonymous vm_object, the default pager replaces itself with the swap pager. The role of the 

swap pager is swap-space management: figuring out where to store dirty pages and how to find 

dirty pages when they are needed again. Shadow vm_objects require that these operations be 

efficient. A typical shadow vm_object is sparsely populated: It may cover a large range of pages, 

but only those pages that have been modified will be in the shadow vm_object’s backing store. 

In addition, long chains of shadow vm_objects may require numerous pager queries to locate 

the correct copy of a vm_object page to satisfy a page fault. Hence, determining whether a pager 

contains a particular page needs to be fast, preferably requiring no I/O operations. A final 

requirement of the swap pager is that it can do asynchronous writeback of dirty pages. This 

requirement was necessitated by the original pageout daemon, which was a single-threaded 

process. If a single-threaded pageout daemon blocked waiting for a page-clean operation to 

complete before starting the next operation, it often could not keep enough memory free in 

times of heavy memory demand. Even with asynchronous I/O, by the time of FreeBSD 10 it was 

necessary to create multiple pageout-daemon threads to keep up with the memory demand on 

busy systems. 

In theory, any pager that meets these criteria can be used as the swap pager. In Mach 2.0, the 

vnode pager was used as the swap pager. Special paging files could be created in any filesystem 

and registered with the kernel. The swap pager would then suballocate pieces of the files to back 

particular anonymous vm_objects. One obvious advantage of using the vnode pager is that swap 

space can be expanded by the addition of more swap files or the extension of existing ones 

dynamically (i.e., without rebooting or reconfiguring of the kernel). The main disadvantage is 

that the filesystem does not provide as much bandwidth as direct access to the disk. 

The desire to provide the highest possible disk bandwidth led to the creation of a special 

raw-partition pager to use as the swap pager for FreeBSD. Previous versions of BSD also used 

dedicated disk partitions, commonly known as swap partitions, so this partition pager became 

the swap pager. The remainder of this section describes how the swap pager is implemented and 

how it provides the necessary capabilities for backing anonymous vm_objects. 
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In 4.4BSD, the swap pager preallocated a fixed-size structure to describe the backing space for 

the vm_object. For a large vm_object, the structure would be large even if only a few pages of 

the vm_object were written to backing store. Worse, the size of the vm_object was frozen at the 

time of allocation. Thus, if the anonymous area continued to grow (such as the stack or heap of a 

process), a new vm_object had to be created to describe the expanded area. On a system that 

was short of memory, the result was that a large process could acquire many anonymous 

vm_objects. Changing the swap pager to handle growing vm_objects dramatically reduced this 

vm_object proliferation. Another problem with the 4.4BSD swap pager was that it used a block 

list to track the swap space usage. The block list grew in size as the swap area became 

fragmented. The system tends to swap when it is low on memory. To avoid potential deadlocks, 

kernel memory should not be allocated at such times. The 4.4BSD swap pager’s simplistic 

management of the swap space led to fragmentation, slow allocation under load, and deadlocks 

brought on by its need to allocate kernel memory during periods of shortage. For all these 

reasons, the swap pager was completely rewritten in FreeBSD 4.0. 

Swap space tends to be sparsely allocated. On average, a process only accesses about half of its 

allocated address space during its lifetime. Thus, only about half the pages in a vm_object ever 

come into existence. Unless the machine is under heavy memory pressure and the process is 

long-lived, most of the pages in the vm_object that do come into existence will never be written 

to backing store. So the new swap pager replaced the old fixed-size block map for each 

vm_object with a method that allocates a structure for each set of swap blocks that gets 

allocated. Each structure tracks the swap blocks used by an aligned and contiguous region of 32 

pages belonging to the vm_object. A large vm_object with two pages swapped out will use at 

most two of these structures, and only one if the two swapped pages are close to each other (as 

they often are). The amount of memory required to track swap space for a vm_object is 

proportional to the number of pages that have been written to swap rather than to the size of the 

vm_object. The size of the vm_object is no longer frozen when its first page is swapped out, 

since any pages that are part of its larger size can be accommodated. 

The structures that track swap space usage are kept in a global hash table managed by the swap 

pager. While it might seem logical to store the structures separately on lists associated with the 

vm_object of which they are a part, the single global hash table has two important advantages: 

1. It ensures a short time to determine whether a page of a vm_object has been written to swap. 

If the structures were linked onto a list headed by the vm_object, then vm_objects with many 

swapped pages would require the traversal of a long list. The long list could be shortened by 

creating a hash table for every vm_object, but that would require much more memory than 

simply allocating a single large hash table that could be used by all vm_objects. 
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2. It allows operations that need to scan all the allocated swap blocks to have a centralized place 

to find them rather than needing to scan all the anonymous vm_objects in the system. An 

example is the swapoff system call that removes a swap partition from use. It needs to page in 

all the blocks from the device that is to be taken out of service. 

The free space in the swap area is managed with a bitmap with one bit for each page-size block 

of swap space. The bitmap for the entire swap area is allocated when the swap space is first 

added to the system. This initial allocation reduces the need to allocate kernel memory during 

critical low-memory swapping operations. 

Doing a linear scan of the swap-block bitmaps to find free space would be unacceptably slow. 

Thus, the bitmap is organized in a radix-tree structure with free-space hinting in the radix-node 

structures. The use of radix-tree structures makes swap-space allocation and release a 

constant-time operation. To reduce fragmentation, the radix tree can allocate large contiguous 

chunks at once, skipping over smaller fragmented chunks. 

A future improvement would be to keep track of the different-size free areas as swap allocations 

are done similarly to the way that the filesystem tracks the different sizes of free space. This 

free-space information would increase the probability of doing contiguous allocation and 

improve locality of reference. 

Swap blocks are allocated at the time that swap out is done. They are freed when the page is 

brought back in and becomes dirty or the vm_object is freed. 

The swap pager is responsible for managing the I/O associated with the pgo_putpages() request. 

Once it identifies the set of pages within the pgo_putpages() request that it will be able to write, 

it must allocate a buffer and have those pages mapped into it. Because the swap pager does not 

synchronously wait while the I/O is done, it does not regain control after the I/O operation 

completes. Therefore, it marks the buffer with a callback flag and sets the routine for the 

callback to be swp_pager_async_iodone(). 

When the write completes, swp_pager_async_iodone() is called. Each written page is marked 

as clean, has its busy bit cleared, and calls the vm_page_io_finish() routine to notify the 

pageout daemon that the write has completed and to awaken any processes waiting for it. The 

swap pager then unmaps the pages from the buffer and releases it. A count of 

pageouts-in-progress is kept for the pager associated with each vm_object; this count is 

decremented when the pageout completes and, if the count goes to zero, a wakeup() is issued. 

This operation is done so that a vm_object that is deallocating a swap pager can wait for the 

completion of all pageout operations before freeing the pager’s references to the associated swap 

space. 
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Because the swap pager uses the physical I/O buffers shared with other kernel subsystems and a 

fixed number of these buffers are allocated when the system is booted, the swap pager must take 

care to ensure that it does not use more than its fair share. Once this limit is reached, the 

pgo_putpages() operations block until one of the swap pager’s outstanding writes completes. 

This unexpected blocking of the pageout daemon is an unfortunate side effect of pushing the 

buffer management down into the pagers. Any single pager hitting its buffer limit stops the 

page-out daemon. While the pageout daemon might want to perform additional I/O operations 

using other I/O resources such as the network, it is prevented from doing so. Worse, the failure 

of any single pager can deadlock the system by preventing the pageout daemon from running. 

6.11 Paging 

When the memory-management hardware detects an invalid virtual address, it generates a trap 

to the system. This page-fault trap can occur for several reasons. Most BSD programs are 

created in a format that permits the executable image to be paged into main memory directly 

from the filesystem. When a program in a demand-paged format is first run, the kernel marks as 

invalid the pages for the text and initialized-data regions of the executing process. The text and 

initialized data regions share a vm_object that provides fill-on-demand from the filesystem. As 

part of mapping in the vm_object, the kernel traverses the collection of pages associated with 

the vm_object and marks them as resident in the newly created process. For regions that are 

writable (such as the initialized data of the executable), the pages are marked as copy-on-write. 

For a heavily used executable with most of its pages already resident, this prepaging reduces 

many of its initial page faults. As missing pages of the text or initialized-data region are first 

referenced, or write attempts are made on pages in the initialized-data region, page faults occur. 

Page faults can also occur when a process first references a page in the uninitialized-data region 

of a program. Here, the anonymous vm_object managing the region automatically allocates 

memory to the process and initializes the newly assigned page to zero. Other types of page faults 

arise when previously resident pages have been reclaimed by the system in response to a 

memory shortage. 

The handling of page faults is done with the vm_fault() routine; this routine services all page 

faults. Each time vm_fault() is invoked, it is provided the virtual address that caused the fault. 

The first action of vm_fault() is to traverse the vm_map_entry list of the faulting process to 

find the entry associated with the fault. The routine then computes the logical page within the 

underlying vm_object and traverses the list of vm_objects to find or create the needed page. 

Once the page has been found, vm_fault() must call the machine-dependent layer to validate 

the faulted page and return to restart the process. 
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The details of calculating the address within the vm_object are described in Section 6.4. Having 

computed the offset within the vm_object and determined the vm_object’s protection and 

vm_object list from the vm_map_entry, the kernel is ready to find or create the associated page. 

The page-fault-handling algorithm is shown in Figure 6.16. In the following overview, the 

lettered points are references to the tags down the left side of the code. 
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Figure 6.16 Page-fault handling. 

A. The loop traverses the list of shadow, anonymous, and file vm_objects until it either finds a 

vm_object that holds the sought-after page or reaches the final vm_object in the list. If no page 

is found, the final vm_object will be requested to produce it. 

B. A vm_object with the desired page has been found. If the page is busy, another process may 

be in the middle of faulting it in, so this process is blocked until the page is no longer busy. Since 

many things could have happened to the affected vm_object while the process was blocked, it 

must restart the entire fault-handling algorithm. If the page was not busy, the algorithm exits 

the loop with the page. 

C. Anonymous vm_objects (such as those used to represent shadow vm_objects) do not 

upgrade from the default pager to the swap pager until the first time that they need to write a 

page to backing store. Thus, if a vm_object has a pager other than the default pager, then there 

is a chance that the page previously existed but was paged out. If the vm_object has a 

nondefault pager, then the kernel needs to allocate a page to give to the pager to be filled (see D). 

The special case for the vm_object being the first vm_object is to avoid a race condition with 

two processes trying to get the same page. The first process through will create the sought-after 

page in the first vm_object but keep it marked as busy. When the second process tries to fault 

the same page, it will find the page created by the first process and block on it (see B). When the 
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first process completes the pagein processing, it will unlock the first page, causing the second 

process to awaken, retry the fault, and find the page created by the first process. 

D. Before calling the pager, check to see if any of the eight pages on either side of the faulting 

page are eligible to be brought in at the same time. To be eligible, a page must be part of the 

vm_object and neither already in memory nor part of another I/O operation. The pager is given 

the range of possible pages and told which one is the required page. It must return the required 

page if it holds a copy of it. The other pages are produced only if they are held by the vm_object 

and can be easily read at the same time. If the required page is present in the file or swap area, 

the pager will bring it back into the newly allocated page. If the pagein succeeds, then the 

sought-after page has been found. If the page never existed, then the pagein request will fail. 

Unless this vm_object is the first, the page is freed and the search continues. If this vm_object is 

the first, the page is not freed, so it will act as a block to further searches by other processes (as 

described in C). 

E. If the kernel created a page in the first vm_object but did not use that page, it will have to 

remember that page so it can use the page in a shadow object or free the page when the pagein is 

done (see J). 

F. If the search has reached the end of the vm_object list and has not found the page, then the 

fault is on an anonymous vm_object chain, and the first vm_object in the list will handle the 

page fault using the page allocated in C. The first_page entry is set to NULL to show that it does 

not need to be freed, the page is zero filled, and the loop is exited. 

G. The search exits the loop with page as the page that has been found or allocated and 

initialized, and object as the owner of that page. The page has been filled with the correct data at 

this point. 

H. If the vm_object providing the page is not the first vm_object, then this mapping must be 

private, with the first vm_object being a shadow vm_object of the vm_object providing the page. 

If pagein is handling a write fault, then the contents of the page that it has found have to be 

copied to the page that it allocated for the first vm_object. Having made the copy, it can release 

the vm_object and page from which the copy came, since the first vm_object and first page will 

be used to finish the page-fault service. If pagein is handling a read fault, it can use the page that 

it found, but it has to mark the page copy-on-write to avoid the page being modified in the 

future. 

I. If pagein is handling a write fault, then it has made any copies that were necessary, so it can 

safely make the page writable. As any pages around the required page that were brought into 

memory as part of the clustering were not copied, they are mapped read-only so that if a write is 
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done on one of them, the full page-fault analysis will be done and a copy made at that time if it is 

necessary to do so. 

J. As the page and possibly the first_page are released, any processes waiting for that page of 

the vm_object will get a chance to run to get their own references. 

Note that the page, vm_map, and vm_object locking has been elided in Figure 6.16 to simplify 

the explanation. 

Hardware-Cache Design 

Because the speed of CPUs has increased far more rapidly than the speed of main memory, most 

machines today require the use of a memory cache to allow the CPU to operate near its full 

potential. 

Code that describes the operation of a hardware cache is given in Figure 6.17. An actual cache is 

entirely implemented in hardware, so the loop shown in Figure 6.17 would really be done by 

parallel comparisons rather than iteratively. Historically, most machines had a direct-mapped 

cache. With a direct-mapped cache, an access to byte B followed by an access to byte B + 

(CACHELINES × LINESIZE) would cause the cached data for byte B to be lost. Most modern 

caches are N-way set associative where N is typically 8 for high-speed caches such as the L1 

cache, and 64 for lower-speed but larger caches such as the L3 cache. An N-way set-associative 

cache allows access of N different memory regions that overlap the same cache memory without 

destroying the previously cached data. But on the Nth + 1 access at that offset, an earlier cached 

value is lost. 
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Figure 6.17 Hardware-cache algorithm. Key: LINESIZE—Number of bytes in each cache line, 

typically 64 or 128 bytes; CACHELINES—Number of lines in the cache, 8192 is a typical size; 

SETSIZE—1 for a direct mapped cache, 2 for 2-way set associative, 4 for 4-way set associative, 

etc. 

There are several cache-design choices that require cooperation with the virtual-memory system. 

The design option with the biggest effect is whether the cache uses virtual or physical addressing. 

A physically addressed cache takes the address from the CPU, runs it through the 

memory-management unit (MMU) to get the address of the physical page, then uses this 

physical address to find out whether the requested memory location is available in the cache. 

Although a translation lookaside buffer (described in the next subsection) significantly reduces 

the average latency of the translation, there is still a delay in going through the MMU. A virtually 

addressed cache uses the virtual address as that address comes from the CPU to find out 
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whether the requested memory location is available in the cache. The virtual-address cache is 

faster than the physical-address cache because it avoids the time to run the address through the 

MMU. However, the virtual-address cache must be flushed completely after each context switch, 

because virtual addresses from one process are indistinguishable from the virtual addresses of 

another process. By contrast, a physical-address cache does not need to be flushed after a 

context switch. In a system with many short-running processes, a virtual-address cache gets 

flushed so frequently that it is seldom useful. 

A further refinement to the virtual-address cache is to add a process tag to the key field for each 

cache line. At each context switch, the kernel loads a hardware context register with the tag 

assigned to the process. Each time an entry is recorded in the cache, both the virtual address 

and the process tag that faulted it are recorded in the key field of the cache line. The cache looks 

up the virtual address as before, but when it finds an entry, it compares the tag associated with 

that entry to the hardware context register. If they match, the cached value is returned. If they 

do not match, the correct value and current process tag replace the old cached value. When this 

technique is used, the cache does not need to be flushed completely at each context switch, since 

multiple processes can have entries in the cache. The drawback is that the kernel must manage 

the process tags. Usually, there are fewer tags (8 to 16) than there are processes. The kernel 

must assign the tags to the active set of processes. When an old process drops out of the active 

set to allow a new one to enter, the kernel must flush the cache entries associated with the tag 

that it is about to reuse. Another major drawback to virtual caches with process tags are aliases. 

An alias is the same page of data that is mapped to different virtual addresses in different 

processes. An example of an alias is a shared library that is mapped to different locations in the 

address space of different processes. First, the cache is polluted with duplicate read-only data 

that reduce its efficiency. Second, two processes using shared memory for IPC have to prevent 

aliases to avoid stale data by flushing their tag’s cache entries on every context switch. 

A final consideration is a write-through versus a write-back cache. A write-through cache writes 

the data back to main memory at the same time as it is writing to the cache, forcing the CPU to 

wait for the memory access to conclude. A write-back cache writes the data to only the cache, 

delaying the memory write until an explicit request or until the cache entry is reused. The 

write-back cache allows the CPU to resume execution more quickly and permits multiple writes 

to the same cache block to be consolidated into a single memory write. However, the writes 

must be forced any time it is necessary for the data to be visible to a DMA request for a device or 

to other CPUs on a multiprocessor. 
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Hardware Memory Management 

The MMU implements address translation and access control when virtual memory is mapped 

onto physical memory. One common MMU design uses memory-resident forward-mapped 

page tables. These page tables are large contiguous arrays indexed by the virtual address. 

There is one element, or page-table entry (PTE), in the array for each virtual page in the 

address space. This element contains the physical page to which the virtual page is mapped, as 

well as access permissions, status bits telling whether the page has been referenced or modified, 

and a bit showing whether the entry contains valid information. For a 4-Gbyte address space 

with 4-Kbyte virtual pages and a 32-bit page-table entry, 1 million entries, or 4 Mbyte, would be 

needed to describe an entire address space. Since most processes use little of their address space, 

most of the entries would be invalid, and allocating 4 Mbyte of physical memory per process 

would be wasteful. Thus, most page-table structures are hierarchical, using two or more levels of 

mapping. A 64-bit architecture using its entire address space would need five or six levels of 

page tables. Implementations in 2014 limit the address space to a 48-bit address space that can 

be handled with four levels of page tables. With a hierarchical structure, different portions of the 

virtual address space index the various levels of the page tables. The intermediate levels of the 

table contain the addresses of the next lower level of the page table. The kernel can mark as 

unused large contiguous regions of an address space by inserting invalid entries at the higher 

levels of the page table, eliminating the need for invalid page descriptors for each individual 

unused virtual page. 

The translation of a virtual address to a physical address during an access by a 32-bit CPU using 

a two-level page table and 4 Kbyte pages is shown in Figure 6.18 and proceeds as follows: 

1. The 10 most significant bits of the virtual address are used to index into the active-directory 

table. 

2. If the selected directory-table entry is valid and the access permissions grant the access being 

made, the next 10 bits of the virtual address are used to index into the page-table page 

referenced by the directory-table entry. 

3. If the selected page-table entry is valid and the access permissions match, the final 12 bits of 

the virtual address are combined with the physical page referenced by the page-table entry to 

form the physical address of the access. 
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Figure 6.18 Two-level page table. 

This hierarchical page-table structure requires the hardware to make frequent memory 

references to translate a virtual address. To speed the translation process, most 

page-table-based MMUs also have a small, fast, hardware cache of recent address translations, a 

structure known commonly as a translation looka-side buffer (TLB) that works much like 

the hardware cache described in the previous subsection. When a memory reference is 

translated, the TLB is first consulted and, only if a valid entry is not found there, the page-table 

structure for the current process is traversed. Because most programs exhibit spatial locality in 

their memory-access patterns, the typical 1024-entry TLB is large enough to hold their working 

set. 

As address spaces grew beyond 32 to 48 and, more recently, 64 bits, simple indexed data 

structures with three to six levels of tables required to handle address translation caused CPU 

architects to consider alternatives. A response to this page-table growth is the inverted page 

table, also known as the reverse-mapped page table. In an inverted page table, the 
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hardware still maintains a memory-resident table, but that table contains one entry per physical 

page and is indexed by physical address instead of by virtual address. An entry contains the 

virtual address to which the physical page is currently mapped, as well as protection and status 

attributes. The hardware does virtual-to-physical address translation by computing a hash 

function on the virtual address to select an entry in the hash anchor table (HAT). The entry in 

the HAT points to an entry in the inverted page table. The system handles collisions in the 

inverted page table by linking together table entries and making a linear search of this chain 

until it finds the matching virtual address. 

The advantages of an inverted page table are that the size of the table is proportional to the 

amount of physical memory and that only one global table is needed, rather than one table per 

process. A disadvantage to this approach is that there can be only one virtual address mapped to 

any given physical page at any one time. This limitation makes virtual-address 

aliasing—having multiple virtual addresses for the same physical page—difficult to handle. As 

it is with the forward-mapped page table, a hardware TLB speeds the translation process. 

A final common MMU organization consists of just a TLB. This architecture is the simplest 

hardware design. It gives the software maximum flexibility by allowing the latter to manage 

translation information in whatever structure it desires. However, unlike the other 

hardware-based TLBs, a software-based TLB miss raises an exception to the kernel that runs a 

handler to fill the missing TLB entry. 

Superpages 

Typical hardware today has a TLB with 1024 entries. A TLB does a set-associative lookup, 

meaning that when presented with a virtual address, it must simultaneously compare that 

address with every entry that it holds. The larger the number of entries, the longer it takes for 

the TLB to produce an answer. If the TLB takes longer than reading the memory, then it ceases 

to be useful. The reason for the slow growth of the size of TLBs is that they generally aim to 

produce an answer in less than one clock cycle of the CPU, which limits the number of entries 

that they can compare. 

The size of hardware TLBs has grown much more slowly than the size of the main memory. Thus, 

the working-set size of a typical process has grown more quickly than the ability of the TLB to 

reference it. On a machine with 4-Kbyte pages and a 1024-entry TLB, the maximum-size 

working set that fits in the TLB is 4 Mbyte. As soon as the working-set size of the program 

exceeds 4 Mbyte, the TLB begins to miss translations, thus requiring one or more extra memory 

references to read the page-table entries to resolve the location of a virtual page. While most of 

these memory references will be in one of the processor’s memory caches, accessing those 
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caches is typically a factor of 10 slower than resolving the address in the TLB. The small 

working-set size becomes even more acute on 64-bit architectures that are also limited to 

1024-entry TLBs. 

As the hardware vendors have been unable to increase the size of the TLB, their solution to the 

small working-set problem is to create superpages. Most hardware allows for multiple page 

sizes. The page sizes available are dependent on the architecture. Common sizes in addition to 

the standard 4-Kbyte pages are 8-Kbyte, 64-Kbyte, 512-Kbyte, 2-Mbyte, and 4-Mbyte pages. 

The PC architecture has a 4-Kbyte regular-size page. Unlike many other architectures, it 

provides only a single alternate superpage size: 4-Mbyte super-pages on chips that support a 

maximum of 4 Gbyte of physical memory and 2-Mbyte superpages on chips that support more 

than 4 Gbyte of physical memory. The smaller superpage size on the machines with more 

physical memory is because the additional address bits required to address the larger memory 

require page table entries to be 64-bits rather than 32-bits. Thus, each 4-Kbyte page table 

references only half as much address space. An address space may have a mix of regular and 

superpages but virtual addresses must be aligned to page-size boundaries. Standard-size pages 

must begin on 4-Kbyte boundaries and 2-Mbyte super-pages must begin on 2-Mbyte boundaries. 

Note that recent 64-bit Intel and AMD processors also support 1 Gbyte superpages. 

A process using entirely 2-Mbyte superpages to back its address space can fit a working set of 2 

Gbyte into the same 1024-entry TLB. While a 2-Gbyte working set is large for an application 

running on a 32-bit architecture, it is quite common for applications running on a 64-bit 

architecture. 

The implementation of superpages on the PC architecture is shown in Figure 6.19. The pointer 

in the first level of the page table is set to point to a superpage rather than to a second level of 

page tables. A flag bit in the top-level page table entry is set to indicate that the pointer 

references a superpage rather than the usual second-level page table. As can be seen in Figure 

6.19, superpages may be mixed with regular pages within an address space. Although the 

hardware treats the superpage as a single entity, the software still maintains all 1024 vm_page 

structures for its component 4-Kbyte pages. Maintaining the vm_page structures is necessary 

so that if a superpage is demoted, the kernel can track the individual 4-Kbyte pages from which 

it is built. 
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Figure 6.19 Superpage hardware operation. 

Providing hardware support for superpages is simple and, when used appropriately, is quite 

effective at relieving pressure on the TLB. The difficult part is devising the software solution for 

using them. Some operating systems simply provide an interface to allow applications to request 

superpages for part or all of their address space. This approach rarely works as many application 

writers are unaware of the ability to ask for superpages or the need to do so. Many of the 

application writers that do ask for superpages do so in an inappropriate context and just end up 

wasting system resources and slowing everything down. 

The best solution (and the one used by FreeBSD) is to have the operating system monitor its 

running processes and assign superpages to those parts of the processes for which they will 

provide clear benefit [Navarro et al., 2002]. Here, the application writers do not have to concern 

themselves with superpages knowing that they will be used where appropriate. 

The kernel must be conservative in choosing to use a superpage within a process. The savings 

from using a superpage are reduced misses in the TLB. As described below, the potential cost of 
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using a superpage is extra memory-to-memory copies or additional disk I/O. It does not take 

many memory-to-memory copies or additional disk I/O to completely wipe out any savings of 

TLB misses and indeed can quickly add up to more cost than benefit, which makes the 

application and potentially the entire system run more slowly than if superpages were not used. 

Thus, FreeBSD delays the promotion to superpages until it is clear that they will be a 

performance win. While some promotion opportunities are missed, those that are made nearly 

always provide a net improvement in performance. 

Consideration of using a superpage begins with a superpage reservation. Superpages for a 

process are considered on a region-by-region basis (a region is defined by an area of the process 

memory described by a vm_map_entry structure; see Section 6.4). On the first page fault for 

each region of memory, the virtual-memory system must decide whether the region should be 

eligible to use super-pages. A region containing a mapped file must be of at least superpage size 

to be eligible for a superpage reservation. Since such a region rarely grows, if it is not already at 

least the size of a superpage, it is unlikely that it ever will be superpage size. By contrast, 

anonymous memory such as a stack or a heap is always eligible for a superpage reservation since 

it often grows. Additionally, kernel memory allocation is always given a reservation. 

When a region is denied a superpage reservation, the first and all subsequent page faults are 

provided with a normal 4-Kbyte page. If a region is granted a superpage reservation, then a 

superpage is assigned to the part of the region that includes the faulted page. However, only the 

single 4-Kbyte page within the superpage corresponding to the fault is initialized and placed into 

the process page table. Each superpage has a population map to track its used pages. As the 

process faults in additional parts of the superpage, the corresponding 4-Kbyte pages get 

initialized and added into its page table and the appropriate entry in its population map is 

updated. 

When a vm_object first gets mapped, the virtual-memory system records its offset into a 

superpage. Thus, if a vm_object’s mapping begins at a 7-Mbyte offset and the system has 

2-Mbyte superpages, the vm_object is marked as beginning at a 1-Mbyte offset. If another 

process asks to map the same vm_object, the virtual memory system will place the vm_object in 

that new process at the same offset as it did in the first vm_object. The purpose for tracking and 

using the alignment is to avoid the need to copy data around in memory to get necessary 

alignment. If the application demands a particular alignment that does not match the current 

superpage alignment, then that process will have to map that vm_object using regular 4-Kbyte 

page-table entries. 

A superpage reservation is eligible for promotion when it faults every page in its reservation. On 

the PC architecture, promotion means that the 4-Kbyte page-table page holding the references 
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to all the individual 4-Kbyte pages is replaced with a pointer to the superpage itself (see Figure 

6.19). 

The superpage is marked read-only unless it has modified every page in its reservation. The 

reason that it is made read-only is that the superpage active-directory entry has only a single bit 

to indicate that the page has been modified. If the superpage were made writable and only a 

single byte in the superpage is modified, the virtual-memory system would have no way of 

knowing where in the superpage the modification had occurred. When it came time to write the 

page to backing store, it would have to write the entire 2-Mbyte page. Thus, when a read-only 

superpage is modified, it is demoted back to small pages so that the modifications can be 

tracked on a 4-Kbyte by 4-Kbyte basis. Only when all the small pages are modified is it 

promoted to a writable superpage. 

This conservative approach ensures that the kernel does not get forced into doing extra I/O, 

thus wiping out the TLB-miss savings. In practice, this approach works well. Applications either 

have a large area that they change constantly such as a matrix multiplication, or an area that 

they mostly read such as a database. 

Providing superpage reservations requires a steady supply of superpages to be available. To this 

end, the virtual-memory system must take the stream of cached and freed 4-Kbyte pages and 

defragment them back into superpages. The cached and free pages are kept on buddy lists that 

aggregate the small pages back into bigger groups. For architectures that support more than one 

superpage size, the buddy lists track all the useful page sizes as the smaller groups are 

aggregated into bigger groups and eventually make their way up to maximum-size superpages. 

When servicing page faults for non-reserved areas of address space, the 4-Kbyte memory page is 

taken from a list of pages that have few if any buddies, thus preserving the larger pieces. The 

result may be that a cache page with known content is used rather than a free page with no 

useful contents. But the benefit of having more superpages available usually outweighs the loss 

of a page that is typically not used again. 

The pageout daemon (described in Section 6.12) remains unchanged. It continues to move pages 

between its lists based on its best estimate of when and how they will be used most effectively. 

The superpages used for reservations are built from only pages on the cached and free lists. The 

parts of reserved superpages that have not been faulted are counted as free or cached. Thus, the 

rate at which pages are consumed from the cache and free lists does not change, which means 

that the pageout daemon is not forced to run faster than it did before superpages were added. 

We have considered changing the pageout daemon to allow it to grab more actively referenced 

pages to fill out holes in the buddy lists. The question then arises as to how many actively 

referenced 4-Kbyte pages the pageout daemon can take to complete a superpage before the 
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filesystem-cache performance is too heavily impacted. It does not take many filesystem rereads 

of lost cache data to wipe out the TLB-miss savings from a a single superpage. And the cost is 

even higher if the filesystem-cache page was dirty and had to be written to reclaim the page only 

to have it reread again. For all of these reasons, we have so far avoided these changes to the 

pageout daemon. 

The performance improvements of superpages is shown in Table 6.3. These numbers are taken 

from much more extensive results in Navarro et al. [2002]. Of the more than 20 workloads 

studied in the paper, the only one that showed a slowdown (-1.7 percent) was for one of the 

programs in Spec Float 2000. 

 

Table 6.3 Performance of superpages. 

The first results column in the table shows the improvements on an architecture with four 

superpage sizes while the second column shows the PC architecture with only a single 4-Mbyte 

superpage size. Having multiple superpage sizes typically doubles the benefit derived from 

superpages. The primary reason for the higher performance is the greater number of superpages 

available and, hence, greater opportunity to use them. 

6.12 Page Replacement 

The service of page faults and other demands for memory may be satisfied from the free list for 

some time, but eventually memory must be reclaimed for reuse. Some pages are reclaimed when 

processes exit. On systems with a large amount of memory and low memory demand, exiting 

processes may provide enough free memory to fill demand. This case arises when there is 
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enough memory for the kernel and for all pages that have ever been used by any current process. 

Obviously, many computers do not have enough main memory to retain all pages in memory. 

Thus, it eventually becomes necessary to move some pages to secondary storage—back to the 

filesystem or to the swap space. Bringing in a page is demand driven. For paging it out, however, 

there is no immediate indication when a page is no longer needed by a process. The kernel must 

implement some strategy for deciding which pages to move out of memory so that it can replace 

these pages with the ones that are currently needed in memory. Ideally, the strategy will choose 

pages for replacement that will not be needed soon. An approximation to this strategy is to find 

pages that have not been used actively or recently. 

The 4.4BSD system implemented demand paging with a page-replacement algorithm that 

approximated global least recently used [Easton & Franaszek, 1979]. In FreeBSD, the one-bit 

use field for each page has been augmented with an activity counter to approximate global least 

actively used. Both these algorithms are examples of a global page-replacement 

algorithm: one in which the choice of a page for replacement is made according to systemwide 

criteria. A local page-replacement algorithm would choose a process for which to replace 

a page and then chose a page based on per-process criteria. Although the algorithm in FreeBSD 

is similar in nature to that in 4.4BSD, its implementation is considerably different. 

The kernel scans physical memory on a regular basis, considering pages for replacement. The 

use of a systemwide list of pages forces all processes to compete for memory on an equal basis. 

Note that it is also consistent with the way that FreeBSD treats other resources provided by the 

system. A common alternative to allowing all processes to compete equally for memory is to 

partition memory into multiple independent areas, each localized to a collection of processes 

that compete with one another for memory. This scheme is used, for example, by the VMS 

operating system [Kenah & Bate, 1984]. With this scheme, system administrators can guarantee 

that a process, or collection of processes, will always have a minimal percentage of memory. 

Unfortunately, this scheme can be difficult to administer. Allocating too small a number of 

pages to a partition can result in underutilization of memory and excessive I/O activity to 

secondary-storage devices, whereas setting the number too high can result in excessive 

swapping [Lazowska & Kelsey, 1978]. 

The kernel divides the main memory into five lists: 

1. Wired: Wired pages are locked in memory and cannot be paged out. Typically, these pages are 

being used by the kernel or the physical-memory pager, or they have been locked down with 

mlock. In addition, all the pages being used to hold the thread stacks of loaded (i.e., not 

swapped-out) processes are also wired. 
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2. Active: Active pages are being used by one or more regions of virtual memory. Although the 

kernel can page them out, doing so is likely to cause an active process to fault them back again. 

3. Inactive: Inactive pages may be dirty and have contents that are still known, but they are not 

usually part of any active region. If the contents of the page are dirty, the contents must be 

written to backing store before the page can be reused. Once the page has been cleaned, it is 

moved to the cache list. If the system becomes short of memory, the pageout daemon may try to 

move active pages to the inactive list in the hopes of finding pages that are not really in use. The 

selection criteria that are used by the pageout daemon to select pages to move from the active 

list to the inactive list are described later in this section. When the free-memory and cache lists 

drop too low, the pageout daemon traverses the inactive list to create more cache and free pages. 

4. Cache: Cache pages have contents that are still known, but they are not part of any mapping. 

If they are faulted into an active region, they will be moved from the cache list to the active list. 

If they are used for a read or a write, they will be moved from the cache list first to the buffer 

cache and eventually released to the inactive list. An mlock system call can reclaim a page from 

the cache list and wire it. Pages on the cache list are similar to inactive pages except that they are 

not dirty, either because they are unmodified since they were paged in or because they have 

been written to their backing store. They can be claimed for a new use when a page is needed. 

5. Free: Free pages have no useful contents and will be used to fulfill new page-fault requests. 

The pages of main memory that can be used by user processes are those on the active, inactive, 

cache, and free lists. Requests for new pages are usually taken first from the free list if it has 

pages available, otherwise they will be taken from the cache list. Cache pages will be used in 

preference to free-list pages that are part of a large cluster of pages or a superpage. 

Ideally, the kernel would maintain a working set for each process in the system. It would then 

know how much memory to provide to each process to minimize the latter’s page-fault behavior. 

The FreeBSD virtual-memory system does not use the working-set model because it lacks 

accurate information about the reference pattern of a process. It does track the number of pages 

held by a process via the resident-set size, but it does not know which of the resident pages 

constitute the working set. In 4.3BSD, the count of resident pages was used in making decisions 

on whether there was enough memory for a process to be swapped in when that process wanted 

to run. This feature was not carried over to the FreeBSD virtual-memory system. Although it 

works well during periods of high memory demand, memory is so abundant on current 

machines that swapping never happens, so it was not worth the effort to incorporate it into 

FreeBSD systems. 
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Paging Parameters 

The memory-allocation needs of processes compete constantly, through the page-fault handler, 

with the overall system goal of maintaining a minimum threshold of pages in the inactive, cache, 

and free lists. As the system operates, it monitors main-memory utilization and attempts to run 

the pageout daemon frequently enough to keep the amount of inactive, cache, and free memory 

at or above the minimum threshold shown in Table 6.4. When the page-allocation routine, 

vm_page_alloc(), determines that more memory is needed, it awakens the pageout daemon. 

 

Table 6.4 Available-memory thresholds. 

The number of pages to be reclaimed by the pageout daemon is a function of the memory needs 

of the system. As more memory is needed by the system, more pages are scanned. This scanning 

causes the number of pages freed to increase. The pageout daemon determines the memory 

needed by comparing the number of available-memory pages against several parameters that 

are calculated during system startup. The desired values for the paging parameters are 

communicated to the pageout daemon through global variables that may be viewed or changed 

with sysctl. Likewise, the pageout daemon records its progress in global counters that may be 

viewed or reset with sysctl. Progress is measured by the number of pages scanned over each 

interval that it runs. 

The goal of the pageout daemon is to maintain the inactive, cache, and free queues between the 

minimum and target thresholds shown in Table 6.4. The pageout daemon achieves this goal by 

moving pages from more active queues to less active queues to reach the indicated ranges. It 

never moves pages to the free list. Rather, pages from the anonymous areas of exiting processes 

are placed on the free list. It moves pages from the inactive list to the cache list to keep the sum 

of free and cached pages near its target. It moves pages from the active list to the inactive list to 

maintain the inactive list near its target. 

The Pageout Daemon 

Page replacement is done by the pageout daemon. The paging policy of the page-out daemon 

is embodied in the vm_pageout() and vm_pageout_scan() routines. When the pageout daemon 
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reclaims pages that have been modified, it is responsible for writing them to the swap area. Thus, 

the pageout daemon must be able to use normal kernel-synchronization mechanisms, such as 

sleep(). It therefore runs as a separate process, with its own process structure and kernel stack. 

Like init, the pageout daemon is created by an internal fork operation during system startup 

(see Section 15.4); unlike init, however, it remains in kernel mode after the fork. The pageout 

daemon simply enters vm_pageout() and never returns. Unlike some other users of the disk I/O 

routines, the pageout process needs to perform its disk operations asynchronously so that it can 

continue scanning in parallel with disk writes. 

When running on systems with many CPUs, the demand for pages can vastly exceed the number 

of pages that a single pageout daemon can provide. Starting in FreeBSD 10, the paging daemon 

was multithreaded so that it would be able to keep up with heavy paging demand. 

Historically, the pages were handled by a least recently used algorithm. The drawback to this 

algorithm is that a sudden burst of memory activity can flush many useful pages from the cache. 

To mitigate this behavior, FreeBSD uses a least actively used algorithm to preserve pages that 

have a history of usage so that they will be favored over the once-used pages brought in during a 

period of high memory demand. 

When a page is first brought into memory, it is given an initial usage count of 5. Further usage 

information is gathered by the pageout daemon during its periodic scans of memory. As each 

page of memory is scanned, its reference bit is checked. If the bit is set, it is cleared and the 

usage counter for the page is incremented (up to a limit of 64) by the number of references to 

the page. If the reference bit is clear, the usage counter is decremented. When the usage counter 

reaches 0, the page is moved from the active list to the inactive list. Pages that are repeatedly 

used build up large usage counts that will cause them to remain on the active list much longer 

than pages that are used just once. 

The goal of the pageout daemon is to keep the number of pages on the inactive, cache, and free 

lists within their desired ranges. Whenever an operation that uses pages causes the amount of 

free memory to fall below the minimum thresholds, the pageout daemon is awakened. The 

pageout-handling algorithm is shown in Figure 6.20. In the following overview, the lettered 

points are references to the tags down the left side of the code. 

A. The pageout daemon calculates the number of pages that need to be moved from the inactive 

list to the cache list. To avoid saturating the I/O system, the pageout daemon limits the number 

of I/O operations that it will start concurrently. 

B. Scans the inactive list until the desired number of pages are moved. Skips over busy pages, 

since they are likely being paged out and can be moved later when they are clean. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
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Figure 6.20 Pageout handling 

C. If we find a page that has been referenced, then it has been moved to the inactive list 

prematurely, so update its usage count and move it back to the active list. Pages with invalid 

contents (usually caused by an I/O error) are removed from their vm_object and moved to the 

free list. Pages that are clean can be moved to the cache list. 

D. Dirty pages need to be paged out, but flushing a page is extremely expensive compared to 

freeing a clean page. Thus, dirty pages are given extra time on the inactive queue by cycling 

them through the queue twice before being flushed. They cycle through the list once more while 

being cleaned. This extra time on the inactive queue will reduce unnecessary I/O caused by 

prematurely paging out an active page. The clustering checks for up to 16 dirty pages on either 

side of the selected page. The pager is only required to write the selected page. However, it may 

write as many of the clustered dirty pages as it finds convenient. The scanning of the inactive list 

stops initiating new writes if the number of pageouts in progress hits its limit. In 4.4BSD, the 

I/O completions were handled by the pageout daemon. FreeBSD requires that pagers track their 

own I/O operations including the appropriate updating of the written pages. The written-page 

update at I/O completion does not move the page from the inactive list to the cache list. Rather, 

the page remains on the inactive list until it is eventually moved to the cache list during a future 

pass of the pageout daemon. 
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E. The pageout daemon calculates the number of pages that need to be moved from the active 

list to the inactive list. As some will eventually need to be moved to the cache list, enough pages 

must be moved to the inactive list to leave it at its target level after the cache list has been filled. 

F. Scan the active list until the desired number of pages are moved. If we find a page that has 

been referenced since our last scan, update its usage count and move it to the end of the active 

list. 

G. The page is not active, so decrements its usage count. If its usage is still above zero, moves it 

to the end of the active list. Otherwise, moves it to the inactive list. 

H. If the page-count targets have not been met, the swap-out daemon is started (see next 

subsection) to try to clear additional memory. 

I. If the kernel has been configured to not impose any limits on the amount of virtual memory 

that it will grant, then it can find that it has nearly filled its memory and swap space. It avoids 

going into deadlock by killing off the largest unprotected process. 

Note that the page and vm_object locking has been elided in Figure 6.20 to simplify the 

explanation. 

Even when no additional pages are needed, the pageout daemon is awakened often enough to 

ensure that it will scan all the pages on the active list once every vm_pageout_update_period 

seconds. The default is to scan every active page once every 10 minutes. A 1-minute interval 

would be better, but checking all of active memory on large memory machines once per minute 

would put too much of a non-work load on the system. And even a 10-minute scan eliminates 

the worst-case behaviors when no scanning is done for long periods of time. 

Swapping 

Although swapping is generally avoided, there are several times when it is used in FreeBSD to 

address a serious memory shortage. Swapping is done in FreeBSD when any of the following 

situations occur: 

• The system becomes so short of memory that the paging process cannot free memory fast 

enough to satisfy the demand. For example, a memory shortfall may happen when multiple 

large processes are run on a machine lacking enough memory for the minimum working sets of 

the processes. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig20
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• Processes are completely inactive for more than 10 seconds. Otherwise, such processes would 

retain a few pages of memory associated with their thread stacks. Swapping out idle threads is 

disabled by default as the extra delay in restarting them is not worth the small amount of 

memory that is reclaimed. Swap operations completely remove a process from main memory, 

including the process page tables, the pages of the data and the stack segments that are not 

already in swap space, and the thread stacks. 

Process swapping is invoked only when paging is unable to keep up with memory needs or when 

short-term memory needs warrant swapping a process. In general, the swap-scheduling 

mechanism does not do well under heavy load; system performance is much better when 

memory scheduling can be done by the page-replacement algorithm than when the swap 

algorithm is used. 

Swap out is driven by the swap-out daemon, vmdaemon. The swap-out policy of the vmdaemon 

is embodied in the vm_daemon() routine. If the swapping of idle processes is enabled and the 

pageout daemon can find any processes that have been sleeping for more than 10 seconds 

(swap_idle_threshold2, the cutoff for considering the time sleeping to be “a long time”), it will 

swap them all out. Such processes have the least likelihood of making good use of the memory 

that they occupy; thus, they are swapped out even if they are small. If none of these processes 

are available, the pageout daemon will swap out all processes that has been sleeping for as 

briefly as 2 seconds (swap_idle_threshold1). These criteria attempt to avoid swapping entirely 

until the pageout daemon is clearly unable to keep enough memory free. 

In 4.4BSD, if memory was still desperately low, the swap-out daemon would select to swap out 

the runnable process that had been resident the longest. Once swapping of runnable processes 

had begun, the processes eligible for swapping would take turns in memory so that no process 

was frozen out entirely. The FreeBSD swap-out daemon will not select a runnable processes to 

swap out. So, if the set of runnable processes do not fit in memory, the machine will effectively 

deadlock. Current machines have enough memory that this condition usually does not arise. If it 

does, FreeBSD avoids deadlock by killing the largest process. If the condition begins to arise in 

normal operation, the 4.4BSD algorithm will need to be restored. 

The mechanics of performing a swap out are simple. The swapped-in process flag P_INMEM is 

cleared to show that the process is not resident in memory. The PS_SWAPPINGOUT flag is set 

while the swap out is being done so that neither a second swap out nor a swap in is attempted at 

the same time. If a runnable process is to be swapped (which currently never happens), it needs 

to be removed from the runnable process queue. The kernel stacks for the threads of the process 

are then marked as pageable, which allows the stack pages, along with any other remaining 
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pages for the process, to be paged out via the standard pageout mechanism. The swapped-out 

process cannot be run until after it is swapped back into memory. 

The Swap-In Process 

Swap-in operations are done by the swapping process, swapper (process 0). This process is the 

first one created by the system when the latter is started. The swap-in policy of the swapper is 

embodied in the scheduler() routine. This routine swaps processes back in when memory is 

available and they are ready to run. At any time, the swapper is in one of three states: 

1. Idle: No swapped-out processes are ready to be run. Idle is the normal state. 

2. Swapping in: At least one runnable process is swapped out, and scheduler() attempts to find 

memory for it. 

3. Swapping out: The system is short of memory, or there is not enough memory to swap in a 

process. Under these circumstances, scheduler() awakens the pageout daemon to free pages and 

to swap out other processes until the memory shortage abates. 

If more than one swapped-out process is runnable, the first task of the swapper is to decide 

which process to swap in. This decision may affect the decision about whether to swap out 

another process. Each swapped-out process is assigned a priority based on: 

• The length of time it has been swapped out 

• Its nice value 

• The amount of time it was asleep since it last ran 

In general, the process that has been swapped out longest or was swapped out because it had 

slept for a long time before being swapped will be brought in first. Once a process is selected, the 

swapper checks to see whether there is enough memory free to swap in the process. Historically, 

the system required as much memory to be available as was occupied by the process before that 

process was swapped. Under FreeBSD, this requirement was reduced to a requirement that the 

number of pages on the free and cache lists be at least equal to the minimum free-memory 

threshold. If there is enough memory available, the process is brought back into memory. The 

kernel stacks for the threads of the process are swapped in immediately, but the process loads 

the rest of its working set by demand paging from the backing store. Thus, not all the memory 

that is needed by the process is used immediately. Earlier BSD systems tracked the anticipated 

demand and would only swap in runnable processes as free memory became available to fulfill 
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their expected needs. FreeBSD allows all swapped-out runnable processes to be swapped in as 

soon as there is enough memory to load their thread stacks. 

The procedure for swap in of a process is the reverse of that for swap out: 

1. Memory is allocated for the kernel stack of each of the threads of the process and they are 

read back from swap space. 

2. The process is marked as resident, and its runnable threads are returned to the run queue 

(i.e., those threads that are not stopped or sleeping). 

After the swap in completes, the process is ready to run like any other, except that it has no 

resident pages. It will bring in the pages that it needs by faulting them. 

6.13 Portability 

Everything discussed in this chapter up to this section has been part of the 

machine-independent data structures and algorithms. These parts of the virtual-memory system 

require little change when FreeBSD is ported to a new architecture. This section will describe 

the machine-dependent parts of the virtual-memory system: the parts of the virtual-memory 

system that must be written as part of a port of FreeBSD to a new architecture. The role of the 

machine-dependent parts of the virtual-memory system are to manage the page tables used by 

the hardware memory-management unit (see Section 6.11) to control access to process and 

kernel memory. 

Often, a port to another architecture with a similar memory-management organization can be 

used as a starting point for a new port. The 32-bit PC architecture uses the typical two-level 

page-table organization shown in Figure 6.21. An address space is broken into 4-Kbyte virtual 

pages, with each page identified by a 32-bit entry in the page table. Each page-table entry 

contains the physical page number assigned to the virtual page, the access permissions allowed, 

modify and reference information, and a bit showing that the entry contains valid information. 

The 4 Mbyte of page-table entries are likewise divided into 4-Kbyte page-table pages, each of 

which is described by a single 32-bit entry in the directory table. Directory-table entries are 

nearly identical to page-table entries: They contain access bits, modify and reference bits, a valid 

bit, and the physical page number of the page-table page described. One 4-Kbyte page—1024 

directory-table entries—covers the maximum-size 4-Gbyte address space. The CR3 hardware 

register contains the physical address of the directory table for the currently active process. The 

64-bit PC architecture is similar except that it needs more levels of page tables. 
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Figure 6.21 Two-level page-table organization. Key: V—page-valid bit; M—page-modified bit; 

R—page-referenced bit; ACC—page-access permissions. 

The Role of the pmap Module 

The machine-dependent code describes how the physical mapping is done between the 

user-processes and kernel virtual addresses and the physical addresses of the main memory. 

This mapping function includes management of access rights in addition to address translation. 

The physical-mapping module, usually referred to as the pmap module, manages 

machine-dependent translation and access tables that are used either directly or indirectly by 

the memory-management hardware. For example, on the PC, the pmap maintains the 

memory-resident directory and page tables for each process, as well as for the kernel. The 

machine-dependent state required to describe the translation and access rights of a single page 

is often referred to as a mapping or mapping structure. 

The FreeBSD pmap interface shares many design characteristics with the pmap interface in 

Mach 3.0. FreeBSD has added many functions to optimize range operations such as prefaulting 

whole files and destroying an entire address space. The pmap module is intended to be logically 

independent of the higher levels of the virtual-memory system. The interface deals strictly in 

machine-independent page-aligned virtual and physical addresses and in machine-independent 

protections. The machine-independent page size may be a multiple of the 

architecture-supported page size. Thus, pmap operations must be able to affect more than one 
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physical page per logical page. The machine-independent protection is a simple encoding of 

read, write, and execute permission bits. The pmap must map all possible combinations into 

valid architecture-specific values. 

A process’s pmap is considered to be a cache of mapping information kept in a 

machine-dependent format. As such, it does not need to contain complete state for all valid 

mappings. Mapping state is the responsibility of the machine-independent layer. With one 

exception, the pmap module may throw away mapping state at its discretion to reclaim 

resources. The exception is wired mappings, which should never cause a fault that reaches the 

machine-independent vm_fault() routine. Thus, state for wired mappings must be retained in 

its vm_pmap structure until it is removed explicitly. 

In general, pmap routines may act either on a set of mappings defined by a virtual address range 

or on all mappings for a particular physical address. Being able to act on individual or all virtual 

mappings for a physical page requires that the mapping information maintained by the pmap 

module be easily found by both virtual and physical addresses. For architectures such as the PC 

that support memory-resident page tables, the virtual-to-physical, or forward lookup, may be a 

simple emulation of the hardware page-table traversal. Physical-to-virtual, or reverse, lookup 

uses a list of pv_entry structures, described in the next subsection, to find all the page-table 

entries referencing a page. The list may contain multiple entries only if virtual-address 

aliasing is allowed. 

There are two strategies that can be used for management of pmap memory resources, such as 

user-directory or page-table memory. The traditional and easiest approach is for the pmap 

module to manage its own memory. Under this strategy, the pmap module can grab a fixed 

amount of wired physical memory at system boot time, map that memory into the kernel’s 

address space, and allocate pieces of the memory as needed for its own data structures. The 

primary benefit is that this approach isolates the pmap module’s memory needs from those of 

the rest of the system and limits the pmap module’s dependencies on other parts of the system. 

This design is consistent with a layered model of the virtual-memory system in which the pmap 

is the lowest, and hence self-sufficient, layer. 

The disadvantage is that this approach requires the duplication of many of the 

memory-management functions. The pmap module has its own memory allocator and 

deallocator for its private heap—a heap that is statically sized and cannot be adjusted for varying 

systemwide memory demands. For an architecture with memory-resident page tables, it must 

keep track of noncontiguous chunks of processes’ page tables, because a process may populate 

its address space sparsely. Handling this requirement entails duplicating much of the standard 

list-management code, such as that used by the vm_map code. 
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An alternative approach, used by the PC, is to use the higher-level virtual-memory code 

recursively to manage some pmap resources. Here, the 4-Kbyte directory table for each user 

process is mapped into the address space of the kernel as part of setting up the process and 

remains resident until the process exits. While a process is running, its page-table entries are 

mapped into a virtually contiguous 4-Mbyte array of page-table entries in the kernel’s address 

space. This organization leads to an obscure memory-saving optimization, exploited in the PC 

pmap module, where the kernel’s page-table page describing the 4-Mbyte user page-table range 

can double as the user’s directory table. The kernel also maintains alternate maps to hold 

individual page-table pages of other nonrunning processes if it needs to access their address 

space. 

Using the same page-allocation routines as all the other parts of the system ensures that 

physical memory is allocated only when needed and from the systemwide free-memory pool. 

Page tables and other pmap resources also can be allocated from pageable kernel memory. This 

approach easily and efficiently supports large sparse address spaces, including the kernel’s own 

address space. 

The vm_pmap data structures are contained in the machine-dependent include directory in the 

file pmap.h. Most of the code for these routines is in the machine-dependent source directory 

in the file pmap.c. The main tasks of the pmap module are these: 

• System initialization and startup (pmap_bootstrap(), pmap_init(), pmap_growkernel()) 

• Allocation and deallocation of mappings of physical to virtual pages (pmap_enter(), 

pmap_remove(), pmap_qenter(), pmap_qremove()) 

• Change of access and wiring attributes for mappings (pmap_change_wiring(), 

pmap_remove_all(), pmap_remove_write(), pmap_protect()) 

• Maintenance of physical page-usage information (pmap_clear_modify(), 

pmap_is_modified(), pmap_ts_referenced()) 

• Initialization of physical pages (pmap_copy_page(), pmap_zero_page()) 

• Management of internal data structures (pmap_pinit(), pmap_release()) 

Each of these tasks is described in the following subsections. 
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Initialization and Startup 

The first step in starting up the system is for the loader to bring the kernel image from a disk or 

the network into the physical memory of the machine. The kernel load image looks much like 

that of any other process; it contains a text segment, an initialized data segment, and an 

uninitialized data segment. The loader places the kernel contiguously near the beginning of 

physical memory. Unlike a user process that is demand paged into memory, the text and data 

for the kernel are read into memory in their entirety. Following these two segments, the loader 

zeros an area of memory equal to the size of the kernel’s uninitialized memory segment. After 

loading the kernel, the loader passes control to the starting address given in the kernel 

executable image. When the kernel begins executing, it is either executing with the MMU turned 

off using the direct physical addresses or with a minimal predefined set of page tables. 

The first task undertaken by the kernel is to set up the kernel vm_pmap, and any other data 

structures that are necessary to describe the kernel’s virtual address space. On the PC, the initial 

setup includes allocating and initializing the directory and page tables that map the statically 

loaded kernel image and memory-mapped I/O address space, allocating a fixed amount of 

memory for kernel page-table pages, allocating and initializing the kernel stack for the initial 

process, reserving special areas of the kernel’s address space, and initializing assorted critical 

vm_pmap-internal data structures. When done, it is possible to enable the MMU or switch to 

the fully configured page tables. In either case, the kernel begins running in the context of 

process zero. 

Once the kernel is running in its virtual address space, it proceeds to initialize the rest of the 

system. It determines the size of the physical memory, then calls pmap_bootstrap() and 

vm_page_startup() to set up the initial vm_pmap data structures, to allocate the vm_page 

structures, and to create a small, fixed-size pool of memory, which the kernel memory allocators 

can use so that they can begin responding to memory allocation requests. Next, it makes a call to 

set up the machine-independent portion of the virtual-memory system. It concludes with a call 

to pmap_init(), which allocates all resources necessary to manage multiple user address spaces 

and synchronizes the higher-level kernel virtual-memory data structures with the kernel 

vm_pmap. 

The pmap_init() function allocates a minimal amount of wired memory to use for kernel 

page-table pages. The page-table space is expanded dynamically by the pmap_growkernel() 

routine as it is needed while the kernel is running. Once allocated, it is never freed. The limit on 

the size of the kernel’s address space is selected at boot time. On 64-bit architectures, the kernel 

is typically given an address space large enough to directly map all of physical memory. On 

32-bit architectures, the kernel is typically given a maximum of 1 Gbyte of address space. 
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In 4.4BSD, the memory managed by the buffer cache was separate from the memory managed 

by the virtual-memory system. Since all the virtual-memory pages were used to map process 

regions, it was sensible to create an inverted page table. This table was an array of pv_entry 

structures. Each pv_entry described a single address translation and included the virtual 

address, a pointer to the associated vm_pmap structure for that virtual address, a link for 

chaining together multiple entries mapping this physical address, and additional information 

specific to entries mapping page-table pages. Building a dedicated table was sensible, since all 

valid pages were referenced by a vm_pmap, yet few had multiple mappings. 

With the merger of the buffer cache into the virtual-memory system in FreeBSD, many pages of 

memory are used to cache file data that is not mapped into any process address space. Thus, 

preallocating a table of pv_entry structures is wasteful, since many of them would go unused. So, 

FreeBSD allocates pv_entry structures on demand as pages are mapped into a process address 

space. 

Figure 6.22 shows the pv_entry references for a set of pages that have a single mapping. The 

purpose of the pv_entry structures is to identify the address space that has the page mapped. 

The machine-dependent part of each vm_page structure contains the head of a list of pv_entry 

structures and a count of the number of entries on the list. In Figure 6.22, the vm_object has 

cached its pages 5, 18, and 79. The list heads in the machine-dependent structures of these 

vm_page structures would each point to a single pv_entry structure labelled in the figure with 

the number of the vm_page structure that references them. Not shown in Figure 6.22 is that 

each vm_pmap structure also maintains a list of all the pv_entry structures that reference it. 

 

Figure 6.22 Physical pages with a single mapping. 

Each pv_entry can reference only one physical map. When a vm_object becomes shared 

between two or more processes, each physical page of memory may become mapped into two or 

more sets of page tables. To track these multiple references, the pmap module must create 

chains of pv_entry structures, as shown in Figure 6.23. Copy-on-write is an example of the need 

to find all the mappings of a page as it requires that the page tables be set to read-only in all the 
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processes sharing the vm_object. The pmap module can implement this request by walking the 

collection of pages cached by the vm_object to be made copy-on-write. For each page, it 

traverses that page’s list of pv_entry structures. It then makes the appropriate change to the 

page-table entry associated with each pv_entry structure. 

 

Figure 6.23 Physical pages with multiple mappings. 

A system with many shared vm_objects can require many pv_entry structures, which can use 

an unreasonable amount of the kernel memory. The alternative would be to keep a list 

associated with each vm_object of all the vm_map_entry structures that reference it. When it 

becomes necessary to modify the mapping of all the references to the page, the kernel could 

traverse this list, checking the address space associated with each vm_map_entry to see if it 

held a reference to the page. For each page found, it could make the appropriate update. 

The pv_entry structures consume more memory but reduce the time to do a common operation. 

For example, consider a system running 1000 processes that all share a common library. 

Without the pv_entry list, the cost to change a page to copy-on-write would require checking all 

1000 processes. With the pv_entry list, only those processes using the page would need to be 

inspected. 
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Mapping Allocation and Deallocation 

The primary responsibility of the pmap module is validating (allocating) and invalidating 

(deallocating) mappings of physical pages to virtual addresses. The physical pages represent 

cached portions of a vm_object that is providing data from a file or an anonymous memory 

region. A physical page is bound to a virtual address because that vm_object is being mapped 

into a process’s address space either explicitly by mmap or implicitly by fork or exec. 

Physical-to-virtual address mappings are not created at the time that the vm_object is mapped; 

instead, their creation is delayed until the first reference to a particular page is made. At that 

point, an access fault will occur, and pmap_enter() will be called. The pmap_enter() function is 

responsible for any required side effects associated with creation of a new mapping. Such side 

effects are largely the result of entering a second translation for an already mapped physical 

page—for example, as the result of a copy-on-write operation. Typically, this operation requires 

flushing uniprocessor or multiprocessor TLB or cache entries to maintain consistency. 

In addition to its use to create new mappings, pmap_enter() may also be called to modify the 

wiring or protection attributes of an existing mapping or to rebind an existing mapping for a 

virtual address to a new physical address. The kernel can handle changing attributes by calling 

the appropriate interface routine, described in the next subsection. Changing the target physical 

address of a mapping is simply a matter of first removing the old mapping and then handling it 

like any other new mapping request. 

The pmap_enter() function is the only routine that cannot lose state or delay its action. When 

called, it must create a mapping as requested, and it must validate that mapping before 

returning to the caller. On the PC, pmap_enter() must first check whether a page-table entry 

exists for the requested address. If a physical page has not yet been allocated to the process 

page-table at the location required for the new mapping, a zeroed page is allocated, wired, and 

inserted into the directory table of the process. 

After ensuring that all page-table resources exist for the mapping being entered, pmap_enter() 

validates or modifies the requested mapping as follows: 

1. Checks to see whether a mapping structure already exists for this virtual-to-physical address 

translation. If one does, the call must be changing the protection or wiring attributes of the 

mapping; it is handled as described in the next subsection on pmap_protect(). Returns from 

pmap_enter(). 

2. Otherwise, if a mapping exists for this virtual address but it references a different physical 

address, that mapping is removed. 
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3. The hold count on a page-table page is incremented each time a new page reference is added 

and decremented each time an old page reference is removed. When the last valid page is 

removed, the hold count drops to zero, the page is unwired, and the page-table page is freed as it 

contains no useful information. 

4. A page-table entry is created and validated, the hold count is set to 1, and the cache and TLB 

entries are flushed as necessary. 

5. If the physical address is outside the range managed by the pmap module (e.g., a 

frame-buffer page), no pv_entry structure is needed. Otherwise, for the case of a new mapping 

for a physical page that is mapped into an address space, a pv_entry structure is created. 

6. For machines with a virtually indexed cache, a check is made to see whether this physical 

page already has other mappings. If it does, all mappings may need to be marked cache 

inhibited, to avoid cache inconsistencies. 

When a vm_object is unmapped from an address space, either explicitly by munmap or 

implicitly on process exit, the pmap module is invoked to invalidate and remove the mappings 

for all physical pages caching data for the vm_object. Unlike pmap_enter(), pmap_remove() 

can be called with a virtual-address range encompassing more than one mapping. Hence, the 

kernel does the unmapping by looping over all virtual pages in the range, ignoring those for 

which there is no mapping and removing those for which there is one. 

The pmap_remove() function on the PC is simple. It loops over the specified address range, 

invalidating individual page mappings. Since pmap_remove() can be called with large sparsely 

allocated regions, such as an entire process virtual-address range, it needs to skip invalid entries 

within the range efficiently. It skips invalid entries by first checking the directory-table entry for 

a particular address and, if an entry is invalid, skipping to the next 4-Mbyte boundary. When all 

page mappings have been invalidated, any necessary global cache flushing is done. 

To invalidate a single mapping, the kernel locates and marks as invalid the appropriate 

page-table entry. The reference and modify bits for the page are saved in the page’s vm_page 

structure for future retrieval. If this mapping was a user mapping, the hold count for the 

page-table page is decremented. When the count reaches zero, the page-table page can be 

reclaimed because it contains no more valid mappings. When a user page-table page is removed 

from the kernel’s address space (i.e., as a result of removing the final valid user mapping from 

that page), the process’s directory table must be updated. The kernel does this update by 

invalidating the appropriate directory-table entry. If the physical address from the mapping is 

outside the managed range, nothing more is done. Otherwise, the pv_entry structure is found 

and is deallocated. 
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The pmap_qenter() and pmap_qremove() are faster versions of the pmap_enter() and 

pmap_remove() functions that can be used by the kernel to create and remove temporary 

mappings quickly. They can only be used on nonpageable mappings in the address space of the 

kernel. For example, the buffer-cache management routines use these routines to map file pages 

into kernel memory so that they can be read or written by the filesystem. 

Change of Access and Wiring Attributes for Mappings 

An important role of the pmap module is to manipulate the hardware access protections for 

pages. These manipulations may be applied to all mappings covered by a virtual-address range 

within a vm_pmap via pmap_protect(), or they may be applied to all mappings of a particular 

physical page across vm_pmaps via pmap_remove_write() and pmap_remove_all(). There are 

two features common to both calls. First, either form may be called with a protection value of 

VM_PROT_NONE to remove a range of virtual addresses or to remove all mappings for a 

particular physical page, which it does by calling pmap_remove(). Second, these routines 

should never add write permission to the affected mappings. Thus, calls including 

VM_PROT_WRITE should make no changes. This restriction is necessary for the copy-on-write 

mechanism to function properly. The request to make the page writable is made only in the 

vm_map_entry structure. When a later write attempt on the page is made by the process, a 

page fault will occur. The page-fault handler will inspect the vm_map_entry and determine that 

the write should be permitted. If it is a copy-on-write page, the fault handler will make any 

necessary copies before calling pmap_enter() to enable writing on the page. Thus, write 

permission on a page is added only via calls to the pmap_enter() function. 

The pmap_protect() function is used primarily by the mprotect system call to change the 

protection for a region of process address space (though its functionality is also duplicated in 

pmap_enter() as described in step 1 of the previous subsection). The strategy is similar to that 

of pmap_remove(): Loop over all virtual pages in the range and apply the change to all valid 

mappings that are found. Invalid mappings are left alone. 

For the PC, pmap_protect() first checks for the special cases. If the requested permission is 

VM_PROT_NONE, it calls pmap_remove() to handle the revocation of all access permission. If 

VM_PROT_WRITE is included, it just returns immediately. For a normal protection value, 

pmap_protect() loops over the given address range, skipping invalid mappings. For valid 

mappings, the page-table entry is looked up, and, if the new protection value differs from the 

current value, the entry is modified and any TLB and cache flushing is done. As occurs with 

pmap_remove(), any global cache actions are delayed until the entire range has been modified. 
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The pmap_remove_write() function is used internally by the virtual-memory system to set 

read-only permission when a copy-on-write operation is set up (e.g., during fork). The 

pmap_remove_all() function removes all access permissions before doing page replacement to 

force all references to a page to block pending the completion of its operation. 

The addition of write enable must be done on a page-by-page basis by the page-fault handling 

routine as described for pmap_protect(). Otherwise, pmap_remove_write() and 

pmap_remove_all() traverse the list of pv_entry structures for the requested page, invalidating 

the individual mappings as described in the previous subsection. As occurs with 

pmap_protect(), the entry is checked to ensure that it is changing before expensive TLB and 

cache flushes are done. Note that TLB and cache flushing differ from those for pmap_remove(), 

since they must invalidate entries from multiple process contexts, rather than invalidating 

multiple entries from a single process context. 

The pmap_change_wiring() function is called to wire or unwire a single machine-independent 

virtual page within a vm_pmap. As described in the previous subsection, wiring informs the 

pmap module that a mapping should not cause a hardware fault that reaches the 

machine-independent vm_fault() code. Wiring is typically a software attribute that has no effect 

on the hardware MMU state: it simply tells the pmap not to throw away state about the mapping. 

As such, if a pmap module never discards state, then it is not strictly necessary for the module 

even to track the wired status of pages. The only side effect of not tracking wiring information in 

the vm_pmap is that the mlock system call cannot be completely implemented without a wired 

page-count statistic. 

The PC pmap implementation maintains wiring information. An unused bit in the 

page-table-entry structure records a page’s wired status. The pmap_change_wiring() function 

sets or clears this bit when it is invoked with a valid virtual address. Since the wired bit is 

ignored by the hardware, there is no need to modify the TLB or cache when the bit is changed. 

Maintenance of Physical Page-Usage Information 

The machine-independent page-management code needs to be able to get basic information 

about the usage and modification of pages from the underlying hardware. The pmap module 

facilitates the collection of this information without requiring the machine-independent code to 

understand the details of the mapping tables by providing a set of interfaces to query and clear 

the reference and modify bits. The pageout daemon can call vm_page_test_dirty() to 

determine whether a page is dirty. If the page is dirty, the pageout daemon can write it to 

backing store and then call pmap_clear_modify() to clear the modify bit. The 

pmap_clear_modify() routine clears the modified bit in the attribute array and then loops over 
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all pv_entry structures associated with the physical page, clearing the hardware-maintained 

page-table-entry bits. This final step may involve TLB or cache flushes along the way or 

afterward. Similarly, when the pageout daemon wants to update the active count for a page, it 

uses pmap_ts_referenced() to count and clear the number of uses of the page since it was last 

scanned. 

One important feature of the query routines is that they should return valid information even if 

there are currently no mappings for the page in question. Thus, referenced and modified 

information cannot just be gathered from the hardware-maintained bits of the various 

page-table or TLB entries; rather, there must be a place where the information is retained when 

a mapping is removed. 

For the PC, the modified information for a page is stored in the dirty field of its vm_page 

structure. Initially cleared, the information is updated by calling the vm_page_test_dirty() 

routine whenever a mapping for a page is considered for removal. The vm_page_test_dirty() 

routine first checks the dirty field and, if it is set, returns immediately. Since this attribute array 

contains only past information, it still needs to check status bits in the page-table entries for 

currently valid mappings of the page. This information is checked by calling the 

machine-dependent pmap_is_modified() routine that traverses the pv_entry structures 

associated with the physical page, examining the modified bit for the pv_entry’s associated 

page-table entry. It can return TRUE as soon as it encounters a set bit or FALSE if the bit is not 

set in any page-table entry. If it returns TRUE, vm_page_test_dirty() sets the dirty field before 

returning. 

The referenced information for a page is stored in the act_count field and as a flag of its 

vm_page structure. Initially cleared, the information is updated periodically by the pageout 

daemon. As it scans memory, the pageout daemon calls the pmap_ts_referenced() routine to 

collect a count of references to the page. The pmap_ts_referenced() routine returns zero if it is 

not passed a managed physical page. Otherwise, it traverses the pv_entry structures associated 

with the physical page, examining and clearing the referenced bit for the pv_entry’s associated 

page-table entry. It returns the number of referenced bits that it found. 

Initialization of Physical Pages 

Two interfaces are provided to allow the higher-level virtual-memory routines to initialize 

physical memory. The pmap_zero_page() function takes a physical address and fills the page 

with zeros. The pmap_copy_page() function takes two physical addresses and copies the 

contents of the first page to the second page. Since both take physical addresses, the pmap 
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module will most likely have to first map those pages into the kernel’s address space before it 

can access them. 

Each CPU in the PC implementation has a pair of kernel virtual addresses reserved for zeroing 

and copying pages. The pmap_zero_page() function maps the specified physical address into 

the reserved virtual address, calls bzero() to clear the page, and then removes the temporary 

mapping with the single translation-invalidation primitive used by pmap_remove(). Similarly, 

pmap_copy_page() creates mappings for both physical addresses, uses bcopy() to make the 

copy, and then removes both mappings. 

Management of Internal Data Structures 

The remaining pmap interface routines are used for management and synchronization of 

internal data structures. The pmap_pinit() function creates an instance of the 

machine-dependent vm_pmap structure. It is used by the vmspace_fork() and vmspace_exec() 

routines when creating new address spaces during a fork or exec. The pmap_release() function 

deallocates the vm_pmap’s resources. It is used by the vmspace_free() routine when cleaning 

up a vmspace when a process exits. 

Exercises 

6.1 What does it mean for a machine to support virtual memory? What four hardware facilities 

are typically required for a machine to support virtual memory? 

6.2 What is the relationship between paging and swapping on a demand-paged virtual-memory 

system? Explain whether it is desirable to provide both mechanisms in the same system. Can 

you suggest an alternative to providing both mechanisms? 

6.3 What three policies characterize paging systems? 

6.4 What is copy-on-write? In most UNIX applications, the fork system call is followed 

almost immediately by an exec system call. Why does this behavior make it particularly 

attractive to use copy-on-write in implementing fork? 

6.5 Explain why the vfork system call will always be more efficient than a clever 

implementation of the fork system call. 

6.6 When a process exits, all its pages may not be placed immediately on the memory free list. 

Explain this behavior. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_63
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6.7 Why does the kernel have both the traditional malloc() and free() interface and the zone 

allocator? Explain when each type of interface is useful. 

6.8 What is the purpose of superpages? Why is it needed? 

6.9 What purpose does the pageout-daemon process serve in the virtual-memory system? 

6.10 What is clustering? Where is it used in the virtual-memory system? 

6.11 Why is the historic use of the sticky bit to lock a process image in memory no longer 

useful in FreeBSD? 

6.12 Give two reasons for swapping to be initiated. 

*6.13 The 4.3BSD virtual-memory system had a text cache that retained the identity of text 

pages from one execution of a program to the next. How does the caching of vnode vm_objects 

in FreeBSD improve on the performance of the 4.3BSD text cache? 

**6.14 FreeBSD reduces the length of shadow chains by checking at each copy-on-write fault 

whether the vm_object taking the fault completely shadows the vm_object below it in the chain. 

If it does, a collapse can be done. One alternative would be to calculate the number of live 

references to a page after each copy-on-write fault and, if only one reference remains, to move 

that page to the vm_object that references it. When the last page is removed, the chain can be 

collapsed. Implement this algorithm and compare its cost to the current algorithm. 

**6.15 The pv_entry structures could be replaced by keeping a list associated with each 

vm_object of all the vm_map_entry structures that reference it. If each vm_map_entry 

structure had only a single list pointer in it, only the final vm_object would be able to reference 

it. Shadow vm_objects would have to find their final vm_object to find their referencing 

vm_map_entry structure. Implement an algorithm to find all the references to the pages of a 

shadow vm_object using this scheme. Compare its cost with that of the current algorithm using 

pv_entry structures. 

**6.16 Port the code from 4.3BSD that would forcibly swap out runnable processes when the 

paging rate gets too high. Run three or more processes that each have a working set of 40 

percent of the available memory. Compare the performance of this benchmark using the 4.3BSD 

algorithm and the current algorithm. 
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Part III: I/O System 

Chapter 7. I/O System Overview 

Figure 7.1 shows an overview of the entire kernel. This chapter focuses on the upper part of that 

figure. It describes the management and operation of file descriptors, the virtual filesystem 

interface (VFS), the facilities provided by the kernel to the filesystems operating under the VFS, 

and the provision that the kernel makes for stacking multiple filesystems. 

 

Figure 7.1 Kernel I/O structure. 

Chapter 8 will describe the lower part of Figure 7.1. It covers the various types of device drivers 

in the system, their aggregation and delivery by their client subsystems, and the infrastructure 

needed to support and operate them. 
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7.1 Descriptor Management and Services 

For user processes, all I/O is done through descriptors. The user interface to descriptors was 

described in Section 2.7. This section describes how the kernel manages descriptors and how it 

provides descriptor services, such as locking and polling. 

System calls that refer to open files take a file descriptor as an argument to specify the file. The 

file descriptor is used by the kernel to index into the descriptor table for the current process 

(kept in the filedesc structure, a substructure of the process structure for the process) to locate a 

file entry, or file structure. The relationships of these data structures are shown in Figure 

7.2. 

 

Figure 7.2 File-descriptor reference to a file entry. 

The file entry provides a file type and a pointer to an underlying object for the descriptor. The 

object types supported in FreeBSD are shown in Table 7.1: 

• For data files, the file entry points to a vnode structure that references a substructure 

containing the filesystem-specific information described in Chapters 9 through 11. The vnode 

layer is described in Section 7.3. Special files do not have data blocks allocated on the disk; they 

are handled by the special-device filesystem that calls appropriate drivers to handle I/O for 

them. 

• For access to interprocess communication including networking, the FreeBSD file entry may 

reference a socket. 

• For unnamed high-speed local communication, the file entry will reference a pipe. Earlier 

FreeBSD systems used sockets for local communication, but optimized support was added for 

pipes to improve their performance. 

• For named high-speed local communication, the file entry will reference a fifo. As with pipes, 

optimized support was added for fifos to improve performance. 
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• For POSIX.1-2004-compliant named high-speed local communication, the file entry will 

reference a message queue. As with pipes, optimized support was added for message queues to 

improve performance. 

• For notification of kernel events, the file entry will reference a kqueue. The kqueue interface 

is described at the end of this section. 

• For systems that have cryptographic support in hardware, the file entry will provide direct 

access to that hardware. 

• For POSIX.1-2004-compliant shared memory (using the shm_open system call), the file entry 

will reference a shared-memory object. Before FreeBSD 7.0, POSIX shared memory was 

implemented with files. 

• For POSIX.1-2004-compliant semaphores (using the sem_open system call), the file entry will 

reference a semaphore. 

• For a pseudo-terminals device pair, file entries reference a pseudo-terminal’s master and slave 

devices. Pseudo-terminals are described in Section 8.6. 

• For compatibility with Linux, a file entry may reference a device directly rather than through 

the vnode interface. 

• For capability mode in which processes are unable to use PIDs, because PIDs are a global 

namespace, a file entry references a process. The descriptor for this file entry allows systems 

running in capability mode to create and manage child processes without recourse to PIDs. The 

uses for processes referenced by descriptors are described in Section 5.7. 
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Table 7.1 File descriptor types. 

The virtual-memory system supports the mapping of files into a process’s address space. Here, 

the file descriptor must reference a vnode or a POSIX shared-memory region that will be 

partially or completely mapped into the user’s address space. 

Open File Entries 

The set of file entries is the focus of activity for file descriptors. They contain the information 

necessary to access the underlying objects and to maintain common information. 

The file entry is an object-oriented data structure. Each entry contains a type and an array of 

function pointers that translate the generic operations on file descriptors into the specific 

actions associated with their type. The operations that must be implemented for each type are as 

follows: 

• Read from the descriptor 

• Write to the descriptor 

• Truncate the descriptor 

• Change the mode or owner of the descriptor 

• Poll the descriptor 

• Do ioctl operations on the descriptor 

• Collect stat information for the descriptor 

• Check to see if there are any kqueue events pending for the descriptor 

• Close and possibly deallocate the object associated with the descriptor 

Note that there is no open() routine defined in the object table. FreeBSD treats descriptors in an 

object-oriented fashion only after they are created. This approach was taken because the various 

descriptor types have different characteristics. Generalizing the interface to handle all types of 

descriptors at open time would have complicated an otherwise simple interface. Vnode 

descriptors are created by the open system call; socket descriptors are created by the socket 

system call; fifo descriptors are created by the pipe system call; message queues are created 

using the mq_open system call. 
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Each file entry has a pointer to a data structure that contains information specific to the instance 

of the underlying object. The data structure is opaque to the routines that manipulate the file 

entry. A reference to the data structure is passed on each call to a function that implements a file 

operation. All state associated with an instance of an object must be stored in that instance’s 

data structure; the underlying objects are not permitted to manipulate the file entry themselves. 

The read and write system calls do not take an offset in the file as an argument. Instead, each 

read or write updates the current file offset in the file according to the number of bytes 

transferred. The offset determines the position in the file for the next read or write. The offset 

can be set directly by the lseek system call. Since more than one process may open the same file, 

and each such process needs its own offset for the file, the offset cannot be stored in the 

per-object data structure. Thus, each open system call allocates a new file entry, and the open 

file entry contains the offset. 

Some semantics associated with all file descriptors are enforced at the descriptor level, before 

the underlying system call is invoked. These semantics are maintained in a set of flags 

associated with the descriptor. For example, the flags record whether the descriptor is open for 

reading, writing, or both reading and writing. If a descriptor is marked as open for reading only, 

an attempt to write it will be caught by the descriptor code. Thus, the functions defined for 

performing reading and writing do not need to check the validity of the request; we can 

implement them knowing that they will never receive an invalid request. 

The application-visible flags are described in the next subsection. In addition to the 

application-visible flags, the flags field also has information on whether the descriptor holds a 

shared or exclusive lock on the underlying file. The locking primitives could be extended to work 

on sockets, as well as on files. However, the descriptors for a socket rarely refer to the same file 

entry. The only way for two processes to share the same socket descriptor is for a parent to share 

the descriptor with its child by forking or for one process to pass the descriptor to another in a 

message. 

Each file entry has a reference count. A single process may have multiple references to the entry 

because of calls to the dup or fcntl system calls. Also, file structures are inherited by the child 

process after a fork, so several different processes may reference the same file entry. Thus, a 

read or write by either process on the twin descriptors will advance the file offset. This semantic 

allows two processes to read the same file or to interleave output to the same file. Another 

process that has independently opened the file will refer to that file through a different file 

structure with a different file offset. This functionality was the original reason for the existence 

of the file structure; the file structure provides a place for the file offset between the descriptor 

and the underlying object. 
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Each time that a new reference is created, the reference count is incremented. When a 

descriptor is closed (in any one of three ways: (1) explicitly with a close: (2) implicitly after an 

exec because the descriptor has been marked as close-on-exec: or (3) on process exit), the 

reference count is decremented. When the reference count drops to zero, the file entry is freed. 

The close-on-exec flag is kept in the descriptor table rather than in the file entry. This flag is not 

shared among all the references to the file entry because it is an attribute of the file descriptor 

itself. The close-on-exec flag is the only piece of information that is kept in the descriptor table 

rather than being shared in the file entry. 

Management of Descriptors 

The fcntl system call manipulates the file structure. It can be used to make the following changes 

to a descriptor: 

• Duplicate a descriptor as though by a dup system call. 

• Get or set the close-on-exec flag. When a process forks, all the parent’s descriptors are 

duplicated in the child. The child process then execs a new process. Any of the child’s 

descriptors that were marked close-on-exec are closed. The remaining descriptors are available 

to the newly executed process. 

• Set the no-delay (O_NONBLOCK) flag to put the descriptor into nonblocking mode. In 

nonblocking mode, if any data are available for a read operation, or if any space is available for a 

write operation, an immediate partial read or write is done. If no data are available for a read 

operation, or if a write operation would block, the system call returns an error (EAGAIN) 

showing that the operation would block, instead of putting the process to sleep. This facility is 

not implemented for local filesystems in FreeBSD, because local-filesystem I/O is always 

expected to complete within a few milliseconds. 

• Set the synchronous (O_FSYNC) flag to force all writes to the file to be written synchronously 

to the disk. 

• Set the direct (O_DIRECT) flag to request that the kernel attempt to write the data directly 

from the user application to the disk rather than copying it via kernel buffers. 

• Set the append (O_APPEND) flag to force all writes to append data to the end of the file, 

instead of at the descriptor’s current location in the file. This feature is useful when, for example, 

multiple processes are writing to the same log file. 
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• Set the asynchronous (O_ASYNC) flag to request that the kernel watch for a change in the 

status of the descriptor, and arrange to send a signal (SIGIO) when a read or write becomes 

possible. 

• Send a signal to a process when an exception condition arises, such as when urgent data arrive 

on an interprocess-communication channel. 

• Set or get the process identifier or process-group identifier to which the two I/O-related 

signals in the previous steps should be sent. 

• Test or change the status of a lock on a range of bytes within an underlying file. Locking 

operations are described later in this section. 

The implementation of the dup system call is easy. If the process has reached its limit on open 

files, the kernel returns an error. Otherwise, the kernel scans the current process’s descriptor 

table, starting at descriptor zero, until it finds an unused entry. The kernel allocates the entry to 

point to the same file entry as does the descriptor being duplicated. The kernel then increments 

the reference count on the file entry and returns the index of the allocated descriptor-table entry. 

The fcntl system call provides a similar function, except that it specifies a descriptor from which 

to start the scan. 

Sometimes, a process wants to allocate a specific descriptor-table entry. Such a request is made 

with the dup2 system call. The process specifies the descriptor-table index into which the 

duplicated reference should be placed. The kernel implementation is the same as for dup, except 

that the scan to find a free entry is changed to close the requested entry if that entry is open and 

then to allocate the entry as before. No action is taken if the new and old descriptors are the 

same. 

The system implements getting or setting the close-on-exec flag via the fcntl system call by 

making the appropriate change to the flags field of the associated descriptor-table entry. Other 

attributes that fcntl manipulates operate on the flags in the file entry. However, the 

implementation of the various flags cannot be handled by the generic code that manages the file 

entry. Instead, the file flags must be passed through the object interface to the type-specific 

routines to do the appropriate operation on the underlying object. For example, manipulation of 

the nonblocking flag for a socket must be done by the socket layer, since only that layer knows 

whether an operation can block. 

The implementation of the ioctl system call is broken into two major levels. The upper level 

handles the system call itself. The ioctl call includes a descriptor, a command, and pointer to a 

data area. The command argument encodes what the size is of the data area for the parameters 
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and whether the parameters are input, output, or both input and output. The upper level is 

responsible for decoding the command argument, allocating a buffer, and copying in any input 

data. If a return value is to be generated and there is no input, the buffer is zeroed. Finally, the 

ioctl is dispatched through the file-entry ioctl function, along with the I/O buffer, to the 

lower-level routine that implements the requested operation. 

The lower level does the requested operation. Along with the command argument, it receives a 

pointer to the I/O buffer. The upper level has already checked for valid memory references, but 

the lower level may do more precise argument validation because it knows more about the 

expected nature of the arguments. However, it does not need to copy the arguments in or out of 

the user process. If the command is successful and produces output, the lower level places the 

results in the buffer provided by the top level. When the lower level returns, the upper level 

copies the results to the process. 

Asynchronous I/O 

Historically, UNIX systems did not have the ability to do asynchronous I/O beyond the ability to 

do background writes to the filesystem. An asynchronous I/O interface was defined by the 

POSIX.1b-1993 realtime group. Shortly after its ratification, an implementation was added to 

FreeBSD. 

An asynchronous read is started with aio_read; an asynchronous write is started with aio_write. 

The kernel builds an asynchronous I/O request structure that contains all the information 

needed to do the requested operation. If the request cannot be immediately satisfied from kernel 

buffers, the request structure is queued for processing by an asynchronous kernel-based I/O 

daemon and the system call returns. The next available asynchronous I/O daemon handles the 

request using the usual kernel synchronous I/O path. 

When the daemon finishes the I/O, the asynchronous I/O structure is marked as finished along 

with a return value or error code. The application uses the aio_error system call to poll to find if 

the I/O is complete. This call is implemented by checking the status of the asynchronous I/O 

request structure created by the kernel. If an application gets to the point where it cannot 

proceed until an I/O completes, it can use the aio_suspend system call to wait until an I/O is 

done. Here, the application is put to sleep on its asynchronous I/O request structure and is 

awakened by the asynchronous I/O daemon when the I/O completes. Alternatively, the 

application can request that a specified signal be sent when the I/O is done. 

The aio_return system call gets the return value from the asynchronous request once aio_error, 

aio_suspend, or the arrival of a completion signal has indicated that the I/O is done. FreeBSD 
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has also added the nonstandard aio_waitcomplete system call that combines the functions of 

aio_suspend and aio_return into a single operation. For either aio_return or 

aio_waitcomplete, the return information is copied out to the application from the 

asynchronous I/O request structure and the asynchronous I/O request structure is then freed. 

File-Descriptor Locking 

Early UNIX systems had no provision for locking files. Processes that needed to synchronize 

access to a file had to use a separate “lock file.” A process would try to create a lock file. If the 

creation succeeded, then the process could proceed with its update; if the creation failed, the 

process would wait and then try again. This mechanism had three drawbacks: 

1. Processes consumed CPU time by looping over attempts to create locks. 

2. Locks left lying around because of system crashes had to be removed (normally in a 

system-startup command script). 

3. Processes running as the special system-administrator user, the superuser, are always 

permitted to create files, and so were forced to use a different mechanism. 

Although it is possible to work around all these problems, the solutions are not straightforward, 

so a mechanism for locking files was added in 4.2BSD. 

The most general locking schemes allow multiple processes to update a file concurrently. Several 

of these techniques are discussed in Peterson [1983]. A simpler technique is to serialize access to 

a file with locks. For standard system applications, a mechanism that locks at the granularity of 

a file is sufficient. So, 4.2BSD and 4.3BSD provided only a fast, whole-file locking mechanism. 

The semantics of these locks include allowing locks to be inherited by child processes and 

releasing locks only on the last close of a file. 

Certain applications require the ability to lock pieces of a file. Locking facilities that support a 

byte-level granularity are well understood. Unfortunately, they are not powerful enough to be 

used by database systems that require nested hierarchical locks, but are complex enough to 

require a large and cumbersome implementation compared to the simpler whole-file locks. 

Because byte-range locks are mandated by the POSIX standard, the developers added them to 

BSD reluctantly. The semantics of byte-range locks come from the initial implementation of 

locks in System V, which included releasing all locks held by a process on a file every time a close 

system call was done on a descriptor referencing that file. The 4.2BSD whole-file locks are 

removed only on the last close. A problem with the POSIX semantics is that an application can 

lock a file, then call a library routine that opens, reads, and closes the locked file. Calling the 
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library routine will have the unexpected effect of releasing the locks held by the application. 

Another problem is that a file must be open for writing to be allowed to get an exclusive lock. A 

process that does not have permission to open a file for writing cannot get an exclusive lock on 

that file. To avoid these problems, yet remain POSIX compliant, FreeBSD provides separate 

interfaces for byte-range locks and whole-file locks. The byte-range locks follow the POSIX 

semantics; the whole-file locks follow the traditional 4.2BSD semantics. The two types of locks 

can be used concurrently; they will serialize against each other properly. 

Both whole-file locks and byte-range locks use the same implementation; the whole-file locks 

are implemented as a range lock over an entire file. The kernel handles the other differing 

semantics between the two implementations by having the byte-range locks be applied to 

processes, whereas the whole-file locks are applied to descriptors. Because descriptors are 

shared with child processes, the whole-file locks are inherited. Because the child process gets its 

own process structure, the byte-range locks are not inherited. The last-close versus every-close 

semantics are a small bit of special-case code in the close routine that checks whether the 

underlying object is a process or a descriptor. It releases locks on every call if the lock is 

associated with a process and only when the reference count drops to zero if the lock is 

associated with a descriptor. 

Locking schemes can be classified according to the extent that they are enforced. A scheme in 

which locks are enforced for every process without choice is said to use mandatory locks, 

whereas a scheme in which locks are enforced for only those processes that request them is said 

to use advisory locks. Clearly, advisory locks are effective only when all programs accessing a 

file use the locking scheme. With mandatory locks, there must be some override policy 

implemented in the kernel. With advisory locks, the policy is left to the user programs. In the 

FreeBSD system, programs with superuser privilege are allowed to override any protection 

scheme. Because many of the programs that need to use locks must also run as the superuser, 

4.2BSD implemented advisory locks rather than creating an additional protection scheme that 

was inconsistent with the UNIX philosophy or that could not be used by privileged programs. 

The use of advisory locks carried over to the POSIX specification of byte-range locks and is 

retained in FreeBSD. 

The FreeBSD file-locking facilities allow cooperating programs to apply advisory shared or 

exclusive locks on ranges of bytes within a file. Only one process may have an exclusive lock on a 

byte range, whereas multiple shared locks may be present. A shared and an exclusive lock 

cannot be present on a byte range at the same time. If any lock is requested when another 

process holds an exclusive lock, or an exclusive lock is requested when another process holds 

any lock, the lock request will block until the lock can be obtained. Because shared and exclusive 
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locks are only advisory, even if a process has obtained a lock on a file, another process may 

access the file if it ignores the locking mechanism. 

So that there are no races between creating and locking a file, a lock can be requested as part of 

opening a file. Once a process has opened a file, it can manipulate locks without needing to close 

and reopen the file. This feature is useful, for example, when a process wishes to apply a shared 

lock, to read information, to determine whether an update is required, and then to apply an 

exclusive lock and update the file. 

A request for a lock will cause a process to block if the lock cannot be obtained immediately. In 

certain instances, this blocking is unsatisfactory. For example, a process that wants only to 

check whether a lock is present would require a separate mechanism to find out this information. 

Consequently, a process can specify that its locking request should return with an error if a lock 

cannot be obtained immediately. Being able to request a lock conditionally is useful to daemon 

processes that wish to service a spooling area. If the first instance of the daemon locks the 

directory where spooling takes place, later daemon processes can easily check to see whether an 

active daemon exists. Since locks exist only while the locking processes exist, locks can never be 

left active after the processes exit or if the system crashes. 

The implementation of locks is done on a per-filesystem basis. The implementation for the local 

filesystems is described in Section 9.5. A network-based filesystem has to coordinate locks with 

a central lock manager that is usually located on the server exporting the filesystem. Client lock 

requests must be sent to the lock manager. The lock manager arbitrates among lock requests 

from processes running on its server and from the various clients to which it is exporting the 

filesystem. The most complex operation for the lock manager is recovering lock state when a 

client or server is rebooted or becomes partitioned from the rest of the network. The FreeBSD 

network-based lock manager is described in Chapter 11. 

Multiplexing I/O on Descriptors 

A process sometimes wants to handle I/O on more than one descriptor. For example, consider a 

remote login program that wants to read data from the keyboard and to send them through a 

socket to a remote machine. This program also wants to read data from the socket connected to 

the remote end and to write them to the screen. If a process makes a read request when there 

are no data available, it is normally blocked in the kernel until the data become available. In our 

example, blocking is unacceptable. If the process reads from the keyboard and blocks, it will be 

unable to read data from the remote end that are destined for the screen. The user does not 

know what to type until more data arrive from the remote end, so the session deadlocks. 

Conversely, if the process reads from the remote end when there are no data for the screen, it 
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will block and will be unable to read from the terminal. Again, deadlock would occur if the 

remote end were waiting for input before sending any data. There is an analogous set of 

problems to blocking on the writes to the screen or to the remote end. If a user has stopped 

output to his screen by typing the stop character, the write will block until the user types the 

start character. In the meantime, the process cannot read from the keyboard to find out that the 

user wants to flush the output. 

FreeBSD provides four mechanisms that permit multiplexing I/O on descriptors: polling I/O, 

kernel-event polling, nonblocking I/O, and signal-driven I/O. Polling is done with the 

select or poll system call, described in the next subsection. Kernel-event polling is done with the 

kevent system call, described in the following subsection. Operations on nonblocking 

descriptors finish immediately, partially complete an input or output operation and return a 

partial count, or return an error that shows that the operation could not be completed at all. 

Descriptors that have signalling enabled cause the associated process or process group to be 

notified when the I/O state of the descriptor changes. 

There are four possible alternatives that avoid the blocking problem: 

1. Set all the descriptors into nonblocking mode. The process can then try operations on each 

descriptor in turn to find out which descriptors are ready to perform I/O. The problem with this 

busy-waiting approach is that the process must run continuously to discover whether there is 

any I/O to be done, wasting CPU cycles. 

2. Enable all descriptors of interest to signal when I/O can be done. The process can then wait 

for a signal to discover when it is possible to perform I/O. The drawback to this approach is that 

signals are expensive to catch. Hence, signal-driven I/O is impractical for applications that do 

moderate to large amounts of I/O. 

3. Have the system provide a method for asking which descriptors are capable of performing 

I/O. If none of the requested descriptors are ready, the system can put the process to sleep until 

a descriptor becomes ready. This approach avoids the problem of deadlock because the process 

will be awakened whenever it is possible to perform I/O and will be told which descriptor is 

ready. The drawback is that the process must do two system calls per operation: one to poll for 

the descriptor that is ready to perform I/O and another to perform the operation itself. 

4. Have the process register with the system all the events including I/O on descriptors that it is 

interested in tracking. Have the system provide a system call for asking which events have 

occurred. If none of the registered events have occurred, the system can put the process to sleep 

until a registered event occurs. When the system call returns, the process is given a list of the 

events that have occurred [Accetta et al., 1986; Lemon, 2001]. 
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The first approach is available in FreeBSD as nonblocking I/O. It typically is used for output 

descriptors because the operation typically will not block. Rather than doing a select, poll, or 

kevent, which nearly always succeeds, followed immediately by a write, it is more efficient to try 

the write and revert to using select, poll, or kevent only during periods when the write returns a 

blocking error. 

The second approach is available in FreeBSD as signal-driven I/O. It typically is used for rare 

events, such as the arrival of out-of-band data on a socket. For such rare events, the cost of 

handling an occasional signal is lower than that of checking constantly with select, poll, or 

kevent to find out whether there are any pending data. 

The third approach is available in FreeBSD via the select or poll system call. Although less 

efficient than the fourth approach, it is a more widely available interface. 

The fourth approach is available in FreeBSD via the kevent system call. In addition to tracking 

the status of multiple descriptors, it handles other notifications such as file modification 

monitoring, signals, asynchronous I/O events (AIO), child process state change monitoring and 

timers that support nanosecond resolution. Like select and poll, kqueue can timeout when no 

I/O is possible. An interface similar in functionality to kevent is available in Linux as epoll and 

in Windows and Solaris as completion ports. 

The select and poll interfaces provide the same information. They differ only in their 

programming interface. The select interface was first developed in 4.2BSD with the introduction 

of socket-based interprocess communication. The poll interface was introduced in System V 

several years later with its competing STREAMS-based interprocess communication. Although 

STREAMS has fallen into disuse, the poll interface has proven popular enough to be retained. 

The FreeBSD kernel supports both interfaces. 

The select system call is of the form 

Click here to view code image 

int error = select( 

    int numfds, 

    fd_set *readfds, 

    fd_set *writefds, 

    fd_set *exceptfds, 

    struct timeval *timeout); 

It takes three masks of descriptors to be monitored, corresponding to interest in reading, 

writing, and exceptional conditions. In addition, it takes a timeout value for returning from 
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select if none of the requested descriptors becomes ready before a specified amount of time has 

elapsed. The select call returns the same three masks of descriptors after modifying them to 

show the descriptors that are able to perform reading, to perform writing, or that have an 

exceptional condition. If none of the descriptors has become ready in the timeout interval, select 

returns showing that no descriptors are ready for I/O. If a timeout value is given and a 

descriptor becomes ready before the specified timeout period, the time that select spends 

waiting for I/O to become ready is subtracted from the time given. 

The poll interface copies in an array of pollfd structures, one array entry for each descriptor of 

interest. The pollfd structure contains three elements: 

• The file descriptor to poll 

• A set of flags describing the information being sought 

• A set of flags set by the kernel showing the information that was found 

The flags specify availability of normal or out-of-band data for reading and the availability of 

buffer space for normal or out-of-band data writing. The return flags can also specify that an 

error has occurred on the descriptor, that the descriptor has been disconnected, or that the 

descriptor is not open. These error conditions are raised by the select call by indicating that the 

descriptor with the error is ready to perform I/O. When the application attempts to perform the 

I/O, the error is returned by the read or write system call. Like the select call, the poll call takes 

a timeout value to specify the maximum time to wait. If none of the requested descriptors 

becomes ready before the specified amount of time has elapsed, the poll call returns. If a 

timeout value is given and a descriptor becomes ready before the specified timeout period, the 

time that poll spends waiting for I/O to become ready is subtracted from the time given. 

Implementation of Select 

The implementation of select is divided into a generic top layer and many device-or 

socket-specific bottom pieces. At the top level, select or poll decodes the user’s request and then 

calls the appropriate lower-level poll functions. The select and poll system calls have different 

top layers to determine the sets of descriptors to be polled but use all the same device- and 

socket-specific bottom pieces. Only the select top layer will be described here. The poll top layer 

is implemented in a completely analogous way. 

The data structures used to support the select and poll system calls are shown in Figure 7.3. A 

selfd structure tracks each request. Across the top of Figure 7.3 is the list of threads waiting for 

I/O to become available on a set of descriptors. Each of these threads has a seltd structure that 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03


 

386 

heads the list of selfd structures tracking the descriptors of interest to the thread. This list is 

protected by the mutex in the seltd structure. Down the lefthand side of Figure 7.3 is the set of 

sockets and devices that have threads waiting for I/O to become possible. Each of these sockets 

and devices has a selinfo structure that heads the list of selfd structures tracking the threads 

interested in the socket or device. This list is protected by a pool mutex allocated the first time 

an entry is referenced from the selinfo structure. 
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Figure 7.3 Select data structures. 

The select top level takes the following steps: 
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1. Copies and validates the descriptor masks for read, write, and exceptional conditions. 

Performing validation requires checking that each requested descriptor is currently open by the 

process. 

2. For each descriptor with a bit set in at least one select mask, calls the poll routine for the 

socket or device. If the descriptor is not able to perform any of the requested I/O operations, the 

poll routine records that the thread wants to perform I/O by allocating a selfd structure and 

linking it into the requesting thread’s seltd structure and the associated socket or device selinfo 

structure as shown in Figure 7.3. When I/O becomes possible for the descriptor—usually as a 

result of an interrupt—a notification will be issued for all the threads selecting on it by 

traversing the list of selfd structures headed by the selinfo structure for the socket or device and 

awakening each of the associated threads. 

3. Because the selection process may take a long time, the kernel does not want to block out I/O 

during the time it takes to poll all the requested descriptors. Instead, the kernel arranges to 

detect the occurrence of I/O that may affect the status of the descriptors being polled. When 

such I/O occurs, the associated socket or device traverses the list of setfd structures, headed by 

its selinfo structure, setting the PENDING flag in the flags field of the associated thread’s seltd 

structure and marks the associated setfd structure as ready to do I/O. If the top-level select code 

finds that the PENDING flag for the thread has been set while it has been performing the polling, 

and it has not found any descriptors that are ready to perform an operation, then the top level 

knows that the polling results are incomplete. It traverses the list of selfd structures headed by 

its seltd structure to find and return the available descriptors. 

4. If no descriptors are ready and the select specified a timeout, the kernel posts a timeout for 

the requested amount of time. The thread blocks on the st_wait condition variable in its seltd 

structure. Normally, a descriptor will become ready and the thread will be notified by 

selwakeup(). When the thread is awakened, it traverses the list of selfd structures headed by its 

seltd structure and returns the available descriptors. If none of the descriptors become ready 

before the timer expires, the thread returns with a timed-out error and an empty list of available 

descriptors. If a timeout value is given and a descriptor becomes ready before the specified 

timeout period, the time that select spent waiting for I/O to become ready is subtracted from the 

time given. 

Kqueues and Kevents 

The select and poll interfaces are limited because they are unable to handle other potentially 

interesting activities in which an application might want to engage such as signals, filesystem 

changes, and asynchronous I/O completions. Further, the select and poll system calls do not 
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scale well with increasing numbers of descriptors. Their inefficiency comes from being stateless. 

The kernel does not keep any record of the application’s interest between system calls and must 

recalculate it and build up the associated data structures every time that select or poll is called. 

In addition, the application must scan the entire list of events that it passed to the kernel to 

determine which events occurred. 

The kevent interface is provided to mitigate both of these problems. Kevent is a generic 

notification interface that allows an application to select from a wide range of event sources, and 

be notified of activity on these sources in a scalable and efficient manner. The interface may be 

extended to cover future event sources without changing the application interface. 

An application registers the events in which it is interested. When one or more of these events 

occur, the kernel returns a list containing just the occurring events to the application. Thus, the 

kernel need only build the set of event notification structures once and the application is notified 

of just those events that have occurred. The cost of the interface is a function of the number of 

events that occur rather than the number of events being checked. The savings are most evident 

for applications checking for many events that happen only infrequently. 

The types of events that can be monitored using the kevent system are shown in Table 7.2. In 

addition to the events that can be checked by the select and poll interfaces, kevent can also track 

changes to files including being renamed, deleted, or having their attributes updated. It also 

subsumes the aio_error and aio_suspend system calls to monitor and wait for an asynchronous 

I/O. The process still needs to use aio_return system call to get the I/O completion status and 

to free the kernel data structures associated with the I/O once the kevent system call has 

notified it that the I/O has completed. It can track the posting of signals to a process and when 

the process forks, execs, or exits. It can create and monitor timers and provides event 

monitoring defined and triggered by user-level applications. 

 

Table 7.2 Events that may be monitored with kevents 
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A process uses the kqueue system call to get a descriptor to use as a handle on which to register 

the events that it wishes to track. This descriptor is then used to get notification of the registered 

events as they occur. Additional events may be added and previously requested events deleted as 

the process runs. 

Figure 7.4 shows the data structures set up when a kqueue is created. Each event in which an 

application registers interest is recorded using a knote. Each event has an identifier such as a 

descriptor number for a file or socket descriptor-based event, a process identifier for a 

process-based event, a signal number for a signal-based event, or an application-defined 

identifier for a timer- or user-based event. Event registration also includes a filter describing the 

action of interest such as reading or writing as well as further refinements such as a minimum 

read/write size, whether this is a one-time request or should be reported until canceled. The 

registration maps the filter to a filter function that will be called each time an event occurs for 

that identifier to decide whether it merits being reported. 

 

Figure 7.4 The data structures supporting an event queue. 
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The kqueue structure links the knotes it is tracking into one of two lists: an array indexed by 

descriptor for descriptor-identified events or a table hashed by the identifier for all other types 

of events. The knote structure is also linked into a knote-list for the event-generating entity that 

it is monitoring. 

When an event occurs, the event-generating entity traverses its knote list invoking the filter 

function for each knote on the list to let it know that an event has occurred. The filter function 

decides if the event merits reporting. For example, a filter concerned with reading will not care 

that buffer space has become available and return zero to indicate that it is not interested. But if 

enough data has arrived to exceed the specified read threshold, it will return nonzero to indicate 

that it should be added to its kqueue pending list. 

Time will pass before the application next calls or awakens from a sleep in the kevent system call 

to collect any pending events. During this time, the event may no longer be relevant. For 

example, the buffering space for which a process has been waiting may have been used up by the 

time it goes to collect the event. So, as the kevent system call walks the list of pending events, it 

calls the associated filter function to verify that the event is still relevant. If it is still relevant, it 

is copied out to the application along with any filter-function-specific information such as 

number of bytes available to be read. If it is not relevant, it is dropped from the pending list. By 

validating the data immediately before returning it, the kevent system call will never return stale 

results. To further ensure valid results, any time that a resource is reclaimed (such as a 

descriptor when it is last closed or a process when it exits), any knotes associated with it are 

removed from all three lists on which they may reside and are reclaimed. 

In Figure 7.4, kqueue A is tracking three events: status of a process identified by its 

process-identifier (referenced from the kqueue hash table), data availability of a socket 

identified by its descriptor number (referenced from the kqueue descriptor table), and buffer 

space availability for the same socket. Kqueue B is tracking buffer space availability on the same 

socket as Kqueue A. Data has become available for reading at the socket and a status change has 

happened to the process so the two knotes associated with these events are on the pending list 

for kqueue A. 

Movement of Data Inside the Kernel 

Within the kernel, I/O data are described by an array of vectors. Each I/O vector or iovec has 

a base address and a length. The I/O vectors are identical to the I/O vectors used by the readv 

and writev system calls. 
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The kernel maintains another structure, called a uio structure, that holds additional 

information about the I/O operation. A sample uio structure is shown in Figure 7.5; it contains 

the following: 

• A pointer to the iovec array 

• The number of elements in the iovec array 

• The file offset at which the operation should start 

• The sum of the lengths of the I/O vectors 

• A flag showing whether the source and destination are both within the kernel or whether the 

source and destination are split between the user and the kernel 

• A flag showing whether the data are being copied from the uio structure to the kernel 

(UIO_WRITE) or from the kernel to the uio structure (UIO_READ) 

• A pointer to the thread whose data area is described by the uio structure (the pointer is NULL 

if the uio structure describes an area within the kernel) 

 

Figure 7.5 An uio structure. 

All I/O within the kernel is described with iovec and uio structures. System calls such as read 

and write that are not passed an iovec create a uio to describe their arguments; this uio 

structure is passed to the lower levels of the kernel to specify the parameters of an I/O operation. 
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Eventually, the uio structure reaches the part of the kernel responsible for moving the data to or 

from the process address space: the filesystem, the network, or a device driver. In general, these 

parts of the kernel do not interpret uio structures directly. Instead, they arrange a kernel buffer 

to hold the data and then use uiomove() to copy the data to or from the buffer or buffers 

described by the uio structure. The uiomove() routine is called with a pointer to a kernel data 

area, a data count, and a uio structure. As it moves data, it updates the counters and pointers of 

the iovec and uio structures by a corresponding amount. If the kernel buffer is not as large as the 

areas described by the uio structure, the uio structure will point to the part of the process 

address space just beyond the location completed most recently. Thus, while servicing a request, 

the kernel may call uiomove() multiple times, each time giving a pointer to a new kernel buffer 

for the next block of data. 

Character device drivers that do not copy data from the process generally do not interpret the 

uio structure. Instead, there is one low-level kernel routine that arranges a direct transfer to or 

from the address space of the process. Here, a separate I/O operation is done for each iovec 

element, calling back to the driver with one piece at a time. 

7.2 Local Interprocess Communication 

The socket interfaces are not the only APIs that provide interprocess communication. 

Applications that wish to divide up work on a single host use semaphores, messages queues, and 

shared memory to communicate between their processes. Each type of local IPC has different 

performance characteristics and provides a different form of communication. The local IPC 

mechanisms originally supported in FreeBSD are derived from System V, as described in Bach 

[1986]. For this reason, they are often referred to as System V semaphores, mutexes, and shared 

memory. While most applications use the socket-based IPC mechanisms, a small but pertinent 

subset of applications make use of the System V IPC mechanisms, especially semaphores and 

shared memory. For example, X11 uses System V shared-memory segments between the X 

server and applications to avoid sending large images (and especially, continuously updated 

images) over sockets. PosgreSQL uses System V semaphores for synchronisation. The ipcs 

command lists open System V IPC objects and can be used to discover the extent of their use on 

a FreeBSD system. 

The biggest drawback of the System V IPC is that it introduced a new, flat, number-oriented 

object namespace but with filesystem-like permissions. As a result of it being flat, applications 

cannot use directories to reserve portions of the namespace safely, and weird hash functions are 

used to convert useful string names into possibly colliding numbers. Unlike other IPC objects, 

no file descriptor is associated with these objects. Some implementations (notably Linux) store 
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these objects in special filesystems below /dev. This implementation is better than the System V 

approach as it makes jail-like virtualisation possible. 

As POSIX added specifications for IPC mechanisms, they were implemented in FreeBSD: shared 

memory in FreeBSD 4.3, semaphores in FreeBSD 5.0, and message queues in FreeBSD 7.0. The 

POSIX IPC manages to both improve on System V by building it using file descriptors while 

simultaneously repeating its mistake of having a flat namespace. POSIX shared-memory objects 

and semaphores are seeing increasing use as replacements for System V IPC objects as they 

work well with both multi-threaded synchronisation and multi-process synchronisation. As 

described in Section 5.8, Capsicum uses a version of the POSIX shared-memory interface to 

create a file descriptor associated with an anonymously backed vm_object that can then be 

shared using file descriptor passing. Prior to this addition, the only mechanism for sharing 

memory was to rendezvous using the filesystem namespace and mmap or to agree on a name to 

use in the System V shared-memory namespace. 

Every type of IPC must make it possible for independently executing processes to rendezvous 

and find the resources they are sharing. This piece of information must be known to all of them 

and must be unique enough that no other process could come across the same information by 

accident. Historically, UNIX used the filesystem namespace for rendezvous. It has the benefit of 

being hierarchical with permissions to provide fine-grained access control. Applications that 

wanted to share memory would pick a common file that each would map into its address space. 

The System V IPC introduced a new key-based namespace. A key is a long integer that is treated 

by the cooperating processes as an opaque piece of data, meaning that they do not attempt to 

decipher or attribute any meaning to it. The library routine, ftok(), is used to generate a key 

from a pathname. As long as each process uses the same pathname, they are guaranteed to get 

the same key. 

All of the local System V IPC subsystems were designed and implemented to be used in a similar 

way. A summary of all the user-level System V APIs is given in Table 7.3, and an excellent 

introduction to using them can be found in Stevens [1999]. Once a process has a key, it uses it to 

create or retrieve the relevant object, using a subsystem specific get call, which is similar to a file 

open or creat. To create an object, the IPC_CREAT flag is passed as an argument to the get call. 

All get calls return an integer to be used in all subsequent local IPC system calls. Just like a file 

descriptor, this integer is used to identify the object that the process is manipulating. 
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Table 7.3 System V local IPC, user-level APIs. 

Each System V IPC subsystem has its own way of operating on the underlying object, and these 

functions are described in the following sections. All control operations, such as retrieving 

statistics or removing a previously created object, are handled by a subsystem-specific ctl 

routine. 

Semaphores 

A semaphore is the smallest atom of IPC available to a set of cooperating processes. Each 

semaphore contains a short integer that can be increased or decreased. A process that attempts 

to reduce the value of the semaphore below 0 will either be blocked or, if called in a nonblocking 

mode, will return immediately with an errno value of EAGAIN. The concept of semaphores and 

how they are used in multiprocess programs was originally proposed in Dijkstra & Genuys 

[1968]. 

Unlike the semaphores described in most computer science textbooks, semaphores in FreeBSD 

are grouped into arrays so that the code in the kernel can protect the process using them from 

causing a deadlock. Deadlocks were discussed in terms of locking within the kernel in Section 

4.3 but are discussed here are well. 

With System V semaphores, the deadlock occurs between two user-level processes rather than 

between kernel threads. A deadlock occurs between two processes, A and B, when they both 

attempt to take two semaphores, S1 and S2. If process A acquires S1 and process B acquires S2, 

then a deadlock occurs when process A tries to acquire S2 and process B tries to acquire S1 

because there is no way for either process to give up the semaphore that the other one needs to 

make progress. It is always important when using semaphores that all cooperating processes 

acquire and release them in the same order to avoid this situation. 
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The implementation of semaphores in System V protected against deadlock by forcing the users 

of the API to group their semaphores into arrays and to perform semaphore operations as a 

sequence of events on the array. If the sequence submitted in the call could cause a deadlock, 

then an error was returned. The section on semaphores in Bach [1986] points out that this 

complexity should never have been placed in the kernel, but in order to adhere to the previously 

defined API, the same complexity exists in FreeBSD as well. At some point in the future, the 

kernel should provide a simpler form of semaphores to replace the current implementation. 

Creating and attaching to a semaphore is done with the System V semget or the POSIX 

sem_open system call. Although semaphores were designed to look like file descriptors, they are 

not stored in the file descriptor table. All the semaphores in the system are contained in a single 

table in the kernel, whose size and shape are described by several tunable parameters. This table 

is protected by a global semaphore lock so that multiple processes are protected from partially 

creating entries in it. This lock is only taken when creating or attaching to a semaphore and is 

not a bottleneck in the actual use of existing semaphores. 

Once a process has created a semaphore, or attached to a preexisting one, it calls the System V 

semop system call or the POSIX sem_post and sem_wait system calls to perform operations on 

it. The operations on the semaphore are passed to the system call as an array. Each element of 

the array includes the semaphore number to operate on (the index into the array returned by the 

previous System V semget or the POSIX sem_open call), the operation to perform, and a set of 

flags. The operation is a misnomer because it is not a command but simply a number. If the 

number is positive, then the corresponding semaphore’s value is increased by that amount. If 

the operation is 0 and the semaphore’s value is not 0, then either the process is put to sleep until 

the value is 0 or, if the IPC_NOWAIT flag was passed, EAGAIN is returned to the caller. When 

the operation is negative, there are several possible outcomes. If the value of the semaphore was 

greater than the absolute value of the operation, then the value of the operation is subtracted 

from the semaphore and the call returns. If subtracting the absolute value of the operation from 

the semaphore would force its value to be less than zero, then the process is put to sleep, unless 

the IPC_NOWAIT flag was passed. Here, EAGAIN is returned to the caller. 

All of this logic is implemented in the System V semop system call or the POSIX sem_post and 

sem_wait system calls. The call first does some rudimentary checks to make sure that it has a 

chance of succeeding, including making sure there is enough memory to execute all the 

operations in one pass and that the calling process has the proper permissions to access the 

semaphore. Each semaphore ID returned to a process by the kernel has its own mutex to protect 

against multiple processes modifying the same semaphore at the same time. The routine locks 

this mutex and then attempts to perform all the operations passed to it in the array. It walks the 

array and attempts to perform each operation in order. There is the potential for this call to 
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sleep before it completes all its work. If this situation occurs, then the code rolls back all its work 

before it goes to sleep. When it reawakens, the routine starts at the beginning of the array and 

attempts to perform the operations again. Either the routine will complete all its work, return 

with an appropriate error, or go back to sleep. Rolling back all the work is necessary to 

guarantee the idempotence of the routine. Either all the work is done or none of it is. 

Message Queues 

A message queue facilitates the sending and receiving of typed, arbitrary-length messages. The 

sending process adds messages at one end of the queue, and the receiving process removes 

messages from the other. The queue’s size and other characteristics are controlled by a set of 

tunable kernel parameters. Message queues are inherently half duplex, meaning that one 

process is always the sender and the other is the receiver, but there are ways to use them as a 

form of full duplex communication, as we will see later. 

The messages passed between the endpoints contain a type and a data area, as shown in Figure 

7.6. This data structure should not be confused with the mbufs that are used by the networking 

code (see Section 12.3). MSGMNB is a tunable kernel parameter that defines the size of a 

message queue, and therefore the largest possible message that can be sent between two 

processes, and is set to 2048 by default. 

 

Figure 7.6 Message data structure. 

Message queues can be used to implement either a pure first-in first-out queue, where all 

messages are delivered in the order in which they were sent, or a priority queue, where messages 

with a certain type can be retrieved ahead of others. This ability is provided by the type field of 

the message structure. 

When a process sends a message, it invokes the System V msgsnd system call or the POSIX 

mq_send system call, which checks all the arguments in the call for correctness and then 

attempts to get enough resources to place the message into the queue. If there aren’t enough 

resources, and the caller did not pass the IPC_NOWAIT flag, then the caller is put to sleep until 

such time as resources are available. The resources come from a pool of memory that is 

allocated by the kernel at boot time. The pool is arranged in fixed segments whose length is 
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defined by MSGSSZ. The memory pool is managed as a large array so the segments can be 

located efficiently. Once the kernel has enough resources, it copies the message into the 

segments in the array and updates the rest of the data structures related to this queue. 

The kernel data structures that control the message queues in the system are protected by a 

single lock which is taken and held by both the System V msgsnd and msgrcv system calls or the 

POSIX mq_receive and mq_send system calls for the duration of their execution. The use of a 

single lock for both routines protects the queue from being read and written simultaneously, 

possibly causing data corruption. It is also a performance bottleneck because it means that all 

other message queues are blocked when any one of them is being used. 

To retrieve a message from the queue, a process calls the System V msgrcv system call or the 

POSIX mq_receive system call. If the processes are using the queue as a simple fifo, then the 

receiver passes a 0 in the msgtype argument to this call to retrieve the first available message in 

the queue. To retrieve the first message in the queue of a particular type, a positive integer is 

passed. Processes implement a priority queue by using the type as the priority of the message. 

To implement a full duplex channel, each process picks a different type—say, 1 and 2. Messages 

of type 1 are from process A, and messages of type 2 are from process B. Process A sends 

messages with type 1 and receives messages with type 2, while process B does exactly the 

opposite. 

After acquiring the message queue mutex, the receive routine finds the correct queue from 

which to retrieve data, and if there is an appropriate message, it returns data from the segments 

to the caller. If no data are available and the caller specified the IPC_NOWAIT flag, then the call 

returns immediately; otherwise, the calling process is put to sleep until there are data to be 

returned. When a message is retrieved from a message queue, its data are deallocated after they 

have been delivered to the receiving process. 

Shared Memory 

Shared memory is used when two or more processes need to communicate large amounts of 

data between them. Each process stores data in the shared memory just as it would within its 

own, per-process, memory. Care must be taken to serialize access to the shared memory so that 

processes do not write over each other. Hence, shared memory is often used with semaphores to 

synchronize read and write access. 

Processes that are using shared memory are really sharing virtual memory (see Chapter 6). 

When a process creates a segment of shared memory by calling the System V shmget system call 

or the POSIX shm_open system call, the kernel allocates a set of virtual memory pages and 
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places a pointer to them in the shared memory handle that is then returned to the calling 

process. To actually use the shared memory within a process, the System V interface must call 

the shmat system call, which attaches the virtual memory pages into the calling process. The 

attach routine uses the shared memory handle passed to it as an argument to find the relevant 

pages and returns an appropriate virtual address to the caller. Once this call completes, the 

process can then access the memory pointed to by the returned address as it would any other 

kind of memory. The POSIX interface creates and attaches the memory in its shm_open system 

call. 

When the process is through using the shared memory, it detaches from it using the System V 

shmdt system call or the POSIX shm_unlink system call. This routine does not free the 

associated memory, because other processes may be using it, but it removes the virtual memory 

mapping from the calling process. 

The shared memory subsystem depends on the virtual memory system to do most of the real 

work (mapping pages, handling dirty pages, etc.), so its implementation is relatively simple. 

7.3 The Virtual-Filesystem Interface 

In early UNIX systems, the file entries directly referenced the local filesystem inode. An inode 

is a data structure that describes the contents of a file; it is more fully described in Section 9.2. 

This approach worked fine when there was a single filesystem implementation. However, with 

the advent of multiple filesystem types, the architecture had to be generalized. The new 

architecture had to support importing of filesystems from other machines, including those that 

were running different operating systems. 

One alternative would have been to connect the multiple filesystems into the system as different 

file types. However, this approach would have required massive restructuring of the internal 

workings of the system, because current directories, references to executables, and several other 

interfaces used inodes instead of file entries as their point of reference. Thus, it was easier and 

more logical to add a new object-oriented layer to the system below the file entry and above the 

inode. This new layer was first implemented by Sun Microsystems, which called it the 

virtual-node, or vnode, layer. Interfaces in the system that had referred previously to inodes 

were changed to reference generic vnodes. A vnode used by a local filesystem would refer to an 

inode. A vnode used by a remote filesystem would refer to a protocol control block that 

described the location and naming information necessary to access the remote file. 
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Contents of a Vnode 

The vnode is an extensible object-oriented interface. It contains information that is generically 

useful independent of the underlying filesystem object that it represents. The information stored 

in a vnode includes the following: 

• Flags are used for identifying generic attributes. An example of a generic attribute is a flag to 

show that a vnode represents an object that is the root of a filesystem. 

• The various reference counts include the number of file entries that are open for reading 

and/or writing that reference the vnode, the number of file entries that are open for writing that 

reference the vnode, and the number of pages and buffers that are associated with the vnode. 

• A pointer to the mount structure describes the filesystem that contains the object represented 

by the vnode. 

• Various information to perform file read-ahead. 

• A reference to the vm_object associated with the vnode. 

• A reference to state about special devices, sockets, and fifos. 

• A mutex to protect the flags and counters within the vnode. 

• A lock-manager lock to protect parts of the vnode that may change while it has an I/O 

operation in progress. 

• Fields used by the name cache to track the names associated with the vnode. 

• A pointer to the set of vnode operations defined for the object. These operations are described 

in the next subsection. 

• A pointer to private information needed for the underlying object. For the local filesystem, this 

pointer will reference an inode; for NFS, it will reference an nfsnode. 

• The type of the underlying object (e.g., regular file, directory, character device, etc.) is given. 

The type information is not strictly necessary, since a vnode client could always call a vnode 

operation to get the type of the underlying object. However, because the type often is needed, 

the type of underlying objects does not change, and it takes time to call through the vnode 

interface, the object type is cached in the vnode. 
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• There are clean and dirty buffers associated with the vnode. Each valid buffer in the system is 

identified by its associated vnode and the starting offset of its data within the object that the 

vnode represents. All the buffers that have been modified but have not yet been written back are 

stored on their vnode dirty-buffer list. All buffers that have not been modified or have been 

written back since they were last modified are stored on their vnode clean list. Having all the 

dirty buffers for a vnode grouped onto a single list makes the cost of doing an fsync system call 

to flush all the dirty blocks associated with a file proportional to the amount of dirty data. In 

some UNIX systems, the cost is proportional to the smaller of the size of the file or the size of the 

buffer pool. The list of clean buffers is used to free buffers when a file is deleted. Since the file 

will never be read again, the kernel can immediately cancel any pending I/O on its dirty buffers, 

then reclaim all its clean and dirty buffers and place them at the head of the buffer free list, 

ready for immediate reuse. 

• A count is kept of the number of buffer write operations in progress. To speed the flushing of 

dirty data, the kernel does this operation by doing asynchronous writes on all the dirty buffers at 

once. For local filesystems, this simultaneous push causes all the buffers to be put into the disk 

queue so that they can be sorted into an optimal order to minimize seeking. For remote 

filesystems, this simultaneous push causes all the data to be presented to the network at once so 

that it can maximize their throughput. System calls that cannot return until the data are on 

stable store (such as fsync) can sleep on the count of pending output operations, waiting for the 

count to reach zero. 

The position of vnodes within the system was shown in Figure 7.1. The vnode itself is connected 

into several other structures within the kernel, as shown in Figure 7.7. Each mounted filesystem 

within the kernel is represented by a generic mount structure that includes a pointer to a 

filesystem-specific control block. All the vnodes associated with a specific mount point are 

linked together on a list headed by this generic mount structure. When the filesystem is being 

unmounted, the kernel needs to traverse this list to release all the vnodes associated with the 

mount point. 
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Figure 7.7 Vnode linkages. Key: D—dirty buffer; C—clean buffer. 

The subset of vnodes that are actively being used are also linked together on a list headed by the 

generic mount structure. Thus, when it is doing a sync system call for a filesystem, the kernel 

traverses this list of active vnodes to visit just the subset of the filesystem’s vnodes that may 

need to have data written to disk. 

Also shown in the figure are the lists of clean and dirty buffers associated with each vnode. 

Finally, there is a free list that links together all the vnodes in the system that are inactive (not 

currently referenced). The free list is used when a filesystem needs to allocate a new vnode so 

that the latter can open a new file; see Section 7.4. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4


 

403 

Vnode Operations 

Vnodes are designed as an object-oriented interface. Thus, the kernel manipulates them by 

passing requests to the underlying object through a set of defined operations. Because of the 

many varied filesystems that are supported in FreeBSD, the set of operations defined for vnodes 

is both large and extensible. Unlike the original Sun Microsystems vnode implementation, the 

one in FreeBSD allows dynamic addition of vnode operations either at system boot time or when 

a new filesystem is dynamically loaded into the kernel. As part of activating a filesystem, it 

registers the set of vnode operations that it is able to support. The kernel then builds a table that 

lists the union of all operations supported by any filesystem. From that table, it builds an 

operations vector for each filesystem. Supported operations are filled in with the entry point 

registered by the filesystem. Filesystems may opt to have unsupported operations filled in with 

either a default routine (typically a routine to bypass the operation to the next lower layer; see 

Section 7.5) or a routine that returns the characteristic error “operation not supported” 

[Heidemann & Popek, 1994]. 

In 4.3BSD, the local filesystem code provided both the semantics of the hierarchical filesystem 

naming and the details of the on-disk storage management. These functions are only loosely 

related. To enable experimentation with other disk-storage techniques without having to 

reproduce the entire naming semantics, 4.4BSD split the naming and storage code into separate 

modules. The vnode-level operations define a set of hierarchical filesystem operations. Below 

the naming layer are a separate set of operations defined for storage of variable-size objects 

using a flat namespace. About 60 percent of the traditional filesystem code became the 

namespace management, and the remaining 40 percent became the code implementing the 

on-disk file storage. The 4.4BSD system used this division to support two distinct disk layouts: 

the traditional fast filesystem and a log-structured filesystem. Support for the log-structured 

filesystem was dropped in FreeBSD due to lack of anyone willing to maintain it but remains as a 

primary filesystem in NetBSD. The naming and disk-storage scheme are described in Chapter 8. 

Pathname Translation 

The translation of a pathname requires a series of interactions between the vnode interface and 

the underlying filesystems. The pathname-translation process proceeds as follows: 

1. The pathname to be translated is copied in from the user process or, for a remote filesystem 

request, is extracted from the network buffer. 
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2. The starting point of the pathname is determined as either the root directory or the current 

directory (see Section 2.9). The vnode for the appropriate directory becomes the lookup 

directory used in the next step. 

3. The vnode layer calls the filesystem-specific lookup() operation and passes to that operation 

the remaining components of the pathname and the current lookup directory. Typically, the 

underlying filesystem will search the lookup directory for the next component of the pathname 

and will return the resulting vnode (or an error if the name does not exist). 

4. If an error is returned, the top level returns the error. If the pathname has been exhausted, 

the pathname lookup is done, and the returned vnode is the result of the lookup. If the 

pathname has not been exhausted, and the returned vnode is not a directory, then the vnode 

layer returns the “not a directory” error. If there are no errors, the top layer checks to see 

whether the returned directory is a mount point for another filesystem. If it is, then the lookup 

directory becomes the mounted filesystem; otherwise, the lookup directory becomes the vnode 

returned by the lower layer. The lookup then iterates with step 3. 

Although it may seem inefficient to call through the vnode interface for each pathname 

component, doing so usually is necessary. The reason is that the underlying filesystem does not 

know which directories are being used as mount points. Since a mount point will redirect the 

lookup to a new filesystem, it is important that the current filesystem not proceed past a 

mounted directory. Although it might be possible for a local filesystem to be knowledgeable 

about which directories are mount points, it is nearly impossible for a server to know which of 

the directories within its exported filesystems are being used as mount points by its clients. 

Consequently, the conservative approach of traversing only a single pathname component per 

lookup() call is used. There are a few instances where a filesystem will know that there are no 

further mount points in the remaining path, and will traverse the rest of the pathname. An 

example is crossing into a portal, described in Section 7.5. 

Exported Filesystem Services 

The vnode interface has a set of services that the kernel exports from all the filesystems 

supported under the interface. The first of these is the ability to support the update of generic 

mount options. These options include the following: 

noexec 

Do not execute any files on the filesystem. This option is often used when a server exports 

binaries for a different architecture that cannot be executed on the server itself. The kernel will 
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even refuse to execute shell scripts; if a shell script is to be run, its interpreter must be invoked 

explicitly. 

nosuid 

Do not honor the set-user-id or set-group-id flags for any executables on the filesystem. This 

option is useful when a filesystem of unknown origin is mounted. 

nodev 

Do not allow any special devices on the filesystem to be opened. FreeBSD now uses a 

special-device filesystem to manage all its special devices and no longer implements special 

device nodes in the regular filesystem (see Section 8.1). However, some legacy systems still use 

special device nodes, so this option can be used to explicitly ignore their interpretation. 

noatime 

When reading a file, do not update its access time. This option is useful on filesystems where 

there are many files being frequently read and performance is more critical than updating the 

file access time (which is rarely ever important). 

sync 

Request that all I/O to the filesystem be done synchronously. 

It is not necessary to unmount and remount the filesystem to change these flags; they may be 

changed while a filesystem is mounted. In addition, a filesystem that is mounted read-only can 

be upgraded to allow writing. Conversely, a filesystem that allows writing may be downgraded to 

read-only provided that no files are open for modification. The system administrator can 

forcibly downgrade the filesystem to read-only by requesting that any files open for writing have 

their access revoked. 

Another service exported from the vnode interface is the ability to get information about a 

mounted filesystem. The statfs system call returns a buffer that gives the numbers of used and 

free disk blocks and inodes, along with the filesystem mount point, and the device, location, or 

program from which the filesystem is mounted. The getfsstat system call returns information 

about all the mounted filesystems. This interface avoids the need to track the set of mounted 

filesystems outside the kernel, as is done in some other UNIX variants. 
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7.4 Filesystem-Independent Services 

The vnode interface not only supplies an object-oriented interface to the underlying filesystems 

but also provides a set of management routines that can be used by the client filesystems. These 

facilities are described in this section. 

When the final file-entry reference to a file is closed, the usage count on the vnode drops to zero 

and the vnode interface calls the inactive() vnode operation. The inactive() call notifies the 

underlying filesystem that the file is no longer being used. The filesystem will often use this call 

to write dirty data back to the file but will not typically reclaim the memory holding file data. 

The filesystem is permitted to cache the file so that the latter can be reactivated quickly (i.e., 

without disk or network I/O) if the file is reopened. 

In addition to the inactive() vnode operation being called when the reference count drops to 

zero, the vnode is placed on a systemwide free list. Unlike many vendor’s vnode 

implementations, which have a fixed number of vnodes allocated to each filesystem type, the 

FreeBSD kernel keeps a single systemwide collection of vnodes. When an application opens a 

file that does not currently have an in-memory vnode, the client filesystem calls the 

getnewvnode() routine to allocate a new vnode. The kernel maintains two lists of free vnodes: 

those that have data pages cached in memory and those that do not have any data pages cached 

in memory. The preference is to reuse vnodes with no cached pages, since the reuse of a vnode 

with cached pages will cause all the cached pages associated with that vnode to lose their 

identity. If the vnodes were not classified separately, then an application that walked the 

filesystem tree doing stat calls on each file that it encountered would eventually flush all the 

vnodes referencing data pages, thus losing the identity of all the cached pages in the kernel. So 

when allocating a new vnode, the getnewvnode() routine first checks the front of the free list of 

vnodes with no cached pages and only if that list is empty does it select from the front of the list 

of vnodes with cached pages. 

Having selected a vnode, the getnewvnode() routine then calls the vnode’s reclaim() operation 

to notify the filesystem currently using that vnode that it is about to be reused. The reclaim() 

operation writes back any dirty data associated with the underlying object, removes the 

underlying object from any lists that it is on (such as hash lists used to find it), and frees up any 

auxiliary storage that was being used by the object. The vnode is then returned for use by the 

new client filesystem. 

The benefit of having a single global vnode table is that the kernel memory dedicated to vnodes 

is used more efficiently than when several filesystem-specific collections of vnodes are used. 

Consider a system that is willing to dedicate memory for 1000 vnodes. If the system supports 10 
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filesystem types, then each filesystem type will get 100 vnodes. If most of the activity moves to a 

single filesystem (e.g., during the compilation of a kernel located in a local filesystem), all the 

active files will have to be kept in the 100 vnodes dedicated to that filesystem while the other 

900 vnodes sit idle. In a FreeBSD system, all 1000 vnodes could be used for the active filesystem, 

allowing a much larger set of files to be cached in memory. If the center of activity moved to 

another filesystem (e.g., compiling a program on an NFS mounted filesystem), the vnodes would 

migrate from the previously active local filesystem over to the NFS filesystem. Here, too, there 

would be a much larger set of cached files than if only 100 vnodes were available using a 

partitioned set of vnodes. 

The reclaim() operation is a disassociation of the underlying filesystem object from the vnode 

itself. This ability, combined with the ability to associate new objects with the vnode, provides 

functionality with usefulness that goes far beyond simply allowing vnodes to be moved from one 

filesystem to another. By replacing an existing object with an object from the dead filesystem—a 

filesystem in which all operations except close fail—the kernel revokes the object. Internally, this 

revocation of an object is provided by the vgone() routine. 

This revocation service is used for session management, where all references to the controlling 

terminal are revoked when the session leader exits. Revocation works as follows: All open 

terminal descriptors within the session reference the vnode for the special device representing 

the session terminal. When vgone() is called on this vnode, the underlying special device is 

detached from the vnode and is replaced with the dead filesystem. Any further operations on the 

vnode will result in errors, because the open descriptors no longer reference the terminal. 

Eventually, all the processes will exit and will close their descriptors, causing the reference count 

to drop to zero. The inactive() routine for the dead filesystem returns the vnode to the front of 

the free list for immediate reuse because it will never be possible to get a reference to the vnode 

again. 

The revocation service supports forcible unmounting of filesystems. If the kernel finds an active 

vnode when unmounting a filesystem, it simply calls the vgone() routine to disassociate the 

active vnode from the filesystem object. Processes with open files or current directories within 

the filesystem find that they have simply vanished, as though they had been removed. It is also 

possible to downgrade a mounted filesystem from read–write to read-only. Instead of access 

being revoked on every active file within the filesystem, only those files with a nonzero number 

of references for writing have their access revoked. 

Finally, the ability to revoke objects is exported to processes through the revoke system call. 

This system call can be used to ensure controlled access to a device such as a pseudo-terminal 

port. First, the ownership of the device is changed to the desired user and the mode is set to 
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owner-access only. Then the device name is revoked to eliminate any interlopers that already 

had it open. Thereafter, only the new owner is able to open the device. 

The Name Cache 

Name-cache management is another service that is provided by the vnode management routines. 

The interface provides a facility to add a name and its corresponding vnode, to lookup a name to 

get the corresponding vnode, and to delete a specific name from the cache. In addition to 

providing a facility for deleting specific names, the interface also provides an efficient way to 

invalidate all names that reference a specific vnode. Each vnode has a list that links together all 

their entries in the name cache. When the references to the vnode are to be deleted, each entry 

on the list is purged. Each directory vnode also has a second list of all the cache entries for 

names that are contained within it. When a directory vnode is to be purged, it must delete all the 

name-cache entries on this second list. A vnode’s name-cache entries must be purged each time 

it is reused by getnewvnode() or when specifically requested by a client (e.g., when a directory is 

being renamed). 

The cache-management routines also allow for negative caching. If a name is looked up in a 

directory and is not found, that name can be entered in the cache, along with a null pointer for 

its corresponding vnode. If the name is later looked up, it will be found in the name table, and 

thus the kernel can avoid scanning the entire directory to determine that the name is not there. 

If a name is added to a directory, then the name cache must lookup that name and purge it if it 

finds a negative entry. Negative caching provides a significant performance improvement 

because of path searching in command shells. When executing a command, many shells will 

look at each path in turn, searching for the executable. Commonly run executables will be 

searched for repeatedly in directories in which they do not exist. Negative caching speeds these 

searches. 

The name cache does not solve the performance problems for directories with many entries that 

are actively having names added and deleted. Each time a name is to be added, the entire 

directory must be scanned to ensure that the name does not already exist. Similarly, when a 

name is deleted, the directory must be scanned to find the name to be deleted. For a directory 

with many entries, these linear scans are slow even if all the directory blocks are in the buffer 

cache. 

To avoid these costs, directories above a certain size are read into a hashed database in the 

kernel memory. Every name in the directory is stored in the database along with its location in 

the directory. Any free space in the directory is also noted in the database. When a file is to be 

deleted, its name is found in the database, the needed write operation is queued for the directory 
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block to be updated, and the newly freed space is noted in the database for future use. When a 

new entry is to be created, the database is consulted to find out if it already exists. If it does not 

exist, a piece of free space of the needed size is allocated in the directory and the needed write 

operation is queued for the directory block to be updated. Thus, the database eliminates all 

linear scans of the directory. 

A fixed-size arena is set aside to hold the directory databases. When a new directory is activated, 

its needed space is reclaimed from the least recently used directory’s database. If the rate of 

turnover of directory databases is too high, the kernel will consider raising the size of the arena. 

Conversely, if other demands on the kernel memory arise and the turnover rate is low, the 

kernel will decrease the size of the arena. 

Buffer Management 

Historically, UNIX systems divided the main memory into two primary pools. The first was the 

virtual-memory pool that was used to cache process pages. The second was the buffer pool and 

was used to cache filesystem data. The main memory was divided between the two pools when 

the system booted and there was no memory migration between the pools once they were 

created. 

With the addition of the mmap system call, the kernel supported the mapping of files into the 

address space of a process. If a file is mapped in with the MAP_SHARED attribute, changes 

made to the mapped file are to be written back to the disk and should show up in read calls done 

by other processes. Providing these semantics is difficult if there are copies of a file in both the 

buffer cache and the virtual-memory cache. Thus, FreeBSD merged the buffer cache and the 

virtual-memory cache into a single-page cache. 

As described in Chapter 6, virtual memory is divided into a pool of pages holding the contents of 

files and a pool of anonymous pages holding the parts of a process that are not backed by a file 

such as its stack and heap. Pages backed by a file are identified by their vnode and logical block 

number. Rather than rewrite all the filesystems to lookup pages in the virtual-memory pool, a 

buffer-cache emulation layer was written. The emulation layer has the same interface as the old 

buffer-cache routines but works by looking up the requested file pages in the virtual-memory 

cache. When a filesystem requests a block of a file, the emulation layer calls the virtual-memory 

system to see if it is in memory. If it is not in memory, the virtual-memory system arranges to 

have it read. Normally, the pages in the virtual-memory cache are not mapped into the kernel 

address space. However, a filesystem often needs to inspect the blocks that it requests—for 

example, if it is a directory or filesystem metadata. Thus, the buffer-cache emulation layer must 

not only find the requested block but also allocate some kernel address space and map the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06


 

410 

requested block into it. The filesystem then uses the buffer to read, write, or manipulate the data 

and, when done, releases the buffer. On release, the buffer may be held briefly but soon is 

dissolved by releasing the kernel mapping, dropping the reference count on the virtual-memory 

pages and releasing the header. 

The virtual-memory system does not have any way to describe blocks that are identified as a 

block associated with a disk. A small remnant of the buffer cache remains to hold these disk 

blocks that are used to hold filesystem metadata such as superblocks, bitmaps, and inodes. 

The internal kernel interface to the buffer-cache emulation layer is simple. The filesystem 

allocates and fills buffers by calling the bread() routine. Bread() takes a vnode, a logical block 

number, and a size, and returns a pointer to a locked buffer. The details on how a buffer is 

created are given in the next subsection. Any other thread that tries to obtain the buffer will be 

put to sleep until the buffer is released. 

A buffer can be released in one of four ways. If the buffer has not been modified, it can simply be 

released through use of brelse(), which checks for any threads that are waiting for it. If any 

threads are waiting, they are awakened. Otherwise, the buffer is dissolved by returning its 

contents back to the virtual-memory system, releasing its kernel address-space mapping and 

releasing the buffer. 

If the buffer has been modified, it is called dirty. Dirty buffers must eventually be written back 

to their filesystem. Three routines are available based on the urgency with which the data must 

be written. In the typical case, bdwrite() is used. Since the buffer may be modified again soon, it 

should be marked as dirty but should not be written immediately. After the buffer is marked as 

dirty, it is returned to the dirty-buffer list and any threads waiting for it are awakened. The 

heuristic is that, if the buffer will be modified again soon, the I/O would be wasted. Because the 

buffer is typically held for 20 to 30 seconds before it is written, a thread doing many small writes 

will not repeatedly access the disk or network. 

If a buffer has been filled completely, then it is unlikely to be written again soon, so it should be 

released with bawrite(). The bawrite() routine schedules an I/O on the buffer but allows the 

caller to continue running while the output completes. 

The final case is bwrite(), which ensures that the write is complete before proceeding. Because 

bwrite() can introduce a long latency to the writer, it is used only when a process explicitly 

requests the behavior (such as the fsync system call), when the operation is critical to ensure the 

consistency of the filesystem after a system crash, or when a stateless remote filesystem protocol 

such as NFS is being served. A buffer that is written using bawrite() or bwrite() is placed on the 
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appropriate output queue. When the output completes, the brelse() routine is called to awaken 

any threads that are waiting for it or, if there is no immediate need for it, to dissolve the buffer. 

Some buffers, though clean, may be needed again soon. To avoid the overhead of repeatedly 

creating and dissolving buffers, the buffer-cache emulation layer provides the bqrelse() routine 

to let the filesystem notify it that it expects to use the buffer again soon. The bqrelse() routine 

places the buffer on a clean list rather than dissolving it. 

Figure 7.8 shows a snapshot of the buffer pool. A buffer with valid contents is contained on 

exactly one bufhash hash chain. The kernel uses the hash chains to determine quickly whether a 

block is in the buffer pool and, if it is, to locate it. A buffer is removed only when its contents 

become invalid or it is reused for different data. Thus, even if the buffer is in use by one thread, 

it can still be found by another thread, although it will be locked so that it will not be used until 

its contents are consistent. 

 

Figure 7.8 Snapshot of the buffer pool. Key: V—vnode; X—file offset. 

In addition to appearing on the hash list, each unlocked buffer appears on exactly one free list. 

The first free list is the LOCKED list. Buffers on this list cannot be flushed from the cache. This 

list was originally intended to hold superblock data; in FreeBSD, it holds only buffers being 

written in background. In a background write, the contents of a dirty buffer are copied to 

another anonymous buffer. The anonymous buffer is then written to disk. The original buffer 

can continue to be used while the anonymous buffer is being written. Background writes are 

used primarily for fast and continuously changing blocks such as those that hold filesystem 

allocation bitmaps. If the block holding the bitmap was written normally, it would be locked and 
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unavailable while it waited on the disk queue to be written. Thus, applications trying to write 

files in the area described by the bitmap would be blocked from running while they waited for 

the write of the bitmap to finish so that they could update the bitmap. By using background 

writes for bitmaps, applications are rarely forced to wait to update a bitmap. 

The second list is the DIRTY list. Buffers that have been modified, but not yet written to disk, 

are stored on this list. The DIRTY list is managed using a least recently used algorithm. When a 

buffer is found on the DIRTY list, it is removed and used. The buffer is then returned to the end 

of the DIRTY list. When too many buffers are dirty, the kernel starts the buffer daemon running. 

The buffer daemon writes buffers starting from the front of the DIRTY list. Thus, buffers written 

repeatedly will continue to migrate to the end of the DIRTY list and are not likely to be 

prematurely written or reused for new blocks. 

The third free list is the CLEAN list. This list holds blocks that a filesystem is not currently using 

but that it expects to use soon. The CLEAN list is also managed using a least recently used 

algorithm. If a requested block is found on the CLEAN list, it is returned to the end of the list. 

The final list is the list of empty buffers—the EMPTY list. The empty buffers are just headers and 

have no memory associated with them. They are held on this list waiting for another mapping 

request. 

When a new buffer is needed, the kernel first checks to see how much memory is dedicated to 

the existing buffers. If the memory in use is below its permissible threshold, a new buffer is 

created from the EMPTY list. Otherwise, the oldest buffer is removed from the front of the 

CLEAN list. If the CLEAN list is empty, the buffer daemon is awakened to clean up and release a 

buffer from the DIRTY list. 

Implementation of Buffer Management 

Having looked at the functions and algorithms used to manage the buffer pool, we now turn our 

attention to the implementation requirements for ensuring the consistency of the data in the 

buffer pool. Figure 7.9 shows the support routines that implement the interface for getting 

buffers. The primary interface to getting a buffer is through bread(), which is called with a 

request for a data block of a specified size for a specified vnode. There is also a related interface, 

breadn(), that both gets a requested block and starts read-ahead for additional blocks. Bread() 

first calls getblk() to find out whether the data block is available in an existing buffer. If the 

block is available in a buffer, getblk() calls bremfree() to take the buffer off whichever free list it 

is on and to lock it; bread() can then return the buffer to the caller. 
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Figure 7.9 Procedural interface to the buffer-allocation system. 

If the block is not already in an existing buffer, getblk() calls getnewbuf() to allocate a new 

buffer, using the algorithm described in the previous subsection. The new buffer is then passed 

to allocbuf(), which is responsible for determining how to constitute the contents of the buffer. 

The common case is that the buffer is to contain a logical block of a file. Here, allocbuf() must 

request the needed block from the virtual-memory system. If the virtual-memory system does 

not already have the needed block, it arranges to get it brought into its page cache. The allocbuf() 

routine then allocates an appropriately sized piece of kernel address space and requests the 

virtual-memory system to map the needed file block into that address space. The buffer is then 

marked filled and returned through getblk() and bread(). 

The other case is that the buffer is to contain a block of filesystem metadata such as a bitmap or 

an inode block that is associated with a disk device rather than a file. Because the virtual 

memory does not (currently) have any way to track such blocks, they can be held in memory 

only within buffers. Here, allocbuf() must call the kernel malloc() routine to allocate memory to 

hold the block. The allocbuf() routine then returns the buffer to getblk() and bread() marked 

busy and unfilled. Noticing that the buffer is unfilled, bread() passes the buffer to the strategy() 

routine for the underlying filesystem to have the data read in. When the read completes, the 

buffer is returned. 

To maintain the consistency of the filesystem, the kernel must ensure that a disk block is 

mapped into, at most, one buffer. If the same disk block were present in two buffers, and both 

buffers were marked dirty, the system would be unable to determine which buffer had the most 

current information. Figure 7.10 shows a sample allocation. In the middle of the figure are the 

blocks on the disk. Above the disk an old buffer is shown containing a 4096-byte fragment for a 

file that presumably has been removed or shortened. The new buffer is going to be used to hold 

a 4096-byte fragment for a file that is presumably being created and that will reuse part of the 

space previously held by the old file. The kernel maintains the consistency by purging old 

buffers when files are shortened or removed. Whenever a file is removed, the kernel traverses 

the file’s list of dirty buffers. For each buffer, the kernel cancels its write request and dissolves 

the buffer so that the buffer cannot be found in the buffer pool again. For a file being partially 
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truncated, only the buffers following the truncation point are invalidated. The system can then 

allocate the new buffer, knowing that the buffer maps the corresponding disk blocks uniquely. 

 

Figure 7.10 Potentially overlapping allocation of buffers. 

7.5 Stackable Filesystems 

The early vnode interface was simply an object-oriented interface to an underlying filesystem. 

As the demand grew for new filesystem features, it became desirable to find ways of providing 

them without having to modify the existing and stable filesystem code. One approach was to 

provide a mechanism for stacking several filesystems on top of one another other [Rosenthal, 

1990]. The stacking ideas were refined and implemented in the 4.4BSD system [Heidemann & 

Popek, 1994]. The implementation of the stacking has been refined in FreeBSD, but the 

semantics remain largely unchanged from those found in 4.4BSD. The bottom of a vnode stack 

tends to be a disk-based filesystem, whereas the layers used above it typically transform their 

arguments and pass on those arguments to a lower layer. 

In all UNIX systems, the mount command takes a special device as a source and maps that 

device onto a directory mount point in an existing filesystem. When a filesystem is mounted on 

a directory, the previous contents of the directory are hidden; only the contents of the root of the 

newly mounted filesystem are visible. To most users, the effect of the series of mount commands 

done at system startup is the creation of a single seamless filesystem tree. 

Stacking also uses the mount command to create new layers. The mount command pushes a 

new layer onto a vnode stack; an unmount command removes a layer. Like the mounting of a 

filesystem, a vnode stack is visible to all processes running on the system. The mount command 

identifies the underlying layer in the stack, creates the new layer, and attaches that layer into the 

filesystem namespace. The new layer can be attached to the same place as the old layer (covering 

the old layer) or to a different place in the tree (allowing both layers to be visible). An example is 

shown in the next subsection. 

If layers are attached to different places in the namespace, then the same file will be visible in 

multiple places. Access to the file under the name of the new layer’s namespace will go to the 

new layer, whereas that under the old layer’s namespace will go to only the old layer. 
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When a file access (e.g., an open, read, stat, or close) occurs to a vnode in the stack, that vnode 

has several options: 

• Perform the requested operations and return a result. 

• Pass the operation without change to the next-lower vnode on the stack. When the operation 

returns from the lower vnode, it may modify the results or simply return them. 

• Modify the operands provided with the request and then pass it to the next-lower vnode. When 

the operation returns from the lower vnode, it may modify the results, or simply return them. 

If an operation is passed to the bottom of the stack without any layer taking action on it, then 

the interface will return the error “operation not supported.” 

Vnode interfaces released before 4.4BSD implemented vnode operations as indirect function 

calls. The requirements that intermediate stack layers bypass operations to lower layers and that 

new operations can be added into the system at boot or module load time mean that this 

approach is no longer adequate. Filesystems must be able to bypass operations that may not 

have been defined at the time that the filesystem was implemented. In addition to passing 

through the function, the filesystem layer must also pass through the function parameters, 

which are of unknown type and number. 

To resolve these two problems in a clean and portable way, the kernel places the vnode 

operation name and its arguments into an argument structure. An example access-check call 

and its implementation for the UFS filesystem are shown in Figure 7.11. Note that the 

vop_access_args structure is normally declared in a header file, but here it is declared at the 

function site to simplify the example. The argument structure is passed as a single parameter to 

the vnode operation. Thus, all calls on a vnode operation will always have exactly one parameter, 

which is the pointer to the argument structure. If the vnode operation is one that is supported by 

the filesystem, then it will know what the arguments are and how to interpret them. If it is an 

unknown vnode operation, then the generic bypass routine can call the same operation in the 

next-lower layer, passing to the operation the same argument structure that it received. In 

addition, the first argument of every operation is a pointer to the vnode operation description. 

This description provides the information about the operation to a bypass routine, including the 

operation’s name and the location of the operation’s parameters. 
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Figure 7.11 Call to and function header for access vnode operation. 

Simple Filesystem Layers 

The simplest filesystem layer is nullfs. It makes no transformations on its arguments, simply 

passing through all requests that it receives and returning all results that it gets back. Although 

it provides no useful functionality if it is simply stacked on top of an existing vnode, nullfs can 

provide a loopback filesystem by mounting the filesystem rooted at its source vnode at some 

other location in the filesystem tree. The code for nullfs is also an excellent starting point for 

designers who want to build their own filesystem layers. Examples that could be built include a 

compression layer or an encryption layer. 
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A sample vnode stack is shown in Figure 7.12. The figure shows a local filesystem on the bottom 

of the stack that is being exported from /local via an NFS layer. Clients within the 

administrative domain of the server can import the /local filesystem directly because they are 

all presumed to use a common mapping of UIDs to user names. 

 

Figure 7.12 Stackable vnodes. 

The umapfs filesystem works much like the nullfs filesystem in that it provides a view of the file 

tree rooted at the /local filesystem on the /export mount point. In addition to providing a copy 

of the /local filesystem at the /export mount point, it transforms the credentials of each 

system call made to files within the /export filesystem. The kernel does the transformation 

using a mapping that was provided as part of the mount system call that created the umapfs 

layer. 

The /export filesystem can be exported to clients from an outside administrative domain that 

uses different UIDs and GIDs. When an NFS request comes in for the /export filesystem, the 

umapfs layer modifies the credential from the foreign client by mapping the UIDs used on the 

foreign client to the corresponding UIDs used on the local system. The requested operation with 

the modified credential is passed down to the lower layer corresponding to the /local filesystem, 

where it is processed identically to a local request. When the result is returned to the mapping 

layer, any returned credentials are mapped inversely so that they are converted from the local 

UIDs to the outside UIDs, and this result is sent back as the NFS response. 

There are three benefits to this approach: 

1. There is no cost of mapping imposed on the local clients. 

2. There are no changes required to the local filesystem code or the NFS code to support 

mapping. 
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3. Each outside domain can have its own mapping. Domains with simple mappings consume 

small amounts of memory and run quickly; domains with large and complex mappings can be 

supported without detracting from the performance of simpler environments. 

Vnode stacking is an effective approach for adding extensions, such as the umapfs service. 

The Union Filesystem 

The union filesystem is another example of a middle filesystem layer. Like the nullfs, it does not 

store data but just provides a namespace transformation. It is loosely modeled on the work on 

the 3-D filesystem [Korn & Krell, 1989], on the Translucent filesystem [Hendricks, 1990], and 

on the Automounter [Pendry & Williams, 1994]. The union filesystem takes an existing 

filesystem and transparently overlays the latter on another filesystem. Unlike most other 

filesystems, a union mount does not cover up the directory on which the filesystem is mounted. 

Instead, it shows the logical merger of both directories and allows both directory trees to be 

accessible simultaneously [Pendry & McKusick, 1995]. 

A small example of a union-mount stack is shown in Figure 7.13. Here, the bottom layer of the 

stack is the src filesystem that includes the source for the shell program. Being a simple 

program, it contains only one source and one header file. The upper layer that has been union 

mounted on top of src initially contains just the src directory. When the user changes directory 

into shell, a directory of the same name is created in the top layer. Directories in the top layer 

corresponding to directories in the lower layer are created only as they are encountered while 

the top layer is traversed. If the user were to run a recursive traversal of the tree rooted at the 

top of the union-mount location, the result would be a complete tree of directories matching the 

underlying filesystem. In our example, the user now types make in the shell directory. The sh 

executable is created in the upper layer of the union stack. To the user, a directory listing shows 

the sources and executable all apparently together, as shown on the right in Figure 7.13. 

 

Figure 7.13 A union-mounted filesystem. The /usr/src filesystem is on the bottom, and the 

/tmp/src filesystem is on the top. 

All filesystem layers, except the top one, are treated as though they were read-only. If a file 

residing in a lower layer is opened for reading, a descriptor is returned for that file. If a file 
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residing in a lower layer is opened for writing, the kernel first copies the entire file to the top 

layer and then returns a descriptor referencing the copy of the file. The result is that there are 

two copies of the file: the original unmodified file in the lower layer and the modified copy of the 

file in the upper layer. When the user performs a directory listing, any duplicate names in the 

lower layer are suppressed. When a file is opened, a descriptor for the file in the uppermost layer 

in which the name appears is returned. Thus, once a file has been copied to the top layer, 

instances of the file in lower layers become inaccessible. 

The tricky part of the union filesystem is handling the removal of files that reside in a lower 

layer. Since the lower layers cannot be modified, the only way to remove a file is to hide it by 

creating a whiteout directory entry in the top layer. A whiteout is an entry in a directory that has 

no corresponding file; it is distinguished by having an inode number of 1. If the kernel finds a 

whiteout entry while searching for a name, the lookup is stopped and the “no such file or 

directory” error is returned. Thus, the file with the same name in a lower layer appears to have 

been removed. If a file is removed from the top layer, it is necessary to create a whiteout entry 

for it only if there is a file with the same name in the lower level that would reappear. 

When a process creates a file with the same name as a whiteout entry, the whiteout entry is 

replaced with a regular name that references the new file. Because the new file is being created 

in the top layer, it will mask out any files with the same name in a lower layer. When a user 

performs a directory listing, whiteout entries and the files that they mask usually are not shown. 

However, there is an option that causes them to appear. 

One feature that has long been missing in UNIX systems is the ability to recover files after they 

have been deleted. For the union filesystem, the kernel can implement file recovery trivially by 

simply removing the whiteout entry to expose the underlying file. For filesystems that provide 

file recovery, users can recover files by using a special option to the remove command. Processes 

can recover files by using the undelete system call. 

When a directory whose name appears in a lower layer is removed, a whiteout entry is created 

just as it would be for a file. However, if the user later attempts to create a directory with the 

same name as the previously deleted directory, the union filesystem must treat the new 

directory specially to avoid having the previous contents from the lower-layer directory reappear. 

When a directory that replaces a whiteout entry is created, the union filesystem sets a flag in the 

directory metadata to show that this directory should be treated specially. When a directory scan 

is done, the kernel returns information about only the top-level directory; it suppresses the list 

of files from the directories of the same name in the lower layers. 

The union filesystem can be used for many purposes: 
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• It allows several different architectures to build from a common source base. The source pool 

is NFS mounted onto each of several machines. On each host machine, a local filesystem is 

union mounted on top of the imported source tree. As the build proceeds, the objects and 

binaries appear in the local filesystem that is layered above the source tree. This approach not 

only avoids contaminating the source pool with binaries, but also speeds the compilation 

because most of the filesystem traffic is on the local filesystem. 

• It allows compilation of sources on read-only media such as CD-ROMs. A local filesystem is 

union mounted above the CD-ROM sources. It is then possible to change into directories on the 

CD-ROM and to give the appearance of being able to edit and compile in that directory. 

• It allows creation of a private source directory. The user creates a source directory in her own 

work area and then union mounts the system sources underneath that directory. This feature is 

possible because the restrictions on the mount command have been relaxed. If the sysctl 

vfs.usermount option has been enabled, any user can do a mount if she owns the directory on 

which the mount is being done and she has appropriate access permissions on the device or 

directory being mounted (read permission is required for a read-only mount, read–write 

permission is required for a read–write mount). Only the user who did the mount or the 

superuser can unmount a filesystem. 

Other Filesystems 

There are several other filesystems included as part of FreeBSD. The portal filesystem mounts a 

process onto a directory in the file tree. When a pathname that traverses the location of the 

portal is used, the remainder of the path is passed to the process mounted at that point. The 

process interprets the path in whatever way it sees fit, then returns a descriptor to the calling 

process. This descriptor may be for a socket connected to the portal process. If it is, further 

operations on the descriptor will be passed to the portal process for the latter to interpret. 

Alternatively, the descriptor may be for a file elsewhere in the filesystem. 

Consider a portal process mounted on /dialout used to manage a bank of dialout modems. 

When a process wanted to connect to an outside number, it would open 

/dialout/15105551212/28800 to specify that it wanted to dial 1-510-555-1212 at 28800 baud. 

The portal process would get the final two pathname components. Using the final component, it 

would determine that it should find an unused 28800-baud modem. It would use the other 

component as the number to which to place the call. It would then write an accounting record 

for future billing, and would return the descriptor for the modem to the process. 
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An interesting use of the portal filesystem is to provide an Internet service directory. For 

example, with an Internet portal process mounted on /net, an open of 

/net/tcp/McKusick.COM/smtp returns a TCP socket descriptor to the calling process that is 

connected to the SMTP server on McKusick.COM. Because access is provided through the 

normal filesystem, the calling process does not need to be aware of the special functions 

necessary to create a TCP socket and to establish a TCP connection [Stevens & Pendry, 1995]. 

There are several filesystems that are designed to provide a convenient interface to kernel 

information. The procfs filesystem is normally mounted at /proc and provides a view of the 

running processes in the system. Its primary use is for debugging, but it also provides a 

convenient interface for collecting information about the processes in the system. A directory 

listing of /proc produces a numeric list of all the processes in the system. The /proc interface is 

more fully described in Section 4.9. 

The fdesc filesystem is normally mounted on /dev/fd and provides a list of all the active file 

descriptors for the currently running process. An example where this is useful is specifying to an 

application that it should read input from its standard input. Here, you can use the pathname 

/dev/fd/0 instead of having to come up with a special convention, such as using the name “–” 

to tell the application to read from its standard input. 

The linprocfs emulates a subset of the Linux process filesystem and is normally mounted on 

/compat/linux/proc. It provides similar information to that provided by the /proc filesystem, 

but in a format expected by Linux binaries. 

Finally, there is the cd9660 filesystem. It allows ISO-9660-compliant filesystems, with or 

without Rock Ridge extensions, to be mounted. The ISO-9660 filesystem format is most 

commonly used on CD-ROMs. 

Exercises 

7.1 Where are the read and write attributes of an open file descriptor stored? 

7.2 Why is the close-on-exec bit located in the per-process descriptor table instead of in the 

system file table? 

7.3 Why are the file-table entries reference counted? 

7.4 What three shortcomings of lock files are addressed by the FreeBSD descriptor-locking 

facilities? 
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7.5 What two problems are raised by mandatory locks? 

7.6 Why is the implementation of select split between the descriptor-management code and the 

lower-level routines? 

7.7 Describe how the process selecting flag is used in the implementation of select. 

7.8 The syncer daemon starts as part of system boot. Once every second, it does an fsync on any 

vnodes that it finds that have been dirty for 30 seconds. What problem could arise if this 

daemon were not run? 

7.9 When is a vnode placed on the free list? 

7.10 Why must the lookup routine call through the vnode interface once for each component in 

a pathname? 

7.11 Give three reasons for revoking access to a vnode. 

7.12 Why are the buffer headers allocated separately from the memory that holds the contents 

of the buffer? 

7.13 Asynchronous I/O is provided through the aio_read and aio_write systems calls rather 

than through the traditional read and write system calls. What problems arise with providing 

asynchronous I/O in the existing read–write interface? 

*7.14 Why are there both a CLEAN list and a DIRTY list instead of all buffers being managed on 

one list? 

*7.15 If a process reads a large file, the blocks of the file will fill the virtual memory cache 

completely, flushing out all other contents. All other processes in the system then will have to go 

to disk for all their filesystem accesses. Write an algorithm to control the purging of the buffer 

cache. 

*7.16 Vnode operation parameters are passed between layers in structures. What alternatives 

are there to this approach? Explain why your approach is more or less efficient, compared to the 

current approach, when there are less than five layers in the stack. Also compare the efficiency 

of your solution when there are more than five layers in the stack. 
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Chapter 8. Devices 

8.1 Device Overview 

This chapter describes the part of the system that interfaces with the hardware as is shown in 

the bottom part of Figure 7.1. Historically, the device interface was static and simple. Devices 

were discovered as the system was booted and did not change thereafter. Filesystems were built 

in a partition of a single disk. When a disk driver received a request from a filesystem to write a 

block, it would add the base offset of the partition and perform a bounds check based on 

information from its disk label. It would then do the requested I/O and return the result or error 

to the filesystem. A typical disk driver could be written in a few hundred lines of code. 

As the system has evolved, the complexity of the I/O system has increased with the addition of 

new functionality. The new functionality can be broken into three categories: 

1. Disk management 

2. I/O routing and control 

3. Networking 

Each of these areas is handled by a new subsystem in FreeBSD. 

Disk management consists of organizing the myriad ways that disks can be used to build a 

filesystem. A disk may be broken up into several slices, each of which can be used to support a 

different operating system. Each of these slices may be further subdivided into partitions that 

can be used to support filesystems as they did historically. However, it is also possible to 

combine several slices and/or partitions to create a virtual partition on which to build a 

filesystem that spans several disks. The virtual partition may concatenate several partitions to 

stripe the filesystem across several disks, thus providing a high-bandwidth filesystem, or the 

underlying partitions may be put together in a Redundant Array of Inexpensive Disks (RAID) to 

provide a higher level of reliability and accessibility than a single disk. Or, the partitions may be 

organized into two equal-size groups and mirrored to provide an even higher level of reliability 

and accessibility than RAID. The aggregation of physical disk partitions into a virtual partition 

in these ways is referred to as volume management. 

Rather than building all this functionality into all the filesystems or disk drivers, it has been 

abstracted out into the GEOM (geometry) layer. The GEOM layer takes as input the set of disks 
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available on the system. It is responsible for doing volume management. At a low level, volume 

management creates, maintains, and interprets the slice tables and the disk labels defining the 

partitions within each slice. At a higher level, GEOM combines the physical disk partitions 

through striping, RAID, or mirroring to create the virtual partitions that are exported to the 

filesystem layer above. The virtual partition appears to the filesystem as a single large disk. As 

the filesystem does I/O within the virtual partition, the GEOM layer determines which disk(s) 

are involved and breaks up and dispatches the I/O request to the appropriate physical drives. 

The operation of the GEOM layer is described in Section 8.7. 

The PC I/O Architecture 

Historically, architectures had only one or two I/O busses and types of disk controllers. As 

described in the next subsection, a modern PC today can have several types of disks connected 

to the machine through five or more different types of interfaces. The complexity of these disk 

controllers rivals that of the entire early UNIX operating system. Early controllers could only 

handle one disk I/O at a time. Today’s controllers can typically juggle up to 64 simultaneous 

requests through a scheme called tagged queueing. A request works its way through the 

controller being posted as it is received, scheduled to be done, completed, and reported back to 

the requester. I/O may also be cached in the controller to allow future requests to be handled 

more quickly. Another task handled by the controller is to provide a replacement with an 

alternate good sector for a disk sector with a permanent error. 

The PC I/O architecture is shown in Figure 8.1. Far greater detail is available at Arch [2014]. On 

the left of the figure is one or more CPUs that have a high-speed interconnect to the system’s 

main memory and the graphics memory that drives the system display. Note that the L1 and L2 

caches are not shown in this picture because they are considered as part of the CPU. Historically, 

the memory and graphics were connected to the CPU via the northbridge bus. Modern Intel and 

AMD CPUs have subsumed the roles of the memory controller and the graphics controller. Here, 

they have converged with the system-on-chip design of small embedded architectures. 

 

Figure 8.1 The PC I/O architecture. Key: PCH—Peripheral Controller Hub; SATA—Serial 

Advanced Technology Attachment; USB—Universal Serial Bus; PCI-E—Peripheral Component 

Interconnect Express; APIC—Advanced Programmable Interrupt Controller; ACPI—Advanced 
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Configuration and Power Interface; IPMI—Intelligent Platform Management Interface; 

LPC—Low Pin Count interface. 

Beneath the CPUs is the Peripheral Controller Hub (PCH) that connects all the I/O busses to the 

system. These busses include the following: 

• The SATA (Serial Advanced Technology Attachment) bus. SATA has replaced the parallel ATA 

bus that was common in earlier PC designs. SATA supports the ability to hot-plug drives and 

transfer data at up to 600 Mbyte per second. Devices connected via SATA have a one-to-one 

relationship between the device and a port: there is no daisy chaining of devices as was present 

in earlier busses such as SCSI. Commercially available systems have at least two and usually 

more SATA ports available. Switching from a parallel to a serial bus allowed the size of the 

connectors and cables to be shrunk to the point where having one cable per device does not 

present any cable routing or space problems even in laptop systems. 

• The USB (Universal Serial Bus). The USB provides a high-speed input typically used for 

external hard disks, removable flash disks, video cameras, scanners, and printers, as well as 

human input devices such as keyboards, mice, and joysticks. USB 2.0 provides speeds up to 48 

Mbyte per second, while USB 3.0 provides speeds up to 500 Mbyte per second. 

• The PCI (Peripheral Component Interconnect) and PCI-E (Peripheral Component 

Interconnect Express) busses. These busses provide a well-designed architecture for high-speed 

throughput and automated autoconfiguration for modern I/O cards. The older PCI bus uses a 

parallel interface and a simple bus topology, while the newer PCI-E bus uses a star topology and 

a serial interface that allows multiple channels to bond together to increase the bandwidth to the 

peripheral. These busses also have the advantage of being available on many other computer 

architectures besides the PC. 

• The APIC (Advanced Programmable Interrupt Controller). The APIC maps the device 

interrupts to IRQ (Interrupt ReQuest) values for the CPU. Most modern machines use an 

IOAPIC (I/O Advanced Programmable Interrupt Controller) that provides much finer-grain 

control over the device interrupts. All processors since the Pentium Pro (1997) have had an 

LAPIC (Local Advanced Programmable Interrupt Controller) that works with the IOAPIC to 

support distribution of interrupts among the CPUs. 

• The Firewire (IEEE 1394) bus. Firewire transfers data at up to 80 Mbyte per second. It is used 

by memory-card readers, external disks, and some professional digital cameras. Firewire is 

largely being replaced by USB. 
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• The ACPI (Advanced Configuration and Power Interface). The ACPI is present on all mobile 

systems, desktops, and servers. It provides topology and discovery information to the kernel for 

system resources like PCI/PCI-E busses and APICs. It controls various components, including 

power and sleep buttons, back-light intensity of screens, and cooling fans and status lights. It 

also controls power-saving modes for the CPU, chassis, and system peripherals [ACPI, 2013]. 

• IPMI (Intelligent Platform Management Interface). The IPMI subsystem is provided on many 

server-class machines to allow for remote monitoring and control of the system over a network 

connection. The network connection may be shared with a network port on the system or a 

completely separate network port may be present allowing for complete out-of-band control of 

the machine. IPMI provides access to various environmental registers including component 

temperatures, fan speeds, and power levels. It may also offer a serial-over-LAN capability where 

a virtual serial console is available over the network. 

• Support for the AC97 (Audio CODEC) sound standard. This standard allows a single DSP 

(Digital Signal Processor) to be used to support both a modem and sound. 

• The Low Pin Count (LPC) interface. A specialized combination of general-purpose I/O pins, it 

can be used to emulate legacy interfaces. These interfaces include access to floppy disks, serial 

ports, and the PS2 keyboard and mouse ports. Most machines connect the keyboard and mouse 

through the USB port, but some systems still provide PS2 ports for legacy devices. The 

emulation happens transparently in the Basic Input Output System (BIOS) code via the System 

Management Interrupt. The result is that the kernel sees what appears to be classic controller. 

For example, the kernel might detect a legacy serial port but it is really soft emulation in the 

BIOS controlling pins assigned to the serial port on the LPC. The LPC exists as a transition 

technology as the last remnants of first-generation PC devices are retired. 

The Structure of the FreeBSD Mass Storage I/O Subsystem 

There were several disk subsystems in early versions of FreeBSD. The first support for ATA and 

SCSI disks came from Mach 2.5 and were present in FreeBSD 1.0. Both of these were highly 

device specific. Efforts to replace both resulted in CAM (Common Access Method), introduced 

in FreeBSD 3.0, and the new ATA driver, introduced in FreeBSD 4.0. As the ATA effort was 

proceeding, the CAM maintainers attempted to have it become a CAM attachment. However, the 

strange reservation and locking rules of the ATA register-file model was a poor match for the 

CAM implementation, so the ATA implementation, with the exception of the CD-ROM driver, 

remained separate until FreeBSD 9.0 when the CAM implementation replaced it. 
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CAM is an ANSI (American National Standards Institute) standard (X3.232-1996). A revised 

and enhanced version of CAM was proposed by the X3T10 group but was never approved [ANSI, 

2002]. Although originally used for SCSI, CAM is a way of interfacing host-bus adapter (HBA) 

drivers (software-interface-module drivers in CAM terminology), midlayer transport glue, and 

peripheral drivers. This layering provides a powerful abstraction that separates the physical bus 

protocol from the logical device protocol, making it suitable for many modern I/O systems. 

While CAM seems unlikely to ever be approved as a standard, it still provides a useful 

framework for implementing a storage subsystem. 

The FreeBSD CAM implementation supports SPI (SCSI Parallel Interface), Fibre Channel [ANSI, 

2003], UMASS (USB Mass Storage), IEEE 1394 (Firewire), SAS (Serial Attached SCSI), SATA, 

and iSCSI (Internet SCSI). It has peripheral drivers for disks (da), cdrom (cd), tapes (sa), tape 

changers (ch), processor devices (pt), and enclosure services (ses). Additionally, there is the 

target emulator that allows a computer to emulate any of the supported devices and a 

pass-through interface that allows user applications to send I/O requests to any CAM-controlled 

peripheral. The operation of the CAM layer is described in Section 8.8. 

The structure of the FreeBSD Disk I/O subsystem is shown in Figure 8.2. As the figure shows, 

disk drives may be attached to the system through many busses. 

 

Figure 8.2 The structure of the FreeBSD disk I/O subsystem. 

Fibre Channel was once the fastest and most expensive disk connection technology, employing 

fiberoptic or high-speed copper serial links. Such disk systems are usually used on large servers 

or when the data must travel farther than just within the case of the computer or to an adjacent 

rack. Its use is declining in favor of cheaper iSCSI and SAS. 
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The more common fast choice is a controller that plugs into the PCI-E bus, such as a SAS 

controller, which can typically support 8 to 16 devices directly attached, and hundred of devices 

attached via a switched network of bus expanders. SAS disks generally are faster and more 

reliable under heavy load than the more consumer-desktop-oriented SATA disks. SAS allows for 

transfer speeds up to 1.2 Gbyte per second, twice the speed of the cheapest and most ubiquitous 

SATA disks. 

Serial interface SATA disks may also be connected through the other busses available on the PC 

architecture. These include Firewire and USB. Usually, the disks are connected through an 

interface that acts as a bridge from the interface to a PCI bus. The USB and Firewire busses may 

also support other types of devices that will be directly connected to their device drivers rather 

than be managed by the CAM layer. The iSCSI interface is a way to connect disk drives and disk 

enclosures directly to a TCP/IP network. It provides many of the benefits of Fibre Channel but 

at a fraction of the cost. 

Network device drivers provide another important piece of functionality within the kernel and 

are covered in Section 8.5. 

Autoconfiguration is the procedure carried out by the system to recognize and enable the 

hardware devices present in a system. Historically, autoconfiguration was done just once when 

the system was booted. In current machines, particularly portable machines such as laptop 

computers, devices routinely come and go while the machine is operating. Thus, the kernel must 

be prepared to configure, initialize, and make available hardware when it arrives and to drop 

operations with hardware that has departed. FreeBSD uses a device-driver infrastructure called 

newbus to manage the devices on the system. Newbus builds a tree rooted at an abstract root0 

node and descends in a treelike structure down the various I/O paths and terminates at the 

various devices connected to the machine. On a uniprocessor system, the root0 node is 

synonymous with the CPU. On a multiprocessor system the root0 node is logically connected to 

each of the CPUs. Device autoconfiguration is described in Section 8.9, which gives the details of 

configuring devices when they appear and cleaning up after them when they disappear. 

Device Naming and Access 

Historically, FreeBSD used static device nodes located in /dev to provide access to the hardware 

devices on the system. This approach had several problems: 

• The device nodes are persistent entities in the filesystem and do not necessarily represent the 

hardware that is really connected to and available on the machine. 
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• When new hardware is added to the kernel, the system administrator needs to create new 

device nodes to access the hardware. 

• If the hardware is later removed, the device nodes remain even though they are no longer 

usable. 

• Device nodes require coordination of the major and minor numbering schemes between the 

device-driver tables in the kernel and the shell scripts that create them. 

FreeBSD 5 replaced the static /dev directory with the DEVFS filesystem that is mounted on 

/dev when the kernel is booted. As devices are discovered, either at boot or while the system is 

running, their names appear in the /dev filesystem. 

When a device disappears or becomes unavailable, its entries in /dev disappear. DEVFS has 

several benefits over the old static /dev directory: 

• Only devices that are currently available appear in /dev. 

• Adding a device to the system causes its device nodes to appear in /dev, obviating the need for 

a system administrator to create new device nodes. 

• It is no longer necessary to coordinate device major and minor numbers between the kernel 

and device-creation scripts or filesystem device nodes. 

One benefit of the old static /dev was that device nodes could be given nonstandard names, 

access permissions, owners, or groups. To provide the same flexibility, DEVFS has a rule-set 

mechanism that allows these changes to be automated in the new /dev implementation. These 

rule sets can be put in place when the system is booted and can be created or modified at any 

time that the system is running. Each rule provides a pattern to identify the device nodes to be 

affected. For each matched device node, it specifies one or more actions that should be taken. 

Actions include creating a symbolic link to provide a nonstandard name as well as setting 

nonstandard permissions, owner, or group. The rule sets are checked and applied whenever a 

new device node is created or destroyed. They may also be checked and applied when explicitly 

requested to do so by the system administrator, either manually or through a system-initiated 

script. 

Zero or more dev_t entries (major and minor numbers) in /dev may be created by the device 

drivers each time that a device_t is created as part of the autoconfiguration process. Most device 

drivers create a single /dev entry, but network device drivers do not create any entries, whereas 

disk devices may create dozens. Additional entries may appear in /dev as the result of cloning 
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devices. For example, a cloning device such as a pseudo-terminal creates a new device each time 

that it is opened. 

8.2 I/O Mapping from User to Device 

Computers store and retrieve data through supporting peripheral I/O devices. These devices 

typically include mass-storage devices, such as disk drives, archival-storage devices, and 

network interfaces. Storage devices such as disks are accessed through I/O controllers that 

manage the operation of their attached devices according to I/O requests from the CPU. 

Many hardware device peculiarities are hidden from the user by high-level kernel facilities, such 

as the filesystem and socket interfaces. Other such peculiarities are hidden from the bulk of the 

kernel itself by the I/O system. The I/O system consists of buffer-caching systems, general 

device-driver code, and drivers for specific hardware devices that must finally address 

peculiarities of the specific devices. An overview of the entire kernel is shown in Figure 7.1. The 

bottom third of the figure comprises the various I/O systems. 

There are three main kinds of I/O in FreeBSD: the character-device interface, the 

filesystem, and the socket interface with its related network devices. The character interface 

appears in the filesystem namespace and provides unstructured access to the underlying 

hardware. The network devices do not appear in the filesystem; they are accessible through the 

socket interface. Character devices are described in Section 8.3. The disk devices used by the 

filesystems are described in Section 8.4. The fast filesystem is described in Chapter 9; the 

Zettabyte filesystem (ZFS) is described in Chapter 10. The network devices used by the socket 

interface are described in Section 8.5. Sockets are described in Chapter 12. 

A character-device interface comes in two styles that depend on the characteristics of the 

underlying hardware device. For some character-oriented hardware devices, such as terminal 

multiplexers, the interface is truly character oriented, although higher-level software, such as 

the terminal driver, may provide a line-oriented interface to applications. However, for 

block-oriented devices such as disks, a character-device interface is an unstructured or raw 

interface. For this interface, I/O operations do not go through the filesystem or the page cache; 

instead, they are made directly between the device and buffers in the application’s virtual 

address space. Consequently, the size of the operations must be a multiple of the underlying 

block size required by the device and, on some machines, the application’s I/O buffer must be 

aligned on a suitable boundary. 

Internal to the system, I/O devices are accessed through a set of entry points provided by each 

device’s device driver. A character-device interface uses a cdevsw structure. A cdevsw 
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structure is created for each device as the device is configured either at the time that the system 

is booted or later when the device is attached to the system. 

All devices in the system are managed by the DEVFS filesystem. As devices are configured, 

entries are created for the device in the /dev filesystem. Each entry in the /dev filesystem has a 

direct reference to its corresponding cdevsw entry. When a program accesses a device directly 

by calling the open() system call with a path that terminates within the DEVFS filesystem, such 

as /dev/cu, the DEVFS filesystem searches for a matching entry in its internal list of devices 

and, if it finds a match, calls the the open() routine that is present in the device’s cdevsw. When 

opened, most devices allocate new state to handle their new consumer. Devices that can only be 

opened by one user will return an error when a second user attempts to call open(). 

Device Drivers 

A device driver is divided into three main sections: 

1. Autoconfiguration and initialization routines 

2. Routines for servicing I/O requests (the top half) 

3. Interrupt service routines (the bottom half) 

The autoconfiguration portion of a driver is responsible for probing for a hardware device to 

see whether the latter is present and to initialize the device and any associated software state 

that is required by the device driver. This portion of the driver is typically called only once, 

either when the system is initialized or, for transient devices, when they are connected to the 

system. Autoconfiguration is described in Section 8.9. 

The section of a driver that services I/O requests is invoked because of system calls or by the 

virtual-memory system. This portion of the device driver executes synchronously in the top half 

of the kernel and is permitted to block by calling the sleep() routine. We commonly refer to this 

body of code as the top half of a device driver. 

Interrupt service routines are invoked when the system fields an interrupt from a device. 

Consequently, these routines cannot depend on any per-process state. In FreeBSD, an interrupt 

has its own thread context, so it can block if it needs to do so. However, the cost of extra thread 

switches is sufficiently high that for good performance device drivers should attempt to avoid 

blocking. We commonly refer to a device driver’s interrupt service routines as the bottom half 

of a device driver. 
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In addition to these three sections of a device driver, an optional crash-dump routine may be 

provided. This routine, if present, is invoked when the system recognizes an unrecoverable error 

and wishes to record the contents of physical memory for use in postmortem analysis. Most 

device drivers for disk controllers provide a crash-dump routine. The use of the crash-dump 

routine is described in Section 15.5. 

I/O Queueing 

Device drivers typically manage one or more queues of I/O requests in their normal operation. 

When an input or output request is received by the top half of the driver, it is recorded in a data 

structure that is placed on a per-device queue for processing. When an input or output operation 

completes, the device driver receives an interrupt from the controller. The interrupt service 

routine removes the appropriate request from the device’s queue, notifies the requester that the 

command has completed, and then starts the next request from the queue. The I/O queues are 

the primary means of communication between the top and bottom halves of a device driver. 

Because I/O queues are shared among asynchronous routines, access to the queues must be 

synchronized. Routines in both the top and bottom half of the device driver must acquire the 

mutex associated with the queue before manipulating it to avoid corruption from simultaneous 

modifications (mutexes are described in Section 4.3). For example, a bottom-half interrupt 

might try to remove an entry that had not yet been fully linked in by the top half. 

Synchronization among multiple processes starting I/O requests is also serialized through the 

mutex associated with the queue. 

Interrupt Handling 

Interrupts are generated by devices to signal that an operation has completed or that a change in 

status has occurred. On receiving a device interrupt, the system schedules the appropriate 

device-driver interrupt-service routine with one or more parameters that uniquely identify the 

device that requires service. These parameters are needed because device drivers typically 

support multiple devices of the same type. If the interrupting device’s identity were not supplied 

with each interrupt, the driver would be forced to poll all the potential devices to identify the 

device that interrupted. 

The system arranges for the unit-number parameter to be passed to the interrupt-service 

routine for each device by installing the address of an auxiliary glue routine in the 

interrupt-vector table. This glue routine, rather than the actual interrupt service routine, is 

invoked to service the interrupt; it takes the following actions: 
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1. Collects the relevant hardware parameters and places them in the space reserved for them by 

the device 

2. Updates statistics on device interrupts 

3. Schedules the interrupt service thread for the device 

4. Clears the interrupt-pending flag in the hardware 

5. Returns from the interrupt 

Because a glue routine is interposed between the interrupt-vector table and the interrupt-service 

routine, special-purpose instructions, which cannot be generated from C, and which are needed 

by the hardware to support interrupts, can be kept out of the device driver. This interposition of 

a glue routine permits device drivers to be written without assembly language. 

8.3 Character Devices 

Almost all peripherals on the system, except network interfaces, have a character-device 

interface. A character device usually maps the hardware interface into a byte stream, similar to 

that of the filesystem. Character devices of this type include terminals (e.g., /dev/ttyu0), line 

printers (e.g, /dev/lp0), an interface to physical main memory (/dev/mem), and a bottomless 

sink for data and an endless source of end-of-file markers (/dev/null). Some of these character 

devices, such as terminal devices, may display special behavior on line boundaries but, in 

general, are still treated as byte streams. 

Devices such as high-speed graphics interfaces may have their own buffers or may always do I/O 

directly into the address space of the user; they, too, are classed as character devices. Some of 

these drivers may recognize special types of records and thus be further from the plain 

byte-stream model. 

The character interface for disks is also called the raw-device interface; it provides an 

unstructured interface to the device. Its primary task is to arrange for direct I/O to and from the 

device. The disk driver handles the asynchronous nature of I/O by maintaining and ordering an 

active queue of pending transfers. Each entry in the queue specifies whether it is for reading or 

writing, the main-memory address for the transfer, the device address for the transfer (usually a 

disk sector number), and the transfer size (in bytes). 

All other restrictions of the underlying hardware are passed through the character interface to 

its clients, making character-device interfaces the furthest from the byte-stream model. Thus, 
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the user process must abide by the sectoring restrictions imposed by the underlying hardware. 

For magnetic disks, the file offset and transfer size must be a multiple of the sector size. The 

character interface does not copy the user data into a kernel buffer before putting them on an 

I/O queue. Instead, it arranges to have the I/O done directly to or from the address space of the 

process. The size and alignment of the transfer is limited by the physical device. However, the 

transfer size is not restricted by the maximum size of the internal buffers of the system because 

these buffers are not used. 

The character interface is typically used by only those system-utility programs that have an 

intimate knowledge of the data structures on the disk. The character interface also allows 

user-level prototyping; for example, the 4.2BSD filesystem implementation was written and 

largely tested as a user process that used a raw disk interface before the code was moved into the 

kernel. 

Character devices are described by entries in the cdevsw structure. The entry points in this 

structure (see Table 8.1) are used to support raw access to block-oriented devices such as disks, 

as well as normal access to character-oriented devices through the terminal driver. Raw devices 

support a subset of the entry points that correspond to those entry points found in 

block-oriented devices. The base set of entry points for all device drivers is described in this 

section; the additional set of entry points for block-oriented devices is given in Section 8.4. 

 

Table 8.1 Entry points for character and raw device drivers. 

Raw Devices and Physical I/O 

Most raw devices differ from filesystems only in the way that they do I/O. Whereas filesystems 

read and write data to and from kernel buffers, raw devices transfer data to and from user 
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buffers. Bypassing kernel buffers eliminates the memory-to-memory copy that must be done by 

filesystems but also denies applications the benefits of data caching. In addition, for devices that 

support both raw and filesystem access, applications must take care to preserve consistency 

between data in the kernel buffers and data written directly to the device. The raw device should 

be used only when the filesystem is unmounted or mounted read-only. Raw-device access is 

used by many filesystem utilities such as the filesystem check program, fsck, and by programs 

that read and write backup media such as dump. 

Because raw devices bypass kernel buffers, they are responsible for managing their own buffer 

structures. Most devices borrow swap buffers to describe their I/O. The read and write routines 

use the physio() routine to start a raw I/O operation (see Figure 8.3). The strategy parameter 

identifies a block-device strategy routine that starts I/O operations on the device. The buffer is 

used by physio() in constructing the request(s) made to the strategy routine. The device, 

read–write flag, and uio parameters completely specify the I/O operation that should be done. 

The maximum transfer size for the device is checked by physio() to adjust the size of each I/O 

transfer before the latter is passed to the strategy routine. This check allows the transfer to be 

done in sections according to the maximum transfer size supported by the device. 
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Figure 8.3 Algorithm for physical I/O. 

Raw-device I/O operations request the hardware device to transfer data directly to or from the 

data buffer in the user program’s address space described by the uio parameter. Thus, unlike 

I/O operations that perform direct memory access (DMA) from buffers in the kernel address 

space, raw I/O operations must check that the user’s buffer is accessible by the device and must 

lock it into memory for the duration of the transfer. 

Character-Oriented Devices 

Character-oriented I/O devices are typified by terminal ports, although they also include 

printers and other character- or line-oriented devices. These devices are usually accessed 

through the terminal driver, described in Section 8.6. The close tie to the terminal driver has 

heavily influenced the structure of character device drivers. For example, several entry points in 
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the cdevsw structure exist for communication between the generic terminal handler and the 

terminal-multiplexer hardware drivers. 

Entry Points for Character Device Drivers 

A device driver for a character device is defined by its entries in a cdevsw structure: 

open 

Opens the device in preparation for I/O operations. A device’s open entry point will be called for 

each open system call on a special-device file or, internally, when a device is prepared for 

mounting a filesystem with the mount system call. The open() routine will commonly verify the 

integrity of the associated medium. For example, it will verify that the device was identified 

during the autoconfiguration phase and, for disk drives, that a medium is present and ready to 

accept commands. 

close 

Closes a device. The close() routine is called after the final client interested in using the device 

terminates. These semantics are defined by the higher-level I/O facilities. Disk devices have 

nothing to do when a device is closed and thus use a null close() routine. Devices that support 

access to only a single client must mark the device as available once again. 

read 

Reads data from a device. For raw devices, this entry point normally just calls the physio() 

routine with device-specific parameters. For terminal-oriented devices, a read request is passed 

immediately to the terminal driver. For other devices, a read request requires that the specified 

data be copied into the kernel’s address space, typically with the uiomove() routine (see the end 

of Section 7.1), and then be passed to the device. 

write 

Writes data to a device. This entry point is a direct parallel of the read entry point: raw devices 

use physio(), terminal-oriented devices call the terminal driver to do this operation, and other 

devices handle the request internally. 

ioctl 
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Performs an operation other than a read or write. This entry point originally provided a 

mechanism to get and set device parameters for terminal devices; its use has expanded to other 

types of devices as well. Historically, ioctl operations have varied widely from device to device. 

poll 

Checks the device to see whether data are available for reading or space is available for writing 

data. The poll entry point is used by the select and poll system calls in checking file descriptors 

associated with device special files. For raw devices, a poll operation is meaningless since data 

are not buffered. Here, the entry point is set to seltrue(), a routine that returns true for any poll 

request. 

mmap 

Maps a device offset into a memory address. This entry point is called by the virtual-memory 

system to convert a logical mapping to a physical address. For example, it converts an offset in 

/dev/mem to a kernel address. 

kqfilter 

Adds the device to the kernel event list for the calling thread. Kernel events are described in 

Section 7.1. 

8.4 Disk Devices 

Disk devices fill a central role in the UNIX kernel and thus have additional features and 

capabilities beyond those of the typical character device driver. Historically, UNIX provided two 

interfaces to disks. The first was a character-device interface that provided direct access to the 

disk in its raw form. This interface is still available in FreeBSD and is described in Section 8.3. 

The second was a block-device interface that converted from the user abstraction of a disk as an 

array of bytes to the structure imposed by the underlying physical medium. Block devices were 

accessible directly through appropriate device special files. Block devices were eliminated in 

FreeBSD 5 because they were not needed by any common applications and added considerable 

complexity to the kernel. 

Entry Points for Disk Device Drivers 

Device drivers for disk devices contain all the usual character device entry points described in 

Section 8.3. In addition to those entry points there are two entry points that are used only for 

disk devices: 
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strategy 

Starts a read or write operation, and return immediately. I/O requests to or from filesystems 

located on a device are translated by the system into calls to the block I/O routines bread() and 

bwrite(). These block I/O routines in turn call the device’s strategy routine to read or write data 

not in the memory cache. Each call to the strategy routine specifies a pointer to a buf structure 

containing the parameters for an I/O request. If the request is synchronous, the caller must 

sleep (on the address of the buf structure) until I/O completes. 

dump 

If performing a dump has been configured during system startup, writes all physical memory to 

the configured device. Typically, the dump entry point saves the contents of physical memory on 

secondary storage into an area used for swapping. To speed the dump and to save space, the 

system can be configured to perform a mini-dump that writes only the physical memory in use 

by the kernel. The system automatically performs a dump when it detects an unrecoverable 

error and is about to crash. The dump is used in postmortem analysis to help find the problem 

that caused the system to crash. The dump routine is invoked with context switching and 

interrupts disabled; thus, the device driver must poll for device status rather than wait for 

interrupts. At least one disk device is expected to support this entry point. 

Sorting of Disk I/O Requests 

The kernel provides a generic disksort() routine that can be used by all the disk device drivers to 

sort I/O requests into a drive’s request queue using an elevator sorting algorithm. This 

algorithm sorts requests in a cyclic, ascending, block order, so that requests can be serviced with 

minimal one-way scans over the drive. This ordering was originally designed to support the 

normal read-ahead requested by the filesystem and also to counteract the filesystem’s random 

placement of data on a drive. With the improved placement algorithms in the current filesystem, 

the effect of the disksort() routine is less noticeable; disksort() produces the largest effect when 

there are multiple simultaneous users of a drive. 

The disksort() algorithm is shown in Figure 8.4. A drive’s request queue is made up of two lists 

of requests ordered by block number. The first is the active list; the second is the next-pass list. 

The request at the front of the active list shows the current position of the drive. If the next-pass 

list is not empty, it is made up of requests that lie before the current position. Each new request 

is sorted into either the active or the next-pass list, according to the request’s location. When the 

heads reach the end of the active list, the next-pass list becomes the active list, an empty 

next-pass list is created, and the drive begins servicing the new active list. 
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Figure 8.4 Algorithm for disksort(). 

Disk sorting can also be important on machines that have a fast processor and do not sort 

requests within the device driver. Here, if a write of several Mbyte is honored in order of 

queueing, it can block other processes from accessing the disk while it completes. Sorting 

requests provides some scheduling, which more fairly distributes accesses to the disk controller. 

Most modern disk controllers accept several concurrent I/O requests. The controller then sorts 

these requests to minimize the time needed to service them. If the controller could always 

manage all outstanding I/O requests, then there would be no need to have the kernel do any 

sorting. However, most controllers can handle only about 15 outstanding requests. Since a busy 

system can easily generate bursts of activity that exceed the number that the disk controller can 

manage simultaneously, disk sorting by the kernel is still necessary. 

Disk Labels 

A disk may be broken up into several partitions, each of which may be used for a separate 

filesystem or swap area. A disk label contains information about the partition layout and usage 

including type of filesystem, swap partition, or unused. For the fast filesystem, the partition 

usage contains enough additional information to enable the filesystem check program (fsck) to 

locate the alternate superblocks for the filesystem. The disk label also contains any other 

driver-specific information. 

Having labels on each disk means that partition information can be different for each disk and 

that it carries over when the disk is moved from one system to another. It also means that, when 
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previously unknown types of disks are connected to the system, the system administrator can 

use them without changing the disk driver, recompiling, and rebooting the system. 

The label is located near the beginning of each drive—usually, in block zero. It must be located 

near the beginning of the disk to enable it to be used in the first-level bootstrap. Most 

architectures have hardware (or first-level) bootstrap code stored in read-only memory (ROM). 

When the machine is powered up or the reset button is pressed, the CPU executes the hardware 

bootstrap code from the ROM. The hardware bootstrap code typically reads the first few sectors 

on the disk into the main memory, then branches to the address of the first location that it read. 

The program stored in these first few sectors is the second-level bootstrap. Having the disk label 

stored in the part of the disk read as part of the hardware bootstrap allows the second-level 

bootstrap to have the disk-label information. This information gives it the ability to find the root 

filesystem and hence the files, such as the kernel, needed to bring up FreeBSD. The size and 

location of the second-level bootstrap are dependent on the requirements of the hardware 

bootstrap code. Since there is no standard for disk-label formats and the hardware bootstrap 

code usually understands only the vendor label, it is usually necessary to support both the 

vendor and the FreeBSD disk labels. Here, the vendor label must be placed where the hardware 

bootstrap ROM code expects it; the FreeBSD label must be placed out of the way of the vendor 

label but within the area that is read in by the hardware bootstrap code so that it will be 

available to the second-level bootstrap. 

For example, on the PC architecture, the BIOS expects sector 0 of the disk to contain boot code, 

a slice table commonly referred to as the Master Boot Record (MBR), and a magic number. 

MBR slices can be used to break the disk up into several pieces. The BIOS brings in sector 0 and 

verifies the magic number. The sector 0 boot code then searches the MBR table to determine 

which slice is marked active. This boot code then brings in the operating-system-specific 

bootstrap from the active slice and, if marked bootable, runs it. This operating-system specific 

bootstrap includes the disk label described above and the code to interpret it. 

The MBR is limited to 32-bit block numbers providing access to only the first 2 Tbyte of the disk, 

thus leaving the remainder hidden from the MBR and tricky to use. The MBR is also limited to a 

maximum of four partitions on the disk. The replacement for the MBR for the PC architecture is 

the globally unique identifier partition table (GPT) label that has 64-bit block numbers 

providing access to 8 zettabyte. It also permits up to 128 partitions on the disk. 

Booting a disk with a GPT label requires an Extended Firmware Interface (EFI) BIOS. To allow 

use of GPT labels on legacy systems without the EFI BIOS, FreeBSD supports a hybrid mode 

that contains a compatibility MBR at sector 0 of the disk, and a GPT label at sector 1. This 

configuration allows a legacy BIOS to boot the disk via the MBR label. The MBR label references 
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a boot-loader program that understands the GPT label and can continue the boot process using 

the GPT information. Even if the disk is larger than 2 Tbyte, the boot chain is contained at the 

front of the disk and is safe from the limits of the MBR. Another advantage of the GPT label is 

that its expanded support for partitions makes the BSD disk label redundant. Thus, FreeBSD 

systems partitioned with GPT will typically not have a BSD disk label. 

8.5 Network Devices 

All the networking protocols and facilities of FreeBSD ultimately rest atop some form of 

networking device driver. A networking device driver is responsible for taking network data as 

packets and transmitting or receiving them on some underlying physical media. The most 

common type of network driver in the FreeBSD kernel works with Ethernet hardware [Xerox, 

1980]. Unlike most other devices in the kernel, network devices are completely asynchronous. 

They receive data whenever it happens to arrive and send data without waiting for any type of 

acknowledgment. It is the responsibility of the socket API described in Chapter 12, and the 

network protocols described in Chapters 13 and 14 to present a more easily understood model. 

The socket API presents applications with a sequenced byte stream and looks more like reading 

or writing a local file. 

Entry Points for Network Drivers 

All network devices are described by a data structure called an ifnet that encapsulates the 

running state of the device and exposes most of the functions that the kernel uses to interact 

with the underlying hardware. The functions defined for a network device driver are shown in 

Table 8.2. Two functions that are not included in the ifnet structure that are essential to the 

proper functioning of a network device are the driver’s attach and detach routines. Whether a 

network device is discovered at system boot time or dynamically during run time, the first 

function that must be called is the driver’s attach routine. The attach routine is responsible for 

talking directly to the hardware to set up hardware registers and allocate resources for use by 

the driver. The attach routine also fills in the methods of the ifnet structure with the correct 

functions for working with the device and thereby hooks the device into the rest of the 

networking subsystems so that network protocols and facilities can use the hardware. The 

driver’s detach routine is called when a device is turned off or otherwise removed from the 

system and is responsible for freeing the resources and destroying the associations created by 

the attach routine. 
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Table 8.2 Functions defined for network drivers. 

Configuration and Control 

All network device drivers expose a single routine to the kernel that configures and controls the 

underlying device. A generic I/O control routine or ioctl is stored in the driver’s ifnet structure 

when the device driver is first loaded into the kernel. The driver’s ioctl routine is responsible for 

enabling, disabling, and resetting the device. It also turns special device-specific features on and 

off at runtime. Each message that can be sent to the device driver is encoded as a macro and is 

checked via a switch statement in the driver’s ioctl routine. Table 8.3 lists the most commonly 

implemented control messages. Each message is encoded as a socket ioctl and most have both a 

set and a get form. The set form, shown here, has an S in the message name, as in 

SIOCSIFFLAGS. The get form replaces the S with a G so that SIOCGIFFLAGS retrieves the 

current set of flags from the device. User programs and networking subsystems call the driver’s 

ioctl routine using a generic function provided for this purpose. Only the kernel calls the 

driver-specific ioctl routine directly. The messages that handle multicast addresses, which are 

maintained in a device-specific data structure, use ADD and DEL instead of get and set. 
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Table 8.3 Network driver control messages. 

The details of many of the features controlled by the driver’s ioctl routine are device specific, but 

their meaning to the kernel is generic enough for us to describe them in general. Each 

networking device in the system can be in one of two states, either UP or DOWN. The state of 

the device does not reflect whether it is turned on or initialized, but whether it will receive or 

transmit packets. A device may be fully initialized and yet not be up. The up and down state of a 

device is an administrative control that can be set any time during the life of the kernel, so long 

as the device’s hardware has been properly initialized. The SIOCIFFLAGS message is 

responsible for setting the device’s administrative state as well as a few other features. These 

features include promiscuous mode, where a device can receive all the packets that pass by it on 

the network, rather than just the packets that it knows are bound for it. Each device knows 

which packets are meant for it because the device’s network layer address is set via the 

SIOCSIFADDR message. Many network devices can support different native sizes of packets 

called the maximum transmission unit (MTU). For Ethernet, the standard is still 1500 

bytes but often can be increased to 9000, 16,384, or 64 Kbyte. The device’s native packet size is 

controlled via the SIOCSIFMTU message. The last two messages in the table control different 

device-specific features. Earlier network devices could only communicate at a single speed and 

over a single low-level medium such as coaxial cable. Modern devices can often operate at 

various speeds from 10 Mbit per second up through one or 10 Gbit. Most devices will 

automatically set themselves up to communicate at their top speed, but it is possible to change 

the speed of the device by using the SIOCSIFMEDIA ioctl. Features unrelated to the medium on 

which the network is built, such as support for Virtual LANs (VLANs) and various types of 

hardware offloading, where the device takes over part of the work normally done by the kernel’s 

networking software, are called capabilities and are controlled through the SIOCSIFCAP ioctl. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38


 

447 

Packet Reception 

Network data can appear at any time on a network device; there is no need for an application to 

have made any sort of request. The data arriving on the device might be a request for a service 

that the system is providing, such as a Web or domain name server. When data arrive at a 

network device, they are held in memory buffers within the network device until the kernel 

transfers them into its own buffers. The device’s memory buffers are often maintained as a ring 

as shown in Figure 8.5. The underlying hardware places data in the ring via DMA and the kernel 

empties the ring in response to some form of interrupt. Using a ring as the shared data structure 

between the kernel and the device provides a buffer between the lower-level hardware and the 

kernel executing on the CPU. The ring makes it easier to do work in batches, decreasing the 

overhead incurred by the kernel when it retrieves data from the device. Whenever data is 

received by the network device, it interrupts the kernel, asking it to retrieve the data that has 

been received. Storing the data in a ring allows the device to continue to receive data while the 

kernel is simultaneously retrieving data from the ring. If there is more than one packet present 

in the receive ring when the kernel services the device interrupt, it can retrieve the data in 

batches, reducing the number of expensive interrupts that need to be processed. 

 

Figure 8.5 Packet ring. Owner key: D—owned by the device; K—owned by the kernel. 

A receive ring is made up of receive descriptors, each of which contains a pointer to some 

memory where the received data resides as well as an ownership bit that describes its validity. In 

Figure 8.5, “D” marks buffers owned by the device and “K” marks buffers owned by the kernel. 

Specifically, a “K” ownership bit tells the kernel it can read the data out of the memory 

associated with the receive descriptor. When the device receives data, it places it into the 
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memory of the next descriptor that it owns. When the data has all been moved, the device 

changes the setting of the ownership bit to “K” to show that the data is now owned by the kernel. 

The device can continue to place data in the ring without the aid of the kernel until the ring is 

full, that is, all descriptors are owned by the kernel. When data is delivered into the receive ring, 

the device will trigger some form of interrupt, signalling the kernel to retrieve the data. The 

kernel will then read as many packets as are available in the ring up to some pre-set maximum. 

It will pass them into the networking subsystems through whatever function pointer the driver’s 

attach routine placed into the if_input entry in the driver’s ifnet structure. Often, the if_input 

routine is associated with the type of hardware that the device is supporting such as Ethernet or 

Wireless. The kernel returns the descriptors to the device by setting the ownership bit back to 

“D” once it has copied the data into its own buffers. 

The ring structure is used to buffer the packets between the device and the kernel. A kernel 

running on a processor that is faster than the underlying network hardware will be able to keep 

the ring nearly empty as it should be able to keep up with the underlying hardware. On a system 

with high-speed networking hardware, such as a 10-Gbit Ethernet (Nm 10GbE), the adapter ring 

makes it possible for the underlying device to absorb periodic bursts of packets and then have 

the kernel read each burst of packets in a single batch. 

Packet Transmission 

Every ifnet structure contains a queue of data to be transmitted called the interface queue. 

Whenever some part of the kernel wants to transmit data on a network device, it enqueues the 

data on the device’s interface queue and then calls the if_start() routine stored in the device’s 

ifnet structure. The pointer to the if_start() routine was placed in the driver’s ifnet structure by 

the attach() routine when the device was first initialized. 

Packet transmission is similar to packet reception in that the kernel and the device again share a 

ring data structure called the transmit ring. The transmit ring acts as a buffer between the kernel 

and the device into which the kernel writes data and from which the device reads it and 

transmits it on the underlying hardware. A transmit ring is made up of transmit descriptors that 

are nearly identical to receive descriptors. They contain a pointer to memory and an ownership 

bit. The only differences between receive and transmit descriptors pertain to statistics and 

special device features such as packet timestamping and checksum offloading. During 

transmission, the roles of the kernel and the device are reversed, with the kernel writing data 

into the transmit ring, changing the state of the ownership bit, and then telling the device that 

there is data in the ring to be sent. The driver’s if_start() routine removes the data from the 

interface queue and places it into the transmit ring. 
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8.6 Terminal Handling 

Before the advent of bitmapped displays and Web browsers, most users of UNIX systems 

interacted with the computer through some type of terminal. Terminals were either 

line-oriented teletypes, which meant that the user could only make changes to a single line of 

text before submitting it to the system, or they were screen based, with the most commonly 

available terminals providing a screen 80 characters wide by 24 lines high. The plethora of 

different terminals that could be hooked to a UNIX system meant that the parts of the kernel 

that handled interactions with terminals eventually grew to be complex. Users of modern UNIX 

systems interact with terminals less than their predecessors but programmers and systems 

administrators continue to use some form of terminal-based command-line interface to have 

effective and direct control over the system. Terminals also provide the most efficient and 

low-overhead method of controlling a system. Bitmapped displays and Web servers require far 

more resources from the system than does a simple terminal. In common FreeBSD-embedded 

and purpose-built systems such as routers, switches, and storage systems, the ability to interact 

with the system via a terminal is a requirement, whereas a Web interface communicating to a 

Web server is considered a luxury. 

The terminal handling facilities in FreeBSD incorporate three separate subsystems: the tty 

driver, serial-device drivers, and the pseudo-terminal driver. The most common type of user 

session in FreeBSD uses a pseudo-terminal, provided by the pts driver. The pseudo-terminal 

driver provides support for a device pair, termed the master and slave devices. The slave device 

provides a process with an interface identical to the one described for terminals in this section. 

Anything written on the master device is provided to the slave device as input, and anything 

written on the slave device is presented to the master device as input. The driver for the master 

device emulates all hardware-support details described in the rest of this section. 

Pseudo-terminals are used by xterm, as well as the remote-login program ssh. In a typical use, 

xterm opens the master side of a pseudo-terminal and directs the keystrokes from the window 

manager to its input while taking its output and drawing the characters in its window. It forks a 

process that opens the slave side of the pseudo-terminal and then runs the user’s preferred shell 

with the slave set up as the standard input, output, and error. As each keystroke is typed by the 

user, it is written into the master side of the pseudo-terminal, where it is processed by the line 

discipline and eventually emerges as input to the user’s shell. Output from the shell is written 

into the slave side of the pseudo-terminal, where it is processed by the line discipline and 

eventually emerges from the master side and is displayed in the xterm window. Each 

pseudo-terminal opened by the system appears in the /dev/pts directory of the DEVFS 

filesystem. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_194


 

450 

The pseudo-terminal driver commonly processes data one character at a time using the 

character-device interface described in the user-interface subsection later in this section. As 

each character is typed at the keyboard or arrives from a user over the network, it is presented 

as input to the master side of the pseudo-terminal. The input of characters is independent of 

process requests to read user input from the slave side of the pseudo-terminal. Characters are 

processed when they are received and are stored until a process requests them, thus allowing 

type-ahead. When a pseudo-terminal supports user interaction with the system, terminal 

input represents the keystrokes of the user, and terminal output is displayed on the user’s screen. 

When we use the term terminal, we are describing a concept that applies to both 

pseudo-terminals and hardwired terminal devices. 

Terminal-Processing Modes 

FreeBSD supports several modes of terminal processing. Much of the time, keyboard input is in 

canonical mode (also commonly referred to as cooked mode or line mode), in which input 

characters are echoed by the operating system as they are typed by the user but are buffered 

internally until a newline character is received. Only after the receipt of a newline character is 

the entire line made available to the shell or other process reading from the keyboard. If the 

process attempts to read from the keyboard before a complete line is ready, the process will 

sleep until a newline character is received, regardless of a partial line already having been 

received. The common case where a carriage return behaves like a newline character and causes 

the line to be made available to the waiting process is implemented by the operating system and 

is configurable by the user or process. In canonical mode, the user may correct typing errors, 

deleting the most recently typed character with the erase character, deleting the most recent 

word with the word-erase character, or deleting the entire current line with the kill 

character. Other special characters generate signals sent to processes associated with the 

keyboard; these signals may abort processing or may suspend it. Additional characters start and 

stop output, flush output, or prevent special interpretation of the succeeding character. The user 

can type several lines of input, up to an implementation-defined limit, without waiting for input 

to be read and removed from the input queue. The user can specify the special processing 

characters or can selectively disable them. 

Editors and programs that communicate with other computers generally run in noncanonical 

mode (also commonly referred to as raw mode or character-at-a-time mode). In this 

mode, the system makes each typed character available to be read as input as soon as that 

character is received. All special-character input processing is disabled, no erase or other 

line-editing processing is done, and all characters are passed to the program reading from the 

keyboard. 
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In addition to processing input characters, the terminal interface must do certain processing on 

output. Most of the time, this processing is simple: newline characters are converted to a 

carriage return plus a line feed. In addition to performing character processing, the terminal 

output routines must manage flow control, both with the user (using stop and start characters) 

and with the process. Because users absorb output slowly in comparison with computer 

peripherals, a program writing to a terminal may produce output much faster than that output 

can be handled by the user. When a process has filled the terminal output queue, it will be put to 

sleep and will be restarted when enough output has drained. 

Most of the character processing done for terminal interfaces is independent of whether it is 

associated with a pseudo-terminal or a real hardware device. Therefore, most of this processing 

is done by common routines in the tty driver, or terminal handler. A hardware interface is 

supported by a specific device driver, which is responsible for receiving and transmitting 

characters and for handling some of the synchronization with the process doing output. The 

hardware driver is called by the tty driver to do output; in turn, it calls the tty driver with input 

characters as they are received. The pseudo-terminal interface acts as a software emulation of an 

asynchronous serial interface, making it indistinguishable from real hardware to the rest of the 

kernel. 

Earlier versions of FreeBSD implemented a flexible abstraction for the handling of terminal 

lines, called a line discipline. The line discipline was implemented as a set of routines that were 

called through a structure of function pointers, allowing the line discipline to be specialized for 

different types of devices. After hardware-based terminals became obsolete, there was no longer 

a need to have a flexible line-discipline system, since the only terminals that remain are virtual 

(i.e., xterm) and they all share a common control language. The integration of the new terminal 

layer in FreeBSD 8 removed all but the original terminal line discipline that handles interactive 

character processing. To maintain internal-interface compatibility, the line discipline routines 

remain and are called from within the tty driver and the various serial device drivers that are a 

part of FreeBSD. 

The terminal line-discipline routines translate between the lower-layer hardware devices and 

the abstract implementation of the terminal. The main functions provided by the line discipline 

are listed in Table 8.4. Like all device drivers, a terminal driver is divided into the top half, 

which runs synchronously when called to process a system call, and the bottom half, which runs 

asynchronously when characters are presented to it from a pseudo-terminal or hardware device. 

The line discipline provides routines that perform common terminal processing for both the top 

and bottom halves of a terminal driver. 
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Table 8.4 Entry points for the TTY line discipline. 

All the devices that can be placed beneath the tty device support the normal set of character 

device-driver entry points specified by the character-device switch. When a new serial device is 

attached to the system, it calls the tty_alloc() routine to hook a new ttydevsw structure into the 

system. Several of the system calls (read, write, and ioctl) immediately transfer control to the 

line discipline when called. The standard terminal-polling routine ttypoll() usually is used as the 

device driver poll entry in the character-device switch. The open and close routines are similar; 

the line-discipline open entry is called when a line first enters a discipline. Similarly, the 

discipline close() routine is called to exit from a discipline. All these routines are called from 

above in response to a corresponding system call. 

The remaining line-discipline entries are called by the bottom half of the device driver to report 

input or status changes detected at interrupt time. The ttydisc_rint (receiver interrupt) entry is 

called with each character received on a line. The corresponding entry for outputting characters 

is the ttydisc_getc routine, which is called by the output routine to fetch characters from the line 

discipline to output. Transitions in modem-control lines may be detected by the hardware driver. 

Here, the ttydisc_modem routine is called passing the new state. 

User Interface 

The terminal line discipline is derived from a discipline that was present in System V, as 

modified by the POSIX standard, and then was modified further to provide reasonable 

compatibility with previous 4.2BSD line disciplines. The base structure used to describe 

terminal state in System V was the termio structure. The base structure used by POSIX and by 

FreeBSD is the termios structure. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_438
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The standard programmatic interface for control of the terminal line discipline is the ioctl 

system call. This call sets and gets values for special processing characters and modes, sets and 

gets hardware serial line parameters, and performs other control operations. Most ioctl 

operations require one argument in addition to a file descriptor and the command; the 

argument is the address of an integer or structure from which the system gets parameters or 

into which information is placed. Because the POSIX Working Group thought that the ioctl 

system call was difficult and undesirable to specify—because of its use of arguments that varied 

in size, in type, and in whether they were being read or written—the group members chose to 

introduce new interfaces for each of the ioctl calls that they believed were necessary for 

application portability. Each of these calls is named with a tc prefix. In the FreeBSD system, 

each of these calls is translated (possibly after preprocessing) into an ioctl call. 

The following set of ioctl commands apply specifically to the standard terminal line discipline. 

This list is not exhaustive, although it presents all the commands that are used commonly. 

TIOCGETA 

TIOCSETA 

Gets (sets) the termios parameters for this line, including line speed, behavioral parameters, and 

special characters such as erase and kill characters. 

TIOCSETAW 

Sets the termios parameters for this line after waiting for the output buffer to drain (but without 

discarding any characters from the input buffer). 

TIOCSETAF 

Sets the termios parameters for this line after waiting for the output buffer to drain and 

discarding any characters from the input buffer. 

TIOCFLUSH 

Discards all characters from the input and output buffers. 

TIOCDRAIN 

Waits for the output buffer to drain. 

TIOCEXCL 

TIOCNXCL 
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Gets (releases) exclusive use of the line. 

TIOCCBRK 

TIOCSBRK 

Clears (sets) the terminal hardware BREAK condition for the line. 

TIOCGPGRP 

TIOCSPGRP 

Gets (sets) the process group associated with this terminal (see the next subsection). 

TIOCOUTQ 

Returns the number of characters in the terminal’s output buffer. 

TIOCSTI 

Enters characters into the terminal’s input buffer as though they were typed by the user. 

TIOCNOTTY 

Disassociates the current controlling terminal from the process (see the next subsection). 

TIOCSCTTY 

Makes the terminal the controlling terminal for the process (see the next subsection). 

TIOCSTART 

TIOCSTOP 

Starts (stops) output on the terminal. 

TIOCGWINSZ 

TIOCSWINSZ 

Gets (sets) the terminal or window size for the terminal line; the window size includes width and 

height in characters and (optionally, on graphical displays) in pixels. 
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Process Groups, Sessions, and Terminal Control 

The process-control (job-control) facilities, described in Section 4.8, depend on the terminal I/O 

system to control access to the terminal. Each job (a process group that is manipulated as a 

single entity) is known by a process-group ID. 

Each terminal structure contains a pointer to an associated session. When a process creates a 

new session, that session has no associated terminal. To acquire an associated terminal, the 

session leader must make an ioctl system call using a file descriptor associated with the terminal 

and specifying the TIOCSCTTY flag. When the ioctl succeeds, the session leader is known as the 

controlling process. In addition, each terminal structure contains the process group ID of 

the foreground process group. When a session leader acquires an associated terminal, the 

terminal process group is set to the process group of the session leader. The terminal process 

group may be changed by making an ioctl system call using a file descriptor associated with the 

terminal and specifying the TIOCSPGRP flag. Any process group in the session is permitted to 

become the foreground process group for the terminal. 

Signals that are generated by characters typed at the terminal are sent to all the processes in the 

terminal’s foreground process group. By default, some of those signals cause the process group 

to stop. The shell creates jobs as process groups, setting the process group ID to be the PID of 

the first process in the process group. Each time it places a new job in the foreground, the shell 

sets the terminal process group to the new process group. Thus, the terminal process group is 

the identifier for the process group that is currently in control of the terminal—that is, for the 

process group running in the foreground. Other process groups may run in the background. If a 

background process attempts to read from the terminal, its process group is sent another signal, 

which stops the process group. Optionally, background processes that attempt terminal output 

may be stopped as well. These rules for control of input and output operations apply to only 

those operations on the controlling terminal. 

When a user disconnects from a terminal—for example, when a network connection is lost—the 

session leader of the session associated with the terminal is sent a SIGHUP signal. If the session 

leader exits, the controlling terminal is revoked, and that invalidates any open file descriptors in 

the system for the terminal. This revocation ensures that processes holding file descriptors for a 

terminal cannot access the terminal after the terminal is acquired by another user. The 

revocation operates at the vnode layer. It is possible for a process to have a read or write 

sleeping for some reason—for example, it was in a background process group. Since such a 

process would have already resolved the file descriptor through the vnode layer, a single read or 

write by the sleeping process could complete after the revoke system call. To avoid this security 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec8
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problem, the system checks a terminal generation number when a process wakes up from 

sleeping on a terminal and, if the number has changed, restarts the read or write system call. 

Terminal Operations 

We now examine the operation of the pseudo-terminal device driver. Each time that the master 

side of a previously unused pseudo-terminal device is opened, by using the sys_posix_openpt() 

routine, the pseudo-terminal driver’s alloc routine is called. The alloc routine initializes the tty 

structure, associating the set of function pointers that are part of the pts driver’s ttydevsw 

structure with the underlying terminal device. Once the pseudo-terminal has been allocated, all 

other operations proceed through the device filesystem, where the terminal device driver’s 

routines are called. The ttydev_open() routine is called to open the device that backs the 

pseudo-terminal, and it is the open routine that sets up the line discipline by calling the 

ttydisc_open() routine. The tty driver is sufficiently abstract that it can handle devices that are 

implemented in hardware as well as the pseudo-terminal, which is implemented purely in 

software. 

Terminal Output (Upper Half) 

After a terminal has been opened, a write on the resulting file descriptor produces output to be 

transmitted. Writes to the pseudo-terminal result in calls to the ptsdev_write() routine with a 

file pointer, a uio structure describing the data to be written, and a flag specifying whether the 

I/O is nonblocking. The tty structure is contained in the file structure passed into the write 

routine. The line discipline routines are called directly from the ptsdev_write() routine to send 

the data. 

The main routine that handles the output of characters is the ttydev_write() routine. It is 

responsible for copying data into the kernel from the user process and for placing the translated 

data onto the pseudo-terminal’s output queue. The ttydev_write() routine first checks whether 

the current process is allowed to write to the terminal at this time. The user may set a tty option 

to allow only the foreground process to do output. If this option is set, and if the terminal line is 

the controlling terminal for the process, then the process should do output immediately only if it 

is in the foreground process group (i.e., if the process groups of the process and of the terminal 

are the same). If the process is not in the foreground process group, and a SIGTTOU signal 

would cause the process to be suspended, a SIGTTOU signal is sent to the process group of the 

process. Here, the write will be attempted again when the user moves the process group to the 

foreground. If the process is in the foreground process group, or a SIGTTOU signal would not 

suspend the process, the write proceeds as usual. 
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When ttydev_write() has confirmed that the write is permitted, it enters a loop that copies the 

data to be written into the kernel, checks for any output translation that is required, and places 

the data on the output queue for the terminal. It prevents the queue from becoming overfull by 

blocking if the queue fills before all characters have been processed. The limit on the queue size, 

the high watermark, is dependent on the output line speed; for pseudo-terminals, the line 

speed is set to the maximum baud rate so that they will get the maximum high watermark of 

several thousand characters. The low watermark is set to about half of the high watermark. 

When forced to wait for output to drain before proceeding, ttydisc_write() sets a flag in the tty 

structure state, TF_HIWAT_OUT, to request that it be awakened when the queue drops below 

the low watermark. 

Once errors, permissions, and flow control have been checked, ttydisc_getc() copies the user’s 

data into a local buffer in chunks of 256 characters at most, using uiomove(). (A value of 256 is 

used because the buffer is stored on the stack and so it cannot be large.) When the terminal 

driver is configured in noncanonical mode, no per-character translations are done, and the 

entire buffer is processed at once. In canonical mode, the terminal driver locates groups of 

characters requiring no translation by scanning through the output string, looking up each 

character in turn in a table that marks characters that might need translation (e.g., newline), or 

characters that need expansion (e.g., tabs). Each group of characters that requires no special 

processing is placed into the output queue using memcpy(). Trailing special characters are 

output with ttydisc_reprint(). 

The ttydisc_write() routine handles the translation of special characters by first searching the 

output for characters that might need post processing. Regular characters are then output and 

the special characters are handled through a postprocessing routine. The following translations 

may be done, depending on the terminal mode: 

• Tabs may be expanded to spaces. 

• Newlines may be replaced with a carriage return plus a line feed. 

As soon as data are placed on the output queue of a terminal, its device driver is awakened to let 

it know that it can start output. Unless output is already in progress or has been suspended by 

receipt of a stop character, a wakeup will be sent to the thread associated with the device. For a 

pseudo-terminal, the wakeup is sent to a thread sleeping on the master side and, if not already 

running, awakens it so that it can consume the data. For a hardware terminal, the wakeup is 

sent to the thread associated with the device that begins sending the characters out of the serial 

line. Once all the data have been processed and have been placed into the output queue, 

ttydisc_write() returns an indication that the write completed successfully. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_204


 

458 

Terminal Output (Lower Half) 

Characters are removed from the output queue either by the thread running on the master side 

of the pseudo-terminal or by the hardware device driver. Whenever the number of characters on 

the output queue drops below the low watermark, the output routine checks to see if the 

TS_SO_OLOWAT flag is set to show that a thread is waiting for space in the output queue and 

should be awakened. In addition, selwakeup() is called, and if a thread is recorded in t_wsel as 

selecting for output, that thread is notified. The output continues until the output queue is 

empty. 

Terminal Input 

Unlike output, terminal input is not started by a system call but instead arrives asynchronously 

when the terminal line receives characters from a remote login session or locally from the 

keyboard. Thus, the input processing in the terminal system occurs mostly at interrupt time. 

When a character arrives over the network from a remote login session, the locally running 

remote-login daemon writes it into the master side of the pseudo-terminal. The master side of 

the pseudo-terminal will pass the character as input to the terminal line discipline for the 

receiving terminal through the latter’s ttydisc_rint entry. For locally attached hardware such as 

a keyboard, the input character will be passed by the device driver directly to the receiving tty 

device driver input entry. In either case, the input character is passed as an integer. The bottom 

8 bits of the integer are the actual character. Characters received from locally connected 

hardware may have hardware-detected parity errors, break characters, or framing errors. Such 

errors are shown by setting flags in the upper bits of the integer. 

The interpretation of terminal input is done in the ttydisc_rint routine. When a break condition 

is detected (a longer-than-normal character with only 0 bits), it is ignored, or an interrupt 

character or a null is passed to the process, depending on the terminal mode. Input characters 

are echoed if desired. In noncanonical mode, characters are placed into the raw input queue 

without interpretation. Otherwise, most of the work done by the ttydisc_rint() routine is to 

check for characters with special meanings and to take the requested actions. Other characters 

are placed into the raw queue. In canonical mode, if the received character is a carriage return or 

another character that causes the current line to be made available to the program reading the 

terminal, the contents of the raw queue are added to the canonicalized queue and any processes 

waiting for input or selecting for input on the device are awakened. In noncanonical mode, any 

process selecting for input on the device or sleeping on the raw queue awaiting input for a read 
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are awakened. If the terminal has been set for signal-driven I/O using fcntl and the FASYNC flag, 

a SIGIO signal is sent to the process group controlling the terminal. 

Eventually, a read call is made on the file descriptor for the terminal device. Like all calls to read 

from a character-special device, this one results in a call to the device driver’s read routine with 

a device pointer, a uio structure describing the data to be read, and a flag specifying whether the 

I/O is nonblocking. Terminal device drivers use the device pointer to locate the tty structure for 

the device and then call the line discipline ttydisc_read entry to process the system call. 

The ttydisc_read routine first checks to see whether the process is part of the session and the 

process group currently associated with the terminal. If the process is a member of the session 

currently associated with the terminal, if any, and is a member of the current process group, the 

read proceeds. Otherwise, if a SIGTTIN would suspend the process, a SIGTTIN is sent to that 

process group. Here, the read will be attempted again when the user moves the process group to 

the foreground. Otherwise, an error is returned. Finally, ttydisc_read() checks for data in the 

appropriate queue (the canonical queue in canonical mode, the raw queue in noncanonical 

mode). If no data are present, ttydisc_read() returns the error EAGAIN if the terminal is using 

nonblocking I/O; otherwise, it sleeps on the address of the raw queue. When ttydisc_read() is 

awakened, it restarts processing from the beginning because the terminal state or process group 

might have changed while it was asleep. 

When characters are present in the queue for which ttydisc_read() is waiting, they are removed 

from the queue one at a time with ttydisc_getc() and are copied out to the user’s buffer. In 

canonical mode, certain characters receive special processing as they are removed from the 

queue: The delayed-suspension character causes the current process group to be stopped with 

signal SIGTSTP, and the end-of-file character terminates the read without being passed back to 

the user program. If there was no previous character, the end-of-file character results in the read 

returning zero characters, and that is interpreted by user programs as indicating end-of-file. 

However, most special processing of input characters is done when the character is entered into 

the queue. For example, translating carriage returns to newlines based on the ICRNL flag must 

be done when the character is first received because the newline character wakes up waiting 

processes in canonical mode. In noncanonical mode, the characters are not examined as they 

are processed. 

Characters are processed and returned to the user until the character count in the uio structure 

reaches zero, the queue is exhausted, or, if in canonical mode, a line terminator is reached. 

When the read call returns, the returned character count will be the amount by which the 

requested count was decremented as characters were processed. 
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After the read completes, if terminal output was blocked by a stop character being sent because 

the queue was filling up, and the queue is now less than 20 percent full, a start character 

(normally XON, control-Q) is sent. 

Closing of Terminal Devices 

When the final reference to a terminal device is closed, or the revoke system call is made on the 

device, the device close() routine is called. The kernel checks to make sure that there are no open 

references to the terminal before calling the line discipline’s close() routine and then cleaning up 

all the state associated with the terminal. The line-discipline close entry, ttydisc_close(), flushes 

any pending output. Finally, the device close routine frees the queues that were associated with 

the device, clears any knotes associated with the terminal, and wakes up any processes that were 

waiting on the terminal. 

8.7 The GEOM Layer 

The GEOM layer provides a modular transformation framework for disk-I/O requests. This 

framework supports an infrastructure in which classes can do nearly arbitrary transformations 

on disk-I/O requests on their path from the upper kernel to the device drivers and back. GEOM 

can support both automatic data-directed configuration and manual, or script-directed, 

configuration. 

Transformations in GEOM include the following: 

• Simple base and bounds calculations needed for disk partitioning 

• Aggregation of disks to provide a RAID, mirrored, or stripped logical volume 

• A cryptographically protected logical volume 

• Collection of I/O statistics 

• I/O optimization such as disk sorting 

• Journaled I/O transactions 

Unlike many of its predecessors, GEOM is both extensible and topologically agnostic. 
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Terminology and Topology Rules 

GEOM is object oriented and consequently borrows much context and semantics from the 

object-oriented terminology. A transformation is the concept of a particular way to modify I/O 

requests. Examples include partitioning a disk, mirroring two or more disks, and operating 

several disks together in a RAID. 

A class implements one particular transformation. Examples of classes are a master boot record 

(MBR) disk partition, a BSD disk label, a RAID array, a transaction journal, or encryption. 

An instance of a class is called a geom. In a typical FreeBSD system, there will be one geom of 

class MBR for each disk. The MBR subdivides a disk into as many as four pieces. There will also 

be one geom of class BSD for each slice with a BSD disk label. 

A provider is the front gate at which a geom offers service. A typical provider is a logical disk, for 

example, /dev/da0s1. All providers have three main properties: name, media size, and sector 

size. 

A consumer is the back end through which a geom connects to another geom provider and 

through which I/O requests are sent. For example, an MBR label will typically be a consumer of 

a disk and a provider of disk slices. 

The topological relationship between these entities are as follows: 

• A class has zero or more geom instances. 

• A geom is derived from exactly one class. 

• A geom has zero or more consumers. 

• A geom has zero or more providers. 

• A consumer can be attached to only one provider. 

• A provider can have multiple consumers attached. 

• The GEOM structure may not have loops; it must be an acyclic directed graph. From an 

object-oriented perspective GEOM implements a system of single inheritance because a 

consumer can only be attached to one provider. 
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All geoms have a rank number assigned that detects and prevents loops in the acyclic directed 

graph. This rank number is assigned as follows: 

• A geom with no attached consumers has a rank of one. 

• A geom with attached consumers has a rank one higher than the highest rank of the geoms of 

the providers to which its consumers are attached. 

Figure 8.6 shows a sample GEOM configuration. At the bottom is a geom that communicates 

with the CAM layer and produces the da0 disk. It has two consumers. On the right is the DEVFS 

filesystem that exports the complete disk image as /dev/da0. On the left is stacked an MBR 

geom that interprets the MBR label found in the first sector of the disk to produce the two slices 

da0s1 and da0s2. Both of these slices have DEVFS consumers that export them as /dev/da0s1 

and /dev/da0s2. The first of these two slices has a second consumer, a BSD label geom, that 

interprets the BSD label found near the beginning of the slice. The BSD label subdivides the slice 

into as many as eight (possibly overlapping) partitions, da0s1a through da0s1h. All the defined 

partitions have DEVFS consumers that export them as /dev/da0s1a through /dev/da0s1h. 

When one of these partitions is mounted, the filesystem that has mounted it also becomes a 

consumer of that partition. 

 

Figure 8.6 A sample GEOM configuration. 

Changing Topology 

The basic operations are attach, which attaches a consumer to a provider, and detach, which 

breaks the bond. Several more complex operations are available to simplify automatic 

configuration. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06
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Tasting is a process that happens whenever a new class or new provider is created. It provides 

the class a chance to automatically configure an instance on providers that it recognizes as its 

own. A typical example is the MBR disk-partition class that will look for the MBR label in the 

first sector and, if found and valid, will instantiate a geom to multiplex according to the contents 

of the MBR. 

Exactly what a class does to recognize if it should accept the offered provider is not defined by 

GEOM, but the sensible set of options are: 

• Examine specific data structures on the disk. 

• Examine properties like sector size or media size for the provider. 

• Examine the rank number of the provider’s geom. 

• Examine the method name of the provider’s geom. 

A new class will be offered to all existing providers and a new provider will be offered to all 

classes. 

Configure is the process where the administrator issues instructions for a particular class to 

instantiate itself. For example, a BSD label module can be specified with a level of override 

forcing a BSD disk-label geom to attach to a provider that was not found palatable during the 

taste operation. A configure operation is typically needed when first labelling a disk. 

Orphaning is the process by which a provider is removed while it potentially is still being used. 

When a geom orphans a provider, all future I/O requests will bounce on the provider with an 

error code set by the geom. All consumers attached to the provider will receive notification 

about the orphaning and are expected to act appropriately. A geom that came into existence as a 

result of a normal taste operation should self-destruct unless it has a way to keep functioning 

without the orphaned provider. Single-point-of-operation geoms, like those interpreting a disk 

label, should self-destruct. Geoms with redundant points of operation, such as those supporting 

a RAID or a mirror, will be able to continue as long as they do not lose quorum. 

An orphaned provider may not result in an immediate change in the topology. Any attached 

consumers are still attached. Any opened paths are still open. Any outstanding I/O requests are 

still outstanding. A typical scenario is: 

• A device driver detects a disk has departed and orphans the provider for it. 
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• The geoms on top of the disk receive the orphaning event and orphan all their providers. 

Providers that are not in use will typically self-destruct immediately. This process continues in a 

recursive fashion until all relevant pieces of the tree have responded to the event. 

• Eventually the traversal stops when it reaches the device geom at the top of the tree. The geom 

will refuse to accept any new requests by returning an error. It will sleep until all outstanding 

I/O requests have been returned (usually as errors). It will then explicitly close, detach, and 

destroy its geom. 

• When all the geoms above the provider have disappeared, the provider will detach and destroy 

its geom. This process percolates all the way down through the tree until the cleanup is 

complete. 

While this approach seems byzantine, it does provide the maximum flexibility and robustness in 

handling disappearing devices. Ensuring that the tree does not unravel until all the outstanding 

I/O requests have returned guarantees that no applications will be left hanging because a piece 

of hardware has disappeared. 

Spoiling is a special case of orphaning used to protect against stale metadata. It is probably 

easiest to understand spoiling by going through an example. Consider the configuration shown 

in Figure 8.6 that has disk da0 above which is an MBR geom that provides da0s1 and da0s2. On 

top of da0s1, a BSD geom provides da0s1a through da0s1h. Both the MBR and BSD geoms have 

autoconfigured based on data structures on the disk media. Now consider the case where da0 is 

opened for writing and the MBR is modified or overwritten. The MBR geom now would be 

operating on stale metadata unless some notification system can inform it otherwise. To avoid 

stale metadata, the opening of da0 for writing causes all attached consumers to be notified, 

resulting in the eventual self-destruction of the MBR and BSD geoms. When da0 is closed, it will 

be offered for tasting again, and if the data structures for MBR and BSD are still there, new 

geoms will instantiate themselves. 

To avoid the havoc of changing a disk label for an active filesystem, changing the size of open 

geoms can be done only with their cooperation. If any of the paths through the MBR or BSD 

geoms were open (for example, as a mounted filesystem), they would have propagated an 

exclusive-open flag downward, rendering it impossible to open da0 for writing. Conversely, the 

exclusive-open flag requested when opening da0 to rewrite the MBR would render it impossible 

to open a path through the MBR geom until da0 is closed. Spoiling only happens when the write 

count goes from zero to nonzero, and the tasting only happens when the write count goes from 

nonzero to zero. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06
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Insert is an operation that allows a new geom to be instantiated between an existing consumer 

and provider. Delete is an operation that allows a geom to be removed from between an existing 

consumer and provider. These capabilities can be used to move an active filesystem. For 

example, as shown in Figure 8.7, we could insert a mirror module into the GEOM stack pictured 

in Figure 8.6. The mirror operates on da0s1 and da1s1 between the BSD label consumer and its 

MBR label provider da0s1. The mirror is initially configured with da0s1 as its only copy and 

consequently is transparent to the I/O requests on the path. Next, we ask it to mirror da0s1 to 

da1s1. When the mirror copy is complete, we drop the mirror copy on da0s1. Finally, we delete 

the mirror geom from the path instructing the BSD label consumer to consume from da1s1. The 

result is that we moved a mounted filesystem from one disk to another while it was being used. 

 

Figure 8.7 Using a mirror module to copy an active filesystem. 

Operation 

The GEOM system needs to be able to operate in a multiprocessor kernel. The usual method for 

ensuring proper operation is to use mutex locks on all the data structures. Because of the large 

size and complexity of the code and data structures implementing the GEOM classes, prior to 

FreeBSD 10 GEOM used a single-threading approach rather than traditional mutex locking to 

ensure data structure consistency. This mode of operation continues to be available using two 

threads to operate its stack: a g_down thread to process requests moving from the consumers at 

the top to the providers at the bottom, and a g_up thread to process requests moving from the 

providers at the bottom to the consumers at the top. Requests entering the GEOM layer at the 

top are queued awaiting the g_down thread. The g_down thread pops each request from the 

queue, moves it down through the stack, and out through the provider. Similarly, results coming 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig07
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back from the providers are queued awaiting the g_up thread. The g_up thread pops each 

request from the queue, moves it up through the stack, and sends it back out to the consumer. 

Because there is only ever a single thread running up and down in the stack, the only locking 

that is needed is on the few data structures that coordinate between the upward and downward 

paths. There are two rules required to make this single-thread method work effectively: 

1. A geom can never sleep. If a geom ever puts the g_up or g_down thread to sleep, the entire 

I/O system would grind to a halt until the geom reawakens. The GEOM framework checks that 

its worker threads never sleep, panicking if they attempt to do so. 

2. No geom can compute excessively. If a geom computes excessively, pending requests or 

results will be unacceptably delayed. There are some geoms, such as the one that provides 

cryptographic protection for filesystems, that are compute intensive. These compute-intensive 

geoms have to provide their own threads. When the g_up or g_down thread enters a 

compute-intensive geom, it will simply enqueue the request, schedule the geom’s own worker 

thread, and proceeded on to process the next request in its queue. When scheduled, the 

compute-intensive geom’s thread will do the needed work and then enqueue the result for the 

g_up or g_down thread to finish pushing the request through the stack. 

While a queued model of processing is flexible, it does give up performance to provide that 

flexibility. Each enqueue and dequeue operation requires processor resources, and the queues 

themselves need to be protected by locks so that two threads cannot update the queue data 

structure at the same time. To mitigate the bottleneck of a single thread in the I/O path, and to 

reduce the context switch overhead of switching to and from the g_up and g_down threads, 

FreeBSD 10 added a direct dispatch mode to GEOM. Each GEOM class has two flags that it can 

set, G_DIRECT_UP and G_DIRECT_DOWN, to indicate that I/O can pass through the class via 

direct dispatch in the indicated direction. To accept direct-dispatch, a module must add locking 

to protect its data structures so that the module can run concurrent threads. When direct 

dispatch is used, the thread making the request calls directly into the module rather than 

queueing its request to be run by the g_down or g_up thread. All I/O requests into the GEOM 

layer are checked to see if they can be delivered directly to the underlying class. Direct calls are 

made to any module that is marked as accepting direct dispatch in the direction of the I/O. 

Direct calls are also made for any I/O that is of zero effective length, meaning that it has no data 

but there is some command to the underlying class. An I/O request that does not meet these 

requirements is queued for the class to process later, using the g_down and g_up threads. 

The set of commands that may be passed through the GEOM stack are read, write, and delete. 

The read and write commands have the expected semantics. Delete specifies that a certain range 

of data is no longer used and that it can be erased or freed. Technologies like flash-adaptation 
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layers can arrange to erase the relevant blocks so that they are ready to be reassigned, and 

cryptographic devices may fill random bits into the range to reduce the amount of data available 

for attack. A delete request has no assurance that the data really will be erased or made 

unavailable unless guaranteed by specific geoms in the graph. If a secure-delete semantic is 

required, a geom that converts a delete request into a sequence of write requests should be 

pushed. 

Topological Flexibility 

GEOM is both extensible and topologically agnostic. The extensibility of GEOM makes it easy to 

write a new class of transformation. In the last few years several new classes have been written, 

including: 

• gcache that provides a kernel-memory cache of backing storage such as a disk. 

• geli that encrypts data sent to a backing store and decrypts data retrieved from a backing store. 

For example, providing an encrypted filesystem is simply a matter of stacking a geli class on top 

of a disk class. 

• gjournal that does block-level journaling of data sent to a backing store. All writes get logged 

and are later replayed if the system crashes before they are made to the backing store. Thus, it 

can provide journaling for any filesystem without needing to know anything about the 

filesystem’s structure. 

• gsched that provides alternate scheduling policies for a backing store. 

• gvirstor that sets up a virtual storage device of an arbitrarily large size. The gvirstor class 

allows users to overcommit on storage (free filesystem space). The concept is also known as 

“thin provisioning” in virtualization environments. The gvirstor class is implemented on the 

level of physical storage devices. 

In a departure from many previous volume managers, GEOM is topologically agnostic. Most 

volume-management implementations have strict notions of how classes can fit together, but 

often only a single fixed hierarchy is provided. Figure 8.8 shows a typical hierarchy. It requires 

that the disks first be divided into partitions, and then the partitions can be grouped into 

mirrors, which are exported as volumes. 
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Figure 8.8 Fixed class hierarchy. 

With fixed hierarchies, it is impossible to express intent efficiently. In the fixed hierarchy of 

Figure 8.8, it is impossible to mirror two physical disks and then partition the mirror into slices 

as is done in Figure 8.9. Instead, one is forced to make slices on the physical volumes and then 

create mirrors for each of the corresponding slices, resulting in a more complex configuration. 

Being topologically agnostic means that different orderings of classes are treated no differently 

than existing orderings. GEOM does not care in which order things are done. The only 

restriction is that cycles in the graph are not allowed. 

 

Figure 8.9 Flexible class hierarchy. 

8.8 The CAM Layer 

To reduce the complexity of the individual disk drivers, much of the complexity of handling a 

modern controller has been abstracted into a set of routines that provide a Common Access 

Method (CAM) layer that sits between the GEOM and the device-driver layers. The CAM layer 

handles the device-independent tasks of resource allocation and command routing. These tasks 

include the tracking of requests and notifications between the controller and its clients. They 
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also include the routing of requests across the many I/O busses to get the request to the correct 

controller. 

The CAM layer leaves to the device driver the device-specific operations such as the setup and 

teardown of the DMA maps needed to do the I/O. CAM also allows device drivers to manage I/O 

timeouts and initial bus error-recovery measures. Some device drivers can become complex. For 

example, the Fibre Channel device driver has much code to handle operations, such as 

asynchronous topology changes as drives are removed and attached. A driver responds to a CAM 

request by converting the virtual address to store the data to the appropriate physical address. It 

then marshals the device-independent parameters like I/O request, physical address to store the 

data, and transfer length into a firmware-specific format, and then executes the command. 

When the I/O completes, the driver returns the results to the CAM layer. 

In addition to disks, the CAM layer manages any other storage device that might be connected to 

the system such as tape and removable flash memory drives. For other character devices such as 

keyboard and mice, CAM will not be involved. 

The CAM subsystem provides a uniform and modular system for the implementation of drivers 

to control various devices and to use different host adapters through host-adapter drivers. The 

CAM system is made up of three layers: 

1. The CAM peripheral layer that provides open, close, strategy, attach, and detach operations 

for the supported devices. CAM-supported devices include: direct access (da) SCSI disk drives, 

ATA and SATA (sa) disk drives, cdrom (cd) CD-ROM drives, sequential access (sa) tape drives, 

and changer (ch) juke-boxes. Each peripheral driver builds an I/O command specific to the 

protocol for its devices, and then passes that command to the transport layer for execution. The 

driver also interprets the results of the I/O commands and takes corrective actions for errors. 

CAM starts by building a protocol-specific I/O command using a CAM control block (CCB) 

tailored either to SCSI or ATA devices. 

The CCB contains a command descriptor block containing the command to be sent to the device. 

For example, the SCSI command “READ_10, block_offset, count” gets back a status of success 

or various error codes. If there is an error, the drive may also include sense data to give more 

information about the cause of the error. 

2. The CAM Transport (XPT) layer schedules and dispatches I/O commands, acting as a switch 

between the myriad of peripheral device instances and the host bus adapters to which they 

belong. It also assists the device drivers with error recovery by allowing I/O to be frozen and and 

unfrozen at a device or subsystem level. For example, a disk device might be able to handle 64 

commands, and the controller it is attached to might be able to handle 256 commands, but when 
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more than 4 disks are attached to the controller, scheduling and arbitration needs to be done in 

the transport layer. 

3. The CAM software interface module or host bus adapter interface layer provides bus routing 

to devices. Its job is to allocate a path to the requested device, send a CCB action request to the 

device, and then collect notification of the I/O completion from the device. It is also responsible 

for identifying errors that have happened at the protocol and bus layers, and notifying the 

transport and peripheral layers that it is done with error recovery actions. 

The operation of the CAM layer is most easily understood by tracing an I/O request through it. 

The Path of a SCSI I/O Request Through the CAM Subsystem 

The path of a SCSI request through the CAM I/O subsystem is shown in Figure 8.10. In the 

FreeBSD framework, the filesystem sees a single contiguous disk. I/O requests are based on 

block numbers within this idealized disk. In Figure 8.10, the filesystem determines a set of 

blocks on which it wants to perform I/O, and it passes this request down to the GEOM layer by 

calling the strategy() routine. 

 

Figure 8.10 The path of a SCSI I/O request through the CAM subsystem. 

The GEOM layer takes the request and determines the disk to which the request should be sent. 

In this example, the request is on a da SCSI disk. When a request spans several disks, the GEOM 

layer breaks up the original request into a set of separate I/O requests for each of the disks on 

which the original request resides. Each of the new requests is passed down to the CAM layer by 

calling the appropriate strategy() routine for the associated disk (the dastrategy() routine in 

Figure 8.10). 
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The CAM dastrategy() routine gets the request and calls bioq_disksort(), which puts the 

request on the disk queue of the specified SCSI disk. The dastrategy() routine finishes by calling 

the xpt_schedule() function. 

The xpt_schedule() function allocates and constructs a CCB to describe the operation that needs 

to be done. If the disk supports tagged queueing, an unused tag is allocated, if it is available. If 

tagged queueing is not supported or a tag is not available, the request is left on the queue of 

requests pending for the disk. If the disk is ready to accept a new command, the xpt_schedule() 

routine calls the drive start routine set up for it (dastart() in this example). 

The dastart() routine takes the first request off the disk’s queue and begins to service it using 

the CCB that was constructed by dastrategy(). Because the command is destined for a SCSI disk, 

dastart() needs to build a SCSI READ_10 command based on the information in the CCB. The 

resulting SCSI command that includes a READ_10 header, a pointer to the virtual address that 

references the data to be transferred, and a transfer length is placed in the CCB and given the 

type XPT_SCSI_IO. The dastart() routine then calls the xpt_action() routine to determine the 

bus and controller (adapter) to which the command should be sent. 

The xpt_action() routine returns a pointer to a cam_path structure that describes the controller 

to be used and has a pointer to the controller’s action routine. In this example, we are using the 

Adaptec SCSI controller whose action routine is mpssas_action(). The xpt_action() routine 

queues the CCB with its cam_path and schedules it to be processed. 

The request is processed by calling the controller-specific action routine, mpssas_action(). The 

mpssas_action() routine gets the CCB and converts its generic SCSI command into a 

hardware-specific SCSI control block (SCB) to handle the command. The SCB is filled out from 

information in the CCB. It is also filled out with any hardware-specific information and a DMA 

request descriptor is set up. The SCB is then passed to the driver firmware to be executed. 

Having completed its task, the CAM layer returns to the caller of dastrategy(). 

The controller fulfills the request and uses DMAs to transfer the data to or from the location 

given in the SCB. When done, a completion interrupt arrives from the controller. The interrupt 

causes the mps_complete_command() routine to be run. The mps_complete_command() 

routine updates the CCB associated with the completed SCB from information in the SCB 

(command completion status or sense information if there was an error). It then frees the 

previously allocated DMA resources and the completed SCB, and passes the completed CCB 

back to the CAM layer by calling xpt_done(). 

The xpt_done() routine inserts the associated CCB into the completion notification queue and 

posts a software interrupt request for camisr(), the CAM interrupt service routine. When 
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camisr() runs, camisr_runqueue() removes the CCB from the completion notification queue 

and calls the specified completion function, which maps to dadone() in this example. 

The dadone() routine will call the biodone() routine, which notifies the GEOM layer that one of 

its I/O requests has finished. The GEOM layer aggregates all the separate disk I/O requests 

together. When the last I/O operation finishes, it updates the original I/O request passed to it by 

the filesystem to reflect the result (either successful completion or details on any errors that 

occurred). The filesystem is then notified of the final result by calling the biowait() routine. 

ATA Disks 

Like SCSI disks, support for SATA and ATA drives has been abstracted into a module that is part 

of the CAM layer referred to as the ATA module. The ATA module handles the 

device-independent tasks of the tracking requests and notifications between the controller and 

its clients. 

The handling of ATA I/O requests by the CAM layer is similar to that described for SCSI disks. 

Device-specific operations are left to the device driver. The device driver responds to a request 

for an ATA disk by marshaling the device-independent parameters in the CCB. It converts the 

type of the I/O request, the virtual address to store the data, and the transfer length into a 

firmware-specific format, and then executes the command. When the I/O completes, the driver 

places the results back in the CCB similar to the way it is done by the SCSI driver. 

The ATA driver start routine handles TRIM commands that improve the efficiency of solid-state 

disks (SSDs). While SSDs use the same hardware interconnect as spinning magnetic disks, the 

way they operate internally is different. One difference is that an SSD must erase a block before 

it can be rewritten. It also must carefully manage the erasing and rewriting of its flash memory 

blocks so that the blocks are used evenly. The TRIM command is a part of the ATA specification 

that allow a filesystem to inform an SSD that a block or set of blocks are no longer in use and 

may be erased. The ATA driver maintains a separate queue of requests to trim data from a 

device, and these requests are executed at the beginning of its adastart() routine so that space is 

freed before the process of writing new data begins. TRIM is also available to SAS solid state 

disks via the da driver. 

8.9 Device Configuration 

Autoconfiguration is the procedure carried out by the system to recognize and enable the 

hardware devices present in a system. Autoconfiguration works by systematically probing the 

possible I/O busses on the machine. For each I/O bus that is found, each type of device attached 
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to it is interpreted and, depending on this type, the necessary actions are taken to initialize and 

configure the device. 

The first FreeBSD implementation of autoconfiguration was derived from the original 4.2BSD 

code with the addition of many special-case hacks. The 4.4BSD release introduced a new, more 

machine-independent configuration system that was considered for FreeBSD but was ultimately 

rejected in favor of the newbus scheme, which first appeared in FreeBSD 3.0 to support the 

Alpha architecture. It was brought over to the PC platform for FreeBSD 4.0. Newbus included 

machine-independent routines and data structures for use by machine-dependent layers, and 

provided a framework for dynamic allocation of data structures for each device. 

A key design goal of the newbus system was to expose a stable application binary interface (ABI) 

to driver writers. A stable ABI is especially important for externally or vendor-maintained 

loadable kernel modules because their source code is often not available to recompile if the 

interface is changed. 

To help achieve ABI stability, the device and devclass structures are hidden from the rest of the 

kernel with a simple function-call-based API to access their contents. If the structures were 

passed to the device driver directly, any change to the structure would require that all the 

drivers to which it is passed be recompiled. Changes to these data structures do not require a 

recompilation of all the drivers. Only the access functions to the data structures need to be 

recompiled. 

Some hardware devices, such as the interface to the console terminal, are required for system 

operation. Other devices, however, may not be needed and their inclusion in the system may 

needlessly waste system resources. Devices that might be present in different numbers, at 

different addresses, or in different combinations are difficult to configure in advance. However, 

the system must support them if they are present and must fail gracefully if they are not present. 

To address these problems, FreeBSD supports two configuration procedures. The first is a static 

configuration procedure that is performed when a bootable system image is created. The second 

is a dynamic loading capability that allows kernel drivers and modules to be added to a running 

system as needed. Thus, the statically configured kernel can be small with just enough capability 

to get the system up and running. Once running, additional functionality can be added as 

needed. 

Allowing code to be loaded dynamically into the kernel raises many security problems. Code 

running outside the kernel is limited in the damage that it can do because it does not run in 

privileged mode and cannot directly access the hardware. The kernel runs with full privilege and 

access to the hardware. If the kernel loads a module containing malicious code, it can inflict 

wide-ranging damage within the system. Kernels can be loaded across the network from a 
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central server. If the kernel allows dynamic loading of modules, they could also come across the 

network, so there are numerous added points for malfeasance. 

An important consideration in deciding whether to enable dynamic loading of kernel modules is 

to develop a scheme to verify the source of and lack of corruption in any code before that code is 

permitted to be loaded and used. A group of vendors have formed the Trusted Computing Group 

(TCG) to specify a hardware module called a Trusted Platform Module (TPM) that keeps a 

running SHA-1 hash of the software installed on the system to detect the loading of bad 

programs or modules. It is implemented as a microcontroller-based device similar to a smart 

card that is attached to the motherboard [TCG, 2003]. Other groups are doing work to limit the 

potential harm of kernel modules by running them with page protections that limit their access 

to the rest of the kernel [Chiueh et al., 2004]. The drawback to disabling dynamic loading is that 

any hardware that is not included in the kernel configuration file will be unavailable for use. 

The initial kernel configuration is done by the /usr/sbin/config program. A configuration file 

is created by the system administrator that contains a list of drivers and kernel options. 

Historically, the configuration file defined both the set of hardware devices that might be 

present on a machine and the location where each device might be found. Since FreeBSD 10, 

hardware devices have been discovered dynamically as the various bus drivers probe and attach. 

The location of legacy devices for non-plug-and-play (non-self-identifying) busses are given in a 

/boot/device.hints file that is loaded with the kernel. The other use for hints is to hardwire a 

unit number to a location. Currently only CAM can hardwire unit numbers, although hard 

wiring could be implemented for any bus. The configuration procedure generates many files that 

define the initial kernel configuration. These files control the kernel compilation. 

The autoconfiguration phase is done first during system initialization to identify the set of 

devices that are present on a machine. In general, autoconfiguration recurses through a tree of 

device interconnections, such as busses and controllers to which other devices attach. For 

example, a system might be configured with two SCSI host adapters (controllers) and four disk 

drives that are connected in any of the configurations shown in Figure 8.11. Autoconfiguration 

works in one of two ways at each level in the tree: 

1. Identifying each possible location at which a device might be present and checking to see 

what type of device (if any) is there 

2. Probing for devices at each of the possible locations where the device might be attached 
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Figure 8.11 Alternative drive configurations. 

The first approach of identifying predefined locations for devices is needed for older busses like 

ISA that were not designed to support autoconfiguration and are still present in some embedded 

systems boards such as those built around the ARM, MIPS, and PPC architectures. The second 

mechanism of probing for devices can be used only when a fixed set of locations is possible and 

when devices at those locations are self-identifying, such as devices connected to a SATA, SCSI, 

or PCI bus. Devices that can be probed dynamically implement a probe routine that is called 

during the first phase of the autoconfiguration process. 

Devices that are recognized during the probing phase of the autoconfiguration process are 

attached and made available for use. The attach function for a device initializes and allocates 

resources for the device. The attach function for a bus or controller must probe for devices that 

might be attached at that location. If the attach function fails, the hardware was found but is 

nonfunctional, which results in a console message being printed. Devices that are present but 

not recognized may be configured once the system is running and has loaded other kernel 

modules. The attach function for busses is allowed to reserve resources for devices that are 

detected on the bus but for which no device driver is currently loaded in the system. 

This scheme permits device drivers to allocate system resources for only those devices that are 

present in a running system. It allows the physical device topology to be changed without 

requiring the system load image to be regenerated. It also prevents crashes resulting from 

attempts to access a nonexistent device. In the remainder of this section, we consider the 
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autoconfiguration facilities from the perspective of the device-driver writer. We examine the 

device-driver support required to identify hardware devices that are present on a machine and 

the steps needed to attach a device once its presence has been noted. 

Device Identification 

To participate in autoconfiguration, a device driver must register the set of functions shown in 

Table 8.5. Devices are an abstract concept in FreeBSD. In addition to the traditional disks, tapes, 

network interfaces, keyboards, terminal lines, and so on, FreeBSD will have devices that operate 

all the pieces that make up the I/O infrastructure such as the SCSI bus controller, the bridge 

controller to the PCI bus, and the bridge controller to the ISA bus. The top-level device is the 

root of the I/O system and is referred to as the root. On a uniprocessor system, the root logically 

resides at the I/O pins of the CPU. On a multiprocessor system, the root is logically connected to 

the I/O pins of each of the CPUs. The root0 device is handcrafted at boot time for each 

architecture supported by FreeBSD. 

 

Table 8.5 Functions defined for autoconfiguration. 

Autoconfiguration begins with a request to the root0 bus to configure all its children. When a 

bus is asked to configure its children, it calls the device_identify() routine of each of its possible 

device drivers. The result is a set of children that have been added to the bus either by the bus 

itself or by the device_identify() routines of one of its drivers. Next, the device_probe() routine 

of each of the children is called. The device_probe() routine that bids the highest for the device 

will then have its device_attach() routine called. The result is a set of devices corresponding to 

each of the busses that are directly accessible to root0. Each of these new devices is then given 

the opportunity to probe for or identify devices below them. The identification process continues 

until the topology of the I/O system has been determined. 
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Modern busses can directly identify the things that are connected to them. Older busses such as 

ISA use the device_identify() routine to bring in devices that are found only because of hints. 

As an example of the device hierarchy, the device controlling the PCI bus may probe for a disk 

controller, which in turn will probe for possible targets that might be attached, such as disk 

drives. The autoconfiguration mechanism provides much flexibility, allowing a controller to 

determine the appropriate way in which to probe for additional devices attached to the 

controller. 

As autoconfiguration proceeds, a device-driver device_probe() routine is called for each device 

that is found. The system passes to the device_probe() routine a description of the device’s 

location and possibly other details such as I/O register location, memory location, and interrupt 

vectors. The device_probe() routine usually just checks to see if it recognizes the hardware. 

It is possible that there is more than one driver that can operate a device. Each matching driver 

returns a priority that shows how well it matches the hardware. Success codes, shown in Table 

8.6, are values less than or equal to zero, with the highest (least negative) value representing the 

best match. Failure codes are represented by positive values using the usual kernel error codes. 

 

Table 8.6 Return codes for device_probe routine. 

If a driver returns a success code that is less than zero, it must not assume that it will be the 

same driver whose device_attach() routine will be called. In particular, it must not assume that 

any values stored in the device local-storage area will be available for its device_attach() routine. 

Any resources allocated during the probe must be released and reallocated if its device_attach() 

routine is called. By returning a success code of zero, a driver can assume that it will be the one 

attached. However, well-written drivers will not have their device_attach() routine use the 

device local-storage area because they may, one day, have their return value downgraded to a 
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value less than zero. Typically, the resources used by a device are identified by the bus (parent 

device), and it is the bus that prints them out when the devices are probing. 

Once the device_probe() routine has had the opportunity to identify the device and select the 

most appropriate driver to operate it, the selected driver’s device_attach() routine is called. 

Attaching a device is separated from probing so that drivers can bid for devices. Probe and 

attach are also separate so that drivers can separate out the identification part of the 

configuration from the attaching part. Most device drivers use the device_attach() routine to 

initialize the hardware device and any software state. The device_attach() routine is also 

responsible for either creating the dev_t entries (for disks and character devices) or for network 

devices, registering the device with the networking system. 

Devices that represent pieces of hardware such as a SATA controller will respond to verify that 

the device is present and to set or at least identify the device’s interrupt vector. For disk devices, 

the device_attach() routine may make the drive available to higher levels of the kernel such as 

GEOM. GEOM will let its classes taste the disk drive to identify its geometry and possibly 

initialize the partition table that defines the placement of filesystems on the drive. 

Autoconfiguration Data Structures 

The autoconfiguration system in FreeBSD includes machine-independent data structures and 

support routines. The data structures allow machine- and bus-dependent information to be 

stored in a general way and allow the autoconfiguration process to be driven by the 

configuration data, rather than by compiled-in rules. The /usr/sbin/config program 

constructs many of the tables from information in the kernel-configuration file and from a 

machine-description file. The /usr/sbin/config program is thus data-driven as well and 

contains no machine-dependent code. 

Figure 8.12 shows the data structures used by autoconfiguration. The basic building block is the 

device structure. Each piece of the I/O hierarchy will have its own device structure. The name 

and description fields identify the piece of hardware represented by the device structure. In 

Figure 8.12, the name of the device is pci1. Device names are globally unique. There can be only 

one pci1 device in the system. Knowing its name is enough to find it, unlike filesystems where 

there can be many files with the same name in different paths. This namespace is related by 

convention to the namespace that /dev entries have, but such a relationship is not required. 
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Figure 8.12 Autoconfiguration data structures for pci1. 

Each device is a member of a device class represented by a devclass structure that has two 

important roles. The first role of the devclass structure is to keep track of a list of drivers for 

devices in that class. Devices referenced from a dev-class do not have to use the same driver. 

Each device structure references its best matching driver from the list available for the devclass. 

The list of candidate drivers is traversed, allowing every driver to probe each device that is 

identified as a member of the class. The best matching driver will be attached to the device. For 

example, the pci devclass contains a list of drivers suitable for probing against devices that may 

be plugged into a PCI bus. In Figure 8.12, there are drivers to match pcm (sound cards) and 

atapci (PCI-based ATA-disk controllers). 

The second role of the devclass structure is to manage the mapping from a user-friendly device 

name such as pci1 to its device structure. The name field in the devclass structure contains the 

root of a family of names—in this example, pci. The number following the root of the name—1 in 

this example—indexes into the array of pointers to device structures contained in the devclass. 

The name in the referenced device structure is the full name, pci1. 

When a device structure first comes into existence, it will follow these steps: 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
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1. The parent device typically determines the existence of a new child device by doing a bus scan. 

The new device is created as a child of the parent. In Figure 8.12, the autoconfiguration code 

would begin a scan of pci1 and discover an ATA disk controller. 

2. The parent device starts a probe-and-attach sequence for the new child device. The probe 

iterates through drivers in the parent device’s devclass until a driver is found that claims the 

device (i.e., the probe succeeds). The device structure sets its driver field to point at the selected 

driver structure and increments the reference count in the selected driver. In Figure 8.12, the 

atapci driver matches the ATA disk controller, atadisk. 

3. Once a usable driver is found, the new device is registered with the devclass of the same name 

as the driver. The registration is done by allocating the next available unit number and setting a 

pointer from the corresponding entry in the devclass’s array of device-structure pointers back to 

the device. In Figure 8.12, the atapci driver was matched, so the device would be bound to the 

atapci devclass. The resulting device configuration is shown in Figure 8.13. The key observation 

is that two different devclasses are involved in this three-step process. 

 

Figure 8.13 Autoconfiguration data structures for atapci0. 

The hierarchy of device structures is shown in Figure 8.14. Each device structure has a parent 

pointer and a list of children. In Figure 8.14, the pci device that manages the PCI bus is shown at 

the top and has as its only child the atapci device that operates ATA disks on the PCI bus. The 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
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atapci device has the pci device as its parent and has two children, one for each of the ATA disks 

that are attached. The devices representing the two drives have the atapci device as their parent. 

Because they are leaf nodes, they have no children. 

 

Figure 8.14 Sample hierarchy of device structures. 

To get a better idea of the I/O hierarchy, an annotated copy of the output of the 

/usr/sbin/devinfo program from the first author’s test machine is shown in Figure 8.15. The 

output has been trimmed down from its original 250 lines to show just the branch from the root 

of the tree to the system’s two ATA disks. The tree starts at root0, representing the I/O pins on 

the CPU. That leads to the high-speed bus that connects to the memory and the root0 (for 

example, northbridge) interconnect to the I/O bus. One of these busses is the pcib0 (for example, 

south-bridge) connection to the PCI bus. The PCI bus is managed by the pci0 device, which as 

you can see from the figure, has many drivers available for the myriad of devices that may be 

connected to it. In this example, the one device that we show is the atapci0 device representing 

the PCI-based ATA disk controller. The final two devices shown in Figure 8.15 are atadisk0 and 

atadisk1 that manage the operation of the drives themselves. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig15
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Figure 8.15 Sample configuration output. 

Resource Management 

As part of configuring and operating devices, the autoconfiguration code needs to manage 

hardware resources such as interrupt-request lines, I/O ports, and device memory. To aid 

device-driver writers in this task, FreeBSD provides a framework for managing these resources. 

To participate in bus-resource management, a bus device driver must register the set of 

functions shown in Table 8.7. Low-level devices such as those that operate individual disk drives 

do not have the global knowledge of resource utilization needed to allocate scarce systemwide 

resources such as interrupt-request lines. They may register a generic bypass routine for 

resources that they do not have the needed information to allocate. When called, the bypass 

routine simply calls the corresponding routine registered by their parent. The result is that the 

request will work its way up the device tree until it reaches a high-enough level that it can be 

resolved. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab07
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Table 8.7 Functions defined for device resource allocation. 

Often a high-level node in the tree will not have enough information to know how much of a 

resource to allocate. Thus, it will reserve a range of resources, leaving it to the lower-level nodes 

to allocate and activate the specific resources that they need from the reservation made by the 

higher-level node. 

The actual management of the allocated resources is handled by the kernel resource manager 

that was described in Section 6.3. The usual allocate and free routines have been expanded to 

allow different levels in the tree to manage different parts of these two functions. Thus, 

allocation breaks into three steps: 

1. Setting the range for the resource 

2. Initial allocation of the resource 

3. Activating the resource 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3
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Similarly, resource freeing is done in three steps: 

1. Deactivating the resource 

2. Releasing ownership of the resource to the parent bus 

3. Freeing it 

It is common for a high-level part of the tree to allocate a resource and then have a low-level 

driver activate and use the resource that it allocated. Some busses reserve space for their 

children that do not have drivers associated with them. Having the allocation and freeing broken 

up into three steps gives maximum flexibility in partitioning the allocation and freeing 

processes. 

The bus_driver_added(), bus_add_child(), and bus_child_detached() functions allow the 

device to be aware of changes in the I/O hardware so that it can respond appropriately. The 

bus_driver_added() function is called by the system when a new driver is loaded. The driver is 

added to some devclass, and then all current devices in that devclass have bus_driver_added() 

called to allow them to possibly match any unclaimed devices using the new driver. The 

bus_add_child() function is used during the identify phase of configuring some busses. It allows 

a bus device to create and initialize a new child device (for example, setting values for instance 

variables). The bus_child_detached() function is called by a driver when it decides that its 

hardware is no longer present (for example, a cardbus card is removed). It calls 

bus_child_detached() on its parent to allow it to do a detach of the child. 

The bus_probe_nomatch() routine gives the device a last-ditch possibility to take some action 

after autoconfiguration has failed. It may try to find a generic driver that can run the device in a 

degraded mode, or it may simply turn the device off. If it is unable to find a driver that can run 

the device, it notifies the devd daemon, a user-level process started when the system is booted. 

The devd daemon uses a table to locate and load the proper driver. The loading of kernel 

modules is described in Section 15.4. 

The bus_read_ivar() and bus_write_ivar() routines manage a bus-specific set of instance 

variables of a child device. The intention is that each different type of bus defines a set of 

appropriate instance variables such as ports and interrupt-request lines for the ISA bus. 

8.10 Device Virtualization 

Most virtualization systems support full virtualization in which guest operating systems use 

conventional bare-metal interfaces directly, including CPU, virtual memory, and timers, as well 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
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as drivers for off-the-shelf network-interface cards (NICs) and storage devices. Full 

virtualization allows guests to operate entirely unaware of the virtualized environment: a 

substantial simplification. 

Full virtualization incurs performance overhead because of the costs of intercepting and 

emulating processor and I/O operations not permitted outside the CPU’s supervisor ring. 

Bare-metal device drivers necessarily make assumptions about memory use that, while suitable 

for DMA-enabled devices on the PCI bus, make it difficult for virtualization systems to use 

OS-like virtual-memory optimizations such as moving memory pages between virtual machines 

to avoid data copying (page flipping). Finally, lack of virtualization awareness limits the 

opportunity for multiple virtual machines operating on the same physical hardware to exploit 

that locality for performance gain—for example, by forcing communication to take place using 

TCP/IP over emulated network interfaces rather than using shared memory. 

In contrast, paravirtualization makes guest operating systems explicitly aware of virtualization, 

improving performance and integration at the cost of requiring software adaptation. For 

example, the bhyve hypervisor integrated with the FreeBSD kernel supports paravirtualized 

network and storage devices via the Virtio interface. Virtio is used with full-machine emulators 

such as Qemu. FreeBSD supports not only paravirtualized devices on the stand-alone Xen 

hypervisor, but also paravirtualized CPU features such as interprocessor interrupts and 

inter-virtual-machine communication. 

With paravirtualization, host and guest environments (or for Xen, pairs of guest domains) 

implement a split device-driver model in which device-driver back ends implement device 

simulations for host-OSo physical devices that serve paravirtualization-aware device-driver 

front ends in the guest operating system. The back and front ends communicate via well-defined 

protocols reminiscent of communications between conventional device drivers and real physical 

devices, but with design choices more suited to virtualized environments. 

Interaction with the Hypervisor 

Explicit awareness of virtualization offers both performance and functionality benefits. Just as 

user processes make system calls to invoke operating-system kernel services, kernels themselves 

invoke hypercalls to request services from the hypervisor or virtualization framework. Using 

hypervisor features directly provides immediate benefits to the guest OS: support for hardware 

without native virtualization features (e.g., earlier X86 CPUs); performance improvements 

through batching of operations such as page-table updates; general system-performance 

improvements through scheduling features such as a yield hypercall; and avoidance of expensive 
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emulation of peripheral devices such as NICs and storage devices where more appropriate 

performance optimizations can be made for virtualized environments. 

Some hypervisors, such as FreeBSD’s bhyve, are embedded within existing operating-system 

kernels. Here, paravirtualization support is primarily focused on improving device-driver 

performance. Stand-alone hypervisors, such as Xen, offer richer inter-virtual-machine 

communications interfaces reminiscent of operating-system IPC primitives. This approach 

explicitly allows virtual machines both to provide services to, and to consume services offered by, 

other virtual machines; paravirtualized device drivers are just one such service. 

Hypercalls provide basic synchronous communication between a virtual machine and a 

hypervisor. However, the bulk of paravirtualized device-driver communication occurs via shared 

memory rings either between guest and host (e.g., in bhyve), or between multiple guests (e.g., 

under Xen). As with shared-memory interprocess communication on conventional OS kernels, 

avoiding copies via the hypervisor leads to big performance gains for bulk data transfer. Shared 

memory is configured using hypercalls, which are also used for event notification on the ring. In 

principle, entering the hypervisor can be entirely avoided in the steady state if a pair of 

communicating virtual machines, or host and guest, are running concurrently on different CPUs; 

they can likewise avoid (or suppress) signalling and rely on independently occurring context 

switches. In practice, communication protocols between device-driver front and back ends in 

Xen utilize dynamic page mappings that require hypercalls, and Virtio communication between 

front and back ends is often synchronous within a kernel-scheduled thread, even if requested 

operations can be processed asynchronously. 

Paravirtualization models vary in the semantics that they offer. For example, Virtio has been 

designed assuming direct access to guest memory from the host, more reminiscent of kernel 

access to user processes. As a result, communication rings can reference buffers that do not have 

strong page alignment. In contrast, Xen’s paravirtualized interfaces are designed to support 

back-end drivers operating in another domain. Thus, shared memory pages referenced by 

communication rings must be explicitly configured by pairs of guests using hypercalls. 

Virtio 

Virtio provides a simple, hypervisor-neutral, and performant interface for paravirtualized device 

drivers [Russell, 2008]. First introduced in Linux for use with both guest- and kernel-based 

virtual machines (KVMs), Virtio is now used across a range of virtualization systems, including 

FreeBSD’s bhyve hypervisor. Virtio defines several interfaces and mechanisms: a virtual-ring 

primitive used for bulk communication and a PCI-based model for device enumeration and 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref09
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feature negotiation. It also defines conventions for paravirtualized terminal access, memory 

ballooning, entropy provision, network interfaces, block storage, and the SCSI HBA driver. 

Virtio is designed for virtualization systems in which back-end device implementations are able 

to read and write guest operating-system memory directly. Direct memory access is possible 

when a hypervisor implements virtualized devices itself, or when the host shares an address 

space (typically a UNIX process) with the virtual-machine guest. For example, bhyve combines 

an in-kernel hypervisor with a userspace process implementing configuration, memory 

management, and device emulation. The bhyve user process donates memory pages to the guest 

while retaining direct memory access to them. This assumption of address-space sharing 

facilitates copy avoidance: shared communication rings between the front and back ends can 

refer to memory allocated and managed “as normal” in the guest kernel. As a result, bhyve’s user 

process can do scatter-gather I/O directly from guest buffer-cache and socket-buffer memory 

when emulating a device. Less tight address-space integration, as with Xen, incurs overhead as 

it requires either more data copying or dynamic mapping of pages containing buffers. 

The host exposes access to devices via a virtual PCI bus in the guest. The lowest-level front-end 

driver in the guest, vtpci, implements a bus to which other paravirtualized front-end drivers 

attach. Virtio devices are discovered via PCI enumeration, with each device offered to potential 

drivers to probe and attach. Table 8.8 lists the vtpci bus implemented interfaces described in 

virtio_bus_if.m. Front-end device drivers can use these interfaces to probe for matching 

back-end instances, negotiate supported feature sets with the back-end, configure 

communication queues to the back end, and subscribe to event notification to be delivered via 

emulated interrupts. Table 8.9 lists the optional interfaces described in virtio_if.m. Device 

drivers can optionally implement these interfaces to receive callbacks on successful 

device-driver attach and to be notified of back-end configuration changes (e.g., changes in 

virtual block-device size originating in the back end). 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab08
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Table 8.8 Virtio bus services exported to Virtio device drivers. 

 

Table 8.9 Interfaces exposed by Virtio device drivers to the Virtio bus. 

Virtio’s core communications primitive is the virtual queue, or virtqueue, that allows front- and 

back-end implementations to exchange chained buffers via a shared-memory communications 

ring. Each ring is described by a vring structure that points to an array of descriptor entries and 

two indexed control rings used to transfer ownership of buffers between endpoints. The key data 

structures for virtqueues are illustrated in Figure 8.16. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig16
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Figure 8.16 Virtio virtqueue data structures. The ring[] elements in the vring_avail are 

descriptor-chain indices, whereas ring[] elements in vring_used are arrays of vring_used_elem 

structures. 

Descriptor entries describe scatter-gather buffers in guest memory, that will typically carry 

requests and either data the front end would like to write/transmit, or space in which the back 

end should store read/received data. The descriptor array consists of a set of vring_desc entries, 

each of which contains a guest-physical address, length, flags indicating read/write status, and 

the next field that points to the optional next entry in a scatter-gather list; chains are terminated 

by a descriptor without the VRING_DESC_F_NEXT flag set. A typical chain’s first entry points 

to a command header, with later entries pointing to buffered data or buffer space. 

The available ring, described by vring_avail, allows the front end to pass chained buffers to the 

back end (e.g., to request that a filled buffer be written to disk, or request that a buffer be filled 

with a read from disk). The used ring, described by vring_used, allows the back end to return 

ownership of chains to the front end once it has been used (e.g., to acknowledge that the disk 

write is complete, or filled with data from a disk read). The vring_used_elem structure contains 

a length reporting the size of data copied from the back end, whereas the lengths in the 

descriptor array describe the space that is available. Notice that if supported by the device type, 

back-end drivers are able to return used buffer chains in a different order from that in which 
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they were made available. Reordering is appropriate for the block-storage back end, for example, 

where reordering I/O operations using elevator sorting can improve performance without 

harming semantics. 

The idx fields in both rings are incremented each time a new chained buffer has been 

successfully made available or used. The guest and host may be executing on different CPUs. 

Careful use of memory barriers following updates to the descriptor-ring and used-element 

entries is required to ensure that changes to these entries are visible to all CPUs before the 

changes to the idx fields become visible [Harris & Fraser, 2007]. Once an update has taken place, 

the host or guest can optionally notify the other party, either via a virtual PCI write in the 

paravirtualized driver, or via an interrupt to the guest kernel, that will propagate the interrupt to 

the device driver. Batching of requests is a key performance optimization. During steady-state 

processing, front and back-end implementations can avoid overhead by switching from 

per-packet notifications to polled operation. 

Table 8.10 lists the Virtio device drivers implemented by FreeBSD, which include virtual 

network and block devices, an entropy source (that is injected into the guest kernel’s 

random-number generator), the SCSI HBA driver front end, and the balloon driver. The balloon 

driver allows the host to request that the guest identify memory pages that are no longer in use 

and can be “returned” to the hypervisor to assist with memory pressure elsewhere in the system. 

In the event that these pages are required by the guest again in the future, touching the pages 

will restore them—albeit in a re-zeroed state. The balloon driver helps the host avoid swapping 

guest pages, which can lead to poor performance as competing host and guest virtual memory 

systems identify unused pages and swap them causing thrashing. 

 

Table 8.10 Virtio device IDs and drivers. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref08
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Individual paravirtualized device drivers closely resemble traditional device drivers, 

implementing kernel interfaces such as disks (see Section 8.4) and ifnet (see Section 8.5). 

Device communications occur via virtqueues rather than programmed I/O or DMA descriptor 

rings. The Virtio block-storage front end utilizes a single ring to push storage requests to the 

back end; in contrast, the network front end uses pairs of rings, one for receive and the other for 

transmit, for each virtual NIC queue. Virtio’s feature negotiation support has proven especially 

important for network device drivers. Feature negotiation allows Virtio to determine the 

availability of features such as checksum offload, TCP-segmentation offload (TSO), large-receive 

offload (LRO), and multiqueue. 

On the other side of virtual queues, back-end implementations are responsible for mapping 

virtual devices into underlying OS services. Virtual block devices are often mapped into 

filesystem images embedded on ordinary files; sometimes, however, they are passed through to 

underlying OS-exposed block devices such as partitions on SCSI disks. Read and write requests 

are submitted to the host kernel via normal I/O system calls—often using the preadv and 

pwritev variants that can accept scatter-gather arguments drawn from the host memory 

mappings of chained buffers, avoiding additional copying in the back end. 

Network devices require more complexity. They are most frequently handled by associating a 

virtual interface in the host (e.g., an if_tun or if_tap interface) with back-end driver instances. 

Providing access to link-layer bridging, IP-layer routing, and optionally, network-address 

translation via the host network stack allows the host’s network interfaces to be shared. Virtual 

network interfaces often allow communication between guests running on the same host. Where 

low-level network access is not available to the back-end implementation (e.g., for security 

reasons), it may be desirable to proxy network-layer traffic from the guest via sockets in the host 

network stack, requiring substantially more implementation complexity. 

Xen 

The Xen hypervisor takes a fundamentally different perspective on virtualization than do 

OS-centered approaches such as bhyve. The hypervisor is a stand-alone piece of software akin to 

a microkernel rather than a module integrated with a conventional kernel, with implications for 

the guest-OS device drivers [Barham et al., 2003; Chisnall, 2007]. Whereas Virtio focused on 

providing efficient paravirtualized device support optimized for shared memory access between 

host and guest, Xen implements an overt service model between a set of virtual machines, 

known as domains, running over a common hypervisor. 

The first domain running over Xen, domain 0, bootstraps the system, creates and manages user 

domains, and provides services to those domains. The hypervisor has direct support for only a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec4
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few CPU-oriented hardware devices (such as local APICs). Device drivers for storage controllers, 

network interface cards, and other more complex devices run in domain 0, which is granted 

direct hardware access. Domain 0 can then forward requests received from front-end device 

drivers to their physical counterparts. It can also support greater resource sharing in back-end 

drivers by mapping virtual disks into images stored in a filesystem on a physical device or by 

bridging a virtual network interface into a virtual switch connected to both other user domains 

and physical devices. 

Although placing back-end drivers in domain 0 is common, the model is flexible: any guest can 

provide back-end services to another. This flexibility allows what is known as domain 0 

disaggregation, the decomposition of a single privileged domain 0 into several driver domains to 

reduce both privileges and attack surfaces available to less trustworthy guests—not dissimilar to 

the reasons given for compartmentalization using Capsicum in Chapter 5. This decomposition is 

facilitated by the increasing prevalence of I/O Memory Management Units (IOMMUs), 

described later in this section, that allow safe delegation, or pass-through, of physical devices 

(such as PCI-connected storage controllers or network interfaces) to guests. Although FreeBSD 

10 is not able to operate as the boot-time domain 0, it can implement device-driver back ends, 

including exporting ZFS-backed storage, allowing it to act as a driver domain and as a simple 

consumer guest. Future releases are slated to include support for operating as domain 0, made 

easier by the advent of hardware-assisted virtualization combined with increasingly mature 

paravirtualization support. 

Among the services offered to user domains by domain 0 is XenStore, a rendezvous service for 

inter-guest communication, and a set of back-end drivers for network interfaces and block 

storage. Guests use XenStore to enumerate back-and front-end device configurations during 

boot, and to offer and look up grant table references, which instantiate shared memory between 

domains, and event channels, which deliver inter-domain signalling. Together, these facilities 

discover virtual devices and configure and implement communication rings between front-and 

back-end drivers, similar to Virtio’s virtqueues. 

Different combinations of processors and operating systems require different levels of guest-OS 

adaptation for Xen. At one extreme, earlier Intel and AMD processors do not have fully 

virtualizable instruction sets, requiring guest operating systems to use Xen in fully 

paravirtualized (PV) mode. In effect, the FreeBSD PV kernel is its own X86-like platform target 

with a customized virtual memory subsystem and other substantial kernel changes. The guest 

kernel runs in ring 1 rather than 0 (which is occupied by Xen itself), and hypercalls are 

substituted for unvirtualizable privileged instructions. A PV kernel must use explicit hypercalls 

to do operations such as: 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05
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• Access a low-level console; 

• Implement lazy floating-point unit (FPU) context switching; 

• Implement unvirtualizable descriptor-update instructions; 

• Request page-table changes and trigger TLB flushes; 

• Receive interrupt-like event notifications from timers and I/O devices; and 

• Send Inter-Processor Interrupts (IPIs) required for multi-processor operation. 

At the other extreme, pure Hardware Virtual Machine (HVM) mode relies on more recently 

introduced Intel Virtualization Technology (VT) and AMD Virtualization (AMD-V) CPU features 

such as nested page tables that allow kernels to execute a range of privileged operations despite 

running under a hypervisor. Combined with emulations of conventional hardware devices 

borrowed from Qemu, HVM mode allows entirely unmodified guest operating systems to run 

over Xen. 

In practice, however, the preferred configuration for FreeBSD over Xen combines aspects of 

both approaches: the kernel uses hardware-supported extended page tables to avoid a modified 

virtual-memory subsystem, while also using paravirtualized device drivers and other hypervisor 

features to improve performance. Table 8.11 shows a subset of Xen hypercalls, some used only in 

PV mode, others used in both PV and HVM modes. Hypercalls continue to be used for the 

following types of operations even in HVM mode: 

• Scheduler and timer operations, such as the set_singleshot_timer virtual CPU (VCPU) 

hypercall, which schedules an upcall after a suitable interval; 

• Mapping page grants delegating memory from other domains; and 

• Loading binaries into new virtual machines. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab11
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Table 8.11 Xen hypercalls used in PV and HVM modes. 

For the remainder of this section, we will be concerned primarily with how FreeBSD uses 

paravirtualized features when operating over Xen HVM. Xen discovery and initialization begins 

early in the X86 boot in xen_hvm_init(): 

1. The cpuid instruction detects whether Xen is present. If so, the kernel will be configured to 

use paravirtualized features. 

2. The hypercall region, a memory page holding code that invokes hypercalls, is allocated from 

kernel memory and initialized with the help of the hypervisor using emulated 

write-model-specific-register (wrmsr) instructions. Xen will select the hypercall implementation 

most suitable for the current CPU architecture; Intel VT will use vmcall, and AMD-V will use 

vmmcall. 

3. The xen_version hypercall queries available Xen features; used for PV mode, and by 

paravirtualized drivers that may run on PV or HVM systems, to determine whether the 

distinction between guest physical page numbers and machine page numbers is visible to the 

guest. On HVM, nested page tables mask this distinction. 

4. The cpu_ops operation vector is updated so that Xen versions of CPU initialization, CPU 

resume, and IPI support are used rather than the default X86 versions. 
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5. The memory_op hypercall is invoked to set up the Xen shared_info page, a read-write page 

shared with the hypervisor itself. The page holds event-channel masks, per-CPU information, 

and time-keeping information such as skew and rate adjustment information to convert a 

timestamp-counter (TSC) value to wall-clock time. 

6. The hvm_op hypercall is invoked to set up an explicit event-channel callback, used to notify 

the guest of events on communication rings in a way similar to normal interrupt delivery. 

7. An emulated I/O instruction triggers Xen to disable emulations of conventional devices used 

with full-machine virtualization. Only paravirtualized drivers will attach, improving 

performance and preventing confusion caused by duplicate attachments of the same block or 

network devices. 

8. Finally, each virtual CPU invokes the vcpu_op hypercall to register its per-CPU vcpu_info 

structure, which contains the CPU’s event-channel, architectural, and time state. 

These initialization steps may be re-run following virtual-machine suspend/resume or 

migration, as the guest may find changes in CPU and Xen features and configuration. For 

example, communication rings to device-driver back ends must be reestablished, as they will 

now be hosted by different domains, requiring shared memory and event channels to be 

rediscovered. 

Whereas Virtio provided an emulated PCI bus that regular bus drivers could enumerate, Xen 

provides guest configuration data explicitly via XenStore, a filesystem-like hierarchical 

key-value database holding system configuration information published by domain 0. XenStore 

contains named subtrees for each live domain including configuration information such as its 

UUID, target physical memory usage used by the balloon, an enumeration of front-end and 

back-end devices to configure (along with grant-table and event-channel state required to 

communicate with corresponding drivers in other domains), and per-device configuration 

information (e.g., whether an instance of the netfront driver supports TCP Segmentation 

Offload (TSO)). XenStore is implemented by the xenstore front-end device driver, whose back 

end is accessed via shared-memory rings and event channels that, of necessity, cannot be 

bootstrapped using XenStore. Instead, XenStore resources are configured using the shared_info 

page initialized by the hypervisor during early boot. 

XenStore information on device topology and configuration, sometimes referred to as XenBus, 

populates two synthetic-Newbus busses in the guest: xenbus_back and xenbus_front, that 

respectively attach back-end and front-end device drivers within the guest. XenBus provides 

several abstractions to paravirtualized drivers, such as convenient wrappers that can be used by 

front-end drivers to delegate access to shared-memory rings to back-end drivers in other 
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domains. These busses are rooted in the xenpci driver in FreeBSD 10. The driver is named 

xenpci because it is visible in PCI-bus enumeration in the guest, and is able to own and handle 

PCI-like interrupts and own memory resources. Use of Xen’s event-channel mechanism is 

preferred over the use of emulated interrupts, so in FreeBSD 11 this driver is replaced by a new 

root for Xen-provided paravirtualized devices, xenpv. This change eliminates the last remnants 

of PCI-emulation reliance in HVM configurations. 

A full list of paravirtualized device drivers can be found in Table 8.12. Where device drivers are 

configured using XenBus, their back ends declare an explicit “type” allowing driver front ends to 

discover it. Three low-level paravirtualized drivers are configured without help from XenBus 

and are attached unconditionally to nexus or xenpci: 

1. The console device driver supports low-level I/O via a virtual console (used only for PV 

guests). 

2. The control driver services management messages from domain 0, such as requests to 

shutdown or reboot. 

3. The timer driver implements FreeBSD’s internal event timer mechanism using Xen’s timer 

and event-channel primitives instead of using an emulated local APIC. 

 

Table 8.12 Xen paravirtualized device drivers. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab12
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As with Virtio, communication between device-driver front and back ends is done using a 

common ring-buffer implementation. In Xen, however, these ring buffers represent 

communication between guests rather than the hierarchical host-guest relationship found with 

in-OS hypervisors such as bhyve. Ring buffers are layered over two hypervisor primitives: 

shared memory configured using grant tables that authorize access to selected memory pages in 

one domain by another, and event channels that provide an interrupt-like wakeup mechanism. 

Rings pass requests and responses that may themselves contain further grants referencing pages 

to be mapped into the remote domain. Alternatively, data will be copied into the rings, or copied 

by the hypervisor, to avoid the overhead of page-table manipulation and TLB flushes. 

Xen grant tables are the mechanism by which memory pages may be shared with, transferred to, 

or received from a second domain. Each domain has its own grant table stored as an array of 

grant-table entries in memory shared with the hypervisor, as shown in Figure 8.17. Each entry 

describes one “grant”: authorization to share or transfer a page owned by the domain, or a 

request to receive a page from another domain. The table is allocated by the guest kernel, 

initialized, and then shared with the hypervisor via the memory_op hypercall during boot. 

 

Figure 8.17 Xen grant-table entries control and track memory sharing between domains. 

Each grant-table entry describes a single grant operation. Entries sharing or transferring a page 

to another domain specify the physical page number in the source domain, and the remote 

domain identifier to which the page will be sent. Entries authorizing receipt of a page will 

identify the remote domain, a local page which will be replaced with the transferred page and a 

grant-table reference. Grant-table references are simply integer indexes into a source domain’s 

grant table, and may be sent to other domains as data via requests and responses in 

communication rings. Grant-table entries also contain a flags field that the domain uses to 

select the operation to perform and whether the grant or mapping should be read-only. 

Grant-table entry flags also allow the hypervisor to export status bits indicating whether the 

page is currently mapped in a remote domain (here its grant status cannot be changed, as Xen 

does not support revocation while the page is in use), and to confirm that a page has been 

accepted for transfer by the remote domain. Table 8.13 shows the possible flag values. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab13
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Table 8.13 Xen grant-table entry operations, domain flags, and hypervisor flags. 

Domains must use an explicit hypercall, grant_table_op, to notify the hyper-visor of one or 

more grant-table entries authorizing receipt of grants from a remote domain. In contrast, 

sharing a page with or transferring a page to a remote domain does not use an explicit call as the 

hypervisor can look up the grant-table entry in the sender’s memory using the grant reference 

when a mapping request occurs in the recipient. Xen does not support revocation of shared 

pages while they are mapped by the remote domain; instead, the sender must wait for the 

GTF_reading and GTF_writing flags to be cleared by the hypervisor, at which time 

GTF_permit_access can be cleared. Atomic operations and memory barriers safely expose 

writes to the grant table between guest and hypervisor. 

Device-driver front ends allocate and share memory with back ends, rather than vice versa. This 

approach minimizes modification to front-end memory allocation which is helpful for less 

virtualization-aware guest operating systems, and also helps avoid data copies. Front-end 

drivers will rely on XenBus’s xenbus_grant_ring () function to share locally allocated rings with 

back-end drivers that will communicate references to the back end via XenStore. Grant 

references embedded in requests and responses sent via these rings share and transfer pages 

containing buffers (e.g., network packets and disk blocks). These grants and references will be 

managed directly using interfaces defined in gnttab.c, such as 

gnttab_grant_foreign_access_ref(), which grants a remote domain shared access to a page, 

gnttab_end_foreign_access_ref(), which cancels a grant of a shared page with a remote 

domain, and gnttab_grant_foreign_transfer_ref(), which accepts transfer of a page from a 

remote domain. 

Grant tables, with the help of XenStore, allow shared memory to be configured between 

device-driver front and back ends. Event management is required to construct higher-level 

communication primitives, such as blocking rings for requests and responses. In Xen, event 

management is done via event channels that allow interrupt-like callbacks to be triggered within 
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a domain by the hypervisor (for physical- and virtual-device interrupts) and other domains (for 

split device drivers and other interdomain communication). This mechanism implements 

Inter-Processor Interrupts (IPIs) between VCPUs within a single domain, used by FreeBSD for 

interprocessor synchronization. 

Domains enumerate event channels using event ports, integers associated with bits in a 

per-guest global bitmask stored in the domain’s shared_info structure. The size of the bitmask 

limits the number of unique event sources from which a domain can receive notifications; for 

32-bit domains, the mask is 1024-bit; for 64-bit guests, 4096 bits. These limits can be avoided 

through use of the new FIFO event channel facility in more recent Xen versions, but this is not 

yet supported by FreeBSD. When an event channel fires, the bit corresponding to its event port 

in the bitmask will be set to 1; if the bit transitions from 0 to 1, then an upcall will be delivered, 

subject to a per-VCPU flag in the vcpu_info structure allowing interrupts to be disabled for that 

virtual CPU. 

The upcall is delivered in the style of a traditional software interrupt; FreeBSD handles this code 

in xen_intr.c that routes interrupts via intr_execute_handlers(). After the event-channel bit 

has been set, further upcall invocation is suppressed until the bit has been cleared by the guest. 

Event ports are allocated and bound to particular event sources using event_channel_op 

hypercall operations: 

• bind_pirq returns an event port allowing domain 0 to receive interrupts from underlying 

physical devices. 

• bind_virq returns an event port for per-domain virtual devices, such as timers. 

• bind_ipi returns an event port allowing a domain to deliver an IPI to another VCPU in the 

same domain. 

• alloc_unbound and bind_interdomain allow a pair of cooperating domains to allocate and 

bind a pair of event ports, establishing a two-way interdomain event channel for a variety of 

purposes including ring buffer events. 

Domains can deliver events on interdomain event channels using the send operation, and close 

no-longer-required event ports using the close operation. Domains can also bind an event port 

to a particular VCPU using the bind_vcpu operation. These functions are configurable enough 

to expose them up the xen_intr stack as though event channels were a Programmable 

Interrupt Controller (PIC), thus allowing the device-driver stack to remain oblivious to the 

implementation details. As with grant-table references, event-port numbers can be shared 
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between domains as integers embedded in messages, and distributed using XenStore to 

configure virtual interrupts linking both halves of split device drivers. 

Using grant-table entries and event channels, domains are able to implement ring buffers 

suitable for carrying requests and responses between device driver front ends and back ends. As 

with Virtio rings, Xen communication rings consist of a ring buffer allowing one party to send 

requests to, and receive responses from, another party. Unlike Virtio rings, request and 

response messages are embedded in the ring directly, with the option of referring to shared 

pages or event channels via grant-table references and event-port numbers. An event channel 

associated with each ring allows a recipient to receive an upcall when the ring transitions from 

empty to non-empty, and a sender to receive an upcall when the ring transitions from full to 

non-full. Macros defined in ring.h differentiate domain-private versions of request and 

response head and tail indices from versions in shared memory, allowing multiple requests or 

responses to be inserted before an event is delivered to amortize event-delivery costs. 

As with Virtio’s virtual block device, Xen’s blkback and blkfront use a single ring to carry 

requests and responses between the device-driver front and back ends. The front end 

temporarily delegates read-only pages to the back end to provide data to write to the virtual 

device, and writable pages into which data can be read from the virtual device. The block-device 

back end in FreeBSD is able to direct I/O to any underlying block device in the driver domain, 

including raw-disk devices and ZFS volumes. 

Also similar to Virtio’s virtual network-interface device, Xen’s netback and netfront use a pair 

of rings to implement transmit and receive rings for virtual network interfaces. The back end 

exposes the other end of the virtual interface as a if_xnb device in the driver domain, which can 

then be bridged to conventional Ethernet using the FreeBSD if_bridge driver. Techniques 

originally developed for physical-network-interface performance optimization such as checksum 

offloading, TCP Segmentation Offload, and Large Receive Offload apply equally well to virtual 

network interfaces, and are typically utilized to mitigate domain-switching costs. 

Device Pass-Through 

Another increasingly common approach is delegation of physical device access to virtual 

machines, rather than virtualizing devices. This approach requires hardware support, 

implemented using IOMMUs that virtualize the address space seen by DMA engines on 

peripherals in the same manner that the CPU’s memory-management unit (MMU) virtualizes 

memory access for the processor. This approach safely delegates access to I/O ports and DMA 

descriptor rings to guest virtual machines. For example, for suitably virtualization-aware 
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network interface cards, this approach delegates specific descriptor rings to the guest allowing 

direct Ethernet access with few performance overheads. 

Device delegation offers different configuration and performance tradeoffs: for example, it is 

unsuitable if the host operating system instance wishes to impose fine-grained policies on 

network access, use virtual disks rather than physical ones, or if communication is to be between 

virtual machines rather than to remote systems. When a device must be shared by multiple 

virtual machines, the IOMMU alone is insufficient: the device itself must be aware of multiple 

virtual machines and be able to impose OS-originated policy on their interactions. For example, 

a virtualization-aware NIC would allow the host or domain 0 operating system instance an 

opportunity to control NIC-side rules for distributing packets to specific receive rings, and 

limiting packets that can be sent on specific transmit rings; individual guest virtual machines 

will then be able to interact directly with the NIC using those rings without trapping to the 

hypervisor or host operating system. 

Exercises 

8.1 Describe the differences between the PCI and USB busses. 

8.2 Why was the /dev filesystem added to FreeBSD 5? 

8.3 Give an example of a network interface that is useful without an underlying hardware 

device. 

8.4 Give two reasons why the addresses of a network interface are not in the network-interface 

data structure. 

8.5 Describe two tasks performed by a network-interface output routine. 

8.6 Why is the identity of the network interface on which each message is received passed 

upward with the message? 

8.7 Name the two devices that make up a pseudo-terminal. Explain the role of each of these 

pieces. 

8.8 What are the two modes of terminal input? Which mode is most commonly in use when 

users converse with an interactive screen editor? 

8.9 Explain why there are two character queues for dealing with terminal input. Describe the 

use of each. 
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8.10 What signal is sent to what process associated with a terminal if a network connection 

breaks in the middle of a session? 

8.11 Name the three layers between the filesystem and the disk. Briefly describe the purpose of 

each layer. 

8.12 Give an example of a GEOM provider and a GEOM consumer. 

8.13 What happens if two GEOM consumers try to operate at the same time? 

8.14 Draw a sequence of pictures showing what happens to the GEOM configuration in Figure 

8.6 when the disk becomes unavailable. 

8.15 Name the three layers within CAM. Briefly describe the service that each of these layers 

provides. 

8.16 Can the CAM layer handle the setup and tear down of the DMA maps for one of its device 

drivers? Why or why not? 

8.17 What is the purpose of the /usr/sbin/config program? 

8.18 Give two reasons why it is unsafe to allow a kernel to load code dynamically. 

8.19 Why are device probing and attaching done as two separate steps? 

8.20 Describe the purpose of the device structure. 

8.21 Run the /usr/sbin/devinfo program on a FreeBSD machine and identify the hardware 

associated with each of the leaf nodes. 

8.22 Name the three steps used for resource allocation and freeing. Why are these functions 

broken into three separate steps? 

**8.23 All devices are currently attached once in a depth-first search. But some devices may 

offer services needed by devices higher up the tree. Describe devices that fall into this class and 

give a plan to build a multipass-attach approach into newbus to handle them. 
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Chapter 9. The Fast Filesystem 

9.1 Hierarchical Filesystem Management 

The operations defined for local filesystems are divided into two parts. Common to all local 

filesystems are hierarchical naming, locking, quotas, attribute management, and protection. 

These features, which are independent of how data are stored, are provided by the UFS code 

described in the first seven sections of this chapter. The other part of the local filesystem, the 

filestore, is concerned with the organization and management of the data on the storage media. 

Storage is managed by the datastore filesystem operations that are provided by the FFS code 

described in the final two sections of this chapter. We use the acronym UFS when referring to 

the fast filesystem in this book. 

The vnode operations defined for performing hierarchical filesystem operations are shown in 

Table 9.1. The most complex of these operations is that for performing a lookup. The 

filesystem-independent part of the lookup is described in Section 7.4. The algorithm used to 

lookup a pathname component in a directory is described in Section 9.3. 

 

Table 9.1 Hierarchical filesystem operations. 

There are five operators for creating names. The operator used depends on the type of object 

being created. The create operator creates regular files and also is used by the networking code 

to create AF_LOCAL domain sockets. The link operator creates additional names for existing 

objects. The symlink operator creates a symbolic link (see Section 9.3 for a discussion of 

symbolic links). The mknod operator creates character special devices (for compatibility with 

other UNIX systems that still use them); it is also used to create fifos. The mkdir operator 

creates directories. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
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There are three operators for changing or deleting existing names. The rename operator deletes 

a name for an object in one location and creates a new name for the object in another location. 

The implementation of this operator is complex when the kernel is dealing with the movement 

of a directory from one part of the filesystem tree to another. The remove operator removes a 

name. If the removed name is the final reference to the object, the space associated with the 

underlying object is reclaimed. The remove operator operates on all object types except 

directories; they are removed using the rmdir operator. 

Three operators are supplied for object attributes. The kernel retrieves attributes from an object 

using the getattr operator and stores them using the setattr operator. Access checks for a given 

user are provided by the access operator. 

Five operators are provided for interpreting objects. The open and close operators have only 

peripheral use for regular files, but when they are used on special devices, they notify the 

appropriate device driver of device activation or shutdown. The readdir operator converts the 

filesystem-specific format of a directory to the standard list of directory entries expected by an 

application. Note that the interpretation of the contents of a directory is provided by the 

hierarchical filesystem-management layer; the filestore code considers a directory as just 

another object holding data. The readlink operator returns the contents of a symbolic link. As 

with directories, the filestore code considers a symbolic link as just another object holding data. 

The mmap operator prepares an object to be mapped into the address space of a process. 

Three operators are provided to allow process control over objects. The poll operator allows a 

process to find out whether an object is ready to be read or written. The ioctl operator passes 

control requests to a special device. The advlock operator allows a process to acquire or release 

an advisory lock on an object. None of these operators modifies the object in the filestore. They 

are simply using the object for naming or directing the desired operation. 

There are four operations for management of the objects. The inactive and reclaim operators 

were described in Section 7.3. The lock and unlock operators allow the callers of the vnode 

interface to provide hints to the code that implements operations on the underlying objects. 

Stateless filesystems such as NFS ignore these hints. Stateful filesystems, however, can use hints 

to avoid doing extra work. For example, an open system call requesting that a new file be created 

requires two steps. First, a lookup call is done to see if the file already exists. Before the lookup is 

started, a lock request is made on the directory being searched. While scanning through the 

directory checking for the name, the lookup code also identifies a location within the directory 

that contains enough space to hold the new name. If the lookup returns successfully (meaning 

that the name does not already exist), the open code verifies that the user has permission to 

create the file. If the caller is not eligible to create the new file, then they are expected to call 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec3


 

508 

unlock to release the lock that they acquired during the lookup. Otherwise, the create operation 

is called. If the filesystem is stateful and has been able to lock the directory, then it can simply 

create the name in the previously identified space because it knows that no other processes will 

have had access to the directory. Once the name is created, an unlock request is made on the 

directory. If the filesystem is stateless, then it cannot lock the directory, so the create operator 

must rescan the directory to find space and to verify that the name has not been created since 

the lookup. 

9.2 Structure of an Inode 

To allow files to be allocated concurrently and to provide random access within files, FreeBSD 

uses the concept of an index node, or inode. The inode contains information about the contents 

of the file, as shown in Figure 9.1. This information includes the following: 

• The type and access mode for the file 

• The file’s owner and group-access identifiers 

• The time that the file was created, when it was most recently read and written, and when its 

inode was most recently updated by the system 

• The size of the file in bytes 

• The number of physical blocks used by the file (including blocks used to hold indirect pointers 

and extended attributes) 

• The number of directory entries that reference the file 

• The kernel and user-setable flags that describe characteristics of the file 

• The generation number of the file (a randomly selected number assigned to the inode each 

time that the latter is allocated to a new file; the generation number is used by NFS to detect 

references to deleted files) 

• The block size of the data blocks referenced by the inode (typically the same as, but sometimes 

larger than, the filesystem block size) 

• The size of the extended attribute information 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_22
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Figure 9.1 The structure of an inode. 

Notably missing in the inode is the filename. Filenames are maintained in directories rather 

than in inodes because a file may have many names, or links, and the name of a file can be large 

(up to 255 bytes in length). Directories are described in Section 9.3. 

To create a new name for a file, the system increments the count of the number of names 

referring to that inode. Then the new name is entered in a directory, along with the number of 

the inode. Conversely, when a name is deleted, the entry is deleted from a directory, and the 

name count for the inode is then decremented. When the name count reaches zero, the system 

deallocates the inode by putting all the inode’s blocks back on a list of free blocks. 

The inode also contains an array of pointers to the blocks in the file. The system can convert 

from a logical block number to a physical sector number by indexing into the array using the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
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logical block number. A null array entry shows that no block has been allocated and will cause a 

block of zeros to be returned on a read. On a write of such an entry, a new block is allocated, the 

array entry is updated with the new block number, and the data are written to the disk. 

Inodes are fixed in size, and most files are small, so the array of pointers must be small for 

efficient use of space. The first 12 array entries are allocated in the inode itself. For typical 

filesystems, this implementation allows the first 384 Kbyte of data to be located directly via a 

simple indexed lookup. 

For somewhat larger files, Figure 9.1 shows that the inode contains a single indirect pointer that 

points to a single indirect block of pointers to data blocks. To find the 100th logical block of 

a file, the system first fetches the block identified by the indirect pointer and then indexes into 

the 88th block (100 minus 12 direct pointers) and fetches that data block. 

For files that are bigger than a few Mbyte, the single indirect block is eventually exhausted; 

these files must resort to using a double indirect block, which is a pointer to a block of 

pointers to pointers to data blocks. For files of multiple Tbyte, the system uses a triple 

indirect block, which contains three levels of pointers before reaching the data block. 

Although indirect blocks appear to increase the number of disk accesses required to get a block 

of data, the overhead of the transfer is typically much lower. In Section 7.4, we discuss the 

management of the cache that holds recently used disk blocks. The first time that a block of 

indirect pointers is needed, it is brought into the cache. Further accesses to the indirect pointers 

find the block already resident in memory; thus, they require only a single disk access to get the 

data. 

Changes to the Inode Format 

Traditionally, the FreeBSD fast filesystem (which we shall refer to in this book as UFS1) 

[McKusick et al., 1984] and its derivatives have used 32-bit pointers to reference the blocks used 

by a file on the disk. The UFS1 filesystem was designed in the early 1980s when the largest disks 

were 330 Mbyte. There was debate at the time whether it was worth squandering 32 bits per 

block pointer rather than using the 24-bit block pointers of the filesystem that it replaced. 

Luckily, the futurist view prevailed, and the design used 32-bit block pointers. Over the 20 years 

since it has been deployed, storage systems have grown to hold over a Pbyte of data. Depending 

on the block size configuration, the 32-bit block pointers of UFS1 run out of space in the 1 to 4 

Tbyte range. While some stopgap measures can be used to extend the maximum-size storage 

systems supported by UFS1, by 2002 it became clear the only long-term solution was to use 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref16
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64-bit block pointers. Thus, we decided to build a new filesystem, UFS2, that would use 64-bit 

block pointers. 

We considered the alternatives between trying to make incremental changes to the existing 

UFS1 filesystem versus importing another existing filesystem such as XFS [Sweeney et al., 1996], 

or ReiserFS [Reiser, 2001]. We also considered writing a new filesystem from scratch so that we 

could take advantage of recent filesystem research and experience. We chose to extend the UFS1 

filesystem because this approach allowed us to reuse most of the existing UFS1 code base. The 

benefits of this decision were that UFS2 was developed and deployed quickly, it became stable 

and reliable rapidly, and the same code base could be used to support both UFS1 and UFS2 

filesystem formats. Over 90 percent of the code base is shared, so bug fixes and feature or 

performance enhancements usually apply to both filesystem formats. 

The on-disk inodes used by UFS1 are 128 bytes in size and have only two unused 32-bit fields. It 

would not be possible to convert to 64-bit block pointers without reducing the number of direct 

block pointers from 12 to 5. Doing so would dramatically increase the amount of wasted space, 

since only direct block pointers can reference fragments, so the only alternative is to increase the 

size of the on-disk inode to 256 bytes. 

Once one is committed to changing to a new on-disk format for the inodes, it is possible to 

include other inode-related changes that were not possible within the constraints of the old 

inodes. While it was tempting to throw in everything that has ever been suggested over the last 

20 years, we felt that it was best to limit the addition of new capabilities to those that were likely 

to have a clear benefit. Every new addition adds complexity that has a cost both in 

maintainability and performance. Obscure or little-used features may add conditional checks in 

frequently executed code paths such as read and write, slowing down the overall performance of 

the filesystem even if they are not used. 

Extended Attributes 

A major addition in UFS2 is support for extended attributes. Extended attributes are a piece of 

auxiliary data storage associated with an inode that can be used to store auxiliary data that is 

separate from the contents of the file. The idea is similar to the concept of data forks used in the 

Apple filesystem [Apple, 2003]. By integrating the extended attributes into the inode, it is 

possible to provide the same integrity guarantees as are made for the contents of the file. 

Specifically, the successful completion of an fsync system call ensures that the file data, the 

extended attributes, and all names and paths leading to the names of the file are in stable store. 
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The current implementation has space in the inode to store up to two blocks of extended 

attributes. The new UFS2 inode format had room for up to five additional 64-bit pointers. Thus, 

the number of extended attribute blocks could have been between one to five blocks. We chose 

to allocate two blocks to the extended attributes and to leave the other three as spares for future 

use. By having two, all the code had to be prepared to deal with an array of pointers, so if the 

number is expanded into the remaining spares in the future, the existing implementation will 

work without changes to the source code. By saving three spares, we provided a reasonable 

amount of space for future needs. And if the decision to allow only two blocks proves to be too 

little space, one or more of the spares can be used to expand the size of the extended attributes 

in the future. If vastly more extended attribute space is needed, a spare could be used as an 

indirect pointer to extended attribute data blocks. 

Figure 9.2 shows the format used for the extended attributes. The first field of the header of each 

attribute is its length. Applications that do not understand the namespace or name can simply 

skip over the unknown attribute by adding the length to their current position to get to the next 

attribute. Thus, many different applications can share the usage of the extended attribute space, 

even if they do not understand each other’s data types. 

 

Figure 9.2 Format of extended attributes. The header of each attribute has a 4-byte length, 

1-byte namespace class, 1-byte content pad length, 1-byte name length, and name. The name is 

padded so that the contents start on an 8-byte boundary. The contents are padded to the size 

shown by the “content pad length” field. The size of the contents can be calculated by 

subtracting from the length the size of the header (including the name) and the content pad 

length. 

The first of two initial uses for extended attributes is to support an access control list, 

generally referred to as an ACL. An ACL replaces the group permissions for a file with a more 

specific list of the users that are permitted to access the files. The ACL also includes a list of the 

permissions that each user is granted. These permissions include the traditional read, write, and 

execute permissions along with other properties such as the right to rename or delete the file 

[Rhodes, 2014]. 

Earlier implementations of ACLs were done with a single auxiliary file per filesystem that was 

indexed by the inode number and had a small fixed-size area to store the ACL permissions. The 

small size was intended to keep the size of the auxiliary file reasonable, since it had to have 
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space for every possible inode in the filesystem. There were two problems with this 

implementation. The fixed size of the space per inode to store the ACL information meant that it 

was not possible to give access to long lists of users. The second problem was that it was difficult 

to commit changes atomically to the ACL list for a file, since an update required that both the 

file inode and the ACL file be written to have the update take effect [Watson, 2000]. 

Both problems with the auxiliary file implementation of ACLs are fixed by storing the ACL 

information directly in the extended-attribute data area of the inode. Because of the large size of 

the extended attribute data area (a minimum of 8 Kbyte and typically 64 Kbyte), long lists of 

ACL information can be easily stored. Space used to store extended attribute information is 

proportional to the number of inodes with extended attributes and the size of the ACL lists that 

they use. Atomic update of the information is much easier, since writing the inode will update 

the inode attributes and the set of data that the inode references including the extended 

attributes in one disk operation. While it would be possible to update the old auxiliary file on 

every fsync system call done on the filesystem, the cost of doing so would be prohibitive. Here, 

the kernel knows if the extended attribute data block for an inode is dirty and can write just that 

data block during an fsync call on the inode. 

The second use for extended attributes is for data labeling. Data labels provide permissions for a 

mandatory access control (MAC) framework enforced by the kernel. As described in 

Section 5.10, the kernel’s MAC framework permits dynamically introduced system-security 

modules to modify system security functionality. This framework can be used to support a 

variety of new security services, including traditional labelled mandatory access control models. 

The framework provides a series of entry points that are called by code supporting various 

kernel services, especially with respect to access control points and object creation. The 

framework then calls out to security modules to offer them the opportunity to modify security 

behavior at those MAC entry points. Thus, the filesystem does not codify how the labels are used 

or enforced. It simply stores the labels associated with the inode and produces them when a 

security module needs to query them to do a permission check [Watson, 2001; Watson et al., 

2003]. 

We considered storing symbolic links in the extended attribute area but chose not to do so for 

four reasons: 

1. Most symbolic links fit within the 120 bytes normally used to store the direct and indirect 

pointers, and thus do not need a disk block to be allocated to hold them. 

2. If the symbolic link is large enough to require storage in a disk block, the time to access an 

extended storage block is the same as the time to access a regular data block. 
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3. Since symbolic links rarely have any extended attributes, there would be no savings in storage, 

since a filesystem fragment would be needed whether it was stored in a regular data block or in 

an extended storage block. 

4. If the symbolic link were stored in an extended storage block, it would take more time to 

traverse down the attribute list to find it. 

New Filesystem Capabilities 

Several other improvements were made when the enlarged inode format was created. We 

decided to get an early jump on the year 2038 problem when the 32-bit time fields overflow 

(specifically, Tue Jan 19 03:14:08 2038 GMT, which could be a really ugly way to usher in the 

first author’s 84th birthday). We expanded the time fields (which hold seconds-since-1970) for 

access, modification, and inodemodification times from 32 bits to 64 bits. At plus or minus 136 

billion years, this expansion should carry us from well before the universe was created until long 

after our sun has burned itself out. We left the nanoseconds fields for these times at 32 bits 

because we did not feel that added resolution was going to be useful in the foreseeable future. 

We considered expanding the time to only 48 bits. We chose to go to 64 bits, since 64 bits is a 

native size that can be easily manipulated with existing and likely future architectures. Using 48 

bits would have required an extra unpacking or packing step each time the field was read or 

written. Also, going to 64 bits ensures enough bits for all likely measured time so it will not have 

to be enlarged. 

We also added a new time field (also 64 bits) to hold the birth time (also commonly called the 

creation time) of the file. The birth time is set when the inode is first allocated and is not 

changed thereafter. It has been added to the structure returned by the stat system call so that 

applications can determine its value and so that archiving programs such as dump, tar, and 

pax can save this value along with the other file times. The birth time was added to a previously 

spare field in the stat system-call structure so that the size of the structure did not change. Thus, 

old versions of programs that use the stat call continue to work. 

To date, only the dump program has been changed to save the birth-time value. This new 

version of dump, which can dump both UFS1 and UFS2 filesystems, creates a new dump format 

that is not readable by older versions of restore. The updated version of restore can identify 

and restore from both old and new dump formats. The birth times are only available and setable 

from the new dump format. 

The utimes system call sets the access and modification times of a file to a specified set of values. 

It is used primarily by archive retrieval programs to set a newly extracted file’s times back to 
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those associated with the file’s times in the archive. With the addition of birth time, we added a 

new system call that allows the setting of access, modification, and birth times. However, we 

realized that many existing applications will not be changed to use the new utimes system call. 

The result will be that the files that they retrieved from archives will have a newer birth time 

than access or modification times. 

To provide a sensible birth time for applications that are unaware of the birth-time attribute, we 

changed the semantics of the utimes system call so that if the birth time was newer than the 

value of the modification time that it was setting, it would set the birth time to the same time as 

the modification time. An application that is aware of the birth-time attribute can set both the 

birth time and the modification time by doing two calls to utimes. First, it calls utimes with a 

modification time equal to the saved birth time, and then it calls utimes a second time with a 

modification time equal to the (presumably newer) saved modification time. For filesystems that 

do not store birth times, the second call will overwrite the first call resulting in the same values 

for access and modification times as they would have previously received. For filesystems that 

support birth time, it will be properly set. Most happily for the application writers, they will not 

have to compile the name of utimes conditionally for BSD and non-BSD systems. They just write 

their applications to call the standard interface twice knowing that all supported times will be 

set correctly on all systems and filesystems. Applications that value speed of execution over 

portability can use the new version of the utimes system call that allows all time values to be set 

with one call. 

File Flags 

FreeBSD has two system calls, chflags and fchflags, that set the 32-bit user-flags word in the 

inode. The flags are included in the stat structure so that they can be inspected. 

The owner of the file or the superuser can set the low 16 bits. Currently, there are flags defined 

to mark a file as append-only, immutable, and not needing to be dumped. An immutable file 

may not be changed, moved, or deleted. An append-only file is immutable, except data may be 

appended to it. The user append-only and immutable flags may be changed by the owner of the 

file or the superuser. 

Only the superuser can set the high 16 bits. Currently, there are flags defined to mark a file as 

append-only and immutable. Once set, the append-only and immutable flags in the top 16 bits 

cannot be cleared when the system is secure. 
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The kernel runs with four different levels of security. Any superuser process can raise the 

security level, but only the init process can lower that level (the init program is described in 

Section 15.4). Security levels are defined as follows: 

–1. Permanently insecure mode: Always run system in level 0 mode (must be compiled into the 

kernel). 

0. Insecure mode: Immutable and append-only flags may be turned off. All devices can be read 

or written, subject to their permissions. 

1. Secure mode: The superuser-settable immutable and append-only flags cannot be cleared; 

disks for mounted filesystems and kernel memory (/dev/mem and /dev/kmem) are 

read-only. 

2. Highly secure mode: This mode is the same as secure mode, except that disks are always 

read-only whether mounted or not. This level precludes even a superuser process from 

tampering with filesystems by unmounting them, but it also inhibits formatting of new 

filesystems. 

Normally, the system runs with level 0 security while in single-user mode, and with level 1 

security while in multiuser mode. If level 2 security is desired while the system is running in 

multiuser mode, it should be set in the /etc/rc startup script (the /etc/rc script is described in 

Section 15.4). 

Files marked immutable by the superuser cannot be changed except by someone with physical 

access to either the machine or the system console. Files marked immutable include those that 

are frequently the subject of attack by intruders (e.g., login and su). The append-only flag is 

typically used for critical system logs. If an intruder breaks in, he will be unable to cover his 

tracks. Although simple in concept, these two features improve the security of a system 

dramatically. However, there are some serious limitations to this security model: 

• Immutable files can only be updated when system is single-user. 

• Append-only files can only be rotated when system is single-user. 

• Direct hardware access is restricted. 

The biggest limitation is that all startup activities must be protected. The reason for this 

limitation is that a kernel always has some bug that can be exploited to cause it to crash and 

reboot. During the reboot process, it is running in insecure mode; thus, if an exploit script can 
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be injected anywhere during the time that the system is starting up, the system can be 

compromised. The set of startup activities includes: 

• Startup scripts and their containing directories 

• All binaries executed during startup 

• All libraries used during startup 

• Many configuration files used during startup 

Finding and locking down all these files and directories is very difficult and if even one is missed, 

it is possible to break into the system. 

One change in the UFS2 inode format was to split the flags field into two separate 32-bit fields: 

one for flags that can be set by applications (as in UFS1) and a new field for flags maintained 

strictly by the kernel. An example of a kernel flag is the SNAPSHOT flag used to label a file as 

being a snapshot. Another kernel-only flag is OPAQUE, which is used by the union filesystem to 

mark a directory that should not make the layers below it visible. By moving these kernel flags 

from the high 16 bits of the user-flags field into a separate kernel-flags field, they will not be 

accidentally set or cleared by a naive or malicious application. 

Dynamic Inodes 

A common complaint about the UFS1 filesystem is that it preallocates all its inodes at the time 

that the filesystem is created. For filesystems with millions of files, the initialization of the 

filesystem can take several hours. Additionally, the filesystem creation program, newfs, had to 

assume that every filesystem would be filled with many small files and allocate a lot more inodes 

than were likely to ever be used. If a UFS1 filesystem uses up all its inodes, the only way to get 

more is to dump, rebuild, and restore the filesystem. The UFS2 filesystem resolves these 

problems by dynamically allocating its inodes. The usual implementation of dynamically 

allocated inodes requires a separate filesystem data structure (typically referred to as the inode 

file) that tracks the current set of inodes. The management and maintenance of this extra data 

structure adds overhead and complexity and often degrades performance. 

To avoid these costs, UFS2 preallocates a range of inode numbers and a set of blocks for each 

cylinder group (cylinder groups are described in Section 9.10). Initially, each cylinder group has 

two blocks of inodes allocated (a typical block holds 128 inodes). When the blocks fill up, the 

next block of inodes in the set is allocated and initialized. The set of blocks that may be allocated 
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to inodes is held as part of the free-space reserve until all other space in the filesystem is 

allocated. Only then can it be used for file data. 

In theory, a filesystem could fill, using up all the blocks set aside for inodes. Later, after large 

files have been removed and many small files created to replace them, the filesystem might find 

itself unable to allocate the needed inodes because all the space set aside for inodes was still in 

use. Here, it would be necessary to reallocate existing files to move them to new locations 

outside the inode area. Such code has not been written as we do not expect that this condition 

will arise in practice, since the free-space reserve used on most filesystems (8 percent) exceeds 

the amount of space needed for inodes (typically less than 6 percent). On these systems, only a 

process running with root privileges would ever be able to allocate the inode blocks. Should the 

code prove necessary in real use, it can be written at that time. Until it is written, filesystems 

hitting this condition will return an “out of inodes” error on attempts to create new files. 

A side benefit of dynamically allocating inodes is that the time it takes to create a new filesystem 

in UFS2 is about 1 percent of the time that it takes in UFS1. A filesystem that would take one 

hour to build in a UFS1 format can be built in under a minute in the UFS2 format. While 

filesystem creations are not a common operation, having them build quickly does matter to the 

system administrators that have to do such tasks with some regularity. 

The cost of dynamically allocating inodes is one extra disk write for every 128 new inodes that 

are created. Although this cost is low compared to the other costs of creating 128 new files, some 

systems administrators might want to preallocate more than the minimal number of inodes. If 

such a demand arises, it would be trivial to add a flag to the newfs program to preallocate 

additional inodes at the time that the filesystem is created. 

Inode Management 

Most of the activity in the local filesystem revolves around inodes. As described in Section 7.4, 

the kernel keeps a list of active and recently accessed vnodes. The decisions regarding how many 

and which files should be cached are made by the vnode layer based on information about 

activity across all filesystems. Each local filesystem will have a subset of the system vnodes to 

manage. Each uses an inode supplemented with some additional information to identify and 

locate the set of files for which it is responsible. Figure 9.3 shows the location of the inodes 

within the system. 
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Figure 9.3 Layout of kernel tables. 

Reviewing the material in Section 7.1, each process has a process open-file table that has 

slots for up to a system-imposed limit of file descriptors; this table is maintained as part of the 

process state. When a user process opens a file (or socket), an unused slot is located in the 

process’s open-file table; the small integer file descriptor that is returned on a successful open is 

an index value into this table. 

The per-process file-table entry points to a system open-file entry, which contains information 

about the underlying file or socket represented by the descriptor. For files, the file table points to 

the vnode representing the open file. For the local filesystem, the vnode references an inode. It is 

the inode that identifies the file itself. 

The first step in opening a file is to find the file’s associated inode. The lookup request is given to 

the filesystem associated with the directory currently being searched. When the local filesystem 

finds the name in the directory, it gets the inode number of the associated file. First, the 

filesystem searches its collection of inodes to see whether the requested inode is already in 

memory. To avoid performing a linear scan of all its entries, the system keeps a set of hash 

chains with each entry keyed by inode number and filesystem identifier; see Figure 9.4. If the 

inode is not in the table, such as the first time a file is opened, the filesystem must request a new 

vnode. When a new vnode is allocated to the local filesystem, a new structure to hold the inode 

is allocated. 
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Figure 9.4 Structure of the inode table. 

The next step is to locate the disk block containing the inode and to read that block into a buffer 

in system memory. When the disk I/O completes, the inode is copied from the disk buffer into 

the newly allocated inode entry. In addition to the information contained in the disk portion of 

the inode, the inode table itself maintains supplemental information while the inode is in 

memory. This information includes the hash chains described previously, as well as flags 

showing the inode’s status, reference counts on its use, and information to manage locks. The 

information also contains pointers to other kernel data structures of frequent interest, such as 

the superblock for the filesystem containing the inode. 

When the last reference to a file is closed, the local filesystem is notified that the file has become 

inactive. When it is inactivated, the inode times will be updated, and the inode may be written to 

disk. However, it remains on the hash list so that it can be found if it is reopened. After being 

inactive for a period determined by the vnode layer, based on demand for vnodes in all the 

filesystems, the vnode will be reclaimed. When a vnode for a local file is reclaimed, the inode is 

removed from the previous filesystem’s hash chain and, if the inode is dirty, its contents are 

written back to disk. The space for the inode is then deallocated, so that the vnode will be ready 

for use by a new filesystem client. 
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9.3 Naming 

Filesystems contain files, most of which contain ordinary data. Certain files are distinguished as 

directories and contain pointers to files that may themselves be directories. This hierarchy of 

directories and files is organized into a tree structure; Figure 9.5 shows a small filesystem tree. 

Each of the circles in the figure represents an inode with its corresponding inode number inside. 

Each of the arrows represents a name in a directory. For example, inode 4 is the /usr directory 

with entry ., that points to itself, and entry .., that points to its parent, inode 2, the root of the 

filesystem. It also contains the name bin, which references directory inode 7, and the name foo, 

which references file inode 6. 

 

Figure 9.5 A small filesystem tree. 

Directories 

Directories are allocated in units called chunks; Figure 9.6 shows a typical directory chunk. The 

size of a chunk is chosen such that each allocation can be transferred to disk in a single 

operation. The ability to change a directory in a single operation makes directory updates atomic. 

Chunks are broken up into variable-length directory entries to allow filenames to be of nearly 

arbitrary length. No directory entry can span multiple chunks. The first four fields of a directory 

entry are of fixed length and contain the following: 

1. The inode number, an index into a table of on-disk inode structures; the selected entry 

describes the file (inodes were described in Section 9.2) 
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2. The size of the entry in bytes 

3. The type of the entry 

4. The length of the filename contained in the entry in bytes 

 

Figure 9.6 Format of directory chunks. 

The remainder of an entry is of variable length and contains a null-terminated filename padded 

to a 4-byte boundary. The maximum length of a filename in a directory is 255 characters. 

The filesystem records free space in a directory by having entries accumulate the free space in 

their size fields. Thus, some directory entries are larger than required to hold the entry name 

plus fixed-length fields. Space allocated to a directory should always be accounted for 

completely by the total of the sizes of the directory’s entries. When an entry is deleted from a 

directory, the system coalesces the entry’s space into the previous entry in the same directory 

chunk by increasing the size of the previous entry by the size of the deleted entry. If the first 

entry of a directory chunk is free, then the pointer to the entry’s inode is set to zero to show that 

the entry is unallocated. 

When creating a new directory entry, the kernel must scan the entire directory to ensure that the 

name does not already exist. While doing this scan, it also checks each directory block to see if it 

has enough space in which to put the new entry. The space need not be contiguous. The kernel 

will compact the valid entries within a directory block to coalesce several small unused spaces 

into a single space that is big enough to hold the new entry. The first block that has enough 

space is used. The kernel will neither compact space across directory blocks nor create an entry 

that spans two directory blocks as it always wants to be able to do directory updates by writing a 

single directory block. If no space is found when scanning the directory, a new block is allocated 

at the end of the directory. 
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Applications obtain chunks of directories from the kernel by using the getdirentries system call. 

For the local filesystem, the on-disk format of directories is identical to that expected by the 

application, so the chunks are returned uninterpreted. When directories are read over the 

network or from non-BSD filesystems, such as Apple’s HFS, the getdirentries system call has to 

convert the on-disk representation of the directory to that described. 

Normally, programs want to read directories one entry at a time. This interface is provided by 

the directory-access routines. The opendir() function returns a structure pointer that is used by 

readdir() to get chunks of directories using getdirentries; readdir() returns the next entry from 

the chunk on each call. The closedir() function deallocates space allocated by opendir() and 

closes the directory. In addition, there is the rewinddir() function to reset the read position to 

the beginning, the telldir() function that returns a structure describing the current directory 

position, and the seekdir() function that returns to a position previously obtained with telldir(). 

The UFS1 filesystem uses 32-bit inode numbers. While it is tempting to increase these inode 

numbers to 64 bits in UFS2, doing so would require that the directory format be changed. There 

is much code that works directly on directory entries. Changing directory formats would entail 

creating many more filesystemspecific functions that would increase the complexity and 

maintainability issues with the code. Furthermore, the current APIs for referencing directory 

entries use 32-bit inode numbers. As a result, even if the underlying filesystem supported 64-bit 

inode numbers, they could not currently be made visible to user applications. In the short term, 

applications are not running into the 4-billion-files-perfilesystem limit that 32-bit inode 

numbers impose. If we assume that the growth rate in the number of files per filesystem over 

the last 20 years will continue at the same rate, we estimate that the 32-bit inode number should 

be enough for another 10 to 20 years. However, the limit will be reached before the 64-bit block 

limit of UFS2 is reached, so the UFS2 filesystem has reserved a flag in the superblock to show 

that it is a filesystem with 64-bit inode numbers. When the time comes to begin using 64-bit 

inode numbers, the flag can be turned on and the new directory format can be used. Kernels that 

predate the introduction of 64-bit inode numbers check this flag and will know that they cannot 

mount such filesystems. 

Finding of Names in Directories 

A common request to the filesystem is to look up a specific name in a directory. The kernel 

usually does the lookup by starting at the beginning of the directory and going through it, 

comparing each entry in turn. First, the length of the sought-after name is compared with the 

length of the name being checked. If the lengths are identical, a string comparison of the name 

being sought and the directory entry is made. If they match, the search is complete; if they fail, 

either in the length or in the string comparison, the search continues with the next entry. 



 

524 

Whenever a name is found, its name and containing directory are entered into the systemwide 

name cache described in Section 7.4. Whenever a search is unsuccessful, an entry is made in the 

cache showing that the name does not exist in the particular directory. Before starting a 

directory scan, the kernel looks for the name in the cache. If either a positive or negative entry is 

found, the directory scan can be avoided. 

Another common operation is to look up all the entries in a directory. For example, many 

programs do a stat system call on each name in a directory in the order that the names appear in 

the directory. To improve performance for these programs, the kernel maintains the directory 

offset of the last successful lookup for each directory. Each time that a lookup is done in that 

directory, the search is started from the offset at which the previous name was found (instead of 

from the beginning of the directory). For programs that step sequentially through a directory 

with n files, search time decreases from Order(n2) to Order(n). 

One quick benchmark that demonstrates the maximum effectiveness of the cache is running the 

ls –l command on a directory containing 600 files. On a system that retains the most recent 

directory offset, the amount of system time for this test is reduced by 85 percent. Unfortunately, 

the maximum effectiveness is much greater than the average effectiveness. Although the cache is 

90 percent effective when hit, it is applicable to only about 25 percent of the names being looked 

up. Despite the amount of time spent in the lookup routine itself decreasing substantially, the 

improvement is diminished because more time is spent in the routines that that routine calls. 

Each cache miss causes a directory to be accessed twice—once to search from the middle to the 

end and once to search from the beginning to the middle. 

These caches provide good directory lookup performance but are ineffective for large directories 

that have a high rate of entry creation and deletion. Each time a new directory entry is created, 

the kernel must scan the entire directory to ensure that the entry does not already exist. When 

an existing entry is deleted, the kernel must scan the directory to find the entry to be removed. 

For directories with many entries, these linear scans are time consuming. 

The approach to solving this problem is to introduce dynamic directory hashing that retrofits a 

directory indexing system to UFS [Dowse & Malone, 2002]. To avoid repeated linear searches of 

large directories, the dynamic directory hashing builds a hash table of directory entries on the 

fly when the directory is first accessed. This table avoids directory scans on later lookups, 

creates, and deletes. Unlike filesystems originally designed with large directories in mind, these 

indices are not saved on disk and so the system is backward compatible. The drawback is that 

the indices need to be built the first time that a large directory is encountered after each system 

reboot. The effect of the dynamic directory hashing is that large directories in UFS cause 

minimal performance problems. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
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525 

When we built UFS2, we contemplated solving the large directory update problem by changing 

to a more complex directory structure such as one that uses B-trees. This technique is used in 

many modern filesystems such as XFS [Sweeney et al., 1996], JFS [Best, 2000], ReiserFS 

[Reiser, 2001], and in later versions of Ext2 [Phillips, 2001]. We decided not to make the change 

at the time that UFS2 was first implemented for two reasons. First, we had limited time and 

resources, and we wanted to get something working and stable that could be used in the time 

frame of FreeBSD 5. By keeping the same directory format, we were able to reuse all the 

directory code from UFS1, did not have to change numerous filesystem utilities to understand 

and maintain a new directory format, and were able to produce a stable and reliable filesystem 

in the time frame available to us. Second, we felt that we could retain the existing directory 

structure because of the dynamic directory hashing that was added to FreeBSD. 

Borrowing the technique used by the Ext2 filesystem, a flag was also added to show that an 

on-disk indexing structure is supported for directories [Phillips, 2001]. This flag is 

unconditionally turned off by the existing implementation of UFS. In the future, if an 

implementation of an on-disk directory-indexing structure is added, the implementations that 

support it will not turn the flag off. Index-supporting kernels will maintain the indices and leave 

the flag on. If an old non-index-supporting kernel is run, it will turn off the flag so that when the 

filesystem is once again run under a new kernel, the new kernel will discover that the indexing 

flag has been turned off and will know that the indices may be out of date and have to be rebuilt 

before being used. The only constraint on an implementation of the indices is that they have to 

be an auxiliary data structure that references the old linear directory format. 

Pathname Translation 

We are now ready to describe how the filesystem looks up a pathname. The small filesystem 

introduced in Figure 9.5 is expanded to show its internal structure in Figure 9.7. Each of the files 

in Figure 9.5 is shown expanded into its constituent inode and data blocks. As an example of 

how these data structures work, consider how the system finds the file /usr/bin/vi. It must 

first search the root directory of the filesystem to find the directory usr. It first finds the inode 

that describes the root directory. By convention, inode 2 is always reserved for the root directory 

of a filesystem; therefore, the system finds and brings inode 2 into memory. This inode shows 

where the data blocks are for the root directory. These data blocks must also be brought into 

memory so that they can be searched for the entry for usr. Having found the entry for usr, the 

system knows that the contents of usr are described by inode 4. Returning once again to the 

disk, the system fetches inode 4 to find where the data blocks for usr are located. Searching 

these blocks, it finds the entry for bin. The bin entry points to inode 7. Next, the system brings 

in inode 7 and its associated data blocks from the disk to search for the entry for vi. Having 

found that vi is described by inode 9, the system can fetch this inode and the blocks that contain 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig07
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the vi binary. The first time after booting that this lookup is done, many I/O operations will be 

done. Thereafter, the various filesystem caches will ensure that these I/O operations will not 

need to be repeated. 
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Figure 9.7 Internal structure of a small filesystem. 

Links 

As shown in Figure 9.8, each file has a single inode, but multiple directory entries in the same 

filesystem may reference that inode (i.e., the inode may have multiple names). Each directory 

entry creates a hard link of a filename to the inode that describes the file’s contents. The link 

concept is fundamental; inodes do not reside in directories but exist separately and are 

referenced by links. When all the links to an inode are removed, the inode is deallocated. If one 

link to a file is removed and the filename is recreated with new contents, the other links will 

continue to point to the old inode. Figure 9.8 shows two different directory entries, foo and bar, 

that reference the same file; thus, the inode for the file shows a reference count of 2. 

 

Figure 9.8 Hard links to a file. 

The system also supports a symbolic link, or soft link. A symbolic link is implemented as a 

file that contains a pathname. When the system encounters a symbolic link while looking up a 

component of a pathname, the contents of the symbolic link are prepended to the rest of the 

pathname; the lookup continues with the resulting pathname. If a symbolic link contains an 

absolute pathname, that absolute pathname is used. Otherwise, the contents of the symbolic link 

are evaluated relative to the location of the link in the file hierarchy (not relative to the current 

working directory of the calling process). 

A symbolic link is illustrated in Figure 9.9. Here, there is a hard link, foo, that points to the file. 

The other reference, bar, points to a different inode whose contents are a pathname of the 

referenced file. When a process opens bar, the system interprets the contents of the symbolic 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_397
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link as a pathname to find the file the link references. Symbolic links are treated like data files by 

the system, rather than as part of the filesystem structure; thus, they can point at directories or 

files on other filesystems. If a filename is removed and replaced, any symbolic links that point to 

it will access the new file. Finally, if the filename is not replaced, the symbolic link will point at 

nothing, and any attempt to access it will return an error. 

 

Figure 9.9 Symbolic link to a file. 

When open is applied to a symbolic link, it returns a file descriptor for the file pointed to, not for 

the link itself. Otherwise, it would be necessary to use indirection to access the file pointed 

to—and that file, rather than the link, is what is usually wanted. For the same reason, most other 

system calls that take pathname arguments also follow symbolic links. Sometimes, it is useful to 

be able to detect a symbolic link when traversing a filesystem or when making an archive tape. 

In this situation, the lstat system call is available to get the status of a symbolic link, instead of 

the object at which that link points. 

A symbolic link has several advantages over a hard link. Since a symbolic link is maintained as a 

pathname, it can refer to a directory or to a file on a different filesystem. So that loops in the 

filesystem hierarchy are prevented, unprivileged users are not permitted to create hard links 

(other than . and ..) that refer to a directory. The design of hard links prevents them from 

referring to files on a different filesystem. 

There are several interesting implications of symbolic links. Consider a process that has 

/usr/keith as its current working directory and does cd src, where src is a symbolic link to 
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directory /usr/src. If the process then does a cd .., the current working directory for the 

process will be in /usr instead of in /usr/keith, as it would have been if src were a normal 

directory instead of a symbolic link. The kernel could be changed to keep track of the symbolic 

links that a process has traversed and to interpret .. differently if the directory has been reached 

through a symbolic link. There are two problems with this implementation. First, the kernel 

would have to maintain a potentially unbounded amount of information. Second, no program 

could depend on being able to use .., since it could not be sure how the name would be 

interpreted. 

Many shells keep track of symbolic-link traversals. When users change directory through .. from 

a directory that was entered through a symbolic link, the shell returns them to the directory 

from which they came. Although the shell might have to maintain an unbounded amount of 

information, the worst that will happen is that the shell will run out of memory. Having the shell 

fail will affect only the user silly enough to traverse endlessly through symbolic links. Tracking 

of symbolic links affects only change-directory commands in the shell; programs can continue to 

depend on .. to reference its true parent. Thus, tracking symbolic links outside the kernel in a 

shell is reasonable. 

Since symbolic links may cause loops in the filesystem, the kernel prevents looping by allowing 

at most eight symbolic link traversals in a single pathname translation. If the limit is reached, 

the kernel produces an error (ELOOP). 

9.4 Quotas 

Resource sharing always has been a design goal for the BSD system. By default, any single user 

can allocate all the available space in the filesystem. In certain environments, uncontrolled use 

of disk space is unacceptable. Consequently, FreeBSD includes a quota mechanism to restrict 

the amount of filesystem resources that a user or members of a group can obtain. The quota 

mechanism sets limits on both the number of files and the number of disk blocks that a user or 

members of a group may allocate. Quotas can be set separately for each user and group on each 

filesystem. 

Quotas support both hard and soft limits. When a process exceeds its soft limit, a warning is 

printed on the user’s terminal; the offending process is not prevented from allocating space 

unless it exceeds its hard limit. The idea is that users should stay below their soft limit between 

login sessions but may use more resources while they are active. If a user fails to correct the 

problem for longer than a grace period, the soft limit starts to be enforced as the hard limit. The 

grace period is set by the system administrator and is 7 days by default. These quotas are 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_139
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derived from a larger resource-limit package that was developed at the University of Melbourne 

in Australia by Robert Elz [Elz, 1984]. 

Quotas connect into the system primarily as an adjunct to the allocation routines. When a new 

block is requested from the allocation routines, the request is first validated by the quota system 

with the following steps: 

1. If there is a user quota associated with the file, the quota system consults the quota associated 

with the owner of the file. If the owner has reached or exceeded their limit, the request is denied. 

2. If there is a group quota associated with the file, the quota system consults the quota 

associated with the group of the file. If the group has reached or exceeded its limit, the request is 

denied. 

3. If the quota tests pass, the request is permitted and is added to the usage statistics for the file. 

When either a user or group quota would be exceeded, the allocator returns a failure as though 

the filesystem were full. The kernel propagates this error up to the process doing the write 

system call. 

Quotas are assigned to a filesystem after it has been mounted. A system call associates a file 

containing the quotas with the mounted filesystem. By convention, the file with user quotas is 

named quota.user, and the file with group quotas is named quota.group. These files typically 

reside either in the root of the mounted filesystem or in the /var/quotas directory. For each 

quota to be imposed, the system opens the appropriate quota file and holds a reference to it in 

the mount-table entry associated with the mounted filesystem. Figure 9.10 shows the 

mount-table reference. Here, the root filesystem has a quota on users but has none on groups. 

The /usr filesystem has quotas imposed on both users and groups. As quotas for different users 

or groups are needed, they are taken from the appropriate quota file. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig10
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Figure 9.10 References to quota files. 

Quota files are maintained as an array of quota records indexed by user or group identifiers; 

Figure 9.11 shows a typical record in a user quota file. To find the quota for user identifier i, the 

system seeks to the offset i × sizeof(quota structure) in the quota file and reads the quota 

structure at that offset. Each quota structure contains the limits imposed on the user for the 

associated filesystem. These limits include the hard and soft limits on the number of blocks and 

inodes that the user may have, the number of blocks and inodes that the user currently has 

allocated, and the time that the soft limit should start being enforced as the hard limit. The 

group quota file works in the same way, except that it is indexed by group identifier. 

 

Figure 9.11 Contents of a quota record. 

Active quotas are held in system memory in a data structure known as a dquot entry; Figure 9.12 

shows two typical entries. In addition to the quota limits and usage extracted from the quota file, 

the dquot entry maintains information about the quota while the quota is in use. This 

information includes fields to allow fast access and identification. Quotas are checked by the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig12
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chkdq() routine. Since quotas may have to be updated on every write to a file, chkdq() must be 

able to find and manipulate them quickly. Thus, the task of finding the dquot structure 

associated with a file is done when the file is first opened for writing. When an access check is 

done to check for writing, the system checks to see whether there is either a user or a group 

quota associated with the file. If one or more quotas exist, the inode is set up to hold a reference 

to the appropriate dquot structures for as long as the inode is resident. The chkdq() routine can 

determine that a file has a quota simply by checking whether the dquot pointer is nonnull; if it is, 

all the necessary information can be accessed directly. If a user or a group has multiple files 

open on the same filesystem, all inodes describing those files point to the same dquot entry. 

Thus, the number of blocks allocated to a particular user or a group can always be known easily 

and consistently. 

 

Figure 9.12 Dquot entries. 

The number of dquot entries in the system can grow large. To avoid performing a linear scan of 

all the dquot entries, the system keeps a set of hash chains keyed on the filesystem and on the 

user or group identifier. Even with hundreds of dquot entries, the kernel needs to inspect only 

about five entries to determine whether a requested dquot entry is memory resident. If the 

dquot entry is not resident, such as the first time a file is opened for writing, the system must 

reallocate a dquot entry and read in the quota from disk. The dquot entry is reallocated from the 

least recently used dquot entry. So that it can find the oldest dquot entry quickly, the system 
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keeps unused dquot entries linked together in an LRU chain. When the reference count on a 

dquot structure drops to zero, the system puts that dquot onto the end of the LRU chain. The 

dquot structure is not removed from its hash chain, so if the structure is needed again soon, it 

can still be located. Only when a dquot structure is recycled with a new quota record is it 

removed and relinked into the hash chain. The dquot entry on the front of the LRU chain yields 

the least recently used dquot entry. Frequently used dquot entries are reclaimed from the 

middle of the LRU chain and are relinked at the end after use. 

The hashing structure allows dquot structures to be found quickly. However, it does not solve 

the problem of how to discover that a user has no quota on a particular filesystem. If a user has 

no quota, a lookup for the quota will fail. The cost of going to disk and reading the quota file to 

discover that the user has no quota imposed would be prohibitive. To avoid doing this work each 

time that a new file is accessed for writing, the system maintains nonquota dquot entries. When 

an inode owned by a user or group that does not already have a dquot entry is first accessed, a 

dummy dquot entry is created that has infinite values filled in for the quota limits. When the 

chkdq() routine encounters such an entry, it will update the usage fields but will not impose any 

limits. When the user later writes other files, the same dquot entry will be found, thus avoiding 

additional access to the on-disk quota file. Ensuring that a file will always have a dquot entry 

improves the performance of writing data, since chkdq() can assume that the dquot pointer is 

always valid, rather than having to check the pointer before every use. 

Quotas are written back to the disk when they fall out of the cache, whenever the filesystem does 

a sync, or when the filesystem is unmounted. If the system crashes, leaving the quotas in an 

inconsistent state, the system administrator must run the quotacheck program to rebuild the 

usage information in the quota files. 

9.5 File Locking 

Locks may be placed on any arbitrary range of bytes within a file. These semantics are supported 

in FreeBSD by a list of locks, each of which describes a lock of a specified byte range. An 

example of a file containing several range locks is shown in Figure 9.13. The list of currently held 

or active locks appears across the top of the figure, headed by the i_lockf field in the inode, and 

linked together through the lf_next field of the lock structures. Each lock structure identifies the 

type of the lock (exclusive or shared), the byte range over which the lock applies, and the 

identity of the lock holder. A lock may be identified either by a pointer to a process entry or by a 

pointer to a file entry. A process pointer is used for POSIX-style range locks; a file-entry pointer 

is used for BSD-style whole file locks. The examples in this section show the identity as a pointer 

to a process entry. In this example, there are three active locks: an exclusive lock held by process 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13
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1 on bytes 1 to 3, a shared lock held by process 2 on bytes 7 to 12, and a shared lock held by 

process 3 on bytes 7 to 14. 

 

Figure 9.13 A set of range locks on a file. 

In addition to the active locks, there are other processes that are sleeping, waiting to get a lock 

applied. Pending locks are headed by the lf_block field of the active lock that prevents them 

from being applied. If there are multiple pending locks, they are linked through their lf_block 

fields. New lock requests are placed at the end of the list; thus, processes tend to be granted 

locks in the order that they requested the locks. Each pending lock uses its lf_next field to 

identify the active lock that currently blocks it. In the example in Figure 9.13, the first active lock 

has two other locks pending. There is also a pending request for the range 9 to 12 that is 

currently linked onto the second active entry. It could equally well have been linked onto the 

third active entry, since the third entry also blocks it. When an active lock is released, all 

pending entries for that lock are awakened, so they can retry their request. If the second active 

lock were released, the result would be that its currently pending request would move over to 

the blocked list for the last active entry. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13
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A problem that must be handled by the locking implementation is the detection of potential 

deadlocks. To see how deadlock is detected, consider the addition of the lock request by process 

2 outlined in the dashed box in Figure 9.13. Since the request is blocked by an active lock, 

process 2 must sleep, waiting for the active lock on range 1 to 3 to clear. We follow the lf_next 

pointer from the requesting lock (the one in the dashed box), to identify the active lock for the 

1-to-3 range as being held by process 1. The wait channel for process 1 shows that process 1 is 

sleeping, waiting for a lock to clear, and identifies the pending lock structure as the pending lock 

(range 9 to 12) hanging off the lf_block field of the second active lock (range 7 to 12). We follow 

the lf_next field of this pending lock structure (range 9 to 12) to the second active lock (range 7 

to 12) that is held by the lock requester, process 2. Thus, the lock request is denied, as it would 

lead to a deadlock between processes 1 and 2. This algorithm works on cycles of locks and 

processes of arbitrary size. Performance is reasonable provided there are fewer than 50 

processes contending for locks within the same range of a file. 

As we note, the pending request for the range 9 to 12 could equally well have been hung off the 

third active lock for the range 7 to 14. Had it been, the request for adding the lock in the dashed 

box would have succeeded, since the third active lock is held by process 3 rather than by process 

2. If the next lock request on this file were to release the third active lock, then deadlock 

detection would occur when process 1’s pending lock got shifted to the second active lock (range 

7 to 12). The difference is that process 1, instead of process 2, would get the deadlock error. 

When a new lock request is made, it must first be checked to see whether it is blocked by 

existing locks held by other processes. If it is not blocked by other processes, it must then be 

checked to see whether it overlaps any existing locks already held by the process making the 

request. There are five possible overlap cases that must be considered; these possibilities are 

shown in Figure 9.14. The assumption in the figure is that the new request is of a type different 

from that of the existing lock (i.e., an exclusive request against a shared lock, or vice versa). If 

the existing lock and the request are of the same type, the analysis is a bit simpler. The five cases 

are as follows: 

1. The new request exactly overlaps the existing lock. The new request replaces the existing lock. 

If the new request downgrades from exclusive to shared, all requests pending on the old lock are 

awakened. 

2. The new request is a subset of the existing lock. The existing lock is broken into three pieces 

(two if the new lock begins at the beginning or ends at the end of the existing lock). If the type of 

the new request differs from that of the existing lock, all requests pending on the old lock are 

awakened, so they can be reassigned to the correct new piece, blocked on a lock held by some 

other process, or granted. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13
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3. The new request is a superset of an existing lock. The new request replaces the existing lock. 

If the new request downgrades from exclusive to shared, all requests pending on the old lock are 

awakened. 

4. The new request extends past the end of an existing lock. The existing lock is shortened, and 

its overlapped piece is replaced by the new request. All requests pending on the existing lock are 

awakened, so they can be reassigned to the correct new piece, blocked on a lock held by some 

other process, or granted. 

5. The new request extends into the beginning of an existing lock. The existing lock is shortened, 

and its overlapped piece is replaced by the new request. All requests pending on the existing lock 

are awakened, so they can be reassigned to the correct new piece, blocked on a lock held by 

some other process, or granted. 

 

Figure 9.14 Five types of overlap considered by the kernel when a range lock is added. 

In addition to the five basic types of overlap outlined, a request may span several existing locks. 

Specifically, a new request may be composed of zero or one of type 4, zero or more of type 3, and 

zero or one of type 5. 

To understand how the overlap is handled, we can consider the example shown in Figure 9.15. 

This figure shows a file that has all its active range locks held by process 1, plus a pending lock 

for process 2. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig15
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Figure 9.15 Locks before addition of exclusive-lock request by process 1 on range 3..13. 

Now consider a request by process 1 for an exclusive lock on the range 3 to 13. This request does 

not conflict with any active locks (because all the active locks are already held by process 1). The 

request does overlap all three active locks, so the three active locks represent a type 4, type 3, 

and type 5 overlap, respectively. The result of processing the lock request is shown in Figure 9.16. 

The first and third active locks are trimmed back to the edge of the new request, and the second 

lock is replaced entirely. The request that had been held pending on the first lock is awakened. It 

is no longer blocked by the first lock but is blocked by the newly installed lock, so it now hangs 

off the blocked list for the second lock. The first and second locks could have been merged 

because they are of the same type and are held by the same process. However, the current 

implementation makes no effort to do such merges because range locks are normally released 

over the same range that they were created. If the merge were done, it would probably have to 

be split again when the release was requested. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig16
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Figure 9.16 Locks after addition of exclusive-lock request by process 1 on range 3..13. 

Lock-removal requests are simpler than addition requests; they need only to consider existing 

locks held by the requesting process. Figure 9.17 shows the five possible ways that a removal 

request can overlap the locks of the requesting process. They include: 

1. The unlock request exactly overlaps an existing lock. The existing lock is deleted, and any lock 

requests that were pending on that lock are awakened. 

2. The unlock request is a subset of an existing lock. The existing lock is broken into two pieces 

(one if the unlock request begins at the beginning or ends at the end of the existing lock). Any 

locks that were pending on that lock are awakened so that they can be reassigned to the correct 

new piece, blocked on a lock held by some other process, or granted. 

3. The unlock request is a superset of an existing lock. The existing lock is deleted, and any locks 

that were pending on that lock are awakened. 

4. The unlock request extends past the end of an existing lock. The end of the existing lock is 

shortened. Any locks that were pending on that lock are awakened so that they can be 

reassigned to the shorter lock, blocked on a lock held by some other process, or granted. 

5. The unlock request extends into the beginning of an existing lock. The beginning of the 

existing lock is shortened. Any locks that were pending on that lock are awakened so that they 

can be reassigned to the shorter lock, blocked on a lock held by some other process, or granted. 
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Figure 9.17 Five types of overlap considered by the kernel when a range lock is deleted. 

In addition to the five basic types of overlap outlined, an unlock request may span several 

existing locks. Specifically, a new request may be composed of zero or one of type 4, zero or 

more of type 3, and zero or one of type 5. 

9.6 Soft Updates 

In filesystems, metadata (e.g., directories, inodes, and free block maps) gives structure to raw 

storage capacity. Metadata provides pointers and descriptions for linking multiple disk sectors 

into files and identifying those files. To be useful for persistent storage, a filesystem must 

maintain the integrity of its metadata in the face of unpredictable system crashes, such as power 

interruptions and operating system failures. Because such crashes usually result in the loss of all 

information in volatile main memory, the information in nonvolatile storage (i.e., disk) must 

always be consistent enough to reconstruct deterministically a coherent filesystem state. 

Specifically, the on-disk image of the filesystem must have no dangling pointers to uninitialized 

space, no ambiguous resource ownership caused by multiple pointers, and no unreferenced live 

resources. Maintaining these invariants generally requires sequencing (or atomic grouping) of 

updates to small on-disk metadata objects. 

Traditionally, the UFS filesystem used synchronous writes to properly sequence stable storage 

changes. For example, creating a file involves first allocating and initializing a new inode and 

then filling in a new directory entry to point to it. With the synchronous write approach, the 

filesystem forces an application that creates a file to wait for the disk write that initializes the 

on-disk inode. As a result, filesystem operations like file creation and deletion proceed at disk 

speeds rather than processor/memory speeds [McVoy & Kleiman, 1991; Ousterhout, 1990; 

Seltzer et al., 1993]. Since disk access times are long compared to the speeds of other computer 

components, synchronous writes reduce system performance. 
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The metadata update problem can also be addressed with other mechanisms. For example, one 

can eliminate the need to keep the on-disk state consistent by using NVRAM technologies, such 

as an uninterruptible power supply or Flash RAM [Moran et al., 1990; Wu & Zwaenepoel, 1994]. 

Filesystem operations can proceed as soon as the block to be written is copied into the stable 

store, and updates can propagate to disk in any order and whenever it is convenient. If the 

system fails, unfinished disk operations can be completed from the stable store when the system 

is rebooted. 

Another approach is to group each set of dependent updates as an atomic operation with some 

form of write-ahead logging [Chutani et al., 1992; Hagmann, 1987] or shadow-paging 

[Chamberlin & Astrahan, 1981; Rosenblum & Ousterhout, 1992; Stonebraker, 1987]. These 

approaches augment the on-disk state with a log of filesystem updates on a separate disk or in 

stable store. Filesystem operations can then proceed as soon as the operation to be done is 

written into the log. If the system fails, unfinished filesystem operations can be completed from 

the log when the system is rebooted. Many modern filesystems successfully use write-ahead 

logging to improve performance compared to the synchronous write approach. 

In Ganger & Patt [1994], an alternative approach called soft updates was proposed and 

evaluated in the context of a research prototype. Following a successful evaluation, a production 

version of soft updates was written for FreeBSD. With soft updates, the filesystem uses delayed 

writes (i.e., write-back caching) for meta-data changes, tracks dependencies between updates, 

and enforces these dependencies at write-back time. Because most metadata blocks contain 

many pointers, cyclic dependencies occur frequently when dependencies are recorded only at 

the block level. Therefore, soft updates track dependencies on a per-pointer basis, which allows 

blocks to be written in any order. Any still-dependent updates in a metadata block are rolled 

back before the block is written and rolled forward afterwards. Thus, dependency cycles are 

eliminated as an issue. With soft updates, applications always see the most current copies of 

metadata blocks, and the disk always sees copies that are consistent with its other contents. 

Update Dependencies in the Filesystem 

Several important filesystem operations consist of a series of related modifications to separate 

metadata structures. To ensure recoverability in the presence of unpredictable failures, the 

modifications often must be propagated to stable storage in a specific order. For example, when 

creating a new file, the filesystem allocates an inode, initializes it, and constructs a directory 

entry that points to it. If the system goes down after the new directory entry has been written to 

disk but before the initialized inode is written, consistency may be compromised since the 

contents of the on-disk inode are unknown. To ensure metadata consistency, the initialized 

inode must reach stable storage before the new directory entry. We refer to this requirement as 
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an update dependency because safely writing the directory entry depends on first writing the 

inode. The ordering constraints map onto three simple rules: 

1. Never point to a structure before it has been initialized (e.g., an inode must be initialized 

before a directory entry references it). 

2. Never reuse a resource before nullifying all previous pointers to it (e.g., an inode’s pointer to a 

data block must be nullified before that disk block may be reallocated for a new inode). 

3. Never reset the old pointer to a live resource before the new pointer has been set (e.g., when 

renaming a file, do not remove the old name for an inode until after the new name has been 

written). 

There are eight filesystem activities that require update ordering to ensure postcrash 

recoverability: file creation, file removal, directory creation, directory removal, file/directory 

rename, block allocation, indirect block manipulation, and free map management. 

The two main resources managed by the filesystem are inodes and data blocks. Two bitmaps are 

used to maintain allocation information about these resources. For each inode in the filesystem, 

the inode bitmap has a bit that is set if the inode is in use and cleared if it is free. For each block 

in the filesystem, the data block bitmap has a bit that is set if the block is free and cleared if it is 

in use. Each filesystem is broken down into fixed-size pieces called cylinder groups (described 

more fully in Section 9.10). Each cylinder group has a cylinder-group block that contains the 

bitmaps for the inodes and data blocks residing within that cylinder group. For a large 

filesystem, this organization allows just those subpieces of the filesystem bitmap that are 

actively being used to be brought into the kernel memory. Each of these active cylinder-group 

blocks is stored in a separate I/O buffer and can be written to disk independently of the other 

cylinder-group blocks. 

When a file is created, three metadata structures located in separate blocks are modified. The 

first is a new inode, which is initialized with its type field set to the new file type, its link count 

set to one to show that it is live (i.e., referenced by some directory entry), its permission fields 

set as specified, and all other fields set to default values. The second is the inode bitmap, which 

is modified to show that the inode has been allocated. The third is a new directory entry, which 

is filled in with the new name and a pointer to the new inode. To ensure that the bitmaps always 

reflect all allocated resources, the bitmap must be written to disk before the inode or directory 

entry. Because the inode is in an unknown state until after it has been initialized on the disk, 

rule #1 specifies that there is an update dependency requiring that the relevant inode be written 

before the relevant directory entry. Although not strictly necessary, most BSD fast filesystem 

implementations also immediately write the directory block before the system call creating the 
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file returns. This second synchronous write ensures that the filename is on stable storage if the 

application later does an fsync system call. If the second synchronous write were not done, then 

the fsync call would have to be able to find all the unwritten directory blocks containing a name 

for the file and write them to disk. A similar update dependency between an inode and a new 

directory entry exists when the new directory entry adds a second name for the inode (a.k.a. a 

hard link), since the addition of the second name requires the filesystem to increment the link 

count in the inode and write the inode to disk before the entry may appear in the directory. 

When a file is deleted, a directory block, an inode block, and one or more cylinder group 

bitmaps are modified. In the directory block, the relevant directory entry is “removed” by 

reclaiming its space or by nullifying the inode pointer. In the inode block, the relevant inode’s 

type field, link count, and block pointers are zeroed out. The deleted file’s blocks and inode are 

then added to the appropriate free block/inode maps. Rule #2 specifies that there are update 

dependencies between the directory entry and the inode and between the inode and any 

modified free map bits. To keep the link count conservatively high (and reduce complexity in 

practice), the update dependency between a directory entry and inode also exists when 

removing one of multiple names (hard links) for a file. 

Creation and removal of directories is largely as just described for regular files. However, the .. 

entry is a link from the child directory to the parent, which adds additional update dependencies. 

Specifically, during creation, the parent’s link count must be incremented on disk before the 

new directory’s .. pointer is written. Likewise, during removal, the parent’s link count must be 

decremented after the removed directory’s .. pointer is nullified. (Note that this nullification is 

implicit in deleting the child directory’s pointer to the corresponding directory block.) 

When a new block is allocated, its bitmap location is updated to reflect that it is in use and the 

block’s contents are initialized with newly written data or zeros. In addition, a pointer to the new 

block is added to an inode or indirect block. To ensure that the on-disk bitmap always reflects 

allocated resources, the bitmap must be written to disk before the pointer. Also, because the 

contents of the newly allocated disk location are unknown, rule #1 specifies an update 

dependency between the new block and the pointer to it. Because enforcing this update 

dependency with synchronous writes can reduce data creation throughput by a factor of two 

[Ganger & Patt, 1994], many implementations ignore it for regular data blocks. This 

implementation decision reduces integrity and security, since newly allocated blocks generally 

contain previously deleted file data. Soft updates allow all block allocations to be protected in 

this way with near-zero performance reduction. 

Manipulation of indirect blocks does not introduce fundamentally different update 

dependencies, but they do merit separate discussion. Allocation, both of indirect blocks and of 
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blocks pointed to by indirect blocks, is as just discussed. File deletion, and specifically 

deallocation, is more interesting for indirect blocks. Because the inode reference is the only way 

to identify indirect blocks and blocks connected to them (directly or indirectly), nullifying the 

inode’s pointer to an indirect block is enough to eliminate all recoverable pointers to said blocks. 

Once the pointer is nullified on disk, all its blocks can be freed. The exception to this rule is 

when a file is partially truncated. Here, the pointer from the inode to the indirect block remains. 

Some of the indirect block pointers will be zeroed and and their corresponding blocks freed 

while the rest of the pointers are left intact. 

When a file is being renamed, two directory entries are affected. A new entry (with the new 

name) is created and set to point to the relevant inode, and the old entry is removed. Rule #3 

states that the new entry should be written to disk before the old entry is removed to avoid 

having the file unreferenced on reboot. If link counts are being kept conservatively, rename 

involves at least four disk updates in sequence: one to increment the inode’s link count, one to 

add the new directory entry, one to remove the old directory entry, and one to decrement the 

link count. If the new name already existed, then the addition of the new directory entry also 

acts as the first step of file removal as discussed above. Interestingly, rename is the one POSIX 

file operation that should have an atomic update to multiple user-visible metadata structures to 

provide ideal semantics. POSIX does not require said semantics and most implementations, 

including FreeBSD, cannot provide it. 

On an active filesystem, the bitmaps change constantly. Thus, the copy of the bitmaps in the 

kernel memory often differs from the copy that is stored on the disk. If the system halts without 

writing out the incore state of the bitmaps, some of the recently allocated inodes and data blocks 

may not be reflected in the out-of-date copies of the bitmaps on the disk. As a result, the 

filesystem check program, fsck, must be run over all the inodes in the filesystem to ascertain 

which inodes and blocks are in use and bring the bitmaps up to date [McKusick & Kowalski, 

1994]. An added benefit of soft updates is that they track the writing of the bitmaps to disk and 

use this information to ensure that no newly allocated inodes or pointers to newly allocated data 

blocks will be written to disk until after the bitmap that references them has been written to disk. 

This guarantee ensures that there will never be an allocated inode or data block that is not 

marked in the on-disk bitmap. This guarantee, together with the other guarantees made by the 

soft update code, means that it is no longer necessary to run fsck after a system crash. 

The next 12 subsections describe the soft-updates data structures and their use in enforcing the 

update dependencies just described. The structures and algorithms described eliminate all 

synchronous write operations from the filesystem except for the partial truncation of a file and 

the fsync system call, which explicitly requires that all the state of a file be committed to disk 

before the system call returns. 
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The key attribute of soft updates is dependency tracking at the level of individual changes within 

cached blocks. Thus, for a block containing 128 inodes, the system can maintain up to 128 

dependency structures with one for each inode in the buffer. Similarly, for a buffer containing a 

directory block containing 50 names, the system can maintain up to 50 dependency structures 

with one for each name in the directory. With this level of detailed dependency information, 

circular dependencies between blocks are not problematic. For example, when the system 

wishes to write a buffer containing inodes, those inodes that can be safely written can go to the 

disk. Any inodes that cannot yet be safely written are temporarily rolled back to their safe values 

while the disk write proceeds. After the disk write completes, such inodes are rolled forward to 

their current values. Because the buffer is locked throughout the time that the contents are 

rolled back, the disk write is being done, and the contents are rolled forward, any processes 

wishing to use the buffer will be blocked from accessing it until it has been returned to its 

correct state. 

Dependency Structures 

The soft-updates implementation uses a variety of data structures to track pending update 

dependencies among filesystem structures. Table 9.2 lists the dependency structures used in the 

BSD soft-updates implementation, their main functions, and the types of blocks with which they 

can be associated. These dependency structures are allocated and associated with blocks as 

various file operations are completed. They are connected to the incore blocks with which they 

are associated by a pointer in the corresponding buffer header. Two common aspects of all listed 

dependency structures are the worklist structure and the states used to track the progress of a 

dependency. 
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Table 9.2 Soft updates and dependency tracking. 

The worklist structure is really just a common header included as the first item in each 

dependency structure. It contains a set of linkage pointers and a type field to show the type of 

structure in which it is embedded. The worklist structure allows several different types of 

dependency structures to be linked together into a single list. The soft-updates code can traverse 

one of these heterogeneous lists, using the type field to determine which kind of dependency 

structure it has encountered, and take the appropriate action with each. 

The typical use for the worklist structure is to link together a set of dependencies associated 

with a buffer. Each buffer in the system has a pointer to a worklist added to it. Any 

dependencies associated with that buffer are linked onto its worklist. After the buffer has been 

locked and just before the buffer is to be written, the I/O system passes the buffer to the 

soft-updates code to let it know that a disk write is about to be started. The soft-updates code 

then traverses the list of dependencies associated with the buffer and does any needed rollback 

operations. After the disk write completes but before the buffer is unlocked, the I/O system calls 

the soft-updates code to let it know that a write has completed. The soft-updates code then 

traverses the list of dependencies associated with the buffer, does any needed roll-forward 

operations, and deallocates any dependencies that are fulfilled by the data in the buffer having 

been written to disk. 

Another important list maintained by the soft-updates code is the tasklist that contains 

background tasks for the work daemon. Dependency structures are generally added to the 

tasklist during the disk-write completion routine, describing tasks that have become safe given 

the disk update but which may need to block for locks or I/O and therefore cannot be completed 
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during the interrupt handler. Once per second, the syncer daemon (in its dual role as the 

soft-updates work daemon) wakes up and calls into the soft-updates code to process any items 

on the tasklist. The work done for a dependency structure on this list is type-dependent. For 

example, for a freeblks structure, the listed blocks are marked free in the block bitmaps. For a 

dirrem structure, the associated inode’s link count is decremented, possibly triggering file 

deletion. 

Most dependency structures have a set of flags that describe the state of completion of the 

corresponding dependency. Dirty cache blocks can be written to the disk at any time. When the 

I/O system hands the buffer to the soft-updates code (before and after a disk write), the states of 

the associated dependency structures determine what actions are taken. Although the specific 

meanings vary from structure to structure, the three main flags and their general meanings are: 

ATTACHED 

The ATTACHED flag shows that the buffer with which the dependency structure is associated is 

not currently being written. When a disk write is started for a buffer with a dependency that 

must be rolled back, the ATTACHED flag is cleared in the dependency structure to show that it 

has been rolled back in the buffer. When the disk write completes, updates described by 

dependency structures that have the ATTACHED flag cleared are rolled forward, and the 

ATTACHED flag is set. Thus, a dependency structure can never be deleted while its ATTACHED 

flag is cleared, since the information needed to do the roll-forward operation would then be lost. 

DEPCOMPLETE 

The DEPCOMPLETE flag shows that all associated dependencies have been completed. When a 

disk write is started, the update described by a dependency structure is rolled back if the 

DEPCOMPLETE flag is clear. For example, in a dependency structure that is associated with 

newly allocated inodes or data blocks, the DEPCOMPLETE flag is set when the corresponding 

bitmap has been written to disk. 

COMPLETE 

The COMPLETE flag shows that the update being tracked has been committed to the disk. For 

some dependencies, updates will be rolled back during disk writes when the COMPLETE flag is 

clear. For example, for a newly allocated data block, the COMPLETE flag is set when the 

contents of the block have been written to disk. 

In general, the flags are set as disk writes complete, and a dependency structure can be 

deallocated only when its ATTACHED, DEPCOMPLETE, and COMPLETE flags are all set. 

Consider the example of a newly allocated data block that will be tracked by an allocdirect 
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structure. The ATTACHED flag will initially be set when the allocation occurs. The 

DEPCOMPLETE flag will be set after the bitmap allocating that new block is written. The 

COMPLETE flag will be set after the contents of the new block are written. If the inode claiming 

the newly allocated block is written before both the DEPCOMPLETE and COMPLETE flags are 

set, the ATTACHED flag will be cleared while the block pointer in the inode is rolled back to zero, 

the inode is written, and the block pointer in the inode is rolled forward to the new block 

number. Where different, the specific meanings of these flags in the various dependency 

structures are described in the subsections that follow. 

Bitmap Dependency Tracking 

Bitmap updates are tracked by the bmsafemap structure shown in Figure 9.18. Each buffer 

containing a cylinder-group block will have its own bmsafemap structure. As with every 

dependency structure, the first entry in the bmsafemap structure is a worklist structure. Each 

time an inode, direct block, or indirect block is allocated from the cylinder group, a dependency 

structure is created for that resource and linked onto the appropriate bmsafemap list. Each 

newly allocated inode will be represented by an inodedep structure linked to the bmsafemap 

inodedep head list. Each newly allocated block directly referenced by an inode will be 

represented by an allocdirect structure linked to the bmsafemap allocdirect head list. Each 

newly allocated block referenced by an indirect block will be represented by an allocindir 

structure linked to the bmsafemap allocindir head list. Because of the code’s organization, there 

is a small window between the time a block is first allocated and the time at which its use is 

known. During this period of time, it is described by a newblk structure linked to the 

bmsafemap new blk head list. After the kernel chooses to write the cylinder-group block, the 

soft-updates code will be notified when the write has completed. At that time, the code traverses 

the inode, direct block, indirect block, and new block lists, setting the DEPCOMPLETE flag in 

each dependency structure and removing said dependency structure from its dependency list. 

Having cleared all its dependency lists, the bmsafemap structure can be deallocated. There are 

multiple lists as it is slightly faster and more type-safe to have lists of specific types. 
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Figure 9.18 Bitmap update dependencies. 

Inode Dependency Tracking 

Inode updates are tracked by the inodedep structure shown in Figure 9.19. The worklist and 

state fields are as described for dependency structures in general. The filesystem ptr and inode 

number fields identify the inode in question. When an inode is newly allocated, its inodedep is 

attached to the inodedep head list of a bmsafemap structure. Here, deps list chains additional 

new inodedep structures and dep bp points to the cylinder-group block that contains the 

corresponding bitmap. Other inodedep fields are explained in later subsections. 

 

Figure 9.19 Inode update dependencies. 

Before detailing the rest of the dependencies associated with an inode, we need to discuss the 

steps involved in updating an inode on disk as pictured in Figure 9.20. 

1. The kernel calls the vnode operation, VOP_UPDATE, which requests that the disk-resident 

part of an inode (referred to as a dinode) be copied from its in-memory vnode structure to the 

appropriate disk buffer. This disk buffer holds the contents of an entire disk block, which is 

usually big enough to include 128 dinodes. Some dependencies are fulfilled only when the inode 

has been written to disk. These dependencies need dependency structures to track the progress 
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of the writing of the inode. Therefore, during step 1, a soft update routine, 

softdep_update_inodeblock(), is called to move allocdirect structures from the incore update 

list to the buffer update list and to move freefile, freeblks, freefrag, diradd, and mkdir 

structures (described below) from the inode wait list to the buffer wait list. 

2. The kernel calls the vnode operation, VOP_STRATEGY, that prepares to write the buffer 

containing the dinode, pointed to by bp in Figure 9.20. A soft-updates routine, 

softdep_disk_io_initiation(), identifies inodedep dependencies and calls 

initiate_write_inodeblock() to do rollbacks as necessary. 

3. Output completes on the buffer referred to by bp and the I/O system calls a routine, 

biodone(), to notify any waiting processes that the write has finished. The biodone() routine 

then calls a soft-updates routine, softdep_disk_write_complete(), that identifies inodedep 

dependencies and calls handle_written_inodeblock() to revert rollbacks and clear any 

dependencies on the buffer wait and buffer update lists. 

 

Figure 9.20 Inode update steps. 

Direct-Block Dependency Tracking 

Figure 9.21 illustrates the dependency structures involved in allocation of direct blocks. Recall 

that the key dependencies are that, before the on-disk inode points to a newly allocated block, 

both the corresponding bitmap block and the new block itself must be written to the disk. The 

order in which the two dependencies complete is not important. The figure introduces the 

allocdirect structure that tracks blocks directly referenced by the inode. The three recently 

allocated logical blocks (1, 2, and 3) shown are each in a different state. For logical block 1, the 

bitmap block dependency is complete (as shown by the DEPCOMPLETE flag being set), but the 
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block itself has not yet been written (as shown by the COMPLETE flag being cleared). For logical 

block 2, both dependencies are complete. For logical block 3, neither dependency is complete, so 

the corresponding allocdirect structure is attached to a bmsafemap allocdirect head list (recall 

that this list is traversed to set DEPCOMPLETE flags after bitmap blocks are written). The 

COMPLETE flag for logical blocks 1 and 3 will be set when their initialized data blocks are 

written to disk. The figure also shows that logical block 1 existed at a time that VOP_UPDATE 

was called, which is why its allocdirect structure resides on the inodedep buffer update list. 

Logical blocks 2 and 3 were created after the most recent call to VOP_UPDATE and thus their 

structures reside on the inodedep incore update list. 

 

Figure 9.21 Direct block allocation dependencies. 

For files that grow in small steps, a direct block pointer may first point to a fragment that is later 

promoted to a larger fragment and eventually to a full-size block. When a fragment is replaced 
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by a larger fragment or a full-size block, it must be released back to the filesystem. However, it 

cannot be released until the new fragment or block has had its bitmap entry and contents 

written and the inode claiming the new fragment or block has been written to the disk. The 

fragment to be released is described by a freefrag structure (not shown). The freefrag structure 

is held on the freefrag list of the allocdirect for the block that will replace it until the new block 

has had its bitmap entry and contents written. The freefrag structure is then moved to the inode 

wait list of the inodedep associated with its allocdirect structure, where it migrates to the buffer 

wait list when VOP_UPDATE is called. The freefrag structure eventually is added to the tasklist 

after the buffer holding the inode block has been written to disk. When the tasklist is serviced, 

the fragment listed in the freefrag structure is returned to the free-block bitmap. 

Indirect-Block Dependency Tracking 

Figure 9.22 shows the dependency structures involved in allocation of indirect blocks that 

includes the same dependencies as with direct blocks. This figure introduces two new 

dependency structures. A separate allocindir structure tracks each individual block pointer in an 

indirect block. The indirdep structure manages all the allocindir dependencies associated with 

an indirect block. The figure shows a file that recently allocated logical blocks 14 and 15 (the 

third and fourth entries, at offsets 16 and 24, in the first indirect block). The allocation bitmaps 

have been written for logical block 14 (as shown by its DEPCOMPLETE flag being set), but not 

for block 15. Thus, the bmsafemap structure tracks the allocindir structure for logical block 15. 

The contents of logical block 15 have been written to disk (as shown by its COMPLETE flag 

being set), but not those of block 14. The COMPLETE flag will be set in 14’s allocindir structure 

once the block is written. The list of allocindir structures tracked by an indirdep structure can 

be long (e.g., up to 4096 entries for 32-Kbyte indirect blocks). To avoid traversing lengthy 

dependency structure lists in the I/O routines, an indirdep structure maintains a second version 

of the indirect block: the saved data ptr always points to the buffer’s up-to-date copy and the 

safe copy ptr points to a version that includes only the subset of pointers that can be safely 

written to disk (and NULL for the others). The up-to-date copy is used for all filesystem 

operations and the copy with the subset of pointers that can be safely written to disk is used for 

disk writes. When the allocindir head list becomes empty, the saved data ptr and safe copy ptr 

point to identical blocks and the indirdep structure (and the safe copy) can be deallocated. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig22
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Figure 9.22 Indirect block allocation dependencies. 

Dependency Tracking for New Indirect Blocks 

Figure 9.23 shows the structures associated with a file that recently expanded into its 

single-level indirect block. Specifically, this expansion involves inodedep and indirdep 

structures to manage dependency structures for the inode and indirect block, an allocdirect 

structure to track the dependencies associated with the indirect block’s allocation, and an 

allocindir structure to track the dependencies associated with a newly allocated block pointed to 

by the indirect block. These structures are used as described in the previous three subsections. 

Neither the indirect block nor the data block that it references have had their bitmaps set, so 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig23
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they do not have their DEPCOMPLETE flag set and are tracked by a bmsafemap structure. The 

bitmap entry for the inode has been written, so the inodedep structure has its DEPCOMPLETE 

flag set. The use of the buffer update head list by the inodedep structure shows that the incore 

inode has been copied into its buffer by a call to VOP_UPDATE. Neither of the dependent 

pointers (from the inode to the indirect block and from the indirect block to the data block) can 

be safely included in disk writes yet, since the corresponding COMPLETE and DEPCOMPLETE 

flags are not set. Only after the bitmaps and the contents have been written will all the flags be 

set and the dependencies complete. 

 

Figure 9.23 Dependencies for a file expanding into an indirect block. 
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New Directory-Entry Dependency Tracking 

Figure 9.24 shows the dependency structures for a directory that has two new entries, foo and 

bar. This figure introduces two new dependency structures. A separate diradd structure tracks 

each individual directory entry in a directory block. The pagedep structure manages all the 

diradd dependencies associated with a directory block. For each new file, there is an inodedep 

structure and a diradd structure. Both files’ inodes have had their bitmaps written to disk, as 

shown by the DEPCOMPLETE flags being set in their inodedep structures. The inode for foo 

has been updated with VOP_UPDATE but has not yet been written to disk, as shown by the 

COMPLETE flag on its inodedep structure not being set and by its diradd structure still being 

linked onto its buffer wait list. Until the inode is written to disk with its increased link count, 

the directory entry may not appear on disk. If the directory page is written, the soft-updates 

code will roll back the creation of the new directory entry for foo by setting its inode number to 

zero. After the disk write completes, the rollback is reversed by restoring the correct inode 

number for foo. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig24
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Figure 9.24 Dependencies associated with adding new directory entries. 

The inode for bar has been written to disk, as shown by the COMPLETE flag being set in its 

inodedep and diradd structures. When the inode write completed, the diradd structure for bar 

was moved from the inodedep buffer wait list to the inodedep pending ops list. The diradd also 

moved from the pagedep diradd list to the pagedep pending ops list. Since the inode has been 

written, it is safe to allow the directory entry to be written to disk. The diradd entries remain on 

the inodedep and pagedep pending ops list until the new directory entry is written to disk. 

When the entry is written, the diradd structure is freed. One reason to maintain the pending ops 

list is so that when an fsync system call is done on a file, the kernel is able to ensure that both 

the file’s contents and directory reference(s) are written to disk. The kernel ensures that the 

reference(s) are written by performing a lookup to see if there is an inodedep for the inode that 

is the target of the fsync. If it finds an inodedep, it checks to see if it has any diradd 

dependencies on either its pending ops or buffer wait lists. If it finds any diradd structures, it 
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follows the pointers to their associated pagedep structures and flushes out the directory inode 

associated with that pagedep. This backtracking recurses on the directory inodedep. 

New Directory Dependency Tracking 

Figure 9.25 shows the two additional dependency structures involved with creating a new 

directory. For a regular file, the directory entry can be committed as soon as the newly 

referenced inode has been written to disk with its increased link count. When a new directory is 

created, there are two additional dependencies: writing the directory data block containing the . 

and .. entries (MKDIR_BODY) and writing the parent inode with the increased link count for .. 

(MKDIR_PARENT). These additional dependencies are tracked by two mkdir structures linked 

to the associated diradd structure. The soft-updates design dictates that any given dependency 

will correspond to a single buffer at any given point in time. Thus, two structures are used to 

track the action of the two different buffers. When each completes, it clears its associated flag in 

the diradd structure. The MKDIR_PARENT is linked to the inodedep structure for the parent 

directory. When that directory inode is written, the link count will be updated on disk. The 

MKDIR_BODY is linked to the buffer that contains the initial contents of the new directory. 

When that buffer is written, the entries for . and .. will be on disk. The last mkdir to complete 

sets the DEPCOMPLETE flag in the diradd structure so that the diradd structure knows that 

these extra dependencies have been completed. Once these extra dependencies have been 

completed, the handling of the directory diradd proceeds exactly as it would for a regular file. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig25
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Figure 9.25 Dependencies associated with adding a new directory. 

All mkdir structures in the system are linked together on a list. This list is needed so that a 

diradd can find its associated mkdir structures and deallocate them if it is prematurely freed 

(e.g., if a mkdir system call is immediately followed by a rmdir system call of the same 

directory). Here, the deallocation of a diradd structure must traverse the list to find the 

associated mkdir structures that reference it. The deletion would be faster if the diradd 

structure were simply augmented to have two pointers that referenced the associated mkdir 

structures. However, these extra pointers would double the size of the diradd structure to speed 

an infrequent operation. 
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Directory-Entry Removal-Dependency Tracking 

Figure 9.26 shows the dependency structures involved with the removal of a directory entry. 

This figure introduces one new dependency structure, the dirrem structure, and a new use for 

the pagedep structure. A separate dirrem structure tracks each individual directory entry to be 

removed in a directory block. In addition to previously described uses, pagedep structures 

associated with a directory block manage all dirrem structures associated with the block. After 

the directory block is written to disk, the dirrem request is added to the work daemon’s tasklist 

list. For file deletions, the work daemon will decrement the inode’s link count by one. For 

directory deletions, the work daemon will decrement the inode’s link count by two, truncate its 

size to zero, and decrement the parent directory’s link count by one. If the inode’s link count 

drops to zero, the resource reclamation activities described in the “file and directory inode 

reclamation” section are started. 

 

Figure 9.26 Dependencies associated with removing a directory entry. 

File Truncation 

When a file is truncated to zero length without soft updates enabled, the block pointers in its 

inode are saved in a temporary list, the pointers in the inode are zeroed, and the inode is 

synchronously written to disk. When the inode write completes, the list of its formerly claimed 

blocks is added to the free-block bitmap. With soft updates, the block pointers in the inode 

being truncated are copied into a freeblks structure, the pointers in the inode are zeroed, and 

the inode is marked dirty. The freeblks structure is added to the inode wait list, and it migrates 

to the buffer wait list when VOP_UPDATE is called. The freeblks structure is eventually added 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig26


 

560 

to the tasklist after the buffer holding the inode block has been written to disk. When the 

tasklist is serviced, the blocks listed in the freeblks structure are returned to the free-block 

bitmap. 

File and Directory Inode Reclamation 

When the link count on a file or directory drops to zero, its inode is zeroed to show that it is no 

longer in use. When running without soft updates, the zeroed inode is synchronously written to 

disk, and the inode is marked as free in the bitmap. With soft updates, information about the 

inode to be freed is saved in a freefile structure. The freefile structure is added to the inode wait 

list, and it migrates to the buffer wait list when VOP_UPDATE is called. The freefile structure 

eventually is added to the tasklist after the buffer holding the inode block has been written to 

disk. When the tasklist is serviced, the inode listed in the freefile structure is returned to the free 

inode map. 

Directory-Entry Renaming Dependency Tracking 

Figure 9.27 shows the structures involved in renaming a file. The dependencies follow the same 

series of steps as those for adding a new file entry, with two variations. First, when a rollback of 

an entry is needed because its inode has not yet been written to disk, the entry must be set back 

to the previous inode number rather than to zero. The previous inode number is stored in a 

dirrem structure. The DIRCHG flag is set in the diradd structure so that the rollback code 

knows to use the old inode number stored in the dirrem structure. The second variation is that, 

after the modified directory entry is written to disk, the dirrem structure is added to the work 

daemon’s tasklist list so that the link count of the old inode will be decremented as described in 

the earlier section on “Directory-Entry Removal-Dependency Tracking.” 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev2sec20
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Figure 9.27 Dependencies associated with renaming a directory entry. 

Fsync Requirements for Soft Updates 

The fsync system call requests that the specified file be written to stable storage and that the 

system call not return until all its associated writes have completed. The task of completing an 

fsync requires more than simply writing all the file’s dirty data blocks to disk. It also requires 

that any unwritten directory entries that reference the file also be written, as well as any 

unwritten directories between the file and the root of the filesystem. Simply getting the data 

blocks to disk can be a major task. First, the system must check to see if the bitmap for the inode 

has been written, finding the bitmap and writing it if necessary. It must then check for, find, and 

write the bitmaps for any new blocks in the file. Next, any unwritten data blocks must go to disk. 

Following the data blocks, any first-level indirect blocks that have newly allocated blocks in 

them are written, followed by any double indirect blocks, then triple indirect blocks. Finally, the 
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inode can be written that will ensure that the contents of the file are on stable store. Ensuring 

that all names for the file are also on stable store requires data structures that can determine 

whether there are any uncommitted names and, if so, in which directories they occur. For each 

directory containing an uncommitted name, the soft-updates code must go through the same set 

of flush operations that it has just done on the file itself. 

The addition of extended attribute data to the inode required that the soft-updates code be 

extended so that it could ensure the integrity of these new data blocks. As with the file data 

blocks, soft updates ensure that the extended data blocks and the bitmaps, which show that they 

are in use, are written to disk before they are claimed by the inode. Soft updates also ensure that 

any updated extended attribute data are committed to disk as part of an fsync of the file. 

Although the fsync system call must ultimately be done synchronously, this requirement does 

not mean that the flushing operations must each be done synchronously. Instead, whole sets of 

bitmaps or data blocks are pushed into the disk queue, and the soft-updates code then waits for 

all the writes to complete. This approach is more efficient because it allows the disk subsystem 

to sort all the write requests into the most efficient order for writing. Still, the fsync part of the 

soft-updates code generates most of the remaining synchronous writes in the filesystem. 

Another issue related to fsync is unmounting of filesystems. Doing an unmount requires 

finding and flushing all the dirty files that are associated with the filesystem. Flushing the files 

may lead to the generation of background activity, such as removing files whose reference count 

drops to zero as a result of their nullified directory entries being written. Thus, the system must 

be able to find all background activity requests and process them. Even on a quiescent filesystem, 

several iterations of file flushes followed by background activity may be required. FreeBSD 

allows for the forcible unmount of a filesystem, which may take place while the filesystem is 

actively in use. The ability to suspend operations cleanly on an active filesystem is described in 

Section 9.7. 

File-Removal Requirements for Soft Updates 

For correct operation, a directory’s .. entry should not be removed until after the directory is 

persistently unlinked. Correcting this dependency ordering in the soft-updates code introduced 

a delay of up to 2 minutes between the time a directory is unlinked and the time that it is really 

deallocated (when the .. entry is removed). Until the directory’s .. entry is really removed, the 

link count on its parent will not be decremented. Thus, when a user removes one or more 

directories, the link count of their former parent still reflects that they are present for several 

minutes. This delayed link count decrement not only causes some questions from users, but also 

causes some applications to break. For example, the rmdir system call will not remove a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7
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directory that has a link count over two. This restriction means that a directory that recently had 

directories removed from it cannot be removed until its former directories have been fully 

deleted. 

To fix these link-count problems, the soft-updates implementation augments the inode nlink 

field with a new field called effnlink. The nlink field is still stored as part of the on-disk metadata 

and reflects the true link count of the inode. The effnlink field is maintained only in kernel 

memory and reflects the final value that the nlink field will reach once all its outstanding 

operations are completed. All interactions with user applications report the value of the effnlink 

field, which results in the illusion that everything has happened immediately. 

When a file is removed on a filesystem running with soft updates, the removal appears to 

happen quickly, but the process of removing the file and returning its blocks to the free list may 

take up to several minutes. Before UFS2, the space held by the file did not show up in the 

filesystem statistics until the removal of the file had been completed. Thus, applications that 

clean up disk space such as the news expiration program would often vastly overshoot their goal. 

They work by removing files and then checking to see if enough free space has showed up. 

Because of the time lag in having the free space recorded, they would remove far too many files. 

To resolve problems of this sort, the soft-updates code now maintains a counter that keeps track 

of the amount of space that is held by the files that the soft-updates code is in the process of 

removing. This counter of pending space is added to the actual amount of free space as reported 

by the kernel (and thus by utilities like df). The result of this change is that free space appears 

immediately after the unlink system call returns or the rm utility finishes. 

The second and related change to soft updates has to do with avoiding false out-of-space errors. 

When running with soft updates on a nearly full filesystem with high turnover rate (for example, 

when installing a whole new set of binaries on a root partition), the filesystem can return a 

filesystem full error even though it reports that it has plenty of free space. The filesystem full 

message happens because soft updates have not managed to free the space from the old binaries 

in time for it to be available for the new binaries. 

The initial attempt to correct this problem was to have the process that wished to allocate space 

simply wait for the free space to show up. The problem with this approach is that it often had to 

wait for up to a minute. In addition to making the application seem intolerably slow, it usually 

held a locked vnode that could cause other applications to get blocked waiting for it to become 

available (often referred to as a lock race to the root of the filesystem). Although the condition 

would clear in a minute or two, users often assumed that their system had hung and would 

reboot. 
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To remedy this problem, the solution devised for UFS2 is to co-opt the process that would 

otherwise be blocked and put it to work helping soft updates process the files to be freed. The 

more processes trying to allocate space, the more help that is available to soft updates and the 

faster free blocks begin to appear. Usually, enough space shows up in under 1 second that the 

processes can return to their original task and complete. The effect of this change is that soft 

updates can now be used on small, nearly full filesystems with high turnover. 

Although the common case for deallocation is for all data in a file to be deleted, the truncate 

system call allows applications to delete only part of a file. This semantic creates slightly more 

complicated update dependencies, including the need to have deallocation dependencies for 

indirect blocks and the need to consider partially deleted data blocks. Because it is so 

uncommon, the soft-updates implementation does not optimize this case; the conventional 

synchronous write approach is used instead. 

One concern with soft updates is the amount of memory consumed by the dependency 

structures. In daily operation, we have found that the additional dynamic memory load placed 

on the kernel memory allocation area is about equal to the amount of memory used by vnodes 

plus inodes. For each 1000 vnodes in the system, the additional peak memory load from soft 

updates is about 300 Kbyte. The one exception to this guideline occurs when large directory 

trees are removed. Here, the filesystem code can get arbitrarily far ahead of the on-disk state, 

causing the amount of memory dedicated to dependency structures to grow without bound. The 

soft-update code was modified to monitor the memory load for this case and not allow it to grow 

past a tunable upper bound. When the bound is reached, new dependency structures can only be 

created at the rate at which old ones are retired. The effect of this limit is to slow down the rate 

of removal to the rate at which the disk updates can be done. While this restriction slows the 

rate at which soft updates can normally remove files, it is still considerably faster than the 

traditional synchronous-write filesystem. In steady-state, the soft-update remove algorithm 

requires about one disk write for each 10 files removed, whereas the traditional filesystem 

requires at least two writes for every file removed. 

Soft-Updates Requirements for fsck 

As with the dual tracking of the true and effective link count, the changes needed to fsck 

became evident through operational experience. In a non-soft-updates filesystem 

implementation, file removal happens within a few milliseconds. Thus, there is a short period of 

time between the directory entry being removed and the inode being deallocated. If the system 

crashes during a bulk tree removal operation, there are usually no inodes lacking references 

from directory entries, though in rare instances there may be one or two. By contrast, in a 

system running with soft updates, many seconds may elapse between the time when the 
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directory entry is deleted and the inode is deallocated. If the system crashes during a bulk tree 

removal operation, there are usually tens to hundreds of inodes lacking references from 

directory entries. Historically, fsck placed any unreferenced inodes into the lost+found 

directory. This action is reasonable if the filesystem has been damaged because of disk failure 

that results in the loss of one or more directories. However, it results in the incorrect action of 

stuffing the lost+found directory full of partially deleted files when running with soft updates. 

Thus, the fsck program was modified to check that a filesystem is running with soft updates and 

clear out, rather than save, unreferenced inodes (unless fsck has determined that unexpected 

damage has occurred to the filesystem, in which case the files are saved in lost+found). 

A peripheral benefit of soft updates is that fsck can trust the allocation information in the 

bitmaps. Thus, it only needs to check the subset of inodes in the filesystem that the bitmaps 

show are in use. Although some of the inodes marked “in use” may be free, none of those 

marked “free” will ever be in use. 

9.7 Filesystem Snapshots 

A filesystem snapshot is a frozen image of a filesystem at a given instant in time. Snapshots 

support several important features: the ability to provide backups of the filesystem at several 

times during the day, the ability to do reliable dumps of live filesystems, and (most important 

for soft updates) the ability to run a filesystem check program on an active system to reclaim lost 

blocks and inodes. 

Creating a Filesystem Snapshot 

Implementing snapshots has proven to be straightforward. Taking a snapshot entails the 

following steps: 

1. A snapshot file is created to track later changes to the filesystem; a snapshot file is shown in 

Figure 9.28. This snapshot file is initialized to the size of the filesystem’s partition, and its file 

block pointers are marked as zero, which means “not copied.” A few strategic blocks are 

allocated, such as those holding copies of the superblock and cylinder-group maps. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_393
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Figure 9.28 Structure of a snapshot file. 

2. A preliminary pass is made over each of the cylinder groups to copy it to its preallocated 

backing block. Additionally, the block bitmap in each cylinder group is scanned to determine 

which blocks are free. For each free block that is found, the corresponding location in the 

snapshot file is marked with a distinguished block number (1) to show that the block is “not 

used.” There is no need to copy those unused blocks if they are later allocated and written. 

3. The filesystem is marked as “wanting to suspend.” In this state, processes that wish to invoke 

system calls that will modify the filesystem are blocked from running, while processes that are 

already in progress on such system calls are permitted to finish them. These actions are enforced 

by inserting a gate at the top of every system call that can write to a filesystem. The set of gated 

system calls includes write, open (when creating or truncating), fhopen (when creating or 

truncating), mknod, mkfifo, link, symlink, unlink, chflags, fchflags, chmod, lchmod, fchmod, 

chown, lchown, fchown, utimes, lutimes, futimes, truncate, ftruncate, rename, mkdir, rmdir, 

fsync, sync, unmount, undelete, quotactl, revoke, and extattrctl. In addition, gates must be 

added to pageout, ktrace, local-domain socket creation, and core dump creation. The gate tracks 

activity within a system call for each mounted filesystem. A gate has two purposes. The first is to 

suspend processes that want to enter the gated system call during periods when the filesystem 

that the process wants to modify is suspended. The second is to keep track of the number of 

processes that are running inside the gated system call for each mounted filesystem. When a 

process enters a gated system call, a counter in the mount structure for the filesystem that it 

wants to modify is incremented. When the process exits a gated system call, the counter is 

decremented. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_254
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4. The filesystem’s status is changed from “wanting to suspend” to “fully suspended.” This status 

change is done by allowing all system calls currently writing to the filesystem being suspended 

to finish. The transition to “fully suspended” is complete when the count of processes within 

gated system calls drops to zero. 

5. The filesystem is synchronized to disk as if it were about to be unmounted. 

6. Any cylinder groups that were modified after they were copied in step 2 are recopied to their 

preallocated backing block. Additionally, the block bitmap in each recopied cylinder group is 

rescanned to determine which blocks were changed. Newly allocated blocks are marked as “not 

copied,” and newly freed blocks are marked as “not used.” The details on how these modified 

cylinder groups are identified is described at the end of this subsection. The amount of space 

initially claimed by a snapshot is small, usually less than a tenth of one percent. 

7. With the snapshot file in place, activity on the filesystem resumes. Any processes that were 

blocked at a gate are awakened and allowed to proceed with their system call. 

8. Blocks claimed by any snapshots that existed at the time that the current snapshot was taken 

are expunged from the new snapshot for reasons described in the next subsection. 

During steps 3 through 6, all write activity on the filesystem is suspended. Steps 3 and 4 

complete in at most a few milliseconds. The time for step 5 is a function of the number of dirty 

pages in the kernel. It is bounded by the amount of memory that is dedicated to storing file 

pages. It is typically less than a second and is independent of the size of the filesystem. Typically, 

step 6 needs to recopy only a few cylinder groups, so it also completes in less than a second. 

The splitting of the bitmap copies between steps 2 and 6 is the way that we avoid having the 

suspend time be a function of the size of the filesystem. By making the primary copy pass while 

the filesystem is still active, and then having only a few cylinder groups in need of recopying 

after it has been suspended, we keep the suspend time down to a small and usually 

filesystem-size-independent time. 

The details of the two-pass algorithm are as follows. Before starting the copy and scan of all the 

cylinder groups, the snapshot code allocates a “progress” bitmap whose size is equal to the 

number of cylinder groups in the filesystem. The purpose of the “progress” bitmap is to keep 

track of which cylinder groups have been scanned. Initially, all the bits in the “progress” map are 

cleared. The first pass is completed in step 2 before the filesystem is suspended. In this first pass, 

all the cylinder groups are scanned. When the cylinder group is read, its corresponding bit is set 

in the “progress” bitmap. The cylinder group is then copied, and its block map is consulted to 

update the snapshot file as described in step 2. Since the filesystem is still active, filesystem 
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blocks may be allocated and freed while the cylinder groups are being scanned. Each time a 

cylinder group is updated because of a block being allocated or freed, its corresponding bit in the 

“progress” bitmap is cleared. Once this first pass over the cylinder groups is completed, the 

filesystem is “suspended.” 

Step 6 now becomes the second pass of the algorithm. The second pass need only identify and 

update the snapshot for any cylinder groups that were modified after it handled them in the first 

pass. The changed cylinder groups are identified by scanning the “progress” bitmap and 

rescanning any cylinder groups whose bits are zero. Although every bitmap would have to be 

reprocessed in the worst case, in practice only a few bitmaps need to be recopied and checked. 

Maintaining a Filesystem Snapshot 

Each time an existing block in the filesystem is modified, the filesystem checks whether that 

block was in use at the time that the snapshot was taken (i.e., it is not marked “not used”). If so, 

and if it has not already been copied (i.e., it is still marked “not copied”), a new block is allocated 

from among the “not used” blocks and placed in the snapshot file to replace the “not copied” 

entry. The previous contents of the block are copied to the newly allocated snapshot file block, 

and the write to the original is then allowed to proceed. Whenever a file is removed, the 

snapshot code inspects each of the blocks being freed and claims any that were in use at the time 

of the snapshot. Those blocks marked “not used” are returned to the free list. 

When a snapshot file is read, reads of blocks marked “not copied” return the contents of the 

corresponding block in the filesystem. Reads of blocks that have been copied return the contents 

in the copied block (e.g., the contents that were stored at that location in the filesystem at the 

time that the snapshot was taken). Writes to snapshot files are not permitted. When a snapshot 

file is no longer needed, it can be removed in the same way as any other file; its blocks are 

simply returned to the free list, and its inode is zeroed and returned to the free inode list. 

Snapshots may live across reboots. When a snapshot file is created, the inode number of the 

snapshot file is recorded in the superblock. When a filesystem is mounted, the snapshot list is 

traversed and all the listed snapshots are activated. The only limit on the number of snapshots 

that may exist in a filesystem is the size of the array in the superblock that holds the list of 

snapshots. Currently, this array can hold up to 20 snapshots. 

Multiple snapshot files can exist concurrently. As just described, earlier snapshot files would 

appear in later snapshots. If an earlier snapshot is removed, a later snapshot would claim its 

blocks rather than allowing them to be returned to the free list. This semantic means that it 

would be impossible to free any space on the filesystem except by removing the newest snapshot. 
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To avoid this problem, the snapshot code goes through and expunges all earlier snapshots by 

changing its view of them to being zero-length files. With this technique, the freeing of an earlier 

snapshot releases the space held by that snapshot. 

When a block is overwritten, all snapshots are given an opportunity to copy the block. A copy of 

the block is made for each snapshot in which the block resides. Overwrites typically occur only 

for inode and directory blocks. File data usually are not overwritten. Instead, a file will be 

truncated and then reallocated as it is rewritten. Thus, the slow and I/O intensive block copying 

is infrequent. 

Deleted blocks are handled differently. The list of snapshots is consulted. When a snapshot is 

found in which the block is active (“not copied”), the deleted block is claimed by that snapshot. 

The traversal of the snapshot list is then terminated. Other snapshots for which the block is 

active are left with an entry of “not copied” for that block. The result is that when they access 

that location, they will still reference the deleted block. Since snapshots may not be modified, 

the block will not change. Since the block is claimed by a snapshot, it will not be allocated to 

another use. If the snapshot claiming the deleted block is deleted, the remaining snapshots will 

be given the opportunity to claim the block. Only when none of the remaining snapshots wants 

to claim the block (i.e., it is marked “not used” in all of them) will it be returned to the freelist. 

Large Filesystem Snapshots 

Creating and using a snapshot requires random access to the snapshot file. The creation of a 

snapshot requires the inspection and copying of all the cylinder-group maps. Once in operation, 

every write operation to the filesystem must check whether the block being written needs to be 

copied. The information on whether a blocks needs to be copied is contained in the snapshot file 

metadata (its indirect blocks). Ideally, this metadata would be resident in the kernel memory 

throughout the lifetime of the snapshot. In FreeBSD, the entire physical memory on the 

machine can be used to cache file data pages if the memory is not needed for other purposes. 

Unfortunately, data pages associated with disks can only be cached in pages mapped into the 

kernel’s physical memory. On a 32-bit architecture, only about 10 Mbyte of kernel memory is 

dedicated to such purposes. Even on 64-bit architectures, only about 100 Mbyte of kernel 

memory is dedicated to such purposes. If we allow up to half of this space to be used for any 

single snapshot, the largest snapshot whose metadata that we can hold in memory is 11 Gbyte or 

110 Gbyte. Without help, such a tiny cache would be hopeless in trying to support a 

multiterabyte snapshot. 

In an effort to support multiterabyte snapshots with the tiny metadata cache available, it is 

necessary to observe the access patterns on typical filesystems. The snapshot is only consulted 
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for files that are being written. The filesystem is organized around cylinder groups that map 

small contiguous areas of the disk (see Section 9.9). Within a directory, the filesystem tries to 

allocate all the inodes and files in the same cylinder group. When moving between directories, 

different cylinder groups are usually inspected. Thus, the widely random behavior occurs from 

movement between cylinder groups. Once file-writing activity settles down into a cylinder group, 

only a small amount of snapshot metadata needs to be consulted. That metadata will easily fit in 

even the tiny kernel metadata cache, so the need is to find a way to avoid thrashing the cache 

when moving between cylinder groups. 

The technique used to avoid thrashing when moving between cylinder groups is to build a 

look-aside table of all the blocks that were copied while the snapshot was made. This table lists 

the blocks associated with all the snapshot metadata blocks, the cylinder-group maps, the 

superblock, and blocks that contain active inodes. When a copy-on-write fault occurs for a block, 

the first step is to consult this table. If the block is found in the table, then no further searching 

needs to be done in any of the snapshots. If the block is not found, then the metadata of each 

active snapshot on the filesystem must be consulted to see if a copy is needed. This table lookup 

saves time because it not only avoids faulting in metadata for widely scattered blocks, but it also 

avoids the need to consult potentially many snapshots. 

Another problem with snapshots on large filesystems is that they aggravate existing deadlock 

problems. When there are multiple snapshots associated with a filesystem, they are kept in a list 

ordered from oldest to youngest. When a copy-on-write fault occurs, the list is traversed, letting 

each snapshot decide if it needs to copy the block that is about to be written. Originally, each 

snapshot inode had its own lock. A deadlock could occur between two processes, each trying to 

do a write. Consider the example in Figure 9.29. It shows a filesystem with two snapshots: snap1 

and snap2. Process A holds snapshot 1 locked, and process B holds snapshot 2 locked. Both 

snap1 and snap2 have decided that they need to allocate a new block in which to hold a copy of 

the block being written by the process that holds them locked. The writing of the new block in 

snapshot 1 will cause the kernel running in the context of process A to scan the list of snapshots 

that will get blocked at snapshot 2 because it is held locked by process B. Meanwhile, the writing 

of the new block in snapshot 2 will cause the kernel running in the context of process B to scan 

the list of snapshots that will get blocked at snapshot 1 because it is held locked by process A. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig29
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Figure 9.29 Snapshot deadlock scenario. 

The resolution to the deadlock problem is to allocate a single lock that is used for all the 

snapshots on a filesystem. When a new snapshot is created, the kernel checks whether there are 

any other snapshots on the filesystem. If there are, the per-file lock associated with the new 

snapshot inode is released and replaced with the lock used for the other snapshots. With only a 

single lock, the access to the snapshots as a whole is serialized. Thus, in Figure 9.29, process B 

will hold the lock for all the snapshots and will be able to make the necessary checks and 

updates while process A will be held waiting. Once process B completes its scan, process A will 

be able to get access to all the snapshots and will be able to run successfully to completion. 

Because of the added serialization of the snapshot lookups, the look-aside table described earlier 

is important to ensure reasonable performance of snapshots. In gathering statistics on our 

running systems, we found that the look-aside table resolves nearly half of the snapshot 

copy-on-write lookups. Thus, we found that the look-aside table keeps the contention for the 

snapshot lock to a reasonable level. 

Background fsck 

Traditionally, after an unclean system shutdown, the filesystem check program, fsck, has had to 

be run over all the inodes in a filesystem to ascertain which inodes and blocks are in use and to 

correct the bitmaps. This check is a painfully slow process that can delay the restart of a big 

server for an hour or more. The current implementation of soft updates guarantees the 

consistency of all filesystem resources, including the inode and block bitmaps. With soft updates, 

the only inconsistency that can arise in the filesystem (barring software bugs and media failures) 

is that some unreferenced blocks may not appear in the bitmaps and some inodes may have to 

have overly high link counts reduced. Thus, it is completely safe to begin using the filesystem 

after a crash without first running fsck. However, some filesystem space may be lost after each 

crash. Thus, there is value in having a version of fsck that can run in the background on an 

active filesystem to find and recover any lost blocks and adjust inodes with overly high link 

counts. A special case of the overly high link count is one that should be zero. Such an inode will 

be freed as part of reducing its link count to zero. This garbage collection task is less difficult 

than it might at first appear, since this version of fsck only needs to identify resources that are 

not in use and cannot be allocated or accessed by the running system. 

With the addition of snapshots, the task becomes simple, requiring only minor modifications to 

the standard fsck. When run in background cleanup mode, fsck starts by taking a snapshot of 

the filesystem to be checked. Fsck then runs over the snapshot filesystem image doing its usual 

calculations just as in its normal operation. The only other change comes at the end of its run, 

when it wants to write out the updated versions of the bitmaps. Here, the modified fsck takes 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig29


 

572 

the set of blocks that it finds were in use at the time of the snapshot and removes this set from 

the set marked as in use at the time of the snapshot—the difference is the set of lost blocks. It 

also constructs the list of inodes whose counts need to be adjusted. Fsck then calls a new system 

call to notify the filesystem of the identified lost blocks so that it can replace them in its bitmaps. 

It also gives the set of inodes whose link counts need to be adjusted; those inodes whose link 

count is reduced to zero are truncated to zero length and freed. When fsck completes, it releases 

its snapshot. The complete details of how background fsck is implemented can be found in 

McKusick [2002; 2003]. 

User-Visible Snapshots 

Snapshots may be taken at any time. When taken every few hours during the day, they allow 

users to retrieve a file that they wrote several hours earlier and later deleted or overwrote by 

mistake. Snapshots are much more convenient to use than dump tapes and can be created much 

more frequently. 

The snapshot described above creates a frozen image of a filesystem partition. To make that 

snapshot accessible to users through a traditional filesystem interface, the system administrator 

uses the vnode driver, vnd. The vnd driver takes a file as input and produces a character-device 

interface to access it. The vnd character device can then be used as the input device for a 

standard mount command, allowing the snapshot to appear as a replica of the frozen filesystem 

at whatever location in the namespace that the system administrator chooses to mount it. 

Live Dumps 

Once filesystem snapshots are available, it becomes possible to dump live filesystems safely. 

When dump notices that it is being asked to dump a mounted filesystem, it can simply take a 

snapshot of the filesystem and dump the snapshot instead of dumping the live filesystem. When 

dump completes, it releases the snapshot. 

9.8 Journaled Soft Updates 

This section describes the work to add “journaling lite” to soft updates and its incorporation into 

the FreeBSD fast filesystem. Because soft updates prevent most inconsistencies, the journal 

need only track those inconsistencies that soft updates fail to address. Specifically, the journal 

contains the information needed to recover the block and inode resources that have been freed 

but whose freed status failed to make it to disk before a system failure. After a crash, a variant of 

the venerable fsck program runs through the journal to identify and free the lost resources. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref15
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Only if an inconsistency between the log and filesystem is detected is it necessary to run the 

whole-filesystem fsck. The journal is tiny, 16 Mbyte is usually enough, independent of 

filesystem size. Although journal processing needs to be done before restarting, the processing 

time is typically just a few seconds and, in the worst case, a minute. It is not necessary to build a 

new filesystem to use soft-updates journaling. The addition or deletion of soft-updates 

journaling to existing FreeBSD fast filesystems is done using the tunefs program. 

Background and Introduction 

The soft-updates dependency-tracking system was adopted by FreeBSD in 1998 as an 

alternative to the popular journaled-filesystem technique and is described in Section 9.6. While 

the runtime performance and consistency guarantees of soft updates are comparable to 

journaled filesystems [Seltzer et al., 2000], it relies on an expensive and time-consuming 

background filesystem recovery operation after a crash as is described in Section 9.7. This 

section outlines a method for eliminating an expensive background or foreground 

whole-filesystem check operation by using a small journal that logs the only two inconsistencies 

possible in soft updates. The first is allocated but unreferenced blocks; the second is incorrectly 

high link counts. Incorrectly high link counts include unreferenced inodes that were being 

deleted and files that were unlinked but open [Ganger et al., 2000]. This journal allows a 

journal-analysis program to complete recovery in just a few seconds independent of filesystem 

size. 

Compatibility with Other Implementations 

Journaling is enabled via tunefs and only requires a few spare superblock fields and 16 Mbyte 

of free blocks for the journal. These minimal requirements make it easily enabled on existing 

FreeBSD filesystems. The journal’s filesystem blocks are placed in an inode named .sujournal 

in the root of the filesystem and filesystem flags are set such that older nonjournaling kernels 

will trigger a full filesystem check when mounting a previously journaled volume. When 

mounting a journaled filesystem, older kernels clear a flag that shows that journaling is being 

done so that when the filesystem is next encountered by a kernel that does journaling, it will 

know that that the journal is invalid and will ensure that the filesystem is consistent and clear 

the journal before resuming use of the filesystem. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref08
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Journal Format 

The journal is kept as a circular log of segments containing records that describe metadata 

operations. If the journal fills, the filesystem must complete enough operations to expire journal 

entries before allowing new operations. In practice, the journal almost never fills. 

Each journal segment contains a unique sequence number and a timestamp that identifies the 

filesystem mount instance so old segments can be discarded during journal processing. Journal 

entries are aggregated into segments to minimize the number of writes to the journal. Each 

segment contains the last valid sequence number at the time it was written to allow fsck to 

recover the head and tail by scanning the entire journal. Segments are variably sized as some 

multiple of the disk block size and are written atomically to avoid read/modify/write cycles in 

running filesystems. 

The journal analysis has been incorporated into the fsck program. This incorporation into the 

existing fsck program has several benefits. The existing startup scripts already call fsck to see if 

it needs to be run in the foreground or background. For filesystems running with journaled soft 

updates, fsck can request to run in the foreground and do the needed journaled operations 

before the filesystem is brought online. If the journal fails for some reason, it can instead report 

that a full fsck needs to be run as the traditional fallback. Thus, this new functionality can be 

introduced without any change to the way that system administrators start up their systems. 

Finally, the invoking of fsck means that after the journal has been processed, it is possible for 

debugging purposes to fall through and run a complete check of the filesystem to ensure that the 

journal is working properly. 

The journal entry size is 32 bytes, providing a dense representation allowing for 128 entries per 

4-Kbyte sector. The journal is created in a single area of the filesystem in as contiguous an 

allocation as is available. We considered spreading it out across cylinder groups to optimize 

locality for writes but it ended up being so small that this approach was not practical and would 

make scanning the entire journal during cleanup too slow. 

The journal blocks are claimed by a named immutable inode. This approach allows user-level 

access to the journal for debugging and statistics-gathering purposes as well as providing 

backwards compatibility with older kernels that do not support journaling. We have found that a 

journal size of 16 Mbyte is enough in even the most tortuous and worst-case benchmarks. A 

16-Mbyte journal can cover over 500,000 namespace operations or 16 Gbyte of outstanding 

allocations (assuming a standard 32-Kbyte block size). 
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Modifications That Require Journaling 

This subsection describes the operations that must be journaled so that the information needed 

to clean up the filesystem is available to fsck. 

Increased Link Count 

A link count may be increased through a hard link or file creation. The link count is temporarily 

increased during a rename. Here, the operation is the same. The inode number, parent inode 

number, directory offset, and initial link count are all recorded in the journal. Soft updates 

guarantee that the inode link count will be increased and stable on disk before any directory 

write. The journal write must occur before the inode write that updates the link count and 

before the bitmap write that allocates the inode if it is newly allocated. 

Decreased Link Count 

The inode link count is decreased through unlink or rename. The inode number, parent inode, 

directory offset, and initial link count are all recorded in the journal. The deleted directory entry 

is guaranteed to be written before the link is adjusted down. As with increasing the link count, 

the journal write must happen before all other writes. 

Unlink While Referenced 

Unlinked yet referenced files pose a problem for journaled filesystems. In UNIX, an inode’s 

storage is not reclaimed until after the final name is removed and the last reference is closed. 

Simply leaving the journal entry valid while waiting for applications to close their dangling 

references is untenable as it will easily exhaust journal space. A solution that scales to the total 

number of inodes in the filesystem is required. At least two approaches are possible: a 

replication of the inode allocation bitmap, or a linked list of inodes to be freed. We have chosen 

to use the linked-list approach. 

In the linked-list case, which is employed by several filesystems (xfs, ext4, etc.), the superblock 

contains the inode number that serves as the head of a singly linked list of inodes to be freed, 

with each inode storing a pointer to the next inode on the list. The advantage of this approach is 

that at recovery time, fsck need only examine a single pointer in the superblock that will already 

be in memory. The disadvantage is that the kernel must keep an in-memory doubly linked list so 

that it can rapidly remove an inode once it is unreferenced. This approach ingrains a 

filesystem-wide lock in the design and incurs nonlocal writes when maintaining the list. In 

practice, we have found that unreferenced inodes occur rarely enough that this approach is not a 

bottleneck. 
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Removal from the list may be done lazily but must be completed before any re-use of the inode. 

Additions to the list must be stable before reclaiming journal space for the final unlink but 

otherwise may be delayed long enough to avoid needing the write at all if the file is quickly 

closed. Addition and removal involve only a single write to update the preceding pointer to the 

following inode. 

Change of Directory Offset 

Any time a directory compaction moves an entry, a journal entry must be created that describes 

the old and new locations of the entry. The kernel does not know at the time of the move 

whether a remove will follow it, so currently all offset changes are journaled. Without this 

information, fsck would be unable to disambiguate multiple revisions of the same directory 

block. 

Block Allocation and Free 

When performing either block allocation or free, whether it is a fragment, indirect block, 

directory block, direct block, or extended attributes, the record is the same. The inode number 

of the file and the offset of the block within the file are recorded using negative offsets for 

indirect blocks and extents. Additionally, the disk block address and number of fragments are 

included in the journal record. The journal entry must be written to disk before any allocation or 

free. 

When freeing an indirect block, only the root of the indirect block tree is logged. Thus, for 

truncation we need a maximum of 15 journal entries, 12 for direct blocks and 3 for indirect 

blocks. These 15 journal entries allow us to free a large amount of space with a minimum of 

journaling overhead. During recovery, fsck will follow indirect blocks and free any descendants 

including other indirect blocks. For this algorithm to work, the contents of the indirect block 

must remain valid until the journal record is free so that user data is not confused with indirect 

block pointers. 

Additional Requirements of Journaling 

Some operations that had not previously required tracking under soft updates need to be 

tracked when journaling is introduced. This subsection describes these new requirements. 

Cylinder-Group Rollbacks 

Soft updates previously did not require any rollbacks of cylinder groups as they were always the 

first or last write in a group of changes. When a block or inode has been allocated but its journal 
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record has not yet been written to disk, it is not safe to write the updated bitmaps and associated 

allocation information. The routines that write blocks with bmsafemap dependencies now 

rollback any allocations with unwritten journal operations. 

Inode Rollbacks 

The inode link count must be rolled back to the link count as it existed before any unwritten 

journal entries. Allowing it to grow beyond this count would not cause filesystem corruption but 

it would prohibit the journal recovery from adjusting the link count properly. Soft updates 

already prevent the link count from decreasing before the directory entry is removed as a 

premature decrement could cause filesystem corruption. 

When an unlinked file has been closed, its inode cannot be returned to the inode freelist until its 

zeroed-out block pointers have been written to disk so that its blocks can be freed and it has 

been removed from the on-disk list of unlinked files. The unlinked-file inode is not completely 

removed from the list of unlinked files until the next pointer of the inode that precedes it on the 

list has been updated on disk to point to the inode that follows it on the list. If the unlinked-file 

inode is the first inode on the list of unlinked files, then it is not completely removed from the 

list of unlinked files until the head-of-unlinked-files pointer in the superblock has been updated 

on disk to point to the inode that follows it on the list. 

Reclaiming Journal Space 

To reclaim journal space from previously written records, the kernel must know that the 

operation the journal record describes is stable on disk. This requirement means that when a 

new file is created, the journal record cannot be freed until writes are completed for a cylinder 

group bitmap, an inode, a directory block, a directory inode, and possibly some number of 

indirect blocks. When a new block is allocated, the journal record cannot be freed until writes 

are completed for the new block pointer in the inode or indirect block, the cylinder group 

bitmap, and the block itself. Block pointers within indirect blocks are not stable until all parent 

indirect blocks are fully reachable on disk via the inode indirect block pointers. To simplify 

fulfillment of these requirements, the dependencies that describe these operations carry 

pointers to the oldest segment structure in the journal containing journal entries that describe 

outstanding operations. 

Some operations may be described by multiple entries. For example, when making a new 

directory, its addition creates three new names. Each of these names is associated with a 

reference count on the inode to which the name refers. When one of these dependencies is 

satisfied, it may pass its journal entry reference to another dependency if another operation on 

which the journal entry depends is not yet complete. If the operation is complete, the final 
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reference on the journal record is released. When all references to journal records in a journal 

segment are released, its space is reclaimed and the oldest valid segment sequence number is 

adjusted. We can only release the oldest free journal segment, since the journal is treated as a 

circular queue. 

Handling a Full Journal 

If the journal ever becomes full, we must prevent any new journal entries from being created 

until more space becomes available from the retirement of the oldest valid entries. An effective 

way to stop the creation of new journal records is to suspend the filesystem using the 

mechanism in place for taking snapshots. Once suspended, existing operations on the filesystem 

are permitted to complete, but new operations that wish to modify the filesystem are put to 

sleep until the suspension is lifted. 

We do a check for journal space before each operation that will change a link count or allocate a 

block. If we find that the journal is approaching a full condition, we suspend the filesystem and 

expedite the progress on the soft-updates work-list processing to speed the rate at which journal 

entries are retired. As the operation that did the check has already started, it is permitted to 

finish, but future operations are blocked. Thus, operations must be suspended while there is still 

enough journal space to complete operations already in progress. When enough journal entries 

have been freed, the filesystem suspension is lifted and normal operations resume. 

In practice, we had to create a minimal-size journal (4 Mbyte) and run scripts designed to create 

huge numbers of link-count changes, block allocations, and block frees to trigger the journal-full 

condition. Even under these tests, the filesystem suspensions were infrequent and brief, lasting 

under a second. 

The Recovery Process 

This subsection describes the use of the journal by fsck to clean up the filesystem after a crash. 

Scanning the Journal 

To perform recovery, the fsck program must first scan the journal from start to end to discover 

the oldest valid sequence number. We contemplated keeping journal head and tail pointers, 

however, that would require extra writes to the superblock area. Because the journal is small, 

the extra time spent scanning it to identify the head and tail of the valid journal seemed a 

reasonable tradeoff to reduce the run-time cost of maintaining the journal head and tail pointers. 

As a result, the fsck program must discover the first segment containing a still-valid sequence 

number and work from there. Journal records are then resolved in order. Journal records are 
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marked with a timestamp that must match the filesystem mount time as well as a CRC to protect 

the validity of the contents. 

Adjusting Link Counts 

For each journal record recording a link increase, fsck needs to examine the directory at the 

offset provided and see whether the directory entry for the recorded inode number exists on disk. 

If it does not exist, but the inode link count was increased, then the recorded link count needs to 

be decremented. 

For each journal record recording a link decrease, fsck needs to examine the directory at the 

offset provided and see whether the directory entry for the recorded inode number exists on disk. 

If it has been deleted on disk, but the inode link count has not been decremented, then the 

recorded link count needs to be decremented. 

Compaction of directory offsets for entries that are being tracked complicates the link 

adjustment scheme presented above. Since directory blocks are not written synchronously, fsck 

must look up each directory entry in all its possible locations. 

When an inode is added and removed from a directory multiple times, fsck is not able to assess 

the link count correctly given the algorithm presented above. The chosen solution is to 

preprocess the journal and link all entries related to the same inode together. In this way, all 

operations not known to be committed to the disk can be examined concurrently to determine 

how many links should exist relative to the known stable count that existed before the first 

journal entry. Duplicate records that occur when an inode is added and deleted multiple times at 

the same offset are discarded, resulting in a coherent count. 

Updating the Allocated Inode Map 

Once the link counts have been adjusted, fsck must free any inodes whose link count has fallen 

to zero. In addition, fsck must free any inodes that were unlinked but still in use at the time that 

the system crashed. The head of the list of unreferenced inode is in the superblock as described 

earlier in this section. The fsck program must traverse this list of unlinked inodes and free 

them. 

The first step in freeing an inode is to add all its blocks to the list of blocks that need to be freed. 

Next, the inode needs to be zeroed to show that it is not in use. Finally, the inode bitmap in its 

cylinder group must be updated to reflect that the inode is available and all the appropriate 

filesystem statistics updated to reflect the inode’s availability. 

Updating the Allocated Block Map 
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Once the journal has been scanned, it provides a list of blocks that were intended to be freed. 

The journal entry lists the inode from which the block was to be freed. For recovery, fsck 

processes each free record by checking to see if the block is still claimed by its associated inode. 

If it finds that the block is no longer claimed, it is freed. 

For each block that is freed, either by the deallocation of an inode or through the identification 

process described above, the block bitmap in its cylinder group must be updated to reflect that it 

is available and all the appropriate filesystem statistics updated to reflect its availability. When a 

fragment is freed, the fragment availability statistics must also be updated. 

Performance 

Journaling adds extra running time and memory allocations to the traditional soft-updates 

requirements as well as additional I/O operations to write the journal. The overhead of the extra 

running time and memory allocations was immeasurable in the benchmarks that we ran. The 

extra I/O was mostly evident in the increased delay for individual operations to complete. 

Operation completion time is usually only evident to an application when it does an fsync 

system call that causes it to wait for the file to reach the disk. Otherwise, the extra I/O to the 

journal only becomes evident in benchmarks that are limited by the filesystem’s I/O bandwidth 

before journaling is enabled. In summary, a system running with journaled soft updates will 

never run faster than one running soft updates without journaling. So, systems with small 

filesystems such as an embedded system will usually want to run soft updates without 

journaling and take the time to run fsck after system crashes. 

The primary purpose of the journaling project was to eliminate long filesystem check times. A 

40 Tbyte volume may take an entire day and a considerable amount of memory to check. We 

have run several scenarios to understand and validate the recovery time. 

A typical operation for developers is to run a parallel buildworld. Crash recovery from this case 

demonstrates time to recover from moderate write workload. A 250 Gbyte disk was filled to 80 

percent with copies of the FreeBSD source tree. One copy was selected at random and an 8-way 

buildworld proceeded for 10 minutes before the box was reset. Recovery from the journal took 

0.9 seconds. An additional run with traditional fsck was used to verify the safe recovery of the 

filesystem. The fsck took about 27 minutes, or 1800 times as long. 

A testing volunteer with a 92-percent full 11 Tbyte volume spanning 14 drives on a 3ware RAID 

controller generated hundreds of megabytes of dirty data by writing random length files in 

parallel before resetting the machine. The resulting recovery operation took less than one 

minute to complete. A normal fsck run takes about 10 hours on this filesystem. 
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Future Work 

This subsection describes some areas we have not yet explored that may give further 

performance improvements to our implementation. 

Rollback of Directory Deletions 

Doing a rollback of a directory addition is easy. The new directory entry has its inode number set 

to zero to show that it is not really allocated. However, rollback of directory deletions is much 

more difficult as the space may have been claimed by a new allocation. There are times when 

being able to roll back a directory deletion would be convenient. For example, when a file is 

renamed, a directory rollback could be used to prevent the removal of an old name before a new 

name reaches the disk. Here, we have considered using a distinguished inode number that the 

filesystem would recognize internally as being in use, but which would not be returned to the 

user application. However, at present we cannot rollback deletes, which requires any delete 

journaling to be written to disk before the writing of affected directory blocks. 

Truncate and Weaker Guarantees 

As a potential optimization, the truncate system call instead may choose to record the intended 

file size and operate more lazily, relying on the log to recover any partially completed operations 

correctly. This approach also allows us to perform partial truncations asynchronously. Further, 

the journal allows for the weakening of other soft dependency guarantees although we have not 

yet fully explored these reduced guarantees and do not know if they provide any real benefit. 

Tracking File-Removal Dependencies 

This subsection gives a short example describing the dependencies that track the removal of a 

file when using journaled soft updates. These five ordering constraints must be maintained: 

1. The journal must record the location in the directory that has the name to be deleted and the 

inode number associated with the name. 

2. The filename in the on-disk copy of the directory must be deleted. 

3. The journal must record the blocks to be deleted. The inode describing the file must be 

deallocated by zeroing out its on-disk dinode. The writing of the journal entry must precede the 

writing of the zeroed-out on-disk inode. 



 

582 

4. The blocks formerly referenced by the inode for the file must be released to the free-space 

bitmap, and the inode must be released to the free-inode bitmap. 

5. The journal must record the successful completion of the removal. 

These five constraints are maintained by soft updates as follows: 

1. The buffer containing the journal entry with the name and inode number to be deleted adds a 

dependency structure to start the file deletion. 

2. Some time in the next 30 seconds after step 1, the kernel will decide to write the journal 

buffer. When notified that the journal entry has been written, the block of the directory 

containing the name to be deleted is read into a kernel buffer. The entry is deleted by changing 

the entry that precedes it to point to the entry that follows it (see Section 9.3). Before releasing 

the buffer, a set of dependencies must be constructed, as shown in Figure 9.26. If this deletion is 

the first dependency for the directory block, it needs to have a pagedep structure allocated that 

is linked onto the dependency list for the buffer. Next, a dirrem structure is allocated that 

records the inode number of the entry being deleted. The dirrem structure is linked onto the 

dirrem list of the pagedep structure for the directory block. The buffer is then marked dirty and 

it is unlocked and released. 

3. Some time in the next 30 seconds after step 2, the kernel will decide to write the dirty 

directory buffer. When the write completes, the pagedep associated with the buffer is passed to 

soft updates for processing. One processing step is to handle each of the dirrem entries. Each 

dirrem entry causes the inode formerly referenced by the directory to have its reference count 

decremented by one. If the reference count drops to zero (meaning that the last name for the file 

was removed), then the inode must be deallocated and freed. Before zeroing out the contents of 

the on-disk dinode, its list of allocated blocks must be saved in a freeblks structure and 

information needed to free the inode must be saved in a freefile structure. A journal entry 

containing the freeblks and freefile information must be added to the journal buffer. The block 

of the filesystem containing the dinode to be freed is read into a kernel buffer, as shown in 

Figure 9.20. The part of the buffer containing the dinode is zeroed out. If the deallocation is the 

first dependency for the dinode, it must have an inodedep structure allocated that is linked onto 

the dependency list for the buffer. The freeblks and freefile structures are linked onto the buffer 

wait list of the inodedep structure. A reference to the journal entry is also added to the inodedep. 

The buffer is then marked dirty and it is unlocked and released. The dirrem structure is freed as 

is the pagedep structure if it is no longer tracking any dependencies. 

4. Some time in the next 30 seconds after step 3, the kernel will decide to write the buffer 

containing the zeroed-out dinode. If the buffer containing the journal dependency has not yet 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
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been written, the zeroed-out dinode is replaced with its original contents and the write is 

allowed to proceed. When the write completes, the zeroed-out dinode is put back into the buffer 

and the buffer marked as still dirty (needing to be written). When a write on the buffer finds that 

the journal entry has been written, the write of the zeroed-out dinode is allowed to proceed. 

When the write completes, the inodedep associated with the buffer is passed to soft updates for 

processing. One processing step is to handle each of the buffer wait entries. The handling of the 

freeblks entry causes all its listed blocks to be marked free in the appropriate cylinder-group 

bitmaps. The handling of the freefile entry causes the deleted inode to be marked free in the 

appropriate cylinder-group bitmap. The freeblks and freefile structures are freed as is the 

inodedep structure if it is no longer tracking any dependencies. A journal dependency is added 

to the buffer containing the bitmaps. 

5. Some time in the next 30 seconds, the kernel will decide to write the buffer containing the 

bitmaps. When the write completes, the journal dependency is processed that writes an entry to 

the journal to show that the block and inode release has been completed. 

The file has now been completely removed and ceases to be tracked by soft updates. 

9.9 The Local Filestore 

The next two sections of this chapter describe the organization and management of data on 

storage media. Historically, FreeBSD provided three different filestore managers: the traditional 

Berkeley Fast Filesystem (FFS), the Log-Structured Filesystem, and the Memory-Based 

Filesystem. These storage managers shared the same code for all the filesystem naming 

semantics and differed only in the management of their data on storage media. The 

Log-Structured Filesystem file-store manager has been replaced by ZFS described in Chapter 10. 

The Memory-Based Filesystem filestore manager has been replaced by an implementation 

optimized for operating in virtual memory. 

Overview of the Filestore 

The FFS filestore was designed at a time when file caches were small and thus files needed to be 

read from the disk often. It is willing to do extra disk seeks while writing to place files likely to 

be accessed together in the same general location on the disk. This approach minimizes disk 

seeks needed to read these files. By contrast, ZFS was designed at a time when file caches were 

large and thus most file reads would not need to access the disk. Hence, ZFS optimizes its write 

speed by grouping blocks in the order in which they are written. ZFS is willing to accept more 

disk seeks to read files on the rare occasions when they are not in the cache. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
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The operations defined for doing the datastore filesystem operations are shown in Table 9.3. 

These operators are fewer and semantically simpler than are those used for managing the 

namespace. 

 

Table 9.3 Datastore filesystem operations. 

There are two operators for allocating and freeing objects. The valloc operator creates a new 

object. The identity of the object is a number returned by the operator. The mapping of this 

number to a name is the responsibility of the name-space code. An object is freed by the vfree 

operator. The object to be freed is identified by only its number. 

The attributes of an object are changed by the update operator. This layer performs no 

interpretation of these attributes; they are simply fixed-size auxiliary data stored outside the 

main data area of the object. They are typically file attributes, such as the owner, group, 

permissions, and so on. Note that the extended attribute space is updated using the read and 

write interface as that interface is already prepared to read and write arbitrary length data to 

and from user-level processes. 

There are five operators for manipulating existing objects. The vget operator retrieves an 

existing object from the filestore. The object is identified by its number and must have been 

created previously by valloc. The read operator copies data from an object to a location 

described by a uio structure. The blkatoff operator is similar to the read operator, except that 

the blkatoff operator simply returns a pointer to a kernel memory buffer with the requested data 

instead of copying the data. This operator is designed to increase the efficiency of operations 

where the namespace code interprets the contents of an object (i.e., directories) instead of just 

returning the contents to a user process. The write operator copies data to an object from a 

location described by a uio structure. The fsync operator requests that all data associated with 

the object be moved to stable storage (usually by writing them all to disk). There is no need for 

an analog of blkatoff for writing, as the kernel can simply modify a buffer that it received from 

blkatoff, mark that buffer as dirty, and then perform an fsync operation to have the buffer 

written back. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab03
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The final datastore operation is truncate. This operation changes the amount of space 

associated with an object. Historically, it could be used only to decrease the size of an object. In 

FreeBSD, it can be used both to increase and decrease the size of an object. When the size of a 

file is increased, a hole in the file is created. Usually, no additional disk space is allocated; the 

only change is to update the inode to reflect the larger file size. When read, holes are treated by 

the system as zero-valued bytes. 

Each disk drive has one or more subdivisions, or partitions. Each such partition can contain 

only one filestore, and a filestore never spans multiple partitions. While a filesystem may use 

multiple disk partitions to perform striping or RAID, the aggregation and management of the 

parts that make up the filesystem are managed by a lower-level driver in the kernel. The 

filesystem code always has the view of operating on a single contiguous partition. 

The filestore is responsible for the management of the space within its disk partition. Within 

that space, its responsibility is the creation, storage, retrieval, and removal of files. It operates in 

a flat namespace. When asked to create a new file, it allocates an inode for that file and returns 

the assigned number. The naming, access control, locking, and attribute manipulation for the 

file are all handled by the hierarchical filesystem-management layer above the filestore. 

The filestore also handles the allocation of new blocks to files as the latter grow. Simple 

filesystem implementations, such as those used by early microcomputer systems, allocate files 

contiguously, one after the next, until the files reach the end of the disk. As files are removed, 

holes occur. To reuse the freed space, the system must compact the disk to move all the free 

space to the end. Files can be created only one at a time; for the size of a file other than the final 

one on the disk to be increased, the file must be copied to the end and then expanded. 

As we saw in Section 9.2, each file in a filestore is described by an inode; the locations of its data 

blocks are given by the block pointers in its inode. Although the filestore may cluster the blocks 

of a file to improve I/O performance, the inode can reference blocks scattered anywhere 

throughout the partition. Thus, multiple files can be written simultaneously and all the disk 

space can be used without the need for compaction. 

The filestore implementation converts from the user abstraction of a file as an array of bytes to 

the structure imposed by the underlying physical medium. Consider a typical medium of a 

magnetic disk with fixed-size sectoring. Although the user may wish to write a single byte to a 

file, the disk supports reading and writing only in multiples of sectors. Here, the system must 

read in the sector containing the byte to be modified, replace the affected byte, and write the 

sector back to the disk. This operation—converting random access to an array of bytes to reads 

and writes of disk sectors—is called block I/O. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_264
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First, the system breaks the user’s request into a set of operations to be done on logical blocks 

of the file. Logical blocks describe block-size pieces of a file. The system calculates the logical 

blocks by dividing the array of bytes into filestore-size pieces. Thus, if a filestore’s block size is 

32,768 bytes, then logical block 0 would contain bytes 0 to 32,767, logical block 1 would contain 

bytes 32,768 to 65,535, and so on. 

The data in each logical block are stored in a physical block on the disk. A physical block is 

the location on the disk to which the system maps a logical block. A physical disk block is 

constructed from one or more contiguous sectors. For a disk with 4096-byte sectors, a 

32,768-byte filestore block would be built up from 8 contiguous sectors. Although the contents 

of a logical block are contiguous on disk, the logical blocks of the file do not need to be laid out 

contiguously. The data structure used by the system to convert from logical blocks to physical 

blocks is described in Section 9.2. 

User I/O to a File 

Although the user may wish to write a single byte to a file, the disk hardware can read and write 

only in multiples of sectors. Hence, the system must arrange to read in the sector containing the 

byte to be modified, to replace the affected byte, and to write back the sector to the disk. 

Processes may read data in sizes smaller than a disk block. The first time that a small read is 

required from a particular disk block, the block will be transferred from the disk into a kernel 

buffer. Later reads of parts of the same block then require only copying from the kernel buffer to 

the memory of the user process. Multiple small writes are treated similarly. A buffer is allocated 

from the cache when the first write to a disk block is made, and later writes to part of the same 

block are then likely to require only copying into the kernel buffer and no disk I/O. 

In addition to providing the abstraction of arbitrary alignment of reads and writes, the block 

buffer cache reduces the number of disk I/O transfers required by filesystem accesses. Because 

system-parameter files, commands, and directories are read repeatedly, their data blocks are 

usually in the buffer cache when they are needed. Thus, the kernel does not need to read them 

from the disk every time that they are requested. 

Figure 9.30 shows the flow of information and work required to access a file on the disk. The 

abstraction shown to the user is an array of bytes. These bytes are collectively described by a file 

descriptor that refers to some location in the array. The user can request a write operation on 

the file by presenting the system with a pointer to a buffer and with a request for some number 

of bytes to be written. As Figure 9.30 shows, the requested data do not need to be aligned with 

the beginning or end of a logical block. Further, the size of the request is not constrained to a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_202
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single logical block. In the example shown, the user has requested data to be written to parts of 

logical blocks 1 and 2. Since the disk can transfer data only in multiples of sectors, the filestore 

must first arrange to read in the data for any part of the block that is to be left unchanged. The 

system must arrange an intermediate staging area for the transfer. This staging is done through 

one or more system buffers, described in Section 7.4. 

 

Figure 9.30 The block I/O system. 

In our example, the user wishes to modify data in logical blocks 1 and 2. The operation iterates 

over five steps: 

1. Allocate a buffer. 

2. Determine the location of the corresponding physical block on the disk. 

3. Request the disk controller to read the contents of the physical block into the system buffer 

and wait for the transfer to complete. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
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4. Do a memory-to-memory copy from the beginning of the user’s I/O buffer to the appropriate 

portion of the system buffer. 

5. Write the block to the disk and continue without waiting for the transfer to complete. 

If the user’s request is incomplete, the process is repeated with the next logical block of the file. 

In our example, the system fetches logical block 2 of the file and is able to complete the user’s 

request. Had an entire block been written, the system could have skipped step 3 and have simply 

written the data to the disk without first reading in the old contents. This incremental filling of 

the write request is transparent to the user’s process because that process is blocked from 

running during the entire procedure. The filling is transparent to other processes; because the 

inode is locked during the process, any attempted access by any other process will be blocked 

until the write has completed. 

If the system crashes while data for a particular block are in the cache but have not yet been 

written to disk, the filesystem on the disk will be incorrect and those data will be lost. The 

consistency of critical filesystem data is maintained using the techniques described in Section 

9.6, but it is still possible to lose recently written application data. So that lost data are 

minimized, writes for dirty buffer blocks are forced, at most, 30 seconds after they are written. 

There is also a system call, fsync, that a process can use to force all dirty blocks of a single file to 

be written to disk immediately; this synchronization is useful for ensuring database consistency 

or before removing an editor backup file. 

9.10 The Berkeley Fast Filesystem 

A traditional UNIX filesystem is described by its superblock, which contains the basic 

parameters of the filesystem. These parameters include the number of data blocks in the 

filesystem, a count of the maximum number of files, and a pointer to the free list, which is a list 

of all the free blocks in the filesystem. 

A 150-Mbyte traditional UNIX filesystem consists of 4 Mbyte of inodes followed by 146 Mbyte of 

data. That organization segregates the inode information from the data; thus, accessing a file 

normally incurs a long seek from the file’s inode to its data. Files in a single directory typically 

are not allocated consecutive slots in the 4 Mbyte of inodes, causing many nonconsecutive disk 

blocks to be read when many inodes in a single directory are accessed. 

The allocation of data blocks to files also is suboptimal. The traditional filesystem 

implementation uses a 512-byte physical block size. However, the next sequential data block 

often is not on the same cylinder, so seeks between 512-byte data transfers are required 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
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frequently. This combination of small block size and scattered placement severely limits 

filesystem throughput. 

The first work on the UNIX filesystem at Berkeley attempted to improve both the reliability and 

the throughput of the filesystem. The developers improved reliability by staging modifications to 

critical filesystem information so that the modifications could be either completed or repaired 

cleanly by a program after a crash [McKusick & Kowalski, 1994]. Doubling the block size of the 

filesystem improved the performance of the 4.0BSD filesystem by a factor of more than two 

when compared with the 3BSD filesystem. This doubling caused each disk transfer to access 

twice as many data blocks and eliminated the need for indirect blocks for many files. In the 

remainder of this section, we shall refer to the filesystem with these changes as the 3BSD 

filesystem. 

The performance improvement in the 3BSD filesystem gave a strong indication that increasing 

the block size was a good method for improving throughput. Although the throughput had 

doubled, the 3BSD filesystem was still using only about 4 percent of the maximum disk 

throughput. The main problem was that the order of blocks on the free list quickly became 

scrambled as files were created and removed. Eventually, the free-list order became entirely 

random, causing files to have their blocks allocated randomly over the disk. This randomness 

forced a seek before every block access. Although the 3BSD filesystem provided transfer rates of 

up to 175 Kbyte per second when it was first created, the scrambling of the free list caused this 

rate to deteriorate to an average of 30 Kbyte per second after a few weeks of moderate use. 

There was no way of restoring the performance of a 3BSD filesystem except to recreate the 

system. 

Organization of the Berkeley Fast Filesystem 

The first version of the current BSD filesystem appeared in 4.2BSD [McKusick et al., 1984]. This 

version is still in use today as UFS1. In the FreeBSD filesystem organization (as in the 3BSD 

filesystem organization), each disk drive contains one or more filesystems. A FreeBSD filesystem 

is described by its superblock, located at the beginning of the filesystem’s disk partition. Because 

the superblock contains critical data, it is replicated to protect against catastrophic loss. This 

replication is done when the filesystem is created. Since most of the superblock data do not 

change, the copies do not need to be referenced unless a disk failure causes the default 

superblock to be corrupted. The data in the superblock that does change include a few flags and 

some summary information that can easily be recreated if an alternative superblock has to be 

used. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref17
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To allow support for filesystem fragments as small as a single 512-byte disk sector, the minimum 

size of a filesystem block is 4096 bytes. The block size can be any power of 2 greater than or 

equal to 4096. The block size is recorded in the filesystem’s superblock, so it is possible for 

filesystems with different block sizes to be accessed simultaneously on the same system. The 

block size must be selected at the time that the filesystem is created; it cannot be changed 

subsequently without the filesystem being rebuilt. 

The BSD filesystem organization divides a disk partition into one or more areas, each of which is 

called a cylinder group. Historically, a cylinder group comprised one or more consecutive 

cylinders on a disk. Although FreeBSD still uses the same data structure to describe cylinder 

groups, the practical definition of them has changed. When the filesystem was first designed, it 

could get an accurate view of the disk geometry including the cylinder and track boundaries and 

could accurately compute the rotational location of every sector. Modern disks hide this 

information, providing fictitious numbers of blocks per track, tracks per cylinder, and cylinders 

per disk. Indeed, in modern RAID arrays, the “disk” that is presented to the filesystem may 

really be composed from a collection of disks in the RAID array. While some research has been 

done to figure out the true geometry of a disk [Griffin et al., 2002; Lumb et al., 2002; Schindler 

et al., 2002], the complexity of using such information effectively is high. Modern disks have 

greater numbers of sectors per track on the outer part of the disk than the inner part, which 

makes calculating the rotational position of any given sector complex. So when the design for 

UFS2 was drawn up, we decided to get rid of all the rotational layout code found in UFS1 and 

simply assume that laying out files with numerically close block numbers (sequential being 

viewed as optimal) would give the best performance. Thus, the cylinder-group structure is 

retained in UFS2, but it is used only as a convenient way to manage logically close groups of 

blocks. The rotational layout code had been disabled in UFS1 since the late 1980s, so as part of 

the code base cleanup it was removed entirely. 

Each cylinder group must fit into a single filesystem block. When creating a new filesystem, the 

newfs utility calculates the maximum number of blocks that can be packed into a 

cylinder-group map based on the filesystem block size. It then allocates the minimum number of 

cylinder groups needed to describe the filesystem. A filesystem with 32-Kbyte blocks typically 

has 1.4 cylinder groups per Gbyte. 

Each cylinder group contains bookkeeping information that includes a redundant copy of the 

superblock, space for inodes, a bitmap describing available blocks in the cylinder group, and 

summary information describing the usage of data blocks within the cylinder group. The bitmap 

of available blocks in the cylinder group replaces the traditional filesystem’s free list. For each 

cylinder group in UFS1, a static number of inodes is allocated at filesystem-creation time. The 

default policy is to allocate one inode per four filesystem fragments, with the expectation that 
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this amount will be far more than will ever be needed. For each cylinder group in UFS2, the 

default is to reserve bitmap space to describe one inode per two filesystem fragments. In either 

type of filesystem, the default may be changed only at the time that the filesystem is created. 

The rationale for using cylinder groups is to create clusters of inodes that are spread over the 

disk close to the blocks that they reference, instead of them all being located at the beginning of 

the disk. The filesystem attempts to allocate file blocks close to the inodes that describe them to 

avoid long seeks between getting the inode and getting its associated data. Also, when the inodes 

are spread out, there is less chance of losing all of them in a single disk failure. 

Although we decided to come up with a new on-disk inode format for UFS2, we chose not to 

change the format of the superblock, the cylinder group maps, or the directories. Additional 

information needed for the UFS2 superblock and cylinder groups is stored in spare fields of the 

UFS1 superblock and cylinder groups. Maintaining the same format for these data structures 

allows a single code base to be used for both UFS1 and UFS2. Because the only difference 

between the two filesystems is in the format of their inodes, code can dereference pointers to 

superblocks, cylinder groups, and directory entries without need to check what type of 

filesystem is being accessed. To minimize conditional checking of code that references inodes, 

the on-disk inode is converted to a common incore format when the inode is first read in from 

the disk and converted back to its on-disk format when it is written back. The effect of this 

decision is that there are only nine out of several hundred routines that are specific to UFS1 

versus UFS2. The benefit of having a single code base for both filesystems is that it dramatically 

reduces the maintenance cost. Outside the nine filesystem format-specific functions, fixing a bug 

in the code fixes it for both filesystem types. A common code base also meant that as the 

multiprocessing support was added, it only needed to be done once for the UFS family of 

filesystems. 

Boot Blocks 

The UFS1 filesystem reserved an 8-Kbyte space at the beginning of the filesystem in which to 

put a boot block. While this space seemed huge compared to the 1-Kbyte boot block that it 

replaced, over time it has become increasingly difficult to cram the needed boot code into this 

space. Consequently, we decided to revisit the boot-block size in UFS2. 

The boot code has a list of locations to check for boot blocks. A boot block can be defined to start 

at any 8-Kbyte boundary. We set up an initial list with four possible boot-block sizes: none, 8 

Kbyte, 64 Kbyte, and 256 Kbyte. Each of these locations was selected for a particular purpose. 

Filesystems other than the root filesystem do not need to be bootable, so they can use a 

boot-block size of zero. Also, filesystems on tiny media that need every block that they can get, 
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such as flash-based disks, can use a zero-size boot block. For architectures with simple boot 

blocks, the traditional UFS1 8-Kbyte boot block can be used. More typically, the 64-Kbyte boot 

block is used (for example, on the PC architecture with its need to support booting from a 

myriad of busses and disk drivers). 

We added the 256-Kbyte boot block in case some future architecture or application needs to set 

aside a particularly large boot area. This space reservation is not strictly necessary, since new 

sizes can be added to the list at any time, but it can take a long time before the updated list is 

propagated to all the boot programs and loaders out on the existing systems. By adding the 

option for a huge boot area now, we can ensure it will be readily available should it be needed on 

short notice in the future. 

An unexpected side effect of using a 64-Kbyte boot block for UFS2 is that if the partition had 

previously had a UFS1 filesystem on it, the superblock for the former UFS1 filesystem may not 

be overwritten. If an old version of fsck that does not first look for a UFS2 filesystem is run and 

finds the UFS1 superblock, it can incorrectly try to rebuild the UFS1 filesystem, destroying the 

UFS2 filesystem in the process. So when building UFS2 filesystems, the newfs utility looks for 

old UFS1 superblocks and zeros them out. 

Optimization of Storage Utilization 

Data are laid out such that large blocks can be transferred in a single disk operation, greatly 

increasing filesystem throughput. A file in the new filesystem might be composed of 32,768-byte 

data blocks, as compared to the 1024-byte blocks of the 3BSD filesystem; disk accesses would 

thus transfer up to 32 times as much information per disk transaction. In large files, several 

blocks can be allocated consecutively, so even larger data transfers are possible before a seek is 

required. 

The main problem with larger blocks is that most BSD filesystems contain primarily small files. 

A uniformly large block size will waste space. For large blocks to be used without significant 

waste, small files must be stored more efficiently. To increase space efficiency, the filesystem 

allows the division of a single filesystem block into one or more fragments. The fragment size 

is specified at the time that the filesystem is created; each filesystem block optionally can be 

broken into two, four, or eight fragments, each of which is addressable. The lower bound on the 

fragment size is constrained by the disk-sector size, which is typically 4096 byte. The block map 

associated with each cylinder group records the space available in a cylinder group in fragments; 

to determine whether a block is available, the system examines aligned fragments. Figure 9.31 

shows a piece of a block map from a filesystem with 16,384-byte blocks and 4096-byte 

fragments, hereinafter referred to as a 16,384/4096 filesystem. 
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Figure 9.31 Example of the layout of blocks and fragments in a 16,384/4096 filesystem. Each 

bit in the map records the status of a fragment; a “-” means that the fragment is in use, whereas 

a “1” means that the fragment is available for allocation. In this example, fragments 0 through 5, 

10, and 11 are in use, whereas fragments 6 through 9 and 12 through 15 are free. Fragments of 

adjacent blocks cannot be used as a full block, even if they are large enough. In this example, 

fragments 6 through 9 cannot be allocated as a full block; only fragments 12 through 15 can be 

coalesced into a full block. 

On a 16,384/4096 filesystem, a file is represented by zero or more 16,384-byte blocks of data, 

possibly including a single fragmented block. If the system must fragment a block to obtain 

space for a few data, it makes the remaining fragments of the block available for allocation to 

other files. As an example, consider a 44,000-byte file stored on a 16,384/4096 filesystem. This 

file would use two full-size blocks and one three-fragment portion of another block. If no block 

with three aligned fragments were available at the time that the file was created, a full-size block 

would be split, yielding the necessary fragments and a single unused fragment. This remaining 

fragment could be allocated to another file as needed. 

Reading and Writing to a File 

Having opened a file, a process can do reads or writes on it. The procedural path through the 

kernel is shown in Figure 9.32. If a read is requested, it is channeled through the ffs_read() 

routine. The ffs_read() routine is responsible for converting the read into one or more reads of 

logical file blocks. A logical block request is then handed off to ufs_bmap(). The ufs_bmap() 

routine is responsible for converting a logical block number to a physical block number by 

interpreting the direct and indirect block pointers in an inode. The ffs_read() routine requests 

the block I/O system to return a buffer filled with the contents of the disk block. If two or more 

logically sequential blocks are read from a file, the process is assumed to be reading the file 

sequentially. Here, ufs_bmap() returns two values: first, the disk address of the requested block 

and then the number of contiguous blocks that follow that block on disk. The requested block 

and the number of contiguous blocks that follow it are passed to the cluster() routine. If the file 

is being accessed sequentially, the cluster() routine will do a single large I/O on the entire range 

of sequential blocks. If the file is not being accessed sequentially (as determined by a seek to a 

different part of the file preceding the read), only the requested block or a subset of the cluster 

will be read. If the file has had a long series of sequential reads, or if the number of contiguous 

blocks is small, the system will issue one or more requests for read-ahead blocks in anticipation 
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that the process will soon want those blocks. The details of block clustering are described at the 

end of this section. 

 

Figure 9.32 Procedural interface to reading and writing. 

Each time that a process does a write system call, the system checks to see whether the size of 

the file has increased. A process may overwrite data in the middle of an existing file—in which 

case space would usually have been allocated already (unless the file contains a hole in that 

location). If the file must be extended, the request is rounded up to the next fragment size, and 

only that much space is allocated (see “Allocation Mechanisms” later in this section for the 

details of space allocation). The write system call is channeled through the ffs_write() routine. 

The ffs_write() routine is responsible for converting the write into one or more writes of logical 

file blocks. A logical block request is then handed off to ffs_balloc(). The ffs_balloc() routine is 

responsible for interpreting the direct and indirect block pointers in an inode to find the location 

for the associated physical block pointer. If a disk block does not already exist, the ffs_alloc() 

routine is called to request a new block of the appropriate size. After calling chkdq() to ensure 

that the user has not exceeded his quota, the block is allocated, and the address of the new block 

is stored in the inode or indirect block. The address of the new or already-existing block is 

returned, and ffs_write() allocates a buffer to hold the contents of the block. The user’s data are 

copied into the returned buffer, and the buffer is marked as dirty. If the buffer has been filled 

completely, it is passed to the cluster() routine. When a maximum-size cluster has been 

accumulated, a noncontiguous block is allocated, or a seek is done to another part of the file, and 
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the accumulated blocks are grouped together into a single I/O operation that is queued to be 

written to the disk. If the buffer has not been filled completely, it is not considered immediately 

for writing. Instead, the buffer is held in the expectation that the process will soon want to add 

more data to it. It is not released until it is needed for some other block—that is, until it has 

reached the head of the free list or until a user process does an fsync system call. When a file 

acquires its first dirty block, it is placed on a 30-second timer queue. If it still has dirty blocks 

when the timer expires, all its dirty buffers are written. If it subsequently is written again, it will 

be returned to the 30-second timer queue. 

Repeated small write requests may expand the file one fragment at a time. The problem with 

expanding a file one fragment at a time is that data may be copied many times as a fragmented 

block expands to a full block. Fragment reallocation can be minimized if the user process writes 

a full block at a time, except for a partial block at the end of the file. Since filesystems with 

different block sizes may reside on the same system, the filesystem interface provides 

application programs with the optimal size for a read or write. This facility is used by the 

standard I/O library that many application programs use and by certain system utilities, such as 

archivers and loaders, that do their own I/O management. To avoid excessive copying for slowly 

growing files, the filesystem allows only direct blocks of files to refer to fragments. 

If the layout policies (described at the end of this section) are to be effective, a filesystem cannot 

be kept completely full. A parameter, termed the free-space reserve, gives the minimum 

percentage of filesystem blocks that should be kept free. If the number of free blocks drops 

below this level, only the superuser is allowed to allocate blocks. This parameter can be changed 

any time that the filesystem is unmounted. When the number of free blocks approaches zero, 

the filesystem throughput tends to be cut in half because the filesystem is unable to localize 

blocks in a file. If a filesystem’s throughput drops because of overfilling, it can be restored by 

removal of files until the amount of free space once again reaches the minimum acceptable level. 

Users can restore locality to get faster access rates for files created during periods of little free 

space by copying the file to a new one and removing the original one when enough space is 

available. 

Layout Policies 

Each filesystem is parameterized so that it can be adapted to the characteristics of the 

application environment in which it is being used. These parameters are summarized in Table 

9.4. In most situations, the default parameters work well, but in an environment with only a few 

large files or an environment with just a few huge directories, the performance can be enhanced 

by adjusting the layout parameters accordingly. 
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Table 9.4 Important parameters maintained by the filesystem. 

The filesystem layout policies are divided into two distinct parts. At the top level are global 

policies that use summary information to make decisions regarding the placement of new inodes 

and data blocks. These routines are responsible for deciding the placement of new directories 

and files. They also build contiguous block layouts and decide when to force a long seek to a new 

cylinder group because there is insufficient space left in the current cylinder group to do 

reasonable layouts. 

Below the global-policy routines are the local-allocation routines. These routines use a locally 

optimal scheme to lay out data blocks. The local-allocation routines are responsible for 

managing the allocation bitmaps and ensuring that resources are not double allocated. Thus, the 

policy layer does not have to worry about requesting an already allocated block. If the 

implementation layer finds that a requested block is already allocated, it simply scans through 

the map to find the closest available free block. The result of this separation is that once the 

implementation layer is working properly, filesystem designers are free to try out whatever 

hair-brained policy ideas that they want without fear of corrupting the filesystem. The 

implementation layer for FFS was written and debugged in 1982 and has not been changed since. 

Further refinements to the filesystem have been done at the policy layer. Separating policy from 

implementation is an important design principle when designing software systems, especially 

when they are mission-critical systems. The policy layer allows new ideas to be implemented 

and tested quickly. Once validated, those ideas can be deployed without danger of 

compromising the integrity of the system. 

Two methods for improving filesystem performance are to increase the locality of reference to 

minimize seek latency [Trivedi, 1980] and to improve the layout of data to make larger transfers 

possible [Nevalainen & Vesterinen, 1977]. The global layout policies try to improve performance 

by clustering related information. They cannot attempt to localize all data references but must 

instead try to spread unrelated data among different cylinder groups. If too much localization is 

attempted, the local cylinder group may run out of space, forcing further related data to be 

scattered to nonlocal cylinder groups. Taken to an extreme, total localization can result in a 
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single huge cluster of data resembling the 3BSD filesystem. The global policies try to balance the 

two conflicting goals of localizing data that are concurrently accessed while spreading out 

unrelated data. 

One allocatable resource is inodes. Inodes of files in the same directory frequently are accessed 

together. For example, the list-directory command, ls, may access the inode for each file in a 

directory. The inode layout policy tries to place all the inodes of files in a directory in the same 

cylinder group. To ensure that files are distributed throughout the filesystem, the system uses a 

different policy to allocate directory inodes. When a directory is being created in the root of the 

filesystem, it is placed in a cylinder group with a greater-than-average number of free blocks and 

inodes, and with the smallest number of directories. The intent of this policy is to allow inode 

clustering to succeed most of the time. When a directory is created lower in the tree, it is placed 

in a cylinder group with a greater-than-average number of free blocks and inodes near its parent 

directory. The intent of this policy is to reduce the distance tree-walking applications must seek 

as they move from directory to directory in a depth-first search while still allowing inode 

clustering to succeed most of the time. 

The filesystem allocates inodes within a cylinder group using a first-free strategy. Although this 

method allocates the inodes randomly within a cylinder group, it keeps the allocation down to 

the smallest number of inode blocks possible. Even when all the possible inodes in a cylinder 

group are allocated, they can be accessed with 10 to 20 disk transfers. This allocation strategy 

puts a small and constant upper bound on the number of disk transfers required to access the 

inodes for all the files in a directory. In contrast, the 3BSD filesystem typically requires one disk 

transfer to fetch the inode for each file in a directory. 

The other major resource is the data blocks. Data blocks for a file typically are accessed together. 

The policy routines try to place data blocks for a file in the same cylinder group, preferably laid 

out contiguously. The problem with allocating all the data blocks in the same cylinder group is 

that large files quickly use up the available space, forcing a spillover to other areas. Further, 

using all the space also causes future allocations for any file in the cylinder group to spill to 

other areas. Ideally, none of the cylinder groups should ever become completely full. The 

heuristic chosen is to redirect block allocation to a different cylinder group after every few 

Mbyte of allocation. The spillover points are intended to force block allocation to be redirected 

when any file has used about 25 percent of the data blocks in a cylinder group. In day-to-day use, 

the heuristics appear to work well in minimizing the number of completely filled cylinder groups. 

Although this heuristic appears to benefit small files at the expense of larger files, it really aids 

both file sizes. The small files are helped because there are nearly always blocks available in the 

cylinder group for them to use. The large files benefit because they are able to use the 

contiguous space available in the cylinder group and then to move on, leaving behind the blocks 
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scattered around the cylinder group. Although these scattered blocks are fine for small files that 

need only a block or two, they slow down big files that are best stored on a single, large group of 

blocks that can be read in a few disk revolutions. 

The newly chosen cylinder group for block allocation is the next cylinder group that has a 

greater-than-average number of free blocks left. Although big files tend to be spread out over the 

disk, several Mbyte of data typically are accessible before a seek to a new cylinder group is 

necessary. Thus, the time to do one long seek is small compared to the time spent in the new 

cylinder group doing the I/O. 

In an effort to speed random access to files and to speed the checking of metadata by fsck, the 

filesystem holds the first 4 percent of the data blocks in each cylinder group for the use of 

metadata. The policy routines preferentially place metadata in the metadata area and everything 

else in the blocks that follow the metadata area. The size of the metadata area does not need to 

be precisely calculated as it is used just as a hint of where to place the metadata by the policy 

routines. If the metadata area fills up, then the metadata can be placed in the regular-blocks 

area, and if the regular-blocks area fills up, then the regular blocks can be placed in the 

metadata area. This decision happens on a cylinder group by cylinder group basis, so some 

cylinder groups can overflow their metadata area while others do not overflow it. The policy is to 

place all metadata in the same cylinder group as their inode. Spreading the metadata across 

cylinder groups generally results in reduced filesystem performance. 

The one exception to the metadata placement policy is for the first indirect block of the file. The 

policy is to place the first (single) indirect block inline with the file data (e.g., it tries to lay out 

the first 12 direct blocks contiguously, followed immediately by the indirect block, followed 

immediately by the data blocks referenced from the indirect block). Putting the first indirect 

block inline with the data rather than in the metadata area is to avoid two extra seeks when 

reading it. These two extra seeks would noticeably slow down access to a file that uses only the 

first few blocks referenced from its indirect block. 

Only the second and third level indirects, along with the indirects that they reference, are 

allocated in the metadata area. The nearly contiguous allocation of this metadata close to the 

inode that references them noticeably improves the random access time to the file as well as 

speeding up the running time of fsck. Also, the disk track cache is often filled with much of a 

file’s metadata when the second-level indirect block is read, thus often speeding up even the 

sequential reading time for the file. 

In addition to putting indirect blocks in the metadata area, it is also helpful to put the blocks 

holding the contents of directories there, too. Putting the contents of directories in the metadata 

area gives a speedup to directory tree traversal since the data is a short seek away from where 
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the directory inode was read and may already be in the disk’s track cache from other directory 

reads done in its cylinder group. 

Allocation Mechanisms 

The global-policy routines call local-allocation routines with requests for specific blocks. The 

local-allocation routines will always allocate the requested block if it is free; otherwise, they will 

allocate a free block of the requested size that is closest to the requested block. If the global 

layout policies had complete information, they could always request unused blocks and the 

allocation routines would be reduced to simple bookkeeping. However, maintaining complete 

information is costly; thus, the global layout policy uses heuristics based on the partial 

information that is available. 

If a requested block is not available, the local allocator uses a three-level allocation strategy: 

1. Use the next available block closest to the requested block in the same cylinder group. 

2. If the cylinder group is full, quadratically hash the cylinder-group number to choose another 

cylinder group in which to look for a free block. Quadratic hash is used because of its speed in 

finding unused slots in nearly full hash tables [Knuth, 1975]. Filesystems that are parameterized 

to maintain at least 8 percent free space rarely need to use this strategy. Filesystems used 

without free space typically have so few free blocks available that almost any allocation is 

random; the most important characteristic of the strategy used under such conditions is that it 

be fast. 

3. Apply an exhaustive search to all cylinder groups. This search is necessary because the 

quadratic rehash may not check all cylinder groups. 

The task of managing block and fragment allocation is done by ffs_balloc(). If the file is being 

written and a block pointer is zero or points to a fragment that is too small to hold the additional 

data, ffs_balloc() calls the allocation routines to obtain a new block. If the file needs to be 

extended, one of two conditions exists: 

1. The file contains no fragmented blocks (and the final block in the file contains insufficient 

space to hold the new data). If space exists in a block already allocated, the space is filled with 

new data. If the remainder of the new data consists of more than a full block, a full block is 

allocated and the first full block of new data are written there. This process is repeated until less 

than a full block of new data remains. If the remaining new data to be written will fit in less than 

a full block, a block with the necessary number of fragments is located; otherwise, a full block is 

located. The remaining new data are written into the located space. However, to avoid excessive 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref12


 

600 

copying for slowly growing files, the filesystem allows only direct blocks of files to refer to 

fragments. 

2. The file contains one or more fragments (and the fragments contain insufficient space to hold 

the new data). If the size of the new data plus the size of the data already in the fragments 

exceeds the size of a full block, a new block is allocated. The contents of the fragments are copied 

to the beginning of the block and the remainder of the block is filled with new data. The process 

then continues as in step 1. Otherwise, a set of fragments big enough to hold the data is located; 

if enough of the rest of the current block is free, the filesystem can avoid a copy by using that 

block. The contents of the existing fragments, appended with the new data, are written into the 

allocated space. 

The ffs_balloc() routine is also responsible for allocating blocks to hold indirect pointers. It 

must also deal with the special case in which a process seeks past the end of a file and begins 

writing. Because of the constraint that only the final block of a file may be a fragment, 

ffs_balloc() must first ensure that any previous fragment has been upgraded to a full-size block. 

On completing a successful allocation, the allocation routines return the block or fragment 

number to be used; ffs_balloc() then updates the appropriate block pointer in the inode. Having 

allocated a block, the system is ready to allocate a buffer to hold the block’s contents so that the 

block can be written to disk. 

The procedural description of the allocation process is shown in Figure 9.33. Ffs_balloc() is the 

routine responsible for determining when a new block must be allocated. It first calls the 

layout-policy routine ffs_blkpref() to select the most desirable block based on the preference 

from the global-policy routines that were described earlier in this section. If a fragment has 

already been allocated and needs to be extended, ffs_balloc() calls ffs_realloccg(). If nothing 

has been allocated yet, ffs_balloc() calls ffs_alloc(). 
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Figure 9.33 Procedural interface to block allocation. 

Ffs_realloccg() first tries to extend the current fragment in place. Consider the sample block of 

an allocation map with two fragments allocated from it, shown in Figure 9.34. The first fragment 

can be extended from a size 2 fragment to a size 3 or a size 4 fragment, since the two adjacent 

fragments are unused. The second fragment cannot be extended, as it occupies the end of the 

block, and fragments are not allowed to span blocks. If ffs_realloccg() is able to expand the 

current fragment in place, the map is updated appropriately and it returns. If the fragment 

cannot be extended, ffs_realloccg() calls the ffs_alloc() routine to get a new fragment. The old 

fragment is copied to the beginning of the new fragment, and the old fragment is freed. 

 

Figure 9.34 Sample block with two allocated fragments. 

The bookkeeping tasks of allocation are handled by ffs_alloc(). It first verifies that a block is 

available in the desired cylinder group by checking the filesystem summary information. If the 

summary information shows that the cylinder group is full, ffs_alloc() quadratically rehashes 

through the summary information looking for a cylinder group with free space. Having found a 

cylinder group with space, ffs_alloc() calls either the fragment-allocation routine or the 

block-allocation routine to acquire a fragment or block. 

The block-allocation routine is given a preferred block. If that block is available, it is returned. If 

the block is unavailable, the allocation routine tries to find another block in the same cylinder 

group that is close to the requested block. It looks for an available block by scanning forward 

through the free-block map, starting from the requested location until it finds an available block. 

The fragment-allocation routine is given a preferred fragment. If that fragment is available, it is 

returned. If the requested fragment is not available, and the filesystem is configured to optimize 

for space utilization, the filesystem uses a best-fit strategy for fragment allocation. The 

fragment-allocation routine checks the cylinder-group summary information, starting with the 

entry for the desired size, and scanning larger sizes until an available fragment is found. If there 

are no fragments of the appropriate size or larger, then a full-size block is allocated and is 

broken up. 

If a fragment of an appropriate size is listed in the fragment summary, then the allocation 

routine expects to find it in the allocation map. To speed up the process of scanning the 

potentially large allocation map, the filesystem uses a table-driven algorithm. Each byte in the 

map is treated as an index into a fragment-descriptor table. Each entry in the 
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fragment-descriptor table describes the fragments that are free for that corresponding map 

entry. Thus, by doing a logical AND with the bit corresponding to the desired fragment size, the 

allocator can determine quickly whether the desired fragment is contained within a given 

allocation-map entry. As an example, consider the entry from an allocation map for the 

32,768/4096 filesystem shown in Figure 9.35. The map entry shown has already been 

fragmented, with a single fragment allocated at the beginning and a size 2 fragment allocated in 

the middle. Remaining unused is another size 2 fragment and a size 3 fragment. Thus, if we look 

up entry 115 in the fragment table, we find the entry shown in Figure 9.36. If we were looking for 

a size 3 fragment, we would inspect the third bit and find that we had been successful; if we were 

looking for a size 4 fragment, we would inspect the fourth bit and find that we needed to 

continue. The C code that implements this algorithm is as follows: 

Click here to view code image 

for (i = 0; i < MAPSIZE; i++) 

     if (fragtbl[allocmap[i]] & (1 << (size - 1))) 

         break; 

 

Figure 9.35 Map entry for a 32,768/4096 filesystem. 

 

Figure 9.36 Fragment-table entry for entry 115. 

Using a best-fit policy has the benefit of minimizing disk fragmentation; however, it has the 

undesirable property of maximizing the number of fragment-to-fragment copies that must be 

made when a process writes a file in many small pieces. To avoid this behavior, the system can 

configure filesystems to optimize for time rather than for space. The first time that a process 

does a small write on a filesystem configured for time optimization, it is allocated a best-fit 

fragment. On the second small write, however, a full-size block is allocated, with the unused 

portion being freed. Later small writes are able to extend the fragment in place, rather than 

requiring additional copy operations. Under certain circumstances, this policy can cause the 

disk to become heavily fragmented. The system tracks this condition and automatically reverts 

to optimizing for space if the percentage of fragmentation reaches one-half of the minimum 

free-space limit. 
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Block Clustering 

Most machines running FreeBSD do not have separate I/O processors. The main CPU must take 

an interrupt after each disk I/O operation; if there is more disk I/O to be done, it must select the 

next buffer to be transferred and must start the operation on that buffer. Before the advent of 

track-caching controllers, the filesystem obtained its highest throughput by leaving a gap after 

each block to allow time for the next I/O operation to be scheduled. If the blocks were laid out 

without a gap, the throughput would suffer because the disk would have to rotate nearly an 

entire revolution to pick up the start of the next block. 

Track-caching controllers have a large buffer in the controller that continues to accumulate the 

data coming in from the disk even after the requested data have been received. If the next 

request is for the immediately following block, the controller will already have most of the block 

in its buffer, so it will not have to wait a revolution to pick up the block. Thus, for the purposes 

of reading, it is possible to nearly double the throughput of the filesystem by laying out the files 

contiguously rather than leaving gaps after each block. 

Unfortunately, the track cache is less useful for writing. Because the kernel does not provide the 

next data block until the previous one completes, there is still a delay during which the 

controller does not have the data to write, and it ends up waiting a revolution to get back to the 

beginning of the next block. One solution to this problem is to have the controller give its 

completion interrupt after it has copied the data into its cache, but before it has finished writing 

them. This early interrupt gives the CPU time to request the next I/O before the previous one 

completes, thus providing a continuous stream of data to write to the disk. 

This approach has one seriously negative side effect. When the I/O completion interrupt is 

delivered, the kernel expects the data to be on stable store. Filesystem integrity and user 

applications using the fsync system call depend on these semantics. These semantics will be 

violated if the power fails after the I/O completion interrupt but before the data are written to 

disk. Some vendors eliminate this problem by using nonvolatile memory for the controller cache 

and providing microcode restart after power fail to determine which operations need to be 

completed. Because this option is expensive, few controllers provide this functionality. 

Newer disks resolve this problem with a technique called tag queueing. With tag queueing, 

each request passed to the disk driver is assigned a unique numeric tag. Most disk controllers 

supporting tag queueing will accept at least 16 pending I/O requests. After each request is 

finished, the tag of the completed request is returned as part of the completion interrupt. If 

several contiguous blocks are presented to the disk controller, it can begin work on the next one 

while the tag for the previous one is being returned. Thus, tag queueing allows applications to be 
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accurately notified when their data has reached stable store without incurring the penalty of lost 

disk revolutions when writing contiguous blocks. 

One approach to dealing with disks that report completion before the data are on stable store is 

the Coerced Cache Eviction Project in which the disk cache is forcibly flushed at each ordering 

point to maintain consistency in its journaling filesystem [Rajimwale et al., 2011]. Another 

approach is the No-Order File System in which the filesystem is redesigned to provide crash 

consistency without ordering writes by employing a technique called backpointer-based 

consistency [Chidambaram et al., 2012]. 

To maximize throughput on systems without tag queueing or nonvolatile controller memory, the 

FreeBSD system implements I/O clustering. Clustering helps improve performance on all 

systems by reducing the number of I/O requests through the aggregation of many small requests 

into a smaller number of big ones. Clustering was first done by Santa Cruz Operations [Peacock, 

1988] and Sun Microsystems [McVoy & Kleiman, 1991]; the idea was later adapted to 4.4BSD 

and thus to FreeBSD [Seltzer et al., 1993]. As a file is being written, the allocation routines try to 

allocate up to maxcontig (typically 256 Kbyte) of data in contiguous disk blocks. Instead of the 

buffers holding these blocks being written as they are filled, their output is delayed. The cluster 

is completed when the limit of maxcontig of data is reached, the file is closed, or the cluster 

cannot grow because the next sequential block on the disk is already in use by another file. If the 

cluster size is limited by a previous allocation to another file, the filesystem is notified and is 

given the opportunity to find a larger set of contiguous blocks into which the cluster may be 

placed. If the reallocation is successful, the cluster continues to grow. When the cluster is 

complete, the buffers making up the cluster of blocks are aggregated and passed to the disk 

controller as a single I/O request. The data can then be streamed out to the disk in a single 

uninterrupted transfer. 

A similar scheme is used for reading. If the ffs_read() discovers that a file is being read 

sequentially, it inspects the number of contiguous blocks returned by ufs_bmap() to look for 

clusters of contiguously allocated blocks. It then allocates a set of buffers big enough to hold the 

contiguous set of blocks and passes them to the disk controller as a single I/O request. The I/O 

can then be done in one operation. Although read clustering is not needed when track-caching 

controllers are available, it reduces the interrupt load from systems that have them, and it 

speeds low-cost systems that do not have them. 

For clustering to be effective, the filesystem must be able to allocate large clusters of contiguous 

blocks to files. If the filesystem always tried to begin allocation for a file at the beginning of a 

large set of contiguous blocks, it would soon use up its contiguous space. Instead, it uses an 

algorithm similar to that used for the management of fragments. Initially, file blocks are 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref18
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allocated via the standard algorithm described in the previous two subsections. Reallocation is 

invoked when the standard algorithm does not result in a contiguous allocation. The 

reallocation code searches a cluster map that summarizes the available clusters of blocks in the 

cylinder group. It allocates the first free cluster that is large enough to hold the file and then 

moves the file to this contiguous space. This process continues until the current allocation has 

grown to a size equal to the maximum permissible I/O operation (maxcontig). At that point, the 

I/O is done and the process of allocating space begins again. 

Unlike fragment reallocation, block reallocation to different clusters of blocks does not require 

extra I/O or memory-to-memory copying. The data to be written are held in delayed write 

buffers. Within that buffer is the disk location to which the data are to be written. When the 

block cluster is relocated, it takes little time to walk the list of buffers in the cluster and to 

change the disk addresses to which they are to be written. When the I/O occurs, the final 

destination has been selected and will not change. 

To speed the operation of finding clusters of blocks, the filesystem maintains a cluster map with 

1 bit per block (in addition to the map with 1 bit per fragment). It also has summary information 

showing how many sets of blocks there are for each possible cluster size. The summary 

information allows it to avoid looking for cluster sizes that do not exist. The cluster map is used 

because it is faster to scan than is the much larger fragment bitmap. The size of the map is 

important because the map must be scanned bit by bit. Unlike fragments, clusters of blocks are 

not constrained to be aligned within the map. Thus, the table-lookup optimization done for 

fragments cannot be used for lookup of clusters. 

The filesystem relies on the allocation of contiguous blocks to achieve high levels of performance. 

The fragmentation of free space may increase with time or with filesystem utilization. This 

fragmentation can degrade performance as the filesystem ages. The effects of utilization and 

aging were measured on over 50 filesystems at Harvard University. The measured filesystems 

ranged in age, since initial creation, from one to three years. The fragmentation of free space on 

most of the measured filesystems caused performance to degrade no more than 10 percent from 

that of a newly created empty filesystem. The most severe degradation measured was 30 percent 

on a highly active filesystem that had many small files and was used to spool USENET news 

[Seltzer et al., 1995]. 

Extent-Based Allocation 

With the addition of dynamic block reallocation in the early 1990s [Seltzer & Smith, 1996], the 

UFS1 filesystem has had the ability to allocate most files contiguously on the disk. The metadata 

describing a large file consist of indirect blocks with long runs of sequential block numbers, as 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref31
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shown in Figure 9.37(a). For quick access while a file is active, the kernel tries to keep all a file’s 

metadata in memory. With UFS2, the space required to hold the metadata for a file is doubled as 

every block pointer grows from 32 bits to 64 bits. To provide a more compact representation, 

many filesystems use an extent-based representation. A typical extent-based representation uses 

pairs of block numbers and lengths. Figure 9.37(b) represents the same set of block numbers as 

Figure 9.37(a) in an extent-based format. If the file can be laid out nearly contiguously, this 

representation provides a compact description. However, randomly or slowly written files can 

end up with many noncontiguous block allocations, which will produce a representation that 

requires more space than the one used by UFS1. This representation also has the drawback that 

it can require much computation to perform random-access to the file, since the block number 

needs to be computed by adding up the sizes starting from the beginning of the file until the 

desired seek offset is reached. 

 

Figure 9.37 Alternative file metadata representations. 

To gain most of the efficiencies of extents without the random access inefficiencies, UFS2 has 

added a field to the inode that will allow that inode to use a larger block size. Small, slowly 

growing, or sparse files set this value to the regular filesystem block size and represent their data 

in the traditional way shown in Figure 9.37(a). However, when the filesystem detects a large, 

dense file, it can set this inode-block-size field to a value 2 to 16 times the filesystem block size. 

Figure 9.37(c) represents the same set of block numbers as Figure 9.37(a), with the 

inode-block-size field set to 4 times the filesystem block size. Each block pointer references a 

piece of disk storage that is four times larger, which reduces the metadata storage requirement 

by 75 percent. Since every block pointer other than possibly the last one references an equal-size 

block, computation of random access offsets is just as fast as in the traditional metadata 

representation. Unlike the traditional extent-based representation that can double the metadata 

space requirement for certain datasets, this representation will always result in less space 

dedicated to metadata. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
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607 

The drawback to this approach is that once a file has committed to using a larger block size, it 

can only use blocks of that size. If the filesystem runs out of big blocks, then the file can no 

longer grow, and either the application will get an “out-of-space” error or the filesystem has to 

recreate the metadata with the standard filesystem block size. The current plan is to write the 

code to recreate the metadata. While recreating the metadata usually will cause a long pause, we 

expect that condition to be rare and not a noticeable problem in real use. 

Exercises 

9.1 What are the seven classes of operations handled by the hierarchical file-system? 

9.2 What is the purpose of the inode data structure? 

9.3 How does the system select an inode for replacement when a new inode must be brought in 

from disk? 

9.4 Why are directory entries not allowed to span chunks? 

9.5 Describe the steps involved in looking up a pathname component. 

9.6 Why are hard links not permitted to span filesystems? 

9.7 Describe how the interpretation of a symbolic link containing an absolute pathname is 

different from that of a symbolic link containing a relative pathname. 

9.8 Explain why unprivileged users are not permitted to make hard links to directories but are 

permitted to make symbolic links to directories. 

9.9 How can hard links be used to gain access to files that could not be accessed if a symbolic 

link were used instead? 

9.10 How does the system recognize loops caused by symbolic links? Suggest an alternative 

scheme for doing loop detection. 

9.11 How do quotas differ from the file-size resource limits described in Section 5.12? 

9.12 How does the kernel determine whether a file has an associated quota? 

9.13 Draw a picture showing the effect of processing an exclusive-lock request by process 1 on 

bytes 7 to 10 to the lock list shown in Figure 9.15. Which of the overlap cases of Figure 9.14 apply 

to this example? 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig14
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9.14 In the absence of soft updates, which three FFS operations must be done synchronously to 

ensure that the filesystem can always be recovered deterministically after a crash (barring 

unrecoverable hardware errors)? 

9.15 What are the guarantees made by the fsync system call? 

9.16 Name the five ordering constraints that must be maintained when a file is removed. 

Describe how soft updates maintains this ordering. 

9.17 Give three uses for a filesystem snapshot. 

9.18 Describe the eight steps needed to take a filesystem snapshot. 

9.19 What are the three states that a block may have in a snapshot? Describe the actions taken 

by a snapshot for each of these states when a write occurs. Describe the actions taken by a 

snapshot for each of these states when a block is released. 

9.20 What are the four classes of operations handled by the datastore filesystem? 

9.21 Under what circumstances can a write request avoid reading a block from the disk? 

9.22 What is the difference between a logical block and a physical block? Why is this distinction 

important? 

9.23 Give two reasons why increasing the basic block size in the old filesystem from 512 bytes to 

1024 bytes more than doubled the system’s throughput. 

9.24 How many blocks and fragments are allocated to a 31,200-byte file on a FFS with 

4096-byte blocks and 1024-byte fragments? How many blocks and fragments are allocated to 

this file on a FFS with 4096-byte blocks and 512-byte fragments? Also, answer these two 

questions assuming that an inode has only 6 direct block pointers instead of 12. 

9.25 Explain why the FFS maintains a 5 to 10 percent reserve of free space. What problems 

would arise if the free-space reserve were set to zero? 

9.26 What is a quadratic hash? Describe for what it is used in the FFS, and why it is used for 

that purpose. 

9.27 Why are the allocation policies for inodes different from those for data blocks? 

9.28 Under what circumstances does block clustering provide benefits that cannot be obtained 

with a disk-track cache? 



 

609 

*9.29 Give an example where the file-locking implementation is unable to detect a potential 

deadlock. 

*9.30 What problems would arise if files had to be allocated in a single contiguous piece of the 

disk? Consider the problems created by multiple processes, random access, and files with holes. 

**9.31 Design a system that allows the security level of the system to be lowered while the 

system is still running in multiuser mode. 

**9.32 Inodes could be allocated dynamically as part of a directory entry. Instead, the inode 

allocation region is reserved when the filesystem is created. Why is the latter approach used? 
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Chapter 10. The Zettabyte Filesystem 

10.1 Introduction 

The Zettabyte filesystem is generally referred to as simply ZFS [Bonwick et al., 2003]. It is in a 

class of filesystems that never overwrite existing data. A benefit of never overwriting is that 

snapshots (read-only) and clones (writable) are easy and cheap. Many of them can be created 

with no performance hit. 

ZFS has the property that the on-disk filesystem state is never inconsistent. Filesystem changes 

are accumulated in memory. Periodically, all the changes are gathered up and written to disk. 

When all the changes are on stable storage, ZFS makes a checkpoint of the new filesystem state. 

The checkpoint is made by doing a single write to update the uberblock to reference the new 

filesystem state (the uberblock is analogous to the superblock of a UFS filesystem). Thus, a ZFS 

filesystem moves from one consistent state to the next without ever passing through an 

inconsistent state. 

ZFS takes advantage of the abundant processor power available with current multi-core CPUs. 

Because they are much faster than storage, ZFS can afford to checksum everything. The 

checksums are used to detect: 

• Bit rot on disks 

• Phantom writes 

• Misdirected reads and writes 

• DMA parity errors 

• Bugs in disk drivers and disk firmware 

• Accidental overwrite of disk data 

• Verification of reconstructed data (e.g., if you have a 3-way mirror, and one disk dies, 

nonchecksumming systems would just choose a “good” disk at random from which to read the 

data). ZFS reads the data and then verifies the checksum, so if a “good” disk has a few bad 

blocks, it can read from the other good disk instead. Data verification can also be used with 

RAIDZ when it has multiple levels of redundancy. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref04
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ZFS allows the use of inexpensive mechanical disks. Because of the redundancy available with 

RAIDZ and the error detection provided by checksums, ZFS can quickly and easily recover from 

disk failure. 

Unlike the rest of FreeBSD, which is broken into many layers, ZFS is written as one big 

monolithic piece. The modules that make up ZFS along with the piece of FreeBSD that they 

most closely resemble is shown in Table 10.1. Figure 10.1 compares the layers of UFS and ZFS. 

The traditional FreeBSD layering is: 

• Filesystem namespace management: UFS layer 

• Cache management: virtual memory page-cache layer 

• Filesystem storage organization: FFS layer 

• Volume management: GEOM layer 

 

Figure 10.1 Comparison of UFS and ZFS layering. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
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Table 10.1 ZFS modules. 

ZFS subsumes all these layers: 

• Filesystem namespace management: the ZFS POSIX Layer (ZPL) and ZFS Attribute Processor 

(ZAP) have a role similar to the UFS layer. 

• Filesystem storage management: the Data Management Unit (DMU) and ZFS Intent Log (ZIL) 

have a role like the FFS layer. The Dataset and Snapshot Layer (DSL) manages snapshots as 

does the FFS layer. However, these two modules of ZFS provide much additional functionality 

that has no analog in the other FreeBSD filesystems. As described in the next section, these 

modules operate in the Meta-Object Set (MOS) layer that is separate from the filesystem layers 

rather than being a part of the filesystem. 

• Volume management: The Storage Pool Allocator (SPA) module manages block placement. 

The ZFS I/O (ZIO) module orchestrates I/O. The Virtual Device (VDEV) module aggregates 

disks into RAIDZ groups. ZFS also provides ZFS volumes (ZVOLs) that appear as traditional 

fixed-size disk partitions, much like the role of the GEOM layer. 

• Cache management: The Adaptive Replacement Cache (ARC) has a role similar to that of the 

virtual memory page cache. The Level 2 Adaptive Replacement Cache (L2ARC) has a role 

similar to that of the virtual memory swap area and acts as a slower-access backing store for the 

memory-based ARC cache. 

The result of this monolithic design is that ZFS has many features that include: 
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• Massive scale supporting petabyte-size storage pools with data structures that allow scalability 

to zettabytes. 

• POSIX filesystems with features similar to UFS that include support for NFSv4 and Server 

Message Block (SMB) remote filesystem functionality such as selectable case insensitivity, 

unicode normalization, ACLs, and special flags needed for anti-virus support. 

• ZVOLs that can be shared over iSCSI. 

• Support for millions of snapshots and clones. 

• Selective data compression and deduplication. 

• Data integrity from checksums and data redundancy. 

• A variable block size. 

• Architecture-independent on-disk format. 

• Pooled storage shared among filesystems. 

• Disk-level redundancy through mirroring and single, double, and triple parity RAID. 

• Support for a hybrid storage pool by using fast devices such as solid-state disks (SSDs) to cache 

reads and nonvolatile memory (NVRAM) to accelerate synchronous writes. 

• Intelligent prefetch with multiple streams per file and autodetected stride patterns. 

• Space management that includes several types of quotas and reservations. 

• A simple administrative model that has the filesystem as the administrative control point with 

delegated administration and integration between mountpoints and NFS shares. 

• Fast remote replication and backups. 

• Availability on many platforms including FreeBSD, Linux, Mac OS/X, and Illumos. 

• Stability derived from its use in production by the world’s biggest companies since 2006. 

10.2 ZFS Organization 

Figure 10.2 shows the relationship of the ZFS modules. The remainder of this chapter explains 

the interactions of these modules. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig02
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Figure 10.2 ZFS module layering. See Table 10.1 for acronyms. 

Traditional filesystems like UFS each manage their own set of disk blocks that are stored at a 

range of offsets on a single device. Each filesystem is given a fixed-size set of blocks when it is 

first created and the size of that set does not change. When a filesystem runs out of blocks, it 

cannot borrow blocks from another filesystem. If a filesystem has an excess of blocks, it cannot 

make them available to another filesystem. 

ZFS removes the space-management role from the traditional filesystem model. It creates a pool 

of space that is then handed out as needed to the set of filesystems using the pool. The DSL and 

SPA modules implementing the Meta-Object Set (MOS) layer shown in Table 10.1 and Figure 

10.3 manage the pool of space and make it available to the filesystem modules of the object-set 

layer. Thus, space in the pool can move between filesystems as needed. The arrows in Figure 

10.3 represent a single block pointer, while the triangles represent indirect blocks mapping a 

potentially large set of blocks. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
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Figure 10.3 ZFS organization. 

At the top is the uberblock that points to a data structure that describes an array of meta-objects. 

These meta-objects include filesystems, snapshots, clones, ZVOLs, and the space map describing 

the allocated and free blocks in the pool. Creating a new snapshot or filesystem requires 

allocating a new metadata object, a task that is about as difficult as creating a new file in a 

filesystem. When a filesystem needs to allocate space, its request is handled by the SPA module 

that finds an available block of the requested size in the space map. When the filesystem (and all 

its clones and snapshots) no longer need the block, it is returned to the pool. In general, the 

blocks of the pool are shared among all the filesystems that the pool contains. For 

administrative reasons, it is possible both to limit the maximum amount of space that a 

filesystem can use and to ensure that some minimum amount of space is reserved for a 

filesystem to use. 

Each object set in the MOS, such as a filesystem, references a data structure that describes its 

array of objects. These objects include the usual things found in a filesystem such as directories, 

files, symbolic links, etc. Each of these filesystem objects then references an array of blocks that 

contain the object’s data. 

The allocation, expansion, and eventual freeing of the contents of all these objects is managed by 

the DMU module. The tree-structured POSIX-semantic directory structure is managed by the 

ZPL module. The ZAP module stores a keyto-value hashtable in an on-disk object. Its original 

use was for directory entries (each directory is implemented as a ZAP object). Its use later was 

expanded to store object attributes and many other types of metadata in other parts of ZFS. 

Finally, the ZIL module ensures that changes are not lost between filesystem checkpoints. 
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ZFS Dnode 

ZFS stores the metadata for a file in a dnode that is analogous to the inode of UFS. Like that 

inode used in UFS, a dnode describes an object that may change in size from tiny to huge. The 

dnode is managed by the DMU. One use for dnodes is to describe filesystem objects such as files, 

directories, etc. When used for this purpose, the dnode is embedded with a znode that is 

managed by the ZPL and contains the metadata required to support POSIX semantics. Unlike 

the inode, dnodes also describe objects in the MOS layer such as the objects that represent 

filesystems, snapshots, clones, ZVOLs, space maps, property lists, and dead-block lists (referred 

to as deadlists). 

Just as with inodes, the ability to describe objects of greatly different sizes is done by using 

indirect blocks. Unlike inodes, each dnode uses a fixed number of levels of indirect blocks. For 

objects smaller than 128 Kbyte, the dnode uses a single, direct-block pointer that references a 

block of the appropriate size. Thus, a 12-Kbyte object would be referenced by a single pointer to 

a 12-Kbyte block. When the object grows to a size bigger than 128 Kbyte, the direct-block pointer 

is replaced by a pointer to a 16-Kbyte single indirect block. The indirect block then has pointers 

to the data blocks that hold the object. 

As described later in this subsection, the size of ZFS block pointers are 128 bytes. Thus, each 

16-Kbyte indirect block can hold 128 pointers. By default, each indirect-block pointer references 

a 128-Kbyte block, though a filesystem may be configured to reference smaller blocks if that is 

sensible for the application running on that filesystem. For example, if the primary application 

running on the filesystem is a database that reads and writes widely separated 4-Kbyte records, 

the filesystem can be configured to allocate 4-Kbyte blocks to reduce the need to copy an entire 

128-Kbyte block when only 4 Kbyte of it has been modified. 

When the object grows beyond the size that can be described by a single-level indirect block, its 

dnode is promoted to use two levels of indirect blocks. The dnode’s block pointer references a 

16-Kbyte second-level block. The single-level block that it previously referenced is moved to be 

referenced from the first pointer in the new second-level indirect block. As the object continues 

to grow, additional first-level indirect blocks are allocated and referenced from the second-level 

indirect block. 

If the object outgrows the size that can be described by a two-level set of indirect blocks, the 

dnode grows to support a three-level hierarchy, similarly to the way it was expanded to support 

a two-level hierarchy. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_495
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One important use of dnodes is to reference ZAP objects. A ZAP object stores a key-to-value 

hashtable. They were first used for directories that map from names to object numbers. An 

object number is an index into an objset dnode array that maps the object number to the 

location of the object on the disk. Directories require fast entry lookup, new entry insertion, old 

entry deletion, and full-directory scanning. All these properties are provided by ZAP objects. 

Because the ZAP module is flexibly written and these directory-like properties are needed in 

many other contexts, ZAP objects are used to store attribute and property lists along with many 

other types of metadata in the DSL and the SPA. 

ZFS Block Pointers 

Figure 10.4 shows a ZFS block-pointer structure. Unlike the traditional UFS 8-byte block 

pointer that references a block number within a disk partition, the ZFS block pointer is a 

128-byte structure that can contain pointers to as many as three copies of a block, each on a 

different disk along with the block’s size and its checksum. By keeping the checksum separate 

from the data, errors such as misdirected reads and writes can be detected. If the checksum 

were stored in the data block itself, a misdirected read or write would appear to be correct since 

both the data and the checksum would have been misdirected. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig04


 

623 

Figure 10.4 Description of a block pointer. Key: vdev—virtual device identifier; grid—RAIDZ 

layout information (reserved for future use); asize—allocated size (including RAIDZ parity and 

gang-block headers); G—gang-block flag; offset—offset into virtual device; B—byteorder 

(endianness) flag; D—deduplication flag; X—unused flag; lvl—number of levels of indirection for 

data described by this block pointer; type—DMU object type; cksum—checksum function 

identifier; comp—compression function identifier; psize—physical size (after compression); 

lsize—logical size; physical birth time—transaction group in which the block was physically 

allocated, zero if same as logical birth time; logical birth time—transaction group in which the 

block was logically allocated; fill count—number of nonzero blocks under this block pointer; 

checksum[ ]—256-bit checksum of the data described by this block pointer. 

By default, ZFS checksums every block that it is managing. With multiple-core processors being 

common, the CPU cost of performing the checksum is insignificant in comparison to the cost of 

performing an I/O operation. 

For systems with multiple disks, the first line of defense against data corruption or loss is RAID. 

If a disk block or even an entire disk is lost, the RAID disk structure can recover the data. For 

systems with only a single disk such as a laptop, and as a secondary backup for systems with 

multiple disks running with RAID, ZFS by default provides double redundancy for all metadata. 

Thus, all ZFS block pointers that reference metadata will have two of the three block-pointer 

fields in use. Filesystems can be configured to have all data replicated. Here, all block-pointers 

that reference user data will have two of the three block-pointer fields in use. When running in 

this mode, ZFS uses triple redundancy for all metadata. Thus, metadata block pointers will have 

all three block-pointer fields in use. 

Each block has an associated birth time. Birth time is measured as the number of checkpoints 

that have been taken since the ZFS pool was created. When the pool is first created, the 

transaction group (TXG) is set to zero. Each time that a checkpoint is done, the transaction 

group is incremented. The problem with using seconds since the epoch for the birth time is that 

seconds since the epoch can fail to be monotonically increasing if the battery maintaining the 

hardware clock fails or if a time daemon sets incorrect time information. Self-consistency is 

ensured by using transaction groups rather than seconds since the epoch. It also ensures that if 

two checkpoints are taken less than 1 second apart, the birth times of blocks from the two 

checkpoints can be distinguished. As described in the next section, the birth time is needed to 

determine when a block has no references so that it can be freed. 

The dedup flag identifies a block that is in the deduplication table. The flag is used when trying 

to free a block. If the deduplication flag is set, ZFS must find the corresponding entry in the 

deduplication table and decrement its reference count as the block can only be freed when the 
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reference count reaches zero. The deduplication table is huge so it typically does not fit in 

memory. Pieces of it are brought in when needed. Thus, checking for a block in the 

deduplication table is expensive, especially if the required block of the deduplication table is not 

in memory. If the deduplication flag is not set, ZFS can avoid the cost of looking it up in the 

deduplication table. 

Most blocks have only a logical birth time that is equal to the TXG in which they were created. 

Only deduplication blocks need a physical birth time. The first time a block is written, it gets just 

a logical birth time. When the same contents are written again, the deduplication module 

creates a new block pointer to the original copy. The new block pointer has a logical birth time of 

the current TXG but a physical birth time of the TXG of the original block’s logical birth time. 

The reason that the physical birth time is needed is so that when the filesystem is traversed after 

a disk failure to reconstruct the RAIDZ, the kernel knows the actual times that blocks were 

created and hence knows which ones need to be reconstructed. 

Normally, when the SPA needs to allocate a block of a given size, it is able to do so. However, 

when the pool of unused blocks becomes small, there may not be a single block of space large 

enough to fulfill the request. Here, the SPA must allocate two or more smaller pieces to make up 

the bigger block. These smaller pieces are described by an array of pointers in a structure called 

a gang-block header. The gang-block flag is set when the reference in the block pointer is to one 

of these gang-block headers so that header can be interpreted by the I/O system to gather 

together the pieces that make up the block. 

Each block pointer has three sizes associated with it: 

1. lsize – the logical size of the block 

2. psize – the physical size of the block, which may be smaller than the logical size if it has been 

compressed. 

3. asize – the allocated size on the disk including RAIDZ parity and gang-block headers. 

For blocks that reference indirect blocks, the level of the referenced block is also maintained. 

Since any given dnode uses a fixed number of indirection levels as described earlier in this 

subsection, maintaining the level count in the block pointer is used purely as a consistency check 

and is not needed for normal operation. Similarly, the type field is known, so it is used only as a 

consistency check. 



 

625 

ZFS objset Structure 

The objset structure describes a set of objects. An objset structure is used to describe the set of 

objects in a filesystem, a snapshot, a clone, or a ZVOL. When used in this role, their closest 

analogy to UFS is that of the superblock, which is the data structure that describes all the objects 

in a filesystem. Another important use of the objset structure is to describe the collection of 

objects that make up the MOS. The objects in the MOS include the descriptors for all the 

filesystems, clones, snapshots, and ZVOLs in the pool along with their relationships to each 

other. The MOS also includes a master node that includes properties that apply to the pool and 

space-map objects that identify the used and available blocks in the pool. 

10.3 ZFS Structure 

Having described the most important ZFS data structures, it is now possible to describe the 

layout of a ZFS pool in more detail. Figure 10.5 shows a typical ZFS pool that is anchored at its 

top by an uberblock. 

 

Figure 10.5 ZFS Structure. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05
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Two 256-Kbyte blocks of space are reserved for volume labels at the beginning and end of every 

device in the ZFS pool. Half of each of these four volume labels are used to store redundant 

copies of information specific to the device. The other half of each of these four labels holds an 

array of 128 uberblocks. The final step to complete a checkpoint is to write out the uberblock. 

When the pool is created, the initial uberblock is written to the zeroth entry in each of the 

uberblock arrays on all the devices. The uberblock for the first checkpoint (TXG number one) is 

written to the first entry in all the uberblock arrays of up to three of the devices that are selected 

at random. After all 128 entries in an uberblock array have been used, the checkpoint location of 

the uberblock update reverts to the zeroth entry in that uberblock array. 

The MOS Layer 

A single block pointer contained in the uberblock references an objset structure that describes 

the set of objects making up the MOS layer. The MOS contains the data structures managed by 

the DSL that tracks datasets, which include chains of snapshots, trees of clones, the active 

filesystems, and ZFS volumes (ZVOLs) that appear like traditional fixed-size disk partitions. The 

DSL is also responsible for tracking filesystem properties and the deadlists. The MOS also 

contains data structures managed by the Storage Pool Allocator (SPA) that tracks allocated 

versus freed blocks. The SPA module is also responsible for handling compression and 

deduplication as well as I/O queueing and scheduling. Thus, the MOS manages filesystems 

while the volume manager found in traditional filesystem layering manages blocks. 

Each of the objects in the MOS is described by a dnode. One important object in the MOS is the 

first dnode, often referred to as the master node. The master node contains pool-wide 

information including pool-wide property lists and configurations, recent error logs, and 

operational statistics. Another important object in the MOS layer is the dnode that contains the 

space map. The space map identifies the allocation of blocks within the pool. 

Most of the dnodes in the MOS are used to describe a filesystem, clone, snapshot, or ZVOL. 

Each of these dnodes has a dsl_dataset structure embedded within it. This structure serves two 

main purposes: 

1. It keeps a set of pointers to track the relationship of snapshots and clones to their associated 

filesystem. 

2. It contains the object number of the deadlist that tracks when blocks are no longer referenced 

and can be freed. 

The management of relationships and the operation of deadlists is described in the next section. 
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The dsl_dataset structure within all these dnodes, except those for snapshots, points to a second 

dnode object in the MOS that contains an embedded dsl_dir structure. The dsl_dir structure 

contains: 

• The object number of the MOS object for its parent’s dsl_dir. 

• The object number of the ZAP object listing its children’s dsl_dirs. 

• The object number of the ZAP object listing its properties. Its properties include typical 

filesystem properties such as whether to honor the set-user-identifier flag on executables, 

whether to maintain access time on files and directories, etc. The ZAP object also records the use 

of compression and, if enabled, the compression algorithm being used. 

• The object number of the ZAP object that lists all its clones. 

• Block accounting for all filesystems and clones mounted below it. 

• Its quota and reservation byte counts. 

• For clones, the object number of the MOS object for the snapshot from which they were 

created. 

The relationships between a filesystem and its clones and snapshots is shown in Figure 10.6. 

ZFS can take snapshots and make clones of both filesystems and ZVOLs, so everything 

described below in the context of filesystems applies equally to ZVOLs. Clones cannot be taken 

of a filesystem or another clone; they can only be taken from a snapshot. It is possible to create 

multiple clones from the same snapshot. When a clone is promoted to being a filesystem, the 

previous filesystem is demoted to being a clone. Clone promotion does not change the datasets’ 

names, mountpoints, or contents. Renaming operations must be done separately. 

 

Figure 10.6 Filesystem, clone, and snapshot relationships. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig06
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The Object-Set Layer 

Each of the dsl_dataset structures in the MOS layer has a block pointer that points to an objset 

structure in the object-set layer. The bottom half of Figure 10.5 shows three distinct 

organizations of the objset. From left to right in the object-set layer, they are: 

1. A snapshot of a filesystem or a clone (see number 3). The organization of the snapshot is the 

same as that of a filesystem or clone except that since it cannot be changed, it does not need to 

track user or group quotas. A snapshot does keep a copy of the user and group quotas as they 

existed at the time that the snapshot was made so that they are available for use after a rollback 

is done or a clone is made. They are stored in the objset as is done for a filesystem, but are not 

shown in Figure 10.5. 

2. ZVOLs have a single dnode in their objset that references an array of two dnodes. The first 

dnode references an array of block pointers that is the size of the device partition with one 

pointer per 4-Kbyte block. The other dnode describes the master node. It is a ZAP object that 

records ZVOL-specific information. 

3. Filesystems have three dnodes in their objset. Two are ZAP objects that record the user and 

group space usage for a filesystem. The third references the filesystem’s array of the files and 

directories. The first dnode of the array is its master node, described later in this section. Clones 

of filesystems have the same objset organization as a filesystem, while clones of ZVOLs have the 

same objset organization as a ZVOL. 

The filesystem master node is a ZAP object that contains the following information: 

• It records the object number of the root inode. 

• It records the objects numbers for the user and group quota files. 

• It records the ZAP object number that tracks the set of files that have been unlinked but cannot 

be reclaimed because they are still referenced by an open file descriptor. The ZAP object simply 

records a list of the unlinked object numbers. Objects are added when they become unlinked 

and removed when their final reference is closed. Use of the ZAP object ensures that these 

operations can be done in constant time. After a reboot, the list is traversed to remove the 

unlinked and now unreferenced files. 

The layout of a snapshot mirrors that of the object set that it snapshots. The snapshot of a 

filesystem in Figure 10.6 shows how its structure mirrors that of a filesystem. A snapshot of a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig06
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ZVOL has a structure that mirrors that of a ZVOL. Similarly, the layout of a clone of a filesystem 

or ZVOL snapshot is the same as that of the object that it is cloning. 

Each of the objsets that describe a filesystem, clone, or ZVOL has a zil_header structure 

embedded within it that points to a linked list of blocks containing the ZIL intent log. The ZIL 

records all the changes since the last checkpoint for recovery after a crash. 

10.4 ZFS Operation 

Unlike overwriting filesystems like UFS that continuously update their on-disk state, ZFS 

collects all filesystem updates in memory. Periodically, it writes all the changes to an unused 

disk area to create a checkpoint. None of the changes to the on-disk state are visible until the 

final write of the checkpoint is made, which is to update the root of the ZFS pool, the uberblock. 

Thus, a ZFS filesystem is always consistent; that is, it transitions from one consistent state to a 

new consistent state. 

Each checkpoint is taken across the entire pool and affects every filesystem, snapshot, clone, and 

ZVOL in the pool at the same time. ZFS calls these checkpoints transaction groups, abbreviated 

to TXGs. Snapshots taken across several filesystems that all fall within the same checkpoint will 

all be consistent at the same instant in time. Thus, two different snapshots within the same pool 

with the same TXG will be precisely synchronized with each other in time. Conversely, it is 

difficult to get consistent snapshots across two different pools because it would require the 

precise coordination when they take a checkpoint. 

Many operations in ZFS, such as the way that writes to files appear atomic to different processes 

doing write system calls to the same file, are handled similarly to those of traditional 

overwriting filesystems like UFS. This section will not describe functionality that is similar to the 

UFS functionality described in Chapter 9. This section details the operations performed by the 

ZFS filesystem that differ significantly from the way they are performed in UFS. 

Writing New Data to Disk 

All updates to the filesystems, clones, and ZVOLs within a pool are accumulated in memory 

until a specified time has passed (default is 5 seconds), 64 Mbyte of dirty data have been 

accumulated, or an administrative action is taken that requires a checkpoint such as a snapshot 

request. To flush the new data to disk, ZFS must take a checkpoint of the pool. 

Taking a checkpoint requires that all modifications to the filesystem, made since the previous 

checkpoint, be saved to disk. The first step is to get a consistent state for the filesystem, which 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
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requires that all system calls modifying filesystem data must be complete. ZFS uses a technique 

similar to the one described in Section 9.7 as step 3 of taking a snapshot in UFS. Specifically, 

processes that are already in progress on such system calls are permitted to finish those system 

calls. The checkpoint proceeds once all the in-progress system calls have finished. 

It may take several seconds to write out all the disk blocks making up the checkpoint. Allowing 

no modifications during that entire period would cause an unacceptable delay to applications 

running on the system. To avoid this delay, all the dirty blocks that will be written to make the 

checkpoint are tagged with their transaction group (TXG). New modifications to the filesystems, 

clones, and ZVOLs are tagged with a new transaction group. If a modification finds that the 

block it needs to modify is marked as being part of a checkpoint in progress, ZFS makes a copy 

of that block in memory and the modification is made to the copy. The copied blocks become 

part of the next checkpoint. As I/O completes on the blocks that are part of the current 

checkpoint, ZFS must decide how to handle the in-memory buffers. If they were not copied, they 

can be marked as available for current use. If they were copied, then their contents are now out 

of date so the memory holding the out-of-date copy is freed. 

Figure 10.7 shows the nine steps that must be taken to flush the changes for a file to which data 

has been added since the last checkpoint: 

1. All the blocks of new data must be written. If the write has been done over existing data, the 

modified data block must be written to a new location as ZFS never overwrites any existing data. 

2. Typically, the update requires an update of a block pointer in one of the file’s indirect blocks. 

Since the indirect block has been modified, it will need to be written to a new location, which 

means the indirect block that references it will need to be modified. These modifications 

continue up the indirect tree until they reach the dnode for the file. 

3. Update the dnode for the file to reference the new block location for the top of its indirect 

pointers. Since ZFS cannot overwrite the existing dnode when it has changed, it must write a 

copy of the block containing the dnode with the updated size and new block pointer. 

In UFS, reading in an inode requires allocating a piece of memory that is the size of an inode 

including the space needed to store the on-disk dinode, reading in the disk block that contains 

the inode, copying the dinode from the disk block to the newly allocated memory, and then 

releasing the disk buffer. Writing an inode back to disk requires reading in the disk block that 

contains the inode, copying the modified inode into the appropriate part of the buffer, and then 

writing the updated buffer back to the disk. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig07
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In ZFS, reading in a dnode begins by allocating a piece of memory that is the size of the 

in-memory dnode. The in-memory dnode does not contain the on-disk dnode; it includes only a 

pointer to the on-disk part. ZFS reads in and locks in memory the disk block that contains the 

on-disk dnode. It then sets the pointer in the dnode to point to its on-disk part in the disk buffer. 

Writing the dnode back to the disk requires only that the disk buffer containing the modified 

dnode be written to its new location. 

The benefit of the ZFS approach is less memory-to-memory copies and fewer I/O operations at 

the expense of using more memory. For a system with 100,000 cached nodes, UFS will use 50 

Mbyte of memory while ZFS typically uses 200 Mbyte and can use up to 1.6 Gbyte of memory. 

The original log-structured filesystem (LFS) collected all the modified inodes together in sets of 

64 that could then be packed into a 16-Kbyte block. The drawback to this approach is that it 

required another metadata file that mapped from inode number to disk location. ZFS simply 

writes all the in-memory disk blocks that contain modified dnodes. By updating the block 

pointers in its objset dnode that have changed, there is no requirement for a separate metadata 

file to track their location as they can be found using a simple look up at their known offset in 

the objset dnode. Though this approach requires more I/O than the LFS approach, it simplifies 

and speeds later lookup of the dnodes. 

4. Once all the filesystem dnodes have been updated, the changed block pointers referencing 

them are propagated up through the indirect blocks of the filesystem objset in the same way that 

they were in step 2 for the file. 

5. Update the filesystem objset dnode object to reference the new block location for the top of 

the objset dnode’s indirect pointers. 

6. Update the block pointer in the MOS dsl_dataset to reference the new copy of the filesystem 

objset to which it points. 

7. Once all the dsl_dataset pointers have been updated to point to their new objset objects, the 

changed block pointers referencing them are propagated up through the indirect blocks of the 

MOS objset in the same way that they were in steps 2 and 4 for the file and filesystem objsets. 

8. Update the MOS objset dnode object to reference the new block location for the top of its 

indirect pointers. 

9. Once all these updates have been written to their disk locations, the last step in checkpoint 

creation is to update the block pointer in the uberblock to point at the new MOS objset and 

update its TXG transaction group to reflect the new checkpoint. The updated uberblock is then 

written to its new locations as is described in Section 10.3. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10lev1sec3
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Figure 10.7 Nine steps to create a checkpoint. 

Logging 

ZFS keeps all ZPL-level changes logged in memory. The log is handled by the ZFS Intent Log 

(ZIL). Examples of log entries are: 

• Write these 700 bytes of data to this offset of this file, 

• Change the permissions of this file to this mode, or 

• Create a new symbolic link in this directory with this name that points to this path. 

Unlike logs associated with traditional overwriting filesystems that are needed to bring the 

filesystem back into a consistent state, ZFS is always consistent so its only requirement for its 

log is to retain any changes between checkpoints that need to be persistent. An example of the 

need for persistence is the fsync system call that needs to ensure the associated file is stable 

before returning. Because of the time and I/O operations required to do a ZFS checkpoint, fsync 

is implemented by forcing a log write, not by doing a checkpoint. 

Traditional filesystems often log only filesystem metadata changes as meta-data tends to be 

much smaller than the data updates and returning to a consistent state requires only that the 

metadata be recovered. When performing an fsync on a file, a traditional filesystem can commit 

modified data by overwriting the same disk blocks that held the previous value of the data. The 

traditional filesystem can also overwrite a file’s inode to reflect any newly allocated blocks. ZFS 

has to log both data and metadata because it does not have the option of just flushing the data 

and inode to disk to synchronize them. ZFS reduces the overhead of writing file data to both the 
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log and the disk by allocating a disk block, writing the data to it, and then placing a pointer to 

that data in the log. When the next checkpoint is made, ZFS can reference the already-written 

block. By default, ZFS only allocates and writes blocks of size 32 Kbyte and larger, but the 

logbias property allows the setting of a lower threshold. 

The high volume of data being written to the ZFS log can often be a throughput-performance 

bottleneck. The logging bottleneck can be alleviated by using a solid-state disk (SSD) to store the 

log. The log often does not need all the space available on the SSD. ZFS can use the remaining 

space on the SSD to extend its in-memory ARC cache by pushing less actively read items to the 

SSD. ZFS refers to this SSD cache as its L2ARC. 

Recovery of a ZFS pool starts from the last checkpoint. When the pool is first opened, the kernel 

must read in an uberblock array from every device and scan through them to find the uberblock 

with the highest TXG value as that will represent the most current checkpointed state of the ZFS 

pool. If an uberblock array on a device is unreadable or corrupted, the kernel reads an 

alternative copy of the uberblock array from that device. 

Once the uberblock has been found, ZFS has to find and claim all the log blocks. The blocks are 

claimed by updating the MOS space map to show that all the log blocks are allocated. This 

reclaim must happen when the pool is first opened and before any other modifications are made 

to it to ensure that the log blocks are not overwritten by later writes. The log blocks are 

identified by looking up the objset for all the filesystems, ZVOLs, and clones listed in the MOS. 

Each of these objsets contains an intent-log header that points to its linked list of log blocks. The 

pool then starts processing a new transaction group (TXG). 

The processing of filesystems, ZVOLs, and clones is completely analogous. In the rest of this 

section filesystems are described, but the description applies equally to ZVOLs and clones. 

Recovery for each filesystem then proceeds as follows: 

1. The filesystem is mounted. 

2. ZFS plays forward through its intent log whose list head is contained in its objset structure. 

Each of the operations contained in the log is made to the filesystem. 

3. The blocks from the fully replayed log are freed. 

4. The filesystem begins accepting new requests. 

In the normal course of events, the transaction completes with a new uberblock being written. If 

the system crashes before the new uberblock has been written, then all the recovery work is lost 

and must be done again when the system is restarted. No data will be lost as any writes that 
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were done before the crash will be to parts of the disk that were previously unallocated, so none 

of the existing filesystem data will have been corrupted. Any modifications accepted for the 

filesystems that had completed step 4 above will have been added to their intent log. Thus, these 

changes will be included in the filesystem when the system successfully completes its recovery 

process. 

RAIDZ 

Traditional layered design separates the filesystem implementation from the disk-storage 

implementation. Thus, the storage layer has no knowledge of the data being stored on it. RAID 

is typically used in modern storage systems. Since the size and organization of the data is 

unknown to the storage layer, each stripe in the RAID array is a fixed-size. For example, 

consider a traditional RAID running with four data disks plus a single parity disk. If the disks 

have a 4-Kbyte sector size, the stripe size is 16 Kbyte using one sector on each of the four data 

drives plus a 4-Kbyte sector on the parity drive. If an application writes a 24-Kbyte block, this 

RAID will write one full-size stripe and then have to read in a 16-Kbyte stripe, replace the first 8 

Kbyte of the 16-Kbyte stripe, recalculate the parity, and write out the new 8 Kbyte of data and 

the updated 4-Kbyte parity sector. If a disk fails, the RAID reconstructs by reading every stripe, 

rebuilds the bad 4-Kbyte block, and writes the rebuilt block back to the replacement disk. The 

rebuild time can be reduced by using dirty-region logging to keep track of the stripes that are in 

use, but it comes at a cost of increased complexity and reduced performance. 

Because ZFS integrates its RAIDZ disk-storage implementation with its filesystem 

implementation, it can support a variable-size stripe. Instead of writing fixed-size stripes, each 

block that it writes fills in the amount of space that it requires. Each block that is written is 

referenced by a block pointer that contains the size of the block so the disk-storage 

implementation can determine the size of the stripe to use. Figure 10.8 shows the layout of 

blocks on a RAIDZ-1 pool constructed from five disks with a single parity per stripe. Each block 

requires a parity sector for each four blocks of data sectors. A block that is not a multiple of four 

sectors requires a parity block for its residual set of sectors. To get double redundancy 

(RAIDZ-2), each block would require two parity sectors for each three blocks of data sectors. 

The smallest possible allocation on RAIDZ-N is N + 1 sectors constructed from N parity sectors 

plus one data sector. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08
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Figure 10.8 Layout of blocks in a RAIDZ disk pool. The blocks have been written sequentially 

and are shown alternating between light and dark backgrounds. 

In Figure 10.8, the first block has two parity and eight data sectors. The second and third blocks 

have one parity sector and three data sectors. The fourth block exhibits the worst overhead with 

one parity and one data sector. The fifth block has fourteen data and four parity sectors. The 

sixth block contains one parity sector, four data sectors, and an unused sector. To avoid the 

creation of unallocatable segments, ZFS requires all allocations be a multiple of N + 1 sectors. In 

Figure 10.8, N is equal to one, so allocations must be a multiple of two. Since the sixth block 

uses five sectors, its allocation must be rounded up to six sectors thus charging the odd-size 

block for the wasted space. If the sixth block is freed and the space is later reallocated to a block 

with one parity and three data sectors, the two-sector residual space will still be usable for a 

block containing one parity and one data sector. Had the allocation for the sixth block not been 

rounded up, the residual space would have been a single sector that could not be used. The 

seventh data block containing a single parity and two data sectors also needs to allocate an 

unused sector. The eighth and final block contains three parity and nine data sectors. The parity 

sectors for a given block are all on the same disk. The disk holding the parity for a block is the 

one on which the block begins. Thus, parity blocks are distributed among the disks. 

If a disk fails, the RAIDZ reconstructs it by traversing the pool’s filesystems and rebuilding each 

block that it encounters using the block’s size to determine its stripe size. An added benefit of 

this approach is that reconstruction time is often lowered since ZFS need only rebuild the part of 

the disk holding allocated data. Despite the slowdown from random reads to the data to be 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08
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rebuilt, the need to rebuild just the allocated data is faster than rebuilding the whole disk when 

the allocated data use less than about half of the disk. However, in worst-case scenarios of pools 

configured to use 4-Kbyte blocks, such as those supporting databases or virtual-disk images 

with totally random block placement and most of the disk space allocated, ZFS reconstruction 

may take 10 times longer to complete. 

Snapshots 

Taking a snapshot in ZFS is quick and easy, and for reasons explained later in this section, there 

are no limits on the number of snapshots that can be taken. The steps involved in taking a 

snapshot are: 

• Take a checkpoint. 

• Allocate a new dnode in the MOS to contain the new dsl_dataset that will represent the 

snapshot. 

• Copy the block pointer from the dsl_dataset of the filesystem being snapshotted to the 

dsl_dataset in the newly allocated snapshot dnode. Until at least the next checkpoint is taken, 

the block pointers of both the snapshot and the filesystem will reference the same objset block. 

The next checkpoint made after any change in the filesystem will create a new copy of the 

filesystem objset. The block pointer in the snapshot will continue to reference the old objset, 

while the block pointer in the filesystem will reference the new objset. 

• Link the new dnode into the head of the filesystem’s snapshot list (as it is the youngest 

snapshot). 

• Add the new snapshot’s name and object number into the snapshot name list for the 

filesystem. 

• Move the filesystem’s deadlist to the snapshot. Since the filesystem’s deadlist contains blocks 

that it no longer references, they will not be referenced by the snapshot. The freeing of deadlists 

is described in a later subsection. 

At this point, the new snapshot is complete and is ready to be accessed. 

ZFS Block Allocation 

Space allocation is handled by the SPA module. It manages all the space in the pool and makes it 

available to filesystems, clones, and ZVOLs as it is needed. The SPA uses the space map in the 
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MOS to identify the allocation of blocks within the pool. Rather than having a single map to 

describe the entire pool, the blocks are broken up into fixed-size groups analogous to the way 

that UFS breaks a filesystem up into cylinder groups, each with a fixed-size block map. Unlike 

cylinder-group maps, ZFS maps are described using base-length pairs similar to those used to 

describe space in an extent-based filesystem. A disk will typically be described by about 200 of 

these fixed-size maps. The next subsection describes how blocks are freed back to the pool. 

A ZFS allocation proceeds as follows: 

1. Select a disk from which to do the allocation. The preference is to choose the disk with the 

most free space. 

2. From among the fixed-size space maps describing the space on the disk, select the one that is 

least fragmented. 

3. Allocate a chunk of space with the needed size that is closest to the previous allocation. 

In addition to managing the space map, the SPA also handles related operations such as 

compression and deduplication, and it determines block layout into a RAIDZ stripe as well as 

the stripe’s parity calculation. Finally, the SPA manages the scheduling, queueing, and 

completion handling of the block I/O operations. 

Freeing Blocks 

The first implementations of nonoverwriting filesystems were described as log-structured 

filesystems [Rosenblum & Ousterhout, 1992]. A production version of a log-structured 

filesystem, LFS, was released as part of 4.4BSD [McKusick et al., 1996; Seltzer et al., 1993]. New 

data were appended to the filesystem partition until they reached the end of the partition. A 

garbage collection process was run over the filesystem partition to find the blocks that were no 

longer being referenced. The filesystem operations then resumed until these blocks had been 

used at which point another garbage collection pass was done. While this technique for 

managing free space worked, and much research was done on ways to minimize its effect, it still 

produced awkward pauses that made production use difficult [Blackwell et al., 1995]. 

In the 1990’s, two commercial implementations of nonoverwriting filesystems were started, ZFS 

by Sun Microsystems and the Write Anywhere File Layout (WAFL) filesystem by Network 

Appliance (NetApp) [Hutchinson et al., 1999]. Both of these implementations chose to track the 

used and available blocks continuously as is done in traditional filesystems but used different 

techniques. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref06
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WAFL keeps and updates a complete block list. In WAFL, each block has a 256-bit word 

associated with it. Bit 0 in the word is set to show that the block is in use in the active filesystem. 

Bit 1 is set to show that the block is in use in snapshot 1, bit 2 is set to show that the block is in 

use in snapshot 2, etc. When all bits in the word are 0, the block is free and available for use. 

When a new snapshot is made, WAFL allocates an available bit number for it and then makes a 

pass over the entire bitmap, copying all the set bits in bit 0 to the new snapshot’s bit column. 

Freeing a snapshot makes a pass over the entire bitmap, clearing the bit in the snapshot’s bit 

location. Thus, the cost to create or delete a WAFL snapshot is proportional to the size of the 

filesystem and the number of snapshots is limited to the width of the block-map word. ZFS does 

not have these limitations. 

ZFS tracks its used and available blocks using space maps, birth time, and deadlists. The benefit 

of the ZFS approach is that it never has to traverse its space map when creating or freeing a 

snapshot, clone, or ZVOL. When a filesystem needs a new block, it requests one from the SPA 

that allocates it from the pool’s space map. The current transaction group (TXG) is recorded in 

the block’s pointer. The block then becomes part of an object in the filesystem. Over time, the 

filesystem or clone may be snapshotted, which will also reference the block. 

When an object in a filesystem is overwritten, truncated, or deleted, its blocks will be released. 

For each block freed from an object, the kernel must determine whether to free it. The kernel 

checks the block pointer’s birth time and, if it was born after the most recent (youngest) 

snapshot, it is not referenced by any snapshots so the block can be freed (i.e., the SPA can return 

the block to the pool’s space map). Otherwise, the block must be remembered for later freeing 

by adding it to the filesystem’s deadlist. Each dsl_dataset contains the object number of its 

deadlist. The deadlist of a given dataset (filesystem, ZVOL, clone, or snapshot) is the list of 

blocks referenced by the previous snapshot and possibly some older snapshots, but not 

referenced by the dataset. 

When a snapshot is freed, the kernel needs to free any blocks referenced only by that snapshot 

[Ahrens, 2005]. Figure 10.9 shows the four lifetimes of blocks that need to be considered when 

freeing “this snap.” The kernel must determine the blocks to be freed and those that need to 

remain on a deadlist. It iterates over the blocks in the “next snap” deadlist (blocks A and B in 

Figure 10.9). Each block is removed from the list and the block’s birth time is compared to the 

birth time of “prev snap.” If the block was born before “prev snap” (block A), then the kernel 

cannot free it, so it adds the block to the deadlist of “this snap.” Otherwise, the block was born 

after “prev snap” (block B), so the kernel must free it. Having emptied the deadlist of “next 

snap,” the kernel sets the deadlist of “next snap” to the deadlist of “this snap.” Finally, the kernel 

removes “this snap” from the linked list of snapshots and from the directory of snapshot names. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig09
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Figure 10.9 Four lifetimes of blocks considered by the kernel when a snapshot is deleted. 

While the implementation is simple, the algorithm is subtle. The blocks that the kernel must free 

are those that are referenced by only the snapshot the kernel is deleting (block B). The blocks to 

be deleted must meet four constraints: 

1. They were born after “prev snap,” 

2. They were born before “this snap,” 

3. They died after “this snap,” and 

4. They died before the “next snap.” 

The blocks on the “next snap” deadlist are those that meet constraints 2, 3, and 4. They are live 

in “this snap,” but dead in the “next snap.” Thus, to find the blocks that meet all constraints, the 

kernel examines all the blocks on the deadlist of “next snap” and finds those that meet 

constraint 1 (i.e., if the block’s birth time is after the “prev snap”). Note that the argument 

applies if “next snap” is the live filesystem. 

To confirm that the kernel left the correct blocks on the deadlist of “next snap,” observe that the 

deadlist of “this snap” contains the blocks that were live in “prev snap” and dead in “this snap” 

(block D). If “this snap” did not exist, then the blocks would be live in “prev snap” and dead in 

“next snap,” and therefore should be on the deadlist of “next snap.” Additionally, the blocks that 

were live for both “prev snap” and “this snap” but dead in “next snap” (block A) should be on the 

deadlist of “next snap.” 

Originally, the deadlist contained the object number of an object that contained an array of all 

the dead-block pointers associated with the filesystem, ZVOL, snapshot, or clone. Since every 

block on the list has to be considered for deletion, snapshot deletion time is proportional to the 

size of its deadlist. As the number of deleted or changed blocks grows, the size of the deadlists 

also grows. Because the only blocks that could be deleted are those in the transaction group that 

covers the snapshot or clone being deleted, the deadlist was reorganized. 
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To decouple the removal time of a snapshot from the size of the deadlist, the deadlist has now 

been split into separate lists organized by the ranges of transaction groups between each of the 

snapshots that existed at the time the snapshot was created. The new deadlist contains the 

object number of a ZAP object that maps the first transaction group of a specific range of birth 

times to an object that contains an array of all the dead block pointers for just that range of birth 

times. Typically, only one of these lists needs to be scanned when the snapshot is deleted, which 

improves snapshot deletion time as it only needs to consider the subset of blocks that it will 

need to free. If several snapshots have been deleted between the snapshot being deleted and the 

one that currently precedes it, then several lists will need to be traversed, but all the blocks on 

the traversed lists will need to be freed. Thus, with this new organization, the time required at 

snapshot removal time is a function of the number of blocks that the snapshot will free 

independent of the number of other blocks that remain. 

The elegance of this design is that it places no limit on the number of snapshots that can be 

created and it never needs to traverse the entire block-allocation map, so snapshot creation and 

removal times are not affected by the size of the disk space being managed. 

Deduplication 

ZFS provides deduplication on a pool-wide basis [Bonwick, 2009]. Deduplication is 

implemented in the SPA module. Logically, when a new block is created, the pool is checked to 

see if a block with identical contents already exists. If an identical block does exist, the existing 

block is referenced rather than creating a duplicate copy of it. Deduplication is most useful when 

there are many duplicate blocks, such as when many instances of the same virtual-machine 

image are being stored among the filesystems in the pool. 

To speed the check for an existing block with a given value, ZFS computes a hash of each unique 

block and stores it in the MOS in a ZAP table that maps from hash to block location. Rather than 

computing both a hash and a checksum for each block, the checksum is used as the hash. The 

hash must use a function such as SHA-256 that uniquely identifies data with very high 

probability. Thus, when using deduplication, the fletcher4 checksumming function, which is 

faster to compute but more likely to have collisions, is replaced with SHA-256. 

When a block is to be written, ZFS computes its hash and then checks the table to see if a block 

with that hash already exists. If it does, a pointer to the existing block is created and the 

reference count associated with the block is incremented. Otherwise, the hash, the new block’s 

location, and a reference count of 1 are inserted into the table and the block is written to disk. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref03


 

641 

Not all users of the pool need to participate in deduplication. Only filesystems and ZVOLs that 

administratively elect to participate have their blocks deduplicated. The size of the 

hash-to-block mapping table is proportional to the number of blocks allocated to the 

participating filesystems and ZVOLs. When the table grows too large to be kept entirely in 

memory, write throughput to the participating filesystems and ZVOLs slows dramatically as new 

allocations have to wait for the needed part of the table to be read into memory to check whether 

they are a duplicate. Because of the cost of deduplication, most administrators only enable 

deduplication on filesystems and ZVOLs on which there are likely to be many duplicate blocks. 

The administrators further limit the number of filesystems participating in deduplication to a 

level that provides enough memory to keep the entire table resident. 

Note that redundant copies of blocks that have been made for reliability are not deduplicated. As 

described in Section 10.2, ZFS supports up to three copies of a block referenced from its block 

pointer. When the first instance of the block is created, all the requested copies will be made. 

Later instances of the block will have block pointers that also reference all the copies of the data. 

Remote Replication 

As with all filesystems, ZFS must be able to provide a mechanism for performing backup both 

locally and remotely. Backup is handled by the DMU layer that understands how to traverse the 

data structures of any type of objset to create a data stream much like the UFS dump creates a 

data stream from a filesystem image using its knowledge of the filesystem’s on-disk data 

structures. ZFS refers to creating this data stream as a send operation. 

The stream of data can be directed locally or over a network to a remote backup site where it can 

be stored as a blob of data on a tape or disk, or it can be interpreted by the DMU layer to create 

another copy of the contents. ZFS refers to accepting a data stream as a receive operation. This 

functionality is similar to a UFS dump stream that can be stored as a blob of data on a tape or 

disk or immediately reconstructed into a filesystem using the restore program. 

Much like the UFS dump program, ZFS is able to send either the complete contents of a 

snapshot (equivalent to a full dump) or just the differences between two snapshots (equivalent 

to an incremental dump). 

10.5 ZFS Design Tradeoffs 

This section compares the design tradeoffs between a traditional overwriting filesystem versus 

ZFS’s nonoverwriting architecture. The biggest difference between the two architectures is the 

tradeoff between reading and writing. Writes in a traditional filesystem architecture are 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10lev1sec2
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scattered across the disk as data for different files being written at the same time may be 

scattered far apart on the disk. Additionally, the metadata for those files will typically be stored 

separately from the file data. The payoff for the scattered writes is that when the file is later read, 

its data will all be clustered together even if they were written over a long period of time (as 

would be the case for a log file). The nonoverwriting filesystem does all its writes sequentially. 

All the modified file data along with any metadata changes are collected and written together. 

The result of the sequential writing is that a file can end up requiring many random accesses 

when it is later read. ZFS mitigates the reading cost by dedicating enough memory to the ARC to 

be able to keep all actively accessed files resident. ZFS also attempts to prefetch data when files 

are being read. 

The areas in which ZFS’s architecture works well are as follows: 

• When disk pools are less than half full, RAIDZ can reconstruct a failed disk faster than 

fixed-size RAID since it only needs to copy the blocks that are in use. 

• Traditional filesystems using RAID have to handle a condition known as the RAID write hole. 

Each update to a RAID stripe requires writing to several disks which cannot be done atomically. 

Thus, unprotected RAID stripes can become damaged during a crash or power outage. For 

example, if two of five disks are written and the power fails, the data and parity for that stripe 

are inconsistent. Therefore, if a disk fails, the RAID reconstruction process generates garbage 

the next time any data is read from that stripe. The write-hole problem can be avoided by using 

nonvolatile memory to hold data until all the disks in a stripe have been written. However, 

nonvolatile memory is expensive and when full, the system must pause and wait for enough I/O 

to complete to release some of it. Because ZFS never overwrites existing data, it can avoid the 

write-hole problem by waiting for all disk I/O to complete before creating a new checkpoint. 

• Moving allocation and freeing of storage out of the filesystems, and managing it as part of the 

pool optimizes the utilization of the space since individual filesystems do not need to be 

over-provisioned for their highest expected usage scenarios. 

• The tight integration of ZFS’s architecture means that all the features work well together. For 

example, snapshots work the same when taken on filesystems, clones, and ZVOLs. 

• Administration is easier because the pool is aware of the relationships between all the 

filesystems, clones, and snapshots. Thus, it keeps track of how everything should be mounted 

(subsuming the need to maintain /etc/fstab), allows properties to be inherited down the tree 

rather than needing to be set individually, and organizes NFS exports (subsuming the need to 

maintain /etc/exports). 
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The areas in which ZFS’s architecture works less well than UFS are as follows: 

• As implemented, ZFS’s block cache must fit in the kernel’s address space. Thus, it works well 

only on 64-bit systems. 

• Like all nonoverwriting filesystems, ZFS operates best when at least a quarter of its disk pool is 

free. Write throughput becomes poor when the pool gets too full. By contrast, UFS can run well 

to 95 percent full and acceptably to 99 percent full. 

• Traditional RAID implementations have a fixed overhead for the parity. For example, with five 

drives, one-fifth of the space will be dedicated to parity. With a RAIDZ pool filled with 

sector-size blocks, half of the space will be dedicated to parity, effectively reducing it to the 

density of a mirror. This scenario arises when using disks with 4-Kbyte sectors to build pools 

configured to use 4-Kbyte blocks such as those supporting databases or ZVOLs. 

• ZFS caches its data in its ARC that is not part of the unified-memory cache managed by the 

virtual memory. The result is that when mmap is used on a ZFS file, read faults are first read 

into the ARC and then copied to a page in the unified-memory cache. When dirty 

unified-memory pages are flushed, they must be copied to an ARC buffer and then written by 

ZFS. To ensure coherency whenever mmap has been used on a ZFS file, reads and writes to that 

file need to check whether, for each page in the transfer, the requested page is present in the 

unified-memory cache and, if present, use that page to do the I/O. If the page is not present in 

the unified-memory cache, then the I/O can proceed normally from the ARC. This approach 

provides coherency between memory-mapped and I/O access at the expense of wasted memory 

due to having two copies of the file in memory and extra overhead caused by the need to copy 

the contents between the two copies. 

Similarly, when using sendfile on a file in ZFS, it must be copied from the ARC to the 

unified-memory cache thereby losing the benefits of the no-copy semantics of sendfile. The 

primary use of sendfile is by Web-server applications like Apache. 

Integrating ZFS’s ARC into the unified-memory cache would require massive changes. The 

problem is easily seen in Figure 10.1. The unified-memory cache operates at the vnode interface 

level and the ARC operates at the physical block level. The pages in the ARC are identified by 

their block number on a device. The ARC representation is efficient because access to an 

unmodified file in a filesystem and access to the same file in a snapshot will reference the same 

entry in the ARC. By contrast, the unified-memory cache identifies pages by their vnode and 

logical block number. In the unified-memory cache, access to an unmodified file in a filesystem 

and access to the same file in a snapshot will reference different pages even though their 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig01
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contents are identical. The benefit of this approach is that modification of the file’s copy of a 

block will not affect the snapshot’s copy of that block. 

ZFS was designed to manage and operate enormous filesystems easily, which it does well. Its 

design assumed that it would have many fast 64-bit CPUs with large amounts of memory to 

support these enormous filesystems. When these resources are available, it works extremely well. 

However, it is not designed for or well suited to run on resource-constrained systems using 

32-bit CPUs with less than 8 Gbyte of memory and one small, nearly-full disk, which is typical of 

many embedded systems. 

Exercises 

10.1 What is the purpose of the dnode data structure? 

10.2 List five problems that ZFS’s checksums can detect. 

10.3 What is the role of ZFS’s Meta-Object Set? 

10.4 What is the role of ZFS’s Object Set? 

10.5 Why does the ZFS block pointer contain three disk addresses? 

10.6 Why is the ZFS checksum stored in its block pointer? 

10.7 Given that ZFS’s on-disk state is always consistent, why does it need a log? 

10.8 Why does ZFS checksum using SHA-256 instead of fletcher4 when doing deduplication? 

*10.9 Much of the time required to rebuild a RAIDZ disk pool after replacing a disk arises from 

all the random reads it requires. Describe an algorithm that would reduce the time to perform 

these random reads. 

**10.10 Describe a design for integrating the unified-memory cache into ZFS. 

References 

Ahrens, 2005. 

M. Ahrens, “It Is Magic,” Unpublished Blog entry, available from 

http://www.mckusick.com/bookrefs/is_it_magic.html, November 2005. 

http://www.mckusick.com/bookrefs/is_it_magic.html


 

645 

Blackwell et al., 1995. 

T. Blackwell, J. Harris, & M. Seltzer, “Heuristic Cleaning Algorithms in Log-Structured File 

Systems,” USENIX Association Conference Proceedings, pp. 277–288, January 1995. 

Bonwick, 2009. 

J. Bonwick, “ZFS Deduplication,” Unpublished Blog entry, available from 

http://www.mckusick.com/bookrefs/zfs_dedup.html, November 2009. 

Bonwick et al., 2003. 

J. Bonwick, M. Ahrens, V. Henson, M. Maybee, & M. Shellenbaum, “The Zettabyte File System,” 

Unpublished Paper, available from http://www.mckusick.com/bookrefs/zfs_overview.pdf, 

November 2003. 

Hutchinson et al., 1999. 

N. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz, S. Kleiman, & S. O’Malley, 

“Logical vs. Physical File System Backup,” USENIX 3rd Symposium on Operating Systems 

Design and Implementation, pp. 239–250, available from 

https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchins

on/hutchinson_html/hutchinson.html, February 1999. 

McKusick et al., 1996. 

M. McKusick, K. Bostic, M. Karels, & J. Quarterman, The Design and Implementation of the 

4.4BSD Operating System, Addison-Wesley, Reading, MA, 1996. 

Rosenblum & Ousterhout, 1992. 

M. Rosenblum & J. Ousterhout, “The Design and Implementation of a Log-Structured File 

System,” ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 26–52, Association for 

Computing Machinery, February 1992. 

Seltzer et al., 1993. 

M. Seltzer, K. Bostic, M. K. McKusick, & C. Staelin, “An Implementation of a Log-Structured File 

System for UNIX,” USENIX Association Conference Proceedings, pp. 307–326, January 1993. 

http://www.mckusick.com/bookrefs/zfs_dedup.html
http://www.mckusick.com/bookrefs/zfs_overview.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/hutchinson.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/hutchinson.html


 

646 

 

Chapter 11. The Network Filesystem 

A commonly provided user-level service in any collection of UNIX systems is the network 

filesystem (NFS) that allows a set of computers connected to a network to share files. NFS 

provides client computers with a namespace and a set of file access semantics similar to the 

capabilities of a local filesystem. Providing local-filesystem semantics in a distributed system is a 

challenging problem. Sections 11.1 and 11.2 cover the development of NFSv2 and NFSv3. Section 

11.3 describes NFSv4 which attempts to address the problems discovered in the first 25 years of 

deploying NFS. NFSv3 is the most widely used version in 2014, but NFSv4 is rapidly overtaking 

it in popularity. FreeBSD supports all three versions of NFS. 

11.1 Overview 

The most commercially successful and widely available remote-filesystem protocol on UNIX 

systems is NFS, originally designed and implemented by Sun Microsystems [Sandberg et al., 

1985; Walsh et al., 1985]. There are two important components to the success of NFS. First, Sun 

placed the protocol specification for NFS in the public domain. Second, Sun sold that 

implementation to anyone who wanted it, for less than the cost the company would have 

incurred to implement it. Thus, most vendors chose to buy the Sun implementation. They were 

willing to buy from Sun because they knew that they could always legally write their own 

implementation. The 4.4BSD implementation was written from the protocol specification rather 

than being incorporated from Sun because of the developers’ desire to be able to redistribute it 

freely in source form. 

The first widely released implementation of NFS was version 2 by Sun in 1984. Although version 

3 was expected to be released within a year or two of version 2, it suffered several iterations of 

hugely complicated proposals before an incremental improvement on version 2 was finally 

released in 1992. The final release of 4.4BSD included an implementation of NFS that supported 

both versions 2 and 3. FreeBSD’s NFS implementation is a direct descendant of the code 

released in 4.4BSD. 

Although versions 2 and 3 of NFS were designed entirely within Sun, the growing set of 

companies providing NFS-based products put increasing pressure on Sun to bring others into 

the design of NFS version 4. After much political maneuvering, Sun agreed to pass the 

responsibility for defining the specification of NFS version 4 to the Internet Engineering Task 

Force (IETF). Version 4 greatly expands the functionality of the earlier versions of NFS. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref23


 

647 

Sun’s NFS is not the only remote filesystem protocol currently in use. Research at 

Carnegie-Mellon lead to the Andrew filesystem (AFS) [Howard, 1988]. AFS was commercialized 

by Transarc and eventually became part of the Distributed Computing Environment 

promulgated by the Open Software Foundation and was supported by many vendors. It was 

designed to handle widely distributed servers and clients, and also to work well with mobile 

computers that operate while detached from the network for long periods. AFS did not see wide 

commercial use. 

In the Microsoft family of operating systems, remote filesystem access is provided by the 

Common Internet File System (CIFS), which runs on top of the Server Message Block (SMB) 

protocol [SNIA, 2002]. In FreeBSD, support for SMB and CIFS client and server is provided by 

Samba, which resides in /usr/ports/net/samba. Since this book deals with the kernel, and 

Samba runs mostly external to the kernel, we will not discuss it further. 

NFS was designed as a client-server application. Its implementation is divided into a client part 

that imports filesystems from other machines and a server part that exports local filesystems to 

other machines. The general model is shown in Figure 11.1. In FreeBSD, the kernel can be 

configured to support just the client, just the server, or both client and server. Many goals went 

into the NFS design: 

• The protocol is designed to be stateless. Because there is no state to maintain or recover, NFS 

can continue to operate even during periods of client or server failures. Thus, it was thought to 

be much more robust than a system that operates with state. 

• NFS is designed to support UNIX filesystem semantics. However, its design also allows it to 

support the possibly less-rich semantics of other filesystem types, such as the MS-DOS 

filesystem. 

• The protection and access controls follow the UNIX semantics of having the process present a 

UID and set of groups that are checked against the file’s owner, group, and other access modes. 

The security check is done by filesystem-dependent code that can do more or fewer checks based 

on the capabilities of the filesystem that it is supporting. For example, the MS-DOS filesystem 

cannot implement the full UNIX security validation, and it makes access decisions solely based 

on the UID. 

• The protocol design is transport independent. Although it was originally built using the UDP 

datagram protocol in version 2, it was easily moved to the TCP stream protocol in version 3. It 

has also been ported to run over numerous other non-IP-based protocols. 
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Figure 11.1 The division of NFS between client and server. 

Some of the design decisions limit the set of applications for which NFS is appropriate: 

• The design envisions clients and servers being connected on a local, fast network. The NFS 

protocol does not work well over slow links. When using an unreliable protocol, such as UDP as 

the transport, it does not work well between clients and servers with intervening gateways. It 

also works poorly in mobile computing environments that have extended periods of 

disconnected operation. 

• The caching model assumes that most files will not be shared. Performance suffers when files 

are heavily shared. 

• The stateless protocol requires some loss of traditional UNIX semantics. Filesystem locking 

(flock) has to be implemented by a separate stateful daemon. Deferral of the release of space in 

an unlinked file until the final process has closed the file is approximated with a heuristic that 

sometimes fails. 

Despite these limitations, NFS proliferated because it makes a reasonable tradeoff between 

semantics and performance; its low cost of adoption has now made it ubiquitous. 

11.2 Structure and Operation 

NFS operates as a typical client–server application. The server receives remote procedure 

call (RPC) requests from its various clients. An RPC operates much like a local procedure call: 

the client makes a procedure call and then waits for the result while the procedure executes. For 

a remote procedure call, the parameters must be marshalled together into a message. 

Marshalling includes replacing pointers by the data to which they point and converting data 

into network byte order. The message is then sent to the server, where it is unmarshalled 

(separated out into its original pieces) and processed as a local filesystem operation. The result 
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must be similarly marshalled and sent back to the client. The client unmarshalls the result and 

returns that value to the calling process as though the result were being returned from a local 

procedure call [Birrell & Nelson, 1984]. NFS uses Sun’s RPC and external data-representation 

(XDR) protocols [Reid, 1987]. Although the kernel implementation is done by hand to get 

maximum performance, the user-level daemons described later in this section use the RPC and 

XDR libraries. 

The NFS protocol can run over any available stream- or datagram-oriented protocol but the 

most common choice is TCP because it provides better service over a wide range of network 

types from local to wide area. Each NFS RPC message may need to be broken into multiple 

packets to be sent across the network. A motivating factor to move away from running NFS over 

a datagram protocol, such as UDP, is that any single RPC may be broken into up to six packets; 

if any of these packets are lost, the entire RPC is lost and needs to be resent. When running over 

a stream protocol, such as TCP, the RPC will still be broken into several packets; however, 

individual lost packets, rather than the entire message, will be retransmitted by TCP. The 

problems with running NFS over an unreliable datagram protocol are exacerbated on 

high-bandwidth local-area networks. NFS messages will always fit into a single UDP datagram 

but the underlying network usually requires the messages to be split, a process called IP 

fragmentation. Each IP packet contains an identifier that allows large packets, that were broken 

up, to be reassembled when they are received by the server. The IP identifier field is only 16 bits, 

which means that once a concurrent and highly fragmented workload is present, the birthday 

paradox kicks in where different streams have a high probability of selecting overlapping 

IP-identifier sequences. The server’s network stack will now reassemble the UDP datagrams 

incorrectly, leading to datagrams with failed checksums that require retransmission. The 

ensuing poor performance is the main reason use of NFS over UDP is heavily discouraged even 

for local-area networks. In FreeBSD, NFS over UDP is retained primarily for use in network 

booting. For a more complete discussion of IP fragmentation see Section 13.1. 

The set of RPC requests that a client can send to a server, under version 3 of the protocol, is 

shown in Table 11.1. After the server handles each request, it responds with the appropriate data 

or with an error code explaining why the request could not be completed. As noted in the table, 

many operations are idempotent. An idempotent operation is one that can be repeated several 

times without the final result being changed or an error being caused. For example, writing the 

same data to the same offset in a file is idempotent because it will yield the same result whether 

it is done once or many times. However, trying to remove the same file more than once is 

nonidempotent because the file will no longer exist after the first try. Idempotency is an issue 

when the server is slow or when an RPC acknowledgment is lost and the client retransmits the 

RPC request. The retransmitted RPC will cause the server to attempt the same operation again. 

For a nonidempotent request, such as a request to remove a file, the retransmitted RPC, if 
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undetected by the server recent-request cache [Juszczak, 1989], will cause a “no such file” error 

to be returned, because the file will have been removed already by the first RPC. Users may be 

confused by the error because they believe that they are attempting to remove an existing file. 

 

Table 11.1 NFS, Version 3, RPC requests. 

Each file on the server is identified by a unique file handle. A file handle is the token by which 

clients refer to files on a server. The handles are passed in operations, such as read and write, 

that reference a file. A file handle is created by the server when a pathname-translation request 

(lookup) is sent from a client to the server. The server must find the requested file or directory 

and ensure that the requesting user has access permission. If permission is granted, the server 

returns a file handle for the requested file to the client. The file handle identifies the file in 

future access requests by the client. A file handle is meant to be opaque to the client. The client 
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is not allowed to peek into or infer any information from the file handle but only to present it to 

the server as part of routine file operations. Servers are free to build file handles from whatever 

information they find convenient. 

In the FreeBSD NFS implementation, each filesystem can decide what data goes into a file 

handle. In ZFS, the file handle is created from the underlying file ID. ZFS is covered in Chapter 

10. 

In UFS, covered in Chapter 9, the file handle is built from a filesystem identifier, an inode 

number, and a generation number. The server creates a unique filesystem identifier for each 

of its locally mounted filesystems. A generation number is assigned to an inode each time that 

the latter is allocated to represent a new file. The generation number is selected by using the 

kernel’s random-number generator. The kernel ensures that the same generation value is never 

used for two consecutive allocations of the same underlying inode or file ID. 

The purpose of the file handle is to provide the server with enough information to find the file in 

future requests. The generation number verifies that the file handle still references the same file 

that it referenced when the file was first accessed. Using a generation number allows the server 

to detect when a file has been deleted, and a new file is later created using the same inode or file 

ID. Although the new file has the same filesystem identifier and inode number, it is a completely 

different file from the one that the previous file handle referenced. Since the generation number 

is included in the file handle, a previously used generation number for an inode will not match 

the new generation number in the same inode. When a file handle representing a previous 

version of the file is presented to the server by a client, the server refuses to accept it and instead 

returns the “stale file handle” error message. 

The use of the generation number ensures that the file handle is time stable. Distributed systems 

define a time-stable identifier as one that refers uniquely to some entity both while that 

entity exists and for a long time after it is deleted. A time-stable identifier allows a system to 

remember an identity across transient failures and allows the system to detect and report errors 

for attempts to access deleted entities. 

Versions 2 and 3 of the NFS protocol are stateless. Being stateless means that the server does 

not need to maintain any information about which clients it is serving or about the files that they 

currently have open. Every RPC request that is received by the server is completely 

self-contained. The server does not need any additional information beyond that contained in 

the RPC to fulfill the request. For example, a read request will include the credential of the user 

doing the request, the file handle on which the read is to be done, the offset in the file to begin 

the read, and the number of bytes to be read. This information allows the server to open the file, 

verify that the user has permission to read it, seek to the appropriate point, read the desired 
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contents, and close the file. In practice, the server caches recently accessed file data. However, if 

there is enough activity to push the file out of the cache, the file handle provides the server with 

enough information to reopen the file. 

The benefit of a stateless protocol is that there is no need to do state recovery after a client or 

server has crashed and rebooted or after the network has been partitioned and reconnected. 

Because each RPC is self-contained, the server can simply begin servicing requests as soon as it 

begins running; it does not need to know which files its clients have open. Indeed, it does not 

even need to know which clients are currently using it as a server. 

There are drawbacks to a stateless protocol. First, the semantics of the local filesystem imply 

state. When files are unlinked, they continue to be accessible until the last reference to them is 

closed. Because NFS knows neither which files are open on clients nor when those files are 

closed, it cannot properly know when to free file space. As a result, it always frees the space at 

the time of the unlink of the last link to the file. Clients that want to preserve the 

freeing-on-last-close semantics convert unlinks of open files to renames to obscure names on 

the server. The names are in the form .nfs.tttttttt.xxxx4.4, where the tttttttt is the number of 

CPU ticks since the system booted and xxxx is replaced with the hexadecimal value of the 

process identifier. The ticks are successively incremented until an unused name is found. When 

the last close is done on the client, the client sends an unlink of the obscure filename to the 

server. This heuristic works for file access on only a single client; if one client has the file open 

and another client removes the file, the file will still disappear from the first client at the time of 

the remove. Other stateful semantics include the advisory locking described in Section 9.5. The 

locking semantics cannot be handled by the NFS protocol. Under versions 2 and 3 of the NFS 

protocol, they are handled by a separate lock manager; the FreeBSD version of NFS implements 

them using the user-level rpc.lockd daemon. Locking is handled differently under version 4 of 

the protocol (see Section 11.3). 

The second drawback of a stateless protocol is related to performance. Under version 2 of the 

NFS protocol, all operations that modify the filesystem must be committed to stable storage 

before the RPC can be acknowledged. Most servers do not have battery-backed memory; the 

stable-store requirement means that all written data must be on the disk before they can reply to 

the RPC. For a growing file, an update may require up to three synchronous disk writes: one for 

the inode to update its size, one for the indirect block to add a new data pointer, and one for the 

new data. At a minimum, a single write to a filesystem log is required. Each synchronous write 

takes several milliseconds; this delay severely restricts the write throughput for any given client 

file. 
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Version 3 of the NFS protocol eliminated some of the synchronous writes by adding a new 

asynchronous write RPC request. When such a request is received by the server, it is permitted 

to acknowledge the RPC without writing the new data to stable storage. Typically, a client will do 

a series of asynchronous write requests followed by a commit RPC request when it reaches the 

end of the file or it runs out of buffer space to store the file. The commit RPC request causes the 

server to write any unwritten parts of the file to stable store before acknowledging the commit 

RPC. The server benefits by having to write the inode and indirect blocks for the file only once 

per batch of asynchronous writes, instead of on every write RPC request. The client benefits 

from having higher throughput for file writes. The client does have the added overhead of 

having to save copies of all asynchronously written buffers until a commit RPC is done because 

the server may crash before having written one or more of the asynchronous buffers to stable 

store. Each time the client does an asynchronous write RPC, the server returns a cookie, which 

acts as a verification token. When the client sends the commit RPC, the acknowledgment to that 

RPC also includes a cookie. The client uses the cookie to determine whether the server has 

rebooted between a call to write data and a later call to commit it. The cookie is guaranteed to be 

the same throughout a single boot session of the server and to be different each time the server 

reboots where uncommitted data may be lost. If the cookie changes, the client knows that it 

must retransmit all asynchronous write RPCs done since the last commit RPC that were verified 

with the old cookie value. 

The NFS protocol does not specify the granularity of the buffering that should be used when files 

are written. Most implementations of NFS utilize 8-Kbyte buffers when working on file blocks in 

system memory. If an application writes 10 bytes in the middle of a block, the client reads the 

entire block from the server, modifies the requested 10 bytes, and then writes the entire block 

back to the server. The FreeBSD implementation also uses 8-Kbyte buffers, but it keeps 

additional information that describes which bytes in the buffer are modified. If an application 

writes 10 bytes in the middle of a block, the client reads the entire block from the server, 

modifies the requested 10 bytes, but then writes back only the 10 modified bytes to the server. 

The block read is necessary to ensure that, if the application later reads back other unmodified 

parts of the block, it will get valid data. Writing back only the modified data has two benefits: 

1. Fewer bytes are sent over the network, reducing contention for a scarce resource. 

2. Nonoverlapping modifications to a file are not lost. If two different clients simultaneously 

modify different parts of the same file block, both modifications will show up in the file since 

only the modified parts are sent to the server. When clients send back entire blocks to the server, 

changes made by the first client will be overwritten by data read before the first modification 

was made and then will be written back by the second client. 
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Another performance problem that comes from the stateless nature of the NFS protocol is that 

the server must check permissions for each I/O operation that a client requests. The server does 

not support, nor understand, the concept of an open file; it only handles I/O operations based 

on the paths that are sent by the clients. Checking the permissions on each request requires 

extra filesystem accesses on the server, resulting in higher overhead per operation. 

The FreeBSD NFS Implementation 

The NFS implementation that appears in FreeBSD was written by Rick Macklem at the 

University of Guelph, using the specifications of the Version 2 protocol published by Sun 

Microsystems [Macklem, 1994a; Sun Microsystems, 1989]. He later extended it to support the 

protocol extensions found in version 3 [Callaghan et al., 1995; Pawlowski et al., 1994], and has 

most recently added support for version 4 of the protocol [Haynes & Noveck, 2014]. Table 11.1 

lists the functionality in the version 3 protocol. Version 3 of the protocol provides the following: 

• Sixty-four-bit file offsets and sizes 

• An access RPC that provides server permission checking on file open, rather than having the 

client guess whether the server will allow access 

• An append option on the write RPC 

• A defined way to make special device nodes and fifos 

• Optimization of bulk directory access 

• The ability to batch writes into several asynchronous RPCs followed by a commit RPC to 

ensure that the data are on stable storage 

• Additional information about the capabilities of the underlying filesystem 

In addition to the version 2 and version 3 support, Rick Macklem made several other extensions 

to the BSD NFS implementation; the extended version became known as the Not Quite NFS 

(NQNFS) protocol [Macklem, 1994b]. The NQNFS extensions added support for extended file 

attributes to support FreeBSD filesystem functionality more fully and a variant of short-term 

leases with delayed-write client caching that provided distributed cache consistency and 

improved performance [Gray & Cheriton, 1989]. Although the NQNFS extensions were never 

widely adopted in version 3 implementations, they were instrumental in proving the value of 

using leases in NFS. The leasing technology was adopted for use in the NFS version 4 protocol, 
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not only for cache consistency and improved performance, but also as a mechanism to bound 

the recovery time for locks. 

The NFS implementation distributed in FreeBSD supports clients and servers running any of 

versions 2, 3, or 4 of the NFS protocol. The code that implemented the experimental NQNFS 

protocol was removed during the development of FreeBSD 5. 

The FreeBSD client and server implementations of NFS are kernel resident. NFS interfaces to 

the network with sockets via the kernel RPC layer. The kernel RPC layer contains calls to the 

in-kernel versions of the socket routines sosend() and soreceive() (see Chapter 12 for a 

discussion of the socket interface) and frees the NFS daemons from having to handle socket 

communication on their own. 

The less time-critical operations, such as the mounting and unmounting of remote filesystems, 

as well as determination of which filesystems may be exported and to what set of clients they 

may be exported are managed by user-level system daemons. For the server side to function, the 

portmap, mountd, and nfsd daemons must be running. For full NFS functionality, the 

rpc.lockd and rpc.statd daemons must also be running. 

The portmap acts as a clearing house for the services provided by the machine on which it is 

running. Whenever any RPC daemon is started, it tells the portmap daemon to what port 

number it is listening and what RPC services it is prepared to serve. When a client wishes to 

make an RPC call to a given service, it will first contact the portmap daemon on the server 

machine to determine whether a service is available and, if it is available, the port number to 

which RPC messages should be sent. 

The interactions between the client and server daemons when a remote filesystem is mounted 

are shown in Figure 11.2. The mountd daemon handles two important functions: 

1. On startup and after a hangup signal, mountd reads the /etc/exports file and creates a list 

of hosts and networks to which each local filesystem may be exported. It passes this list into the 

kernel using the mount system call; the kernel links the list to the associated local filesystem 

mount structure so that the list is readily available for consultation when an NFS request is 

received. 

2. Client mount requests are directed to the mountd daemon. After verifying that the client has 

permission to mount the requested filesystem, mountd returns a file handle for the requested 

mount point. This file handle is used by the client for later traversal into the filesystem. 
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Figure 11.2 Daemon interaction when a remote filesystem is mounted. Step 1: The client’s 

mount process sends a message to the well-known port of the server’s portmap daemon, 

requesting the port address of the server’s mountd daemon. Step 2: The server’s portmap 

daemon returns the port address of its server’s mountd daemon. Step 3: The client’s mount 

process sends a request to the server’s mountd daemon with the pathname of the filesystem 

that it wants to mount. Step 4: The server’s mountd daemon requests a file handle for the 

desired mount point from its kernel. If the request is successful, the file handle is returned to the 

client’s mount process. Otherwise, the error from the file-handle request is returned. If the 

request is successful, the client’s mount process does a mount system call, passing in the file 

handle that it received from the server’s mountd daemon. 

The NFS server is implemented as a set of kernel libraries that are invoked by a pool of service 

threads that remain perpetually resident in the kernel. The user level nfsd daemon creates, and 

fills in, a structure that it passes to the nfssvc system call that tells the kernel how many NFS 

daemon threads to run. Typical servers run four to six nfsd kernel threads but more may be 

used to increase throughput if the underlying hardware has sufficient resources. Other than 

starting the kernel nfsd master thread, the user level NFS daemon does very little work. The 

nfsd kernel threads rely on the kernel RPC and service libraries. 

Any kernel thread that wishes to provide an RPC creates a transport object and then registers it 

with the service layer. To create a datagram-based transport service the thread uses the 

svc_dg_create() routine while creating a connection-oriented service is accomplished with the 

svc_vc_create() routine. After the transport is created, it must be registered with the service, in 

order to start receiving RPCs, via the svc_reg() routine. All versions of NFS for both datagram 

and connection oriented protocols register the nfssvc_program() entry point, which 

demultiplexes incoming requests into the correct parts of the protocol libraries. Once the 

demultiplexing is complete, the nfsd kernel thread verifies the sender and then passes the 

request to the appropriate local filesystem for processing. When the result comes back from the 

filesystem, it is returned to the requesting client. Each individual request results in a kernel 

thread invoking nfssvc_program(), which returns once its work is complete. The maximum 
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degree of concurrency on the server is determined by the number of nfsd kernel threads that 

are running. 

For connection-oriented transport protocols, such as TCP, there is one connection for each 

client-to-server mount point. For datagram-oriented protocols, such as UDP, the server creates 

a fixed number of incoming RPC sockets when it starts its nfsd daemons; clients create one 

socket for each imported mount point. The socket for a mount point is created in the kernel in 

response to the mount command on the client calling the nmount() system call. The client side 

uses it to communicate with the mountd daemon on the server. Once the client-to-server 

connection is established, the daemon processes on a connection-oriented protocol may perform 

additional verification, such as authentication. If the connection breaks while the mount point is 

still active, the client will attempt a reconnect with a new socket. 

For version 2 and version 3 of the NFS protocol, the rpc.lockd daemon manages locking 

requests for remote files. Client locking requests are exported from the kernel through a fifo, 

/var/run/lock. The rpc.lockd daemon reads the locking request from the fifo and sends the 

lock request across the network to the rpc.lockd daemon on the server that holds the file. The 

daemon running on the server opens the file to be locked and uses the flock system call to 

acquire the requested lock. Once the lock has been acquired, the server daemon sends a message 

back to the client daemon. The client daemon writes the lock status into the fifo, which is then 

read by the kernel and passed up to the user application. The release of the lock is handled 

similarly. If the rpc.lockd daemon is not run, then lock requests on NFS files will fail with an 

“operation not supported” error. 

The rpc.statd daemon cooperates with rpc.statd daemons on other hosts to provide a 

status-monitoring service. The daemon accepts requests from programs running on the local 

host (typically rpc.lockd) to monitor the status of specified hosts. If a monitored host crashes 

and restarts, the daemon on the crashed host will notify the other daemons that it crashed when 

it is restarted. When notified of a crash, or when a daemon determines that a remote host has 

crashed because of its lack of response, it will notify the local program(s) that requested the 

monitoring service. If the rpc.statd daemon is not run, then locks held by clients on a host that 

crashed may be held indefinitely. By using the rpc.statd service, crashes will be discovered and 

the locks held by a crashed host will be released. 

The client side can operate without any daemons running, but the system administrator can 

improve performance by running several nfsiod daemons. As with the server, for full 

functionality the client must run the rpc.lockd and rpc.statd daemons. 

The purpose of the nfsiod daemons is to perform asynchronous read-ahead and write-behind. 

The daemons are typically started when the kernel begins running multiuser, and are started via 
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the nfsiod_setup() routine. They are completely kernel resident, providing a process context for 

the NFS RPC client side. In their absence, each read or write of an NFS file that cannot be 

serviced from the local client cache must be done in the context of the requesting process. The 

process sleeps while the RPC is sent to the server, the RPC is handled by the server, and a reply 

is sent back. No read-ahead is done and write operations proceed at the disk-write speed of the 

server. When present, the nfsiod daemons provide a separate context in which to issue RPC 

requests to a server. When a file is written, the data are copied into the buffer cache on the client. 

The buffer is then passed to a waiting nfsiod that does the RPC to the server and awaits the 

reply. When the reply arrives, nfsiod updates the local buffer to mark that buffer as written. 

Meanwhile, the process that did the write can continue running. The NFS protocol flushes all 

the blocks of a file to the server when that file is closed. If all the dirty blocks have been written 

to the server when a process closes a file that it has been writing, it will not have to wait for them 

to be flushed. 

When reading a file, the client first hands a read-ahead request to the nfsiod that does the RPC 

to the server. It then looks up the buffer that it has been requested to read. If the sought-after 

buffer is already in the cache because of a previous read-ahead request, then it can proceed 

without waiting. Otherwise, it must do an RPC to the server and wait for the reply. The 

interactions between the client and server daemons when I/O is done are shown in Figure 11.3. 

 

Figure 11.3 Daemon interaction when I/O is done. Step 1: The client’s process does a write 

system call. Step 2: The data to be written are copied into a kernel buffer on the client, and the 

write system call returns. Step 3: An nfsiod daemon awakens inside the client’s kernel, picks up 

the dirty buffer, and sends the buffer to the server. Step 4: The incoming write request is 

delivered to the next available nfsd daemon running inside the kernel on the server. The 

server’s nfsd daemon writes the data to the appropriate local disk and waits for the disk I/O to 

complete. Step 5: After the I/O has completed, the server’s nfsd daemon sends back an 
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acknowledgment of the I/O to the waiting nfsiod daemon on the client. On receipt of the 

acknowledgment, the client’s nfsiod daemon marks its local buffer as clean. 

Client–Server Interactions 

A local filesystem is unaffected by network service disruptions. It is always available to the users 

on the machine unless there is a catastrophic event, such as a disk or power failure. Since the 

entire machine hangs or crashes, the kernel does not need to concern itself with how to handle 

the processes that were accessing the filesystem. By contrast, the client end of a network 

filesystem must have ways to handle processes that are accessing remote files when the client is 

still running but the server becomes unreachable or crashes. Each NFS mount point is provided 

with three alternatives for dealing with server unavailability: 

1. The default is a hard mount that will continue to try to contact the server indefinitely to 

complete the filesystem access. This type of mount is appropriate when processes on the client 

that access files in the filesystem do not tolerate I/O system calls that return transient errors. A 

hard mount is used for processes for which access to the filesystem is critical for normal system 

operation. It is also useful if the client has a long-running program that simply wants to wait for 

the server to resume operation (e.g., after the server is taken down for maintenance). 

2. The other extreme is a soft mount that retries an RPC a specified number of times, and then 

the corresponding system call returns with a transient error. For a connection-oriented protocol, 

the actual RPC request is not retransmitted; instead, NFS depends on the protocol 

retransmission to do the retries. If a response is not returned within the specified time, the 

corresponding system call returns with a transient error. The problem with this type of mount is 

that most applications do not expect a transient error return from I/O system calls (since they 

never occur on a local filesystem). Often, they will mistakenly interpret the transient error as a 

permanent error and will exit prematurely. An additional problem is deciding how long to set 

the timeout period. If it is set too low, error returns will start occurring whenever the NFS server 

is slow because of heavy load or when the network is heavily loaded. Alternately, a large retry 

limit can result in a process being hung for a long time because of a crashed server or network 

partitioning. 

3. Most system administrators take a middle ground by using an interruptible mount that will 

wait forever like a hard mount but checks to see whether a termination signal is pending for any 

process that is waiting for a server response. If a signal (such as an interrupt) is sent to a process 

waiting for an NFS server, the corresponding I/O system call returns with a transient error. 

Normally, the process is terminated by the signal. If the process chooses to catch the signal, then 

it can decide how to handle the transient failure. This mount option allows interactive programs 
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to be aborted when a server fails, while allowing long-running processes to await the server’s 

return. 

Security Issues 

NFS versions 2 and 3 are not secure because the protocol was not designed with security in 

mind. Despite several attempts to fix security problems in these versions, NFS security is still 

limited. In particular, the security work only addresses authentication; file data are sent over the 

network in clear text. Even if someone is unable to get your server to send him or her a sensitive 

file, he or she can just wait until a legitimate user accesses it, and then can pick it up as it goes by 

on the net. Much of the work that went into version 4 addressed both authentication and data 

security. As version 4 moves into general use, NFS filesystems will be able to be run more 

securely than previously. 

NFS export control is at the granularity of local filesystems. Associated with each local 

filesystem mount point is a list of the hosts to which that filesystem may be exported. A local 

filesystem may be exported to a specific host, to all hosts that match a subnet mask, or to all 

other hosts (the world). For each host or group of hosts, the filesystem can be exported 

read-only or read–write. In addition, a server may specify a set of subdirectories within the 

filesystem that may be mounted. However, this list of mount points is enforced by only the 

mountd daemon. If a malicious client wishes to do so, it can access any part of a filesystem that 

is exported to it. 

The final determination of exportability is made by the list maintained in the kernel. As a result, 

even if a rogue client manages to snoop the net and to steal a file handle for the mount point of a 

valid client, the kernel will refuse to accept the file handle unless the client presenting that 

handle is on the kernel’s export list. When NFS is running with TCP, the check is done once 

when the connection is established. When NFS is running with UDP, the check must be done for 

every RPC request. 

The NFS server also permits limited remapping of user credentials. Typically, the credential for 

the superuser is not trusted and is remapped to the low-privilege user “nobody.” The credentials 

of all other users can be accepted as given or also mapped to a default user (typically “nobody”). 

Use of the client UID and GID list unchanged on the server implies that the UID and GID space 

are common between the client and server (i.e., UID N on the client must refer to the same user 

on the server). One of the main problems in the deployment of NFS in large, heterogeneous 

environments is the need for a unified UID and GID space. The system administrator can 

support more complex UID and GID mappings by using the umapfs filesystem described in 

Section 7.5. 
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NFSv3 can use Kerberos to authenticate users of the system. A fuller discussion of the use of 

Kerberos within NFS is presented in Section 11.3. 

Techniques for Improving Performance 

Remote filesystems face a challenging performance problem: providing both a coherent 

network-wide view of the data and delivering that data quickly are often conflicting goals. The 

server can maintain coherency easily by keeping a single repository for the data and sending 

them out to each client when the clients need them; this approach tends to be slow because 

every data access requires the client to wait for an RPC round-trip time. The delay is further 

aggravated by the huge load that it puts on a server that must service every I/O request from its 

clients. To increase performance and to reduce server load, remote filesystem protocols attempt 

to cache frequently used data on the clients themselves. If the cache is designed properly, the 

client will be able to satisfy many of its own I/O requests directly from the cache. Performing 

these accesses is faster than communicating with the server, reducing latency on the client and 

load on the server and network. The hard part of client caching is keeping the caches 

coherent—that is, ensuring that each client quickly replaces any cached data that are modified 

by writes done on other clients. If one client writes a file that is later read by a second client, the 

second client wants to see the data written by the first client, rather than the stale data that were 

in the file previously. There are two main ways that the stale data may be read accidentally: 

1. If the second client has stale data sitting in its cache, the client may use those data because it 

does not know that newer data are available. 

2. The first client may have new data sitting in its cache but may not yet have written those data 

back to the server. Here, even if the second client asks the server for up-to-date data, the server 

may return the stale data because it does not know that one of its clients has a newer version of 

the file in that client’s cache. 

The second of these problems is related to the way that client writing is done. Synchronous 

writing requires that all writes be pushed through to the server during the write system call. 

This approach is the most consistent because the server always has the most recently written 

data. It also permits any write errors, such as “filesystem out of space,” to be propagated back to 

the client process via the write system-call return. With an NFS filesystem using synchronous 

writing, error returns most closely parallel those from a local filesystem. Unfortunately, this 

approach restricts the client to only one write per RPC round-trip time. 

An alternative to synchronous writing is delayed writing, where the write system call returns as 

soon as the data are cached on the client; the data are written to the server sometime later. This 
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approach permits client writing to occur at the rate of local storage access up to the size of the 

local cache. Also, for cases where file truncation or deletion occurs shortly after writing, the 

write to the server may be avoided entirely because the data have already been deleted. Avoiding 

the data push saves the client time and reduces load on the server. 

There are some drawbacks to delayed writing. To provide full consistency, the server must notify 

the client when another client wants to read or write the file so that the delayed writes can be 

written back to the server. There are also problems with the propagation of errors back to the 

client process that issued the write system call. For example, a semantic change is introduced by 

delayed-write caching when the file server is full. Here, delayed-write RPC requests can fail with 

an “out of space” error. If the data are sent back to the server when the file is closed, the error 

can be detected only if the application checks the return value from the close system call. For 

delayed writes, written data may not be sent back to the server until after the process that did 

the write has exited—long after it can be notified of any errors. The only solution is to modify 

programs writing an important file to do an fsync system call and to check for an error return 

from that call instead of depending on getting errors from write or close. Finally, there is a risk 

of the loss of recently written data if the client crashes before the data are written back to the 

server. 

A compromise between synchronous writing and delayed writing is asynchronous writing. The 

write to the server is started during the write system call, but the write system call returns 

before the write completes. This approach reduces the risk of data loss because of a client crash 

but negates the possibility of reducing server write load by discarding writes when a file is 

truncated or deleted. 

Since NFS has no way of knowing when write sharing might occur, it tries to bound the period of 

inconsistency by writing the data back when a file is closed. Files that are open for long periods 

are written back when their oldest dirty data becomes 30 seconds old. Thus, the NFS 

implementation does a mix of asynchronous and delayed writing, but it always pushes all writes 

to the server on close. Pushing the delayed writes on close negates much of the performance 

advantage of delayed writing because the delays that were avoided in the write system calls are 

observed in the close system call. With this approach, the server is always aware of all changes 

made by its clients with a maximum delay of 30 seconds and usually sooner, because most files 

are open only briefly for writing. 

The server maintains read consistency by always having a client verify the contents of its cache 

before using that cache. When a client reads data, it first checks for the data in its cache. Each 

cache entry is stamped with an attribute that shows the most recent time that the server says 

that the data were modified. If the data are found in the cache, the client sends a timestamp RPC 
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request to its server to find out when the data were last modified. If the modification time 

returned by the server matches that associated with the cache, the client uses the data in its 

cache; otherwise, it arranges to replace the data in its cache with the new data. 

The problem with checking with the server on every cache access is that the client still 

experiences an RPC round-trip delay for each file access, and the server is still inundated with 

RPC requests, although they are considerably quicker to handle than are full I/O operations. To 

reduce this client latency and server load, most NFS implementations track how recently the 

server has been asked about each cache block. The client then uses a tunable parameter that is 

typically set at a few seconds to delay asking the server about a cache block. If an I/O request 

finds a cache block and the server has been asked about the validity of that block within the 

delay period, the client does not ask the server again, but just uses the block. Because certain 

blocks are used many times in succession, the server will be asked about them only once, rather 

than on every access. For example, the directory block for the /usr/include directory will be 

accessed once for each #include in a source file that is being compiled. The drawback to this 

approach is that changes made by other clients may not be noticed for up to the delay number of 

seconds. 

A more consistent approach used by some network filesystems is to use a callback mechanism 

where the server keeps track of all the files that each of its clients has cached. When a cached file 

is modified, the server notifies the clients holding that file so that they can purge it from their 

cache. This algorithm dramatically reduces the number of queries from the client to the server, 

with the effect of decreasing client I/O latency and server load [Howard et al., 1988]. The 

drawback is that this approach introduces state into the server because the server must 

remember the clients that it is serving and the set of files that they have cached. If the server 

crashes, it must rebuild this state before it can begin running again. Rebuilding the server state 

is a significant problem when everything is running properly; it gets even more complicated and 

time-consuming when it is aggravated by network partitions that prevent the server from 

communicating with some of its clients [Mogul, 1993]. 

The FreeBSD NFS implementation uses asynchronous writes while a file is open but 

synchronously waits for all data to be written when the file is closed. This approach gains the 

speed benefit of writing asynchronously, yet ensures that any delayed errors will be reported no 

later than the point at which the file is closed. The implementation will query the server about 

the attributes of a file at most once every 3 seconds. This 3-second period reduces network 

traffic for files accessed frequently, yet ensures that any changes to a file are detected with no 

more than a 3-second delay. Although these heuristics provide tolerable semantics, they are 

noticeably imperfect. 
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11.3 NFS Evolution 

Over its 25-year history, the NFS protocol has had to evolve to meet changing technology and 

user requirements. Many of the features that were considered experimental extensions to 

version 3 of NFS, as well as the work done in NQNFS, have been codified and included as fully 

fledged features in the latest versions of the protocol, NFS version 4.0 and 4.1. NFS version 3, in 

particular, depended on external daemons for certain operations, such as locking, that have now 

been subsumed into the base protocol in version 4, obviating the need for supplementary 

daemons. The scale of the work undertaken to update NFS for version 4 was monumental, with 

the initial update to version 4.0 spanning over 250 pages of description [Shepler et al., 2003]. 

Version 4.1, an update to version 4.0, is described in an even larger, 600-page-plus document, 

although much of the length of the update can be attributed to the more extensive description of 

each of the possible NFS operations [Shepler et al., 2010]. FreeBSD contains an implementation 

of both a client and server that supports the NFS protocol up through version 4.1. This section 

describes the design and implementation of both of the protocols as if they were one. The 

differences between the major version and the revision will be noted only when absolutely 

necessary. The NFSv4.0 RFC lists four goals for the latest version of the protocol: 

• Improved access and good performance on the Internet. The protocol should not only do well 

in a high-bandwidth/low-latency network such as a LAN, but also over a 

low-bandwidth/high-latency network such as a WAN. The earlier versions of the protocol 

operate poorly over WANs. 

• Strong security with negotiation built into the protocol. When NFS was first designed, 

computers that were powerful enough to run a UNIX-like operating system were generally used 

in medium to large installations and were not carried around by individuals who might connect 

them to an insecure network and then expect to get full access to their files on a server. The 

advent of mobile computing and pervasive, high-speed, wireless networking has made it so that 

all network protocols must address security concerns, and NFS is no different. Version 4 of the 

protocol had security mechanisms designed into it from the beginning. 

• Good cross-platform interoperability. NFS was designed so that computers running UNIX-like 

operating systems, with similar directory structures and file operations, could share a 

centralized store of files. The adaptation of NFS to non-UNIX environments required rethinking 

the protocol so that more types of clients could interoperate with NFS servers. 

• Designed for protocol extensions. A shortcoming of both version 2 and version 3 of the NFS 

protocol was that it was virtually impossible to extend once it had been deployed. An inability to 

evolve the protocol has meant that necessary changes took a long time to get into the field. 
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Revision 4.1 of the NFS protocol adds a few new goals: 

• Correct significant structural weaknesses and oversights discovered in version 4.0 of the 

protocol 

• Add clarity and specificity to areas left unaddressed or not addressed in enough detail in 

version 4.0 of the protocol 

• Add specific features based on experience with the existing protocol and recent industry 

developments 

• Provide protocol support for clustered-server deployments including providing scalable 

parallel access to files distributed across multiple servers 

NFSv4 is a significantly different protocol from its predecessors. A fundamental change in 

NFSv4 is the move to a stateful protocol. Many of the new features in version 4, such as caching, 

delegation, and locking, require that the server maintain state. Another significant change 

comes at the lowest level of the protocol where the 20 standard RPCs present in version 3 of the 

protocol have been replaced with two regular procedures, NULL and COMPOUND, and two 

callback procedures, CB_NULL and CB_COMPOUND. The operations that were previously 

encoded as their own RPCs in NFS versions 2 and 3 (see Section 11.2) are now encoded as 

operations within the COMPOUND or CB_COMPOUND RPCs. The COMPOUND procedure 

encapsulates, in a single RPC call, several NFS operations that are to be carried out by the server. 

When a server receives a COMPOUND RPC, it attempts to perform the operations encapsulated 

therein, in the order in which they are encoded into the message. If an error occurs in processing 

any of the operations received in the COMPOUND RPC, processing immediately stops and an 

error is returned. Encapsulating multiple operations into a single message can help to improve 

the performance of NFS by reducing the number of round trips that each operation requires. In 

practice, it has not been possible to group operations within the COMPOUND RPCs because too 

often one operation is dependent on the successful completion of a previous operation. Although 

the current implementation of NFSv4 in FreeBSD groups between 3 and 5 operations, the 

number of messages needed to do an operation in NFSv4 is the same as NFSv3. 

Comparing the set of operations available in NFSv4, shown in Table 11.2 with the RPCs that 

were given in Table 11.1 shows that there are more than twice as many available in NFSv4. The 

new operations exist to support new features available in NFSv4 including locking, which was 

handled by a separate protocol under previous versions of NFS, delegations, which allow for 

local open and lock operations to be carried out on the client; and more aggressive caching of 

file data and attributes. 
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Table 11.2 NFS Version 4 operations. 

A significant change between previous versions of NFS, and NFSv4 is the addition of explicit 

OPEN and CLOSE operations. Integrating support for features that require state, such as 

locking and caching, lead to the addition of OPEN and CLOSE, which bring the filesystem 

semantics present in NFSv4 closer to those of a stateful local filesystem such as UFS. In previous 

versions of NFS, all the client needed to manipulate a file on the server was the file’s handle. 

NFSv4 requires clients to open a file and obtain a file handle specific to that file before it can 

perform operations such as reading and writing data. 
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The original version of NFS targeted UNIX and UNIX-like operating systems in which there was 

always a single unique filesystem root. Systems such as Windows have a root for each filesystem 

that appears as the drive letter, C:, D: etc. Version 4 of the protocol tries to address the 

multiple-root problem by having the server maintain a pseudo-filesystem hierarchy that 

brings back the concept of a single root to the filesystem tree. The motivation for providing a 

single namespace comes from the way that many users access their files. They progressively 

browse the directory and file hierarchy through a graphical chooser or via tab completion on the 

command line. 

A way to reduce the load on the server and to improve the user’s experience on the client is to 

allow the client to cache as much file and metadata as possible. Removing round trips between 

the client and server by keeping copies of data at the client is a well-known technique for 

improving performance in a distributed system. Caching data at the client introduces the 

problem discussed in Section 11.2, maintaining the coherence of data over many systems which 

must be handled carefully to avoid cases where data are mangled or lost by conflicting changes 

submitted by different clients. If two clients have opened and modified the same file, and those 

modifications occur on copies of the data that are locally cached at the client, then the server has 

no way of knowing which modification is correct and which should be thrown away. To avoid 

cache-coherency problems, NFSv4 only allows a client to cache information if either it is the 

only one writing data to the file or if all clients are only reading from the file. When a server 

allows a client to cache data, it is said to be delegating responsibility for that data to the client. 

To properly support delegation, the protocol must also have a way to regain control over the 

data it delegated, for example, if a second client requests to open a file for writing. To regain 

control over a delegated piece of data, the server uses a callback mechanism to contact the client 

to which it has delegated the data and tell the client that the data can no longer be cached. In the 

absence of delegations, NFSv4 reverts to caching data, similarly to the way it was cached in 

NFSv3, by having the client periodically check for file change with the server. 

Namespace 

A problem users encounter when browsing a server’s filesystem under version 2 or 3 of NFS is 

reaching a dead end in the directory hierarchy caused by having to cross a mount point. On a 

simple server, all the underlying filesystems might be exported to all clients, but exporting to all 

clients would be an unusual case. More commonly, a subset of the filesystems are exported, such 

as those in Table 11.3, where there are two exported filesystems, / and /usr/ports bracketing 

one that is not exported. In previous versions of NFS, users that had changed their directory to 

the root would not be able to see /usr/ports from the root directory because the /usr volume 

was not exported, leaving a hole in the directory hierarchy. NFSv4 servers maintain a complete 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2
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hierarchy of their exported filesystems filling in any holes with pseudo-filesystems that appear 

to the client as read-only exports. 

 

Table 11.3 Unified namespace. 

Representing a unified namespace to the client requires the server to handle four operations 

differently from all others. The LOOKUP, GETATTR, GETFH, and SECINFO operations are the 

only client requests that are allowed to cross mount-points on the server. The function 

nfsrvd_compound(), which handles all COMPOUND RPCs for the server, checks to see if the 

operation is one of the four listed above and returns an error to the client if any other operation 

attempts to cross a mount point. It is by allowing these four operations to cross mount points 

that the client and server can present a unified filesystem hierarchy to the user. 

Attributes 

Version 3 of the NFS protocol contained limited support for file attributes. Attributes are 

metadata that are associated with a file, such as its size, and the times at which it was created, 

modified, and accessed. The original 13 file attributes that were available in NFSv3 proved to be 

insufficient for more modern filesystems that store more metadata. Information such as 

whether the file has been recently archived or the maximum supported file size, only some of 

which may be supported by a filesystem, are handled as attributes within NFSv4. 

Clients have the ability to request attributes on an operation-by-operation basis, which means 

that the client can be highly specific about what it wants to know about the server or any object 

stored on it. The attributes that the server supports are themselves communicated as an 

attribute between the server and the client. The OPEN operation only asks for 2 attributes, the 

most recent modification time of the file and a server-generated change value that is used by the 

client to determine if the file or any of its associated metadata have been changed. The attribute 

is generated by the server, stored by the client, and used periodically after a successful OPEN 

call to make sure that the file has not changed on the server. A file can change when it is opened 

by multiple writers or when a user local to the server modifies the file directly. The ACCESS 

operation, which determines if the user can access an object, asks for 16 different attributes, 
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including the file’s owner and group, the file’s mode, and the largest read request that the server 

will support. Unlike previous versions of NFS, the owner and group for a filesystem object are 

not a numeric user id and group id. Rather, they are strings that encode the user and domain 

name of the system, for example, gnn@FreeBSD.org. 

The RFC defines three groups of attributes for version 4 of NFS. Required attributes are those 

pieces of metadata that every server must provide and every client must be able to handle. 

Examples of required attributes are file size, file type, and whether the server supports links. 

Recommended attributes are those that the authors of the RFC felt would be best for servers to 

support but are not strictly necessary. An example of a recommended attribute is an 

access-control list. The next subsection discusses recommended attributes such as whether a file 

should be considered as hidden by the Windows operating system, the maximum size of files, 

links and names supported by the server, and many others. The NFSv4 RFC includes 43 

recommended attributes. 

A goal for the NFSv4 protocol is extensibility, which includes being able to extend the set of 

attributes that can be associated with a filesystem object. Named attributes make extensibility of 

the attribute system in the field possible. A named attribute can be thought of as a key/value 

pair, where both the key and value are uninterpreted strings that can be associated with any 

filesystem object. The implementation of named attributes is dependent on the server, but the 

most common implementation creates a directory of named attributes. This attribute directory 

is sometimes referred to as a fork file. Each attribute appears as a file in this attribute directory. 

Each attribute file can be opened, read, and written to modify the named attribute. Named 

attributes are not supported by the FreeBSD 10 NFSv4 server. 

Clients request attributes by using the GETATTR operation that is encoded into a COMPOUND 

RPC, with other operations such as ACCESS and OPEN. Unlike previous versions of NFS, 

attributes are not sent in a fixed-size structure. They are requested when the client sets specific 

bits in a bit array. The implementation of NFSv4 in FreeBSD uses a set of macros to simplify 

handling the bits in the attribute array. The server replies to each GETATTR query from the 

client using the same 64-bit-wide array to indicate to the client which of the requested attributes 

are present. A single routine, nfsv4_fillattr(), does all the work of encoding attributes on the 

server. Centralizing the handling of attributes makes the code easier to manage and update. 

Clients can also set attributes on filesystem objects on the server by using the SETATTR 

operation. An example of setting an attribute is changing the access control list on an object, as 

discussed in the next subsection. 

mailto:gnn@FreeBSD.org
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_125
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Access Control Lists 

Although it is possible to use UNIX-style users, groups, and mode bits to control access to a set 

of files, such a system is limited in several ways. The first limitation is that there are clients such 

as Windows that do not understand UNIX user and group IDs, or UNIX mode bits. The second, 

and more important, limitation is that users and groups do not scale well in a heterogeneous 

environment. If two different departments both allocate user and group numbers independently, 

there is a high likelihood of a collision should these users and groups ever attempt to share a 

single filesystem. Forcing one set of users to change their user and group IDs can be a daunting 

task if there are many files that need to have their user and group IDs changed. Finally, the 

traditional UNIX model is often too coarse grained for large organizations that have multiple 

layers of security. For these reasons NFSv4 has added support for Access Control Lists 

(ACLs) to the protocol. 

An ACL can express a specific set of permissions on any object in the filesystem, including files, 

directories, and links. Several filesystems present in FreeBSD including UFS and ZFS have 

built-in support for ACLs. For information on how ACLs are represented in a filesystem, see 

Section 5.7. ACLs in NFSv4 are a way of communicating the ACLs present in the filesystem over 

the network. The structures for ACLs are shared between NFSv4 and the on-disk filesystems 

ZFS and UFS. ACLs are contained in attributes, which is why setting or retrieving an ACL is 

done with the SETATTR and GETATTR operations rather than with a dedicated set of 

operations just for ACLs. Several operations can handle ACLs including: OPEN, CREATE, 

SETATTR, and GETATTR. 

Caching, Delegation, and Callbacks 

One way to improve the performance of a distributed system is to cache as much data and do as 

many operations at the client as possible. There are three caching scenarios in a distributed 

filesystem: 

1. A file is being read by one or more clients. The file can be cached at all the clients at the same 

time as long as there are no updates to the file’s data, and only minor changes to its metadata, 

such as changes to its time of last access. 

2. A file is being written by a single client. The client that is writing the file may cache writes 

locally so that updates to the file are batched before being sent to the server, thereby improving 

write performance. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec7
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3. A file is being both read and written simultaneously on several clients and, therefore, cannot 

be cached at any of the clients but must be updated and accessed only on the server. 

To properly handle all three of these scenarios and the inevitable transitions between them, 

NFSv4 provides clients with the ability to work with files locally through a mechanism called 

delegation. NFSv4 maintains control over delegated files via a series of callbacks from the 

server to the client. Caching and delegation are intimately related with normal file operations. 

This section illustrates these mechanisms by describing how the client and server establish 

communication and how they work together during the typical operation where clients are 

opening, closing, reading, and writing files. 

Before a client can open a file, it must first mount the filesystem exported by the server, at which 

time several key structures are created. An NFSv4 client begins the mounting process by testing 

to see if the server exists using a CB_NULL message. If the client receives a correct reply, it then 

establishes a session with the server. Mounting an NFSv4 filesystem requires the creation of two 

persistent pieces of information shared by the client and the server. A client ID is created to 

identify the client and a session ID identifies all operations between the client and the server. 

The client ID is a unique 64-bit value that identifies each client from the server’s perspective. 

The client establishes its identity with the server by using an EXCHANGE_ID operation. The 

EXCHANGE_ID operation is the first of a twopart operation that establishes the identity of the 

client on the server. The exchange_id() service executing in the server’s kernel allocates an 

nfsclient structure that tracks all the client’s interactions with the server. The nfsclient structure 

is retained until either the client unmounts all the filesystems that it has mounted from the 

server or the server or client crash. The process of mounting a filesystem is shown in Figure 11.4. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig04
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Figure 11.4 Mounting an NFSv4 Filesystem. Step 1: Client looks for the server with a 

CB_NULL RPC. Step 2: The Server replies to the CB_NULL. Step 3: Client requests a client ID 

from the server with an EXCHANGE_ID call. Step 4: The Server replies with a valid client ID 

constructed from their server’s boot time and an incrementing boot count. Step 5: Client 

establishes a session with a CREATE_SESSION RPC. Step 6: The Server returns a set of 

communication parameters to the client establishing the session. Step 7: The Server checks to 

see whether the client is running the nfscbd daemon with its own CB_NULL call. Step 8: The 

client’s nfscbd daemon replies to the CB_NULL RPC. 

Structures in the FreeBSD NFS implementation are named such that they can be easily 

identified as belonging either to the client or the server code. All structures that are part of the 

client software have the letters “cl” embedded between “nfs” and the structure’s descriptive 

name. Thus, the structure that encapsulates the client’s state in the client code is named 

nfsclclient, while the server structure that encapsulates the client’s state is named nfsclient. 

Table 11.4 lists several of the client and server structures. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab04
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Table 11.4 Client and server data structures. 

When the server is contacted by a client with an EXCHANGE_ID call, it searches its client hash 

list for a pre-existing instance of the client and if no preexisting client is found, initializes a new 

nfsclient structure. Each client is assigned a unique client ID based on the boot time of the 

server and an incrementing counter. The combination of the boot time and the counter make 

client IDs unique across server reboots. This information is used by the client to detect when it 

must recover state from a crashed server. The boot time increases whenever the server is 

rebooted; a client that sends a request with an out-of-date client ID will receive an error from 

the server. 

The second part of establishing initial communication between a client and server is the creation 

of a session. The next operation after the EXCHANGE_ID must be a CREATE_SESSION as no 

other operations can take place until a session has been created. All operations in NFSv4, other 

than the establishment of the client ID, occur as part of a session. 

The session concept was added during the update to NFSv4.1 and does not exist in version 4.0. 

One reason sessions were added was to provide exactly once semantics. On the server side, 

each session has associated with it a set of available slots. Operations posted to a slot will always 

be serialized; they will never be run in parallel. If a client wants to serialize a set of calls, for 

example, a series of locking operations, it will use the same slot on the server for all the locking 

calls so that the RPC calls are serialized on that single slot. Operations that do not require 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_372
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serialization, such as reads, can be spread across the slots to increase parallelism and receive the 

fastest level of service from the server. 

A session describes all the state necessary for the client and server to communicate, including 

several parameters that influence resource allocation and performance. The parameters 

negotiated as part of setting up a session include the maximum number of concurrent requests 

the session can carry at any one time, the maximum number of operations per request, and the 

maximum number of replies that the server can cache. Fine-grained performance tuning can be 

implemented using the session parameters, as they allow the server to express what it can 

handle in terms of parallelism and the amount of state it is willing to maintain on behalf of each 

client. To create a session, the client sends its client ID to the server along with its set of 

requested communications parameters. The server responds with a session ID and a possibly 

modified set of communications parameters. If the parameters are unacceptable to either the 

client or the server, then an error is returned and the session is not created. Once the client and 

server have created a session, the structures shown in Figure 11.5 are in place. The session 

structure on both the client and the server contain the negotiated communication parameters 

for use by the kernel when filesystem operations are executed. To complete the mounting 

process the server sends a CB_NULL RPC to the client and waits for a reply. If the server 

receives a reply to its CB_NULL call, it can then allow the client to cache data through the 

delegation process. If there is no reply to the CB_NULL RPC then the server will never grant a 

delegation to the client but will allow the client to receive file services. The callback mechanism 

is not used to test the network path between the client and server, as the client and server have 

already demonstrated their ability to properly communicate over the network. The server sends 

the call back to the client to ensure that the client is running the call back service, which is what 

allows the server to recall a delegation. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig05
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Figure 11.5 Session and client structure (server side). 

The need to handle callbacks in the NFSv4 protocol has led to the creation of a new daemon that 

must run on the client and whose job it is to receive and respond to the callbacks. The nfscbd 

program is an optional daemon that must be run if the client is to receive delegations. It is 

nfscbd that responds to the CB_NULL RPCs sent by the server, and to which all 

CB_COMPOUND RPCs will be sent. The full complement of callback operations is given in 

Table 11.5. The daemon itself is simple; like the NFS daemons described in Section 11.2, it is 

implemented by a set of kernel libraries that register a callback, nfscb_program(), with the 

kernel RPC service. The nfscb_program() interprets the CB_COMPOUND or CB_NULL RPC 

that it receives and takes the appropriate action. While it would be possible to add the callback 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab05
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functionality directly into the nfsd program, it is cleaner and simpler to place it in its own 

daemon. 

 

Table 11.5 NFS Version 4.1 callback operations from server to client. 

Once the client and state IDs and client and session structures are set up, the client can ask for 

services from the server. 

NFSv4 uses delegations combined with a system of callbacks to provide clients the ability to 

cache both data and metadata. Figure 11.6 shows a typical delegation and recall scenario. A 

delegation is a recallable right granted by the server to the client that allows the client to 

perform operations locally for a fixed but extendable period of time without consulting the 

server. Delegations are always under the control of the server and may be revoked at any time. 

There are two important problems that NFSv4 has to handle with respect to delegations. The 

first is that the server must be able to revoke a delegation. Revoking a delegation requires the 

server to contact the client, which reverses the normal client-server relationship seen in 

previous versions of NFS. The second problem is that the client or server may crash or they may 

be unable to communicate for some period of time because of a network partition. If the server 

is unable to retrieve a delegation from a client, then it cannot allow other clients to proceed with 

operations on the same file. To prevent files from being caught in this deadlock situation, the 

server only allows the client to use a delegation for a fixed period of time, which is called a lease. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig06
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Figure 11.6 Delegating and recalling delegations. Step 1: Client A opens file foo.txt and wishes 

to cache it locally. Step 2: The server replies to the OPEN and includes an 

OPEN_DELEGATE_WRITE delegation type. Step 3: Client B asks the server for foo.txt, the 

same file that client A asked for in Step 1. Step 4: The server informs client A, via a 

CB_COMPOUND callback, that it must return the delegation for foo.txt. Step 5: Client A 

flushes any of its pending changes to foo.txt and returns the delegation by sending a 

DELEG_RETURN message to the server. Step 6: The server finishes the open and grants a file 

handle for foo.txt to client B with a delegation type of DELEGATE_NONE. 

A lease is a piece of data that acts as a contract between the client and server, permitting an 

activity that is valid until some expiration time. As long as a client holds a valid lease, it knows 

that the server will not violate the terms of the contract, for example, by handing out a 

conflicting lock to another client. The server maintains a single lease for each client and the 

lease covers all the state including delegations and locks that are granted to the client. When the 

client first contacts the server and establishes a session, it will ask for the lease time via a 

GETATTR request and the server will return the lease time, which by default is 120 seconds. The 

client must renew the lease before the lease period ends. A lease is only considered stale by the 

server if it is older than five times the lease duration. If the client fails to renew the lease, it must 

return all the delegations and locks that were previously granted by the server. Several common 

operations, including opening or locking files, will cause the lease time to be extended. The 



 

679 

server will respond with an error of NFS4ERR_EXPIRED to any operation from a client whose 

client ID has expired. The client must contact the server before the lease has expired if it wants 

to continue to hold the lock. 

Leases are issued using time intervals rather than absolute times to avoid the requirement of 

time-of-day clock synchronization. If NFSv4 used absolute times for its leases, then the server 

and all its clients would need to have their clocks synchronized, via an external time protocol 

such as NTP or PTP, so that they would all share the same concept of the current time [Mills, 

1992; IEEE, 2008]. By using an interval time, the server and clients can all have completely 

unsynchronized clocks and still execute the lease protocol correctly because each system has the 

ability to know when a certain amount of time has passed. A small amount of slop is allowed 

into the lease calculation to account for differing clock speeds between the clients and the 

server. 

The server attempts to maintain client state as long as possible and will not forcibly remove a 

client that has delegations or active opens so long as it has enough resources to maintain the 

state. Each server has a maximum number of active clients that it is willing to service, 1000 by 

default, and so long as this number is not exceeded, a client’s state ID, and therefore its implied 

lease, can remain active on the server for up to a week. 

Each session has only one lease expiration time associated with it and all operations that must 

operate under a lease, including locking and delegations, are constrained by the same timeout. 

Although there is a specific operation to renew a lease it is rarely used because any operation 

initiated by the client that contains a valid client ID extends the lease time. Operations that 

extend the lease include OPEN, CLOSE, READ, WRITE, LOCK, and several others. When a lease 

has almost expired, and no other operation has taken place that might extend it, the client will 

attempt to extend the lease using the RENEW operation. If the request to renew the lease is 

granted, then operations can continue as before, with the new lease expiration being another 

120 seconds into the future. When the server denies the request, the client loses all its locks and 

share reservations that it had in place up to the point when it received the denial from the 

server. 

Clients that open a file exclusively for reading where no client is attempting to write, may cache 

data from the opened file and may also repeatedly open the same file without contacting the 

server. If a server has delegated control of a file to a client and then another client attempts to 

open the file for writing, the server must invalidate the original delegation and the first client 

must return the delegation to the server before the second client can be given access to the file. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref14
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Locking 

Previous versions of NFS did not include support for file or record locking as part of the protocol. 

Limited support for locking was provided in NFSv3 by an out-of-band protocol and an external 

daemon, the Network Lock Manager. NFSv4 distinguishes between two cases when dealing with 

locks: a byte-range lock and a lock on an entire file, which is referred to in the protocol as a 

share reservation. Whole-file locking is handled through the OPEN RPC. When a client opens a 

file it specifies the type of access that it wishes to have: read, write, or both. It also specifies the 

level of control it wishes to maintain over the entire file in the form of a set of share deny bits, as 

shown in Table 11.6. During on open file operation, the client can indicate that it needs exclusive 

control over read, write, or both operations. A client that does not need to lock a file in any way 

specifies a share deny of none. 

 

Table 11.6 Open share types. 

The server maintains a global structure that is a hashed list of all locks relating to files. 

Whenever a file is opened, a new nfslockfile structure is allocated and added to the nfslockhash 

table whether the client is asking the server to lock the file or a byte range within it. An 

nfslockfile structure exists for all open files so that there is one common place to which the 

server can refer to check on or allocate locking state in the future. 

Byte-range locks are acquired and released via a separate set of RPC calls: LOCK, LOCKU, and 

LOCKT, which respectively lock, unlock, and test for byte-range locks. A single, large, routine, 

nfsrv_lockctrl() is at the center of all byte-range-locking operations and is called by the server’s 

nfsrvd_lock(), nfsrvd_locku(), and nfsrvd_lockt() routines, which map to the RPC operations 

listed above. File locking is handled via the nfsrv_open() routine as described earlier in this 

section. Prior to locking a byte range, the nfsrv_lockctrl() routine must first check to make sure 

that there are no conflicting delegations or conflicting locks. A conflicting delegation would exist 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab06
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only if another client had been granted a write delegation in the past. The write delegation must 

be recalled by the callback mechanism before the lock can be granted. Read delegations do not 

conflict with locks because the lock does not deny a client the ability to read data. The server 

locks a range of bytes within a file by adding an nfslock structure to the nfslockfile structure 

associated with the underlying file. When the client requests a byte-range lock, the server looks 

up the nfslockfile structure for the underlying file and searches the lf_lock list for any conflicting 

locks. If no conflicting lock is found, then a new nfslock structure is allocated and added to the 

list of locks for the file. The list of locks is kept in increasing order of byte range so that only a 

single pass over the list is necessary to find potential conflicts as well as the proper location to 

add or coalesce entries. All the actual changes to the file’s locking state are handled by the 

nfsrv_updatelock() routine, which is responsible for adding and removing lock structures from 

the file’s lf_lock list. Figure 11.7 shows an example containing two files, one of which has two 

byte-range locks. Acquiring a lock is considered a heavyweight operation in which much state 

may be passed between the client and the server. Reading and writing data, which should be the 

majority of the work of the protocol, should not be burdened with the state needed to maintain 

control of a lock. 

 

Figure 11.7 NFSv4 locking data structures. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig07


 

682 

Both share reservations and byte-range locks are acquired under the same lease that is used for 

delegations. The lease limits the time that the client can maintain a lock on a file or piece of a file 

without a renewal. 

Security 

Versions 2 and 3 of NFS had little support for security features. Since the original goal of the 

NFS protocol was to enable the sharing of files within a single work-group, and certainly within 

a single organizational domain, it did not seem necessary to have heavyweight mechanisms for 

authenticating, encrypting, or validating data. Network filesystems are now deployed widely 

within companies and across more hostile environments, such as the Internet, so NFSv4 has 

integrated support for various levels of security directly into the protocol. There are three 

components that interact to provide security within NFSv4: an authentication system, a library 

that secures data within the RPC layer, and NFSv4 itself. 

A system that wishes to provide a secure communication environment must have a way to 

authenticate participants such as users and hosts. Authentication is the process by which a 

participant, such as a user, proves to some other participant, such as a remote file server, that 

the participant is who it claims to be. NFSv4 relies on version 5 of the Kerberos Network 

Authentication Service to provide authentication between participants of the system [Neuman et 

al., 2005]. The Kerberos systems acts as a trusted third party that is used by both clients and 

servers to verify the truthfulness of various assertions that are made by participants in the 

system. A client wishing to communicate with a server using Kerberos must first contact a 

Kerberos authentication server to acquire the proper credentials, referred to in Kerberos as a 

ticket. A ticket has a limited lifetime to protect against a malicious entity gaining permanent 

access to the system. Using the ticket, the client can authenticate itself to the server and perform 

various cryptographic operations that allow the client and server to encrypt their data and 

communicate privately. Kerberos is a relatively complex network security protocol and will not 

be covered in further detail here. Interested readers are recommended to the RFC cited above 

for further information on the Kerberos protocol. For the purposes of our discussion within 

NFSv4 Kerberos should be thought of as the system that hands out, to both clients and servers, 

the keys to lock and unlock data transported over the network. 

An authentication system is a necessary requirement to implement a secure network-based 

filesystem, but it does not really have any ability to secure or verify the data that is exchanged in 

the system. Securing data in NFSv4 is done using the RPCSEC_GSS protocol that depends on 

the Generic Security Service Application Program Interface (GSSAPI) [Eisler et al., 1997; Linn, 

2000]. Three parameters describe the mechanism, service, and quality of protection that 

secures data between the client and the server. When taken together, these three parameters are 
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referred to as the security-triple and each unique security triple is referred to as a flavor. There 

are three possible services that can be provided by the GSSAPI. The authentication service 

guarantees that a user or other entity wishing to gain access to a piece of data is the user or 

entity that they claim to be. NFSv4 uses Kerberos to authenticate users and systems, and so does 

not use the authentication service in GSS. The integrity service guarantees that the data has not 

been tampered with in transit but does not prevent an attacker from reading the data from the 

network while they are in transit between the client and server. The privacy service encrypts the 

data between the client and server so that an attacker cannot read the data while they are in 

transit. The actual encryption and decryption of data is done by the RPC libraries in the kernel 

and not by NFS directly, which has little or no direct knowledge of how data is secured. 

The only situation in which NFSv4 deals directly with security, rather than relying on other 

protocols or libraries, is when a client needs to know the choice of security protocols that it can 

use with a server. An NFS client starts by assuming that there is only minimal security 

implemented on the server. At some point, perhaps as early as when a filesystem is mounted by 

the client, the server can respond with an NFS4ERR_WRONGSEC error, forcing the client to 

negotiate security parameters with the server. The client sends a SECINFO operation in 

response to the NFS4ERR_WRONGSEC message and receives back from the server a security 

flavor. If the security flavor is RPCSEC_GSS, then the reply to the SECINFO operation also 

contains a security triple, indicating the type of security and quality of security service that the 

server supports. Servers may return a list of security triples and the client picks the first one that 

it can support. 

Data security in NFSv4 is available on a filesystem by filesystem basis, meaning that many 

different operations may fail with an NFS4ERR_WRONGSEC reply and necessitate the 

negotiation of security parameters. 

Crash Recovery 

A distributed system such as NFS must gracefully handle several common error conditions such 

that applications using the service can treat it as they would a local filesystem. Maintaining this 

illusion of consistency requires the protocol to have mechanisms that prevent recoverable or 

transient errors from permanently interrupting the service. While it should not be a common 

occurrence, the client or the server may crash, leading to an inconsistent state among the 

communicating systems. A more common problem is a network partition, where a client and 

server that were once able to communicate can no longer reach each other for some period of 

time. Network partitions may be brief, but if the state on the client and server get out of sync 

during the period when the client and server cannot communicate, then they must have a way to 

agree on a consistent state once the partition is repaired. From the point of view of both the 
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client and server, it is impossible, without some help from the protocol, to determine whether a 

system has crashed or whether a temporary network partition has occurred. The NFSv4 protocol 

has mechanisms that handle regaining consistent state after a network partition or the failure of 

either the client or server system. 

A client that has crashed and restarted would like to return to a correct running state as quickly 

as possible. Even though a client has crashed and restarted, the server continues to hold state 

for the client. Each client has an associated client ID. All state for the client is maintained at the 

server until the server restarts or the client dismounts all its mounted filesystems and destroys 

its session and client ID with explicit DESTROY_SESSION and DESTROY_CLIENTID RPC 

calls. Even if the client restarts within the lease period, it will still have to create a new client ID 

with the server via the EXCHANGE_ID mechanism described earlier in this section. 

Establishing a new client ID lets the server know that the client has restarted, at which point the 

server can invalidate and free all state associated with the previous incarnation of the client. 

After establishing a new client ID, the client can again use the NFS service. 

Recovering from a server crash is a more complicated process than that required when a client 

restarts. When a server experiences a restart, it must take care to restore any locking state that 

existed prior to the system restarting. A client that attempts an operation with a server that has 

restarted will find that both its session and client IDs are invalid, and will have to establish new 

values for both before it can again use the service. A client that had locking state stored on the 

server must then go through a reclamation process to reacquire the locks that it previously held. 

When a server restarts, it takes several steps to make sure that it is in a consistent state before it 

continues serving files to its clients. All NFSv4 servers record the time at which they were 

booted, in seconds since the epoch, and place that time into all client and state IDs. When a 

server is restarted, its boot time will have changed and any requests that contain a client or state 

ID from a previous incarnation of the server will receive an NFS4ERR_BAD_SESSION error, 

informing the client that it must reestablish itself with the server. During normal operation, the 

NFSv4 server makes a record of certain operations in a local file that recovers state after a server 

crash. The local state file includes a list of all the previous boot times of the server to guard 

against a collision in boot times. The server’s boot time is used to construct client and state IDs 

and a collision could allow stale client or state IDs to go unnoticed, resulting in file corruption. 

Following the list of previous boot times is a set of variable-size entries containing client IDs and 

flags. The flags indicate whether the client has active state associated with it or whether the state 

has been revoked. 

When the server starts up, it sets a grace period of 15 seconds before it will grant new locks. 

During the grace period, clients are expected to reestablish any claims to state on the server, 
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such as locks, via a reclamation process. The OPEN RPC contains a claim argument that shows 

whether the client is trying to reclaim state on the server. In normal operation, the claim 

argument is set to NULL, but when a client is forced to reestablish state with the server, its 

OPEN RPCs will contain a claim outlined in Table 11.7. 

 

Table 11.7 Open claims. 

The client must also reclaim any locks that it had when the server restarted. A lock can be 

reclaimed by sending a LOCK RPC with the reclaim bit set. Once the client has completed the 

process of reclaiming all its state, it sends a RECLAIM_COMPLETE message to the server, at 

which point the server can discard the client’s previous state records from its state file. 

The local state file is created when the server is started via a call to the nfsrv_setupstable() 

routine. Any time the state file is written to by the server, it is also backed up via a call to 

nfsrv_backupstable() as an extra, paranoid measure to protect against the corruption of the 

state file during a system crash. 

Exercises 

11.1 Describe the functions done by an NFS client. 

11.2 Describe the functions done by an NFS server. 

11.3 Describe three benefits that NFSv3 derives from being stateless. 

11.4 Name two new features added to version 4 of the NFS protocol. 

11.5 Give two reasons why TCP is a better protocol to use than UDP for handling the NFS RPC 

protocol. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab07


 

686 

11.6 Describe the contents of a file handle in FreeBSD. How is a file handle used? 

11.7 When is a new generation number assigned to a file? What purpose does the generation 

number serve? 

11.8 Describe the three ways that an NFS client can handle filesystem-access attempts when its 

server crashes or otherwise becomes unreachable. 

11.9 Give two reasons why leases are given a limited lifetime. 

11.10 What is a callback? When is it used? Which daemon sends callbacks? Which daemon 

receives them? 

11.11 What are the two types of locking that are supported in NFSv4? 

11.12 Describe how an NFSv4 server recovers after a crash. 

*11.13 Give a network time diagram that shows the process of a client acquiring a record lock 

within a file, writing data to the record, and releasing the lock. 

**11.14 Assume that leases have an unlimited lifetime. Design a system for recovering the lease 

state after a client or server crash. 
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Part IV: Interprocess Communication 

Chapter 12. Interprocess Communication 

FreeBSD provides a rich set of interprocess-communication facilities intended to support the 

construction of distributed programs built on top of communications primitives. Support 

for these facilities is described in this chapter. 

No one mechanism can provide for all types of interprocess communication. The subsystems 

that provide IPC in FreeBSD 10 can be broken down into two areas. The first provides for IPC on 

a single system and includes support for semaphores, message queues, and shared 

memory. These subsystems were described in Section 7.2. The second is the socket interface, 

which provides a uniform communication API for network communication. 

The socket API is deeply entwined with the network subsystem. The overall architecture of the 

network system is described in this chapter and is then referenced and refined in Chapters 13 

and 14, which describe the implementation of network layer and transport layer protocols 

respectively. You will find it easiest to understand the material in the following two chapters if 

you read this chapter first. 

12.1 Interprocess-Communication Model 

There were several goals in the design of the interprocess-communication enhancements to 

UNIX. The most immediate need was to provide access to communication networks such as the 

Internet [Cerf, 1978]. Previous work in providing network access had focused on the 

implementation of the network protocols, exporting the transport facilities to applications via 

special-purpose—and often awkward—interfaces [Cohen, 1977; Gurwitz, 1981]. As a result, each 

new network implementation resulted in a different application interface, requiring most 

existing programs to be altered significantly or rewritten completely. For 4.2BSD, the 

interprocess-communication facilities were intended to provide a sufficiently general interface 

to allow network-based applications to be constructed independently of the underlying 

communication facilities. 

The second goal was to allow multiprocess programs, such as distributed databases, to be 

implemented. The UNIX pipe requires all communicating processes to be derived from a 

common parent process. The use of pipes forced systems to be designed with a somewhat 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_94
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contorted structure. New communication facilities were needed to support communication 

between unrelated processes residing locally on a single host computer and residing remotely on 

multiple host machines. 

Finally, it became important to provide new communication facilities to allow construction of 

local-area network services, such as file servers. The intent was to provide facilities that could be 

used easily in supporting resource sharing in a distributed environment and not to build a 

distributed UNIX system. 

The interprocess-communication facilities were designed to support the following: 

• Transparency: Communication between processes should not depend on whether the 

processes are on the same machine. 

• Efficiency: The applicability of any interprocess-communication facility is limited by the 

performance of the facility. A naive implementation of interprocess communication often results 

in a modular but inefficient implementation because most interprocess communication facilities, 

especially those related to networks, are broken down into many layers. At each layer boundary, 

the software must do some work, either adding information to a message or removing it. 

FreeBSD only introduces layers where they are absolutely necessary for the proper functioning 

of the system and does not introduce arbitrary and unnecessary layers. 

• Compatibility: Existing naive processes should be usable in a distributed environment without 

change. A naive process is characterized as a process that does its work by reading from the 

standard input file and writing to the standard output file. A sophisticated process uses 

knowledge about the richer set of interfaces provided by the kernel to do its work. A major 

reason UNIX has been successful is the operating system’s support for modularity by naive 

processes that act as byte-stream filters. Although sophisticated applications such as web 

servers and screen editors exist, they are far outnumbered by the collection of naive application 

programs. 

While designing the interprocess-communication facilities, the developers identified the 

following requirements to support these goals, and they developed a unifying concept for each: 

• The system must support communication networks that use different sets of protocols, 

different naming conventions, different hardware, and so on. The notion of a communication 

domain was defined for these reasons. A communication domain embodies the standard 

semantics of communication and naming. Different networks have different standards for 

naming communication endpoints, which may also vary in their properties. In one network, a 

name may be a fixed address for a communication endpoint, whereas in another it may be used 
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to locate a process that can move between locations. The semantics of communication can 

include the cost associated with the reliable transport of data, the support for multicast 

transmissions, the ability to pass access rights or capabilities, and so on. 

• A unified abstraction for an endpoint of communication that can be manipulated with a file 

descriptor is needed. The socket is the abstract object from which messages are sent and 

received. Sockets are created within a communication domain, just as files are created within a 

filesystem. Unlike files, however, sockets exist only as long as they are referenced. Once the file 

descriptor that represents a socket is closed, and its reference count drops to zero, the socket is 

freed. 

• The semantic aspects of communication must be made available to applications in a controlled 

and uniform way. Applications must be able to request different styles of communication, such 

as reliable byte stream or unreliable datagram, and these styles must be provided consistently 

across all communication domains. All sockets are typed according to their communication 

semantics. Types are defined by the semantic properties that a socket supports. These properties 

are: 

1. In-order delivery of data 

2. Unduplicated delivery of data 

3. Reliable delivery of data 

4. Connection-oriented communication 

5. Preservation of message boundaries 

6. Support for out-of-band messages 

Pipes have the first four properties, but not the fifth or sixth. An out-of-band message is one that 

is delivered to the receiver outside the normal stream of incoming, in-band data and is usually 

associated with an urgent or exceptional condition. A connection is a mechanism that protocols 

use to avoid having to transmit the identity of the sending socket with each packet of data. 

Instead, the identity of each endpoint of communication is exchanged before transmission of 

any data and is maintained at each end so that it can be presented at any time. On the other 

hand, connectionless communications require a source and destination address associated with 

each transmission. A datagram socket provides unreliable, connectionless packet 

communication; a stream socket provides a reliable, connection-oriented byte stream that 

may support out-of-band data transmission; and a sequenced-packet socket provides a 

sequenced, reliable, unduplicated connection-based communication that preserves message 
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boundaries. The socket API is extensible and other types of sockets can be and have been added 

to the system. 

Processes must be able to locate endpoints of communication so that they can rendezvous 

without prior knowledge, so sockets can be named. A socket’s name is meaningfully interpreted 

only within the context of the communication domain in which the socket is created. The names 

used by most applications are human-readable strings. However, the name for a socket that is 

used within a communication domain is usually a low-level address. Rather than placing 

name-to-address translation functions in the kernel, FreeBSD provides a userspace library for 

application programs to use in translating names to addresses. 

Use of Sockets 

Since the creation of the sockets API, several excellent books have been written about socket 

programming from the user’s perspective [Stevens et al., 2003]. This section includes a brief 

description of a client and server program communicating over a reliable byte stream in the 

IPv4 communication domain. The client is described first and the server second. For more 

detailed information on writing network applications, please see the cited references. 

A program that wants to use a socket creates it with the socket system call: 

Click here to view code image 

int sock = socket(AF_INET, SOCK_STREAM, 0); 

The type of socket is selected according to the characteristic properties required by the 

application. In this example, reliable communication is required, so a stream socket (type = 

SOCK_STREAM) is selected. The domain parameter specifies the communication domain (or 

address family; see Section 12.4) in which the socket should be created, here the IPv4 Internet 

(domain = AF_INET). The final parameter, the protocol, can give a specific communication 

protocol for use in supporting the socket’s operation. Protocols are specified by well-known 

(standard) constants specific to each communication domain. When zero is used, the system 

picks an appropriate protocol. The socket system call returns a file descriptor (a small integer; 

see Section 7.1) that is then used in all later socket operations. 

After a socket has been created, the next step depends on the type of socket being used. Since 

this example is connection oriented, the sockets require a connection before being used. 

Creating a connection between two sockets usually requires that each socket have an address 

bound to it, which is simply a way of identifying each endpoint of the communication. 
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Applications may explicitly specify a socket’s address or may permit the system to assign one. 

The address to be used with a socket must be given in a socket address structure. The 

format of addresses can vary among domains; to permit a wide variety of different formats, the 

system treats addresses as variable-length byte arrays, which are prefixed with a length and a 

tag that identifies their format. Each domain has its own addressing format, which can always 

be mapped into the most generic one. 

A connection is initiated with a connect system call: 

Click here to view code image 

int error, sock; 

struct sockaddr_in rmtaddr; 

int rmtaddrlen = sizeof(struct sockaddr_in); 

 

error = 

     connect(sock, (struct sockaddr *)&rmtaddr, rmtaddrlen); 

When the connect call completes, the client has a fully functioning communication endpoint on 

which it can send and receive data. 

A server follows a different path once it has created a socket. It must bind itself to an address 

and then accept incoming connections from clients. The call to bind an address to a socket is as 

follows: 

Click here to view code image 

int error, sock, addrlen = sizeof(struct sockaddr_in); 

struct sockaddr_in addr; 

 

error = 

    bind(sock, (struct sockaddr*)&localaddr, localaddrlen); 

where sock is the descriptor created by a previous call to socket. 

For several reasons, binding a name to a socket was separated from creating a socket. First, 

sockets are potentially useful without names. If all sockets had to be named, users would be 

forced to devise meaningless names without reason. Second, in some communication domains, 

it may be necessary to supply additional information to the system before binding a name to a 

socket—for example, the “type of service” required when a socket is used. If a socket’s name had 
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to be specified at the time that the socket was created, supplying this information would not be 

possible without further complicating the interface. 

In the server process, the socket must be marked to specify that incoming connections are to be 

accepted on it by using the listen system call: 

Click here to view code image 

int error, sock, backlog = 5; 

 

error = listen(sock, backlog); 

The backlog parameter used in the listen call specifies an upper bound on the number of 

pending connections that should be queued for acceptance. Having an upper bound on the listen 

queue is one way to prevent resource exhaustion in the kernel. 

Connections are then received, one at a time, with the accept call: 

Click here to view code image 

int newsock, sock; 

struct sockaddr_in clientaddr; 

int clientaddrlen = sizeof(struct sockaddr_in); 

 

newsock = accept(sock, (struct sockaddr *)&clientaddr, 

                 clientaddrlen); 

The accept call returns a new connected socket, as well as the address of the client, by specifying 

the clientaddr and clientaddrlen parameters. The new socket is the one through which 

communication can take place. The original socket, sock, is used solely for managing the queue 

of connection requests in the server. 

A variety of calls are available for sending and receiving data; these calls are summarized in 

Table 12.1. The richest of these interfaces are the sendmsg and recvmsg calls that can handle 

scatter-gather operations, specify an address on transmission and reception, supply optional 

flags, and handle specially interpreted ancillary data or control information. The message 

header structure that is used by sendmsg and recvmsg is shown in Figure 12.1. Ancillary data 

may include protocol-specific data, such as addressing or options, and also specially interpreted 

data, called access rights. Further details of the usage of the message header structure are given 

in Section 12.6. 
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Table 12.1 Sending and receiving data on a socket. 

 

Figure 12.1 Data structures for the sendmsg and recvmsg system calls. 

In addition to these system calls, several other calls are provided to access miscellaneous 

services. The getsockname call returns the locally bound address of a socket, whereas the 

getpeername call returns the address of the socket at the remote end of a connection. The 

shutdown call terminates data transmission or reception at a socket, and two ioctl-style 

calls—setsockopt and getsockopt—can be used to set and retrieve various parameters that 

control the operation of a socket or of the underlying network protocols. Sockets are discarded 

with the normal close system call. 

The interface to the interprocess-communication facilities was purposely designed to be 

orthogonal to the existing standard system interfaces—that is, to the open, read, and write 
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system calls. This decision was made to avoid overloading the familiar interface with undue 

complexity. In addition, the developers thought that using an interface that was completely 

independent of the filesystem would improve the portability of software because, for example, 

pathnames would not be involved. Backward compatibility, for the sake of naive processes, was 

still deemed important. Thus, the familiar read–write interface was augmented to permit access 

to the new communication facilities wherever that made sense (e.g., when connected stream 

sockets were used). 

12.2 Implementation Structure and Overview 

The interprocess-communication facilities are layered on top of the networking facilities, as 

shown in Figure 12.2. Data flows from the application through the socket layer to the 

networking layer and vice versa. State required by the socket layer is fully encapsulated within it, 

whereas any protocol-related state is maintained in data structures that are specific to the 

supporting protocols. Responsibility for storage associated with transmitted data is passed from 

the socket layer to the network layer. Consistent adherence to this rule assists in simplifying 

details of storage management. Within the socket layer, the socket data structure is the focus of 

all activity. The system-call interface routines manage the actions related to a system call, 

collecting the system-call parameters (see Section 3.2) and converting user data into the format 

expected by the socket-layer routines. Most of the socket abstraction is implemented within the 

socket-layer routines. All socket-layer routines have names with a so prefix, and they directly 

manipulate socket data structures and manage the synchronization between asynchronous 

activities; these routines are listed in Table 12.2. 

 

Figure 12.2 Interprocess-communication implementation layering. The boxes on the left name 

the standard layers; the boxes on the right name specific examples of the layers that might be 

used by an individual socket. 
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Table 12.2 Socket-layer support routines. 

The remainder of this chapter focuses on the implementation of the socket layer. Section 12.3 

discusses how memory is managed at the socket layer and below in the networking subsystem; 

Section 12.4 covers the socket and related data structures; Section 12.5 presents the algorithms 

for connection setup; Section 12.6 discusses data transfer; and Section 12.7 describes connection 

shutdown. Throughout these sections, references to the supporting facilities provided by the 

network-communication protocols are made with little elaboration. Section 12.8 describes the 

internal structure of the network-communication protocols. Section 12.9 describes the 

socket-to-protocol interface. Section 12.10 describes the protocol-to-protocol interface. Section 

12.11 describes the protocol-to-network interface. Section 12.12 describes network buffering and 

flow control. Section 12.13 concludes the chapter with a discussion of network virtualization. 

12.3 Memory Management 

The requirements placed on a memory-management scheme by interprocess-communication 

and network protocols tend to be substantially different from those of other parts of the 

operating system. Although all require the efficient allocation and reclamation of memory, 

communication protocols in particular need memory in widely varying sizes. Memory is needed 

for variable-size structures such as communication protocol packets. Protocol implementations 

must frequently prepend headers or remove headers from packetized data. As packets are sent 
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and received, buffered data may need to be divided into packets, and received packets may be 

combined into a single record. In addition, packets and other data objects must be queued when 

awaiting transmission or reception. A special-purpose memory-management facility exists for 

use by the interprocess-communication and networking systems to address these needs. 

Mbufs 

The memory-management facilities revolve around a data structure called an mbuf (see Figure 

12.3). Mbufs, or memory buffers, vary in size depending on what they contain. All mbufs contain 

a fixed m_hdr structure that keeps track of various bits of bookkeeping about the mbuf. An 

mbuf that contains only data has space for 224 bytes (256 bytes total for the mbuf minus 32 

bytes for the mbuf header). All structure sizes are calculated for 64-bit processors. 

 

Figure 12.3 Memory-buffer (mbuf) data structure. 

For large messages, the system can associate larger sections of data with an mbuf by referencing 

an external mbuf cluster from a private virtual memory area. The size of an mbuf cluster may 

vary by architecture, as specified by the macro MCLBYTES, and is 2 Kbyte on the X86. 

Data are stored either in the internal data area or in an external cluster, but never in both. To 

access data in either location, a data pointer within the mbuf is used. In addition to the 

data-pointer field, a length field is also maintained. The length field shows the number of bytes 
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of valid data to be found at the data-pointer location. The data and length fields allow routines 

to trim data efficiently at the start or end of an mbuf. In deletion of data at the start of an mbuf, 

the pointer is incremented and the length is decremented. To delete data from the end of an 

mbuf, the length is decremented, but the data pointer is left unchanged. When space is available 

within an mbuf, data can be added at either end. This flexibility to add and delete space without 

copying is particularly useful in communication-protocol implementation. Protocols routinely 

strip protocol information off the front or back of a message before the message’s contents are 

handed to a higher-layer processing module, or they add protocol information as a message is 

passed to lower layers. 

Multiple mbufs can be linked together to hold an arbitrary quantity of data. This linkage is done 

with the m_next field of the mbuf. By convention, a chain of mbufs linked through the m_next 

field is treated as a single object. For example, the communication protocols build packets from 

chains of mbufs. A second field, m_nextpkt, links objects built from chains of mbufs into lists of 

objects. Throughout our discussions, a collection of mbufs linked together with the m_next field 

will be called a chain; chains of mbufs linked together with the m_nextpkt field will be called a 

queue. 

Each mbuf is typed according to its use. This type serves two purposes. The only operational use 

of the type is to distinguish optional components of a message in an mbuf chain that is queued 

for reception on a socket data queue. Otherwise, the type information is used in maintaining 

statistics about storage use and, if there are problems, as an aid in tracking mbufs. 

The mbuf flags are logically divided into two sets: flags that describe the usage of an individual 

mbuf and those that describe an object stored in an mbuf chain. The flags describing an mbuf 

specify whether the mbuf references external storage (M_EXT), whether the mbuf contains a set 

of packet header fields (M_PKTHDR), and whether the mbuf completes a record (M_EOR). A 

packet normally would be stored in an mbuf chain (of one or more mbufs) with the M_PKTHDR 

flag set on the first mbuf of the chain. The mbuf flags describing the packet would be set in the 

first mbuf and could include either the broadcast flag (M_BCAST) or the multicast flag 

(M_MCAST). The latter flags specify that a transmitted packet should be sent as a broadcast or 

multicast, respectively, or that a received packet was sent in that manner. 

If the M_PKTHDR flag is set on an mbuf, the mbuf has a second set of header fields 

immediately following the standard header. This addition causes the mbuf data area to shrink 

from 224 bytes to 168 bytes. The packet header shown in Table 12.3 is only used on the first 

mbuf of a chain. It includes several fields: a pointer to the interface on which the packet was 

received, the total length of the packet, a field relating to packet checksum calculation, and a 

pointer to a list of arbitrary tags. 
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Table 12.3 Important fields in (mbuf) data structure with M_PKTHDR. 

An mbuf that uses external storage is marked with the M_EXT flag. Here, a different header 

area overlays the internal data area of an mbuf. The fields in this header, which is shown in 

Figure 12.4, describe the external storage, including the start of the buffer and its size. One field 

is designated to point to a routine to free the buffer, in theory allowing various types of buffers 

to be mapped by mbufs. In the current implementation, the free function is not used and the 

external storage is assumed to be a standard mbuf cluster. An mbuf may be both a packet header 

and have external storage. Here, the standard mbuf header is followed by the packet header and 

then the external storage header. 
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Figure 12.4 Memory-buffer (mbuf) data structure with external storage. 

The ability to refer to mbuf clusters from an mbuf permits data to be referenced by different 

entities within the network code without a memory-to-memory copy operation. When multiple 

copies of a block of data are required, the same mbuf cluster is referenced from multiple mbufs. 

Since the mbuf headers are transient, the reference count for the clusters cannot be stored in the 

m_ext structure. Instead, the reference counts for clusters are managed as a separate array 

referenced from the mbufs that are sharing mbuf clusters. The array is large enough for every 

mbuf cluster that could be allocated by the system. The memory dedicated to mbufs and clusters 

is set based on the kernel parameter maxusers, which is itself based on the amount of physical 

memory in the system. Basing the amount of memory dedicated to the networking subsystem on 

the amount of physical memory gives a good default value but can be increased when a system is 

dedicated to networking tasks such as a Web server, firewall, or router. 

Mbufs have fixed-size, rather than variable-size, data areas for several reasons. First, the fixed 

size minimizes memory fragmentation. Second, communication protocols are frequently 

required to prepend or append headers to existing data areas, to split data areas, or to trim data 

from the beginning or end of a data area. The mbuf facilities are designed to handle such 

changes without reallocation or copying whenever possible. 

Since the mbuf is the central object of all the networking subsystems, it has undergone changes 

with each large change in the code. It now contains a flags field and two optional sets of header 

fields. The data pointer replaces a field used as an offset in the initial version of the mbuf. The 



 

703 

use of an offset was not portable when the data referenced could be in an mbuf cluster. The 

addition of a flags field allowed the use of a flag indicating external storage. Earlier versions 

tested the magnitude of the offset to see whether the data were in the internal mbuf data area. 

The addition of the broadcast flag allowed network-level protocols to know whether packets 

were received as link-level broadcasts, as was required for standards conformance. Several other 

flags have been added for use by specific protocols and to handle fragment processing. 

The optional header fields have undergone the largest changes since 4.4BSD. The two headers 

were originally designed to avoid redundant calculations of the size of an object, to make it 

easier to identify the incoming network interface of a received packet, and to generalize the use 

of external storage by an mbuf. Since FreeBSD 5, the packet header has been expanded to 

include information on checksum calculation (a traditionally expensive operation that can now 

be done in hardware) as well as on the management of flows of packets, quality of service 

parameters, a receive-side scaling hash to steer packets to particular hardware queues, and an 

arbitrary set of tags. 

Tags are fixed-size structures that can point to arbitrary pieces of memory and are used to store 

information relevant to different modules within the networking subsystem. Each tag has a link 

to the next tag in the list, a 16-bit ID, a 16-bit length, and a 32-bit cookie and a module-defined 

type. The cookie identifies the module that owns the tag. The type is a piece of data that is 

private to the module that describes to the module the type of tag it is handling. Tags carry the 

information about a packet that should not be placed into the packet itself and they are often 

used as an extension mechanism for the networking subsystem. Instead of modifying the mbuf 

structures, and thereby losing binary compatibility between versions of FreeBSD, new 

networking modules can define their own tags as a way of communicating arbitrary out-of-band 

information between different components of the network stack. Examples of these tags are 

given in Section 13.7. 

Storage-Management Algorithms 

Providing the system with a network stack capable of multiprocessing required a complete 

rework of the memory-allocation algorithms underlying the mbuf code. Whereas previous 

versions of BSD allocated memory with the system allocator and then carved it up for mbufs and 

clusters, such a simple technique does not work when using multiple CPUs. 

As is described in detail in Section 6.3, FreeBSD allocates virtual memory among a series of lists 

for use by the network memory allocation code. Each CPU has its own private container of 

mbufs and clusters. There is also a single, general pool of mbufs and clusters from which 

allocations are attempted when a per-CPU list is empty or to which memory is freed when a 
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per-CPU list is full. A uniprocessor system acts as if it is a multiprocessor system with one CPU, 

which means that it has one per-CPU list as well as the general one. 

Mbuf-allocation requests specify either that they must be fulfilled immediately or that they can 

wait for available resources. If a request is marked as “can wait” and the requested resources are 

unavailable, the process is put to sleep to await available resources. A nonblocking request will 

fail if no resources are available. Although a nonblocking allocation request is no longer 

necessary for code that executes at interrupt level, the networking code still operates assuming 

nonblocking is required. If mbuf allocation has reached its limit or memory is unavailable, the 

mbuf-allocation routines ask the network-protocol modules to give back any available resources 

that they can spare. 

An mbuf-allocation request is made through a call to m_get(), m_gethdr(), or through an 

equivalent macro. An mbuf is retrieved from the currently running CPU’s per-CPU list by the 

mb_alloc() function and is initialized. For m_gethdr(), the mbuf is initialized with the optional 

packet header. The MCLGET macro adds an mbuf cluster to an mbuf. 

Release of mbuf resources is straightforward: m_free() frees a single mbuf and m_freem() frees 

a chain of mbufs. When an mbuf that references an mbuf cluster is freed, the reference count for 

the cluster is decremented. Mbuf clusters are placed onto the currently running CPU’s per-CPU 

list when their reference counts reach zero. 

Mbuf Utility Routines 

Many useful utility routines exist for manipulating mbufs within the kernel networking 

subsystem. The m_copym() routine makes a copy of an mbuf chain starting at a logical offset, in 

bytes, from the start of the data. This routine may be used to copy all or only part of a chain of 

mbufs. If an mbuf is associated with an mbuf cluster, the copy will reference the same data by 

incrementing the reference count on the cluster. The m_copydata() function is similar, but it 

copies data from an mbuf chain into a caller-provided buffer. This buffer is not an mbuf, or 

chain, but an area of memory such as an I/O buffer elsewhere in the kernel. 

The m_adj() routine adjusts the data in an mbuf chain by a specified number of bytes, removing 

data from either the front or back. No data are ever copied; m_adj() operates purely by 

manipulating the offset and length fields in the mbuf structures. The mtod() macro takes a 

pointer to an mbuf header and a data type, and returns a pointer to the data in the buffer, cast to 

the given type. 

The m_pullup() routine rearranges an mbuf chain such that a specified number of bytes reside 

in a contiguous data area within the mbuf (not in external storage). This operation is used so 
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that objects such as protocol headers are contiguous and can be treated as normal data 

structures. If there is room, m_pullup() will increase the size of the contiguous region up to the 

maximum size of a protocol header in an attempt to avoid being called in the future. 

The M_PREPEND() macro adjusts an mbuf chain to prepend a specified number of bytes of 

data. If possible, space is made in place, but an additional mbuf may have to be allocated at the 

beginning of the chain. It is currently impossible to prepend data within an mbuf cluster 

because different mbufs might refer to data in different portions of the cluster. 

12.4 IPC Data Structures 

Sockets are the objects used by processes communicating over a network. A socket’s type defines 

the basic set of communication semantics, whereas the communication domain defines auxiliary 

properties important to the use of the socket and may refine the set of available communication 

semantics. Table 12.4 shows the four types of sockets currently supported by the system. To 

create a new socket, applications must specify its type and the communication domain. The 

request may also indicate a specific network protocol to be used by the socket. If no protocol is 

specified, the system selects an appropriate protocol from the set of protocols supported by the 

communication domain. If the communication domain is unable to support the type of socket 

requested (i.e., no suitable protocol is available), the request will fail. 

 

Table 12.4 Socket types supported by the system. 

Sockets are described by a socket data structure that is dynamically created at the time of a 

socket system call. Communication domains are described by a domain data structure that is 

statically defined within the system based on the system’s configuration (see Section 15.3). 

Communication protocols within a domain are described by a protosw structure that is also 
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statically defined within the system for each protocol implementation configured. Having these 

structures defined statically reduces communication startup time and reduces the complexity of 

the implementation because there is no need to support the dynamic addition and deletion of 

protocols or domains at run time. 

When a request is made to create a socket, the system uses the value of the communication 

domain to search linearly the list of configured domains. If the domain is found, the domain’s 

table of supported protocols is consulted for a protocol appropriate for the type of socket being 

created or for the specific protocol requested. A wildcard entry may exist for a raw socket. 

Should multiple protocol entries satisfy the request, the first is selected. This section describes 

the domain structure. The protosw structure that lists a domain’s supported protocols is 

discussed in Section 12.8. 

The domain structure is shown in Figure 12.5. The dom_name field is the string that names 

the communication domain. The dom_family field identifies the address family used by the 

domain; some possible address-family values are shown in Table 12.5. Address families refer to 

the addressing structure of a domain. An address family generally has an associated protocol 

family. Protocol families refer to the suite of communication protocols of a domain used to 

support the communication semantics of a socket. The dom_protosw field points to the table of 

functions that implement the protocols supported by the communication domain, and the 

dom_protoswNPROTOSW pointer marks the end of the table. The remaining entries contain 

pointers to domain-specific routines used in the management and transfer of access rights and 

fields relating to routing and network interface initialization for the domain. 
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Figure 12.5 Communication-domain data structure. 

 

Table 12.5 Address families. 
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The socket data structure is shown in Figure 12.6. Storage for the socket structure is allocated by 

the zone allocator (described in Section 6.3). Sockets contain information about their type, the 

supporting protocol in use, and their state. States are shown in Table 12.6. Data being 

transmitted or received are queued at the socket as a list of mbuf chains. Various fields are 

present for managing queues of sockets created during connection establishment. Each socket 

structure also holds a process-group identifier. The process-group identifier is used in delivering 

the SIGURG and SIGIO signals. SIGURG is sent when an urgent condition exists for a socket, 

and SIGIO is used by the asynchronous I/O facility (see Section 7.1). The socket contains an 

error field, which is needed for storing asynchronous errors to be reported to the owner of the 

socket. 

 

Figure 12.6 Socket data structure. 
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Table 12.6 Socket states. 

Sockets are located using a process’s file descriptor via a file entry. When a socket is created, the 

f_data field of the file structure is set to point at the socket structure, and the f_ops field is set to 

point to the set of routines defining socket-specific file operations. Here, the socket structure is a 

direct parallel of the vnode structure used by the filesystems. 

The socket structure acts as a queueing point for data being transmitted and received. As data 

enter the system as a result of system calls, such as write or send, the socket layer passes the 

data to the networking subsystem as a chain of mbufs for transmission. If the supporting 

protocol module decides to postpone transmission of the data, or if a copy of the data are to be 

maintained until an acknowledgment is received, the data are queued in the socket’s send queue. 

When the network has consumed the data, it discards them from the outgoing queue. On 

reception, the network passes data up to the socket layer, also in mbuf chains, where they are 

then queued until the application makes a system call to request them. The socket layer can also 

make a callback to an internal kernel client of the network when data arrive, allowing the data to 

be processed without a context switch. Callbacks are used by the NFS server (see Chapter 11). 

To avoid resource exhaustion, sockets impose upper bounds on the number of bytes of data that 

can be queued in a socket data buffer as well as on the amount of storage space that can be used 

for data. This high watermark is initially set by the protocol, although an application can 

change the value up to a system maximum. The network protocols can examine the high 

watermark and use the value in flow-control policies. A low watermark also is present in 

each socket data buffer. The low watermark allows applications to control data flow by 

specifying a minimum number of bytes required to satisfy a reception request, with a default of 1 
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byte and a maximum of the high watermark. For output, the low watermark sets the minimum 

amount of space available before transmission can be attempted; the default is the size of an 

mbuf cluster. These values also control the operation of the select system call when it is used to 

test for ability to read or write the socket. 

When connection indications are received at the communication-protocol level, the connection 

may require further processing to complete. Depending on the protocol, that processing may be 

done before the connection is returned to the listening process, or the listening process may be 

allowed to confirm or reject the connection request. Sockets used to accept incoming connection 

requests maintain two associated queues of sockets. The list of sockets headed by the so_incomp 

field represents a queue of connections that must be completed at the protocol level before being 

returned. The so_comp field heads a list of sockets that are ready to be returned to the listening 

process. Like the data queues, the queues of connections also have an application-controllable 

limit. The limit applies to both queues. Because the limit may include sockets that cannot yet be 

accepted, the system enforces a limit 50 percent larger than the nominal limit. 

Although a connection may be established by the network protocol, the application may choose 

not to accept the established connection or may close down the connection immediately after 

discovering the identity of the client. A network protocol may delay completion of a connection 

until after the application has obtained control with the accept system call. The application 

might then accept or reject the connection explicitly with a protocol-specific mechanism. 

Otherwise, if the application does a data transfer, the connection is confirmed; if the application 

closes the socket immediately, the connection is rejected. 

Socket Addresses 

Sockets may be labelled so that peers can connect to them. The socket layer treats an address as 

an opaque object. Applications supply and receive addresses as tagged, variable-length arrays of 

bytes. Addresses are placed in mbufs within the socket layer. A structure called a sockaddr, 

shown in Figure 12.7, is used as a template for referring to the identifying tag and length of each 

address. Most protocol layers support a single address type as identified by the tag, known as 

the address family. 

 

Figure 12.7 Socket-address template structure. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig07
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It is common for addresses passed in by an application to reside in mbufs only long enough for 

the socket layer to pass them to the supporting protocol for transfer into a fixed-size address 

structure—for example, when a protocol records an address in a protocol control block. The 

sockaddr structure is the common means by which the socket layer and network-support 

facilities exchange addresses. The size of the generic data array was chosen to be large enough to 

hold many types of addresses directly, although generic code cannot depend on having sufficient 

space in a sockaddr structure for an arbitrary address. For example, the local communication 

domain (formerly known as the UNIX domain) stores filesystem pathnames in mbufs and 

allows socket names as large as 104 bytes, as shown in Figure 12.8. Both IPv4 and IPv6 use a 

fixed-size structure that combines a network address and a port number. The difference is in the 

size of the address (4 bytes for IPv4 and 16 bytes for IPv6) and in the fact that IPv6 address 

structures carry other information including the scope and flow information. Both Internet 

protocols reserve space for addresses in a protocol-specific control-block data structure and free 

up mbufs that contain addresses after copying the addresses. 

 

Figure 12.8 Local-domain, IPv4, and IPv6 address structures. 

Locks 

Section 4.3 discussed the need for locking structures in a multiprocessing kernel. The 

networking subsystem uses these locks internally to protect its data structures. 

When multiprocessing features were first introduced, the entire networking subsystem was 

placed, with the rest of the kernel, under the giant lock. During the development of FreeBSD 5, 

several pieces of networking code were modified to run without the giant lock. As of FreeBSD 10, 

all parts of the networking system are locked using fine-grained locks and never resort to using 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
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the giant lock. Specific instances of networking-subsystem locks are discussed in the section in 

which they are most relevant. 

12.5 Connection Setup 

For two processes to pass information between them, an association must be established. The 

steps involved in creating an association (socket, connect, listen, accept, etc.) were described in 

Section 12.1. This section describes the operation of the socket layer in establishing associations. 

Since the state associated with a connectionless transfer of data is fully encapsulated in each 

message that is sent, our discussion will focus on connection-oriented associations established 

with the connect, listen, and accept system calls. 

Connection establishment in the client–server model is asymmetric. A client actively initiates a 

connection to obtain service, whereas a server passively accepts connections to provide service. 

Figure 12.9 shows the state-transition diagram used by a socket to initiate or accept connections. 

State transitions are initiated either by user actions (i.e., system calls) or by protocol actions that 

result from receiving network messages or servicing timers that expire. 

 

Figure 12.9 Socket state transitions during process rendezvous. 

Sockets are normally used to send and receive data. When they are used in establishing a 

connection, they are treated somewhat differently. If a socket is to be used to accept a 

connection, the listen system call must be used. The listen call invokes solisten(), which notifies 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig09
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the supporting protocol that the socket will be receiving connections, establishes an empty list of 

pending connections at the socket (through the so_comp field), and then marks the socket as 

accepting connections, SO_ACCEPTCON. At the time a listen is done, a backlog parameter is 

specified by the application. This parameter sets a limit on the number of incoming connections 

that the system will queue awaiting acceptance by the application. The system enforces a 

maximum on this limit to prevent resource exhaustion. Once a socket is set up to receive 

connections, the remainder of the work in creating connections is managed by the protocol 

layers. For each connection established at the server side, a new socket is created with the 

sonewconn() routine. These new sockets may be placed on the socket’s queue of partially 

established connections (see Figure 12.10) while the connections are being completed, or they 

may be placed directly into the queue of connections ready to be passed to the application via 

the accept call. The new sockets might be ready to be passed to the application either because no 

further protocol action is necessary to establish the connection or because the protocol allows 

the listening process to confirm or reject the connection request. In the latter case, the socket is 

marked as confirming (state bit SS_CONFIRMING) so that the pending connection request will 

be confirmed or rejected as needed. Once sockets on the queue of partly established connections 

are ready, they are moved to the queue of connections completed and pending acceptance by an 

application. When an accept system call is made to obtain a connection, the system verifies that 

a connection is present on the socket’s queue of ready connections. If no connection is ready to 

be returned, the system puts the process to sleep until one arrives (unless nonblocking I/O is 

being used with the socket, in which case an EAGAIN error is returned). When a connection is 

available, the associated socket is removed from the queue, a new file descriptor is allocated to 

reference the socket, and the result is returned to the caller. If the accept call indicates that the 

peer’s identity is to be returned, the peer’s address is obtained from the protocol layer and is 

copied into the supplied buffer. 

 

Figure 12.10 Connections queued at a socket awaiting an accept call. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig10
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On the client side, an application requests a connection with the connect system call, supplying 

the address of the peer socket to which to connect. The system verifies that a connection attempt 

is not already in progress for that socket and then invokes soconnect() to initiate the connection. 

The soconnect() routine first checks the socket to see whether the latter is already connected. If 

the socket is already connected, and supports a connection-oriented protocol, the connection is 

first dropped and then an EINVAL error is returned to the caller. With the socket in an 

unconnected state, soconnect() makes a request to the protocol layer to initiate the new 

connection. Once the connection request has been passed to the protocol layer, if the connection 

request is incomplete, the system puts the process to sleep to await notification by the protocol 

layer that a completed connection exists. A nonblocking connect may return at this point, but a 

process awaiting a completed connection will awaken only when the connection request has 

been completed—either successfully or with an error condition. If the socket supports a 

datagram protocol, soconnect() sets a destination network address for the socket so that the 

program can use the write system call to send data, rather than the commonly used send or 

sendmsg calls. 

A socket’s state during connection establishment is managed jointly by the socket layer and the 

supporting protocol layer. The socket’s state value is never altered directly by a protocol; to 

promote modularity, all modifications are performed by surrogate socket-layer routines, such as 

soisconnected(). These routines modify the socket state as indicated and notify any waiting 

processes. The supporting protocol layers never use synchronization or signalling facilities to 

directly modify the socket structure. Errors that are detected asynchronously are communicated 

to a socket in its so_error field. The socket layer always inspects the value of so_error on return 

from a call to sleep(); this field reports errors detected asynchronously by the protocol layers. 

For example, if a connection request fails because the protocol layer detects that the requested 

service is unavailable, the so_error field is set to ECONNREFUSED before the requesting 

process is awakened. 

12.6 Data Transfer 

Most of the work done by the socket layer lies in sending and receiving data. Note that the 

socket layer itself explicitly refrains from imposing any structure on data transmitted or received 

via sockets other than optional record boundaries. Within the overall 

interprocess-communication model, any data interpretation or structuring is logically isolated 

in the implementation of the communication domain. An example of this logical isolation is the 

ability to pass file descriptors between processes using local-domain sockets. 

Sending and receiving data can be done with any one of several system calls. The system calls 

vary according to the amount of information to be transmitted and received, and according to 
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the state of the socket doing the operation. For example, the write system call may be used with 

a socket that is in a connected state, since the destination of the data is known to the socket. The 

sendto or sendmsg system calls, however, allow the process to specify the destination for a 

message explicitly. Likewise, when data are received, the read system call allows a process to 

receive data on a connected socket without receiving the sender’s address; the recvfrom and 

recvmsg system calls allow the process to retrieve the incoming message and the sender’s 

address. The differences between these calls were summarized in Section 12.1. The recvmsg and 

sendmsg system calls allow scatter-gather I/O with multiple user-provided buffers. In addition, 

recvmsg reports additional information about a received message, such as whether it was 

expedited (out of band), whether it completes a record, or whether it was truncated because a 

buffer was too small. The decision to provide many different system calls rather than only a 

single general interface is debatable. It would have been possible to implement a single 

system-call interface and to provide simplified interfaces to applications via user-level library 

routines. However, the single system call would have to be the most general call, which has 

somewhat higher overhead. Internally, all transmission and reception requests are converted to 

a uniform format and are passed to the socket-layer sendit() and recvit() routines, respectively. 

Transmitting Data 

The sendit() routine is responsible for gathering all the system-call parameters from the 

application into the kernel’s address space (except for the actual data) and for invoking the 

sosend() routine to do the transmission. The parameters may include the following components, 

illustrated in Figure 12.1: 

• An address to which data will be sent, if the socket has not been connected 

• Optional ancillary data (control data) associated with the message; ancillary data can include 

protocol-specific data associated with a message, protocol option information, or access rights 

• Normal data, specified as an array of buffers (see Section 7.1) 

• Optional flags, including out-of-band and end-of-record flags 

The sosend() routine handles most of the socket-level data-transmission options, including 

requests for transmission of out-of-band data and for transmission without network routing. 

This routine is also responsible for checking socket state—for example, seeing whether a 

required connection has been made, whether transmission is still possible on the socket, and 

whether a pending error should be reported rather than transmission attempted. In addition, 

sosend() is responsible for putting processes to sleep when their data transmissions exceed the 

space available in the socket’s send buffer. The actual transmission of data is done by the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig01
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supporting communication protocol; sosend() copies data from the user’s address space into 

mbufs in the kernel’s address space and then makes calls to the protocol to transfer the data. 

Most of the work done by sosend() lies in checking the socket state, handling flow control, 

checking for termination conditions, and breaking up an application’s transmission request into 

one or more protocol transmission requests. The request must be broken up only when the size 

of the user’s request plus the number of data queued in the socket’s send data buffer exceeds the 

socket’s high watermark. It is not permissible to break up a request if the protocol is atomic, 

because each request made by the socket layer to the protocol modules implicitly indicates a 

boundary in the data stream. Most datagram protocols are of this type. Honoring each socket’s 

high watermark ensures that no process or group of processes can monopolize system resources. 

For sockets that guarantee reliable data delivery, a protocol will normally maintain a copy of all 

transmitted data in the socket’s send queue until receipt is acknowledged by the receiver. 

Protocols that provide no assurance of delivery normally accept data from sosend() and directly 

transmit the data to the destination without keeping a copy, but sosend() itself does not 

distinguish between reliable and unreliable delivery. 

If a socket has insufficient space in its send buffer to hold all the data to be transmitted, sosend() 

uses the following strategy: If the protocol is atomic, sosend() verifies that the message is no 

larger than the send buffer size; if the message is larger, it returns an EMSGSIZE error. If the 

available space in the send queue is less than the send low watermark, the transmission is 

deferred. If the process is not using nonblocking I/O, the process is put to sleep until more space 

is available in the send buffer; otherwise, an EAGAIN error is returned. When space is available, 

a protocol transmit request is formulated according to the available space in the send buffer. 

The sosend() routine copies data from the user’s address space into mbuf clusters whenever the 

data are larger than the minimum cluster size (specified by MINCLSIZE). If a transmission 

request for a nonatomic protocol is large, each protocol transmit request will normally contain a 

full mbuf cluster. Although additional data could be appended to the mbuf chain before delivery 

to the protocol, it is preferable to pass the data to lower levels immediately, which allows better 

pipelining because data reach the bottom of the protocol stack earlier and can begin physical 

transmission sooner. This procedure is repeated until no space remains; it resumes each time 

additional space becomes available. This strategy tends to preserve the application-specified 

message size and helps to avoid fragmentation at the network level. The latter benefit is 

important because system performance is significantly improved when data-transmission units 

are large—for example, the size of an mbuf cluster. 

When the receiver or network is slower than the transmitter, the underlying connection-based 

transmission protocols usually apply some form of flow control to delay the sender’s 
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transmission. Here, the amount of data that the receiver will allow the sender to transmit can 

decrease to a size that the sender’s natural transmission size drops below its optimal value. To 

retard this effect, sosend() delays transmission rather than breaking up the data to be 

transmitted in the hope that the receiver will reopen its flow-control window and allow the 

sender to perform optimally. The effect of this scheme is subtle and is also related to the 

networking subsystem’s optimized handling of incoming data packets that are a multiple of the 

machine’s page size. 

Receiving Data 

The soreceive() routine receives data queued at a socket. As the counterpart to sosend(), 

soreceive() appears at the same level in the internal software structure and does similar tasks. 

Three types of data may be queued for reception at a socket: in-band data, out-of-band data, and 

ancillary data, such as access rights. In-band data may also be tagged with the sender’s address. 

Handling of out-of-band data varies by protocol. They may be placed at the beginning of the 

receive buffer or at the end of the buffer to appear in order with other data, or they may be 

managed in the protocol layer separately from the socket’s receive buffer. In the first two cases, 

they are returned by normal receive operations. In the final case, they are retrieved through a 

special interface when requested by the user. These options allow varying styles of urgent data 

transmission. 

The soreceive() routine checks the socket’s state, including the receive data buffer, for incoming 

data, errors, or state transitions, and processes queued data according to their type and the 

actions specified by the caller. A system-call request may specify that only out-of-band data 

should be retrieved (MSG_OOB) or that data should be returned but not removed from the data 

buffer (by specifying the MSG_PEEK flag). Receive calls normally return as soon as the low 

watermark is reached. Because the default is one byte, the call returns when any data are 

present. The MSG_WAITALL flag specifies that the call should block until it can return all the 

requested data, if possible. Alternatively, the MSG_DONTWAIT flag causes the call to act as 

though the socket was in nonblocking mode, returning EAGAIN rather than blocking. 

Data present in the receive data buffer are organized in one of several ways, depending on 

whether message boundaries are preserved. There are three common cases for stream, datagram, 

and sequenced-packet sockets. In the general case, the receive data buffer is organized as a list 

of messages (see Figure 12.11). Each message can include a sender’s address (for datagram 

protocols), ancillary data, and normal data. Depending on the protocol, it is also possible for 

expedited or out-of-band data to be placed into the normal receive buffer. Each mbuf chain on a 

list represents a single message or, for the final chain, a possibly incomplete record. Protocols 

that supply the sender’s address with each message place a single mbuf containing the address 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig11
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at the front of message. Immediately following any address is an optional mbuf containing any 

ancillary data. Regular data mbufs follow the ancillary data. Names and ancillary data are 

distinguished by the type field in an mbuf; addresses are marked as MT_SONAME, whereas 

ancillary data are tagged as MT_CONTROL. Each message other than the final one is 

considered to be terminated. The final message is terminated implicitly when an atomic protocol 

is used, such as most datagram protocols. Sequenced-packet protocols could treat each message 

as an atomic record, or they could support records that could be arbitrarily long, as is done in 

SCTP, which is described in Section 14.7. In the latter case, the final record in the buffer might 

or might not be complete, and a flag on the final mbuf, M_EOR, marks the termination of a 

record. Record boundaries (if any) are generally ignored by a stream protocol. However, 

transition from out-of-band data to normal data in the buffer, or presence of ancillary data, 

causes logical boundaries. A single receive operation never returns data that cross a logical 

boundary. Note that the storage scheme used by sockets allows them to compact data of the 

same type into the minimal number of mbufs required to hold those data. 

 

Figure 12.11 Data queueing for datagram socket. 

On entry to soreceive(), a check is made to see whether out-of-band data are being requested. 

Whenever out-of-band data are available from the protocol layer, they are returned to the caller 
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immediately on request. Otherwise, data from the normal queue have been requested. The 

soreceive() function first checks whether the socket is in confirming state, with the peer 

awaiting confirmation of a connection request. If it is, no data can arrive until the connection is 

confirmed, and the protocol layer is notified that the connection should be completed. The 

soreceive() routine then checks the receive data buffer character count to see whether data are 

available. If they are, the call returns with at least the data currently available. If no data are 

present, soreceive() consults the socket’s state to find out whether data might be forthcoming. 

Data may no longer be received because the socket is disconnected (and a connection is required 

to receive data) or because the reception of data has been terminated with a shutdown by the 

socket’s peer. In addition, if an error from a previous operation was detected asynchronously, 

the error needs to be returned to the user; soreceive() checks the so_error field after checking 

for data. If no data or error exists, data might still arrive, and if the socket is not marked for 

nonblocking I/O, soreceive() puts the process to sleep to await the arrival of new data. 

When data arrive for a socket, the supporting protocol notifies the socket layer by calling 

sorwakeup(). Soreceive() can then process the contents of the receive buffer, observing the 

data-structuring rules described previously. Soreceive() first removes any address that must be 

present, then optional ancillary data, and finally normal data. If the application has provided a 

buffer for the receipt of ancillary data, they are passed to the application in that buffer; 

otherwise, they are discarded. The removal of data is slightly complicated by the interaction 

between in-band and out-of-band data managed by the protocol. The location of the next 

out-of-band datum can be marked in the in-band data stream and used as a record boundary 

during in-band data processing. That is, when out-of-band data are received by a protocol that 

holds out-of-band data separately from the normal buffer, the corresponding point in the 

in-band data stream is marked. Then, when a request is made to receive in-band data, only data 

up to the mark will be returned. This mark allows applications to synchronize the in-band and 

out-of-band data streams so that, for example, received data can be flushed up to the point at 

which out-of-band data are received. Each socket has a field, so_oobmark, that contains the 

character offset from the front of the receive data buffer to the point in the data stream at which 

the last out-of-band message was received. When in-band data are removed from the receive 

buffer, the offset is updated so that data past the mark will not be mixed with data preceding the 

mark. The SS_RCVATMARK bit in a socket’s state field is set when so_oobmark reaches zero to 

show that the out-of-band data mark is at the beginning of the socket receive buffer. An 

application can test the state of this bit with the SIOCATMARK ioctl call to find out whether all 

in-band data have been read up to the point of the mark. 

Once data have been removed from a socket’s receive buffer, soreceive() updates the state of the 

socket and notifies the protocol layer that data have been received by the user. The protocol 

layer can use this information to release internal resources, to trigger end-to-end 



 

720 

acknowledgment of data reception, to update flow-control information, or to start a new data 

transfer. Finally, if any access rights were received as ancillary data, soreceive() passes them to a 

communication-domain-specific routine to convert them from their internal representation to 

the external representation. 

The soreceive() function returns a set of flags that are supplied to the caller of the recvmsg 

system call via the msg_flags field of the msghdr structure (see Figure 12.1). The possible flags 

include MSG_EOR to specify that the received data complete a record for a nonatomic 

sequenced-packet protocol, MSG_OOB to specify that expedited (out-of-band) data were 

received from the normal socket receive buffer, MSG_TRUNC to specify that an atomic record 

was truncated because the supplied buffer was too small, and MSG_CTRUNC to specify that 

ancillary data were truncated because the control buffer was too small. 

12.7 Socket Shutdown 

Although closing a socket and reclaiming its resources appears at first glance to be a 

straightforward operation, it can be complicated. The complexity arises because of the implicit 

semantics of the close system call. In certain situations (e.g., when a process exits), a close call is 

never expected to fail. However, when a socket promising reliable delivery of data is closed with 

data still queued for transmission or awaiting acknowledgment of reception, the socket must 

attempt to transmit the data, perhaps indefinitely, for the close call to maintain the socket’s 

advertised semantics. If the socket discards the queued data to allow the close to complete 

successfully, it violates its promise to deliver data reliably. Discarding data can cause naive 

processes, which depend on the implicit semantics of close, to work unreliably in a network 

environment. However, if sockets block until all data have been transmitted successfully, then, 

in some communication domains, a close may never complete! 

In an effort to address this problem, the socket layer compromises yet maintains the semantics 

of the close system call. Figure 12.12 shows the possible state transitions for a socket from a 

connected to a closed state. In normal operation, closing a socket causes any queued but 

unaccepted connections to be discarded. If the socket is in a connected state, a disconnect is 

initiated. The socket is marked to indicate that a file descriptor is no longer referencing it, and 

the close operation returns successfully. When the disconnect request completes, the network 

support notifies the socket layer, and the socket resources are reclaimed. The network layer may 

attempt to transmit any data queued in the socket’s send buffer, although there is no guarantee  

that it will. However, commonly used connection-oriented protocols generally attempt to 

transmit any queued data asynchronously after the close call returns, preserving the normal 

semantics of close on a file. 
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Figure 12.12 Socket-state transitions during shutdown. 

Alternatively, a socket may be marked explicitly to force the application process to linger when 

closing until pending data have drained and the connection has shut down. This option is 

marked in the socket data structure using the setsockopt system call with the SO_LINGER 

option. When an application indicates that a socket is to linger, it also specifies a duration for 

the lingering period. The application can then block for as long as the specified duration while 

waiting for pending data to drain. If the lingering period expires before the disconnect is 

completed, the socket layer then notifies the network that it is closing, possibly discarding any 

data still pending. Some protocols handle the linger option differently. In particular, if the linger 

option is set with a duration of zero, the protocol may discard pending data rather than attempt 

to deliver them asynchronously. 

12.8 Network-Communication Protocol Internal Structure 

The network subsystem is logically divided into three layers as shown in Figure 12.13. These 

three layers manage the following tasks: 

1. Interprocess data transport 

2. Internetwork addressing and message routing 

3. Data-link layer 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig13
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Figure 12.13 Network subsystem layering. The boxes on the left name the standard layers; the 

boxes on the right name specific examples of protocols used at those layers. 

The first two layers are made up of modules that implement communication protocols. The 

software in the third layer handles protocols, such as Ethernet and WiFi, that are responsible for 

encapsulating and decapsulating packets over physical or wireless links. 

The topmost layer in the network subsystem is termed the transport layer. The transport 

layer must provide an addressing structure that permits communication between sockets and 

any protocol mechanisms necessary for socket semantics, such as reliable data delivery. The 

second layer, the network layer, is responsible for the delivery of data destined for remote 

transport or for network-layer protocols. In providing internetwork delivery, the network layer 

must manage a private routing database or use the systemwide facility for routing messages to 

their destination host. Beneath the network layer is the datalink layer, which handles the 

differences between various hardware standards for networking, such as Ethernet and WiFi. The 

link layer is responsible for transporting messages between hosts connected to a common 

transmission medium. The link layer is mainly concerned with driving the network devices 

involved and performing any necessary link-level protocol encapsulation and 

decapsulation. The transport, network, and link layers of the network subsystem correspond 

to the transport, network, and link layers of the ISO Open Systems Interconnection Reference 

Model [ISO, 1984], respectively. 

The internal structure of the networking software is not directly visible to users. Instead, all 

networking facilities are accessed through the socket layer. Each communication protocol that 

permits access to its facilities exports a set of user request routines to the socket layer. These 

routines are used by the socket layer in providing access to network services. 

The layering described here is a logical layering, meaning that the software that implements 

network services may use more or fewer communication protocols according to the design of the 

network architecture being supported. For example, raw sockets often use a null 

implementation at one or more layers. At the opposite extreme, tunneling of one protocol 
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through another uses one network protocol to encapsulate and deliver packets for another 

protocol and involves multiple instances of some layers. 

Data Flow 

Early versions of BSD were used as end systems in a network. They were either the source or 

destination of communication. Although many installations used a workstation as an office 

router, dedicated hardware did the more complex tasks of bridging and routing. At the time of 

the original design and implementation of the networking subsystem, the possibility of securing 

data by encrypting packets was still far too computationally slow. Since that initial design, many 

different uses have been made of the code. Bridges and routers can be built out of stock parts 

and the advent of specialized cryptographic accelerators has made packet encryption practical in 

almost any environment. These facts conspire to make discussion of data flow within the 

network subsystem more complex than it was in earlier systems. 

There are four paths through a network node: 

Inbound 

Destined for this node and possibly a user-level application 

Outbound 

Originating on this node and destined, via a network, for another 

Forward 

Whether bridged or routed, the packets are not for this node but to be sent on to another 

network or host 

Error 

A packet has arrived that requires the network subsystem to send a response without the 

involvement of a user-level application. 

Inbound data received at a network interface flow upward through communication protocols 

until they are placed in the receive queue of the destination socket. Outbound data flow down to 

the network subsystem from the socket layer through calls to the transport-layer modules that 

support the socket abstraction. The downward flow of data typically is started by system calls. 

The data flowing in the outbound direction are handled by a transport protocol (see Chapter 14), 

which then hands the data over to the network layer protocols (see Chapter 13) and thence on to 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
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the data link protocols, and are finally transmitted by a network device driver (see Chapter 8). 

Data flowing upward are received asynchronously and are passed from the link layer to the 

appropriate communication protocol through direct dispatch via the netisr subsystem, as shown 

in Figure 12.14. The system handles inbound network traffic by dispatching it directly from the 

device driver (see Section 12.8), through the link, network, and transport layers, until it is finally 

deposited in a socket buffer. When possible, FreeBSD processes all packets to completion. 

 

Figure 12.14 Example of inbound flow of a data packet in the network subsystem. Key: 

Ethernet—Ethernet header; IPv4—Internet Version 4 Protocol header; TCP—Transmission 

Control Protocol header. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
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https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
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Communication Protocols 

A network protocol is defined by a set of conventions including packet formats, states, and state 

transitions. A communication-protocol module implements a protocol and is made up of a 

collection of procedures and private data structures. Protocol modules are described by a 

protocol-switch structure that contains the set of externally visible entry points and certain 

attributes shown in Figure 12.15. The socket layer interacts with a communication protocol 

solely through the latter’s protocol-switch structure, recording the address of the structure in 

the socket’s so_proto field. This isolation of the socket layer from the networking subsystem is 

important in ensuring that the socket layer provides users with a consistent interface to all the 

protocols supported by a system. When a socket is created, the socket layer looks up the domain 

for the protocol family to find the array of protocol-switch structures for the family (see Section 

12.4). A protocol is selected from the array based on the type of socket supported (the type field) 

and, optionally, a specific protocol number (the protocol field). The protocol switch has a back 

pointer to the domain (the domain field). Within a protocol family, every protocol capable of 

supporting a socket directly (for example, most transport protocols) must provide a 

protocol-switch structure describing the protocol. Lower-level protocols such as network-layer 

protocols may also have protocol-switch entries, although whether they do can depend on 

conventions within the protocol family. 

 

Figure 12.15 Protocol-switch structure. 

Before a protocol is first used, the protocol’s initialization routine is invoked. Thereafter, the 

protocol will be invoked for timer-based actions every 200 milliseconds if the fast timeout entry 

is present, and every 500 milliseconds if the slow timeout entry point is present. In general, 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
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protocols use the slower timer for most timer processing; the major use of the fast timeout is for 

delayed-acknowledgment processing in reliable transport protocols. The drain entry is provided 

so that the system can notify the protocol if the system is low on memory and would like any 

noncritical data to be discarded. 

Protocols may pass data between their layers in chains of mbufs (see Section 12.3) using the data 

input and data output routines. The data input routine passes data up toward the user, whereas 

the data output routine passes data down toward the network. Similarly, control information 

passes up and down via the control-input and control-output routines. The table of 

user-request routines is the interface between a protocol and the socket level; they are 

described in detail in Section 12.9. 

In general, a protocol is responsible for storage space occupied by any of the arguments passed 

downward via these procedures and must either pass the space onward or dispose of it. On 

output, the lowest level reached must free space passed as arguments; on input, the highest level 

is responsible for freeing space passed up to it. Auxiliary storage needed by protocols is allocated 

from the mbuf pool. This space is used temporarily to formulate messages or to hold variablesize 

socket addresses. Mbufs allocated by a protocol for private use must be freed by that protocol 

when they are no longer in use. 

The flags field in a protocol’s protocol-switch structure describes the protocol’s capabilities and 

certain aspects of its operation that are pertinent to the operation of the socket level; the flags 

are listed in Table 12.7. Protocols that are connection based specify the PR_CONNREQUIRED 

flag, so that socket routines will never attempt to send data before a connection has been 

established. If the PR_WANTRCVD flag is set, the socket routines will notify the protocol when 

the user has removed data from a socket’s receive queue. This notification allows a protocol to 

implement acknowledgment on user receipt and also to update flow-control information based 

on the amount of space available in the receive queue. The PR_ADDR field indicates that any 

data placed in a socket’s receive queue by the protocol will be preceded by the address of the 

sender. The PR_ATOMIC flag specifies that each user request to send data must be done in a 

single protocol-send request; it is the protocol’s responsibility to maintain record boundaries on 

data to be sent. This flag also implies that messages must be received and delivered to processes 

atomically. The PR_RIGHTS flag indicates that the protocol supports the transfer of access 

rights; this flag is currently used by only those protocols in the local communication domain. 

Connection-oriented protocols that allow the user to set up, send data, and tear down a 

connection all in a single sendto call have the PR_IMPLOPCL flag set. The PR_LASTHDR flag is 

used by secure protocols, such as IPSec, where several headers must be processed to get the 

actual data. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec3
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Table 12.7 Protocol flags. 

12.9 Socket-to-Protocol Interface 

The interface from the socket routines to the communication protocols is through the table of 

user-request routines and the control-output routine defined in the protocol-switch structure for 

each protocol. When the socket layer requires services of a supporting protocol, it makes a call 

to a function in Table 12.8. The control-output routine implements the getsockopt and 

setsockopt system calls; the user-request routines are used for all other operations. Calls to the 

control-output routine specify SOPT_GET to get the current value of an option, or SOPT_SET 

to set the value of an option. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab08
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Table 12.8 User-request routines. 

Protocol User-Request Routines 

Calls to the user-request routines have a routine-specific signature, but the first argument is 

always a pointer to a socket structure that specifies the socket for which the operation is 

intended. An mbuf data chain is supplied for output operations and for certain other operations 

where a result is to be returned. A pointer to a sockaddr structure is supplied for 

address-oriented requests, such as pru_bind(), pru_connect(), and pru_send() (when an 

address is specified—e.g., the sendto call). Where it is used, the control parameter is a pointer to 
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an optional mbuf chain containing protocol-specific control information passed via the sendmsg 

call. Each protocol is responsible for disposal of the data mbuf chains on output operations. A 

nonzero return value from a user-request routine indicates an error number that should be 

passed to higher-level software. A description of each of the possible requests follows: 

• pru_attach(): attach protocol to socket. When a protocol is first bound to a socket (with the 

socket system call), the protocol module’s pru_attach() routine is called. It is the responsibility 

of the protocol module to allocate any resources necessary. The attach routine will always 

precede any of the other operations and will occur only once per socket. 

• pru_detach(): detach protocol from socket. This operation is the inverse of the attach routine 

and is used at the time that a socket is deleted. The protocol module may deallocate any 

resources that it allocated for the socket in a previous pru_attach() call. 

• pru_bind(): bind address to socket. When a socket is initially created, it has no address bound 

to it. This routine binds an address to an existing socket. The protocol module must verify that 

the requested address is valid and is available for use. 

• pru_listen(): listen for incoming connections. A listen request indicates that the user wishes 

to listen for incoming connection requests on the associated socket. The protocol module should 

make any state changes needed to meet this request (if possible). A call to the listen routine 

always precedes any request to accept a connection. 

• pru_connect(): connect socket to peer. The connect request routine indicates that the user 

wants to establish an association. The addr parameter describes the peer to which a connection 

is desired. The effect of a connect request may vary depending on the protocol. Stream protocols 

use this request to initiate establishment of a network connection. Datagram protocols simply 

record the peer’s address in a private data structure, where they use it as the destination address 

of all outgoing packets and as a source filter for incoming packets. There are no restrictions on 

how many times a connect routine may be used after an attach, although most stream protocols 

allow only one connect call. 

• pru_accept(): accept pending connection. Following a successful listen request and the arrival 

of one or more connections, this routine is called to indicate that the user is about to accept a 

socket from the queue of sockets ready to be returned. The socket supplied as a parameter is the 

socket that is being accepted; the protocol module is expected to fill in the supplied buffer with 

the address of the peer connected to the socket. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_197
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• pru_disconnect(): disconnect connected socket. This routine eliminates an association created 

with the connect routine. It is used with datagram sockets before a new association is created; it 

is used with stream protocols only when the socket is closed. 

• pru_shutdown(): shut down socket data transmission. This call indicates that no more data 

will be sent. The protocol may, at its discretion, deallocate any data structures related to the 

shutdown or the protocol may leave all that work for its pru_detach() routine. The module may 

also notify a connected peer of the shutdown at this time. 

• pru_rcvd(): data were received by user. This routine is called only if the protocol entry in the 

protocol-switch table includes the PR_WANTRCVD flag. When the socket layer removes data 

from the receive queue and passes them to the user, this routine will be called in the protocol 

module. This routine may be used by the protocol to trigger acknowledgments, refresh 

windowing information, initiate data transfer, and so on. This routine is also called when an 

application attempts to receive data on a socket that is in the confirming state, indicating that 

the protocol must accept the connection request before data can be received (see Section 12.5). 

• pru_send(): send user data. Each user request to send data is translated into one or more calls 

to the protocol module’s pru_send() routine. A protocol may indicate that a single user send 

request must be translated into a single call to the pru_send() routine by specifying the 

PR_ATOMIC flag in its protocol description. The data to be sent are presented to the protocol as 

a chain of mbufs, and an optional address is supplied in the addr parameter. The protocol is 

responsible for preserving the data in the socket’s send queue if it is not able to send them 

immediately or if it may need them at some later time (e.g., for retransmission). The protocol 

must eventually pass the data to a lower level or free the mbufs. 

• pru_abort(): abnormally terminate service. This routine effects an abnormal termination of 

service. The protocol should delete any existing associations. 

• pru_control(): perform control operation. The control request routine is called when a user 

does an ioctl system call on a socket and the ioctl is not intercepted by the socket routines. This 

routine allows protocol-specific operations to be provided outside the scope of the common 

socket interface. The cmd parameter contains the actual ioctl request code. The data parameter 

contains any data relevant to the command being issued and the ifp parameter contains a 

pointer to a network-interface structure if the ioctl operation pertains to a particular network 

interface. 

• pru_sense(): sense socket status. The sense request routine is called when the user makes an 

fstat system call on a socket; it requests the status of the associated socket. This call returns a 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_61
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standard stat structure that typically contains only the optimal transfer size for the connection 

(based on buffer size, windowing information, and maximum packet size). 

• pru_rcvoob(): receive out-of-band data. This routine requests that any out-of-band data now 

available are to be returned. An mbuf is passed to the protocol module, and the protocol should 

either place data in the mbuf or attach new mbufs to the one supplied if there is insufficient 

space in the single mbuf. An error may be returned if out-of-band data are not (yet) available or 

have already been consumed. The flags parameter contains any options, such as MSG_PEEK, 

that should be observed while this request is carried out. 

• pru_sosend(): a generic routine, usable by system calls, as well as the kernel, to send data 

using a protocol. 

• pru_soreceive(): routine that implements the kernel’s part of the recv and recvmsg system 

calls. 

• pru_sopoll(): check a socket to see if it has any available data. Used by both the select and poll 

system calls. 

• pru_sockaddr(): retrieve local socket address. This routine returns the local address of the 

socket if one has been bound to the socket. The address is returned in the nam parameter, which 

is a pointer to a sockaddr structure. 

• pru_peeraddr(): retrieve peer socket address. This routine returns the address of the peer to 

which the socket is connected. The socket must be in a connected state for this request to 

succeed. The address is returned in the nam parameter, which is a pointer to a sockaddr 

structure. 

• pru_connect2(): connect two sockets without binding addresses. In this routine, the protocol 

module is supplied two sockets and is asked to establish a connection between the two without 

binding any addresses, if possible. The system uses this call in implementing the socketpair 

system call. 

• pru_sosetlabel(): Set a MAC label on a socket. 

• pru_bindat(): PF_LOCAL specific bind routine for use with Capsicum and capabilities. 

• pru_connectat(): PF_LOCAL specific connect routine for use with Capsicum and capabilities. 

• pru_flush(): used only by SCTP to flush input or output data. 

• pru_close(): close down the connection associated with a socket. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_249
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Protocol Control-Output Routine 

A call to the control-output routine is of the form 

Click here to view code image 

int (*pr->pr_ctloutput)( 

    struct socket *so, 

    struct sockopt *sopt); 

where so is the socket to be modified and sopt is a socket option structure. 

Click here to view code image 

enum sopt_dir { SOPT_GET, SOPT_SET }; 

 

struct sockopt { 

    enum   sopt_dir sopt_dir; 

    int    sopt_level; 

    int    sopt_name; 

    void   *sopt_val; 

    size_t sopt_valsize; 

    struct thread *sopt_td; 

}; 

The direction is either SOPT_SET to set an option or SOPT_GET to retrieve it. The sopt_level 

member indicates the layer of software that should interpret the option request. A sopt_level of 

SOL_SOCKET is specified to control an option at the socket layer. When the option is to be 

processed by a protocol module below the socket layer, level is set to the appropriate protocol 

number (the same number used in the socket system call). Each level has its own set of option 

names; this name is interpreted only by the targeted layer of software. The rest of the structure 

contains a pointer to the value being passed into or out of the module, the size of the pointed-to 

data, and a pointer to a thread structure. If the operation takes place wholly inside the kernel, 

then the pointer to the thread structure is null. 

In supporting the getsockopt and setsockopt system calls, the socket layer always invokes the 

control-output routine of the protocol attached to the socket. To access lower-level protocols, 

each control-output routine must pass control-output requests that it does not intend to 

perform downward to the next protocol in the protocol hierarchy. Chapter 14 describes some of 

the options provided by the protocols in the Internet-communication domain. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p630pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p631pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14


 

733 

12.10 Protocol-to-Protocol Interface 

The interface between protocol modules uses the pr_usrreqs() routines as well as the 

pr_ctloutput() routine. The pr_usrreqs() and pr_ctloutput() routines are used by the socket 

layer to communicate with protocols. 

Although imposing a standard calling convention for all a protocol’s entry points might 

theoretically permit an arbitrary interconnection of protocol modules, it would be difficult in 

practice. Crossing a protocol-family boundary—for example, between IPv4 and IPX—would 

require a network address to be converted from the format of the caller’s domain to the format 

of the receiver’s domain. Consequently, connection of protocols in different communication 

domains is not generally supported, and calling conventions for the routines listed in the 

preceding paragraph are typically standardized on a per-domain basis. (However, the system 

does support encapsulation of packets from one protocol into packets of a protocol in another 

family to tunnel one protocol through another.) 

In this section, we briefly examine the general framework and calling conventions of protocols. 

In Chapter 14, we examine specific protocols to see how they fit into this framework. 

pr_output 

Each protocol has a different calling convention for its output routine. This lack of 

standardization is a reason that protocol modules cannot be freely interchanged with each other 

in arbitrary stacks, such as is done in the STREAMS system [Ritchie, 1984]. Thus far, interface 

standardization has not been considered necessary because each protocol stack tends to stand 

on its own without ever borrowing from others. An arbitrary stacking of protocol modules would 

also complicate the interpretation of network addresses in each module, since each module 

would have to check to make sure that the address made some sense to them in their domain. 

The simplest example of a protocol output routine often uses a calling convention designed to 

send a single message on a connection; for example, 

int (*pr_output)( 

    register struct inpcb *inp, 

    struct mbuf *msg, 

    struct sockaddr *addr 

    struct mbuf *control, 

    struct thread *td); 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
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would send a message contained in msg on a socket described by protocol control block inp. 

Special address and control information are passed in addr and control, respectively. 

pr_input 

Upper-level protocol input routines are usually called by the network software-interrupt task 

once the network-level protocol has located the protocol identifier. They have stricter 

conventions than do output routines because they are called via the protocol switch. Depending 

on the protocol family, they may receive a pointer to a control block identifying the connection, 

or they may have to locate the control block from information in the received packet. A typical 

calling convention is 

void (*pr_input)( 

     struct mbuf *msg, 

     int hlen); 

In this example, the incoming packet is passed to a transport protocol in an mbuf msg with the 

network protocol header still in place for the transport protocol to use, as well as the length of 

the header, hlen, so that the header can be removed. The protocol does the endpoint-level 

demultiplexing based on information in the network and transport headers. 

pr_ctlinput 

This routine passes control information (i.e., information that might be passed to the user but 

does not consist of data) upward from one protocol module to another. The common calling 

convention for this routine is 

void (*pr_ctlinput)( 

     int cmd, 

     struct sockaddr *addr, 

     void* opaque); 

The cmd parameter is a value shown in Table 12.9. The addr parameter is the remote address to 

which the condition applies. Many of the requests have been derived from the Internet Control 

Message Protocol (ICMP) [Postel, 1981] and from error messages defined in the 1822 host 

(Internet Message Processor) convention [BBN, 1978]. Some protocols may pass additional 

parameters internally, such as local addresses or more specific information. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab09
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Table 12.9 Control-input routine requests. 

12.11 Protocol-to-Network Interface 

The lowest layer in the set of protocols that constitutes a protocol family must interact with one 

or more network interfaces to transmit and receive packets. It is assumed that any routing 

decisions have been made before a packet is sent to a network interface; a routing decision is 

necessary to locate any interface at all. Although there are four paths through any network stack, 

there are only two cases concerning protocols and network interfaces that we should consider: 

transmission of a packet and receipt of a packet. We shall consider each separately. The 

interactions between the kernel device-driver software and network interface hardware was 

described in Section 8.5. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5
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Network Interfaces and Link-Layer Protocols 

Each network interface configured in a system defines a link-layer path through which messages 

can be sent and received. A link-layer path is a path that allows a message to be sent via a single 

transmission to its destination, without network-level forwarding. Normally, a hardware device 

is associated with this interface, although there are software-based interfaces such as the 

loopback interface. In addition to manipulating the hardware device, a network-interface 

module is responsible for encapsulation and decapsulation of any link-layer protocol header 

required to deliver a message to its destination. For common interface types, the link-layer 

protocol is implemented in a separate sublayer that is shared by various hardware drivers. The 

selection of the interface to use in sending a packet is a routing decision carried out at the 

network-protocol layer. An interface may have addresses in one or more address families. Each 

address is set when the device is brought into a running state using an ioctl system call on a 

socket in the appropriate domain. This operation is implemented by the protocol family after 

the network interface verifies the operation. The network-interface abstraction provides 

protocols with a consistent interface to all hardware devices that may be present on a machine. 

An interface and its addresses are defined by the structures shown in Figure 12.16. As interfaces 

are found at startup time, the ifnet structures are initialized and are placed on a linked list. The 

network-interface module generally maintains the ifnet interface data structure as part of a 

larger structure that also contains information used in operating the underlying hardware 

device. Similarly, the ifaddr interface-address structure is often part of a larger structure 

containing additional protocol information about the interface or its address. Because network 

socket addresses are variable in size, each protocol is responsible for allocating the space 

referenced by the address, mask, and broadcast or destination address pointers in the ifaddr 

structure. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig16
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Figure 12.16 Network-interface data structures. The fields marked in bold are broken out and 

described more fully in figures shown later in this section. 

Each network interface is identified in two ways: a character string identifying the driver plus a 

unit number for the driver (e.g. cxgbe0), and a binary systemwide index number. The index is 

used as a shorthand identifier—for example, when a route that refers to the interface is 

established. As each interface is initialized, the system creates an array of pointers to the ifnet 

structures for the interfaces. It can thus locate an interface quickly given an index number, 

whereas the lookup using a string name is less efficient. Some operations, such as interface 

address assignment, name the interface with a string for the user’s convenience because 

performance is not critical. Other operations, such as route establishment, pass a newer style of 

identifier that can use either a string or an index. The new identifier uses a sockaddr structure in 

a new address family, AF_LINK, indicating a link-layer address. The family-specific version of 

the structure is a sockaddr_dl structure, shown in Figure 12.17, which may contain up to three 

identifiers. It includes an interface name as a string plus a length, with a length of zero denoting 

the absence of a name. It also includes an interface index as an integer, with a value of zero 

indicating that the index is not set. Finally, it may include a binary link-level address, such as an 

Ethernet address, and the length of the address. An address of this form is created for each 

network interface as the interface is configured by the system and is returned in the list of local 

addresses for the system along with network protocol addresses (see later in this subsection). 

Figure 12.17 shows a structure describing an Ethernet interface that is the first interface on the 

system; the structure contains the interface name, the index, and the link-layer (Ethernet) 

address. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig17
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Figure 12.17 Link-layer address structure. The box on the left names the elements of the 

sockaddr_dl structure. The box on the right shows sample values for these elements for an 

Ethernet interface. The sdl_data array may contain a name (if sdl_nlen is nonzero), a link-layer 

address (if sdl_alen is nonzero), and an address selector (if sdl_slen is nonzero). For an 

Ethernet, sdl_data contains a name followed by a unit number, cxgbe0, followed by a 6-byte 

Ethernet address. 

The interface data structure includes an if_data structure, broken out in Table 12.10, which 

contains the externally visible description of the interface. It includes the link-layer type of the 

interface, the maximum network-protocol packet size that is supported, and the sizes of the 

link-layer header and address. It also contains numerous statistics, such as packets and bytes 

sent and received, input and output errors, and other data required by the netstat program and 

network-management protocols. The statistics are a subset of the statistics maintained by the 

network card. They are copied periodically from registers on the network interface into the 

if_data structure. Most network interfaces expose a much larger set of statistics via the sysctl 

subsystem. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab10
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Table 12.10 Per ifnet meta-data and statistics. Fields marked in bold and italic record statistics 

at run time for use by other tools such as netstat. 

The state of an interface and certain externally visible characteristics are stored in the if_flags 

field described in Table 12.11. The first set of flags characterizes an interface. If an interface is 

connected to a network that supports transmission of broadcast messages, the 

IFF_BROADCAST flag will be set, and the interface’s address list will contain a broadcast 

address to be used in sending and receiving such messages. If an interface is associated with a 

point-to-point hardware link (e.g., a leased line circuit), the IFF_POINTOPOINT flag will be set, 

and the interface’s address list will contain the address of the host on the other side of the 

connection. Note that the broadcast and point-to-point attributes are mutually exclusive. These 

addresses and the local address of an interface are used by network-layer protocols in filtering 

incoming packets. The IFF_MULTICAST flag is set by interfaces that support multicast packets 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_28


 

740 

in addition to IFF_BROADCAST. A multicast address is used to send a packet to a group of 

hosts rather than a single host on the network. A network has many multicast addresses 

available. A group that wishes to receive packets selects an available address and then every 

member of the group signs up to receive packets sent to that multicast address. Packets sent to 

the group’s selected multicast address are received by all members of the group that have 

requested to receive it. 

 

Table 12.11 Network interface flags. 

Additional interface flags describe the operational state of an interface. An interface sets the 

IFF_RUNNING flag after it has allocated system resources and has posted an initial read on the 

device that it manages. This state bit avoids multiple-allocation requests when an interface’s 
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address is changed. The IFF_UP flag is set when the interface is configured and is ready to 

transmit messages. The IFF_PROMISC flag is set by network-monitoring programs to enable 

promiscuous reception when they wish to receive packets for all destinations rather than only 

those destined for the local system. Packets addressed to other systems are passed to the 

monitoring packet filter but are not delivered to network protocols. The IFF_ALLMULTI flag is 

similar, but it only applies to multicast packets and is used by multicast-forwarding agents. The 

IFF_SIMPLEX flag is set by Ethernet drivers whose hardware cannot receive packets that they 

send. Here, the output function simulates reception of broadcast and (depending on the 

protocol) multicast packets that have been sent. Finally, the IFF_DEBUG flag can be set to 

enable any optional driver-level diagnostic tests or messages. Three flags are defined for use by 

individual link-layer drivers (IFF_LINK0, IFF_LINK1, and IFF_LINK2). They can be used to 

select link-layer options, such as Ethernet medium type. 

Interface addresses and flags are set with ioctl requests. The requests specific to a network 

interface pass the name of the interface as a string in the input data structure, with the string 

containing the name for the interface type plus the unit number. Either the SIOCSIFADDR or 

the SIOCAIFADDR request is used initially to define each interface’s addresses. The former sets 

a single address for the protocol on this interface. The latter adds an address, with an associated 

address mask and broadcast address. It allows an interface to support multiple addresses for the 

same protocol. In either case, the protocol allocates an ifaddr structure and sufficient space for 

the addresses and any private data, and appends the structure onto the list of addresses for the 

network interface. In addition, most protocols keep a list of addresses for the protocol. The 

result appears like a two-dimensional linked list, as shown in Figure 12.18. An address can be 

deleted with the SIOCDIFADDR request. 

 

Figure 12.18 Network-interface and protocol data structures. The linked list of ifnet structures 

appears on the left side of the figure. The ifaddr structures storing the addresses for each 

interface are on a linked list headed in the ifnet structure and shown as a horizontal list. The 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig18
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ifaddr structures for most protocols are linked together as well, shown in the vertical lists 

headed by pf1_addr and pf2_addr. 

The SIOCSIFFLAGS request can be used to change an interface’s state and to do site-specific 

configuration. The destination address of a point-to-point link is set with the 

SIOCSIFDSTADDR request. Corresponding operations exist to read each value. Protocol 

families also can support operations to set and read the broadcast address. Finally, the 

SIOCGIFCONF request can be used to retrieve a list of interface names and protocol addresses 

for all interfaces and protocols configured in a running system. Similar information is returned 

by a newer mechanism based on the sysctl system call with a request in the routing protocol 

family (see Sections 12.4 and 13.5). These requests permit developers to construct network 

processes, such as a routing daemon, without detailed knowledge of the system’s internal data 

structures. 

The ifnet contains a table of function pointers that is filled in by the device driver when the 

device is initialized. The routines, shown in Table 12.12, define the kernel-programming 

interface (KPI) for working with network devices. The if_input() and if_output() routines are 

described in the following subsections. 

 

Table 12.12 The ifnet routine table. 

The if_ioctl() routine is responsible for controlling the underlying device. The state of the device, 

the hardware features that are enabled, the flags that are set, and whether it is able to receive or 

send packets, are all controlled by a set of commands that are sent via the if_ioctl() routine. 

One of the more complex operations carried out by the if_ioctl() routine is maintenance of the 

interface’s multicast filters. Network-interface devices that operate over broadcast media, such 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab12
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as Ethernet and WiFi, all have the ability to receive packets destined for a multicast address that 

is meant to reach any interested listener on the local network. To receive packets with a 

multicast address as its destination, the network card implements a hardware filter. The filter 

accepts just the packets in the filtered multicast group so that the card does not need to see 

every packet on the network to know whether one of them has the selected multicast address set. 

Each network card manufacturer has its own scheme for filtering multicast packets and there 

has never been a unified way for the kernel to map this feature of the card into a single data 

structure. The kernel keeps a list of multicast addresses that user programs have asked it to 

listen for in a list pointed to by the if_multiaddrs field of the ifnet structure. Whenever a 

program joins or leaves a multicast group, a command is issued to the if_ioctl() routine of the 

driver telling the driver that the multicast-address list has now changed. It is the responsibility 

of the driver to reprogram the network-device hardware so that the device’s filtering hardware 

matches what is expected by the kernel. The current implementation is somewhat lacking in 

terms of performance in the face of large multicast lists. Each update to the list often requires 

reprogramming the network-device hardware, because most network-device hardware does not 

provide fine-grained access to the underlying hardware tables. Whenever an entry is added to or 

removed from the if_multiaddrs list, the driver clears the hardware tables and then adds the 

updated list, entry by entry, until hardware has an updated view of the multicast address list. If 

hardware designers provided a proper API that allowed driver writers to add or remove single 

addresses directly from the hardware list, it would ease doing such operations. 

The if_resolvemulti() routine exists to map a network-layer address to a hardware-layer 

multicast address. Each type of network device has a different way of mapping network-layer 

multicast addresses to link-layer multicast addresses and therefore must have a device-specific 

function to perform the mapping. The mapping is commonly handled by a link-layer protocol 

module such as Ethernet. 

Packet Transmission 

Once a network-layer protocol has chosen an interface, the protocol transmits a fully formatted 

network-level packet with the following call (where ifp is a pointer to the selected 

network-interface structure): 

int (*if_output)( 

    struct ifnet *ifp, 

    struct mbuf *msg, 

    struct sockaddr *dst, 

    struct rtentry *rt); 
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Between network-layer protocols and the hardware devices is a layer of software responsible for 

resolving next-hop hardware addresses and adding link-layer information such as Ethernet 

hardware addresses to the packet. The output routine for the link-layer protocol modifies the 

packet header (msg) based on the destination address (dst) and route entry (rtentry) 

information. Once the fully formed packet reaches hardware, it may be transmitted immediately 

or held in the device for later transmission. In reality, transmission may not be immediate or 

successful. Typically, the device’s transmit routine copies the packet into the device’s transmit 

buffers or queues the packet. For unreliable media, such as Ethernet or wireless LANs, 

successful transmission means only that the packet has been placed on the wire or transmitted 

by radio without a collision. In contrast, a reliable point-to-point network such as X.25 can 

guarantee proper delivery of a packet or give an error indication for each packet that was not 

successfully transmitted. The model employed in the networking system attaches no promise of 

delivery to the packets presented to a network interface and thus corresponds most closely to 

the Ethernet. Errors returned by the output routine are only those that can be detected 

immediately and are normally trivial in nature (network down, no buffer space, address format 

not handled, etc.). If errors are detected after the call has returned, the protocol is not notified. 

When messages are transmitted in a broadcast network such as Ethernet, each network 

interface must formulate a link-layer address for each outgoing packet. The network layer for 

each protocol family selects a destination address for each message and then uses that address 

to select the appropriate network interface to use. This destination address is passed to the link 

layer’s output routine as a sockaddr structure. The link layer is responsible for mapping the 

destination network-layer address into an address for the link-layer protocol associated with the 

transmission medium that the interface supports. This mapping may be a simple algorithm, it 

may require a table lookup, or it may require more involved techniques such as use of the 

address-resolution protocol described in Section 13.1. 

Packet Reception 

Network interfaces receive packets and dispatch packets to the appropriate network-layer 

protocol according to information encoded in the link-layer protocol header. Each protocol 

family must have one or more protocols that constitute the network layer described in Section 

12.8. Prior to FreeBSD 5, network packets were processed by a kernel thread running a 

network-interrupt service routine (netisr). Though still referred to as the netisr subsystem, the 

FreeBSD kernel now processes received network packets using a run-to-completion model of 

data processing also referred to as direct dispatch. Each packet is carried up through as many 

layers of the networking code as possible. Packets that are not destined for a user process, such 

as those that are being forwarded to other nodes in the network, are processed until they are 

transmitted on to the next hop in the path to their ultimate destination. Earlier versions of 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
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FreeBSD had many points in the networking code, including between devices and protocols, 

where packets might be placed on a queue to be picked up and processed later. Using queues 

allows for a clean separation between various modules in the network stack, but it also 

introduces a performance penalty because of the cost of context switching between kernel 

threads and thrashing in the CPU’s cache. The direct-dispatch model allows the system to carry 

out as much work as possible with a single thread whose data relevant to the current processing 

operation is still in the CPU’s cache. Kernel threads that handle packet reception may be pinned 

to a particular CPU so that the maximum amount of cache coherency can be maintained 

throughout the packet reception process. Only when the kernel can no longer make progress 

processing a received packet does it place the packet on a queue for handling by another thread 

to execute later. 

Protocols register protocol-handling functions with the netisr subsystem by calling 

netisr_register(). On receiving a packet, a device driver places the received data into an mbuf, 

records the interface on which the packet was received in the mbuf’s packet header structure, 

and passes the packet to the lower part of the link-layer protocol via a call to netisr_dispatch(). 

The netisr_dispatch() routine makes the decision about whether to use direct dispatch and 

where an inbound packet should be processed. When using direct dispatch, the netisr_dispatch() 

can choose to pin the thread that is handling an inbound packet to a particular CPU. The system 

administrator can request that the old approach of queueing the packet and using a separate 

kernel thread to process all incoming packets be used. Queueing works best when many 

uniformly spaced packets arrive in periodic bursts. Here, the queue can hold the burst of packets 

that can then be processed during the slack period before the next burst. With direct dispatch, if 

packets arrive faster than they can be processed, all the CPUs will be busy handling earlier 

packets and the excess unclaimed packets will be lost by the network hardware when new 

packets arrive and overwrite older unclaimed ones. 

The netisr module is used twice in the case of Ethernet packets. From the ether_input() routine, 

a packet is first sent through the netisr system so that the kernel can decide whether to process 

the packet on the current CPU, another CPU based on a tunable dispatching policy, or queued 

for later processing by a different kernel thread. Systems that expect to receive many packets 

typically process packets via direct dispatch, allowing the packet processing to run to 

completion. 

Once a decision has been made on where to process the packet, it is passed into the netisr 

system again via the ether_demux() routine that handles passing the packet into the 

network-layer protocol. The ether_demux() routine uses the packet’s ether type, a 16-bit value 

that indicates the network-layer protocol, to dispatch the packet via the netisr subsystem into 

the appropriate network-layer protocol. Each network-layer protocol accepts only an mbuf chain 
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as an argument. By the time the packet reaches the network-layer protocol, the mbuf chain 

already has all the information necessary to complete processing of the packet for both network 

and transport-layer protocols. 

12.12 Buffering and Flow Control 

A major factor affecting the performance of a protocol is the buffering policy. Lack of a proper 

buffering policy can force packets to be dropped, cause false windowing information to be 

emitted by protocols, fragment memory, and degrade system performance. Because of these 

problems, most systems allocate a fixed pool of memory to the networking system and impose a 

policy optimized for normal network operation. 

At boot time, a fixed amount of memory is allocated by the networking system for mbufs and 

mbuf clusters. More system memory may be requested for mbuf clusters as the need arises, up 

to a preconfigured limit. Although the kernel memory allocator can reclaim unused memory 

from zones, it has been configured never to reclaim memory from the zones used for mbufs and 

mbuf clusters. Because of the wide and frequent swings in network buffer needs, the network 

developers have found it more efficient to let the mbuf memory pool stay at its high-watermark 

usage level. 

Protocol Buffering Policies 

When a socket is created, the protocol reserves a protocol-selected amount of buffer space for 

send and receive queues. These amounts define the high water-marks used by the socket 

routines in deciding when to block and unblock a process. 

Protocols that provide connection-level flow control, such as TCP and SCTP, select a space 

reservation based on the expected bandwidth and round-trip time for the connection. In 

operation, windows sent to peers are calculated based on the amount of free space in the 

socket’s receive queue, and utilization of the send window received from a peer is dependent on 

the space available in the send queue. 

Queue Limiting 

Incoming packets from the network are always received unless memory allocation fails or the 

kernel fails to collect them from the network interface before the arrival of another packet. The 

default operation of the FreeBSD networking system is to use direct dispatch that carries every 

packet it receives through to its destination, whether that is a socket for an application on the 

host or transmitting it through another network interface. When the netisr subsystem has been 
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set up to queue packets as they are received instead of running them to completion, each 

received packet is queued for later processing. Each queue has an upper bound on its length and 

any packets exceeding that bound are discarded. As explained in Section 12.11, direct dispatch is 

implicitly input limited when the system is too busy to collect packets from the network 

interface. 

It is possible for a host to be overwhelmed by excessive network traffic if it is forwarding packets 

from a high-bandwidth network to a low-bandwidth network. As a defense mechanism, the 

output-queue limits can be adjusted to control network-traffic load on the system. Dropping 

packets is likely to increase the load on the network as applications and protocols retransmit the 

dropped packets. However, excessive buffering leads to large network delays and slows the 

feedback to TCP, which should tell TCP to slow down. The queue limit should be sufficiently 

high that transient overload can be handled by buffering, but not high enough to cause buffer 

bloat in routers [Gettys & Nichols, 2011]. 

The queuing in the netisr system is a single coarse knob that is tuned for the whole system. 

Network applications such as routers require a more complex set of queueing mechanisms. The 

ALTQ and Dummynet subsystems provide finer-grained control over selecting when packets are 

dropped. The Dummynet subsystem is discussed in Section 13.8. 

12.13 Network Virtualization 

With the increasing power of computer systems, it is now possible to have services running 

simultaneously that once would have required several separate machines. There are two basic 

ways in which the increased power of computing has been harnessed. One way is to virtualize 

the underlying hardware, introducing a layer of software on which several complete and isolated 

systems can execute at the same time. Hardware virtualization is not a new idea, but systems are 

now inexpensive and powerful enough that the use of virtualization software is common in the 

industry [Creasy, 1981]. Another way to harness the power of modern computing systems for 

multiple disparate purposes is to virtualize the services themselves. Virtualization is what an 

operating system does with the underlying hardware, making it appear to multiple programs 

that each of them has exclusive use of the machine. One type of software virtualization discussed 

in Section 5.9 are jails, which are containers for entire sets of programs running on top of 

FreeBSD. 

The networking and interprocess-communication subsystems in FreeBSD have been virtualized 

so that many copies of the network subsystem can run in parallel. The framework that 

virtualizes the network subsystems is referred to as VIMAGE. Each virtual network stack is a 

world unto itself, with its own set of sockets and network interfaces. The implementation of the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec8
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FreeBSD network stack relies on a collection of kernel global variables that maintain the data 

structures for all the network services. With the introduction of VIMAGE, each data structure 

had to be virtualized, meaning that if there are N instances of the network stack there are also N 

instances of each global variable. The global variables defined by the stack are collected in a 

special linker set, which is a collection of global variables that are encapsulated by the linker 

when a program, such as the kernel, is built. The kernel uses the linker set, set_vnet, to create 

new instances of the network stack’s global state whenever a new vnet instance is created. To 

reduce the overhead of finding a global variable in a particular instance, a simple offset is used 

from the base of the memory containing the virtualized global variables. A memory offset is the 

fastest way to effect a lookup of the proper variable but it requires that the memory blocks 

containing the global variables be exactly the same size and laid out the same way in memory. If 

kernel developers had to do all this work themselves, it would be both tedious and error prone. 

A small set of macros are used to declare variables that are global to the network stack. The 

VNET_DEFINE macro is used throughout the kernel to set up global variables to be used by 

VIMAGE. When modules need to refer to externally defined variables, they use the 

VNET_DECLARE macro. Each virtualized global variable name is preceded by the characters 

V_, which is a convention used in the kernel to denote virtualized global variables. A complete 

set of each virtual stack’s global state is kept in a vnet structure, shown in Figure 12.19. All vnets 

are kept on a singly-linked list and contain a count of the number of interfaces and sockets that 

are currently in use by the virtual network instance. The global variables are accessed via the 

vnet_data_mem pointer. Programmers do not access the global data members directly but 

instead use the macros discussed above to indicate the global variable that they are trying to 

access. When VIMAGE is not compiled into a kernel, all the macros that handle the indirection 

and variable lookup are null and empty, meaning there is no performance penalty for variable 

access when only a single network stack is in use. 

 

Figure 12.19 The vnet structure. 

Virtualized network stacks in FreeBSD 10 are inextricably tied to jails. A vnet is created via a call 

to vnet_alloc() that is called from the jail_set system call. Each jail may contain only one vnet. 

All the network stack’s global state is initialized using the same kernel routines in the virtualized 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig19
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and nonvirtualized cases, with the VNET_ macros handling the proper indexing and offsets at 

run time. 

Mapping IPC-related system calls to vnet instances is handled in the kernel using the credential 

structure associated with a thread. If a jail has been created with a vnet instance then every 

process in the jail has a valid pointer to a vnet instance in its prison structure. The system call 

then executes using the global variables ultimately pointed to from the prison structure. User 

applications and system-management programs, such as netstat do not expose vnet IDs to 

users of the system, but instead they, too, are a part of the jail and cannot see any data 

structures not already encapsulated in the jail. When a user outside the jail, such as a system 

administrator, wishes to look at the vnet instance inside a jail, he or she uses the jexec command, 

which executes the requested program from within the jail, thereby removing the need for 

anyone using the system to know the VNET ID of a vnet instance. 

Exercises 

12.1 What limitation in the use of pipes inspired the developers to design alternative 

interprocess-communication facilities? 

12.2 Why are the FreeBSD interprocess-communication facilities designed to be independent of 

the filesystem for naming sockets? 

12.3 Why is interprocess communication layered on top of networking in FreeBSD, rather than 

the other way around? 

12.4 Would a screen editor be considered a naive or a sophisticated program, according to the 

definitions given in this chapter? Explain your answer. 

12.5 What are out-of-band data? What types of sockets support the communication of 

out-of-band data? Describe one use for out-of-band data. 

12.6 Give two requirements that interprocess communication places on a memory-management 

facility. 

12.7 How many mbufs and mbuf clusters would be needed to hold a 3024-byte message? Draw 

a picture of the necessary mbuf chain and any associated mbuf clusters. 

12.8 Why does an mbuf have two link pointers? For what is each pointer used? 

12.9 Each socket’s send and receive data buffers have high and low watermarks. For what are 

these watermarks used? 
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12.10 Consider a socket with a network connection that is queued at the socket awaiting an 

accept system call. Is this socket on the queue headed by the so_comp or by the so_incomp field 

in the socket structure? What is the use of the queue that does not contain the socket? 

12.11 Describe two types of protocols that would immediately place incoming connection 

requests into the queue headed by the so_comp field in the socket structure. 

12.12 How does the protocol layer communicate an asynchronous error to the socket layer? 

12.13 Sockets explicitly refrain from interpreting the data that they send and receive. Do you 

believe that this approach is correct? Explain your answer. 

12.14 Why does the sosend() routine ensure there is enough space in a socket’s send buffer 

before making a call to the protocol layer to transmit data? 

12.15 How is the type information in each mbuf used in the queueing of data at a datagram 

socket? How is this information used in the queueing of data at a stream socket? 

12.16 Why does the soreceive() routine optionally notify the protocol layer when data are 

removed from a socket’s receive buffer? 

12.17 What might cause a connection to linger forever when closing? 

12.18 Describe a deadlock between two processes, A and B, that are sharing two semaphores, S1 

and S2. 

12.19 How can a message queue implement a priority queue? How can it be used to allow full 

duplex communication? 

12.20 Why doesn’t the shmdt system call free the underlying shared memory? 

*12.21 What effect might storage compaction have on the performance of 

network-communication protocols? 

**12.22 Why is releasing mbuf-cluster storage back to the system complicated? Explain why it 

might be desirable. 

**12.23 In the original design of the interprocess-communication facilities, a reference to a 

communication domain was obtained with a domain system call, 

int d; d = domain("inet"); 
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(where d is a descriptor, much like a file descriptor), and sockets then were created with 

Click here to view code image 

s = socket(type, d, protocol); 

int s, type, protocol; 

What advantages and disadvantages does this scheme have compared to the one that is used in 

FreeBSD? What effect does the introduction of a domain descriptor type have on the 

management and use of descriptors within the kernel? 

**12.24 Design and implement a simple replacement for local IPC semaphores that operates on 

a single semaphore instead of an array. The new system should adhere to the original API to the 

extent that it should implement a semget, semctl, and semop routine. 
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Chapter 13. Network-Layer Protocols 

Chapter 12 presented the network-communications architecture of FreeBSD. This chapter 

examines the network protocols implemented within this framework. The FreeBSD system 

supports several major communication domains including IPv4, IPv6, Xerox Network Systems 

(NS), ISO/OSI, and the local domain (formerly known as the UNIX domain). The local domain 

does not include network protocols because it operates entirely within a single system. This 

chapter studies the portions of the TCP/IP protocols that implement the network-layer software. 

The protocols that make up the network layer of the TCP/IP software are responsible for moving 

packets between intermediate hosts in the Internet. Because the TCP/IP protocols implement a 

packet-switched network, there is a logical split between the components that handle, 

hop-by-hop, packets that reside in the network layer, and the components that present those 

packets as streams or datagrams to user programs, that reside in the transport layer. The 

transport layer protocols, including UDP, TCP, and SCTP, are discussed in Chapter 14. 

Currently, there are two sets of defined protocols for the network layer of the Internet. IPv4 is 

the network-layer protocol that most programmers are familiar with and that has been 

developed and defined over a period of three decades. IPv6 is the next generation of the IP 

protocol and is now being deployed as an eventual replacement for IPv4. Both IPv4 and IPv6, 

and their attendant control and error protocols, are presented in this chapter, which describes 

the overall architecture of the IPv4 protocols and examines their operation according to the 

structure defined in Chapter 12. It then discusses changes the developers made in the system 

that were motivated by aspects of the IPv6 protocols and their implementation. Following the 

examination of the IPv4 and IPv6 network protocols is a discussion of the routing system that is 

integral to the network-layer protocols and the security protocols that are also implemented at 

the network layer. The chapter finishes with a discussion of the various packet-processing 

frameworks that exist within FreeBSD and which are also deeply enmeshed in the network layer. 

13.1 Internet Protocol Version 4 

The TCP/IP suite was developed under the sponsorship of DARPA for use on the ARPANET 

[DARPA, 1983; McQuillan & Walden, 1977]. The protocols are commonly known as TCP/IP, 

although TCP and IP are only two of the many protocols in the suite. These protocols do not 

assume a reliable subnetwork that ensures delivery of data. Instead, IPv4 was devised for a 

model in which hosts were connected to networks with varying characteristics and the networks 

were interconnected by routers. The Internet Protocols are responsible for host-to-host 
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addressing and routing, packet forwarding, and packet fragmentation and reassembly. Unlike 

the transport protocols, they do not always operate for a socket on the local host, but may 

forward packets, receive packets for which there is no local socket, or generate error packets in 

response to these situations. The Internet protocols were designed for packet-switching 

networks using datagrams sent over links such as Ethernet that provide no indication of 

delivery. 

The internetworking model leads to the use of at least two protocol layers. One layer operates 

end to end between two hosts involved in a conversation. It is based on a lower-level protocol 

that operates on a hop-by-hop basis, forwarding each message through intermediate routers to 

the destination host. In general, there exists at least one protocol layer above the other two: the 

application layer, which uses the transport protocols to implement a service or system. The 

three layers correspond roughly to levels 3 (network), 4 (transport), and 7 (application) in the 

ISO Open Systems Interconnection reference model [ISO, 1984]. 

The protocols that support this model have the layering illustrated in Figure 13.1. The Internet 

Protocol (IP) implements the network-layer protocol in the ISO model. In a packet-switched 

network, datagrams move hop by hop from the originating host to the destination via 

intermediate routers. IP provides the network-level services of host addressing, routing, and, if 

necessary, packet fragmentation and reassembly if intervening networks cannot send an entire 

packet in one piece. The transport protocols use the services of IP. The User Datagram Protocol 

(UDP), Transmission Control Protocol (TCP) and Stream Control Transmission Protocol (SCTP) 

are transport-level protocols that provide additional facilities to applications that use IP. At the 

network layer, IP uses host addresses to identify endpoints in the network, while each protocol 

specifies a port identifier so that local and remote sockets can be identified. TCP provides 

connection-oriented, reliable, unduplicated, and flow-controlled transmission of data; it 

supports the stream socket type in the Internet domain. UDP provides a data checksum for 

checking integrity in addition to a port identifier, but otherwise adds little to the services 

provided by IP. UDP is the protocol used by datagram sockets in the Internet domain. The 

Internet Control Message Protocol (ICMP) is used for error reporting and for other simple 

network-management tasks; it is logically a part of IP but, like the transport protocols, is layered 

above IP. It usually is not accessed by users. Raw access to the IP and ICMP protocols is possible 

through raw sockets (see Section 13.6 for information on this facility). 
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Key: TCP—Transmission Control Protocol; UDP—User Datagram Protocol; IP—Internet 

Protocol; ICMP—Internet Control Message Protocol. 

Figure 13.1 TCP/IP protocol layering. 

All fields in the Internet protocols that are larger than a byte are expressed in network byte 

order, with the most-significant byte first. When the IP protocols were first designed, hardware 

manufacturers disagreed on the order in which bytes ought to be stored in memory. Some 

manufacturers stored data in bigendian format, which is the same as network byte order, while 

others, including Intel, stored data in little-endian format. The FreeBSD network 

implementation uses a set of routines or macros to convert 16-bit and 32-bit integer fields 

between host and network byte order on hosts (such as X86 systems) that have a different native 

ordering. While X86 systems continue to use little-endian format, many embedded processors, 

particularly those used for building network routers and switches, use big-endian format. 

Converting between big- and little-endian byte formats introduces overhead that router and 

switch vendors do not want to incur, and so their systems are built with processors whose native 

memory format matches network byte order. On big-endian systems, the conversion macros are 

empty and are optimized out by the compiler. 

The functions IP performs are illustrated by the contents of its packet header, shown in Figure 

13.2. The header identifies source and destination hosts and the destination protocol, and it 

contains header and packet lengths. The identification and fragment fields are used when a 

packet or fragment must be broken into smaller sections for transmission on its next hop and to 

reassemble the fragments when they arrive at the destination. The fragmentation flags are Don’t 

Fragment and More Fragments; the latter flag plus the offset are enough information to 

assemble the fragments of the original packet at the destination. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig02


 

756 

 

Figure 13.2 IPv4 header. IHL is the Internet header length specified in units of 4 bytes. 

Options are delimited by IHL. All field lengths are given in bits. 

IP options are present in an IP packet if the header length field has a value larger than the 

20-byte minimum. The no-operation option and the end-of-option-list option are each one byte 

in length. All other options are self-encoding, with a type and length preceding any additional 

data. Hosts and routers are able to skip over options that they do not implement. Examples of 

existing options are the timestamp and record-route options, which are updated by each router 

that forwards a packet, and the source-route options, which supply a complete or partial route to 

the destination. These options are used rarely and most network operators silently drop packets 

with the source-route option because it makes it difficult to manage traffic on the network. 

IPv4 Addresses 

An IPv4 address is a 32-bit number that identifies the network on which a host resides and 

uniquely identifies a network interface on that host. It follows that a host with network 

interfaces attached to multiple networks has multiple addresses. Network addresses are 

assigned in blocks by Regional Internet Registries (RIRs) to Internet Service Providers (ISPs), 

which then allocate addresses to companies or individual users. If address assignment were not 

done in this centralized way, conflicting addresses could arise in the network and it would be 

impossible to route packets correctly. 

Historically, IPv4 addresses were rigidly divided into three classes (A, B, and C) to address the 

needs of large, medium, and small networks [Postel, 1981a]. Three classes proved to be too 

restrictive and also too wasteful of address space. The current IPv4 addressing scheme is called 

Classless Inter-Domain Routing (CIDR) [Fuller et al., 1993]. In the CIDR scheme, each 

organization is given a contiguous group of addresses described by a single value and a 

netmask. Using CIDR a site administrator can create multiple subnetworks each with its own 

netmask, without having to ask for a new address allocation from their ISP. The netmask 
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determines to which subnetwork an address belongs. For example, a network might have a 

group of addresses defined by a 16-bit netmask, which means that the network is defined by the 

first 16 bits. The remaining 16 bits can potentially be used to identify hosts in the network, or be 

used to create a series of subnetworks, each of which have their own more narrowly scoped 

netmask. Figure 13.3 shows a network with a 16-bit netmask and two subnetworks, each with a 

24-bit netmask. With this scheme the allocated network is broken up into 256 subnetworks and 

each subnetwork may have up to 253 hosts. The host part of each subnetwork address is 8 bits. 

Each subnetwork can only have 253 hosts because two addresses are held back for use in 

broadcasting packets and one is held back for the router. Networks need not be allocated on byte 

boundaries, but they must be a contiguous set of bits at the high end of the address. Because of 

this constraint, bit masks are described by a single number specifying the number of bits that 

represent the network part of the address. For example: 

 

Figure 13.3 Allocating subnetworks. 

128.32.96.0/20 

represents an address with a netmask of 

0xfffff000. 

Each Internet address assigned to a network interface is maintained in an in_ifaddr structure 

that contains a protocol-independent interface-address structure as well as additional 

information for use in the Internet domain (see Figure 13.4). When an interface’s network mask 

is specified, it is recorded in the ia_subnetmask field of the address structure. The only time 

that a class-based address is used is when an interface’s address is set without specifying a 

netmask. The system interprets local Internet addresses using the ia_subnetmask value. An 

address is considered to be local to the subnet if the field under the subnetwork mask matches 

the subnetwork field of an interface address. 
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Figure 13.4 Internet interface-address structure (in_ifaddr). 

Broadcast Addresses 

On networks capable of supporting broadcast datagrams, 4.2BSD used the address with a host 

part of zero for broadcasts. After 4.2BSD was released, the Internet broadcast address was 

defined as the address with a host part of all 1s [Mogul, 1984]. This change and the introduction 

of subnets complicated the recognition of broadcast addresses. Hosts may use a host part of 0s 

or 1s to signify broadcast, and some may understand the presence of subnets, whereas others 

may not. For these reasons, 4.3BSD and later BSD systems set the broadcast address for each 

interface to be the host value of all 1s but allow the alternate address to be set for backward 

compatibility. If the network is subnetted, the subnet field of the broadcast address contains the 

normal subnet number. The logical broadcast address for the network is calculated when the 

address is set; this address would be the standard broadcast address if subnets were not in use. 

This address is needed by the IP input routine to filter input packets. On input, FreeBSD 

recognizes and accepts subnet and network broadcast addresses with host parts of all 0s or all 1s, 

as well as the address with 32 bits of 1 (“broadcast on this physical link”). Routers always drop 

packets where the destination address is set to the broadcast address, which prevents broadcast 

packets from leaving the local subnet and causing a broadcast storm. 
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Internet Multicast 

Many link-layer network technologies, such as Ethernet, have the ability to send a single packet 

to a group of hosts. Being able to multicast data to a group of interested listeners is an efficient 

way to implement certain types of protocols, such as automatic configuration of local network 

parameters. IP provides a similar facility at the network-protocol level, using link-layer 

multicast where available [Deering, 1989]. IP multicasts are sent using destination addresses 

with high-order bits set to 1110. Unlike host addresses, multicast addresses do not contain 

network and host portions; instead, the entire address names a group, such as a group of hosts 

using a particular service. These groups are created dynamically and the members of the group 

change over time. IP multicast addresses map directly to physical multicast addresses on 

networks such as the Ethernet, using the low 24 bits of the IP address along with a constant 

24-bit prefix to form a 48-bit link-layer address. 

For a socket to use multicast, it must join a multicast group using the setsockopt system call. 

This call informs the link layer that it should receive multicasts for the corresponding link-layer 

address, and it also sends a multicast membership report using the Internet Group Management 

Protocol (IGMP) [Cain et al., 2002]. Routers and switches receive all multicast packets from 

directly attached networks and forward multicast datagrams as needed to group members on 

other networks. This function is similar to the role of routers that forward normal (unicast) 

packets, but the criteria for packet forwarding are different, and a packet can be forwarded to 

multiple neighboring networks. The purpose of IGMP is to allow switches and routers to track 

which hosts are interested in receiving data for a group or set of groups. Without a protocol such 

as IGMP, a network switch that received a multicast packet on one of its ports would not know 

to which other ports to forward that packet: and as a result, the packet would either be flooded 

to all ports or dropped. Flooding a packet to all ports is an inefficient use of network resources. 

Routers and switches are configured to drop packets that arrive for a group for which no 

connected host or network has asked for IGMP. 

Link-Layer Address Resolution 

Before a host can communicate with the broader Internet, it must first be able to talk to its 

neighbors. Hosts communicating with the IPv4 network protocol use the address-resolution 

protocol (ARP) to locate and communicate with their neighbors on the network. ARP is a 

link-level protocol that provides a dynamic address-translation mechanism for networks that 

support broadcast or multicast communication [Plummer, 1982]. ARP maps 32-bit IPv4 

addresses to 48-bit media-access-control (MAC) addresses, such as those used by Ethernet and 

the wireless 802.11 link-layer protocols. Although ARP is not specific either to IPv4 protocol 
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addresses or to Ethernet, the FreeBSD network subsystem supports only that combination, 

although it makes provision for additional combinations to be added. ARP is incorporated into 

the network-interface layer, although it logically sits between the network and link layers. 

ARP maintains a set of translations from network addresses to link-layer addresses. When an 

address-translation request is made to the ARP service by a network-layer protocol, and the 

requested address is not in ARP’s set of known translations, an ARP message is created that 

specifies the requested network address for the unknown link-layer address. This message is 

then broadcast by the interface with the expectation that a host attached to the network will 

know the translation—usually because the host is the intended target of the original message. If 

a response is received promptly, the ARP service uses the response to update its translation 

tables and to resolve the pending request, and the requesting network interface is then called to 

transmit the original message. 

This algorithm is complicated by the need to avoid stale translation data, to minimize 

broadcasts when a target host is down, and to deal with failed translation requests. In addition, 

it is necessary to deal with packets for which transmission is attempted before the translation is 

completed. The ARP translation tables are implemented using a link-layer table (lltable) made 

up of link-layer entry structures (llentry). Both the lltable and llentry data structures are generic 

enough to handle different types of network to link-layer translation protocols such as the IPv6 

neighbor-discovery protocol described in Section 13.3. Each lltable structure contains pointers 

to three functions, one to look up a translation, a second to free an entry, and a third to dump 

the table in some convenient format for display to a user. Every link-layer translation protocol 

creates its own table and populates the function pointer elements such that the kernel can call 

the relevant functions when necessary. 

Every entry in the ARP table is contained in an llentry structure, shown in Table 13.1. Two of the 

challenges to implementing ARP are the need to time out entries so they do not get stale, and to 

hold packets from being transmitted until a proper reply to an ARP request is received. The 

llentry structure has elements to address both of these challenges specifically. Each entry has an 

lle_timer element that is used to set and reset a call-out timer for each entry in the table. When 

the timeout fires, the arptimer() routine is called and it cleans up and removes the stale entry. 

Entries have a limited lifetime to prevent a mapping from an IPv4 address to a link-layer 

address from remaining in the system, possibly after a host has had its IPv4 address change, 

either through the action of an administrator or because the host has been assigned a new IPv4 

address via a protocol such as the dynamic host-configuration protocol (DHCP). A stale entry in 

the ARP table would prevent one host from reaching another host until the stale entry was 

cleared by an administrator. The default timeout for ARP entries is 20 minutes. The timeout 

attempts to strike a balance between having a stale entry in the table and generating excessive 
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ARP requests on the network. If hosts do not change their IPv4 addresses often, then having a 

longer timeout makes sense because ARP requests are overhead from the point of view of the 

network’s user, as the ARP packets carry no user data. 

 

Table 13.1 Link-layer entry. 

Unlike many other network-layer protocols, ARP is not a transport protocol, yet it must hold 

packets for later transmission. When an IPv4 packet is ready to be transmitted by the system, 

the ARP table is checked by the arpresolve() routine to see if the kernel has a mapping for the 

destination’s hardware address. If no such mapping exists, the arpresolve() routine must first 

prepare and transmit a request for the proper mapping. The arpresolve() routine cannot block 

the entire system while waiting for a reply, but it also cannot drop the IPv4 packet that it has 

been given for translation. IPv4 packets that arrive for transmission before an ARP entry has 

been resolved are placed on the la_hold queue until a proper ARP reply has been received or a 

timeout occurs. The la_hold queue is limited in size so that a malicious process cannot exhaust 

the kernel’s store of mbufs by transmitting at a high rate to a destination that will not reply to an 

ARP request. 
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13.2 Internet Control Message Protocols (ICMP) 

The Internet Control Message Protocols (ICMP) are the control- and error-message 

protocols for IPv4 [Postel, 1981b] and IPv6 [Conta et al., 2006]. Although they are layered above 

IP for input and output operations, they are really an integral part of IP. Most ICMP messages 

are received and implemented by the kernel. ICMP messages may also be sent and received via a 

raw IP socket (see Section 13.6). 

ICMP messages fall into three general classes. One class includes various errors that may occur 

somewhere in the network and that may be reported back to the originator of the packet 

provoking the error. Such errors include routing failures (network or host unreachable), 

expiration of the time-to-live field in a packet, or a report by the destination host that the target 

protocol or port number is not available. Error packets include the IP header plus at least 8 

additional bytes of the packet that encountered the error. The second message class may be 

considered as router-to-host control messages. Instances of such messages include the routing 

redirect message that informs a host that a better route is available for a host or network, and 

router advertisements that provide a simple way for a host to discover its next-hop router. The 

final message class includes network management, testing, and measurement packets. These 

packets include a network-address request and reply, a network-mask request and reply, an 

echo request and reply, a timestamp request and reply, and a generic information request and 

reply. 

All the actions and replies required by an incoming ICMP message are done by the relevant 

ICMP module. ICMPv4 and ICMPv6 packets follow a similar trajectory through the network 

code, the only difference being the use of the number 6 in the routines relating to IPv6. The 

discussion that follows describes the path of ICMPv4 packets through the network stack, but the 

reader is encouraged to seek out and review the ICMPv6 related functions to see how closely 

they resemble their IPv4 counterparts. ICMP packets are received from IP via the normal 

protocol-input entry point because ICMP has its own protocol number (1). The ICMP input 

routines handle three major cases. If the packet is an error, such as port unreachable, then the 

message is processed and delivered to any higher-level protocol that might need to know it, such 

as the one that initiated the communication. Messages that require a response—for example, an 

echo—are processed and then sent back to their source with the icmp_reflect() routine. Finally, 

if there are any sockets listening for ICMP messages, they are given a copy of the message by a 

call to rip_input() at the end of the icmp_input() routine. 

When error indications are received, a generic address is constructed in a sockaddr structure. 

The address and error code are reported to each network protocol’s control-input entry, 
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pr_ctlinput(), by the icmp_input() routine. For example, an ICMP port unreachable message 

causes errors for only those connections with the specified remote port and protocol. 

Routing changes suggested by redirect messages are processed by the rtredirect() routine, which 

verifies that the router from which the message was received was the next-hop gateway in use 

for the destination, and checks that the new gateway is on a directly attached network. If these 

tests succeed, the kernel routing tables are modified accordingly. 

Once an incoming ICMP message has been processed by the kernel, it is passed to rip_input() 

for reception by any ICMP raw sockets. The raw sockets can also be used to send ICMP 

messages. The network test program ping works by sending ICMP echo requests on a raw 

socket and listening for corresponding replies. 

ICMP is also used by other Internet network protocols to generate error messages. Many 

different errors may be detected by IP, especially on systems used as IP routers. The 

icmp_error() function constructs an error message of a specified type in response to an IP 

packet. Most error messages include a portion of the original packet that caused the error, as 

well as the type and code for the error. The source address for the error packet is selected 

according to the context. If the original packet was sent to a local system address, that address is 

used as the source. Otherwise, an address is used that is associated with the interface on which 

the packet was received, as when forwarding is done; the source address of the error message 

can then be set to the address of the router on the network closest to (or shared with) the 

originating host. Also, when IP forwards a packet via the same network interface on which that 

packet was received, it may send a redirect message to the originating host if that host is on the 

same network. The icmp_error() routine accepts an additional parameter for redirect messages: 

the address of the new router to be used by the host. 

ICMPv6 has one responsibility that is not shared by ICMPv4, which is to handle various 

neighbor-discovery messages. Neighbor discovery is the protocol that allows IPv6 hosts to 

autoconfigure their network parameters. Unlike ARP, the neighbor-discovery protocols do not 

sit directly on top of the link-layer protocols, such as Ethernet and 802.11, but instead sit atop 

the ICMPv6 protocol. All the neighbor-discovery messages, including router and neighbor 

solicitation, neighbor advertisements, and router redirects, first pass through the ICMPv6 

module before reaching the neighbor-discovery software. 

13.3 Internet Protocol Version 6 

After many successful years of deploying and using IPv4, several issues arose that caused the 

Internet community to start working on new versions of the Internet protocols. The motivation 
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for the new versions was that the original Internet was running out of addresses [Gross & 

Almquist, 1992]. Several solutions had been proposed and implemented within the IPv4 

protocols to handle this problem, including subnetting, and Classless Inter-Domain Routing 

(CIDR) [Fuller et al., 1993; Mogul & Postel, 1985] but neither of them proved sufficient. Several 

different proposals were made to replace the IPv4 protocols completely, and it took several years 

to make a final decision. Work on the new generation of the Internet protocols has been 

proceeding since the early 1990s, but it was not until 2003 that the protocol was rolled out by 

any large vendors. To date, the adoption of the new protocols has been limited because of the 

huge installed base of IPv4 hosts that must be converted. 

FreeBSD includes an IPv6 networking domain that contains an implementation of the IPv6 

protocols. The domain supports the entire suite of protocols from the network through the 

transport layers. The protocols are described in a large set of RFCs starting with Deering & 

Hinden [1998]. During the development of IPv6, several open-source implementations were 

written. Each implementation supported a different subset of the full features of IPv6 according 

to the needs of its authors. The one that eventually had the most complete set was developed by 

the KAME project [KAME, 2003] and is the implementation that was adopted by FreeBSD. A 

complete discussion of IPv6 is beyond the scope of this book. This section discusses the areas of 

IPv6 that make it different from IPv4 and the changes that had to be made to FreeBSD to 

accommodate those differences. 

There are several major differences between IPv4 and IPv6 including: 

• 128-bit addresses at the network layer 

• Packet fragmentation discouraged 

• Emphasis on automatic configuration 

• Native support for security protocols 

The biggest factor driving the move to a new protocol was the need for more addresses. The first 

change to be made between IPv4 and IPv6 was to enlarge the size of an address. An IPv4 

address is 32 bits, which is theoretically large enough to address over 4 billion interfaces. There 

are two primary reasons why that theoretical maximum has never been reached. First is the 

need to control the size of the routing tables in the core Internet routers. Internet routing is 

most efficient when many addresses can be communicated by a single address, the address of 

the router to that network. If each address required its own route, there would be over 4 billion 

addresses in every routing table in the Internet, which would not be possible given the current 

state of network hardware and software. Thus, addresses are aggregated into blocks, and these 
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blocks are assigned to ISPs, which then carve them up into smaller blocks for their customers. 

The customers then take these blocks and break them down further, through subnetting, and 

finally assign individual addresses to particular computers. At each level of this hierarchy, some 

addresses are kept aside for future use, which leads to the second source of IP address waste, 

overallocation. Because it is expensive and difficult to renumber a large installation of machines, 

customers request more addresses than they need in an attempt to prevent ever having to 

renumber their networks. This overallocation has lead to several calls for companies and ISPs to 

return unused addresses [Nesser, 1996]. For these reasons, the size of the IP address space was 

extended to 128 bits. The number of addresses available in IPv6 has been compared to 

numbering all the atoms in the universe or giving every person on the earth over a billion IP 

addresses. 

As the Internet has been embraced by people who are not computer scientists and engineers, a 

major stumbling block has been the difficulty of setting up and maintaining an 

Internet-connected host. Companies have teams of professionals who do this work, but for a 

small company the task can be daunting. These difficulties led the designers of IPv6 to include 

several types of autoconfiguration into the protocol. Ideally, anyone using IPv6 can turn on a 

computer, connect a network cable to it, and be on the Internet in a matter of minutes. This goal 

has not been fully achieved, but it does explain many of the design decisions in the IPv6 

protocols. 

Even before the Internet was a commercial success, network researchers and operators 

understood that the original protocols did not provide any security to users of the network. The 

lack of security had two causes: the first was the initial emphasis of Internet development on 

sharing information; the second was that until the end of the 1990s the United States 

government prohibited the export of any security-related software. IPv6 includes a set of 

security protocols (IPSec) that are defined for IPv4 as well. IPSec is a standard part of IPv6 and 

is covered in Section 13.7. 

IPv6 Addresses 

IPv6 defines several types of addresses: 

Unicast 

Just like a unicast address in IPv4, the IPv6 unicast address is a 128-bit quantity that uniquely 

identifies an interface on a host. 

Multicast 
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An address that identifies a set of interfaces participating in some form of group communication. 

A packet sent to a multicast address is delivered to all interfaces in the network that are bound 

to that address. 

Anycast 

Anycast addresses are used to identify common services. The network will route a packet sent to 

an anycast address to the nearest interface bound to that address. Nearest is measured by the 

number of hops the packet would have to make between the source and destination. 

Note that unlike IPv4, IPv6 does not have the concept of a broadcast address that is received by 

all interfaces on a particular link. The role of broadcast addresses in IPv4 is to provide a way for 

hosts to discover services even when they do not yet have their own IP address. Broadcast 

packets are wasteful in that they are delivered to every host on a link, even if that host does not 

provide the relevant service. Rather than using broadcast addresses as a way for a host to find a 

service, IPv6 uses a well-known multicast address for each service being offered. Hosts that are 

prepared to provide a service register to listen on the well-known multicast address assigned to 

that service. 

The 128-bit addresses in IPv6 necessitated creating new structures to hold them and new 

interfaces to handle them. While it is reasonably easy to work with the traditional dotted-quad 

notation of IPv4 (i.e., 192.168.1.1), writing out an IPv6 address textually requires a bit more 

work, which is why the addressing architecture of IPv6 received its own RFC [Deering & Hinden, 

2006]. When an IPv6 address is written, it is represented as a set of colon-separated hex bytes. 

The value between each set of colons represents a 16-bit value. For example, the string 

fd69:0:0:8:0:0:200C:417A 

represents a local unicast address in the IPv6 network, similar to the IPv4 addresses defined in 

RFC 1918. When written out as text, a portion of the address that contains zeros may be 

abbreviated with a double colon: 

fd69::8:0:0:200C:417A 

The first set of two zeros was eliminated in this address. When an address is abbreviated, only 

one set of zeros may be removed. For the run of zeros being eliminated, either all zeros must be 

removed or none. The following are examples of improper abbreviations of the preceding 

address: 

fd69::0:8:0:0:200C:417A 

fd69::8::200C:417A 
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The first example does not subsume the entire first set of zeros. The second example is 

ambiguous because you cannot tell how to divide the four zeros between the two areas marked 

with double colons. 

Unicast and multicast addresses are differentiated by the bits set at the beginning of the address. 

All globally routable unicast addresses begin with the bits 001, while multicast addresses start 

with 1111 1111. Examples of the most common addresses are shown in Table 13.2. The 

unspecified address is used by a host that has not yet been assigned an address when it is in the 

process of bringing up its network interface. The solicited-node address is used during neighbor 

discovery, which is covered later in this section. 

 

Table 13.2 Well-known IPv6 addresses. 

A piece of baggage that was not carried over from IPv4 to IPv6 was the concept of network 

classes in addresses. IPv6 always uses the CIDR style of marking the boundary between the 

network prefix (hereafter referred to simply as the prefix) and the interface identifier, which is 

what identifies an interface on a particular host. The following examples all define the same 

fictitious network that has a 60-bit prefix: 

Click here to view code image 

fd69:0000:0000:1230:0000:0000:0000:0000/60 

fd69::1230:0:0:0:0/60 

fd69:0:0:1230::/60 

IPv6 Packet Formats 

When IPv6 was being designed, one goal was to reduce the amount of work necessary for a 

router to forward a packet. This reduction was addressed as follows: 
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• Simplification of the packet header. Comparing the IPv6 packet header in Figure 13.5 to the 

IPv4 header shown in Figure 13.2, we see that there are four fewer fields in the IPv6 header and 

that only one of them needs to be modified while the packet is in transit: the hop limit. The 

hop limit is decremented every time the packet is forwarded by a router until the hop limit 

reaches 0, at which point the packet is dropped. 

 

Figure 13.5 IPv6 packet header. 

• The packet header is a fixed size. The IPv6 header never carries any options or padding within 

it. Options processing in IPv4 is an expensive operation that must be carried out whenever an 

IPv4 packet is sent, forwarded, or received. 

• IPv6 removed fragmentation at the network layer. Avoiding packet fragmentation simplifies 

packet forwarding as well as processing by hosts, since hosts are where the reassembly of 

fragmented packets takes place. 

• The IPv6 header does not contain a checksum. Checksums are expensive to calculate and the 

IPv4 checksum only protected the IPv4 header. Since all modern transport protocols include a 

checksum over their data, a checksum at the IPv6 layer was deemed redundant. 

All these simplifications make processing IPv6 packets less compute intensive than processing 

those of IPv4. Completely removing features that were inconvenient, such as options or 

fragmentation, would have decreased the acceptance of IPv6. Instead, the designers came up 

with a way to add these features, and several others, without polluting the base packet header. 

Extra features and upper-layer protocols in IPv6 are handled by extension headers. An 
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example packet is shown in Figure 13.6. All extension headers begin with a next-header field as 

well as an 8-bit length field that shows the length of the extension in units of 8 bytes. All packets 

are aligned to an 8-byte (64-bit) boundary. The IPv6 header and the extension headers form a 

chain linked together by the next-header field, present in each of them. The next-header field 

identifies the type of data immediately following the header that is currently being processed 

and is a direct descendant of the protocol field in IPv4 packets. TCP packets are indicated by the 

same number in both protocols (6). Routers do not look at any of the extension headers when 

forwarding packets except for the hop-by-hop options header, which is meant for use by routers. 

Each of the extension headers also encodes its length in some way. TCP packets are unaware of 

being carried over IPv6 and use their original packet-header format, which means they carry 

neither a next-header field nor a length. The length for TCP packets is computed as it is in IPv4. 

 

Figure 13.6 Extension headers. Key: AH—authentication header (type 51); 

ESP—encapsulating-security payload (type 50). 

Hosts are required to encode and decode extension headers in a particular order so that it is 

unnecessary to ever backtrack through a packet. The order in which headers should appear is 

shown in Figure 13.6. The hop-by-hop header (type 0) must immediately follow the IP header so 

that routers can find it easily. The authentication header (AH) and encapsulating-security 

payload (ESP) headers are used by security protocols that are discussed in Section 13.7 and must 

come before the TCP header and data, since the information in the security headers must be 

retrieved before they can be used to authenticate and decrypt the TCP header and data. 

Changes to the Socket API 

It has always been the policy of the Internet Engineering Task Force (IETF) to specify protocols 

and not implementations. For IPv6, this rule was bent so that application developers would have 

an API to which they could code and speed the migration of applications to IPv6. The designers 

took the original sockets interface, as it was then implemented in BSD, and specified extensions 

[Gilligan et al., 1999] that are included in FreeBSD. There were several goals in extending the 

sockets API: 

• The changes should not break existing applications. The kernel should provide backward 

compatibility for both source and binary. 
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• Minimize the number of changes needed to get IPv6 applications up and running. 

• Ensure interoperability between IPv6 and IPv4 hosts. 

• Addresses carried in data structures should be 64-bit aligned to obtain optimum performance 

on 64-bit architectures. 

Adding a new address type was easy because all the routines that handle addresses, such as bind, 

accept, connect, sendto, and recvfrom, already work with addresses as opaque entities. A new 

data structure, sockaddr_in6, was defined to hold information about IPv6 endpoints as shown 

in Figure 13.7. The sockaddr_in6 structure is similar to the sockaddr_in shown in Section 12.4. 

It contains the length of the structure, the family (which is always AF_INET6), a 16-bit port that 

identifies the transport-layer endpoint, a flow identifier, network-layer address, and a scope 

identifier. Many proposals have been put forth for the use of the flow information and scope 

identifier, but these fields are currently unused. The flow information is intended as a way of 

requesting special handling for packets within the network. For example, a real-time audio 

stream might have a particular flow label so that it would be given priority over less time-critical 

traffic. Although the idea is simple to explain, its implementation in a network where no one 

entity controls all the equipment is problematic. At present, there is no way to coordinate what a 

flow label means when it leaves one network and enters another. Until this conundrum is solved, 

the flow label will be used only in private network deployments and research labs. 

 

Figure 13.7 IPv6–domain socket-address structure. 

IPv6 defines several scopes in which an address can be used. In IPv4, all addresses are global in 

scope, meaning that they are valid no matter where they are found on the Internet. The defined 

scopes in IPv6 are link local, site local, organization local, and global. An address in a lesser 

scope may not be passed out to a broader scope. For example, a link-local address will not be 

forwarded to another link by a router. 
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Working with 128-bit addresses by hand is clumsy and error prone. Applications are expected to 

deal almost exclusively with named entities for IPv6 by using the domain name system (DNS) 

[Thomson & Huitema, 1995]. The original API for looking up an address from a hostname, 

gethostbyname(), was specific to the IPv4 protocol, so a new API was added to lookup any type 

of address given a name. When a client wishes to find a server, it uses the getaddrinfo() routine: 

Click here to view code image 

int getaddrinfo( 

        char *name, 

        const char *servname, 

        const struct addrinfo *hints, 

        struct addrinfo **res); 

The getaddrinfo() routine can work with any address family because the third argument is a 

structure that specifies the address family and the last argument is a similar structure that 

contains the address type being returned along with the properly formatted address. Services 

are looked up using the structure shown in Table 13.3, which includes fields for the address 

family, socket type, and protocol being sought, as well as the string name of the host. 

 

Table 13.3 Fields of the addrinfo structure. 

Autoconfiguration 

A goal of IPv6 is to make adding a computer to the network a simpler process, one that requires 

less human intervention. The mechanisms and protocols that are used to reach this goal are 

called autoconfiguration. For a host to be automatically configured it has to be able to discover 

several pieces of information from the network without any prior knowledge. The host must be 
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able to automatically figure out its own address, the address of its next-hop router, and the 

network prefix of the link to which it is attached. To communicate with other hosts on its link 

and with its next-hop router, a host needs the link-level addresses for those other systems. 

These questions are answered by the neighbor-discovery protocol that is a part of IPv6 and is 

defined in Narten et al. [2007]. Neighbor discovery either enhances or replaces disparate 

protocols that were a part of IPv4 and unifies them in a set of ICMPv6 messages [Conta et al., 

2006]. Neighbor discovery uses ICMPv6 and is available on any system running IPv6. The first 

step of the neighbor-discovery protocol is router discovery used to find its next-hop router. The 

second step is the neighbor discovery, which is used to get the addresses of its neighbors. 

A host finds its next-hop router in two different ways. IPv6 routers periodically send 

router-advertisement messages to the all-nodes multicast address. The format of a 

router-advertisement message is shown in Figure 13.8. The code field is currently always zero 

and the flags are unused. They are intended to allow for future extensions to the protocol. All 

hosts configured to pick up these multicast packets will see the router advertisement and 

process it. Although router advertisements are sent often enough to make sure that all hosts on a 

link know the location of their router and know when it has failed, this mechanism is insufficient 

for bringing a new host up on the link. When a host first connects to the network, it sends a 

router-solicitation message to the all-routers multicast address. A router that receives a 

valid solicitation must immediately send a router advertisement in response. The advertisement 

will be sent to the multicast address of all nodes unless the router knows that it can successfully 

send a unicast response to the host that sent the solicitation. Router advertisements include a 

retransmit timer value that tells the receiving host how many milliseconds to wait between 

sending its neighbor solicitations. The retransmit timer controls the number of 

neighbor-solicitation messages any one host can send and keeps the overhead of such traffic 

from overwhelming the network. A router may send an option with the advertisement that 

includes the link-layer address of the router. If the link-layer address option is included, the 

receiving hosts will not need to perform neighbor discovery before sending packets to the router. 

 

Figure 13.8 Router advertisement. Key: M—managed flag; O—other flag. 
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Each host maintains a linked list of its router entries. A single router entry is shown in Figure 

13.9. Whenever a router advertisement is received, it is passed to the defrtrlist_update() routine 

that checks the message to see if it represents a new router and, if so, places a new entry at the 

head of the default router list. Each router advertisement message contains a lifetime field. This 

lifetime controls how long an entry may stay in the default router list. Whenever 

defrtrlist_update() receives a router advertisement for a router that is already present in the 

default router list, that router’s expiration time is extended. 

 

Figure 13.9 Router entry. 

For a host to determine if the next hop to which a packet should be sent is on the same link as 

itself, it must know the prefix for the link. Historically, the prefix was manually configured on 

each interface in the system, but now it is handled as part of router discovery. 

Prefix information is sent as an option within a router advertisement. The format of the prefix 

option is shown in Figure 13.10. Each prefix option carries a 128-bit address. The number of 

valid bits in this address is given by the prefix-length field of the option. For example, the prefix 

given in the preceding example would be sent in a prefix option with 

Click here to view code image 

fd69:0000:0000:1230:0000:0000:0000:0000 
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Figure 13.10 Prefix option. Key: O—onlink flag; A—auto flag. 

encoded into the prefix field and 60 stored in the prefix-length field. Each prefix is only valid for 

the period shown by the valid lifetime. Later router advertisements that contain prefix options 

will have valid lifetimes that move into the future. The preferred lifetime controls the period of 

time that the prefix should be used by the host and may be shorter than the valid lifetime. A 

prefix that has passed the valid lifetime cannot be used. A prefix that has passed the preferred 

lifetime may be used but will trigger a new solicitation. The response to the solicitation will be 

either the same prefix or a new prefix with a new valid lifetime. When a host discovers that it has 

a prefix whose lifetime has expired, the prefix is removed from the interface with which it is 

associated, and the expired prefix no longer determines whether a destination address is on the 

local link. One way to support a backup router would be to send out its advertisement with an 

expired preferred lifetime, but a long valid lifetime. If the primary router with a valid preferred 

lifetime is available, it will be used, but if it goes down or times out, the backup router can be 

found and used. 

All options encoded into neighbor- and router-discovery messages are appended immediately 

after the message being sent. For example, the prefix option follows the router-advertisement 

message to which it relates. All options start with a nonzero type and a length that specifies the 

number of bytes present in the option. Router- and neighbor-discovery packets are contained 

within ICMPv6 packets that are themselves contained in IPv6 packets. The IPv6 packet length 

contains the size of the IPv6 header, the ICMPv6 header, ICMPv6 options, and any message. 

When unpacking a router or neighbor advertisement, the IPv6 packet length is used to ensure 

that the packet is valid. If the kernel finds that the length given in the packet is too short to 

encompass any options, then the packet is discarded. 

When a host has a packet for another host on its link, including its next-hop router, it must find 

the link-layer address of the host to which it wishes to send the packet. In IPv4, this process was 
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handled by the address-resolution protocol (ARP); see Section 13.1. A problem with ARP is that 

it is Ethernet specific and has encoded in it assumptions about link-layer addresses that makes 

it difficult to adapt to other link types. 

A host learns the link-layer addresses of its neighbors using a pair of messages: the neighbor 

solicitation and the neighbor advertisement. When the kernel wants to send an IPv6 packet to 

another host, the packet eventually passes through the ip6_output() routine, which does various 

checks on the packet to make sure that it is suitable for transmission. All properly formed 

packets are then passed down to the neighbor-discovery module via the nd6_output() routine. 

In earlier versions of FreeBSD, the nd6_output() routine handled mapping the IPv6 address to 

the link-layer address through a lookup in the routing table. After the link-layer address tables 

were removed from the routing table, a new routine, nd6_output_lle() was introduced to handle 

the mapping process. The nd6_output_lle() routine is now called by all the other IPv6 routines 

to pass packets down toward the interface layer. The nd6_output() routine is maintained for 

backwards compatibility but is now a simple wrapper around nd6_output_lle(). Once the packet 

has a correct link-layer destination address, it is passed to a network-interface driver via the 

driver’s if_output() routine. The relationships between the various protocol modules are shown 

in Figure 13.11. The neighbor-discovery module does not have an nd_input() routine because it 

receives messages via the ICMPv6 module. This inversion of the protocol layering allows the 

neighbor-discovery protocol to be independent of the link layer. In IPv4, the ARP module is 

hooked into the network interface so that it can send and receive messages. The connection 

between ARP and the underlying link-layer interfaces means that the ARP code must 

understand every link type that the system supports. 
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Figure 13.11 IPv6-module relationships. nd6_ra_input()—router-advertisement input routine; 

nd6_na_input()—neighbor-advertisement input routine. 

Link-layer addresses are stored in their own link-layer table, and that is where nd6_output_lle() 

attempts to look up the link-layer address for the packets that are passed to it. When the host 

does not yet know the link-layer address for the destination, the outgoing packet must be held 

until neighbor discovery completes. The outgoing packet is added to the end of the list of packets 

pointed to by the ln_hold field of the llentry structure. The nd6_output_lle() routine does not 

wait for the neighbor advertisement but returns. When a response is received as a neighbor 

advertisement, it is processed by the IPv6 and ICMPv6 modules and is finally passed into the 

neighbor-discovery module by a call to the nd6_na_input() routine, as shown in Figure 13.11. 

The nd6_na_input() routine records the link-layer address and checks to see if any packets 

were being held for transmission to that destination. If there are packets awaiting transmission, 

the nd6_output_lle() routine is invoked to send them. A link-layer address for the saved 

packet’s destination is now in the system, so nd6_output_lle() will copy the link-layer address 

into the mbuf chain and invoke the network interface’s if_output() routine to transmit the 

packet. 

Once per second, the nd6_timer() routine walks the neighbor-discovery link-layer address list 

as well as the default-router and interface lists and removes the entries that have passed their 

expiration time. Removing stale entries prevents the system from trying to send data to a host 

that has failed or become unreachable. 

13.4 Internet Protocols Code Structure 

The interface between the transport- and network-layer protocols in FreeBSD is defined by a 

small set of routines, which either take packets from the transport layers and encapsulate them 

for transmission, or take network-layer packets that have arrived on one interface and forward 

them out via another interface. The routines that implement the IPv4 and IPv6 protocols are 

similar in structure and will be described in this section. 

Output 

The calling convention for IPv4’s output routine is 

Click here to view code image 

int ip_output( 

    struct mbuf *msg, 
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    struct mbuf *opt, 

    struct route *ro, 

    int flags, 

    struct ip_moptions *imo, 

    struct inpcb *inp); 

The parameter msg is an mbuf chain containing the packet to be sent, including a skeletal IP 

header; opt is an optional mbuf containing IP options to be inserted into the header. If the route 

ro is given, it contains a reference to a routing entry (rtentry structure) that specifies a route to 

the destination from a previous call and in which any new route will be left for future use. 

Cached routes were moved from the network layer into the transport-layer protocols in FreeBSD 

5.2 (see the TCP host-cache metrics described in Section 14.4). The cached route should appear 

as a TCP host-cache metric, but as of FreeBSD 10 it has not been added, so the ro entry is never 

specified. Unless a cached route is passed down through the ro parameter, a route lookup must 

be performed for each packet. The flags may allow the use of broadcast or may indicate that the 

routing tables should be bypassed. If present, imo includes options for multicast transmissions. 

The protocol control block, inp, is used by the IPSec subsystem (see Section 13.7) to hold data 

about security associations for the packet. 

Click here to view code image 

int ip6_output( 

    struct mbuf *m0, 

    struct ip6_pktopts *opt, 

    struct route_in6 *ro, 

    int flags, 

    struct ip6_moptions *im6o, 

    struct ifnet **ifpp, 

    struct inpcb *inp) 

The IPv6 output routine takes nearly the same arguments as the IPv4 output routine. The only 

additional parameter is a pointer ifpp where the IPv6 module can let the transport layer know 

something about the physical interface on which the packet was output. The returned interface 

pointer is currently used only in recording statistics about how many packets were transmitted 

on an interface. 

The outline of the work performed by ip_output() is as follows: 

• Insert any IP options. 
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• Fill in the remaining header fields (IP version, zero offset, header length, and a new packet 

identification) if the packet contains an IP pseudo-header. 

• Determine the route (i.e., outgoing interface and next-hop address). 

• Check whether the destination is a multicast address. If it is, determine the outgoing interface 

and hop count. 

• Check whether the destination is a broadcast address; if it is, check whether broadcast is 

permitted. 

• Do any IPSec manipulations that are necessary on the packet such as encryption. 

• See if there are any filtering rules that would modify the packet or prevent the system from 

sending it. 

• If the packet size is no larger than the maximum packet size for the outgoing interface, 

compute the checksum and call the interface output routine. 

• If the packet size is larger than the maximum packet size for the outgoing interface, break the 

packet into fragments and send each in turn. 

If no route reference is passed as a parameter, an internal routing-reference structure is used 

temporarily. A route structure that is passed from the caller is checked to see that it is a route to 

the same destination and that it is still valid. If either test fails, the old route is freed. After these 

checks, if there is no route, in_rtalloc_ign() is called to allocate a route. The route returned 

includes a pointer to the outgoing interface. The interface information includes the maximum 

packet size, flags including broadcast and multicast capability, and the output routine. If the 

route is marked with the RTF_GATEWAY flag, the network-layer address of the next-hop router 

is given by the route; otherwise, the packet’s destination is the next-hop destination. If routing is 

to be bypassed because of a MSG_DONTROUTE option or a SO_DONTROUTE option, a 

directly attached network shared with the destination is sought. If there is no directly attached 

network, an error is returned. Once the outgoing interface and next-hop destination are found, 

enough information is available to send the packet. 

As described in Section 12.11, the interface output routine normally validates the destination 

address and places the packet on its output queue, returning errors only if the interface is down, 

the output queue is full, or the destination address is not understood. 

The ip6_output() routine follows the same pattern as the one presented for ip_output() but 

adds a few IPv6-specific steps. Unlike the IPv4 protocol, in which the header is a single entity, 
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an IPv6 packet is made up of a chain of smaller headers, all of which must be processed before 

the packet can be transmitted. Many of the differences between the IPv6 and IPv4 output 

routines exist to handle extension-header processing. A packet that does not contain extension 

headers, such as hop-by-hop options, is simpler to construct than a similar IPv4 packet. One 

other difference between the IPv4 and IPv6 output routines is the need to handle the scoping 

rules for the packet. Section 13.2 describes how IPv6 packets all have a scope: link local, site 

local, organization local, and global. Deciding what scope a packet belongs to is handled in the 

ip6_output() routine and is based on the source address attached to the interface on which the 

packet will be transmitted. Because the scope is based on the interface that the packet will be 

transmitted on, it must be calculated after the packet’s route is selected, as well as having been 

passed through any packet filters, including IPSec. One core concept in IPv6 was to prevent 

packets from being fragmented as they had been in IPv4. Fragmentation complicates the 

packet-processing code, not only in hosts but also in the intermediate routers, as well as in 

firewalls and other systems internal to a network. Unfortunately, practical concerns required the 

ability to fragment packets to be retrofitted into the IPv6 code. Retrofitting fragmentation into 

the output routine has caused it to be even more complex than the similar code in IPv4, as can 

be seen by reading the last section of ip6_output(). 

Input 

In Section 12.11, we described the reception of a packet by a network interface. The netisr 

subsystem then runs the packet through the various upper-layer protocols via direct dispatch. 

The IPv4 and IPv6 input routines are invoked when network interfaces receive messages for one 

of these protocols. The input routine, ip_input() or ip6_input(), is called with an mbuf that 

contains the packet to be processed. A packet is processed in one of four ways: it is passed as 

input to a higher-level protocol, it encounters an error that is reported back to the source, it is 

dropped because of an error, or it is forwarded to the next hop on its path to its destination. In 

outline form, the steps in the processing of a packet on input are as follows: 

1. Verify that the packet is at least as long as an IPv4 or IPv6 header and ensure that the header 

is contiguous. 

2. For IPv4, checksum the header of the packet and discard the packet if there is an error. 

3. Verify that the packet is at least as long as the header indicates and drop the packet if it is not. 

Trim any padding from the end of the packet. 

4. Do any filtering or security functions required by ipfw or IPSec. 

5. Process any options associated with the header. 
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6. Check whether the packet is for this host. If it is, continue processing the packet. If it is not, 

and if the system is acting as a router, try to forward the packet; otherwise, drop it. 

7. If the packet has been fragmented, keep it until all its fragments are received and reassembled, 

or until it is too old to keep. 

8. Pass the packet to the input routine of the next-higher-level protocol. 

When the incoming packet is passed into the input routine, one field of the mbuf is a pointer to 

the interface on which the packet was received. This information is passed to the next protocol, 

to the forwarding function, or to the error-reporting function. If any error is detected and is 

reported to the packet’s originator, the source address of the error message will be set according 

to the incoming packet’s destination and the incoming interface. 

The decision whether to accept a received packet for local processing by a higher-level protocol 

is not simple. If a host has multiple addresses, the packet is accepted if its destination matches 

any one of those addresses. If any of the attached networks support broadcast and the 

destination is a broadcast address, the packet is also accepted. 

The IPv4 input routine uses a simple and efficient scheme for locating the input routine for the 

receiving protocol of an incoming packet. The protocol field in the packet is 8 bits long; thus, 

there are 256 possible protocols. Fewer than 256 protocols are defined or implemented, and the 

Internet protocol switch has far fewer than 256 entries. Therefore, ip_input() uses a 

256-element mapping array to map from the protocol number to the protocol-switch entry of 

the receiving protocol. Each entry in the array is initially set to the index of a raw IP entry in the 

protocol switch. Then, for each protocol with a separate implementation in the system, the 

corresponding map entry is set to the index of the protocol in the IP protocol switch. When a 

packet is received, IP simply uses the protocol field to index into the mapping array and calls the 

input routine of the appropriate protocol. Locating the next-layer protocol for IPv6 is different 

from the IPv4 case because IPv6 packets are linked together by their next-header fields. Instead 

of simply passing the packet up to the next layer directly via a single call through the inet6sw 

array, the ip6_input() routine can call many input routines including udp6_input(), 

tcp6_input(), sctp6_input(), or any other, high-level protocol-input routine until one of them 

returns a value of IPPROTO_DONE. The loop that walks the chain of IPv6 headers can be seen 

at the end of the ip6_input() routine. 

Forwarding 

Implementations of IP traditionally have been designed for use by either hosts or routers, rather 

than by both. A system was either an endpoint for packets or a router. Routers forward packets 
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between hosts on different networks but only use upper-level protocols for maintenance 

functions. Traditional host systems do not incorporate packet-forwarding functions; instead, if 

they receive packets not addressed to them, they simply drop the packets. 4.2BSD was the first 

common implementation that attempted to provide both host and router services in normal 

operation. This approach meant that 4.2BSD hosts connected to multiple networks could serve 

as routers and hosts, reducing the requirement for dedicated router hardware. Early routers 

were expensive and not especially powerful. Alternatively, the existence of router-function 

support in ordinary hosts made it more likely for misconfiguration errors to result in problems 

on the attached networks. The most serious problem had to do with forwarding of a broadcast 

packet because of a misunderstanding by either the sender or the receiver of the packet’s 

destination. The packet-forwarding router functions are disabled by default in FreeBSD. They 

may be enabled at run time, on a per-protocol basis, by setting either or both of the 

net.inet.ip.forwarding or net.inet6.ip6.forwarding sysctl variables. Hosts not configured as 

routers never attempt to forward packets or to return error messages in response to misdirected 

packets. As a result, far fewer misconfiguration accidents occur. 

The procedure for forwarding IP packets received at a router but destined for another host is the 

following: 

1. Check that forwarding is enabled. If it is not, drop the packet. 

2. Check that the destination address is one that can be forwarded. 

3. Save some important components of the received message in case an error message must be 

generated in response. 

4. Determine the route to be used in forwarding the packet. 

5. If the outgoing route uses the same interface as that on which the packet was received, and if 

the originating host is on that network, send a redirect message to the originating host. 

6. Handle any IPSec updates that must be made to the packet header. 

7. Call the appropriate output routine, either ip_output() for IPv4 or nd6_output() for IPv6, to 

send the packet to its destination or to the next-hop gateway. 

8. If an error is detected, send an ICMP error message to the source host. 

Multicast transmissions are handled separately from other packets. Systems may be configured 

as multicast routers independently from other routing functions. Multicast routers receive all 

incoming multicast packets and forward those packets to local receivers and group members on 
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other networks according to group memberships and the remaining hop count of incoming 

packets. 

13.5 Routing 

The networking system was designed for a heterogeneous network environment, in which a 

collection of local-area networks are connected at one or more points through routers, as shown 

in Figure 13.12. Routers are nodes with multiple network interfaces, one on each local- or 

wide-area network. In such an environment, issues related to packet routing are important. For 

others, the network system provides simple mechanisms on which more involved policies can be 

implemented. These mechanisms ensure that, as these problems become better understood, 

their solutions can be incorporated into the system. Note that at the time of the original design 

of this part of the system, a network node that forwarded network-level packets was generally 

known as a gateway. The current term is router. We use both terms interchangeably, in part 

because the kernel data structures continue to use the name gateway. 

 

Figure 13.12 Example of the topology for which routing facilities were designed. 

The routing facilities were designed for use by singly connected and multiply connected hosts, as 

well as by routers. There are several components involved in routing, illustrated in Figure 13.13. 

The design of the routing system places some components within the kernel and others at user 

level. Routing is an overbroad term. In a complex modern network, there are at least three 

major components to a routing system. The gathering and maintenance of route information 

(i.e., which interfaces are up, what the cost is to use each available link, etc.) as well as the 

implementation of routing policies (which interfaces can be used to forward traffic) are handled 

at user level by routing daemons. The actual forwarding of packets, which is the selection of the 

interface on which a packet will be sent, is split between two tables stored in the kernel. Earlier 
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versions of FreeBSD maintained both routing and forwarding information in a single, 

per-protocol routing table. A more modern design, which splits routing information and 

forwarding information, was adopted as part of FreeBSD 8. Section 13.1 covers examples of the 

forwarding information base (FIB) that describes ARP and neighbor discovery. Removing the 

forwarding information from the routing table improved the performance of the system by 

removing lock contention on the routing table. In the earlier design, routing updates and 

forwarding lookups contended on the same set of locks to do their work, resulting in decreased 

performance for some networking workloads. A second important advantage to a split design is 

that the APIs for accessing each type of data are now cleaner and it is possible to easily replace 

the FIB with hardware, as is done in modern routing and switching gear. 

 

Figure 13.13 Routing design. 

The routing mechanism is a simple lookup that provides a next-hop route (a specific 

network interface) for each outbound packet, while the forwarding mechanism provides the 

next-hop address to be used when transmitting the packet. The current design places enough 

information in the kernel for packets to be sent on their way without external help; all other 

components are outside the kernel. User-level routing daemons communicate with the kernel 

via a routing socket to manipulate the kernel forwarding table and to listen for internal changes 

such as interfaces being brought up or down. Each of these components is described in this 

section. 

Kernel Routing Tables 

The kernel routing mechanism implements a routing table for looking up next-hop routes. It 

includes two distinct portions: a data structure describing each specific route (a routing entry) 

and a lookup algorithm to find the correct route for each possible destination. This subsection 

describes the entries in the routing table, and the next subsection explains the lookup algorithm. 

A destination is described by a sockaddr structure with an address family, a length, and a value. 
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Routes are classified as either host (direct) or network (indirect) routes. The host–network 

distinction determines whether the route applies to a specific host or to a group of hosts with a 

portion of their addresses in common, based on a prefix of the address. For host routes, the 

destination address of a route must exactly match the desired destination; the address family, 

length, and bit pattern of the destination must match those in the route. For network routes, the 

destination address in the route is paired with a mask. The route matches any address that 

contains the same bits as the destination in the positions indicated by bits set in the mask. A 

host route is a special case of a network route, in which all the mask bits are set, and thus no bits 

are ignored in the comparison. Another special case is a wildcard route—a network route 

with an empty mask. Such a route matches every destination and serves as a default route for 

unknown destinations. This fallback network route is usually pointed to a router that can then 

make more informed routing decisions. 

The other major distinction between types of routes is either direct or indirect. A direct route is 

one that leads directly to the destination: The first hop of the path is the entire path, and the 

destination is on a network shared with the source. Most routes are indirect: the route specifies 

a router on a local network that is the firsthop destination for the packet. Much of the literature 

(especially for Internet protocols) refers to a local–remote decision, where an implementation 

checks first whether a destination is local to an attached network or is remote. In the first case, a 

packet is sent locally (via the link layer) to the destination; in the latter case, it is sent to a router 

that can forward it to the destination. In the FreeBSD implementation, the local–remote 

decision is made as part of the routing lookup. If the best route is direct, then the destination is 

local. Otherwise, the route is indirect, the destination is remote, and the route entry specifies the 

router for the destination. In either case, the route specifies only the first-hop gateway—a 

link-level interface to be used in sending packets—and the destination for the packets in this hop 

if different from the final destination. This information allows a packet to be sent via a local 

interface to a destination directly reachable via that interface—either the final destination or a 

router on the path to the destination. This distinction is needed when the link-layer 

encapsulation is done. If a packet is destined for a peer that is not directly connected to the 

source, the packet header will contain the address of the eventual destination, whereas the 

link-layer protocol header will address the intervening router. 

The network system maintains a set of routing tables used by protocols to select a network 

interface to use when delivering a packet to its destination. These tables are composed of rtentry 

structures as shown in Table 13.4. 
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Table 13.4 Elements of a routing-table entry (rtentry) structure. 

An rtentry structure, contains a reference to the destination address and mask, unless the route 

is to a host, in which case the mask is implicit. The destination address, address mask, and 

gateway address are different sizes and thus are placed in separately allocated memory. Routing 

entries also contain a reference to a network interface, a set of flags that characterize the route, 

and optionally, a gateway address. The flags indicate a route’s type (host or network, direct or 

indirect) and the other attributes shown in Table 13.5. If the route is a member of a virtual 

networking instance, the route entry will reference the virtual network. The route entry also 

contains a set of metrics and a mutex for locking the entry. The RTF_HOST flag in a 

routing-table entry indicates that the route applies to a single host, using an implicit mask 

containing all the bits of the address. The RTF_GATEWAY flag in a routing-table entry indicates 

that the route is to a router and that the link-layer header should be filled in from the 

rt_gateway field, instead of from the final destination address. The route entry contains a field 

that can be used by the link layer to cache a reference to the direct route for the router. The 

RTF_UP flag is set when a route is installed. When a route is removed, the RTF_UP flag is 

cleared, but the route entry is not freed until all users of the route have noticed the failure and 

have released their references. The route entry contains a reference count because it is allocated 

dynamically and cannot be freed until all references have been released. Other flags 

(RTF_REJECT and RTF_BLACKHOLE) mark the destination of the route as being unreachable, 

causing either an error or a silent failure when an attempt is made to send to the destination. 

Reject routes are useful when a router receives packets for a cluster of addresses from the 

outside, but may not have routes for all hosts or networks in the cluster at all times. Packets with 

unreachable destinations should not be sent outside the cluster via a default route because the 
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default router would send back such packets for delivery within the cluster. Black-hole routes 

are used during routing transients when a new route may become available shortly. 

 

Table 13.5 Route-entry flags. 

Many connection-oriented protocols wish to retain information about the characteristics of a 

particular network path. Some of this information can be estimated dynamically for each 

connection, such as the round-trip time or path MTU. It is useful to cache such information so 

that the estimation does not need to begin anew for each connection [Mogul & Deering, 1990]. 

The routing entry contains a set of route metrics stored in a rt_metrics_lite structure that may 

be set externally or may be determined dynamically by the protocols. These metrics include the 

maximum packet size for the path, called the maximum transmission unit (MTU); the 

lifetime for the route; and the number of packets that have been sent using this route. 
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Routing Lookup 

Given a set of routing entries describing various destinations, from specific hosts to a wildcard 

route, a routing lookup algorithm is required. The lookup algorithm in FreeBSD uses a variation 

of the radix search trie [Sedgewick, 1990]. (The initial design was to use a PATRICIA search, 

also described in Sedgewick [1990], which differs only in the details of storage management.) 

The radix search algorithm provides a way to find a bit string, such as a network address, in a set 

of known strings. Although the modified search was implemented for routing lookups, the radix 

code is implemented in a more general way so that it can be used for other purposes. For 

example, the filesystem code uses a radix tree to manage information about clients to which 

filesystems can be exported. Each kernel route entry begins with the data structures for the 

radix tree, including an internal radix node and a leaf node that refers to the destination address 

and mask. 

The radix search algorithm uses a binary tree of nodes beginning with a root node for each 

address family. Figure 13.14 shows an example of a radix tree. A search begins at the root node 

and descends through internal nodes until a leaf node is found. Each internal node requires a 

test of a specific bit in the string, and the search descends in one of two directions depending on 

the value of that bit. The internal nodes contain an index of the bit to be tested, as well as a 

precomputed byte index and mask for use in the test. A leaf node is marked with a bit index of 

–1, which terminates the search. For example, a search for the address 127.0.0.1 (the loopback 

address) with the tree in Figure 13.14 would start at the head and would branch left when testing 

bit 0, branch right at the node for bit 1, and branch right on testing bit 31. This search leads to 

the leaf node containing a host route specific to that host; such a route does not contain a mask 

but uses an implicit mask with all bits set. 
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Figure 13.14 Example radix tree. This simplified example of a radix tree contains routes for the 

IPv4 protocol family, which uses 32–bit addresses. The circles represent internal nodes, 

beginning with the head of the tree at the top. The bit position to be tested is shown within the 

circle. Leaf nodes are shown as rectangles containing a key (a destination address, listed as four 

decimal bytes separated by dots) and the corresponding mask (in hexadecimal). Some interior 

nodes are associated with masks found lower in the tree, as indicated by dashed arrows. 

This lookup technique tests the minimum number of bits required to distinguish among a set of 

bit strings. Once a leaf node is found, either it specifies the specific bit string in question or that 

bit string is not present in the tree. This algorithm allows a minimal number of bits to be tested 

in a string to look up an unknown, such as a host route; however, it does not provide for partial 

matching as required by a routing lookup for a network route. Thus, the routing lookup uses a 

modified radix search, in which each network route includes a mask, and nodes are inserted into 

the tree such that longer masks are found earlier in the search [Sklower, 1991]. Interior nodes 

for subtrees with a common prefix are marked with a mask for that prefix. Masks generally 

select a prefix from an address, although the mask does not need to specify a contiguous portion 

of the address. As the routing lookup proceeds, the internal nodes that are passed are associated 

with masks that increase in specificity. If the route that is found at the leaf after the lookup is a 

network route, the destination is masked before comparison with the key, thus matching any 

destination on that network. If the leaf node does not match the destination, an interior node 

visited during the route lookup should refer to the best match. After a lookup does not find a 

match at the leaf node, the lookup procedure iterates backward through the tree, using a parent 

pointer in each node. At each interior node that contains a mask, a search is made for the part of 

the destination under that mask from that point. For example, a search for the address 

128.32.33.7 in the tree in Figure 13.14 would test bits 0, 18, and 29 before arriving at the host 

route on the right (128.32.33.5). Because this address is not a match, the search moves up one 

level, where a mask is found. The mask is a 24-bit prefix, and it is associated with the route to 

128.32.33.0, which is the best match. If the mask was not a prefix (in the code, a route with a 

mask specifying a prefix is called a normal route), a search would have been required for the 

value 128.32.33.7 starting from this point. 

The first match found is the best match for the destination; that is, it has the longest mask for 

any matching route. Matches are thus found by a combination of a radix search, testing 1 bit per 

node on the way down the tree, plus a full comparison under a mask at the leaf node. If the leaf 

node (either host or network) does not match, the search backtracks up the tree, checking each 

parent with a mask until a match is found. This algorithm avoids a complete comparison at each 

step when searching down the tree, which would eliminate the efficiency of the radix-search 

algorithm. It is optimized for matches to routes with longer masks and performs least efficiently 

when the best match is the default route (the route with the shortest mask). 
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Another complication of using a radix search is that a radix tree does not allow duplicated keys. 

There are two possible reasons for a key to be duplicated in the tree: either multiple routes exist 

to the same destination or the same key is present with different masks. The latter case is not a 

complete duplicate, but the two routes would occupy the same location in the tree. The routing 

code supports duplicate routes in two different ways, depending on the features compiled into 

the kernel. By default, the radix code supports multiple routes that differ in only the mask. 

When the addition of a route causes a key to be duplicated, the affected routes are chained 

together from a single leaf node. The routes are chained in order of mask significance, the most 

specific mask first. If the masks are contiguous, longer masks are considered to be more specific 

(with a host route considered to have the longest possible mask). If a routing lookup visits a 

node with a duplicated key when doing a masked comparison (either at the leaf node or while 

moving back up the tree), the comparison is repeated for each duplicate node on the chain, with 

the first successful comparison producing the best match. 

Duplicate routes to different gateways are referred to as equal-cost multi-path routes (ECMP) 

and are supported by the RADIX_MPATH feature. ECMP routes can be used to balance traffic 

load across multiple links as well as to provide the ability for a single link to fail without the total 

loss of connectivity to the next hop in the network. When ECMP routes are used for failover, one 

gateway may go over a valid but less-preferred route to the destination. A less-preferred route 

might transit a slower or more expensive link. The use of multi-path routes allows the system to 

failover gracefully when one link goes down. Enabling ECMP changes the routine used to look 

up a route as well as the way in which multiple routes are stored in a radix trie’s leaf nodes. 

Each radix trie has a single radix_node_head structure that contains both data about the trie, 

and a set of pointers to functions to use when performing operations on it. The rnh_matchaddr() 

field is filled in appropriately at the time that the table is initialized to point to the correct 

routine to return a matching route. When ECMP routing is in use, the rtalloc_mpath_fib() 

routine is ultimately used to look up a route rather than rtalloc_fib(). When ECMP routes are 

used to load balance traffic across a set of links, the matching algorithm uses a Modulo-N hash 

to choose the gateway to forward any single packet. The Modulo-N hash is calculated to 

guarantee that packets with the same source and destination information always cross the same 

link. If two packets from the same flow cross different links there is the chance that they will 

arrive at their destination out of order, causing a drop in network performance, (see Section 14.5) 

[Thaler & Hopps, 2000]. When ECMP routes are used to implement failover links, where one 

link is unused until the failure of a primary link, each equal-cost route is given a weight that is 

used as part of the gateway selection algorithm. The route with the greatest weight will be used 

instead of any other equal-cost route. When a link goes down, the routing entry will remain in 

the trie but it will not be used to route packets. The next hop gateway will be selected from the 

remaining equal cost routes at the same leaf node in the tree. 
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Routing Redirects 

A routing redirect message is a control request from a protocol to the routing system to 

modify an existing routing-table entry or to create a new routing-table entry. Protocols usually 

generate such requests in response to redirect messages that they receive from routers. Routers 

generate redirect messages when they recognize that a better route exists for a packet that they 

have been asked to forward. For example, if two hosts, A and B, are on the same network, and 

host A sends a packet to host B via a router C, then C will send a redirect message to A specifying 

that A should send packets directly to B. 

On hosts where exhaustive routing information is too expensive to maintain (e.g., SOHO routers, 

cable modems, and other embedded systems), the combination of wildcard routing entries and 

redirect messages can be used to provide a simple routing-management scheme without the use 

of a higher-level policy process, such as a user-level routing daemon. Statistics are kept by the 

routing-table routines on the use of routing-redirect messages and on the latter’s effect on the 

routing tables. A redirect causes the gateway for a route to be changed if the redirect applies to 

all destinations to which the route applies. A user-level routing daemon will normally clean up 

stale host routes, but most hosts do not run routing daemons. 

Routing-Table Interface 

A protocol accesses the routing tables through three types of routines: one to allocate a route, 

one to free a route, and one to process a routing-redirect control message. The routine rtalloc() 

allocates a route. It is called with a pointer to a route structure that contains the desired 

destination and a pointer that will be set to reference a rtentry structure that is the best match 

for the destination. Figure 13.15 shows the resulting route allocation. The destination is recorded 

so that later output operations can check whether the new destination is the same as the 

previous one, allowing the same route to be used. With the addition of VIMAGE, it was 

necessary to provide routines such as rtalloc_ign_fib() that allowed the caller to pass in an 

index for the kernel to use to pick the appropriate routing table. All route allocation routines 

eventually wind up calling rtalloc_ign_fib(), where the work of looking up a route takes place. 

The route returned is assumed to be held by the caller until released with a call to the RTFREE 

macro. All accesses to the routing table must be properly locked in FreeBSD and the RTFREE 

macro handles the locking as well as decrementing the route’s reference count, freeing the route 

entry when the reference count reaches zero. Since a route can only be present in a single 

routing table, there is no need to have a specific rtfree_fib() routine. The rtalloc_ign_fib() 

routine simply checks whether the route already contains a reference to a valid route. If no route 

is referenced or the route is no longer valid, rtalloc_ign_fib() calls the rtalloc1_fib() routine to 
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look up a routing entry for the destination, passing a flag indicating whether the route will be 

used or is simply being checked. 

 

Figure 13.15 Data structures used in route allocation. 

The rtredirect_fib() routine is called to process a redirect control message. It is called with a 

destination address and mask, the new gateway to the referenced destination, and the source of 

the redirect. Redirects are accepted from only the current router for the destination. If a 

nonwildcard route exists to the destination, the gateway entry in the route is modified to point 

at the new gateway supplied; otherwise, a new host route is created. Routes to interfaces and 

routes to gateways that are not directly accessible from the host are ignored. 

User-Level Routing Policies 

The kernel routing facilities deliberately refrain from making policy decisions. Instead, routing 

policies are determined by user processes, which then add, delete, or change entries in the 

kernel routing tables. The decision to place policy decisions in a user process implies that 

routing-table updates may lag a bit behind the identification of new routes or the failure of 

existing routes. This period of instability is normally short if the routing process is implemented 

properly. Internet-specific advisory information, such as ICMP error messages, may also be read 

from raw sockets (described in Section 13.6). 

Several routing-policy processes have been implemented. The system standard routing 

daemon, routed, uses the Routing Information Protocol (RIP) [Hedrick, 1988]. Many sites 

that require the use of other routing protocols or more configuration options than are provided 
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by routed use either a commercial package or the open-source Quagga Routing Suite [Ishiguro, 

2003]. 

User-Level Routing Interface: Routing Socket 

User-level processes that implement routing policy and protocols require an interface to the 

kernel routing table so that they can add, delete, and change kernel routes. 

User level processes on FreeBSD use a socket to communicate with the kernel routing layer. A 

privileged process creates a raw socket in the routing protocol family, AF_ROUTE, and then 

passes messages to and from the kernel routing layer. A routing socket operates like a normal 

datagram socket, including queueing of messages received at the socket, except that 

communication takes place between a user process and the kernel. Messages include a header 

with a message type identifying the action, as listed in Table 13.6. Messages to the kernel are 

requests to add, modify, or delete a route, or are requests for information about the route to a 

specific destination. The kernel sends a message in reply with the original request, an indication 

that the message is a reply, and an error number for failures. Because routing sockets are raw 

sockets, each open routing socket receives a copy of the reply and must filter for the messages it 

wants. The message header includes a process ID and a sequence number so that each process 

can determine whether this message is a reply to its own request and can match replies with 

requests. The kernel also sends messages as indications of asynchronous events, such as 

redirects and changes in local interface state. These messages allow a daemon to monitor 

changes in the routing table made by other processes, events detected by the kernel, and 

changes to the local interface addresses and state. The routing socket is also used to deliver 

requests for external resolution of a link-layer route when the RTF_XRESOLVE flag is set on a 

route entry. 
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Table 13.6 Routing-message types. 

Requests to add or change a route include all the information needed for the route. The header 

has a field for the route flags listed in Table 13.5, and contains a rt_metrics structure of metrics 

that may be set or locked. Metrics that can be set on a route include the MTU and expiration 

time. The header also carries a bit vector that describes the set of addresses carried in the 

message; the addresses follow the header as an array of variable-size sockaddr structures. A 

destination address is required, as is a mask for network routes. A gateway address is generally 

required as well. The system normally determines the interface to be used by the route from the 

gateway address, using the interface shared with that gateway. 

13.6 Raw Sockets 

A raw socket allows privileged users direct access to a protocol other than those normally used 

for transport of user data—for example, network-level protocols. Raw sockets are intended for 

knowledgeable processes that wish to take advantage of some protocol feature not directly 
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accessible through the normal interface or for the development of protocols built atop existing 

protocols. For example, the ping program is implemented using a raw ICMP socket (see Section 

13.2). The raw IP socket interface attempts to provide an identical interface to the one a protocol 

would have if it were resident in the kernel. 

The raw-socket support is built around a generic raw-socket interface, possibly augmented by 

protocol-specific processing routines. This section describes only the core of the raw-socket 

interface; details specific to particular protocols are not discussed. Some protocol families 

(including IPv4) use private versions of the routines and data structures described here. 

Control Blocks 

Every raw socket has a protocol control block of the form shown in Figure 13.16. Raw control 

blocks are kept on a singly linked list for performing lookups during packet dispatch. 

Associations may be recorded in fields referenced by the control block and may be used by the 

output routine in preparing packets for transmission. The rcb_proto field contains the protocol 

family and protocol number with which the raw socket is associated. The protocol, family, and 

addresses are used to filter packets on input, as described in the next subsection. 

 

Figure 13.16 Raw-socket control block. 

A raw socket is datagram oriented: each send or receive on the socket requires a destination 

address. Destination addresses are supplied by the user. If routing is necessary, it must be 

performed by an underlying protocol. 
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Input Processing 

Input packets are assigned to raw sockets based on a simple pattern-matching scheme. Each 

protocol (and potentially some network interfaces) gives unassigned packets to the raw input 

routine with the call 

Click here to view code image 

void raw_input_ext( 

    struct mbuf *msg, 

    struct sockproto *proto, 

    struct sockaddr *src) 

Input packets are placed into the input queues of all raw sockets that match the header 

according to the following rules: 

1. The protocol family of the socket and header agree. 

2. If the protocol number in the socket is nonzero, then it agrees with that found in the packet 

header. 

A basic assumption in the pattern-matching scheme is that protocol information in the control 

block and packet header (as constructed by the network interface and any raw input-protocol 

module) is in a canonical form that can be compared on a bit-for-bit basis. If multiple sockets 

match the incoming packet, the packet is copied as needed. 

Output Processing 

On output, each send request results in a call to the raw socket’s raw_usend routine, which calls 

an output routine specific to the protocol or protocol family. Any necessary processing is done 

before the packet is delivered to the appropriate network interface. 

13.7 Security 

We mentioned in Section 13.3 that a suite of security protocols was developed as part of IPv6. 

These protocols were written to be independent of any particular version of IP, so they have 

been integrated into IPv4 and IPv6. At the network layer, security mechanisms have been added 

to provide authentication so that one host can know with whom it is communicating. Encryption 
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has been added so that data can be hidden from untrusted entities as they cross a network. The 

protocols that collectively provide security within the network layer are referred to as IPSec. 

Placing the security protocols at the network layer within the protocol stack was not an arbitrary 

decision. It is possible to place security at just about any layer within a communication system. 

For example, transport-layer security (TLS) supports communication security at the application 

layer and allows a client and a server to communicate securely over an arbitrary network. At the 

opposite end of the spectrum are the various protocols that support security over wireless 

networks working at the data-link layer. The decision to put security at the network layer was 

made for several reasons: 

• The IP protocols act as a uniform platform in which to place the security protocols. Differences 

in underlying hardware, such as different types of network media, did not have to be taken into 

account when designing and implementing IPSec because if a piece of hardware could send and 

receive IP datagrams, then it could also support IPSec. 

• Users need not do any work to use the security protocols. Because IPSec is implemented at the 

network, instead of the application layer, users who run network programs are automatically 

working securely as long as their administrators have properly configured the system. 

• Key management can be handled in an automatic way by system daemons. The most difficult 

challenge in deploying network security protocols is giving out and canceling the keys used to 

secure the data. Since IPSec is handled in the kernel, and is not usually dealt with by users, it is 

possible to write daemons to handle the management of keys. 

Security within the context of IPSec means several things: 

• The ability to trust that a host is who it claims to be (authentication) 

• Protection against the replay of old data 

• Confidentiality of data (encryption) 

Providing a security architecture for the Internet protocols is a complex problem. The relevant 

protocols are covered in several RFCs, and an overview is given in Kent & Atkinson [1998a]. 

IPSec Overview 

The IPSec protocol suite provides a security framework for use by hosts and routers on the 

Internet. Security services, such as authentication and encryption, are available between two 

hosts, a host and a router, or two routers. When any two entities on the network (hosts or 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref16


 

797 

routers) are using IPSec for secure communication, they are said to have a security 

association (SA) between them. Each SA is unidirectional, which means that traffic is only 

secured between two points in the direction in which the SA has been set up. For a completely 

secure link two SAs are required, one in each direction. 

SAs are uniquely identified by their destination address, the security protocol being used, and a 

security-parameter index (SPI), which is a 32-bit value that distinguishes among multiple 

SAs terminating at the same host or router. The SPI is the key used to look up relevant 

information in the security-association database that is maintained by each system running 

IPSec. 

An SA can be used in two modes. In transport mode, a portion of the IP header is protected 

as well as the IPSec header and the data. The IP header is only partially protected because it 

must be inspected by intermediate routers along the path between two hosts, and it is neither 

possible nor desirable, to require every possible router to run the IPSec protocols. One reason to 

run security protocols end to end is so intermediate routers do not have to be trusted with the 

data they are handling. Another reason is that security protocols are often computationally 

expensive and intermediate routers often do not have the computational power to decrypt and 

reencrypt every packet before it is forwarded. 

Since only a part of the IP header is protected in transport mode, this type of SA only provides 

protection to upper-layer protocols, those that are completely encapsulated within the data 

section of the packet, such as UDP, TCP and SCTP. Figure 13.17 shows a transport-mode SA 

between hosts Alice and Bob, as well as the packet that would result. Alice sets up a normal IP 

packet with Bob as the destination. She then adds the IPSec header and data. Finally, she 

applies whatever security protocol has been selected by the user and sends the packet, which 

travels through routers in Tokyo and New York and finally to Bob. Bob decrypts the packet by 

looking up the security protocol and keys in its security-association database. 
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Figure 13.17 Security association in transport mode. Key: AH—authentication header; 

ESP—encapsulating-security payload; SPI—security-parameter index. 

The other mode is tunnel mode, shown in Figure 13.18, where the entire packet is placed 

within an IP-over-IP tunnel [Simpson, 1995]. In tunneling, the entire packet, including all the 

headers and data, are placed as data within another packet and sent between two locations. 

Alice again wants to send a packet to Bob. When the packet reaches the Tokyo router, it is placed 

in a secure tunnel between Tokyo and New York. The entire original packet is placed inside a 

new packet and secured. The outer IP header identifies only the endpoints of the tunnel, the 

routers in Tokyo and New York, and does not give away any of the original packet’s header 

information. When the packet reaches the end of the tunnel in New York, it is decrypted and 

then sent on to Bob, its original destination. In this example, neither Alice nor Bob knows that 

the data have been encrypted nor do they have to be running the IPSec protocols to participate 

in this secure communication. 

 

Figure 13.18 Security association in tunnel mode. Key: AH—authentication header; 

ESP—encapsulating-security payload; SPI—security-parameter index. 

Tunnel mode is only used for host-to-router or router-to-router communications and is most 

often seen in the implementation of virtual private networks that connect two private 

networks or that connect users to a corporate LAN over the public Internet. 

Security Protocols 

There are two security protocols specified for use with IPSec: the authentication header (AH) 

and the encapsulating-security payload (ESP), each of which provides different security services 

[Kent & Atkinson, 1998b; Kent & Atkinson, 1998c]. Both protocols are used with IPv4 and IPv6 

without changes to their headers. This dual usage is possible because the packet headers are 
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really IPv6 extension headers that properly encode information about the other protocols 

following them in the packet. 

The AH protocol provides a packet-based authentication service as well as protection against an 

attacker attempting to replay old data. To understand how AH provides security, it is easiest to 

look at its packet header, shown in Figure 13.19. The next-header field identifies the type of 

packet that follows the current header. The next-header field uses the same value as the one that 

appears in the protocol field of an IPv4 packet: 6 for TCP, 17 for UDP, and 1 for ICMP. The 

payload length specifies the number of 32-bit words that are contained in the authentication 

header minus 2. The fudge factor of removing 2 from this number comes from the specification 

for IPv6 extension headers. The SPI is a 32-bit number that is used by each endpoint to look up 

relevant information about the security association. 

 

Figure 13.19 Authentication header. 

Authentication is provided by computing an integrity-check value (ICV) over the packet. If 

an AH is used in transport mode, then only parts of the IP header are protected because some of 

the fields are modified by intermediate routers in transit and the changes are not predictable at 

the sender. In tunnel mode, the whole header is protected because it is encapsulated in another 

packet, and the ICV is computed over the original packet. The ICV is computed using the 

algorithm specified by the SPI with the result stored in the authentication-data field of the 

authentication header. The receiver uses the same algorithm, requested by the SPI to compute 

the ICV on the packet it received, and compares this value with the one found in the packet’s 

authentication-data field. If the values are the same, then the packet is accepted; otherwise, it is 

discarded. 

One possible attack on a communication channel is called a replay attack. An attacker attempts 

to insert malicious packets that duplicate packets sent in the past as if they were coming from 

the authentic source. To guard against a replay attack, the AH protocol uses a sequence-number 

field to uniquely identify each packet that is transmitted across an SA. This sequence-number 

field is distinct from the field of the same name in TCP. When an SA is established, both the 
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sender and receiver set the sequence number field to zero. The sender increments the sequence 

number before transmitting a packet. The receiver implements a fixed-size sliding window, with 

its left edge being the lowest sequence number that it has seen and validated, and the right edge 

being the highest. When a new packet is received, its sequence number is checked against the 

window with three possible results: 

1. The packet’s sequence number is less than the sequence number on the left edge of the 

window and the packet is discarded. 

2. The packet’s sequence number is within the window. The receiver keeps a bitmap that tracks 

the packets that have been received within the window. The packet is checked to see if it is 

already marked in the bitmap. If it is in the bitmap, it is a duplicate and is discarded. If the 

packet is not a duplicate, it is inserted into the window and the bitmap is updated to show that 

its sequence number has been received. 

3. The packet’s sequence number is to the right of the current window. The ICV is verified and, 

if correct, the window is moved to the right to encompass the new sequence number value. The 

bitmap is updated to reflect that its sequence number has been received. 

When the sequence number rolls over, after over 4 billion packets, the security association must 

be torn down and restarted. This restart is only a slight inconvenience because at gigabit 

Ethernet rates of 83,000 packets per second, it takes over 14 hours for the security sequence 

number to roll over, and a user-level daemon can automatically tear down and reestablish the 

link without human intervention. 

All senders assume that a receiver is using the antireplay service and is always incrementing the 

sequence number, but it is not required for the receiver to implement the antireplay service, and 

it may be turned off at the discretion of the operator of the receiving system. 

The ESP provides confidentiality using encryption. As with the AH, it is easiest to understand 

the ESP by examining its packet header, shown in Figure 13.20. The ESP header contains all the 

same fields as were found in the AH header, but it adds three more. The encrypted data sent 

using an ESP is stored in the payload-data field of the packet. The padding field that follows the 

payload data may be used for three purposes: 

• The encryption algorithm might require that the data to be encrypted be some multiple 

number of bytes. The padding data is added to the data to be encrypted so that the chunk of data 

is of the correct size. 
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• Padding might be required to properly align some part of the packet. For example, the 

pad-length and next-header fields must be right-aligned in the packet, and the 

authentication-data field must be aligned on a 4-byte boundary. 

• The padding may also be used to obscure the original size of the payload in an attempt to 

prevent an attacker from gaining information by watching the traffic flow. 

 

Figure 13.20 Encapsulating security-protocol header. 

Key Management 

User-level applications cannot use IPSec in the same way that they use transport protocols like 

UDP and TCP. For example, an application cannot open a secure socket to another endpoint 

using IPSec. Instead, all SAs are kept in the kernel and managed using a new domain and 

protocol family called PF_KEY_V2 [McDonald et al., 1998]. 

The automated distribution of keys for use in IPSec is handled by the Internet Key Exchange 

(IKE) protocol [Harkins & Carrel, 1998]. User-level daemons that implement the IKE protocol, 

such as Racoon, interact with the kernel using PF_KEY_V2 sockets [Sakane, 2001]. As these 

daemons are not implemented in the kernel, they are beyond the scope of this book. 

User-level applications interact with the security database by opening a socket of type PF_KEY. 

There is no corresponding AF_KEY address family. Key sockets are based on the routing-socket 

implementation and function much like a routing socket. Whereas the routing-socket API 

manipulates the kernel routing table, the key-socket API manages security associations and 

policies. Key sockets support a connectionless-datagram facility between user applications and 
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the kernel. User-level applications send commands in packets to the kernel’s security database. 

Applications can also receive messages from a key socket about changes to the security database 

such as the expiration of security associations. 

The messages that can be sent using a key socket are shown in Table 13.7. Two groups of 

messages are defined for key sockets: a base set of messages that all start with a 

security-association database (SADB) and a set of extension messages that all start with 

SADB_X. The type of the message is the second part of the name. In FreeBSD, the extension 

messages manipulate a security-policy database (SPDB) that is separate from the SADB. 
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Table 13.7 PF_KEY messages. 

Key-socket messages are made up of a base header, shown in Figure 13.21, and a set of extension 

headers. The base header contains information that is common to all messages. The version 

ensures that the application will work with the version of the key-socket module in the kernel. 

The command being sent is encoded in the message-type field. Errors are sent to the calling 

socket using the same set of headers that are used to send down commands. Applications cannot 

depend on all errors being returned by a send or write system call made on the socket, and they 

must check the error number of any returned message on the socket for proper error handling. 

The errno field is set to an appropriate error number before the message is sent to the listening 

socket. The type of security association that the application wants to manipulate is placed in the 

SA-type field of the packet. The length of the entire message, including the base header, all 

extension headers, and any padding that has been inserted, is stored in the length field. Each 

message is uniquely identified by its sequence and PID fields that match responses to requests. 

When the kernel sends a message to a listening process, the PID is set to 0. 

 

Figure 13.21 PF_KEY-base header. 

The security-association database and security-policy database cannot be changed using the 

base header. To make changes, the application adds one or more extension headers to its 

message. Each extension header begins with a length and a type so that the entire message can 

be easily traversed by the kernel or an application. An association extension is shown in Figure 

13.22. The association extension makes changes to a single security association, such as 

specifying the authentication or encryption algorithm to be used. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig21
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Figure 13.22 PF_KEY-association extension. 

Whenever an association extension is used, an address extension must be present as well, since 

each security association is identified by the network addresses of the communicating endpoints. 

An address extension, shown in Figure 13.23. stores information on the IPv4 or IPv6 addresses 

using sockaddr structures. 

 

Figure 13.23 PF_KEY address extension. 

One problem with the current PF_KEY implementation is that it is a datagram protocol and the 

message size is limited to 64 Kbyte. A 64-Kbyte limit is not important to users with small 

databases, but when a system using IPSec is deployed in a large enterprise, with hundreds and 

possibly thousands of simultaneous security associations, the SADB will grow large and this size 

limitation makes it more difficult to write user-level daemons to manage the kernel’s security 

databases. 

A security-association structure is shown in Figure 13.24. Like many other data structures in 

FreeBSD, security-association structures are really objects implemented in C. Each 

security-association structure contains all the data related to a specific security association as 

well as the set of functions necessary to operate on packets associated with that association. The 

security-association database is stored as a doubly linked list of security-association structures. 

Each security association can be shared by more than one entity in the system, which is why it 

contains a reference count. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig23
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Figure 13.24 Security-association structure. 

Security associations can be in four states: LARVAL, MATURE, DYING, and DEAD. When an 

SA is first being created, it is put into the LARVAL state, which indicates that it is not yet usable. 

Once an SA is usable, it moves to the MATURE state. An SA remains in the MATURE state until 

some event, such as the SA exceeding its lifetime, moves it to the DYING state. SAs in the 

DYING state can be revived if an application makes a request to use an SA with the same 

parameters before it is marked as DEAD. 

The security-association structure contains all the information on a particular SA including the 

algorithms used, the SPI, and the key data. This information is used in processing packets for a 

particular association. The lifetime fields limit the usage of a particular SA. Although an SA is 

not required to have a lifetime, and so might not expire, recommended practice is to set a 

lifetime. Lifetimes can be given a time limit using the addtime and usetime fields of the 

sadb_lifetime structure, and can be given a data-processing limit using the bytes field. The three 

lifetime structures pointed to by the security association encode the current usage for the 

association and its hard and soft limits. When reached, the soft-lifetime value puts the SA into 

the DYING state to show that its useful life is about to end. When reached, the hard-lifetime 

value indicates that the SA is no longer usable. Once an SA passes the hard-lifetime limit, it is 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_34
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set to the DEAD state and can be reclaimed. The current-lifetime structure contains the present 

usage values for the SA—for example, how many bytes have been processed since the SA was 

created. 

Each security-association structure has several tables of functions that point to routines that do 

the work on packets handled by that association. The tdb_xform table contains pointers to 

functions that implement the initialization, input, and output functions for a particular security 

protocol such as ESP or AH. The other three tables are specific to a protocol and contain 

pointers to the appropriate cryptographic functions for handling the protocol being used by the 

SA. The reason for having this plethora of tables is that the cryptographic subsystem ported 

from OpenBSD used these tables to encapsulate the functions that do the real work of 

cryptography. To simplify the maintenance of the code, this set of interfaces and tables was 

retained during the port. A useful side effect of having these tables is that it makes adding new 

protocols or cryptographic routines simple. The use of these tables is described later in this 

section. 

User-level daemons interact with the IPSec framework via key sockets. Key sockets are 

implemented in the same way as other socket types. There is a domain structure, keydomain; a 

protocol-switch structure, keysw; a set of user-request routines, key_usrreqs; and an output 

routine, key_output(). Only those routines necessary for a connectionless-datagram type of 

protocol are implemented in the key_usrreqs structure. Any attempt to use a key socket in a 

connection-oriented way—for instance, calling connect on a key socket—will result in the kernel 

returning EINVAL to the caller. 

When an application writes to a key socket, the message is eventually transferred down into the 

kernel and is handled by the key_output() routine. After some rudimentary error checking, the 

message is passed to key_parse(), which does more error checks, and then is finally shuttled off 

through a function-pointer switch called key_types. The functions pointed to by key_types are 

those that do the manipulation of the security-association and security-policy databases. 

If the kernel needs to send a message to listening applications because of changes in the security 

databases, it uses the key_sendup_mbuf() routine to copy the message to one or more listening 

sockets. Each socket receives its own copy of the message. 

IPSec Implementation 

The IPSec protocols affect all areas of packet handling in the IPv4 and IPv6 protocol stacks. In 

some places, IPSec uses the existing networking framework, and in others, direct callouts are 
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made to do some part of the security processing. We will look at three of the possible paths 

through the IPv4 stack: inbound, outbound, and forwarding. 

One twist that IPSec adds to normal packet processing is the need to process some packets more 

than once. An example is the arrival of an encrypted packet bound for the current system. The 

packet will be processed once in its encrypted form and then a second time, by the same 

routines, after it has been decrypted. This multipass processing is unlike regular TCP or UDP 

processing where the IP header is stripped from the packet and the result is handed to the TCP 

or UDP modules for processing and eventual delivery to a socket. This continuation style of 

processing packets is one reason that the IPSec software makes extensive use of packet tags. 

Another reason to use packet tags is that parts of IPSec, namely the cryptographic algorithms, 

can be supported by special-purpose hardware accelerators. A hardware accelerator may do all 

or part of the security processing, such as checking a packet’s authentication information or 

decrypting the packet payload and then passing the resulting packet into the protocol stack for 

final delivery to a waiting socket. The hardware needs some way to tell the protocol stack that it 

has completed the necessary work. It is neither possible, nor desirable, to store this information 

in the headers or data of the packet. Adding such information to a packet’s header is an obvious 

security hole because a malicious sender could simply set the appropriate field and bypass the 

security processing. It would have been possible to extend the mbuf structure to handle this 

functionality, but packet tags are a more flexible way of adding metadata to packets without 

modifying a key data structure in the network stack. The tags used by IPSec are described in 

Table 13.8. 

 

Table 13.8 IPSec packet tags. 

As we saw in Section 13.4, when an IPv4 packet is received by the kernel, it is initially processed 

by ip_input(). The ip_input() routine does two checks on packets that are related to IPSec. The 

first is to see if the packet is really part of a tunnel. If a packet is being tunneled and it has been 

processed by the IPSec software already, it can bypass any filtering by filter hooks or the kernel’s 

firewall code. The second check is done when a packet is to be forwarded. Routers can 

implement security policies on packets that are forwarded. Before a packet is passed to 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_57
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ip_forward(), it is checked by calling the ipsec_getpolicy() function to see if there is a policy 

that is associated with the packet itself. The ipsec_getpolicybyaddr() function is called to check 

if there is a policy associated with the address of the packet. If either function returns a pointer 

to a policy routine, the packet is passed to that policy routine to be checked. If the packet is 

rejected, it is silently dropped and no error is returned to the sender. 

When ip_input() has determined that the packet is valid and is destined for the local machine, 

the protocol-stack framework takes over. The packet is passed to the appropriate input routine 

using the pr_input field of the inetsw structure. Although packets using different protocols have 

different entry points, they eventually wind up being passed to a single routine, 

ipsec_common_input(), for processing. The ipsec_common_input() routine attempts to find 

the appropriate security-association structure for the packet based on its destination address, 

the security protocol it is using, and the SPI. If an appropriate association is found, then control 

is passed to the input routine contained in the SA’s xform-switch structure. The 

security-protocol’s input routine extracts all the relevant data from the packet—for example, the 

key being used—and creates a cryptography-operation descriptor. This descriptor is then passed 

into the cryptographic routines. When the cryptographic routines have completed their work, 

they call a protocol-specific callback routine, which modifies the mbufs associated with the 

packet so that it may now be passed, unencrypted, back into the protocol stack via the ip_input() 

routine. 

Applications do not know that they are using IPSec to communicate with other hosts in the 

Internet. For outbound packets, the use of IPSec is really controlled from within the ip_output() 

routine. When an outbound packet reaches the ip_output() routine, a check is made to see if 

there is a security policy that applies to the packet, either because of its destination address or 

because of the socket that sent it. If a security policy is found, then the packet is passed into the 

IPSec code via the ipsec4_process_packet() routine. If a security association has not been set up 

for this particular destination, one is created for it in the security-association database. The 

ipsec4_process_packet() uses the output() routine from the xform switch in the security 

association to pass off the packet to the security protocol’s output routine. The security 

protocol’s output routine uses the appropriate cryptographic routine to modify the packet for 

transmission. Once the packet has been modified appropriately, it is passed again into 

ip_output() but with the tag IPSEC_OUT_DONE attached to it. This tag marks the packet as 

having completed IPSec processing, showing that it can now be transmitted like any other 

packet. 

Underlying all the security protocols provided by IPSec is a set of APIs and libraries that support 

cryptography. The cryptographic subsystem in FreeBSD supports both symmetric and 

asymmetric cryptography. Symmetric cryptography, used by IPSec, uses the same key to 
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encrypt data as it does to decrypt them. Asymmetric cryptography, which implements 

public-key encryption, uses one key to encrypt data and another key to decrypt them. The 

cryptographic APIs are covered in detail in Section 5.12. Readers interested in how data are 

encrypted within the IPSec subsystem are encouraged to read the complete discussion found 

there. 

13.8 Packet-Processing Frameworks 

Most of the packets that are processed by a host pass through network-protocol modules such as 

TCP/IP. Some applications may need to get access to packets as they pass through the kernel 

without using the more common mechanisms provided by sockets. Over the last 20 years 

several different packet-processing frameworks have been developed in FreeBSD, from simple 

packet filtering to more complex frameworks in which new protocols can be developed. 

Packet-processing frameworks are used for debugging network problems, implementing 

fire-walls, performing network address translation (NAT), and providing software for 

network-research testbeds. 

Berkeley Packet Filter 

The Berkeley Packet Filter (BPF) [McCanne & Jacobson, 1993], FreeBSD’s packet sniffing 

system, is arguably the simplest packet-processing framework provided by the operating system. 

BPF provides a uniform user-level interface to all the operating system’s network interfaces, 

allowing programs with root privilege to get access to raw packets as they pass by on the 

network. Most users do not interact directly with BPF but instead run programs such as 

tcpdump that use the packet-capture library, libpcap, to express easily understandable 

filtering rules that govern which packets are to be captured. The tcpdump program directs the 

BPF pseudo-device to read raw packets from a network device before any network protocols 

access them. Being implemented as a pseudo-device means that userspace programs can 

interact with BPF via the well-known open, close, read, write, and ioctl interfaces. The device 

nodes exposed by BPF are bi-directional, meaning that applications can not only receive packets 

but can also inject packets into the network from userspace. 

BPF implements a simple high-speed packet-matching engine in software using a synthetic 

domain-specific assembly language. Comprising less than 30 instructions, the BPF virtual 

machine is general enough to do all the computational tasks of a CPU including fetching and 

storing data, mathematical operations, and branching. The simplicity and generality of the BPF 

instruction set make it possible to write complex filtering rules, have them compiled and 

optimized in userspace, and deliver the final instruction stream into the kernel. Separating the 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_15
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compilation and execution of BPF programs makes creating extensions easier and minimizes the 

amount of work that must be done on each packet during filtering, thereby reducing the 

overhead of deciding which packets to capture. One feature that the split between compilation 

and execution has made possible is just-in-time (JIT) compilation of filters to native machine 

code, which allows the kernel to avoid the overhead of virtual-machine instruction execution 

altogether. 

For BPF to work when the system is transmitting packets, it must be hooked into each network 

driver’s source code. A simple macro, BPF_MTAP, is provided for driver authors to use in their 

source code. The purpose of the macro is to take packets, from as near the hardware layer as 

possible, and feed them into BPF so that it can determine if the packets are of interest to a 

listener in userspace. On packet reception, the BPF_MTAP macro is called from the link-layer 

protocols, such as Ethernet. The BPF_MTAP macro is the only interface required by BPF to do 

its work. Providing a single macro that is easy to remember and use has made it possible to 

convince device-driver authors to include this code when writing software for new hardware. 

Internally, the BPF_MTAP macro calls the bpf_mtap() function that contains the calls to the 

filtering and copying routines. The heart of the filtering code is in bpf_filter(), that executes the 

virtual assembly language to decide whether a packet matches a filter. When a packet matches a 

filter, it is copied into a buffer. Aside from data copying, the catchpacket() routine does all the 

tasks that are important to packet filtering: figuring out how much of the packet was captured, 

determining the length of the packet header, and timestamping the captured packet. How the 

packet is copied depends on the function that is passed as an argument to the catchpacket() 

routine. Copying packet data is an expensive operation. One optimization uses zero-copy buffers 

that combine virtual memory and a shared-memory protocol to share buffers directly between 

the kernel and userspace rather than requiring explicit copying. The bpf_append_mbuf() 

function contains a two-case switch statement that calls out to either 

bpf_buffer_append_mbuf() or bpf_zerocopy_append_mbuf(). The zero-copy code does a 

small bit of extra work to ensure that the buffers used to capture the packet data are reused as 

the packet moves toward userspace, reducing the number of times that the packet’s data must 

be copied. The bpf_buffer_append_mbuf() code is simpler because it just loops over the packet 

data to copy it. However, the act of copying data between buffers is expensive and that is why 

the zero-copy code is available. Zero copy is more complex to implement but much faster at run 

time. 

IP Firewalls 

The job of a firewall is to inspect a packet and take an action based on the packet’s contents. 

While BPF might copy the same packet to various listeners in userspace, it will neither modify 
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nor drop the packet along the way. A firewall exists solely to modify or drop packets in transit. 

The kernel provides a generic set of hooks for use in implementing firewalls. All firewalls in 

FreeBSD are built using pfil, which stands for “packet filter.” Firewalls register filtering 

functions with the pfil system, and these functions are executed whenever a packet passes 

through a pfil barrier point in the networking modules. The kernel has twenty one barrier points 

in the networking code where these functions may be added or removed at run time. Barrier 

points include the IPv6 and IPv4 input and output routines discussed in Section 13.4. Providing 

a generic packet filtering system in the kernel has enabled various developers to write firewall 

software without the need for them to modify the kernel on their own. When new network code 

is written, new barrier points are added in the appropriate places such that the firewall authors 

can extend their software further in a fully generic manner. 

Firewalls register their hooks by calling the pfil_add_hook() routine, specifying the function to 

call and whether it should be called for packets that are inbound, outbound, or traveling in 

either direction. Once a hook is registered, it is called by pfil_run_hooks() whenever a packet 

reaches the barrier. The functions called from the pfil_run_hooks() routine can modify the 

mbuf that they are passed, for example, while performing network address translation. If a hook 

function returns a nonzero value, then packet processing ends and no other hooks are called. 

When a hook function decides to drop a packet, it is responsible for freeing the associated mbuf, 

which presents new module authors with the potential for memory leaks. All the firewalls in 

FreeBSD are built on top of this simple set of routines. 

IPFW and Dummynet 

The IP firewall (IPFW) system is both a firewall and generic packet-processing framework that 

can be used to manipulate IPv6 and IPv4 packets as they enter and exit the system. A single pfil 

hook, ipfw_check_hook(), is responsible for capturing packets from within the IPv6 and IPv4 

input and output routines: ip6_input(), ip6_output(), ip6_forward(), ip_input(), ip_output(), 

and ip_fastforward(). In each of these functions, a single call to pfil_run_hooks() decides 

whether packet processing will continue. 

IPFW contains a single central-dispatch function, ipfw_chk(), that decides the fate of all packets 

that are passed to it. Packets can be passed through unchanged, copied, diverted, subjected to 

network address translation, reassembled for further inspection, sent to dummynet, or dropped. 

The action taken on any packet is determined by the return value from the ipfw_chk() routine. 

The complete list of return values and their meanings is given in Table 13.9. 
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Table 13.9 IPFW packet disposition based on ipfw_chk() return value. 

The ipfw_chk() routine does its work in two phases. In the first phase, ipfw_chk() dissects the 

packet gathering network addresses, the transport-protocol type, source, and destination ports, 

and any associated flags into a set of internal variables. The work done by ipfw_chk() is similar 

to that done in any of the IPv6 and IPv4 input routines. With the packet’s state properly 

dissected, ipfw_chk moves on to phase two, where it decides what to do with the packet. A set of 

rules that are controlled at a high level by the administrator of the system dictates what should 

be done with the packet. The rules are stored in lists called chains. Each rule contains a set of 

opcodes that control the action that should be taken at each position in the packet. A decision is 

made about the disposition of the packet when an opcode is reached that terminates packet 

processing. Table 13.10 shows the set of opcodes that result in an action being taken with the 

packet. The opcodes in IPFW mirror those in BPF. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab10
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Table 13.10 IPFW action opcodes. 

Using a set of opcodes, rather than hard-coded individual functions, gives IPFW flexibility and 

reduces its code size. A single 1200-line loop is responsible for any action that can be taken with 

a packet. Having a centralized location for decisions about the disposition of a packet reduces 

the complexity of the code and also increases the likelihood that any errant bugs can be found 

quickly and repaired. Opcodes in IPFW can have data associated with them. For example, the IP 

opcodes all carry an address and a mask that can be used to check whether the packet’s IP 

address matches the one in the rule that is currently being executed. A subset of the IP opcodes 

is given in Table 13.11. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab11
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Table 13.11 IPFW IP opcodes. 

Dummynet is a packet-processing framework that provides traffic shaping, packet delay 

emulation, and packet scheduling. The original purpose of dummynet was to provide a way to 

test network protocols such as TCP that have performance issues when their packet streams are 

subjected to variable networking delays or drops. It has grown into being a generic 

bandwidth-shaping tool used in various devices often at the edge of the network. 

Dummynet passes all traffic through an object called a pipe. A pipe emulates a communication 

link driven by a scheduler that arbitrates access for several independent queues. The features of 

the pipe are programmable. Features include the pipe’s bandwidth and delay. They also include 

the scheduling policy, the number and size of the queues, and the queues relative priorities. The 

system permits the dynamic creation of many pipes and queues, and the algorithms used in 

dummynet are designed to scale to tens of thousands of pipes and queues without introducing 

excessive overhead. 

The dummynet system assigns every packet that it touches to a flow. A flow is a set of packets 

that match a pre-determined set of criteria, such as having the same destination address and 

port number. All packets that are part of a flow are processed similarly. Traffic shaping is carried 

out by dropping packets at the network layer as this approach forces protocols such as TCP to 

scale back their transmissions and results in a lower offered bandwidth. Dummynet can also 

delay packets by holding them in a pipe for a configurable amount of time. It is this delay 

property that was originally used for testing TCP in a laboratory environment. 

Queues are served by a packet scheduler through one of the available scheduling policies listed 

in Table 13.12. The schedulers manage and shape packet flows as they traverse the system. 

Schedulers differ in the service guarantees they provide and their packet-processing cost. Better 

guarantees for minimum bandwidth or maximum delay require more effort, though 

state-of-the-art algorithms such as quick fair queueing (QFQ) perform well [Checconi et al., 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab12
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2013]. Dummynet provides three weight-based schedulers. Each scheduler incurs a different 

amount of per-packet overhead when processing packets. The weighted round robin (WRR) 

scheduler has a constant run time but poor service guarantees, while a variant of weighted fair 

queueing (WFQ+) has optimal guarantees and a packet service time logarithmic in the number 

of flows. Finally, QFQ, has nearly optimal guarantees and constant processing time per packet. 

Other schedulers, including those based on priorities or other criteria, can be implemented as 

loadable kernel modules. 

 

Table 13.12 Dummynet schedulers. 

Packets are first classified by IPFW or another firewall before being passed into dummynet. As 

packets enter dummynet, an mbuf tag is attached to each mbuf via the tag_mbuf() routine. The 

mbuf tag contains a reference to the pipe to be used, as well as other metadata that associates 

the packet to a flow. The packet is then passed to the dummynet_io() routine that completes the 

classification and stores the packet into the correct queue, dropping the packet if the queue is 

full. When the link emulated by the pipe is ready to transmit a new packet, the scheduler selects 

the queue to serve and extracts a packet from it. Once this work is complete, a timer is set to run 

the scheduler again after a time equal to the packet length divided by the pipe’s bandwidth. The 

resulting traffic exits the scheduler at exactly the programmed rate. Packets selected by the 

scheduler are put into a delay line, a FIFO queue from which packets are removed after a time 

equal to the delay associated with the pipe. The dummynet mbuf tag has an output_time field 

that tracks the time at which the packet needs to be transmitted. When packets are removed 

from the FIFO, they are reinserted into the network stack at the point from which they were 

intercepted. Depending on the configuration of the classifier, they may be reclassified and sent 

to another pipe. 

Dummynet may have many queues and pipes that may need to be served. Thus, dummynet 

implements its own timer queue using a priority queue and processes it through a function, 

dummynet_task(), that is invoked on every timer tick. Managing its own timer queue provides 

scalability at the price of some jitter in the output. The jitter seen in packets delayed by 

dummynet is directly related to the clock-tick setting in the kernel. The default tick rate of 1000 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref02
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(see Section 3.4) will give good results down to 1 millisecond. To achieve finer granularity would 

require an increase in the kernel’s tick rate. 

Packet Filter (PF) 

Although packet filter (PF) provides similar functionality to IPFW, it has a different structure 

and implementation. The PF system was originally developed under OpenBSD and then later 

ported to FreeBSD, where it has remained popular for building firewalls and network address 

translators. Like IPFW, PF uses pfil hooks to capture packets for examination. PF adds a hook in 

each of the inbound and outbound directions for both IPv4 and IPv6. The pf_check_in(), 

pf_check_out(), pf_check6_in(), and pf_check6_out() routines are the starting points for any 

packet filtering carried out by PF. 

The purpose of a firewall is to decide whether to drop a packet. PF has two enumerated values, 

PF_PASS and PF_DROP, that control whether a packet will be allowed through a firewall. In 

addition to the enumerated values that determine whether a packet is passed or dropped, PF 

also uses a set of reason codes that explain the final disposition of the packet. The reason codes 

are listed in Table 13.13. 

 

Table 13.13 PF reason codes. 
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When a packet enters the system, it is subjected to a series of tests starting in the pf_test() 

routine. Each of the test routines does some amount of work to dissect or reassemble the packet 

before passing it along to a higher-layer protocol test. The process of validating a packet 

proceeds in two phases. The first phase is called normalization and is where the contents are 

compared against rules set by the administrator. The IPv4, IPv6, and TCP protocols each have 

their own normalization routine: pf_normalize_ip(), pf_normalize_ip6(), and 

pf_normalize_tcp() respectively. All the rules in PF are stored in pf_rule structures that are 

linked together in a queue. 

The second phase of packet processing happens after the packet has been normalized and 

subjected to any matching rules. The pf_test() routine dissects the IP header of the packet into a 

pf_desc descriptor structure. The pf_desc structure holds the state of the packet in a convenient 

form for the rest of the test routines. IP packets are demultiplexed in the pf_test() routine in 

much the same way that they are in ip_input(), except without the flexibility of the inetsw 

protocol switch. Instead of a lookup table, packets are passed directly into predetermined test 

functions based on their protocol type. Each transport-layer protocol, TCP, UDP, and ICMP is 

handled by a matching pf_test() routine: pf_test_state_tcp(), pf_test_state_udp(), and 

pf_test_state_icmp(). The test routines also handle all protocol specific state tracking. 

Netgraph 

The netgraph subsystem was designed to provide an easy way to develop new network protocols 

in the FreeBSD kernel and was first released as part of FreeBSD 3. Since its addition to the 

operating system, netgraph has been used to implement several protocols including the 

point-to-point protocol (PPP), the asynchronous-transfer mode protocol (ATM), and Bluetooth. 

The core idea behind netgraph is that network protocols can be built around a data-flow model. 

In a data-flow model, packets flow between software modules, each of which does some small 

amount of work on the packet before passing it on to the next module. In netgraph the modules 

are referred to as nodes and the edges that connect the nodes are called hooks. The data flows 

across the set of hooks between the nodes of the graph. Nodes can be connected somewhat 

arbitrarily, although they may impose certain limitations on the number of connections they are 

willing to accept. Encapsulating the processing of packets into sufficiently fine-grained nodes 

can allow for greater software reuse than in a more monolithic design. A simple set of nodes can 

more easily be built up into a complex protocol in an experimental plug-and-play scenario 

similar to a set of childrens building blocks. A data-flow model also allows the possibility of 

adding or removing processing elements at run time—for example, when a protocol needs to 

attempt different types of encryption to establish a network connection with a peer. The 
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different types of encryption can be encapsulated as nodes and then added and removed from 

the data path as needed at run time. 

Nodes not only pass network packets across their hooks, but also respond to a set of control 

messages defined by each node. A node is configured using control messages. It can also expose 

counters and statistics to user-level programs via the control-message interface. Having a 

well-defined set of APIs both for packet processing and configuration allows the programmer to 

build a system that looks more like a traditional network router, with both a data plane and a 

control plane. In netgraph, the data plane is where network packets pass along the hooks 

between the nodes. The control plane is the set of messages that configures the nodes. 

Netgraph, with its nodes and hooks, is an object-oriented design, where the nodes are objects 

and the hooks are methods. The object-oriented approach used by netgraph has advantages 

similar to other systems that create complex protocols out of smaller blocks, including 

STREAMS [Ritchie, 1984] and The Click Modular Router framework [Kohler et al., 2000]. 

There are more than 50 netgraph nodes available as part of FreeBSD, ranging from the simple 

ng_echo node that echos back every packet it receives, to those nodes that provide whole 

protocols such as PPP, ATM, and Bluetooth. 

To build anything with netgraph, a set of nodes must be selected that are useful to implementing 

a protocol. The nodes are connected via their hooks into a graph. There are two main data 

structures used by netgraph, the ng_node and ng_hook. Every node in the graph maintains 

some basic information about itself, including a globally-unique name and details on how it is 

connected to other nodes. Each node also has a type, reference count, a set of flags, and a private 

data area in which the node can maintain statistics and internal state. 

Nodes exist simultaneously on several lists in the system, including the global list of all nodes 

and the list of nodes for which there is work to do. The global list of all nodes tracks down a 

node when the user wants to send it a control message. 

Each node exposes a set of functions via a function pointer table. Most nodes are written as 

loadable kernel modules (see Section 15.3). The functions exposed by the node relate to the 

different stages in a node’s existence. When a node is activated, it is loaded as a module, 

initialized, and hooked to other nodes. While active, it receives and processes messages. When 

deactivated, it is disconnected from the rest of the nodes in the system and shutdown. 

When the node is initialized, its ng_constructor_t() function is called to do any housekeeping 

chores required before the node can be used. When node A connects to a hook on node B, node 

B’s ng_newhook_t() function is called. When a node is shut down, first the ng_close_t() and 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec3
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then the ng_shutdown_t() functions will be called. Control messages are received by the 

ng_rcvmsg_t() function while data arrives via the ng_rcvdata_t() entry point. 

Each node has a set of associated hooks that dictate how the nodes are connected. The way in 

which nodes are connected defines how packets will be processed by the graph and represents 

the protocol being implemented. Hooks, like nodes, have textual names. Each hook is a 

first-class object in the system, and has its own type, flags, references, and private data. Hooks 

commonly record statistics about the data that cross them in their private-data area. 

A simple example helps to understand how netgraph works. The example shown in Figure 13.25 

uses two node types to build a simple network bridge. One is an Ethernet node, ng_ether, one of 

which is attached to each Ethernet interface in the system when the ng_ether module is loaded. 

The other is a bridge node, ng_bridge, that connects multiple Ethernet interfaces. 

 

Figure 13.25 A simple network bridge. 

A bridge operates at a lower level than the Internet protocols, covered in Section 13.4, taking any 

Ethernet packet that arrives on one interface and forwarding it to one or more other interfaces. 

Network-layer protocols such as IPv4 and IPv6 are at a higher layer than Ethernet and do not 

come into play here. Packets are forwarded independent of their IPv4 or IPv6 addresses. 

Our example bridge contains only two interfaces, cxgbe0 and cxgbe1. Every packet received on 

cxgbe0 is sent unchanged out of cxgbe1 and every packet received on cxgbe1 is sent out of 

cxgbe0. The bridge shown in Figure 13.25 is made up of three nodes. Each network interface is 

represented by its own ng_ether node, and the ng_bridge node ties them together. The 

ng_ether node has two hooks, upper() and lower() to which other nodes connect. The lower() 

hook is where all Ethernet packets received by the underlying interface appear for consumption 

by other nodes. Packets sent to the upper() hook are passed up into the network stack. When an 

ng_ether node is first initialized, its upper() and lower() hooks are connected so that packets 

flow from the underlying interface into the network stack. 

To create a bridge, we must connect to the ng_ether node’s lower() hook so that all the packets 

received on the underlying interface are sent to our bridge node and not into the network stack. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig25
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The ng_bridge node has a set of numbered link hooks that can be connected to the ng_ether 

node’s lower() hooks. 

Like all netgraph nodes, the ng_bridge node exposes a set of functions. The 

ng_bridge_newhook() function is concerned with getting the name of the hook right. The code 

that does the work of passing packets is implemented in the node’s ng_bridge_rcvdata() 

function. 

When the ng_bridge node receives a packet, it must make several checks before deciding what 

to do with it. One of the more complex aspects of bridging a broadcast network like Ethernet is 

detecting when a loop has occurred. Loops can happen for several reasons, such as 

misconfiguration when adding new computers to the network or a piece of network equipment 

being damaged. If the network develops a loop, then packets can wind up being forwarded 

forever across a pair of interfaces, effectively destroying that segment of the network. To detect a 

loop, the system must record the link being used by each host based on the host’s link-layer 

(Ethernet) source address. The system detects a loop when it observes a host using more than 

one link in a short period of time. When a loop is detected, the system outputs an error, drops 

the packet, and briefly turns the link off. 

The first time the ng_bridge node sees a packet from a host, the loop detection code inserts an 

entry for the new host in the bridge’s host table. The host table is implemented as a hash table 

indexed on the host’s link-layer source address. The host’s source address is stored as well as the 

link on which it is first seen by the ng_bridge node. On each subsequent reception of a packet 

from the same host, the packet will be found in the node’s host table. After a host is looked up in 

the table, the code does the loop check. If the link on which this packet was received is not the 

same as the one stored in the host table, the system checks the age of this host’s entry against 

the allowed minimum stable age for a host (one second). If a host has moved links in less than a 

second, the system considers the host to be in a loop condition. When a loop condition is 

detected, the offending link is disabled and all the hosts on the link are dropped from the link’s 

tables. Links do not remain in a loop state forever. They are returned to a normal state by a 

timeout routine that is called once per second to do various house keeping duties for the 

ng_bridge node. 

Netgraph nodes not only pass packets along their hooks, but they also respond to a set of control 

messages defined by the node. A small set of control messages are defined by the base class of 

netgraph. The basic messages are required to have minimal control over the nodes and include 

messages to instantiate, connect, control and shutdown the nodes. The set of base messages is 

shown in Table 13.14. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab14
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Table 13.14 Netgraph base messages. 

The ng_bridge nodes receive control messages on their rcvmsg() function. The receive-message 

function of a node looks much like an ioctl() routine in a network driver. The 

ng_bridge_rcvmsg() function takes an item_p structure and converts it into a message using 

the NGI_GET_MSG macro. The function knows nothing of the internals of the item_p structure, 

because it only knows how to interpret messages. The receive-message function decodes the 

message via a switch statement. Control messages in netgraph are encapsulated into a 

ng_mesghdr structure: 

Click here to view code image 

struct  ng_msghdr { 

    u_char     version;              /* NGM_VERSION number */ 

    u_char     spare;                /* pad to 4 bytes */ 

    u_int16_t  spare2; 

    u_int32_t  arglen;               /* length of data */ 

    u_int32_t  cmd;                  /* command identifier */ 

    u_int32_t  flags;                /* message status */ 

    u_int32_t  token;                /* match with reply */ 

    u_int32_t  typecookie;           /* node's type cookie */ 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p711pro01
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    u_char     cmdstr[NG_CMDSTRSIZ]; /* cmd string + NULL */ 

} header; 

All ng_mesghdr structures contain a generic header that describes the message being sent. Each 

node must decode the message to take the action that the message is requesting. While the 

header is standardized, the arbitrary node-specific data is contained in the data section 

following the header. 

Every netgraph message header contains two pieces of information needed for a node to decode 

a message, the typecookie and the cmd. The typecookie is opaque data that identifies the type of 

node to which the message is being sent. Each node has its own typecookie and this typecookie 

is the first piece of data that is checked in processing an incoming control message. If the 

typecookie does not match that of the node trying to decode the message, then the message is 

invalid and an error is returned. 

Once the ng_bridge_recvmsg() function has established that the message is for its consumption, 

it decodes the command by looking at the cmd element of the ng_mesg structure. The choice of 

messages is determined by the implementer of the node, but most nodes provide messages for 

getting and setting the node configuration, retrieving and clearing statistics, and resetting the 

node. Netgraph contains many convenience macros, such as NG_MKRESPONSE, to facilitate 

building nodes without programmers needing to concern themselves with the internals of the 

framework. 

Netmap 

The advent of networks and network interfaces that are capable of sustaining speeds of 1 and 10 

gigabits per second has meant that the performance of some networking applications such as 

routers, switches, firewalls, and intrusion detection systems is limited by the amount of data 

that can be copied between the network interface and the user-level code that intends to operate 

on the packets. Several approaches avoid the overhead of copying data into userspace by 

running network applications in the kernel or bypassing the kernel completely and giving the 

application direct access to the underlying network interface. Each of these approaches has its 

drawbacks, including loss of generality, loss of virtual-memory protection, and higher 

maintenance costs. The netmap framework [Rizzo, 2012] provides a uniform userspace API for 

applications that require high-speed access to raw-packet data. Unlike a network protocol, the 

netmap framework does not process the packets in any way other than to make them available 

to userspace applications. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref33
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Applications using the netmap framework gain direct access to a network interface’s packet 

rings. Packet rings were first described in Section 8.5 where the network-interface data 

structures are discussed. Each network device has one or more pairs of ring structures that point 

to memory buffers for receiving or transmitting packets. The rings normally pass packets into 

and out of the operating system’s networking protocols. When an application starts using a 

network interface via netmap, the rings are mapped to a region of memory that is shared by 

both the application and the network interface. Packets that are received on the network 

interface continue to be placed by the device’s DMA engine into the receive ring. Packets that 

the application wishes to transmit are placed into buffers referenced by the transmit ring. 

Proper synchronization between the kernel and userspace is maintained via the system-call 

interface with calls to request packet transmission and to be notified of packet reception. Data 

structure consistency is maintained because the kernel only manipulates the application’s 

buffers while the application is blocked in a system call. 

When an application wishes to use the netmap framework, it calls open on a special device, 

/dev/netmap. The file descriptor returned by the open call is used for all subsequent 

communication with the framework. Applications using netmap associate themselves with a 

particular interface by issuing an ioctl call with the NIOCREGIF command, passing in the 

textual name of the interface as the last argument to the system call. When an application 

registers for access to a network interface, the kernel disconnects the device’s rings from the 

networking subsystems and makes them available to the application. Disconnecting the rings 

from the networking subsystems has the effect of stopping all traffic into and out of the normal 

networking protocols. The netmap framework has one pair of software-based packet rings that 

remain connected to the operating system’s network stack and can be used by an application to 

pass packets into, and receive packets from, the operating system. An application using netmap 

can choose to process some packets but allow others to pass into the kernel’s general networking 

framework. Packets pass into the kernel when the application receives packets from one of the 

hardware rings and places them into the software rings that are connected to the kernel. The 

application allows packets to flow out from the host network stack by taking packets from the 

software ring connected to the kernel and transmitting them on one of the hardware rings. 

Alternatively, an application can choose to process all the packets itself, thus preventing any 

packets from passing into the kernel’s general networking framework. When a netmap 

application is using the device, any other program accessing the same network device through 

the socket API will no longer be able to receive or transmit packets on the interface, unless the 

application using the netmap framework allows packets to flow back into the kernel’s general 

network framework. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5
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An application using the netmap framework is responsible for updating and tracking the 

changes it has made to the receive and transmit rings. Figure 13.26 shows three steps taken 

when a netmap receive ring is updated by a userspace program: 

1. The userspace program pointers shown after a netmap ring has been set up. The slots in the 

ring between the “head” pointer and the “tail” pointer, minus a slot, contain packets received by 

the device that have been passed to the userspace program. The userspace program processes 

packets and advances the “head” pointer past the slots that it is ready to return to the kernel. 

The “cur” pointer may be moved ahead of the “head” pointer if the program wants to wait for 

more packets without returning all the previous slots to the kernel. 

 

Figure 13.26 Netmap receive-ring processing. Key: *—slot with undefined contents; h—slot 

held by the userspace program; R—packet ready for reception. 

2. The program has read one packet from the ring and has updated the “head” and “cur” 

pointers. The kernel does not yet know that the userspace program has read any packets, and so 

its nr_hwcur pointer has not been updated. The device driver will update the nr_hwavail 

counter as packets arrive in the ring. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig26
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3. The userspace program has called the ioctl system call with the NIOCRXSYNC command to 

notify the kernel of its new “head” pointer and to be notified by the kernel of the updated “tail” 

pointer position. The NIOCRXSYNC command does not read the packets into the userspace 

program but simply synchronizes the locations of the userspace program’s pointers. 

Writing packets to the ring is the opposite of reading them. Figure 13.27 shows three steps of a 

userspace program transmitting packets: 

1. The slots between the “head” pointer and the “tail” pointer, minus one, that are available for 

transmission. 

2. The program has filled two slots and advanced the “head” and “cur” pointers past the slots 

that are ready for transmission. The “cur” pointer may be moved further ahead if the program 

needs more slots before further transmissions. 

3. The transmit ring following a NIOCTXSYNC command, which both notified the kernel of the 

data to send and updated the userspace program’s pointers. The slots up to the “head” pointer, 

minus one, have been handed to the device for transmission, and the “tail” pointer has been 

advanced because more slots have become available. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig27
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Figure 13.27 Netmap transmit-ring processing. Key: *—slot with undefined contents; 

a—available to place a packet; T—packet ready to transmit. 

Netmap file descriptors support the same actions available via the ioctl system call using the 

select, poll, and kevent system calls. These system calls rely on the polling framework or 

interrupts to wake up the threads blocked on the system calls. The interrupt service routine does 

not do any data processing. All accesses to the data occur in the context of the userspace 

program. The netmap framework is not limited to accessing network interfaces. The same 

functions can be used to access ports of the VALE virtual switch and dummynet pipes. 

Exercises 

13.1 Name two key data structures used in the networking subsystem that are important in 

ensuring that the socket-layer software is kept independent of the networking implementation. 

13.2 Which routines in the protocol switch are called by the socket layer? Explain why each of 

these routines is called. 
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13.3 Assume that a reliably-delivered-message socket (SOCK_RDM) is a connectionless socket 

that guarantees reliable delivery of data and that preserves message boundaries. Which flags 

would a protocol that supported this type of socket have set in the pr_flags field of its 

protocol-switch entry? 

13.4 Why is the name or address of a socket kept at the network layer rather than at the socket 

layer? 

13.5 Why does FreeBSD not attempt to enforce a rigid protocol–protocol interface structure? 

13.6 How does IPv4 identify the next-higher-level protocol that should process an incoming 

message? How might this dispatching differ in other networking architectures? 

13.7 How many hosts can exist in an IPv4 subnet with a mask of 255.255.255.0? 

13.8 What is a broadcast message? How are broadcast messages identified in IPv4? How are 

IPv6 broadcast messages identified? 

13.9 Why does FreeBSD not forward broadcast messages? 

13.10 Describe three ways in which IPv6 differs from IPv4. 

13.11 In IPv6, what protocol replaces ARP for translating IP addresses to hardware addresses? 

13.12 What does the networking code use the network mask, or prefix, of a link to determine? 

13.13 What limitation of ARP does neighbor discovery overcome? How does it overcome this 

limitation? 

13.14 Which routing policies are implemented in the kernel? 

13.15 Describe three types of routes that can be found in the routing table that differ by the type 

of destination to which they apply. 

13.16 What routing facility is designed mainly to support workstations? 

13.17 What is a routing redirect? For what is it used? 

13.18 Why are there separate protocols for authentication and encryption in IPSec? 

13.19 Why is the cryptographic subsystem implemented using two queues and two kernel 

threads? 
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13.20 How is the protection offered to packets by IPSec different in tunnel mode and transport 

mode? 

13.21 Name three different packet filtering systems included in FreeBSD. Which of the three 

filtering systems you choose is at the lowest layer of the networking subsystem? 

13.22 What effect does the kernel’s tick rate have on the packet-delay jitter in dummynet? 

13.23 How are packets passed between nodes in the netgraph system? 

13.24 Why are there no locks used between the kernel and userspace in the netmap system? 

*13.25 Previous versions of FreeBSD stored ARP entries in the routing table. Give two reasons 

why moving the ARP entries to their own table was an improvement over the previous 

implementation. 

*13.26 Why might a sender set the Don’t Fra gment flag in the header of an IP packet? 

*13.27 What are three differences between how pf and ipfw filter packets? 

*13.28 Explain why it is impossible to use the raw-socket interface to support parallel-protocol 

implementations—some in the kernel and some in user mode. What modifications to the system 

would be necessary to support this facility? 

*13.29 Previous versions of the system used a hashed routing lookup for a destination as a host 

or as a network. Name two ways in which the radix search algorithm in FreeBSD is more 

capable. 

*13.30 Compare the packet-processing overhead of BPF and netmap. Which is faster for 

receiving packets and why? 

**13.31 What are the trade-offs between frequent and infrequent transmission of router 

advertisements in IPv6? 

**13.32 Describe three paths that a packet can take through the networking code. How and 

where is each path chosen? 

**13.33 Since IPSec may call routines in the network stack recursively, what requirement does 

this recursion place on the code? 

**13.34 Support for multiple independent network stacks was added with the VIMAGE 

subsystem. Without using the linker-set support used in the current implementation, describe 



 

829 

two other ways to provide similar support for independent stacks sharing a single kernel code 

image. What are the tradeoffs made for each choice? 
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Chapter 14. Transport-Layer Protocols 

Chapter 13 covers network-layer protocols that are responsible for moving individual datagrams 

across the Internet. This chapter moves up a layer in the network stack to discuss protocols that 

handle end-to-end data movement. Unlike the network-layer protocols, IPv4 and IPv6, 

transport-layer protocols have no knowledge of intermediate systems such as routers. They only 

have knowledge of endpoints within the network, the senders and receivers of data. 

The protocols at the network layer present data to applications as either individual messages or 

streams of bytes. The UDP protocol handles data in discrete messages. The TCP protocol 

handles data as streams of bytes. The SCTP protocol handles multiple streams of both data and 

discrete messages. 

14.1 Internet Ports and Associations 

At the network layer, packets are addressed to a host rather than to a process or 

communications port. As each packet arrives, its 8-bit protocol number identifies the 

transport-layer protocol that should receive it. Thus, packets identified as IPv4 are passed to 

ip_input(), while packets identified as IPv6 are passed to ip6_input(). 

Internet transport protocols use an additional identifier to designate the connection or 

communications port on the host. Most protocols (including SCTP, TCP, and UDP) use a 16-bit 

port number. Each transport protocol maintains its own mapping of port numbers to processes 

or descriptors. Thus, an association, such as a connection, is fully specified by its transport 

protocol and 4-tuple <source address, destination address, source port, destination port>. 

When the local part of the address is set before the remote part, it is necessary to choose a 

unique port number to prevent collisions when the remote part is specified. For example, two 

applications on the same host might create a connection to the same service on a remote host, 

such as a Web server. The port number used to contact the remote system is the well-known 

web-port 80. For packets traveling from the server back to the applications to correctly reach 

the right socket, they must have an unambiguous port number at the originating host. When a 

connection is opened, FreeBSD picks an unused source port that is used for the duration of the 

connection, which ensures that the 4-tuple of all connections is unique. 
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Protocol Control Blocks 

For each TCP- or UDP-based socket, a protocol control block (PCB) stored in an inpcb structure 

is created to hold network addresses, port numbers, routing information, and pointers to any 

auxiliary data structures. TCP creates a TCP control block stored in a tcpcb structure to hold the 

wealth of protocol state information necessary for its implementation. Internet control blocks 

for use with TCP are maintained in a hash table of doubly linked lists private to the TCP protocol 

module. Figure 14.1 shows the linkage between the socket data structure and these 

protocol-specific data structures. 

 

Figure 14.1 Internet-protocol data structures. 

Internet control blocks for use with UDP are kept in a similar table private to the UDP protocol 

module. Two separate tables are needed because each protocol in the Internet domain has a 

distinct space of port identifiers. Common routines are used by the individual protocols to add 

new control blocks to a table, record the local and remote parts of an association, locate a 

control block by association, and delete control blocks. IP demultiplexes message traffic based 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig01
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on the protocol identifier specified in the protocol header, and each higher-level protocol is then 

responsible for checking its table of control blocks to direct a message to the appropriate socket. 

14.2 User Datagram Protocol (UDP) 

The user datagram protocol (UDP) [Postel, 1980] is a simple, unreliable datagram protocol 

that provides both peer-to-peer and multicast addressing with optional data checksums. In 

FreeBSD, checksums are enabled or disabled on a systemwide basis and cannot be enabled or 

disabled on individual sockets. UDP protocol headers are extremely simple, containing only the 

source and destination port numbers, the datagram length, and the data checksum. The host 

addresses for a datagram are provided by the IP header. 

Initialization 

When a new datagram socket is created, the socket layer locates the protocol-switch entry for 

UDP and calls the udp_attach() routine with the socket as a parameter. UDP uses in_pcballoc() 

to create a new protocol control block in its table of current sockets. It also sets the default limits 

for the socket send and receive buffers. Although datagrams are never placed in the send buffer, 

the limit is set as an upper limit on datagram size; the UDP protocol-switch entry contains the 

flag PR_ATOMIC, requiring that all data in a send operation be presented to the protocol at one 

time. 

If the application program wishes to bind a port number—for example, the well-known port for 

some datagram service—it calls the bind system call. This request reaches UDP as a call to the 

udp_bind() routine. The binding may also specify a specific host address, which must be an 

address of an interface on this host. Otherwise, the address will be left unspecified, matching 

any local address on input, and with an address chosen as appropriate on each output operation. 

The binding is done by in_pcbbind(), which verifies that the chosen port number (or address 

and port) is not in use and then records the local part of the association in the socket’s 

associated PCB. 

To send datagrams, the system must know the remote part of an association. A program can 

specify this address and port with each send operation using sendto or sendmsg, or it can do the 

specification ahead of time with the connect system call. In either case, UDP uses the 

in_pcbconnect() function to record the destination address and port. If the local address was 

not bound, and if a route for the destination is found, the address of the outgoing interface is 

used as the local address. If no local port number was bound, one is chosen at the time of the 

send. 
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Output 

A system call that sends data reaches UDP as a call to the udp_send() routine, which takes a 

chain of mbufs containing the data for the datagram. If the call provided a destination address, 

the address is passed as well; otherwise, the address from a prior connect call is used. The actual 

output operation is done by udp_output(): 

static int udp_output( 

    struct inpcb *inp, 

    struct mbuf *msg, 

    struct mbuf *addr, 

    struct mbuf *control, 

    struct thread *td); 

In this interface, inp is an IPv4 protocol control block, msg is a chain of mbufs that contain the 

data to be sent, and addr is an optional mbuf containing the destination address. The 

destination address could have been prespecified with a connect call; otherwise, it must be 

provided in the send call. The control argument is meant to contain ancillary data that can be 

passed to the protocol. The only allowable ancillary data for a UDP packet is a network-layer 

source address, which udp_output() passes to the lower layer as a sockaddr_in structure. The td 

argument is a pointer to a thread structure. Thread structures are discussed in Section 4.2 and 

are used within the network stack to identify the sender of a packet. UDP simply prepends its 

own header, fills in the UDP header fields and those of a prototype IP header, and calculates a 

checksum before passing the packet on to the IP module for output. 

Input 

All transport protocols that are layered directly on top of network-layer protocols such as IPv4 

and IPv6 use the following calling convention when receiving packets from either protocol: 

(void) (*pr_input)( 

    struct mbuf *m, 

    int off); 

Each mbuf chain passed is a single complete packet to be processed by the protocol module. The 

packet includes the IP header at the front of the packet. The off parameter identifies offset at 

which the UDP packet begins, which is the length of the IP header. The UDP input routine 

udp_input() is typical of protocol input routines in that it first verifies that the length of the 

packet is at least as long as the IP plus UDP headers, and it uses m_pullup() to make the header 
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contiguous. The udp_input() routine then checks that the packet is the correct length and 

calculates a checksum for the data in the packet. If any of these tests fail, the packet is discarded 

and the UDP error count is incremented. Finally, the protocol control block for the socket that is 

to receive the data is located by in_pcblookup() using the addresses and port numbers in the 

packet. There might be multiple control blocks with the same local port number but different 

local or remote addresses; if so, the control block with the best match is selected. An exact 

association matches best, but if none exists, a socket with the correct local port number but 

unspecified local address, remote port number, or remote address will match. A control block 

with unspecified local or remote addresses thus acts as a wildcard that receives packets for its 

port if no exact match is found. If a control block is located, the data and the address from which 

the packet was received are placed in the receive buffer of the indicated socket with 

udp_append(). If the destination address is a multicast address, copies of the packet are 

delivered to each socket with a matching address. If no receiver is found and if the packet was 

not addressed to a broadcast or multicast address, an ICMP port unreachable error message is 

sent to the originator of the datagram. The port unreachable error message normally has no 

effect, as the sender typically connects to this destination only temporarily, and the kernel 

destroys the association before new input is processed. However, if the sender still has a fully 

specified association, it may receive notification of the error. 

Control Operations 

UDP supports no control operations and passes calls to its pr_ctloutput() entry directly to IP. It 

has a simple pr_ctlinput() routine that receives notification of any asynchronous errors. Errors 

are passed to any datagram socket with the indicated destination; only sockets with a 

destination fixed by a connect call may be notified of errors asynchronously. Such errors are 

simply noted in the appropriate socket, and socket wakeups are issued if the process is selecting 

or sleeping while waiting for input. 

When a UDP datagram socket is closed, the udp_detach() routine is called. The protocol control 

block and its contents are simply deleted with in_pcbdetach(); no other processing is required. 

14.3 Transmission Control Protocol (TCP) 

The most used protocol of the Internet protocol suite is the Transmission Control Protocol 

(TCP) [Cerf & Kahn, 1974; Postel, 1981]. TCP is a reliable connection-oriented stream-transport 

protocol on top of which many application protocols are layered. It includes several features not 

found in the other transport and network protocols described so far: 

• Explicit and acknowledged connection initiation and termination 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_456
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• Reliable, in-order, unduplicated delivery of data 

• Flow control 

• Out-of-band indication of urgent data 

• Congestion avoidance and control 

These features result in the TCP implementation being significantly more complicated than 

those for UDP and IP. These complications, along with the prevalence of the use of TCP, make 

the details of TCP’s implementation more critical and more complex than the implementations 

of the simpler protocols. 

A TCP connection is a bidirectional, sequenced stream of data transferred between two peers. 

The data may be transported in packets of varying sizes and at varying intervals—for example, 

when they support a login session over the network. The stream initiation and termination are 

explicit events at the start and end of the stream, and they occupy positions in the sequence 

space of the stream so that they can be acknowledged in the same way as data are. Sequence 

numbers are 32-bit numbers from a circular space; that is, comparisons are made modulo 232, 

so zero is the next sequence number after 232 - 1. The sequence numbers for each direction start 

with an arbitrary value, called the initial sequence number, sent in the initial packet for a 

connection. Following Bellovin [1996], the TCP implementation selects the initial sequence 

number by computing a function over the 4-tuple local port, foreign port, local address, and 

foreign address that uniquely identifies the connection, and then adding a small offset based on 

the current time. The Bellovin algorithm prevents the spoofing of TCP connections by an 

attacker guessing the next initial sequence number for a connection, and the algorithm must be 

carried out while also guaranteeing that an old duplicate packet will not match the sequence 

space of a current connection. 

Each packet of a TCP connection carries the sequence number of its first byte and (except during 

connection establishment) an acknowledgment of all contiguous data received thus far. A TCP 

packet is known as a segment because it begins at a specific location in the sequence space and 

has a specific length. Acknowledgments are specified as the sequence number of the next byte 

not yet received. Acknowledgments are cumulative and thus may acknowledge data received in 

more than one (or part of one) segment. A packet may or may not contain data, but it always 

contains the sequence number of the next datum to be sent. 

Flow control in TCP is done with a sliding-window scheme. Each packet with an 

acknowledgment contains a window advertisement, which is the number of bytes of data that 

the receiver is prepared to accept, beginning with the sequence number in the acknowledgment. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_370
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The window is a 16-bit field, limiting the window to 64 Kbyte by default; however, the use of a 

larger window may be negotiated. Urgent data are handled similarly; if the flag indicating 

urgent data is set, the urgent-data pointer is used as a positive offset from the sequence number 

of the packet to indicate the extent of urgent data. Thus, TCP can send notification of urgent 

data without sending all intervening data, even if the flow-control window would not allow the 

intervening data to be sent. 

The complete header for a TCP packet is shown in Figure 14.2. The flags include SYN and FIN, 

denoting the initiation (synchronization) and completion of a connection. Each of these flags 

occupies a sequence space of one. A complete connection thus consists of a SYN, zero or more 

bytes of data, and a FIN sent from each peer and acknowledged by the other peer. Additional 

flags indicate whether the acknowledgment field (ACK) and urgent fields (URG) are valid, a flag 

to request that data be pushed (flushed) to the user (PSH), and include a connection-abort 

signal (RST). Options are encoded in the same way as are IP options, either as a single byte or as 

a type, length, and value. Only the no-operation and end-of-options options are single bytes. The 

initial specification of TCP defined only one other option, which allows hosts to exchange the 

maximum segment (packet) size that they are willing to accept and is used only during initial 

connection establishment. Several other options have been defined and, to avoid confusion, the 

protocol standard allows these options to be used in data packets only if both endpoints include 

them during establishment of the connection. 

 

Figure 14.2 TCP packet header. 

TCP Connection States 

The connection-establishment and connection-completion mechanisms of TCP are designed for 

robustness. They serve to frame the data that are transferred during a connection so that not 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig02
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only the data but also their extent are communicated reliably. In addition, the procedure is 

designed to discover old connections that have not terminated correctly because of a crash of 

one peer or loss of network connectivity. If such a half-open connection is discovered, it is 

aborted. Hosts choose new initial sequence numbers for each connection to lessen the chances 

that an old packet may be confused with a current connection. 

The normal connection-establishment procedure is known as a three-way handshake. Each 

peer sends a SYN to the other, and each in turn acknowledges the other’s SYN with an ACK. In 

practice, a connection is normally initiated by a client attempting to connect to a server listening 

on a well-known port. The client chooses a port number and initial sequence number, and uses 

these selections in the initial packet with a SYN. The server creates a SYN cache entry for the 

pending connection and sends a packet with its initial sequence number, a SYN, and an ACK of 

the client’s SYN. The client responds with an ACK of the server’s SYN, completing connection 

establishment. As the ACK of the first SYN is piggybacked on the second SYN, this procedure 

requires three packets, leading to the term three-way handshake. The protocol still operates 

correctly if both peers attempt to start a connection simultaneously, although the connection 

setup would then require four packets. 

FreeBSD includes up to four options along with the SYN when initiating a connection. One 

contains the maximum segment size that the system is willing to accept [Jacobson et al., 1992]. 

The second of these options specifies a window-scaling value expressed as a binary shift value, 

allowing the window to exceed 65535 bytes. If both peers include this option during the 

three-way handshake, both scaling values take effect; otherwise, the window value remains in 

bytes. The third option is a timestamp. If this option is sent in both directions during connection 

establishment, it will also be sent in each packet during data transfer. The data field of the 

timestamp option includes a timestamp associated with the current sequence number and also 

echoes a timestamp associated with the current acknowledgment. Like the sequence space, the 

timestamp uses a 32-bit field and modular arithmetic. The unit of the timestamp field is not 

defined by the standard, although it must fall between 1 millisecond and 1 second. The value 

sent by each system must increase monotonically during a connection. FreeBSD always uses a 

value measured in milliseconds. These timestamps implement round-trip timing. They also 

serve as an extension of the sequence space to prevent old duplicate packets from being 

accepted; this extension is valuable when a large window or a fast path, such as an Ethernet, is 

used. The fourth option indicates support for selective acknowledgments, which allow a receiver 

to tell a sender if more than one packet has been lost in transit [Mathis et al., 1996]. 

After a connection is established, each peer includes an acknowledgment and window 

information in each packet. Each may send data according to the window that it receives from 

its peer. As data are sent by one end, the window becomes filled. As data are received by the peer, 
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acknowledgments may be sent so that the sender can discard the data from its send queue. If the 

receiver is prepared to accept additional data, perhaps because the receiving process has 

consumed the previous data, it will also advance the flow-control window. Data, 

acknowledgments, and window updates may all be combined in a single message. 

If a sender does not receive an acknowledgment within some reasonable time, it retransmits 

data that it presumes were lost. Duplicate data are discarded by the receiver but are 

acknowledged again if the retransmission was caused by loss of the acknowledgment. If the data 

are received out of order, the receiver generally retains the out-of-order data for use when the 

missing segment is received. Outof-order data cannot be acknowledged because 

acknowledgments are cumulative. 

Each peer may terminate data transmission at any time by sending a packet with the FIN bit. A 

FIN represents the end of the data (like an end-of-file indication). The FIN is acknowledged, 

advancing the sequence number by 1. The connection may continue to carry data in the other 

direction until a FIN is sent in that direction. The acknowledgment of the FIN terminates the 

connection. To guarantee synchronization at the conclusion of the connection, the peer sending 

the last ACK of a FIN must retain state long enough that any retransmitted FIN packets will 

have reached it or have been discarded; otherwise, if the ACK were lost and a retransmitted FIN 

were received, the receiver would be unable to repeat the acknowledgment. The interval is 

arbitrarily set to twice the expected maximum segment lifetime, and is known as 2MSL. 

The default value for the maximum segment lifetime is 30 seconds, meaning that FreeBSD 

expects packets to exit the network after 1 minute. 

The TCP input-processing module and timer modules must maintain the state of a connection 

throughout that connection’s lifetime, meaning that in addition to processing data received on 

the connection, the input module must process SYN and FIN flags, as well as other state 

transitions. The list of states for one end of a TCP connection is given in Table 14.1. Figure 14.3 

shows the finite-state machine made up by these states, the events that cause transitions, and 

the actions during the transitions. 
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Table 14.1 TCP connection states. 2MSL—twice maximum segment lifetime. 
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Figure 14.3 TCP state diagram. Key: TCB—TCP control block; 2MSL—twice maximum 

segment lifetime. 

If a connection is lost because of a crash or timeout on one host, but is still considered 

established by the other, then any data received by the host that still believes the connection to 

be active will cause the half-open connection to be discovered. When a half-open connection is 

detected, the receiving peer sends a packet with the RST flag and a sequence number derived 

from the incoming packet to signify that the connection is no longer in existence. 

Sequence Variables 

Each TCP connection maintains a large set of variables in the TCP control block. The 

information stored in the control block includes the connection state, timers, options and flags, 

a queue that holds data received out of order, and several sequence-number variables. The 

sequence-variables define the send and receive sequence space, including the current window 

for each. The window is the range of data sequence numbers that are currently allowed to be 
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sent, from the first byte of data not yet acknowledged, up to the end of the range that has been 

offered in the window advertisement. The variables defining the windows in FreeBSD are a 

superset of those used in the protocol specification [Postel, 1981]. The send and receive windows 

are shown in Figure 14.4. The meanings of the sequence variables are listed in Table 14.2. 

 

Table 14.2 TCP sequence variables. 

 

Figure 14.4 TCP sequence space. 

The area between snd_una and snd_una + snd_wnd is known as the send window. Data for 

the range snd_una to snd_max have been sent but not yet acknowledged and are kept in the 

socket send buffer along with data not yet transmitted. The snd_nxt field indicates the next 
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sequence number to be sent and is incremented as data are transmitted. The area from snd_nxt 

to snd_una + snd_wnd is the remaining usable portion of the window, and its size determines 

whether additional data may be sent. The snd_nxt and snd_max values are normally 

maintained together except when TCP is retransmitting. The area between rcv_nxt and rcv_nxt 

+ rcv_wnd is known as the receive window. Whenever TCP updates the size of the receive 

window, it stores the new advertised window in the rcv_adv variable. 

These variables are used in the output module to decide whether data can be sent, and in the 

input module to decide whether data that are received can be accepted. When the receiver 

detects that a packet is not acceptable because the data are all to the left of the window, it drops 

the packet but sends a copy of its most recent acknowledgment. If the packet contained old data, 

the first acknowledgment may have been lost, and thus it must be repeated. The 

acknowledgment also includes a window update, synchronizing the sender’s state with the 

receiver’s state. As data are acknowledged by the receiver, the values contained in all the 

variables increase, moving to the right in Figure 14.4. 

If the TCP timestamp option is in use for the connection, the tests to see whether an incoming 

packet is acceptable are augmented with checks on the timestamp. Each time that an incoming 

packet is accepted as the next expected packet, its timestamp is recorded in the ts_recent field in 

the TCP protocol control block. If an incoming packet includes a timestamp, the timestamp is 

compared to the most recently received timestamp. If the timestamp is less than the previous 

value, the packet is discarded as being an old duplicate and a current acknowledgment is sent in 

response. Here, the timestamp serves as an extension to the sequence number, avoiding 

accidental acceptance of an old duplicate when the window is large or sequence numbers can be 

reused quickly. However, because of the granularity of the timestamp value, a timestamp 

received more than 24 days ago cannot be compared to a new value, and this test is bypassed. 

The current time is recorded when ts_recent is updated from an incoming timestamp to make 

this test. Of course, connections are seldom idle for longer than 24 days. 

14.4 TCP Algorithms 

This section examines the implementation of the TCP protocol in FreeBSD. Several aspects of 

the protocol implementation depend on the overall state of a connection. The state of a TCP 

connection depends on external events and timers. TCP processing occurs in response to one of 

three events: 

1. A request from the user, such as sending data, removing data from the socket receive buffer, 

or opening or closing a connection 
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2. The receipt of a packet for the connection 

3. The expiration of a timer 

These events are handled in the routines tcp_usr_send(), tcp_input(), and a set of timer 

routines. Each routine processes the current event and makes any required changes in the 

connection state. Then, for any transition that may require sending a packet, the tcp_output() 

routine is called to do any output that is necessary. 

The criteria for sending a packet with data or control information are complicated, making TCP 

send policy the most interesting and important part of the protocol implementation. For 

example, depending on the state- and flow-control parameters for a connection, any of the 

following may allow data to be sent that could not be sent previously: 

• A user send call that places new data in the send queue 

• The receipt of a window update from the peer 

• The expiration of the retransmission timer 

• The expiration of the window-update (persist) timer 

In addition, the tcp_output() routine may decide to send a packet with control information, 

even if no data may be sent, for any of these reasons: 

• A change in connection state (e.g., open request, close request) 

• Receipt of data that must be acknowledged 

• A change in the receive window because of removal of data from the receive queue 

• A send request with urgent data 

• A connection abort 

The remainder of this section expands and explains these points. 

Timers 

Unlike a UDP socket, a TCP connection maintains significant state information and, because of 

that state, some operations must be done asynchronously. For example, data might not be sent 

immediately when a process presents them because of flow control. The requirement for reliable 
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delivery implies that data must be retained after they are first transmitted so that they can be 

retransmitted if necessary. To prevent the protocol from hanging if packets are lost, each 

connection maintains a set of timers used to recover from losses or failures of the peer. These 

timers are stored in the protocol control block for a connection. The kernel provides a timer 

service via a set of callout() routines. The TCP module can register up to five timeout routines 

with the callout service, as shown in Table 14.3. Each routine has its own associated time at 

which it will be called. In earlier versions of BSD, timeouts were handled by the tcp_slowtimo() 

routine that was called every 500 milliseconds and would then perform timer processing when 

necessary. Using the kernel’s timer service directly is more accurate since each timer can be 

handled independently at the interval that works best for that timer. 

 

Table 14.3 TCP timer routines. 

Two timers are used for output processing. Whenever data are sent on a connection, the 

retransmit timer (tcp_rexmt()) is started by a call to callout_reset(), unless it is already 

running. When all outstanding data are acknowledged, the timer is stopped. If the timer expires, 

the oldest unacknowledged data are resent (at most, one full-size packet), and the timer is 

restarted with a longer value. The rate at which the timer value is increased (the timer backoff) 

is determined by a table of multipliers that provides an exponential increase in timeout values 

up to a ceiling of 64 seconds. 

The other timer used for maintaining output flow is the persist timer (tcp_timer_persist()). 

This timer protects against the other type of packet loss that could cause a connection to 

constipate: the loss of a window update that would allow more data to be sent. Whenever data 

are ready to be sent but the send window is too small to bother sending (zero, or less than a 

reasonable amount), and no data are already outstanding (the retransmit timer is not set), the 

persist timer is started. If no window update is received before the timer expires, the routine 

sends as large a segment as the window allows. If that size is zero, it sends a window probe (a 

single byte of data) and restarts the persist timer. If a window update was lost in the network, or 

if the receiver neglected to send a window update, the acknowledgment will contain current 
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window information. On the other hand, if the receiver is still unable to accept additional data, it 

should send an acknowledgment for previous data with a still-closed window. The closed 

window might persist indefinitely; for example, the receiver might be a network-login client, and 

the user might stop terminal output and leave for lunch (or vacation). 

The third timer used by TCP is a keepalive timer (tcp_timer_keep()) The keepalive timer has 

two different purposes at different phases of a connection. During connection establishment, 

this timer limits the time for the three-way handshake to complete. If the timer expires during 

connection setup, then the connection is closed. Once the connection completes, the keepalive 

timer monitors idle connections that might no longer exist on the peer because of a network 

partition or a crash. If a socket-level option, SO_KEEPALIVE, is set and the connection has 

been idle since the most recent keepalive timeout, the timer routine will send a keepalive 

packet designed to produce either an acknowledgment or a reset (RST) from the peer TCP. If a 

reset is received, the connection will be closed; if no response is received after several attempts, 

the connection will be dropped. This facility is designed so that network servers can avoid 

languishing forever if the client disappears without closing the connection. Keepalive packets 

are not an explicit feature of the TCP protocol. The packets used for this purpose by FreeBSD set 

the sequence number to 1 less than snd_una, which should elicit an acknowledgment from the 

peer if the connection still exists. 

The fourth TCP timer is known as the 2MSL timer (“twice the maximum segment lifetime”). 

TCP starts this timer when a connection is completed by sending an acknowledgment for a FIN 

(from FIN_WAIT_2) or by receiving an ACK for a FIN (from CLOSING state, where the send 

side is already closed). Under these circumstances, the sender does not know whether the 

acknowledgment was received. If the FIN is retransmitted, it is desirable that enough state 

remain that the acknowledgment can be repeated. Therefore, when a TCP connection enters the 

TIME_WAIT state, the 2MSL timer is started; when the timer expires, the control block is 

deleted. If a retransmitted FIN is received, another ACK is sent and the timer is restarted. To 

prevent this delay from blocking a process closing the connection, any process close request is 

returned successfully without the process waiting for the timer. Thus, a protocol control block 

may continue its existence even after the socket descriptor has been closed. In addition, 

FreeBSD starts the 2MSL timer when FIN_WAIT_2 state is entered after the user has closed; if 

the connection is idle until the timer expires, it will be closed. Because the user has already 

closed, new data cannot be accepted on such a connection in any case. This timer is set because 

certain other TCP implementations (incorrectly) fail to send a FIN on a receive-only connection. 

Connections to such hosts would remain in FIN_WAIT_2 state forever if the system did not 

have a timeout. The final timer is the tcp_timer_delack(), which processes delayed 

acknowledgments and is described in Section 14.6. 
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Estimation of Round-Trip Time 

When connections must traverse slow networks that lose packets, an important decision 

determining connection throughput is the value used to set the retransmission timer. If this 

value is too large, data flow will stop on the connection for an unnecessarily long time before the 

dropped packet is resent. Another round-trip interval is required for the sender to receive an 

acknowledgment of the resent segment and a window update, allowing it to send new data. 

(With luck, only one segment will have been lost, and the acknowledgment will include the other 

segments that had been sent.) If the timeout value is too small, however, packets will be 

retransmitted needlessly. If the cause of the network slowness or packet loss is congestion, then 

unnecessary retransmission only exacerbates the problem. The traditional solution to this 

problem in TCP is for the sender to estimate the round-trip time (rtt) for the connection path by 

measuring the time required to receive acknowledgments for individual segments. The system 

maintains an estimate of the round-trip time as a smoothed moving average, srtt [Postel, 1981], 

using 

srtt = (α × srtt) + ((1 - α) × rtt). 

In addition to a smoothed estimate of the round-trip time, TCP keeps a smoothed variance 

(estimated as mean difference, to avoid square-root calculations in the kernel). It employs an α 

value of 0.875 for the round-trip time and a corresponding smoothing factor of 0.75 for the 

variance. These values were chosen in part so that the system could compute the smoothed 

averages using shift operations on fixed-point values instead of floating-point values because on 

many hardware architectures it is expensive to use floating-point arithmetic. The initial 

retransmission timeout is then set to the current smoothed round-trip time plus four times the 

smoothed variance. This algorithm is substantially more efficient on long-delay paths with little 

variance in delay, such as transoceanic links, because it computes the BETA factor dynamically 

[Jacobson, 1988]. 

For simplicity, the variables in the TCP protocol control block allow measurement of the 

round-trip time for only one sequence value at a time. This restriction prevents accurate time 

estimation when the window is large; only one packet per window can be timed. However, if the 

TCP timestamp option is supported by both peers, a timestamp is sent with each data packet 

and is returned with each acknowledgment. Here, estimates of round-trip time can be obtained 

with each new acknowledgment; the quality of the smoothed average and variance is thus 

improved, and the system can respond more quickly to changes in network conditions. 
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Connection Establishment 

There are two ways in which a new TCP connection can be established. An active connection is 

initiated by a connect call, whereas a passive connection is created when a listening socket 

receives a connection request. 

When a process creates a new TCP socket, the tcp_attach() routine is called. TCP creates an 

inpcb protocol control block and then creates an additional control block (a tcpcb structure), as 

shown in Figure 14.1. Some of the flow-control parameters in the tcpcb are initialized at this 

time. If the process explicitly binds an address or port number to the connection, the actions are 

identical to those for a UDP socket. Then, a tcp_connect() call initiates the actual connection. 

The first step is to set up the association with in_pcbconnect(), again identically to this step in 

UDP. A packet-header template is created for use in construction of each output packet. An 

initial sequence number is chosen using an MD5 hashing algorithm and is then advanced by a 

substantial amount. The purpose of the hash is to make it hard for an attacker to guess the 

sequence space of a connection. If parties external to the connection can guess sequence 

numbers, then they can disrupt communication between the two peers using the connection, for 

example, by injecting a packet into the data stream. The socket is then marked as 

soisconnecting(), the TCP connection state is set to TCPS_SYN_SENT, the keepalive timer is set 

(to 75 seconds) to limit the duration of the connection attempt, and tcp_output() is called for 

the first time. 

The output-processing routine tcp_output() uses an array of packet control flags indexed by the 

connection state to determine which control flags should be sent in each state. In the 

TCPS_SYN_SENT state, the SYN flag is sent. Because it has a control flag to send, the system 

immediately sends a packet using the prototype just constructed and includes the current 

flow-control parameters. The packet normally contains three option fields: a 

maximum-segment-size option, a window-scale option, and a timestamps option (see Section 

14.3). The maximum-segmentsize option communicates the largest segment size that TCP is 

willing to accept. To compute this value, the system locates a route to the destination. If the 

route specifies a maximum transmission unit (MTU), the system uses that value after allowing 

for packet headers. If the connection is to a destination on a local network, the maximum 

transmission unit of the outgoing network interface is used, possibly rounding down to a 

multiple of the mbuf cluster size for efficiency of buffering. If the destination is not local and 

nothing is known about the intervening path, the default segment size (512 bytes) is used. 

In earlier versions of FreeBSD, many of the important variables relating to TCP connections, 

such as the MTU of the path between the two endpoints, and the data used to manage the 

connection were contained in a set of route metrics within the route entry that described the 
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connection. The TCP host cache was developed to centralize all this information in one 

easy-to-find place so that information gathered on one connection could be reused when a new 

connection was opened to the same endpoint. The data that is recorded on a connection is 

shown in Table 14.4. All the variables stored in a host cache entry are described in various parts 

of later sections of this chapter when they are relevant to the discussion of how TCP manages a 

connection. Notably missing from the host cache is a route-cache entry. Earlier versions of 

FreeBSD cached the route used for the connection. The caching of routing and forwarding 

information is currently in the process of being moved into the inpcb structure using the inp_rt 

and inp_lle fields, but code to exploit these fields is not written in FreeBSD 10. Hence, the route 

is not currently cached so every packet sent requires a routing-table lookup. 

 

Table 14.4 TCP host-cache metrics. 

Whenever a new connection is opened, a call is made to tcp_hc_get() to find any information on 

past connections. If an entry exists in the cache for the target endpoint, TCP uses the cached 

information to make better-informed decisions about managing the connection. When a 

connection is closed, the host cache is updated with all the relevant information that was 

discovered during the connection between the two hosts. Each host-cache entry has a default 

lifetime of 1 hour. Anytime that the entry is accessed or updated, its lifetime is reset to 1 hour. 

Every 5 minutes, the tcp_hc_purge() routine is called to clean out any entries that have passed 

their expiration time. Cleaning out old entries ensures that the host cache does not grow too 

large and that it always has reasonably fresh data. 

TCP uses path MTU discovery, a process whereby the system probes the network to 

determine the maximum transfer unit on a particular route between two nodes [Mogul & 

Deering, 1990]. The discovery is done by sending packets with the IP flag don’t fragment set on 

each packet. If the packet encounters a link on the path to its destination on which it would have 

to be fragmented, then it is dropped by the intervening router and an error is returned to the 
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sender. The error message contains the maximum-size packet that the link will accept. This 

information is recorded in the TCP host cache for the appropriate endpoint and transmission is 

attempted with the smaller MTU. Once the connection is complete, because enough packets 

have made it through the network to establish a TCP connection, the revised MTU recorded in 

the host cache is confirmed. Packets will continue to be transmitted with the don’t fragment flag 

set so that if the path to the node changes, and that path has an even smaller MTU, this new 

smaller MTU will be recorded. FreeBSD currently has no way of upgrading the MTU to a larger 

size when a route changes. 

When a connection is first opened, the retransmit timer is set to the default value (3 seconds) 

because no round-trip time information is available yet. With a bit of luck, a responding packet 

will be received from the target of the connection before the retransmit timer expires. If not, the 

packet is retransmitted and the retransmit timer is restarted with a greater value. If no response 

is received before the keepalive timer expires, the connection attempt is aborted with a 

“Connection timed out” error. If a response is received, however, it is checked for agreement 

with the outgoing request. It should acknowledge the SYN that was sent and should include a 

SYN. If it does both, the receive sequence variables are initialized and the connection state is 

advanced to TCPS_ESTABLISHED. If a maximum-segment-size option is present in the 

response, the maximum segment size for the connection is set to the minimum of the offered 

size and the maximum transmission unit of the outgoing interface; if the option is not present, 

the default size (512 data bytes) is recorded. The flag TF_ACKNOW is set in the TCP control 

block before the output routine is called so that the SYN will be acknowledged immediately. The 

connection is now ready to transfer data. 

The events that occur when a connection is created by a passive open are different from those of 

an active open. A socket is created and its address is bound as before. The socket is then marked 

by the listen call as willing to accept connections. When a packet arrives for a TCP socket in 

TCPS_LISTEN state, a new socket is created with sonewconn(), which calls the tcp_usr_attach() 

routine to create the protocol control blocks for the new socket. The new socket is placed on the 

queue of partial connections headed by the listening socket. If the packet contains a SYN and is 

otherwise acceptable, the association of the new socket is bound, both the send and the receive 

sequence numbers are initialized, and the connection state is advanced to 

TCPS_SYN_RECEIVED. The keepalive timer is set as before, and the output routine is called 

after TF_ACKNOW has been set to force the SYN to be acknowledged; an outgoing SYN is sent 

as well. If this SYN is acknowledged properly, the new socket is moved from the queue of partial 

connections to the queue of completed connections. If the owner of the listening socket is 

sleeping in an accept call or does a select, the socket will indicate that a new connection is 

available. Again, the socket is finally ready to send data. Up to one window of data may have 

already been received and acknowledged by the time that the accept call completes. 
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SYN Cache 

One problem in previous implementations of TCP was that it was possible for a malicious 

program to flood a system with SYN packets, thereby preventing it from doing any useful work 

or servicing any real connections. This type of denial-of-service attack became common 

during the commercialization of the Internet in the late 1990s. To combat this attack, a 

syn-cache was introduced to efficiently store, and possibly discard, SYN packets that do not lead 

to real connections. The syn-cache handles the three-way handshake between a local server and 

connecting peers. 

When a SYN packet is received for a socket that is in the LISTEN state, the TCP module 

attempts to add a new syn-cache entry for the packet using the syncache_add() routine. If there 

are any data in the received packet, they are not acknowledged at this time. Acknowledging the 

data would use up system resources, and an attacker could exhaust these resources by flooding 

the system with SYN packets that included data. If this SYN has not been seen before, a new 

entry is created in the hash table based on the packet’s foreign address, foreign port, the local 

port of the socket, and a mask. The syn-cache module responds to the SYN with a SYN/ACK and 

sets a timer on the new entry. If the syn-cache contains an entry that matches the received 

packet, then it is assumed that the original SYN/ACK was not received by the peer initiating the 

connection, and another SYN/ACK is sent and the timer on the syn-cache entry is reset. There is 

no limit set on the number of SYN packets that can be sent by a connecting peer. Any limit 

would not follow the TCP RFCs and might impede connections over lossy networks. 

SYN Cookies 

SYN cache was designed to reduce the amount of kernel resources required to handle potential 

incoming connections by keeping a minimum amount of state for each nascent connection. The 

goal of SYN cookies is for the kernel not to keep any state for a connection until the three-way 

handshake has been completed. A SYN cookie is a cryptographically signed piece of data placed 

into a SYN/ACK packet sent as the second packet in the standard three-way handshake. The 

data encoded into the SYN cookie will allow a server to complete the setup of a TCP connection 

on receipt of the final ACK from the remote system. In FreeBSD, SYN cookies are generated for 

every received SYN packet as a way of protecting against the SYN cache overflowing. They only 

need to be used when the rate of incoming requests overflows the SYN cache. 

Two routines, syncookie_generate() and syncookie_lookup(), are used by the kernel to generate 

and validate SYN cookies. When the kernel receives a SYN packet from a remote host, indicating 

that the remote host wishes to initiate a connection, the syncookie_generate() routine computes 
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an MD5 hash that includes a secret, an index into a table of possible maximum segment sizes for 

the connection, as well as the local and foreign network addresses and ports for the requested 

connection. A table encodes the maximum-segment sizes to decrease the amount of space 

required to store the MSS in the cookie to three bits. The MD5 hash is placed into the initial 

sequence number of the SYN/ACK packet that will be sent back to the remote host. If the remote 

host has indicated that it supports RFC1323 timestamps, then a second MD5 hash is calculated 

containing the send and receive window scaling factors and a single bit indicating whether the 

connection supports SACK. The second hash is placed into the timestamp field of the returning 

SYN/ACK packet. Once the SYN/ACK packet is returned to the remote host, all the state 

associated with the connection is freed. When an ACK is received from a remote host it is 

checked to see if it contains valid syn-cookie data. A valid SYN cookie must be returned within 

16 seconds of its having been generated. Packets that fall outside this 16 second boundary are 

discarded. The MD5 hash is again calculated over the key, the returned sequence number, and 

the connection information and then compared against the data received in the 

acknowledgment field of the ACK packet. The remote host should send an acknowledgment that 

is one greater than the sequence number it received. Subtracting 1 from the value in the 

acknowledgment and comparing it to the MD5 hash generated in the syncookie_lookup() 

routine is all that the kernel needs to do to verify that the cookie is valid. Valid ACK packets have 

their ISN and timestamp fields unpacked into a SYN-cache entry that is then used to set up a 

normal TCP connection. 

Connection Shutdown 

A TCP connection is symmetrical and full-duplex, so either side may initiate disconnection 

independently. As long as one direction of the connection can carry data, the connection 

remains open. A socket may indicate that it has completed sending data with the shutdown 

system call, which results in a call to the tcp_usr_shutdown() routine. The response to this 

request is that the state of the connection is advanced; from ESTABLISHED to FIN_WAIT_1. 

The ensuing output call will send a FIN, indicating that the connection is being closed. The 

receiving socket will advance to CLOSE_WAIT but may continue to send. The procedure may be 

different if the process simply closes the socket. In that case, a FIN is sent immediately, but if 

new data are received, they cannot be delivered. Normally, higher-level protocols conclude their 

own transactions such that both sides know when to close. If they do not, however, TCP must 

refuse new data. It does so by sending a packet with the RST flag set if new data are received 

after the user has closed the connection. If data remain in the send buffer of the socket when the 

close is done, TCP will normally attempt to deliver them. If the socket option SO_LINGER was 

set with a linger time of zero, the send buffer is simply flushed; otherwise, the user process is 

allowed to continue and the protocol waits for delivery to conclude. Under these circumstances, 
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the socket is marked with the state bit SS_NOFDREF (no file-descriptor reference). The 

completion of data transfer and the final close can take place an arbitrary amount of time later. 

When TCP finally completes the connection (or gives up because of timeout or other failure), it 

calls tcp_close(). The protocol control blocks and other dynamically allocated structures are 

freed at this time. The socket also is freed if the SS_NOFDREF flag has been set. The socket 

remains in existence as long as either a file descriptor or a protocol control block refers to it. 

14.5 TCP Input Processing 

TCP input processing is considerably more complicated than UDP input handling, and the 

preceding sections have provided the background needed to examine the the implementation of 

the TCP input path. The input routine is called with parameters 

void tcp_input( 

    struct mbuf *msg, 

    int off0); 

The first few steps are similar to those of UDP: 

1. Locate the TCP header in the received IP datagram. Make sure that the packet is at least as 

long as a minimal-size TCP header, and use m_pullup() if necessary to make it contiguous. 

2. Compute the packet length, set up the IP pseudo-header, and checksum the TCP header and 

data. Discard the packet if the checksum is bad. 

3. Check the TCP header length; if it is larger than a minimal header, make sure that the whole 

header is contiguous. 

4. Locate the protocol control block for the connection with the port number specified. If none 

exists, send a packet containing the reset flag, RST, and drop the packet. 

5. Check whether the socket is listening for connections; if it is, follow the procedure described 

for passive connection establishment. 

6. Process any TCP options from the packet header. 

7. Clear the idle time for the connection and set the keepalive timer to its normal value. 

Here, the normal checks have been made and the kernel is prepared to handle data and control 

flags in the received packet. There are still many consistency checks that must be made during 

normal processing; for example, the SYN flag must be present if a connection is still being 



 

857 

established and must not be present if the connection has been established. For simplicity, many 

of these checks are not described below, but the tests are important to prevent wayward packets 

from causing confusion and possible data corruption. 

The next step in checking a TCP packet is to see whether the packet is acceptable according to 

the receive window. It is important that this step be done before control flags—in particular 

RST—are examined because old or extraneous packets should not affect the current connection 

unless they are clearly relevant in the current context. A segment is acceptable if the receive 

window has nonzero size and if at least some of the sequence space occupied by the packet falls 

within the receive window. Portions of the data that precede the window are trimmed, since they 

have already been received, and portions that exceed the window also are discarded, since they 

have been sent prematurely. If the receive window is closed (rcv_wnd is zero), then only 

segments with no data and with a sequence number equal to rcv_nxt are acceptable. If an 

incoming segment is not acceptable, it is dropped after an acknowledgment is sent. 

The processing of incoming TCP packets must be fully general, taking into account all the 

possible incoming packets and possible states of receiving endpoints. However, the bulk of the 

packets processed falls into two general categories. Typical packets contain either the next 

expected data segment for an existing connection or an acknowledgment plus a window update 

for one or more data segments, with no additional flags or state indications. Rather than 

considering each incoming segment based on first principles, tcp_input() checks first for these 

common cases, an algorithm known as header prediction. An incoming segment is one of 

two common types if it meets these five criteria: 

1. It matches a connection in the ESTABLISHED state. 

2. It contains the ACK flag but no other flags. 

3. Its sequence number is the next value expected (and its timestamp, if any, is nondecreasing). 

4. Its window field is the same as in its previous segment. 

5. Its connection is not in a retransmission state. 

A segment that matches these five criteria and contains no data is a pure acknowledgment with 

a window update. In the usual case, round-trip timing information is sampled if it is available, 

acknowledged data are dropped from the socket send buffer, and the sequence values are 

updated. The packet is discarded once the header values have been checked. The retransmit 

timer is canceled if all pending data have been acknowledged; otherwise, it is restarted. The 

socket layer is notified if any process is waiting to output data. Finally, tcp_output() is called 
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because the window has moved forward and that operation completes the handling of a pure 

acknowledgment. 

If a packet meeting the tests for header prediction contains the next expected data, and no 

out-of-order data are queued for the connection, and if the socket receive buffer has space for 

the incoming data, then this packet is a pure in-sequence data segment. The sequencing 

variables are updated, the packet headers are removed from the packet, and the remaining data 

are appended to the socket receive buffer. The socket layer is notified so that it can notify any 

interested thread, and the control block is marked with a flag indicating that an 

acknowledgment is needed. No additional processing is required for a pure data packet. 

For packets that are not handled by the header-prediction algorithm, the processing steps are as 

follows: 

1. Process the timestamp option if it is present, rejecting any packets for which the timestamp 

has decreased. 

2. Check whether the packet begins before rcv_nxt. If it does, ignore any SYN in the packet and 

trim any data that fall before rcv_nxt. If no data remain, send a current acknowledgment and 

drop the packet. (The packet is presumed to be a duplicate transmission.) 

3. If the packet still contains data after trimming, and the process that created the socket has 

already closed the socket, send a reset (RST) and drop the connection. This reset is necessary to 

abort connections that cannot complete; it typically is sent when a remote-login client 

disconnects while data are being received. 

4. If the end of the segment falls after the window, trim any data beyond the window. If the 

window was closed and the packet sequence number is rcv_nxt, the packet is treated as a 

window probe; TF_ACKNOW is set to send a current acknowledgment and window update, and 

the remainder of the packet is processed. If SYN is set and the connection was in TIME_WAIT 

state, this packet is really a new connection request and the old connection is dropped; this 

procedure is called rapid connection reuse. Otherwise, if no data remain, send an 

acknowledgment and drop the packet. 

The remaining steps of TCP input processing check the following flags and fields, and take the 

appropriate actions: RST, ACK, window, URG, data, and FIN. Because the packet has already 

been confirmed to be acceptable, these actions can be done in a straightforward way: 

5. If a timestamp option is present, and the packet includes the next sequence number expected, 

record the value received to be included in the next acknowledgment. 
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6. If RST is set, close the connection and drop the packet. 

7. If ACK is not set, drop the packet. 

8. If the acknowledgment-field value is higher than that of previous acknowledgments, new data 

have been acknowledged. If the connection was in SYN_RECEIVED state and the packet 

acknowledges the SYN sent for this connection, enter ESTABLISHED state. If the packet 

includes a timestamp option, use it to compute a round-trip time sample; otherwise, if the 

sequence range that was newly acknowledged includes the sequence number for which the 

round-trip time was measured, this packet provides a sample. Average the time sample into the 

smoothed round-trip time estimate for the connection. If all outstanding data have been 

acknowledged, stop the retransmission timer; otherwise, set it back to the current timeout value. 

Finally, drop the data that were acknowledged from the socket’s send queue. If a FIN has been 

sent and was acknowledged, advance the state machine. 

9. Check the window field to see whether it advances the known send window. First, check 

whether this packet is a new window update. If the sequence number of the packet is greater 

than that of the previous window update, or the sequence number is the same but the 

acknowledgment-field value is higher, or if both sequence and acknowledgment are the same 

but the window is larger, record the new window. 

10. If the urgent-data flag URG is set, compare the urgent pointer in the packet to the 

last-received urgent pointer. If it is different, new urgent data have been sent. Use the urgent 

pointer to compute so_oobmark, the offset from the beginning of the socket receive buffer to 

the urgent mark (Section 14.3), and notify the socket with sohasoutofband(). If the urgent 

pointer is less than the packet length, the urgent data have all been received. TCP normally 

removes the final data byte sent in urgent mode (the last byte before the urgent pointer) and 

places that byte in the protocol control block until it is requested with a PRU_RCVOOB request. 

(The end of the urgent data is a subject of disagreement; the BSD interpretation follows the 

original TCP specification.) A socket option, SO_OOBINLINE, may request that urgent data be 

left in the queue with the normal data, although the mark on the data stream is still maintained. 

11. Examine the data field in the received packet. If the data begin with rcv_nxt, then they can 

be placed directly into the socket receive buffer with sbappendstream(). The flag TF_DELACK 

is set in the protocol control block to indicate that an acknowledgment is needed, but should be 

delayed in the hope that it can be piggybacked on any packets sent soon (presumably in 

response to the incoming data) or combined with acknowledgment of other data received soon; 

see the subsection on Delayed Acknowledgments and Window Updates in Section 14.6. If no 

activity causes a packet to be returned before the next time that the tcp_delack() routine runs, it 

will change the flag to TF_ACKNOW and call the tcp_output() routine to send the 
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acknowledgment. Acknowledgments can thus be delayed by no more than 100 milliseconds. If 

the data do not begin with rcv_nxt, the packet is retained in a per-connection queue until the 

intervening data arrive and an acknowledgment is sent immediately. 

12. As the final step in processing a received packet, check for the FIN flag. If it is present, the 

connection state machine may have to be advanced, and the socket is marked with 

socantrcvmore() to convey the end-of-file indication. If the send side has already closed (a FIN 

was sent and acknowledged), the socket is now considered closed and it is so marked with 

soisdisconnected(). The TF_ACKNOW flag is set to force immediate acknowledgment. 

Step 12 completes the actions taken when a new packet is received by tcp_input(). However, as 

noted earlier in this section, receipt of input may require new output. In particular, 

acknowledgment of all outstanding data or a new window update requires either new output or 

a state change by the output module. Also, several special conditions set the TF_ACKNOW flag. 

Here, tcp_output() is called at the conclusion of input processing. 

14.6 TCP Output Processing 

This section describes the implementation of the TCP send policy. A TCP packet contains an 

acknowledgment, a window field, and data. A single packet may be sent if any of these three 

fields change. A naive TCP send policy might send many more packets than necessary. Logically, 

three packets are sent when a user types one character to a remote-terminal connection that 

uses remote echo. 

1. The server-side TCP receives a single-character packet. 

2. It sends an immediate acknowledgment of the character. 

3. Milliseconds later, the login server reads the character, removing the character from the 

receive buffer. TCP immediately sends a window update, noting that one additional byte of send 

window was available. 

4. After another millisecond or so, the login server sends an echoed character back to the client, 

necessitating a third packet sent in response to the single character of input. 

A more efficient implementation will collapse the last three responses (the acknowledgment, the 

window update, and the data return) into a single packet. However, if the server were not 

echoing input data (for example, when the user is typing his or her password), the 

acknowledgment cannot be withheld for too long or the client-side TCP would begin to 

retransmit. The algorithms used in the send policy to minimize network traffic yet maximize 
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throughput are the most subtle part of a TCP implementation. The send policy used in FreeBSD 

includes several standard algorithms, as well as a few approaches suggested by the network 

research community. This section examines each part of the send policy. 

Sending Data 

The most common reason for calling the TCP output routine tcp_output() is that the user has 

written new data to the socket. Write operations are done with a call to the tcp_usr_send() 

routine. Recall that sosend() waits for enough space in the socket send buffer, if necessary, and 

then copies the user’s data into a chain of mbufs that is passed to the protocol by the 

tcp_usr_send() routine. The action in tcp_usr_send() is simply to place the new output data in 

the socket’s send buffer with sbappendstream() and to call tcp_output(). If flow control permits, 

tcp_output() will send the data immediately. 

The actual send operation is not substantially different from that for a UDP datagram socket. 

The differences are that the header is more complicated and additional fields must be initialized, 

and the data sent are simply a copy of the user’s data. However, for send operations large 

enough for sosend() to place the data in external mbuf clusters, the copy is done by creating a 

new reference to the data cluster. A copy must be retained in the socket’s send buffer to use if 

retransmission is required. Also, if the number of data bytes is larger than the size of a single 

maximum-size segment, multiple packets will be constructed and sent in a single call. 

The tcp_output() routine allocates an mbuf to contain the output packet header and copies the 

contents of the header template into that mbuf. If the data to be sent fit into the same mbuf as 

the header, tcp_output() copies them into place from the socket send buffer using the 

m_copydata() routine. Otherwise, tcp_output() adds the data to be sent as a separate chain of 

mbufs obtained with an m_copy() operation from the appropriate part of the send buffer. The 

sequence number for the packet is set from snd_nxt and the acknowledgment is set from 

rcv_nxt. The flags are obtained from an array containing the flags to be sent in each connection 

state. The window to be advertised is computed from the amount of space remaining in the 

socket’s receive buffer; however, if that amount is small (less than one-fourth of the buffer and 

less than one segment), it is set to zero. The window is never allowed to end at a smaller 

sequence number than the one in which it ended in the previous packet. If urgent data have 

been sent, the urgent pointer and flag are set accordingly. One other flag must be set. The PSH 

flag on a packet indicates that data should be passed to the user; it is like a buffer-flush request. 

This flag is generally considered obsolete but is set whenever all the data in the send buffer have 

been sent; FreeBSD ignores this flag on input. Once the header is filled in, the packet is 

checksummed. The remaining parts of the IP header are initialized, including the type-of-service 

and time-to-live fields, and the packet is sent with ip_output(). The retransmission timer is 
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started if it is not already running, and the snd_nxt and snd_max values for the connection are 

updated. 

Avoidance of the Silly-Window Syndrome 

Silly-window syndrome is the name given to a potential problem in a window-based 

flow-control scheme in which a system sends several small packets rather than waiting for a 

reasonable-size window to become available [Clark, 1982]. For example, if a network-login 

client program has a total receive buffer size of 4096 bytes, and the user stops terminal output 

during a large printout, the buffer will become nearly full as new full-size segments are received. 

If the remaining buffer space dropped to 10 bytes, it would not be useful for the receiver to 

volunteer to receive an additional 10 bytes. If the user then allowed a few characters to print and 

stopped output again, it still would not be useful for the receiving TCP to send a window update 

allowing another 14 bytes. Instead, it is desirable to wait until a reasonably large packet can be 

sent, since the receive buffer already contains enough data for the next several pages of output. 

Avoidance of the silly-window syndrome is desirable in both the receiver and the sender of a 

flow-controlled connection, as either end can prevent silly small windows from being used. 

Receiver avoidance of the silly-window syndrome is described in the previous subsection; when 

a packet is sent, the receive window is advertised as zero if it is less than one packet and less 

than one-fourth of the receive buffer. For sender avoidance of the silly-window syndrome, an 

output operation is delayed if at least a full packet of data is ready to be sent but less than one 

full packet can be sent because of the size of the send window. Instead of sending, tcp_output() 

sets the output state to persist state by starting the persist timer. If no window update has been 

received by the time that the timer expires, the allowable data are sent in the hope that the 

acknowledgment will include a larger window. If it does not, the connection stays in persist state, 

sending a window probe periodically until the window is opened. 

An initial implementation of sender avoidance of the silly-window syndrome produced large 

delays and low throughput over connections to hosts using TCP implementations with tiny 

buffers. Unfortunately, those implementations always advertised receive windows less than the 

maximum segment size—a behavior that was considered silly by this implementation. As a 

result of this problem, the FreeBSD TCP implementation keeps a record of the largest receive 

window offered by a peer in the protocol-control-block variable max_sndwnd. When at least 

one-half of max_sndwnd may be sent, a new segment is sent. This technique improved 

performance when a BSD system was communicating with these limited hosts. 
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Avoidance of Small Packets 

Network traffic exhibits a bimodal distribution of sizes. Bulk data transfers tend to use the 

largest possible packets for maximum throughput, whereas interactive services (such as 

network-login) tend to use small packets, often containing only a single data character. On a fast 

local-area network, the use of single-character packets generally is not a problem because the 

network bandwidth usually is not saturated. On long-haul networks interconnected by slow or 

congested links, or on wireless LANs that are both slow and lossy, it is desirable to collect input 

over some period and then send it in a single network packet. Various schemes have been 

devised for collecting input over a fixed time—usually about 50 to 100 milliseconds—and then 

sending it in a single packet. These schemes noticeably slow character echo times on fast 

networks and often save few packets on slow networks. In contrast, a simple and elegant scheme 

for reducing small-packet traffic (small-packet avoidance) was suggested by Nagle [1984]. 

This scheme allows the first byte output to be sent alone in a packet with no delay. Until this 

packet is acknowledged, however, no new small packets may be sent. If enough new data arrive 

to fill a maximum-size packet, another packet is sent. As soon as the outstanding data are 

acknowledged, the input that was queued while waiting for the first packet may be sent. Only 

one small packet may ever be outstanding on a connection at one time. The net result is that 

data from small output operations are queued during one round-trip time. If the round-trip time 

is less than the inter-character arrival time, as it is in a remote-terminal session on a LAN, 

transmissions are never delayed and response time remains low. When a slow network 

intervenes, input after the first character is queued and the next packet contains the input 

received during the preceding round-trip time. This algorithm is attractive because of both its 

simplicity and its self-tuning nature. 

Nagle’s algorithm does not work well for certain classes of network clients that sent streams of 

small requests that cannot be batched. One such client is the network-based X Window System 

[Scheifler & Gettys, 1986], which requires immediate delivery of small messages to get real-time 

feedback for user interfaces such as rubber-banding to sweep out a new window. Hence, the 

TCP_NODELAY option was added to defeat this algorithm on a connection. This option can be 

set with a setsockopt call, which reaches TCP via the tcp_ctloutput() routine. 

Delayed Acknowledgments and Window Updates 

TCP packets must be sent for reasons other than data transmission. On a one-way connection, 

the receiving TCP must still send packets to acknowledge received data and to advance the 

sender’s send window. In a bulk data transfer, the time at which window updates are sent is a 

determining factor for network throughput. For example, if the receiver simply set the 
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TF_DELACK flag each time that data were received on a bulk-data connection, 

acknowledgments would be sent every 100 milliseconds. If 8192-byte windows were used on a 

1-Gbps Ethernet, this algorithm would result in a maximum throughput of 655 Kbit/s, or less 

than 1 percent of the available network bandwidth. Clearly, once the sender has filled the send 

window that it has been given, it must stop until the receiver acknowledges the old data 

(allowing them to be removed from the send buffer and new data to replace them) and provides 

a window update (allowing the new data to be sent). 

Because TCP’s window-based flow control is limited by the space in the socket receive buffer, 

TCP has the PR_RCVD flag set in its protocol-switch entry so that the protocol will be called (via 

the tcp_usr_rcvd() routine) when the user has done a receive call that has removed data from 

the receive buffer. The tcp_usr_rcvd() routine simply calls tcp_output(). Whenever tcp_output() 

deter-mines that a window update sent under the current circumstances would provide a new 

send window to the sender large enough to be worthwhile, it sends an acknowledgment and 

window update. If the receiver waited until the window was full, the sender would already have 

been idle for some time when it finally received a window update. Furthermore, if the send 

buffer on the sending system was smaller than the receiver’s buffer—and thus smaller than the 

receiver’s window—the sender would be unable to fill the receiver’s window without receiving an 

acknowledgment. Therefore, the window-update strategy in FreeBSD is based on only the 

maximum segment size. Whenever a new window update would move the window forward by at 

least two full-size segments, the window update is sent. This window-update strategy produces a 

twofold reduction in acknowledgment traffic and a twofold reduction in input processing for the 

sender. However, updates are sent often enough to give the sender feedback on the progress of 

the connection and to allow the sender to continue sending additional segments. 

Note that TCP is called at two different stages of processing on the receiving side of a bulk data 

transfer: it is called on packet reception to process input, and it is called after each receive 

operation removing data from the input buffer. At the first call, an acknowledgment could be 

sent, but no window update could be sent. After the receive operation, a window update also is 

possible. Thus, it is important that the algorithm runs in the second half of this cycle. 

Selective Acknowledgment 

A long-running TCP connection over a lossy network path will have packets dropped in flight. 

Once a connection has a sufficiently large transmission window open it can send several packets 

at once and the dropped packet may occur in the middle of the set rather than at the end. TCP 

normally acknowledges the last byte of the last segment that it received and which it could 

correctly append to any previously received data. When a segment is dropped, TCP appends any 

new segments that follow the dropped segment to the receive queue, but no indication is given 
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to the sender that one or more segments were dropped, only that the last received byte is at a 

particular sequence number. Selective acknowledgments (SACK), are a mechanism whereby the 

receiver can tell the sender when one or more segments were dropped, allowing the sender to 

choose more efficiently the data to re-transmit [Mathis et al., 1996]. 

The use of SACK is negotiated at connection setup time. The inclusion of the SACK-permitted 

option in a packet containing a SYN, such as the initial connection request, or the SYN/ACK 

returned by a host receiving a connection request, indicates that the sender supports SACK. 

Once the connection is sending data, the receiver can send a SACK option to the sender as part 

of an ACK packet to indicate the data that it has already received. The receiver does not tell the 

sender the segments were dropped. Rather, it tells the sender the data that it has received by 

sending pairs of sequence numbers specifying the left and right hand sides of the received data. 

SACK information is sent as an option rather than as part of the data section of the packet. The 

amount of information that can be sent back to the sender from the receiver is limited because 

the option field has a maximum size of 40 bytes. In a typical environment where other options 

such as timestamps are already in use, a SACK enabled receiver can only indicate three regions 

of data that it has received. 

Figure 14.5 shows a receiver’s state with four segments and two holes. Each segment contains 

500 bytes. The first segment containing bytes 0 to 499 has been received and acknowledged to 

the sender. Three additional segments have been received but not yet acknowledged for byte 

ranges 1000 to 1499, 1500 to 1999, and 3000 to 3499. Three segments are missing: those that 

contain bytes 500 to 999, 2000 to 2499, and 2500 to 2999. The receiver tells the sender about 

the segments it has successfully received, but not delivered to the application, by sending a 

SACK option that includes the left- and right-hand sides of up to three sections of received data, 

which are referred to as SACK blocks. In our current example, the receiver would send an option 

with the SACK blocks 1000:2000 and 3000:3500. The right hand side of the SACK block is 

defined to be the last received byte plus one. The SACK option has no effect on the 

acknowledgment field of the TCP packet sent from the receiver back to the sender. The 

acknowledgment field always contains the sequence value of the last correctly received byte (499 

in this example). The sender does not depend on the receiver maintaining any extra state to 

implement SACK. It is possible that because of memory pressure, the receiving host might drop 

undelivered segments from its reassembly queues, thereby invalidating a previous report of data 

via a SACK option. The sender cannot free any data it has sent until it receives an 

acknowledgment for that data through an ACK with a proper acknowledgment number. The 

SACK option is an optimization and not a fundamental change in how TCP works. 
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Figure 14.5 SACK receiver state. 

The implementation of SACK in FreeBSD has two main data structures: One data structure for 

the list of SACK blocks and the other for the list of holes that the sender believes to be present in 

the receiver’s reassembly queue. The array of SACK blocks is used differently by the sender and 

the receiver. On the receiver, the array of SACK blocks contains the information that the receiver 

will send back to the sender with the next ACK. The sender’s array contains the blocks that have 

arrived from the the receiver. The array, sackblks, is contained in the TCP control block and 

holds a maximum of six entries because at most four sack blocks can be communicated in a 

single SACK option. The two extra entries in the array store blocks that the sender has received 

in previous updates. When a TCP connection has many packets in flight, several may be dropped 

due to changing network conditions, resulting in several holes appearing in the receiver’s 

reassembly queue. Being able to store six SACK blocks per socket at the sender was deemed a 

reasonable compromise between memory usage and performance. Whenever a host receives 

data on a TCP connection, the tcp_do_segment() routine places the data either into the socket’s 

receive buffer or into the reassembly queue. When data is placed into the reassembly queue, it 

indicates that packets were received out of order and that a hole may be present. The 

tcp_update_sack_list() routine is used by the receiver to update its list of SACK blocks. Because 

the receiver has had to use its reassembly queue, the TF_ACKNOW flag will be set on the TCP 

control block. After updating its SACK blocks, the receiver will call tcp_output(), which adds a 

SACK option containing as many SACK blocks as fit into the options field of the packet. SACK 

options are processed last by the tcp_addoptions() routine so that the maximum number of 

options can be stored in the 40 bytes available. A TCP connection with both timestamps and 

signatures enabled has space for only one SACK block, since a timestamp takes 12 bytes and a 

signature takes 18, leaving only 10 for SACK information. As most TCP connections do not use 

signatures, it is more common to have space for up to three SACK blocks. The current design of 

SACK does not allow space for any more SACK blocks since they can only be communicated 

within the limited space allowed for TCP options. 

A TCP sender receives SACK blocks in the options part of a packet with the ACK flag set. The 

tcp_input() routine calls the tcp_sack_doack() routine to update the sender’s understanding of 

the holes that are present in the receiver’s reassembly queue. The sender maintains a scoreboard 

of the holes in a tail-queue structure and keeps the received SACK blocks in a per-socket array. 
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All the received blocks are placed into the array, which is then sorted into ascending order based 

on the right-hand side of each block. With the SACK blocks sorted, the tcp_sack_doack() 

routine walks the list of blocks and adjusts its scoreboard. Three possible adjustments to the 

scoreboard can be made: 

1. A SACK block may completely cover a hole, indicating that the receiver now has the data that 

the sender believed was missing. Here, the hole is removed from the scoreboard. 

2. A block can partially cover a hole. Here, the size of the hole is reduced. 

3. A block may acknowledge data within a hole, requiring that the hole be split. 

Once all of the blocks have been processed, the scoreboard is again in a consistent state and can 

be used by the tcp_output() routine when it next transmits data. 

The tcp_sack_output() routine is called when a sender wants to transmit data to a receiver and 

the sender has holes present in the scoreboard. If more than one hole exists, only the next hole 

is returned by the routine and not the complete set. The information from the scoreboard 

adjusts the length of the data to be sent by TCP so that the next transmission will cover as much 

as possible of the next hole in the scoreboard. The transmission of new data does not update the 

scoreboard or the array of SACK holes maintained by the sender. SACK data structures on the 

sender are only updated on the receipt of acknowledgments from the receiver. Once the receiver 

has acknowledged data past all of the holes, the sender will clear both its scoreboard and its 

sackblks array. 

Retransmit State 

When the retransmit timer expires while a sender is awaiting acknowledgment of transmitted 

data, tcp_output() is called to retransmit. The retransmit timer is first set to the next multiple of 

the round-trip time in the backoff series. The variable snd_nxt is moved back from its current 

sequence number to snd_una. A single packet is then sent containing the oldest data in the 

transmit queue. Unlike some other systems, FreeBSD does not keep copies of the packets that 

have been sent on a connection; it retains only the data. Thus, although only a single packet is 

retransmitted, that packet may contain more data than does the oldest outstanding packet. On a 

slow connection with small send operations, such as a remote login, this algorithm may cause a 

single-byte packet that is lost to be retransmitted with all the data queued since the initial byte 

was first transmitted. 

If a single packet was lost in the network, the retransmitted packet will elicit an 

acknowledgment of all data transmitted thus far. If more than one packet was lost, the next 



 

868 

acknowledgment will include the retransmitted packet and possibly some of the intervening 

data. It may also include a new window update. Thus, when an acknowledgment is received after 

a retransmit timeout, any old data that were not acknowledged will be resent as though they had 

not yet been sent, and some new data may be sent as well. 

Slow Start 

Many TCP connections traverse several networks between their source and destination. When 

some of the networks are slower than others, the entry router to the slowest network often is 

presented with more traffic than it can handle. It may buffer some input packets to avoid 

dropping them because of sudden changes in flow, but eventually its buffers will fill and it must 

begin dropping packets. When a TCP connection first starts sending data across a fast network 

to a router forwarding via a slower network, it may find that the router’s queues are already 

nearly full. In the original send policy used in BSD, a bulk-data transfer would start out by 

sending a full window of packets once the connection was established. These packets could be 

sent at the full speed of the network to the bottleneck router, but that router could transmit 

them only at a much slower rate. As a result, the initial burst of packets was highly likely to 

overflow the router’s queue and some of the packets would be lost. If such a connection used an 

expanded window size in an attempt to gain performance—for example, when traversing a 

transoceanic network link with a long round-trip time—this problem would be even more severe. 

However, if the connection could once reach steady state, a full window of data often could be 

accommodated by the network if the packets were spread evenly throughout the path. At steady 

state, new packets would be injected into the network only when previous packets were 

acknowledged and the number of packets in the network would be constant. Figure 14.6 shows 

the desired steady state. In addition, even if packets arrived at the outgoing router in a cluster, 

they would be spread out when the network was traversed by at least their transmission times in 

the slowest network. If the receiver sent acknowledgments when each packet was received, the 

acknowledgments would return to the sender with approximately the correct spacing. The 

sender would then have a self-clocking means for transmitting at the correct rate for the 

network without sending bursts of packets that the bottleneck could not buffer. 
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Figure 14.6 Acknowledgment clocking. There are two routers connected by a slow link between 

the sender and the receiver. The thickness of the links represents their speed. The width of the 

packets represents their time to travel down the link. Fast links are wide and the packets are 

narrow. Slow links are narrow and the packets are wide. In the steady state shown, the sender 

sends a new packet each time an acknowledgment is received from the receiver. 

An algorithm named slow start brings a TCP connection to this steady state [Jacobson, 1988]. It 

is called slow start because it is necessary to start data transmission slowly when traversing a 

slow network. Figure 14.7 shows the progress of the slow-start algorithm. The scheme is simple: 

A connection starts out with an initial-segment quota of one to four outstanding packets. A 

one-block initial-segment quota is used for a connection with a small initial window size, while a 

four-block initial-segment quota is used with a large initial window size. An increased initial 

window size takes advantage of the greater bandwidth available from fast networks [Allman et 

al., 2002]. Each time that an acknowledgement is received, the limit is increased by one packet. 

If the acknowledgement also carries a window update, two packets are sent in response. This 

process continues until the window is fully open. During the slow-start phase of the connection, 

if each packet was acknowledged separately, the limit would be doubled during each exchange, 

resulting in an exponential opening of the window. Delayed acknowledgments might cause 

acknowledgments to be coalesced if more than one packet could arrive at the receiver within 100 

milliseconds, slowing the window opening slightly. However, the sender never sends bursts of 

more than two or three packets during the opening phase and sends only one or two packets at a 

time once the window has opened. 

 

Figure 14.7 The progression of the slow-start algorithm. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
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The implementation of the slow-start algorithm uses a second window, like the send window but 

maintained separately, called the congestion window (snd_cwnd). The congestion window is 

maintained according to an estimate of the data that the network is currently able to buffer for 

this connection. The send policy is modified so that new data are sent only if allowed by both the 

normal-and congestion-send windows. The congestion window is initialized to the size of the 

initial-segment quota, causing a connection to begin with a slow start. Whenever transmission 

stops, the congestion window is reset back to the same value as that used in the initial window. 

Otherwise, once a retransmitted packet was acknowledged, the resulting window update might 

allow a full window of data to be sent, which would once again overrun intervening routers. The 

use of slow start after a retransmission timeout prevents the sender from overrunning a 

congested network. The timeout may indicate that the network has become slower because of 

congestion, a temporary reduction of the window may help the network to recover from this 

condition. The connection is forced to reestablish its clock of acknowledgments after the 

connection has come to a halt and slow start has this effect as well. A slow start is also forced if a 

connection begins to transmit after an idle period of at least the current retransmission value (a 

function of the smoothed round-trip time and variance estimates). 

Buffer and Window Sizing 

The throughput of a TCP connection is limited by the bandwidth of the path that the connection 

must transit. Performance is also affected by the round-trip time for the path. For example, 

paths that traverse any of the major transoceanic links have a long intrinsic delay, even though 

the bandwidth may be high, but the throughput is limited to one window of data per round-trip 

time. After filling the receiver’s window, the sender must wait for at least one round-trip time for 

an acknowledgment and window update to arrive. To take advantage of the full bandwidth of a 

path, both the sender and receiver must use buffers at least as large as the bandwidth-delay 

product to allow the sender to transmit during the entire round-trip time. In steady state, this 

buffering allows the sender, receiver, and intervening parts of the network to keep the pipeline 

filled at each stage. For some paths, using slow start and a large window can lead to much better 

performance than could be achieved previously. 

The round-trip time for a network path includes two components: transit time and queueing 

time. The transit time comprises the propagation, switching, and forwarding time in the 

physical layers of the network, including the time to transmit packets bit by bit after each 

store-and-forward hop. Ideally, queueing time would be negligible, with packets arriving at each 

node of the network just in time to be sent after the preceding packet. This ideal flow is possible 

when a single connection using a suitable window size is synchronized with the network. 

However, as additional traffic is injected into the network by other sources, queues build up in 

routers, especially at the entrance to the slower links in the path. Although queueing delay is 
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part of the round-trip time observed by each network connection that is using a path, it is not 

useful to increase the operating window size for a connection to a value larger than the product 

of the limiting bandwidth for the path times the transit delay. Sending additional data beyond 

that limit causes the additional data to be queued, which increases queueing delay without 

increasing throughput. 

Avoidance of Congestion with Slow Start 

The slow-start algorithm prevents TCP from overloading a network when packet transmission 

first begins, or when it resumes after a long idle period. A single connection may reasonably use 

a large window without flooding the entry router to the slow network on startup. As a 

connection opens the window during a slow start, it injects packets into the network until the 

network links are kept busy. During this phase, it may send packets at up to twice the rate at 

which the network can deliver data because of the exponential opening of the window. If the 

window is chosen appropriately for the path, the connection will reach steady state without 

flooding the network. However, with multiple connections sharing a path, the bandwidth 

available to each connection is reduced. If each connection uses a window equal to the 

bandwidth-delay product, the additional packets in transit must be queued, which increases 

delay. If the total offered load is too high, routers must drop packets rather than increasing the 

queue sizes and delay. Thus, the appropriate window size for a TCP connection depends not only 

on the path, but also on competing traffic. A window size large enough to provide good 

performance when a long-delay link is in the path will overrun the network when most of the 

round-trip time is in queueing delays. It is highly desirable for a TCP connection to be 

self-tuning, as the characteristics of the path are seldom known at the endpoints and may 

change with time. If a connection expands its window to a value too large for a path, or if 

additional load on the network collectively exceeds the capacity, router queues will build until 

packets must be dropped. Here, the connection will close the congestion window to the 

maximum segment size calculated for the link and will initiate a slow start. If the window is 

simply too large for the path, however, this process will repeat each time that the window is 

opened too far. 

The connection can learn from this problem and can adjust its behavior using another algorithm 

associated with the slow-start algorithm. This algorithm keeps a state variable for each 

connection, snd_ssthresh (slow-start threshold), which is an estimate of the usable window for 

the path. When a packet is dropped, as evidenced by a retransmission timeout, this window 

estimate is set to a maximum of either two maximally size segments (MSS), or half of the 

current amount of data in flight (FlightSize): 

ssthresh = max(FlightSize / 2, 2 × MSS) 
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Further details about the slow start algorithm are given in [Allman et al., 2009]. The current 

window is obviously too large at the moment, and the decrease in window utilization must be 

large enough that congestion will decrease rather than stabilizing. At the same time, the 

slow-start window (snd_cwnd) is set to the initial-segment quota to restart. The connection 

starts up as before, opening the window exponentially until it reaches the snd_ssthresh limit. 

Here, the connection is near the estimated usable window for the path. It enters steady state, 

sending data packets as allowed by window updates. To test for improvement in the network, it 

continues to expand the window slowly; as long as this expansion succeeds, the connection can 

continue to take advantage of reduced network load. The expansion of the window in this phase 

is linear, with one additional full-size segment being added to the current window for each full 

window of data transmitted. This slow increase allows the connection to discover when it is safe 

to resume use of a larger window while reducing the loss in throughput because of the wait after 

the loss of a packet before transmission can resume. Note that the increase in window size 

during this phase of the connection is linear as long as no packets are lost, but the decrease in 

window size when signs of congestion appear is exponential (it is divided by 2 on each timeout). 

With the use of this dynamic window-sizing algorithm, it is possible to use larger default 

window sizes for connection to all destinations without overrunning networks that cannot 

support them. 

Fast Retransmission 

Packets can be lost in the network for many reasons, two of which are congestion and corruption. 

TCP detects lost packets by a timeout, which causes a retransmission. When a packet is lost, the 

flow of packets on a connection comes to a halt while waiting for the timeout. Depending on the 

round-trip time and variance, this timeout can result in a substantial period during which the 

connection makes no progress. Once the timeout occurs, an initial-segment quota of segments is 

retransmitted as the first phase of a slow start and the slow-start threshold is set as shown in the 

previous section. If later packets are not lost, the connection goes through a slow startup to the 

new threshold and it then gradually opens the window to probe whether any congestion has 

disappeared. Each of these phases lowers the effective throughput for the connection. The result 

is decreased performance, even though the congestion may have been brief. 

When a connection reaches steady state, it sends a continuous stream of data packets in 

response to a stream of acknowledgments with window updates. If a single packet is lost, the 

receiver sees packets arriving out of order. Most TCP receivers, including FreeBSD, respond to 

an out-of-order segment with a repeated acknowledgment for the in-order data. If one packet is 

lost while enough packets to fill the window are sent, each packet after the lost packet will 

provoke a duplicate acknowledgment with no data, window update, or other new information. 

The receiver can infer the out-of-order arrival of packets from these duplicate acknowledgments. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref02
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Given enough evidence of reordering, the receiver can assume that a packet has been lost. 

FreeBSD TCP implements fast retransmission based on this signal. Figure 14.8 shows the 

sequence of packet transmissions and acknowledgments when using the fast-retransmission 

algorithm during the loss of a single packet. After detecting three identical acknowledgments, 

the tcp_input() function saves the current connection parameters, simulates a retransmission 

timeout to resend one segment of the oldest data in the send queue, and then restores the 

current transmit state. Because this indication of a lost packet is a congestion signal, the 

estimate of the network buffering limit, snd_ssthresh, is set to one-half of the current window. 

However, because the stream of acknowledgments has not stopped, a slow start is not needed. If 

a single packet has been lost, performing fast retransmission fills in the gap more quickly than 

would waiting for the retransmission timeout. An acknowledgment for the missing segment, 

plus all out-of-order segments queued before the retransmission, will then be received and the 

connection can continue normally. 

 

Figure 14.8 Fast retransmission. Packet with sequence number 3 is lost. Receiver returns 

duplicate acknowledgements for the last good packet, sequence number 2. Transmitter 

retransmits packet number 3 after receiving three duplicate acknowledgements. 

Even with fast retransmission, it is likely that a TCP connection that suffers a lost segment will 

reach the end of the send window and be forced to stop transmission while awaiting an 

acknowledgment for the lost segment. However, after the fast retransmission, duplicate 

acknowledgments are received for each additional packet received by the peer after the lost 

packet. These duplicate acknowledgments imply that a packet has left the network and is now 

queued by the receiver. In that case, the packet does not need to be considered as within the 

network congestion window, possibly allowing additional data to be sent if the receiver’s 

window is large enough. Each duplicate acknowledgment after a fast retransmission thus causes 

the congestion window to be moved forward artificially by the segment size. If the receiver’s 

window is large enough, it allows the connection to make forward progress during a larger part 

of the time that the sender awaits an acknowledgment for the retransmitted segment. For this 

algorithm to have effect, the sender and receiver must have additional buffering beyond the 

normal bandwidth-delay product; twice that amount is needed for the algorithm to have full 

effect. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig08


 

874 

Modular Congestion Control 

During the 30 years that TCP has been deployed for use on the Internet, there has been a great 

deal of research into tuning its algorithms so that they perform well in many different 

environments. While it is desirable that a single set of algorithms could handle all types of 

network environments from reliable, high-bandwidth, low-latency local-area networks to 

unreliable low-bandwidth high-latency wide-area networks, a single algorithm covering all of 

the possible combinations of network variables has proved elusive. 

Ever since the release of 4.2BSD with its inclusion of TCP, the congestion-control algorithm has 

been periodically changed to share bandwidth more fairly and to improve overall performance. 

The default congestion-control algorithm in FreeBSD is referred to as New Reno because it was 

inherited from the final Reno release from 4.4BSD. Until the inclusion of modular congestion 

control in FreeBSD 7, each change to the congestion-control algorithm required a new release of 

the operating system [Stewart & Healy, 2007]. 

Modular congestion control is a system whereby any TCP or SCTP connection can choose the 

congestion-control algorithm that will give it the best performance. Each congestion-control 

algorithm, including the default, New Reno, is contained in a loadable kernel module and every 

TCP protocol control block contains a pointer to a cc_algo and cc_var structure. The cc_algo 

structure contains a set of function pointers that are called by TCP whenever an event occurs 

that indicates a change in the state of the connection related to congestion in the network. All of 

the variables that contain information about connection congestion are stored in the cc_var 

structure. Five congestion-control algorithms are now available in FreeBSD’s TCP 

implementation: Hamilton Institute’s delay-based congestion control [Budzisz et al., 2009], 

CUBIC [Ha et al., 2008], H-TCP [Leith et al., 2005], Vegas [Brakmo & Peterson, 1995], and the 

default New Reno [Henderson et al., 2012]. 

The goal of all TCP congestion-control algorithms is to prevent one or more hosts from 

overloading the network to the detriment of all network participants. All the algorithms 

provided in FreeBSD avoid congestion by controlling two variables within TCP: the congestion 

window snd_cwnd and the slow-start threshold snd_ssthresh. The algorithms also carefully 

track the round-trip time measured between the communicating hosts. These variables have 

already been described in the previous sections that covered the default slow start and fast 

retransmit behavior of FreeBSD. The following sections describe how the various 

congestion-control algorithms now supplied with FreeBSD treat these variables differently from 

the default. Each algorithm differs in how aggressively it opens the congestion window once the 

slow-start algorithm has completed its work, and how it reacts in the face of network congestion. 

All the algorithms supported by FreeBSD are encapsulated within loadable kernel modules and 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref23
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share a common kernel API. The cc_algo structure expresses the kernel API that 

congestion-control algorithms expose to the rest of TCP. Each of the entry points in the cc_algo 

structure, shown in Table 14.5, is used during a different part of a connection’s lifetime. When a 

connection is first established, the conn_init function is called to initialize per connection state 

that is privately held by the congestion-control module. Each acknowledgment received triggers 

a call into the ack_received function, which usually results in an increase in the size of 

snd_cwnd, the sender’s congestion window. When congestion is discovered in the network by 

the receipt of a duplicate ack, the expiration of the round-trip timeout, or explicit notification by 

receipt of a packet with an explicit congestion-notification (ECN) flag, the cong_signal function 

is called, with the type of congestion indicated in the type field. Any congestion-control 

algorithm receiving a congestion signal is going to take action to change the size of the 

congestion window. 

 

Table 14.5 TCP congestion-control module methods. 

Congestion-control algorithms can be characterized by how they detect congestion in the 

network. The first TCP algorithms, including New Reno, detect congestion using a timeout that 

indicates a lost packet. More recently developed congestion-avoidance algorithms designed for 

high-speed high-latency networks, such as 1 Gbit per second WAN links with more than 50 

milliseconds of round-trip time, detect congestion in the network by monitoring changes in the 

round-trip time of packets. A timing-based approach can improve TCP’s ability to react to 

congestion since data on the connection’s round-trip time is updated with each ACK received. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab05
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The Vegas Algorithm 

The Vegas congestion-control algorithm is a logical extension of the Reno and New Reno work 

that came before it. The two main innovations of the Vegas algorithm are a new system for 

handling retransmissions and a novel form of congestion avoidance based on measuring the 

bandwidth between the two communicating endpoints. Unlike the Reno and New Reno 

algorithms, Vegas is more aggressive about anticipating losses in the network and therefore is 

more aggressive about retransmitting packets. The new retransmission mechanism was 

introduced to ameliorate problems inherent in the original BSD TCP implementation. The 

problem was that the timers used by TCP were too coarse grained to react properly to lost 

packets sometimes taking over a second to realize that a retransmission was necessary. 

Improvements in the FreeBSD timer system and the implementation of New Reno made the 

changes introduced in Vegas moot, so they are not further described. 

The main contribution of Vegas is a congestion-avoidance algorithm based on estimating the 

bandwidth between two communicating endpoints that attempts to keep a connection’s 

bandwidth utilization within an acceptable range. Vegas defines two values, alpha and beta, that 

it uses to control the congestion window. Although the literature on Vegas describes its network 

utilization mechanism as working in terms of bandwidth, the alpha and beta values are 

measured in segments. In FreeBSD, the alpha and beta values are controlled via a pair of sysctl 

variables, net.inet.tcp.cc.vegas.alpha and net.inet.tcp.cc.vegas.beta, and are set to 1 and 3 

segments respectively. Every time an ACK is received, it is processed by the module’s 

vegas_ack_received function. The vegas_ack_received function calculates the expected and 

actual transmitting rate and then takes one of three actions: 

1. If the difference between the expected rate and the actual rate is less than the alpha value, 

Vegas will increase the congestion window by one on the next round trip. 

2. If the difference is greater than the beta value, Vegas will decrease the congestion window by 

one on the next round trip. 

3. If the difference is between alpha and beta, then no action is taken. 

Using alpha and beta acts as a damping function, preventing oscillations in the congestion 

window that could occur due to minor but noncatastrophic changes in the condition of the 

network. 
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The Cubic Algorithm 

The Cubic algorithm is one of a new family of congestion-control algorithms designed to 

ameliorate problems with underutilization of network links. For most of the history of TCP, 

congestion-control algorithms operated in an environment where high bandwidth links also had 

low latency, such as in a local-area network. Since the late 1990s, companies commonly 

acquired their own private high-bandwidth links between remote locations. A typical example is 

a company that operates in the United States as well as Japan. It is common to have a 1-Gbit per 

second link between Tokyo and San Francisco with a round-trip time of about 110 milliseconds. 

Using the traditional methods of increasing the congestion window found in New Reno and 

Vegas, a single connection would take almost 10 minutes to discover the available bandwidth 

because the window only increases once per round trip. Trying to address the problem of 

underutilizing the link by simply making TCP more aggressive does not work because that leads 

to all the connections fighting each other over the available bandwidth, causing drops and 

eventually leading to congestion collapse typical in the early days of the Internet [Jacobson, 

1988]. 

The CUBIC congestion-control algorithm works in two phases to find the correct congestion 

window. The names for the phases relate to the shape of the CUBIC function that has two areas, 

one concave and the other convex. When CUBIC is aggressively increasing the congestion 

window, it is in the concave region, but as the congestion window approaches the targeted 

maximum value it switches into the concave region so that the congestion window grows more 

slowly and does not accidentally overshoot the theoretical maximum size. 

14.7 Stream Control Transmission Protocol (SCTP) 

For most of the history of the TCP/IP protocol suite, there have been two main transport 

protocols. Network application designers were forced to choose between a reliable, ordered, 

byte-stream protocol, TCP, and an unreliable, unordered protocol with clear message 

boundaries, UDP. The socket API was designed to also handle a reliable message-oriented 

transport protocol that could be selected by supplying SOCK_SEQPACKET as the type 

argument to the socket system call. Sequential-packet protocol sockets were originally added to 

4.2BSD to support the Sequenced-Packet Protocol (SPP) from the Xerox Network System 

[Xerox, 1981] and the Delta-t protocol from Lawrence Livermore National Laboratories [Watson, 

1989]. 

The Stream Control Transmission Protocol (SCTP) was designed to provide a reliable 

message-oriented transport protocol [Stewart et al., 2000; Stewart et al., 2011]. SCTP is a direct 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_417
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref24


 

878 

replacement for TCP, but this section concentrates on the qualities that make it useful as a 

sequenced-packet protocol and also discusses some of the novel features that are not present in 

other transport protocols. 

A sequential-packet protocol differs from a byte-stream protocol in one important way: each 

message is always sent and received by the application as a whole unit. A message may be 

broken up into smaller packets for transmission on the network. When an application sends the 

data, it is guaranteed that all the data passed into the sendto call is received at the destination in 

a single call to recvfrom, so long as the buffer passed to the recvfrom routine is capable of 

holding the entire message. When an application tries to receive a message that is larger than 

the buffer supplied in the recvfrom call, the kernel fills the buffer, discards the rest of the 

message, and returns without the MSG_EOR flag set. The only way to know that a message 

received is complete is to check for the MSG_EOR flag on return from the recvfrom routine. 

In addition to support for a message-based protocol, SCTP has several features that are 

improvements on the work done in TCP including enhanced security, multihoming, 

multistreaming, and heartbeats that track the health of a connection. 

When applications use TCP, each connection stands on its own and is unrelated to other streams 

of data that might be moving between the same hosts. SCTP implements associations to 

uniquely identify the endpoints of communication using source and destination network 

addresses as well as ports to differentiate one association from another. Within an association 

there can be multiple streams of data, each with its own set of performance parameters. Much 

like TCP, an association may contain one or more streams that are reliable ordered byte streams. 

The association may also contain one or more streams in which the data is ordered but has 

message boundaries. Each association can support up to 65,536 independent streams. 

Chunks 

Every SCTP packet begins with a common packet header as shown in Figure 14.9. The only 

information encoded in the header is the source and destination port, verification tag, and a 

checksum over the rest of the data contained in the packet. The header is followed by one or 

more chunks that are encoded as type / length / value tuples with an embedded set of flags, as 

shown in Figure 14.10. All the fields in SCTP packets are encoded so that they fall on 32-bit 

boundaries, making them easier to work with on commonly available 32- and 64-bit processors. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_13
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Figure 14.9 SCTP packet header. 

 

Figure 14.10 SCTP chunk. 

The minimum required set of the SCTP chunk types is shown in Table 14.6. Extensions to the 

SCTP protocol have defined new types but they are beyond the scope of this book. A more 

complete discussion of the SCTP protocol and extensions can be found in Stewart & Xie [2002]. 

 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab06
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Table 14.6 SCTP chunk types. 

Association Setup 

SCTP sets up an association between two endpoints using a four-way handshake. Setting up a 

TCP connection only requires three packets, SYN, SYN/ACK, and ACK, but this approach has 

left TCP vulnerable to denial-of-service attacks, called SYN floods. A SYN attack works because 

TCP has no built-in mechanism for deciding whether a connection is meant to succeed or if it is 

meant purely to exhaust the kernel’s resources. The syn-cache and syn-cookies described in 

Section 14.4 were designed to overcome the problems caused by using a three-way handshake. 

The association setup phase of SCTP is designed to foil denial-of-service attacks. 

Association setup begins with a client sending a packet with an INIT chunk to a server on the 

network. The INIT packet contains a 32-bit random number in the verification tag that is used 

during the remainder of the four-way handshake. When the server receives an INIT packet it 

generates its own verification tag as well as a state cookie. The state cookie contains the 

minimum amount of state required by a host to re-create a valid protocol control block, a 

timeout that limits the lifetime of the cookie, and a verification tag generated using the cookie 

data and a private key. The verification tag is protected using a message authentication code as 

described in Krawczyk et al. [1997]. The private key does not need to be shared between hosts. It 

is used only to verify that the cookie that was generated by the server is the same cookie that is 

returned by the client at the end of the association process. The server now creates a packet with 

an INIT-ACK chunk containing the verification tag created by the client, the new verification tag 

from the server, and the state cookie. When the client receives the INIT-ACK packet, it 

immediately creates a packet with a COOKIE-ECHO chunk and transmits the cookie back to the 

server. When the server receives the COOKIE-ECHO chunk from the client, it validates the state 

cookie and if the signature and data are correct and the cookie has arrived within the requisite 

timeout, the association is instantiated. The final step in association setup is for the server to 

send a packet with a COOKIE-ACK chunk back to the client. Once the client has received the 

packet containing the COOKIE-ACK chunk, the association is complete. To ameliorate the 

overhead involved in setting up an association with a four-way handshake, SCTP can transmit 

data in the packets that contain the COOKIE-ECHO and COOKIE-ACK chunks, thereby 

reducing the time between association initiation and the initial data transfer. Any host that 

attempts to flood another host on the network with INIT packets, similar to a SYN flood, does 

not cause the kernel to set up or maintain any state as no state is required until the 

COOKIE-ECHO is received. At the point in the handshake at which the COOKIE-ECHO has 

been received, the kernel has confirmed the legitimacy of the connection by decoding a packet 

that it cryptographically signed with its own key. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref13
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Data Transfer 

Once an association has been set up between two endpoints, SCTP can start transferring data. 

All data transferred with SCTP are part of a distinct stream within the association. Each stream 

has a unique stream identifier. Two different sequence numbers are tracked by SCTP while 

transferring data. The stream sequence number tracks where data are in a particular stream and 

ensures the correct ordering of messages within a stream. The transmission sequence number 

(TSN) tracks chunks for the whole association, and is responsible for guaranteeing reliable 

delivery of chunks. Mechanisms such as selective acknowledgment are applied to the entire 

association using the TSN to track chunks and to ensure that any missing chunks are eventually 

retransmitted and delivered. 

When an application is using SCTP as a sequenced-packet transport, the program receiving the 

data checks for the MSG_EOR flag to be set in the struct msghdr returned by the recvmsg 

routine. To provide a message-oriented service, SCTP has several functions that work together 

to take an arbitrary-size message and ensure that either it all arrives at the other end of the 

association or that an error is returned to the caller of sendto. 

A program using TCP to send distinct records between two endpoints needs to introduce a 

marker into the stream of data to identify record boundaries. Even with these record markers, it 

is impossible to force TCP to transmit data as records because TCP does not identify the 

application-level boundaries. Programs using SCTP do not need to introduce record boundaries 

because the basic unit of data transfer is the data chunk. As shown in Figure 14.11, a data chunk 

is the abstraction used by SCTP to encapsulate application data for transmission on the network. 

All chunks in SCTP have a common header that includes a type, a set of flags, and a length. The 

length field is 16 bits. Hence, the maximum amount of data that can be described by a chunk is 

64 Kbyte. The length-field’s value must include the size of the header and any user data making 

the effective maximum size of a single chunk 64 Kbyte minus 16 bytes or 65520 bytes. Messages 

built from chunks can be much larger than 64 Kbyte because SCTP uses the TSN to keep all the 

chunks in sequence. On FreeBSD systems with the default socket buffer size, the effective size of 

a message passed to a single send call is limited to 225 Kbyte. With larger socket buffers, a single 

message could span several megabytes. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig11
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Figure 14.11 SCTP data chunk. TSN–transmission sequence number. 

When a program calls the sendto system call on a socket opened with SOCK_SEQPACKET, the 

data eventually arrive in the sctp_sosend() routine as a uio structure. After a small amount of 

processing to extract any control data, the uio structure is passed to sctp_lower_sosend() where 

the real work of transmitting SCTP data begins. Data in SCTP is placed on one or more 

associations that are stored in the sctp_inpcb structure, the network-layer protocol control 

block for SCTP. One feature of SCTP is the ability to send a chunk of data on all the associations 

that are currently active for a socket. The code that handles one-to-many style of 

communication adds considerable complexity to the system and is not described here. 

Sending data to a new unconnected address is considered an implicit send and requires the 

protocol to set up a new association, holding the data chunk until association setup is complete. 

After the the correct association is found, the data are queued for transmission by a call to 

sctp_chunk_output(). The data passed into the kernel are converted into a chunk structure by 

the sctp_move_to_outputqueue() routine. Each association has its own send-queue structure 

on which chunks are placed before they are transmitted. Chunks are kept in one of two queues, 

either the send_queue or the sent_queue queue, until they are properly acknowledged by the 

system receiving the data. With the chunks now correctly placed on the send_queue, a call is 

made to sctp_med_chunk_output() that checks to see if it is possible to send any data for the 

association. Like TCP, SCTP must maintain a good understanding of network conditions 

including any possible congestion. The sctp_med_chunk_output() routine is responsible for 

checking the congestion window before deciding whether any data may be output. If there is 

enough remaining space in the congestion window to send a packet, then 

sctp_med_chunk_output() creates an mbuf chain to be output by 

sctp_lowlevel_chunk_output(). It is sctp_lowlevel_chunk_output() that places proper IP or 

IPv6 headers onto the packets and transmits the packets by calling the appropriate 

network-layer output routine, ip6_output() or ip_output(). 
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The handling of received packets in SCTP is easier than transmission because most of the 

interesting features of SCTP have to do with where packets are sent. When a network-layer 

protocol recognizes an SCTP packet, sctp_input() is called with the mbuf that was received from 

the network. It immediately calls sctp_input_with_port() whose task is to tear the packet down 

into a set of internal structures for use in determining where the packet should be delivered. The 

bulk of the work done by SCTP when processing an incoming packet is handled by 

sctp_common_input_processing(). This routine handles input from all the lower-layer network 

sources. Data chunks are handled by the code in the sctp_process_data() routine. Each chunk is 

checked to make sure that it is within the expected receive window and is then reassembled and 

added to a read queue by a call to the sctp_add_to_reqdq() routine. Once the data are on the 

read queue, it is the application’s responsibility to retrieve it through a system call such as 

recvfrom. A call to recvfrom on a SEQPACKET socket will call into the sctp_soreceive() routine 

and then into the sctp_sorecvmsg() routine, which is the final destination of all routines that 

read data from an SCTP socket. If there is no data to be read when sctp_sorecvmsg() is called, it 

will block in the sbwait state until data arrives or the socket is closed. With data available on the 

read queue, the sctp_sorecvmsg() will copy the mbufs from the read queue. As data are being 

received from the read queue, the sctp_user_rcvd() routine is called to calculate whether 

enough space has been freed in the receiving socket to warrant signalling the sender with an 

ACK that more data can now be sent. Once some amount of data has been read, the call to 

sctp_sorecvmsg() will return control to the caller of the recvfrom system call with the data and 

any ancillary or control information placed into the buffers passed in by the application. 

Association Shutdown 

Shutting down an association is a multistep process that can be started by either of the involved 

hosts. When an application directs that an association is to be shut down, the sender puts the 

association into the SHUTDOWN_PENDING state and sets the PCB so that no more data may 

be sent. The sending host then waits until all the previously sent data has been acknowledged. 

Once all the outstanding data has been acknowledged, the client sends a packet with a 

SHUTDOWN chunk to the server. The host receiving the packet with the SHUTDOWN will set a 

flag in its own PCB that is part of the association so that user-level programs can no longer send 

more data. It then checks to see if it has any outstanding data to send to the client. If there are 

outstanding data, the server will not continue the shutdown process until all the remaining data 

have been acknowledged. Once all the previously sent data have been acknowledged by the 

client, the server will send a packet with a SHUTDOWN-ACK packet. When the client receives 

the packet with the SHUTDOWN-ACK chunk, it will reply with a packet with a 

SHUTDOWN-COMPLETE chunk. When done, the association has been shut down. 
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Multihoming and Heartbeats 

A goal of SCTP is to provide applications with a high-availability communication channel over 

the Internet. Unlike a TCP connection, an SCTP association can have multiple network 

addresses. Should an address become unreachable because of a network partition or other 

failure, the association can choose to use another address to try to reach the endpoint. 

Figure 14.12 shows an example of a multihomed host. A multihomed system is one that has two 

or more interfaces on two or more networks. Each path through the network between the two 

systems should be unique to provide complete protection against the loss of a single path. In the 

public Internet, hosts do not have control over the path that their packets traverse and so the 

protection from multi-homing an association is probabilistic. A corporate network, where an 

administrator knows the full paths of all the underlying network links has a higher probability of 

being able to use multi-homing effectively. Two multihomed hosts that shared the same network 

would be no better than two hosts each with a single interface sharing the same network. Any 

disruption in the shared path would break the association and the two hosts would be 

disconnected. 

 

Figure 14.12 Multihomed hosts. 

User-level code communicating over SCTP indicates to the kernel that it will use a set of 

addresses by calling the sctp_bindx() or sctp_connectx() (wrappers on the bind and connect 

system calls respectively) depending on whether the program is receiving or initiating the 

connection. 

When a stream of data is traversing an association, problems such as network partitions are 

immediately obvious because the flow of acknowledgment from the other end of the association 

cease. An association that contains several network addresses needs a way to ensure that all of 

the addresses that make up the association are still reachable. SCTP maintains reachability 

information for every network address that is a part of an association by sending periodic 

heartbeat requests to any address that is part of an association but which is not the active 

participant in current communication. When SCTP is communicating to a foreign host, there is 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig12


 

885 

one primary address and one or more addresses that can be used if the primary fails. When 

there is no data flowing across an association, heartbeat requests are sent to all the addresses to 

ensure that they are all reachable. A host that receives a heartbeat request immediately sends 

back a heartbeat response. When a host receives a heartbeat response for a previously 

transmitted request, the kernel updates the state of the association and then sets a timeout using 

the callout subsystem so that another heartbeat request will be sent at the next timeout interval 

in the future. The default timeout interval is 30 seconds plus the estimated retransmission 

timeout between the source and destination addresses, with a small amount of jitter added so 

that heartbeat packets do not become closely synchronized with each other. 

The initial heartbeat timeout is set when the protocol control block is created in the 

sctp_inpcb_alloc() routine. All the timers in SCTP are handled by a centralized routine, 

sctp_timer_handler(), that calls various helper routines depending on the type of the timer that 

has expired. When the heartbeat timer expires, a call to sctp_heartbeat_timer() figures out 

whether a heartbeat acknowledgment has been received. If a heartbeat acknowledgment has 

been received, then the timer is simply re-armed and another heartbeat request is sent. When a 

heartbeat acknowledgment has not been received, then the address is considered to be partially 

failed. The kernel will continue to contact a partially failed address up to five times before that 

address is removed from use. 

Heartbeat requests are handled directly during packet input by a call to 

sctp_send_heartbeat_ack() that immediately packs up and sends a heartbeat acknowledgment 

back to the sender of the request. No other processing is required on reception of a heartbeat 

request. 

Exercises 

14.1 What might cause a connection to linger forever when closing? 

14.2 Is TCP a transport-, network-, or link-layer protocol? 

14.3 Why are TCP and UDP protocol control blocks kept on separate lists? 

14.4 Why does the output routine, rather than the socket-layer send routine (sosend()), check 

the destination address of an outgoing packet to see whether the destination address is a 

broadcast address? 

14.5 Why does the TCP header include a header-length field even though it is always 

encapsulated in an IP packet that contains the length of the TCP message? 
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14.6 What is the flow-control mechanism used by TCP to limit the rate at which data are 

transmitted? 

14.7 How does TCP recognize messages from a host that are directed to a connection that 

existed previously but has since been shut down (such as after a machine is rebooted)? 

14.8 When is the size of the TCP receive window for a connection not equal to the amount of 

space available in the associated socket’s receive buffer? Why are these values not equal at that 

time? 

14.9 What are keepalive messages? For what does TCP use them? Why are keepalive messages 

implemented in the kernel rather than, say, in each application that wants this facility? 

14.10 Why is calculating a smoothed round-trip time important, rather than, for example, just 

averaging calculated round-trip times? 

14.11 Why does TCP delay acknowledgments for received data? What is the maximum time that 

TCP will delay an acknowledgment? 

14.12 Explain what the silly-window syndrome is. Give an example in which its avoidance is 

important to good protocol performance. Explain how the FreeBSD TCP avoids this problem. 

14.13 What is meant by “small-packet avoidance?” Why is small-packet avoidance bad for 

clients (e.g., the X Window System) that exhibit one-way data flow and that require low latency 

for good interactive performance? 

14.14 Name two features that are in SCTP but are not in TCP. 

14.15 What is an SCTP association? 

14.16 How does the four-way handshake in SCTP defend against denial of service attacks? 

*14.17 Why is the initial sequence number for a TCP connection selected at random, rather than 

being, say, always set to zero? 

*14.18 In the TCP protocol, why do the SYN and FIN flags occupy space in the 

sequence-number space? 

*14.19 Describe a typical TCP packet exchange during connection setup. Assume that an active 

client initiated the connection to a passive server. How would this scenario change if the server 

tried simultaneously to initiate a connection to the client? 
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*14.20 Sketch the TCP state transitions that would take place if a server process accepted a 

connection and then immediately closed that connection before receiving any data. How would 

this scenario be altered if FreeBSD TCP supported a mechanism where a server could refuse a 

connection request before the system completed the connection? 

*14.21 How does UDP match the completely specified destination addresses of incoming 

messages to sockets with incomplete local and remote destination addresses? 

*14.22 The maximum segment lifetime (MSL) is the maximum time that a message may exist in 

a network—that is, the maximum time that a message may be in transit on some hardware 

medium or queued in a gateway. What does TCP do to ensure that TCP messages have a limited 

MSL? What does IP do to enforce a limited MSL? See Fletcher & Watson [1978] for another 

approach to this issue. 

*14.23 Why does TCP use the timestamp option in addition to the sequence number in 

detecting old duplicate packets? Under what circumstances is this detection most desirable? 

**14.24 Describe a protocol for calculating a bound on the maximum segment lifetime of 

messages in an Internet environment. How might TCP use a bound on the MSL (see exercise 

14.22) for a message to minimize the overhead associated with shutting down a TCP 

connection? 

**14.25 Describe path MTU discovery. When the MTU of a path has suddenly increased, can 

FreeBSD take advantage it? Why or why not? 
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Part V: System Operation 

Chapter 15. System Startup and Shutdown 

Most of this book focuses on the FreeBSD kernel’s steady state: the invariants maintained 

during operation and the kernel services provided to local processes or, for network services, to 

remote systems. In this chapter, we describe how the kernel is bootstrapped and shut down. The 

details of the boot process vary significantly by hardware type and anticipated deployment but 

share a common structure involving the system firmware, its basic input-output system (BIOS), 

a variable number of stages of FreeBSD-provided boot loaders, the kernel boot, and finally 

userspace. 

System operation begins, and often ends, with vendor-provided firmware that abstracts away 

low-level variations in the hardware environment. The firmware also provides information on 

processor, memory, bus, and peripheral device configuration to the kernel, and may provide 

power-management services. The interfaces to system firmware differ substantially across 

platforms, vendors, and deployment environments: workstations and servers have different 

operational models than embedded devices, all of which must be taken into account by the 

FreeBSD kernel. Higher-end systems often have firmware support for remote management 

features and network booting, over which FreeBSD layers multiple stages of scripted boot 

loaders, the kernel, and optionally loaded kernel modules. By contrast, embedded and small 

personal devices tend to have more constrained boot processes in which a simple firmware 

copies a statically linked kernel out of flash to main memory and then jumps to its starting 

address to begin execution. In lower-end environments, FreeBSD may boot from a read-only 

filesystem image in flash and run a single specialized application. 

Kernel boot and shutdown are complex processes that depart from normal execution paths and 

hence require careful attention to detail. A key concern during boot is the set of dependencies 

between components: filesystems cannot be mounted until storage devices have been 

enumerated. In turn, storage device drivers depend on initialization of lower-level features such 

as scheduling and virtual memory. Historically, system shutdown has required somewhat less 

finesse: freeing each allocated piece of memory is unnecessary as the contents of memory will be 

lost on powerdown or reinitialized on reboot. The introduction of virtual network stacks has, 

however, forced increasing numbers of subsystems to provide explicit and carefully designed 

destructors. Dependencies remain important: user processes must be safely shut down before 

filesystems can be unmounted, which in turn depends on draining I/O queues to storage devices 
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before power is turned off. The kernel defines linker-based frameworks to manage these 

complex dependencies: the frameworks allow components to register functions for ordered 

execution during the boot and shutdown processes. The frameworks also allow code to have a 

common structure independent of whether the code is linked into the kernel itself or loaded via 

a module at boot or run time. 

This chapter traces the boot process starting with the firmware and boot loaders, then the kernel 

startup, and finally the startup and shutdown of userspace. The final section examines topics 

that are related to the startup procedure. These topics include configuring the kernel load image, 

shutting down a running system, and debugging system failures. 

15.1 Firmware and BIOSes 

The boot process begins with the initial hardware reset as power is turned on, but can also be 

triggered following a system-administrator-requested reboot, or a system crash and reset. 

Processors begin execution in vendor-provided firmware stored in ROM or memory-mapped 

flash referred to as the BIOS. The firmware performs several functions, depending on the device 

and vendor, including: 

• Initializing low-level hardware features such as CPU caches, programmable interrupt 

controllers, bridges, and memory controllers. 

• Running a set of boot-time diagnostics, checking CPU and memory functionality, and issuing 

warnings if the system may not be able to operate in production. The firmware may maintain a 

log of past failures—for example, a list of ECC-memory error recoveries. 

• Providing pre-boot administrative services to configure RAID, remote management, and 

boot-device choice. 

• Coordinating multiprocessor startup; a boot processor will be nominated, and other processors 

put in a suspended state awaiting operating-system initialization. 

• Performing boot-time hardware discovery to identify and initialize devices from which an 

operating system may be loaded; for example, the firmware will enumerate locally attached 

media such as USB devices, CD-ROMs, and hard disks suitable for local booting, and it will 

identify Ethernet devices suitable for network booting. 

• Loading and updating manufacture-time hardware descriptions based on the firmware’s 

knowledge of the processor, chipset, and peripherals on the integrated device. This information 

will be exported to the boot loader and operating system via a scheme such as the advanced 



 

893 

configuration and power interface (ACPI) on X86 systems or Flattened Device Trees (FDT) on 

many embedded systems. 

• Continuing, optionally, to provide run-time services via a system management mode on the 

main processor or an embedded management processor, even as the operating system runs. 

These run-time services may include features such as power management and remote-console 

access (e.g., serial-over-LAN). 

• Providing both I/O services and device-enumeration services to support the bootstrap of 

standalone programs. 

• Loading and executing code from the selected boot device. 

After a variety of boot-time diagnostics, handling any administrative requests, and selecting a 

target boot device, the BIOS’s next responsibility is to start bootstrapping the operating system 

by loading and executing the initial code. It also provides continuing early I/O and 

system-configuration services for the nascent operating-system loader and kernel. Firmware 

such as the PC BIOS, U-Boot, and Open Firmware will provide operating-system-like disk and 

network I/O routines until the kernel’s device drivers are in operation, as well as descriptions of 

hardware devices that cannot be automatically enumerated, such as PCI root bridges. 

In the past, PC firmware has rarely understood the filesystems of the operating systems that 

they must load; instead, the startup procedure read a program from a reserved area of the boot 

disk. The recent Unified Extensible Firmware Interface (UEFI) standard requires that new 

BIOSes support the FAT filesystem as an origin for later boot stages, a feature long supported in 

embedded and server firmware such as U-Boot and Open Firmware [Forum, 2013]. UEFI also 

brings security features such as cryptographically verified boot loading to X86, which will see 

increasing support in forthcoming FreeBSD versions. 

15.2 Boot Loaders 

The role of the operating-system boot-loader sequence is similar to that of the firmware: 

bootstrap the higher-level operating system using a restricted set of lower-level facilities. It also 

facilitates security, management functions, and failure recovery. Multiple stages are often used 

as each successive stage is able to have a larger code footprint and can rely on services and 

accumulated configuration state provided by the previous stage. 

The first-stage boot loader on a conventional X86 system is limited to a single 512-byte sector, 

which is insufficient space for code that can interpret filesystems. Hence, the first-stage boot 

loader’s only job is to determine a boot-partition and load a larger and more comprehensive 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref02
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boot phase from a specified sector. Later boot phases are more complete execution 

environments that include filesystem and networking support, allow preloading of 

cryptographic keys, can be scripted in a high-level language, and support an interactive menu to 

allow recovery from a failed upgrade. 

Embedded systems trade off boot-loader size and complexity, depending on the capabilities of 

the physical platform and maturity of the integrated firmware. At one extreme, boot loaders 

from operating-system vendors are entirely avoided for reasons of space; at the other, the 

complete X86-like boot sequence, including scriptable loader, will be present and will offer 

greater flexibility. 

Master Boot Record and Globally Unique Identifier Partition Table 

When the X86 BIOS has selected a disk device for booting, the BIOS loads the first sector into 

memory at a fixed location and executes it. On most disk devices, this first sector will contain a 

master boot record (MBR). The 512-byte sector, illustrated in Figure 15.1, contains a fragment of 

boot code, disk layout information, a four-entry partition table, and a magic number (signature) 

that will be checked to confirm a valid boot sector is present. To continue the boot, the BIOS 

jumps into the operating system’s boot code once it has been loaded into RAM. FreeBSD 

supports two different partitioning schemes on X86: mbr, the default prior to FreeBSD 9.0, 

implements the fdisk partitioning scheme from MS-DOS; and pmbr, the default in FreeBSD 9.0 

and later, implements the more recent globally unique identifier partition table (GPT) scheme, 

which supports greater numbers of partitions and larger disk sizes. 

 

Figure 15.1 X86 boot-time-partition data structures: master boot record (MBR) and globally 

unique identifier partition table (GPT). 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15fig01
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GPT is a multisector successor to MBR that provides an additional header in sector 1, described 

by the gpt_hdr structure, and further sectors containing a variable-length table of partition 

entries, described by gpt_ent structures. FreeBSD 9.0 and later use GPT via the pmbr boot 

loader written to the first sector by the installer, although these versions continue to support 

optional use of fdisk partitions if required for compatibility. When GPT is used, the boot sector 

contains a special variant of the MBR called a protective MBR (PMBR). The PMBR describes a 

single partition of the GPT type, causing pmbr to load the GPT and scan it for a freebsd-boot 

partition (typically sized at 64 Kbyte). If found, pmbr will load the first 545 Kbyte of that 

partition into memory, which will contain gptboot, the next-stage boot loader. The final action 

for pmbr is to jump into the loaded code. 

The Second-Stage Boot Loader: gptboot 

The second-stage boot loader, gptboot, can be a substantially larger multisector program as it 

is loaded from a partition and is not limited by the space constraints of the PMBR. This 

additional space allows for significantly more functionality, including support for loading 

configuration data and later boot code from filesystems rather than simply disk sectors. The 

gptboot boot loader has several tasks: 

1. Transition to protected mode so that the boot loader can access more than the 1 Mbyte 

available to the 16-bit X86 MBR execution environment. This transition is done by the i386 boot 

extender (BTX) library against which gptboot is linked. BTX is a protected-mode monitor that 

executes the majority of the boot loader with access to a larger virtual address space, but is still 

able to forward requests to the BIOS by temporarily switching back to 16-bit real mode. 

2. Accept a set of boot flags, which may be entered interactively on a video or serial console, or 

loaded from the configuration file /boot.config. The flags will be passed to the next boot stage 

via an instance of the bootinfo structure. Boot flags select features such as single-user mode, 

verbose logging, or immediate entry to the kernel debugger on start. 

3. Load and start the ELF-formatted next-stage boot loader /boot/loader or a kernel from a 

filesystem in a GPT partition type of freebsd-ufs using read-only UFS support. A variation of 

gptboot named gptzfsboot will likewise search for a ZFS filesystem stored in a GPT partition 

of type freebsd-zfs; for RAIDZ, multiple partitions may be used. 

The Final-Stage Boot Loader: /boot/loader 

The final-stage loader, /boot/loader, is a scriptable, interactive boot environment that can: 
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• Prompt the user for input via a boot menu or command line; 

• Offer a choice of kernels to load; 

• Inspect and modify kernel environment variables that will be passed to the next phase of the 

boot; 

• Preload kernel modules; and 

• Preload filesystem data such as GELI keys or memory-disk images. 

The /boot/loader’s menu-driven user interface is implemented via scripts executed by a 

built-in Forth interpreter, libficl, making more complex boot-time customization 

straightforward. The interpreter has access to a broad set of system APIs provided by libstand, 

a bare-metal system library. The libstand library implements POSIX-like APIs used by libficl, 

as well as filesystem access to UFS, ZFS, CD9660, and NFS. As with gptboot, /boot/loader is 

linked against BTX, and so has access to BIOS services while running in protected mode. 

When the loader starts, it will execute the script /boot/loader.4th, which will then load 

/boot/kernel/kernel and any modules enabled in /boot/loader.conf. The loader then 

presents a boot menu and begins a countdown that can be interrupted by the user. If requested 

by the user, the loader will drop to a command-line interpreter on the console and await input; a 

list of commands is shown in Table 15.1. The most commonly used commands are the “unload” 

command, to remove the default kernel, followed by the “load” command, to load an alternative 

kernel. Typically, the alternative kernel being loaded is /boot/kernel.old/kernel, saved by 

the kernel build system when installing a new kernel, in case the new kernel proves to be faulty. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab01
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Table 15.1 /boot/loader user commands on X86. 

The kernel is started by issuing the “boot” command, either by the user or because the 

countdown has reached 0. The details of the boot command are machine dependent, but for 

systems without a hardware-provided mapping of physical addresses into the virtual-address 

space, may include setting up initial memory mappings for physical memory. 
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As with gptboot, /boot/loader expects the next-stage binary to be an ELF file, and will pass a 

bootinfo structure pointer as an argument to the kernel, illustrated in Figure 15.2. As with 

/boot/loader before it, gptboot will pass on boot flags such as that for single-user mode. 

Unlike gptboot, it will also pass kernel-environment variables set during the boot, preloaded 

module data, memory-size information, memory-filesystem images, and ACPI table references, 

which will be used early in kernel boot by the virtual memory system and kernel linker. 

 

Figure 15.2 The bootinfo structure passed by the boot-loader to the kernel. 

Boot Loading on Embedded Platforms 

Whereas X86 workstations and servers are resource-rich platforms intended to be maximally 

flexible in terms of deployment environments and workloads, embedded systems are often 

resource-poor environments tuned to reduce cost, size, and energy use to the minimum required 

for their specific function. The firmware, boot loader, and operating system may all be tuned for 

small size or reduced functionality, and hence vary significantly in terms of the software features 

present. 

Very low-end devices such as network switches may have a small firmware that directly loads 

and begins execution of the FreeBSD kernel without any further boot-loader stages. Where the 

operating-system boot loaders are present, they may be stripped of features to reduce their size, 

compared to similar code on server-class platforms. This is the case for the ARM version of 

FreeBSD’s boot2, a predecessor to gptboot; in contrast, the MIPS port of boot2 is a full 

adaptation of the feature-rich X86 code. 

Higher-end embedded devices may provide sufficiently mature and scriptable loader 

environments, such as U-Boot, with the result that the flexibility gained from /boot/loader 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15fig02
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offers little additional benefit. Other devices use both U-Boot and ubldr, a version of 

/boot/loader customized to run over U-Boot’s firmware services. Some MIPS targets also use 

the /boot/loader. On systems where FreeBSD provides a boot loader but firmware is unable to 

provide I/O abstractions, the boot loader may need to incorporate device drivers [Davis et al., 

2014]. Embedded environments also benefit from industry-wide reduction in size and energy 

use in integrated circuits, and so are becoming more capable over time. Multistage, feature-rich 

boot loaders will likely see increasing deployment to facilitate security, customizability, field 

upgrade, and recovery. 

15.3 Kernel Boot 

After the firmware or boot loader has started the FreeBSD kernel, the kernel must initialize both 

the hardware and its own data structures in preparation for the execution of application 

programs. The initialization process is divided into four stages. In the first stage, handcrafted 

assembly-language code will set up the hardware to allow more generic C-language code to 

operate. The second stage continues machine-dependent initialization of hardware and core 

data structures, but in the C language. After this stage’s completion, memory size will be known, 

virtual addressing will be enabled, and features such as printf() and the kernel debugger will be 

available. The third stage initializes a broader set of basic kernel services such as virtual memory, 

scheduling, and synchronization. The fourth stage initializes higher-level services such as 

filesystems and the network stack, starts kernel processes, and creates the first user-level 

process to execute the init binary and user-level startup scripts. 

The FreeBSD kernel attempts to rely on only limited aspects of machine state. At the point of 

handoff from the boot loader, the following three conditions will be in effect: 

1. All interrupts are blocked. 

2. The memory management unit is configured so that a range of virtual addresses corresponds 

directly to physical memory locations; for some architectures, this mapping requires specific 

configuration actions such as the boot loader setting up suitable page tables and flushing the 

TLB; for others, a hardware-supported, physically mapped region provides this mapping 

automatically in kernel mode (e.g., MIPS). 

3. The in-memory location of any firmware-provided configuration state, such as memory 

configuration via the X86 ACPI or FDT tables, has been identified and passed to the kernel via 

bootinfo. 

The boot loader passes to the kernel the identity of the boot device, boot flags, and an initialized 

kernel environment consisting of name and value pairs. In addition, it will pass on information 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref01
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about preloaded modules including loadable kernel modules, memory images, and keying 

material for cryptographically protected storage. 

The kernel is loaded into physical memory at a known location—for many architectures this 

location will be at a low physical address just above the location of interrupt-vector tables or 

handlers. In normal operation, the kernel image is mapped into virtual memory at an address 

near the top of the address space. For platforms without directly mapped regions, the kernel 

image may initially appear at the bottom of the virtual address space. Until the kernel is mapped 

to its permanent location, it requires assembly-language startup code to manually convert 

between its initial temporary mapping and its eventual permanent mapping. The kernel is 

usually loaded into contiguous physical memory, so the translation is simply a constant offset 

that can be saved in an index register. 

An early task of the startup code is to identify the type of CPU on which the system is executing. 

Often, older versions of the CPU support only a subset of the complete instruction set. For these 

machines, the kernel must emulate the missing hardware instructions in software. For 

workstation and server architectures, FreeBSD can be configured such that a single kernel load 

image can support all the models in an architecture family. For embedded systems, it is common 

to have a kernel configuration tuned for each board or device, either because of space and 

performance limitations, or because of a lack of common conventions for an instruction set, 

hardware configuration, and boot-loader behavior. The early startup code may also call 

machine-dependent code to initialize the CPU or virtual-memory subsystem. 

Assembly-Language Startup 

The first steps taken during initialization are carried out by assembly-language code in locore.S. 

The goal of this code is to create a run-time environment that meets the expectations of the C 

code that is to follow, primarily by providing a conformant stack frame (sometimes on a fresh 

stack), and by initializing the register file to the C ABI that will be used by the kernel. It may also 

initialize low-level processor features that affect memory management and addressing, so that C 

code executes in a uniform and easily understood environment. Assembly code is minimized in 

favor of C to the greatest extent possible. The work of locore.S is highly machine dependent 

and includes the following: 

• Identifying the CPU and its features 

• Placing the processor into a known state; for example, by clearing the error flags on X86 and 

clearing or setting coprocessor-enable bits on MIPS 

• Creating an initial stack or stack frame for the early boot 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_104
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• Clearing the bss area (pre-zeroed C-language global variables) 

• Probing the physical-memory size 

• Enabling virtual addressing 

• Invoking platform-specific C-language startup code 

• Handing over control to machine-independent C-language startup code 

In ports to more recent architectures, locore.S has become increasingly minimal: whereas the 

32-bit X86 code is several hundred lines of assembly, the 64-bit version is less than 20. The size 

reduction reflects not only simplifications made by AMD in the 64-bit ISA design, but also 

initialization functions shifting to the boot loader or platform-specific C-language startup code. 

Platform-Specific C-Language Startup 

Two C-language functions are called by locore.S: one for platform-specific initialization and a 

second to proceed with the machine-independent boot (which will not return). The split allows 

the machine-independent boot sequence to be done in a well-defined environment. The name of 

the platform-specific initialization function varies by architecture; for 64-bit X86, it is 

hammer_time; for embedded architectures such as ARM and MIPS, it is typically 

platform_start. Platform-specific initialization will include most of the following steps: 

• Further characterization of the CPU and configuration of its features, including caches, 

memory-management unit, and floating-point unit 

• Initialize and enable memory-management hardware, such as virtual-address translation or 

caching for a hardware-supported directly mapped regions 

• Set up interrupt, trap, exception vectors or handlers, and on architectures that require it, 

segment registers and system calls 

• Process data passed from the boot loader such as the kernel environment and preloaded 

modules 

• Tune kernel parameters—especially resource limits such as address-space and process 

limits—based on environment variables and compile-time defaults 

• Interpret firmware-provided data such as FDT hardware descriptions 
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• Calculate the amount of physical memory on the machine if the architecture does not provide 

this information reliably via the firmware 

• Set up the first kernel process and thread 

• Initialize static and dynamic per-CPU storage for the boot processor 

• Set up tables for multiprocessor or multithreaded operation, if necessary 

• Initialize the kernel message buffer and console (enabling kernel printf()) 

• Initialize global locks such as Giant and the machine-dependent IPI lock 

• Initialize the kernel debugger 

• Invoke pmap_bootstrap to do early virtual-memory system initialization 

Although the details of these steps vary from architecture to architecture, the broad outline 

described here is applicable to any machine on which FreeBSD runs. 

Modular Kernel Design 

The kernel is a multimillion-line C program that runs on ‘bare metal,’ and hence must provide 

its own run-time linker, memory allocator, threading model, synchronization primitives, work 

models, and debugging tools. Higher-level kernel services such as device drivers, filesystems, 

and network protocols depend on these lower-level primitives, providing facilities to one 

another and to user processes via the system-call interface. To manage this complexity, most 

kernel components are encapsulated in kernel modules that consume core-kernel primitives, 

register services they offer via common frameworks (such as the device-driver framework), and 

specify boot-order dependencies so that the kernel can ensure that any requirements are met 

before any code is executed. 

Modules can be compiled into the kernel binary itself, or as loadable kernel modules 

compiled into separate ELF binaries that can be preloaded by the boot loader or loaded 

dynamically. Loadable modules make it possible to extend the kernel at run time as new 

requirements become apparent, adding significant flexibility. For example, device drivers can be 

loaded when a new peripheral is plugged into a USB hub, and firewall command-line tools can 

automatically load their corresponding kernel modules. In practice, many parts of the FreeBSD 

kernel source can be compiled either into the kernel or into loadable modules without 

source-code modification, depending on the kernel configuration used. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_198
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A key design goal in the kernel is to avoid differentiating between modules that are linked into 

the kernel and modules that are loaded dynamically. The same kernel programming interfaces 

(KPIs) declare startup and stop functions, register with kernel frameworks, and so on. This 

approach provides modularity without inhibiting practical deployment. 

Module Initialization 

In earlier versions of BSD, the kernel was brought up using handcrafted C code that implicitly 

(and often correctly) encoded the dependencies of each subsystem by virtue of the order in 

which subsystem initialization routines were invoked. An intimate understanding of the entire 

operating system was needed for someone to add a new service or subsystem, which slowed the 

evolution of the kernel and made it more difficult to customize the kernel for incorporation into 

larger integrated products. A significant part of the extensibility benefit of kernel modules rests 

on the core kernel being unaware of the specifics of modules until they are loaded. The SYSINIT 

framework allows modules, whether compiled into the kernel, preloaded by the boot loader, or 

loaded at run time, to declare a common set of ordered startup and shutdown functions. 

Modules register startup functions via the static SYSINIT macro, and stop functions via 

SYSUNINIT: 

Click here to view code image 

SYSINIT(name, subsystem, order, function, identifier) 

 

SYSUNINIT(name, subsystem, order, function, identifier) 

Module startup and stop functions are organized into a two-level hierarchy that determines the 

order in which the function should be called during boot, module load, module unload, and 

system shutdown. The subsystem argument is the first level of the hierarchy. Each subsystem is 

assigned a particular numeric constant that creates the first-level ordering of the modules to be 

loaded; an ordered list of subsystem identifiers is in the /sys/sys/kernel.h include file. The 

second level of the hierarchy is handled by the order argument. If two modules are in the same 

subsystem, the order determines which comes first. 

The function argument is a pointer to the function that the kernel will invoke, and the identifier 

argument is passed to the invoked function as its sole parameter. The identifier is often a 

pointer to a data structure; this parameter allows a single function to be reused in multiple 

contexts. For example, the function kproc_start() is used with several SYSINITs to start kernel 

processes with varying names and is used for multiple subsystems. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p786pro01
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The SYSINIT framework is implemented using linker sets: each use of one of its macros creates 

a static data structure describing the specific startup or stop function and its properties. The 

structure is tagged with a request that the compiler place its symbol in a special named section 

in the ELF binary indicating whether it is to be run at startup or stop. After the 

assembly-language startup code has completed its work, it calls the machine-independent 

kernel start, mi_startup(). The kernel binary is scanned for symbols in the startup section, 

whose target data structures are sorted and their function pointers called. This process will be 

repeated later in the boot when preloaded kernel modules are runtime linked, as modules are 

dynamically loaded and unloaded, and on system shutdown, using the corresponding named 

section. 

A similar technique allows modules to declare startup and stop functions to be run each time a 

virtual network stack is instantiated or destroyed. Macros VNET_SYSINIT and 

VNET_SYSUNINIT take identical arguments, but use different ELF sections, allowing modules 

to easily perform per-network-stack setup and teardown. 

Basic Kernel Services 

Before higher-level services such as device drivers and filesystems can do any useful work, 

FreeBSD must set up its basic kernel services, including virtual memory, the general-purpose 

memory allocator, and the kernel linker. These services are shown in Table 15.2 in the order in 

which they are done. All these services are initialized early in the machine-independent startup 

sequence so that they can be used by the remainder of the kernel. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab02
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Table 15.2 Basic kernel services. 

SI_SUB_TUNABLES retrieves configuration values from the boot-time kernel environment and 

installs them in global variables. Tunables are processed early in the boot as they override 

compile-time defaults. Some may be adjusted at run time via sysctl, such as resource limits on 

the number of TCP connections. Others commit the kernel to difficult-to-change resource 

allocation choices, such as the size of the kernel address space, and so can be set only at boot 

time. 

SI_SUB_VM and SI_SUB_KMEM initialize the virtual-memory system and general-purpose 

kernel memory allocator. The virtual-memory system is initialized by a call to vm_mem_init(). 

Once the vm_mem_init() routine has completed its work, all memory allocations by the kernel 

or processes are for virtual addresses that are translated by the memory-management hardware 

into physical addresses. The kernel’s malloc(), wrapped around the slab allocator for small 
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allocations, and the virtual-memory system directly for larger allocations, is initialized by a call 

to mallocinit(). These subsystems are described in greater detail in Section 6.3. 

SI_SUB_HYPERVISOR detects whether FreeBSD is running under Xen HVM, and if so, sets up 

paravirtualized features such as Xen hypercall stubs and Xen-aware virtual-memory operations, 

and disables emulated devices in favor of paravirtualized ones. Xen support is discussed in 

greater detail in Section 8.10. 

SI_SUB_WITNESS initializes the optionally compiled witness deadlock-prevention facility 

described in Section 4.3. Witness tracks nested lock acquisitions, building a lock-order graph 

that will provide debugging information to the developer if the possibility of deadlock arises. 

The witness_initialize() routine allocates memory to hold lock-acquisition data used for 

deadlock detection, and also installs any statically declared graph edges. 

SI_SUB_MTX_POOL_DYNAMIC initializes the system’s pool of mutexes described in Section 

4.3. Mutexes are generally allocated as global variables or embedded within data structures 

allocated from the heap, keeping locks close to the data they protect. The pool of mutexes is an 

array of mutexes looked up by hashing the pointer of an object that will return a 

deterministically selected leaf lock for the object. The pool of mutexes is allocated early in the 

boot so that it can be used by higher-level kernel subsystems. 

SI_SUB_LOCK indicates the point in the boot at which it is safe for kernel modules to allocate 

and initialize locks; it is used both directly by module functions registered with SYSINIT, and 

indirectly through static-wrapper macros such as MTX_SYSINIT, RM_SYSINIT, RW_SYSINIT, 

and SX_SYSINIT, which as arguments will take a pointer to a global lock, its flags, and its 

description. Lock initialization occurs after SI_SUB_WITNESS in the boot so that storage is 

available to track new lock classes from inception. Initialization must also occur before any 

potential use of the locks in other subsystem code paths. 

SI_SUB_EVENTHANDLER initializes the event-handler system, which allows the kernel and 

its modules to register functions to be called when events of interest occur elsewhere in the 

kernel. Event handlers are used to expose events such as network-interface arrival, departure, 

and address changes, routing changes, the creation and destruction of processes, execution of 

binaries, the creation and destruction of threads, system-shutdown stages, the filesystem mount 

and unmount events, power events, kernel-module load and unload, watchdog timeouts, and 

low-memory conditions. Event handlers may be declared statically using the 

EVENTHANDLER_REGISTER macro, which uses SYSINIT to initialize the event handler early 

in boot before any of the events it describes can occur. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3
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SI_SUB_VNET_PRELINK, used only for vnet_init_prelink(), performs early initialization of 

virtual network-stack support and runs before most kernel modules have executed any code. 

SI_SUB_KLD is complex as it calls many kernel functions associated with modules, linkage, and 

memory allocation: 

1. In the first phase, the kernel prepares for the linking and initialization of kernel modules. The 

module registry is initialized by module_init() and will maintain administrative information on 

modules such as their reference counts and descriptions suitable for export to userspace. The 

kernel-linker framework is initialized, preparing lists and other data structures that will track 

preloaded and dynamically loaded modules. Two special memory allocators are also initialized 

before module events that will allocate memory: the dynamic per-CPU allocator by 

dpcpu_startup(), and the virtual-network stack allocator by vnet_data_startup(). The 

allocators have similar structures, providing frameworks for scoped global-memory allocation. 

2. Next, individual linker classes will be initialized—in practice, they will consist of the 

ELF-specific linker code, found in link_elf_init(), on all systems. 

3. In the next phase, the ELF linker code will search the list of modules preloaded by the boot 

loader for ELF kernel modules, process the symbols for each, and register them with the kernel 

linker for later processing and initialization. 

4. In the final stage, the registration of new linker classes is halted by linker_stop_class_add(), 

and then modules linked into the kernel and those preloaded by the boot loader will be 

registered and initialized by linker_init_kernel_modules() and linker_preload(). This 

registration and initialization must sort the modules so that dependencies are taken into 

account when invoking the module constructors. Loadable kernel module SYSINITs with 

subsystems prior to SI_SUB_KLD will have those startup functions invoked only after module 

linking and registration have taken place. Modules are able to register optional command-line 

extensions to the kernel debugger, such as data-structure pretty printers. These extensions are 

also processed in this phase. 

SI_SUB_CPU is responsible for initializing several CPU-related services, including time-counter 

synchronization that is required to implement kernel callouts. It is also responsible for starting 

execution of additional processors in multiprocessor configurations. Starting additional 

processors requires a blend of machine-dependent and machine-independent code performed 

as a series of phases: 

1. The first phase is done by a set of machine-dependent cpu_startup() functions. Kernel 

virtual-memory configuration is completed by calling vm_ksubmit_init(), which allocates 
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virtual address space for paging and I/O, swap, and transition bio storage. In general, kernel 

memory is not pageable, but two pageable submaps are initialized to hold arguments to execve 

and for pipe storage. The buffer cache will be initialized by bufinit(), including data structures, 

current and running resource limits, and reserved memory to use in low-memory situations. 

Swap buffers are set up by vm_pager_bufferinit(). Certain machine-dependent initialization 

will also be done. On 64-bit X86, for example, the timestamp counter (TSC) is calibrated with 

wall-clock time and registered as a source of timer ticks, CPU and hyperthread information is 

printed, and additional CPU registers associated with floating point will also be configured. The 

X86 local APIC will be initialized, which allows interrupts to be configured and routed to—and 

between—multiple CPUs in a multiprocessor system. 

2. In the second phase, the machine-independent mp_start() function will start additional 

processors using machine-dependent start functions. On many architectures, starting additional 

processors requires some additional interrupt configuration (e.g., setting up interrupt vectors to 

receive interprocessor interrupts (IPIs) and then sending an IPI to each additional CPU to 

begin execution). On other architectures, such as SPARC64, the firmware may instead provide 

interfaces to start the additional CPUs. After the additional CPUs are started, information about 

them will be printed on the console by cpu_mp_announce(). 

3. In the final phase, callout_callwheel_init() will configure the callout wheel for the boot CPU, 

making it possible to register callouts without specific CPU affinity (timers are described in 

Section 3.4). Additional per-CPU callout wheels will be initialized later in the boot. 

Several other machine-dependent CPU-related initialization functions will also run in this phase 

of the boot, setting up access to the PC BIOS, allocating space for coprocessor-2 contexts for 

certain MIPS processors, and setting up virtual-CPU state for Xen. 

SI_SUB_RACCT is responsible for initializing the kernel’s resource-accounting system, used to 

limit and balance CPU, memory, IPC, and other resource utilization by competing processes, 

users, login classes, and jails. Two routines are run in this subsystem: racct_init(), which creates 

a new kernel-memory zone for accounting state, and configures prison0’s accounting state; and 

rctl_init(), which sets up kernel-memory zones for resource-accounting policy. 

SI_SUB_RANDOM is responsible for initializing the kernel’s noncrypto-graphic 

pseudo-random number generator from the timestamp counter via the routine random_init(). 

It also initializes random-number generation for kernel stack protection via __stack_chk_init(). 

SI_SUB_KDTRACE initializes software-trace functions relating to two frameworks: DTrace, 

described in Section 3.8, and processor hardware performance monitoring counters (HWPMC), 

which provide access to CPU performance-sampling functions. DTrace first registers with 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
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thread- and process-creation event handlers in init_dtrace(), which manage storage for each 

thread or process that might be used with DTrace. DTrace then initializes its per-CPU debugging 

output buffers in dtrace_debug_init(). HWPMC initializes storage for “soft” events in 

init_hwpmc (), to be triggered by software sources such as locking events, page faults, and clock 

ticks. It accepts registrations using the macro PMC_SOFT_DEFINE via pmc_soft_ev_register(), 

which likewise uses SYSINIT. Many later-configured modules implement DTrace events, or 

“probes,” relying on the results of this phase. 

SI_SUB_MAC, SI_SUB_MAC_POLICY, and SI_SUB_MAC_LATE initialize mandatory access 

control (MAC), described in Section 5.10. In the first phase, implemented in mac_init(), data 

structures, locks, and kernel-memory zones are initialized. In the second phase, policy modules 

that have declared themselves using the MAC_POLICY_SET macro will invoke 

mac_policy_register() to attach to entry points and optionally allocate label storage. In the final 

phase, mac_init_late() sets the mac_late flag, which indicates to the framework that policy 

modules loaded after this point must be registered as “dynamic” policies requiring full 

synchronization when entry points are invoked. Until this point, policies that register with flags 

that prevent unload can be added to a linked list that does not require locks to iterate over, 

avoiding overhead if all policies are “static.” This initialization must be completed before any 

operations requiring MAC authorization, such as operations involved in mounting the root 

filesystem as well as creation of the first process, can proceed. 

SI_SUB_VNET is implemented by vnet0_init(), which allocates the first virtual network stack 

and associates it with prison0. This network-stack instance will be used for all processes unless 

further stacks are explicitly configured by the system administrator. 

SI_SUB_VM_CONF completes initialization of kernel-memory zones by calling 

uma_startup3(), which starts up a callout, uma_timeout(), to run every 20 seconds. The 

timeout walks the list of kernel-memory zones performing routine activities such as updating 

statistics and, as required, resizing hash tables. The timeout also performs machine-dependent 

functions such as tuning limits on X86 local descriptor table segments. 

SI_SUB_DDB_SERVICES completes initialization of the DDB in-kernel debugger by setting up 

its capture buffer in db_capture_sysinit(). The capture facility logs text output from debugger 

scripts to a crash partition to create textdumps, a more compact alternative to a full 

kernel-memory crash dump. 

SI_SUB_RUN_QUEUE initializes the scheduler’s run queues, CPU groups, and initial load 

calculations, at boot. Both the ULE and 4BSD schedulers are initialized by routines named 

sched_setup(). The system scheduler is described in greater detail in Section 4.4. 
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Finally, SI_SUB_KTRACE initializes the userspace kernel-trace facility, ktrace, by calling 

ktrace_init(), which must initialize locks and data structures, but also pre-allocate a set of 

trace-entry structures. These trace-entry structures will log kernel events such as system calls, 

data copied in and out of the user address space, signal delivery, and context switches as 

requested by user processes. This initialization must occur before any user process requests 

enabling of tracing. Section 3.8 describes ktrace in greater detail. 

From this point onward, the bulk of basic kernel services required to support the launching of 

kernel threads, device-driver discovery, and the remainder of the high-level boot are now 

present. 

Kernel-Thread Initialization 

Kernel-module code enters execution in several ways—most frequently by direct function 

invocation from another subsystem. For example, code might be invoked as a system-call 

implementation by the system-call trap-handling code in user threads, as an interrupt handler 

in an interrupt thread, as a task function in a task thread, or as a timeout function from a 

per-CPU callout thread. In other cases, subsystems will start kernel threads to embody portions 

of their activities. 

Sometimes, subsystems will create threads to provide asynchronous execution opportunities for 

other modules. For example, the interrupt-thread framework calls device-driver interrupt 

handlers in interrupt threads when it receives hardware interrupts for the corresponding device. 

In other cases, kernel modules create threads to allow the modules to defer blocking filesystem 

I/O to an asynchronous context. For example, the virtual-memory and security-audit 

subsystems create threads to perform disk I/O asynchronously from the process that triggered 

the I/O. A few threads are intrinsic to system functionality, such as idle threads required by the 

scheduler, as well as the first user process from which all later user processes will descend. 

Threads may be created on demand, as happens for iSCSI worker threads, which are 

instantiated when new sessions are configured; others are created unconditionally in boot, such 

as the GEOM worker threads that process upward and downward I/O requests. The modules 

that start kernel threads or processes during the boot are shown in Table 15.3. 
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Table 15.3 Kernel threads and processes started by default on X86. 

SI_SUB_INTRINSIC begins the creation of the process hierarchy by executing p0init(). The 

function creates process0, the first process, pgrp0, its process group, and thread0, the first 

thread within that process. The first process is named kernel and its first thread is named 

swapper. Then, p0init() calls pmap_pinit0() to initialize the process’s virtual-memory space 

and memory map. For all later processes, the kernel-memory zone allocator will automatically 

invoke thread- and process-creation event handlers; however, since process0 and thread0 are 

statically allocated, p0init() must invoke them manually. The function also charges the root user 

for the resources associated with this first process. 

SI_SUB_AUDIT creates a kernel process and thread to support the kernel’s audit subsystem, 

described in Section 5.11. The separate thread allows the audit process to write records to the 

filesystem asynchronously from the process that performed the event. The audit_init() function 

initializes the audit subsystem and then creates audit_worker by calling audit_worker_init(). 

The thread executes a loop that alternately awaits further events to write to the audit trail or 

blocks on filesystem I/O while writing records to the disk. The thread will also detect low-space 

conditions, which will be signalled to userspace by means of a special-device node. 
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SI_SUB_CREATE_INIT is responsible for forking the first userspace process, init. This process 

will execute /sbin/init and implement the userspace boot. The create_init() function uses the 

kernel-internal fork1() function to create the new process; subsystems such as MAC and audit 

then customize init’s process credential with properties that will be inherited by all other user 

processes. The final action of create_init() is to call cpu_set_fork_handler() to set the function 

that the newly created kernel thread will call to start_init(). The init process will not 

immediately run, as it has not yet been placed in a runnable state. 

SI_SUB_SCHED_IDLE creates an idle process containing a set of per-CPU idle threads. Idle 

threads provide a default thread context that can always run, at the idle priority, on each CPU. 

This context ensures that interrupts delivered to an idle CPU always have a thread suitable to 

preempt and, therefore, a stack to borrow. 

SI_SUB_INTR, SI_SUB_SOFTINTR, and SI_SUB_DRIVERS create a variety of kernel 

processes and threads in service of device drivers, including interrupt threads and GEOM’s up, 

down, and event threads created by g_init(). Device drivers may create further threads; for 

example, the random device described in Section 5.12 creates a thread that intermittently 

extracts entropy harvested around the system from queues and feeds it into Yarrow. Interrupt 

threads serve not only devices fielding hardware interrupts, but also soft-interrupt handlers 

such as the callout thread and network-stack netisr threads. 

Four subsystems initialize threads supporting virtual memory, the buffer cache, and filesystems: 

SI_SUB_KTHREAD_PAGE, SI_SUB_KTHREAD_VM, SI_SUB_KTHREAD_BUF, and 

SI_SUB_KTHREAD_UPDATE. These subsystems incorporate functions that run 

asynchronously from user threads, such as write-behind flushes of the buffer cache to disk, 

managing the vnode LRU cache, and paging activity. They also perform tasks that must occur at 

differing priorities. The virtual-memory subsystem and its threads are discussed in detail in 

Chapter 6. 

SI_SUB_KTHREAD_INIT completes creation of the init process by calling kick_init(), which 

schedules init’s kernel thread. When the thread starts, it will execute start_init(), which 

performs a series of activities to bring up the filesystem and userspace environment. First, init 

calls vfs_mountroot() to await completion of any device initialization that may be required to 

mount the root filesystem. Kernel modules such as the device-driver framework, GEOM RAID 

storage classes, and ZFS can request that the boot process be suspended to allow device probes 

to continue, and higher-level storage constructs to be discovered, before the root filesystem is 

mounted. Each component will invoke root_hold_token(), which returns a reference that must 

later be released using root_mount_rel(). Once devices have settled, the kernel must now 

identify and mount a suitable root filesystem by means of the following four steps: 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec12
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1. First, kernel environmental variables such as vfs.root.mountfrom and 

vfs_root.mountfrom.options are inspected to determine how root filesystem mounting should 

proceed. This inspection may update the rootdevnames array whose entries will be tried in the 

search for a viable mount. 

2. Next, vfs_mountroot_devfs() mounts a devfs instance as the initial root filesystem. Because 

it requires no source device, devfs can be mounted before /dev is available. Once devfs is 

mounted, then disk-based filesystems can use the same model for root filesystems as they do for 

later filesystems, reducing special casing in the root mount path. 

3. In the next phase, vfs_mountroot_devfs() will parse each device name, look up a suitable 

filesystem in the kernel’s filesystem-module list, and attempt to mount it by calling 

kernel_mount(). 

4. In the final phase, vfs_mountroot_shuffle() will rearrange the two mounted filesystems so 

that the newly mounted root is available as /, and the earlier devfs mount can be found under its 

/dev. 

If a failure occurs, then the next possible filesystem root will be tried. Once the root filesystem is 

mounted, prison0 is updated, and the mountroot event handler is called to notify other kernel 

modules that the filesystem is now available. Creation of the userspace process is completed by 

start_init() searching for a suitable init binary, copying out boot-flag arguments, and issuing 

execve to load the binary. Execution will begin when the thread returns to userspace returning 

from execve. 

Device-Module Initialization 

With all the kernel’s basic services in place, and the basic processes created, it is now possible to 

initialize the rest of the devices in the system including the disks, network interfaces, and clocks. 

Table 15.4 shows the main components used to initialize the device modules. 
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Table 15.4 Device modules. 

Before any devices can be initialized—in particular, network interfaces—the mbuf subsystem 

must be set up so that the network interfaces have a set of buffers they can use for their own 

initialization. The mbuf subsystem initialization is handled by the SI_SUB_MBUF module and 

its mbuf_init() routine (mbufs are described in Section 12.3). 

At this point in the startup sequence, hardware interrupts are not enabled on the system. The 

kernel now sets up all the interrupt threads that will handle interrupts when the system begins 

to run. The interrupts are setup by two modules: SI_SUB_INTR, which sets up the interrupt 

threads that handle device interrupts, and SI_SUB_SOFTINTR, which creates soft-interrupt 

threads. Soft-interrupt threads are used by services that handle asynchronous events that are 

not generated by hardware. Soft-interrupt threads provide the soft clock, which supports the 

callout subsystem. They also provide the network thread that dequeues inbound packets from 

the network-interface queues and moves them through the network stack. 

As part of bringing up real hardware devices, the kernel first initializes the device filesystem and 

then readies the network stack to handle devices with a call to the if_init() routine. The if_init() 

routine does not initialize any network interfaces; it only sets up the data structures that will 

support them. Finally, the devices themselves are initialized by the SI_SUB_DRIVERS and 

SI_SUB_CONFIGURE modules. All devices in the system are initialized by autoconfiguration as 

described in Section 8.9. 

Once the devices are configured, the virtual filesystem (VFS) is initialized. Bringing up the VFS 

is a multistage process that entails initializing the VFS itself, the vnode subsystem, and the name 

cache and pathname-translation subsystem that maps pathnames to vnodes. 
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The next systems to be set up are those relating to the real-time clock provided by the hardware. 

The initclocks() routine, which is a part of the SI_SUB_CLOCKS module, calls the architecture’s 

specific cpu_initclocks() routine to initialize the hardware clock on the system and start it 

running. Once the hardware clock is running, other services such as support for the Network 

Time Protocol (NTP), device polling, and the time counter are started. 

Loadable Kernel Modules 

Some kernel modules can be loaded and started or shut down and unloaded while the system is 

running. Providing a system where kernel services can be loaded and unloaded at run time has 

several advantages over a system where all kernel services must be linked in at build time. For 

systems programmers, being able to load and unload modules at run time means that they are 

able to develop their code more quickly. Only those modules absolutely necessary to the system, 

such as the memory manager and scheduler, need to be directly linked into the kernel. A kernel 

module can be compiled, loaded, debugged, unloaded, modified, compiled, and loaded again 

without having to link it directly into the kernel or having to reboot the system. When a system 

is placed in the field, the use of kernel modules makes it possible to upgrade only selected parts 

of the system, as necessary. Upgrading in the field is absolutely necessary in embedded 

applications where the system may be physically unreachable, but it is also convenient in more 

traditional environments where many systems might have to change at the same time—for 

instance, in a large server farm. 

Loadable kernel modules are declared in the following way: 

Click here to view code image 

DECLARE_MODULE(name, moduledata, subsystem, order) 

Each module has a name, subsystem, and order that serve the same purposes here as they do in 

the SYSINIT macro. The key difference is the use of the moduledata argument, which is a data 

structure that is defined in the following way: 

Click here to view code image 

int (*modeventhand_t)( 

        struct module *module, 

        int command, 

        void *argument); 
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typedef moduledata  = { 

        const char *name; 

        modeventhand_t event_handler; 

        void *data; 

} moduledata_t; 

All modules have an associated version that is declared with the MODULE_VERSION macro. 

Without a version, it would be impossible to differentiate between different revisions of the 

same module, making field upgrades difficult. One last macro used by kernel modules is the 

SYSCALL_MODULE_HELPER that developers use to add new system calls to the kernel. 

To have kernel modules that can be loaded both at boot time and at run time, two different cases 

must be handled. When a module is loaded at boot time, it has already been processed by the 

kernel’s build process, which means that its system-call entry points and other data are already 

known to the kernel. This knowledge simplifies the loading process. All that needs to be done is 

to call the module’s event handler with the MOD_LOAD command. At run time, the module 

needs to be loaded into memory, registered with the kernel, and its system calls dynamically 

added to the system-call table. Once all that work is done, it can be initialized by calling its event 

handler. All the run-time loading is handled by the kldload system call and the 

module_register() routine. To keep the interface that programmers use simple, all this 

functionality is hidden by the DECLARE_MODULE macro and the use of the single 

event-handler routine. When creating a kernel module, a programmer needs to be concerned 

only with writing the module event handler and exporting the module-handler’s system calls via 

the macros. 

A key consideration in the use of loadable kernel modules is that they are a double-edged sword 

with respect to security and reliability. On the one hand, loadable modules allow field upgrade of 

kernel components without binary patching, which can be used to correct stability defects 

discovered after a product is shipped. Loadable modules can likewise adapt the kernel’s security 

model to protect against discovered vulnerabilities. On the other hand, the kernel is a critical 

part of the system’s trusted computing base (TCB). Attackers that can load kernel modules 

can bypass the system’s security policies, install subtle back doors, and mask their presence in 

the system by modifying the behavior of monitoring interfaces. 

In practice, loadable modules have little concrete effect on the integrity of the TCB for several 

reasons. Integrity of the kernel depends on a secure boot process, which currently depends on 

correct configuration of userspace-managed protections in the filesystem. Further, userspace 

interfaces to system memory and I/O devices allow privileged users the ability to modify kernel 

memory even without an explicit loading interface. Jail and MAC policies such as Biba can be 
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used to provide stronger integrity protection for the TCB, which includes controls on 

low-integrity manipulation of the kernel either by module loading or access to virtual and 

physical memory via /dev nodes. 

As secure boot features such as UEFI’s boot-chain signature-verification support become more 

widely deployed, the initial boot chain will become increasingly secure against attacks that 

might damage TCB integrity. A sensible future direction would be to extend these facilities into 

cryptographic protection of loadable kernel modules using digital signatures and other 

security-critical portions of the filesystem and userspace. These extensions will need to address 

not just kernel modules, but also configuration files and system maintenance tools. One key 

concern in the adoption of such techniques will be increased complexity and fragility: 

maintenance operations that previously required root access may now require management of 

cryptographic keys; similarly, administrators might be forced to choose between the 

performance or functionality benefits derived from kernel customization and boot-time integrity 

protection. 

15.4 User-Level Initialization 

With the start of the init process, the kernel is operating and functional, and userspace is in 

execution. There are several additional steps that must be taken before users can log in and 

network services are available. All these actions are driven by user-level programs that use the 

standard FreeBSD system-call interface that has been described in previous chapters. We shall 

briefly examine the steps that take place in a typical system. 

/sbin/init 

The /sbin/init program is invoked as process 1 in the final step of the kernel bootstrapping 

procedure. The parameters specified at the time FreeBSD was bootstrapped are passed to init in 

a machine-dependent fashion. The init program uses the values of these flags to determine 

whether it should bring up the system to single-user or to multiuser operation and whether it 

should check the consistency of its disks with the fsck program. In single-user operation, init 

forks a process that invokes the standard shell, /bin/sh. The standard input, output, and error 

descriptors of the process are directed to the system’s console terminal, /dev/console. This 

shell then operates normally but with superuser privileges until it terminates. 

In multiuser operation, init first spawns a shell to interpret the commands in the file /etc/rc, 

which is the root of a set of system startup scripts that do all the user-level initialization of the 

system. If the /etc/rc script completes successfully, init then forks a copy of itself for each 

terminal device that is marked for use in the file /etc/ttys. These copies of init invoke other 
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system programs, such as /usr/libexec/getty, to manage the standard sign-on procedure. 

Process 1 always acts as the master coordinating process for system operation. It is responsible 

for spawning new processes as terminal sessions are terminated and for managing the shutdown 

of a running system. 

System Startup Scripts 

The /etc/rc file is mostly empty and simply serves to order and execute the various system 

startup scripts contained in the /etc/rc.d directory. It will also search for third-party startup 

scripts in /usr/local/etc/rc.d, where they may be installed by the FreeBSD ports system or 

package system. The /etc/rc.conf, /etc/rc.conf.d, and /etc/defaults/rc.conf files control 

which user-level services are started at boot time and some aspects of their configuration. Each 

of these files is loaded by the system startup scripts when they execute. The 

/etc/defaults/rc.conf file contains the default values for various shell variables that control 

whether a service is to be started. Administrators override the defaults by placing different 

values for the same shell variables into /etc/rc.conf. For example, to enable the use of the 

secure shell (ssh) at boot time, the following line would be placed into /etc/rc.conf: 

sshd_enable="yes" 

The heart of the rc script system is a program called rcorder that takes a set of shell scripts as 

input, works out their interdependencies, and then outputs an ordered list of names. Each 

startup script declares the modules that it requires as well as those it provides. The rcorder 

programs uses these REQUIRE and PROVIDE statements to determine the proper order in 

which to run the startup scripts. 

One housekeeping task is to check the local filesystems after a system crash. If the system is not 

booted with the fastboot option, then the /etc/rc.d/fsck script carries out filesystem checks. In 

versions of BSD before FreeBSD, the filesystem checks were absolutely necessary and had to be 

carried out before any other work, but with the advent of soft updates and journaling in UFS 

(Sections 9.6 and 9.8) and ZFS (Chapter 10), that is required only if the system has shut down 

uncleanly (e.g., because of unexpected power loss). The program /sbin/fsck checks filesystem 

consistency and repairs damaged filesystems. Normally, fsck is invoked from the 

/etc/rc.d/fsck script to examine and repair each filesystem before it is mounted. When the 

system is initially booted, the root filesystem is mounted read-only. If the root filesystem 

requires repairs, FreeBSD does a variant of the mount system call that requests the kernel to 

reload all its root-filesystem data structures. Reloading ensures consistency between the data in 

the kernel memory and any data in the filesystem that were modified by fsck. Having the root 
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filesystem mounted read-only ensures that the kernel will not have any modified data in 

memory that cannot be reloaded. 

Following the filesystem checks, the filesystems are mounted, the root filesystem is updated to 

be writable, and any devices that are to be used for swapping and paging are enabled. Disk 

quotas are then checked and enabled, and the system starts the background processes that 

implement various system services. These processes include /usr/sbin/cron, the program that 

executes commands at periodic intervals; /usr/sbin/accton, the program that enables system 

accounting; /usr/sbin/syslogd, the system error-logging process; and /usr/sbin/sshd, 

which implements encrypted remote access to the shell. Each of these processes is started from 

its own startup script in /etc/rc.d. 

/usr/libexec/getty 

Historically, the /usr/libexec/getty program was spawned by init to open and initialize 

terminal lines—most frequently, serial terminals or modems. Today, the primary obligation of 

getty is to launch the /usr/bin/login sessions on the video or serial console (if any). It is 

sometimes used to launch X Display Manager (xdm) sessions to enable login via graphical user 

interfaces, although many systems will instead be configured to start the window system via 

rc.d. The getty program reads a login name and invokes the /usr/bin/login program to 

complete a login sequence. 

/usr/bin/login 

The login program is responsible for signing a user in to the system; it is usually invoked by 

/usr/libexec/getty with the name of the user who wishes to log in to the system. Login will 

then authenticate the user using the pluggable authentication modules (PAM) mechanism. PAM 

supports diverse authentication mechanisms including local passwords (stored in the 

/etc/master.passwd file), Kerberos distributed authentication, one-time password in 

everything (OPIE) onetime passwords, and a range of third-party modules supporting other 

distributed or hardware-token-based authentication schemes. If a secret is requested from the 

user—for example, a password—then login will disable terminal echoing. After successful 

authentication, login is responsible for performing a variety of accounting functions including 

adding entries to the system lastlog and utmpx files, as well as auditing the login via the audit 

facility described in Section 5.11. 

The process credential, described in Section 5.3, must be configured to represent the user and 

group identifiers of the authenticated user, as well as audit properties, MAC labels, and resource 

limits. The login program must also change the current working directory to the user’s home 
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directory. The user’s login name is stored in the session structure using the setlogin system call 

so that it can be obtained reliably via the getlogin system call by programs that want to know the 

login name associated with a given process. Finally, login uses execve to overlay itself with the 

user’s shell. 

The login program may also be invoked when a user enters the system through a network 

connection. For such connections, getty and init are bypassed; their functionality is subsumed 

by the daemon spawned when the network connection is established. 

15.5 System Operation 

In this section, we consider topics that are related to the system-startup procedure. 

Kernel Configuration 

The software that makes up a FreeBSD kernel is defined by a configuration file that is 

interpreted by the /usr/sbin/config program invoked as part of the kernel build process. The 

kernel build process has become considerably more complex in FreeBSD and is now controlled 

by a set of Makefile targets. To build a kernel, the administrator invokes make in the following 

way: 

Click here to view code image 

make buildkernel KERNCONF=<kernel_config_file> 

The buildkernel argument is a Makefile target that tells make to build a kernel but not to install 

it. KERNCONF is a Makefile variable that is set to the name of the kernel configuration. Once a 

kernel has been properly built, it is installed by running make in the following way: 

Click here to view code image 

make installkernel KERNCONF=<kernel_config_file> 

One reason for this new build process is the need to build and install the necessary kernel 

modules that were discussed in Section 15.3. The configuration file specifies the hardware and 

software components that should be supported by a kernel. The build process generates several 

output files, some of which are compiled and linked into the kernel’s load image. It also creates a 

directory into which all the loadable kernel modules will be built. When the kernel is installed, 

its modules are installed as well. A complete description of the kernel build process is given in 

Hamby & Mock [2014]. 
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System Shutdown and Autoreboot 

FreeBSD provides several utility programs to halt, reboot, or power off a system, or to bring a 

system from multiuser to single-user operation. Safe halting, rebooting, and powering down of a 

system require support from the kernel. This support is provided by the reboot system call. 

The reboot system call is a privileged call. A parameter specifies how the system should be shut 

down and rebooted. This parameter is a superset of the flags passed by the boot program to the 

system when the latter is initially bootstrapped. A system can be brought to a halt (typically by 

forcing it to execute an infinite loop), it can be rebooted to single-user or multiuser operation, or 

powered off, which causes the kernel to first halt the system and then (if supported by the 

architecture) request a poweroff. There are additional controls that can be used to force a crash 

dump before rebooting (see the next subsection for information about crash dumps) and to 

disable the writing to disk of data that are in the buffer cache if the information in the buffer 

cache is wrong. 

Automatic rebooting is usually done when a catastrophic failure is recognized. The system will 

reboot itself automatically if it recognizes an unrecoverable failure during normal operation. 

Failures of this type, termed panics, are all handled by the panic() subroutine. 

When the system is shutting down, it goes through three separate phases: 

• Shutdown of all services that depend on the filesystem to store data 

• Shutdown of the filesystem itself 

• Shutdown of services that do not depend on the filesystem 

These three phases are necessary because some services will want to write some final data to the 

filesystem before it is turned off and may not be able to restart cleanly if they cannot do so. 

Services register event handlers with the kernel to provide an orderly shutdown of the system. 

Each event handler is declared with the following macro: 

Click here to view code image 

EVENTHANDLER_REGISTER(name, function, argument, priority) 

Table 15.5 lists the names of the shutdown phases. In the EVEN-THANDLER_REGISTER 

macro, the name parameter identifies in which phase of the shutdown sequence the event 

handler’s function will be called. The argument allows the module to pass itself any private data 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p801pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab05


 

922 

necessary for it to turn off. The priority orders the shutdown routines within a phase. The 

priority serves the same purpose here as the order argument does in the SYSINIT macro in 

creating an orderly startup sequence. The priority is necessary to make sure that services do not 

go away while other services depend on them. 

 

Table 15.5 Shutdown phases. 

The kernel shutdown routine first walks the list of shutdown_pre_sync functions and calls each 

in turn, and then it shuts down the filesystems on the local disks. With the filesystems in a 

quiescent state, it invokes all the shutdown_post_sync functions. A kernel core dump is made if 

requested—for example, if it was called because of a kernel panic. Kernel core dumps are written 

directly to the swap partition and not to a normal filesystem, which is why this step can come 

after the filesystems have been shut down. Finally, the kernel shutdown routine invokes all the 

functions registered in the shutdown_final group. The machine then powers down if it has been 

directed to do so and the hardware supports software-based power-off. Otherwise, it goes into 

an infinite loop awaiting a reset by the user. 

System Debugging 

FreeBSD provides several facilities for debugging system failures. The most commonly used 

facility is the crash dump: a copy of memory that is saved on secondary storage by the kernel 

when a catastrophic failure occurs. Crash dumps are created by the doadump() routine. They 

occur if a reboot system call is made in which the RB_DUMP flag is specified or if the system 

encounters an unrecoverable—and unexpected—error. 

The doadump() saves the current context with a call to the savectx() routine and then invokes 

the dumpsys() routine to write the contents of physical memory to secondary storage. The 

precise location of a crash dump is configurable; most systems place the information in a 

primary swap partition. This operation is done by the dump entry point of the configured disk 

driver. 

A crash dump is retrieved from its location on disk by the /sbin/savecore program after the 

system is rebooted and the filesystems have been checked. It creates a file into which the 
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crash-dump image is copied. The system administrator can examine crash dumps with the 

standard FreeBSD debugging program, kgdb. The kernel is also set up so that a kgdb debugger 

running on one machine can attach itself across a serial line to a kernel running on another 

machine. Once attached, it can set breakpoints, examine and modify kernel data structures, and 

invoke kernel routines on the machine being debugged. This form of source-level debugging is 

particularly useful in developing kernel device drivers, as long as the driver being developed is 

not the serial-line driver itself. 

Passage of Information To and From the Kernel 

In 4.3BSD and earlier systems, utilities that needed to get information from the kernel would 

open the special device /dev/kmem, which gave access to the kernel’s memory. Using the 

name list from the kernel binary, the utility would seek to the address of the desired symbol and 

read the value at that location. Utilities with superuser privilege could also use this technique to 

modify kernel variables. Although this approach worked, it had six problems: 

1. Applications did not have a way to find the binary for the currently running kernel reliably. 

Using an incorrect binary would result in looking at the wrong location in /dev/kmem, 

resulting in wildly incorrect output. For programs that modified the kernel, using the wrong 

binary would usually result in crashing the system by trashing some unrelated data structure. 

2. Reading and interpreting the kernel name list is time consuming. Thus, applications that had 

to read kernel data structures ran slowly. 

3. Applications given access to the kernel memory could read the entire kernel memory. 

Malicious (or vulnerable) programs could snoop the terminal or network input queues looking 

for users who were typing sensitive information such as passwords. 

4. It is desirable to provide unprivileged access to a subset of monitoring information: for 

example, to a user’s own processes or sockets. This policy is not only difficult to enforce 

correctly in userspace, which does not have race-free access to kernel data structures such as the 

user credential, but it also violates the design goals laid out in Section 5.5 to centralize policy 

implementation as an aid to security extensibility. Controlling access to kernel-originated data is 

substantially easier within the kernel than it is when a userspace program is given access to all 

of kernel memory. 

5. As more of the kernel data structures became dynamically allocated, it became difficult to 

extract the desired information reliably. For example, in 4.3BSD, the process structures were all 

contained in a single, statically allocated table that could be read in a single operation. In 

FreeBSD, process structures are allocated dynamically and are referenced through a linked list. 
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Thus, they can be read out only one process entry at a time. Because a process entry is 

subdivided into many separate pieces, each of which resides in a different part of the kernel 

memory, every process entry takes several seeks and reads to extract through /dev/kmem. 

6. With an increased focus on long-term binary compatibility, especially with not just individual 

userspace binaries but whole userspace installations running in a jail, userspace interpretation 

of internal kernel data structures proves extremely fragile. A more explicit monitoring interface 

allows userspace monitoring tools to be more robust to internal kernel changes. 

To resolve these problems, 4.4BSD introduced the sysctl system call. This extensible kernel 

interface allows controlled access to kernel data structures. The problems enumerated 

previously are resolved as follows: 

1. Applications do not need to know which kernel binary they are running. The running kernel 

responds to their requests and knows where their data structures are stored. Thus, the correct 

data structure is always returned or modified. 

2. No time is spent reading or interpreting name lists. Accessing kernel data structures takes 

only a few system calls. 

3. Sensitive data structures cannot be accessed. The kernel controls the set of data structures 

that it will return. Nothing else in the kernel is accessible. The kernel can impose its own set of 

access restrictions on each set of data structures that it returns. 

4. Kernel sysctl handlers are able to invoke security policies such as MAC and jails, allowing 

limits to be placed on monitoring processes, network connections, and so on. Each user process 

is limited to an appropriate view of the system. 

5. The kernel can use its standard mechanisms for ensuring consistent access to distributed data 

structures. When requesting process entries, the kernel can acquire the appropriate locks to 

ensure that a coherent set of data can be returned. 

6. The kernel is able to export well-defined and carefully managed versions of data structures to 

userspace; for example, rather than exporting the proc structure, which changes frequently as 

new kernel features are added, a separate kinfo_proc structure is exported from the kernel, 

which includes version information and padding to allow userspace to detect and adjust to 

changes. Userspace libraries such as libprocstat and libmemstat provide higher-level APIs 

used by monitoring applications such as procstat and memstat. 

Additional benefits of the interface include the following: 
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• Values to be changed can be validated before the data structure is updated. If modification of 

the data structure requires exclusive access, an appropriate lock can be obtained before the 

update is done. Thus, an element can be added to a linked list without danger of another process 

traversing the list while the update is in progress. 

• Information can be computed only on demand. Infrequently requested information can be 

computed only when it is requested, rather than being computed continually. For example, 

many of the virtual-memory statistics are computed only when a system-monitoring program 

requests them. 

• The interface allows monitoring tools to run without the privilege to access kernel memory, 

removing them from the TCB; likewise, user processes can manipulate system settings subject to 

kernel policy without general write access to the kernel address space. This isolation from access 

to kernel memory is important for jails and virtual network stacks, in which guest superusers 

must be able to modify settings for their local environments, but not those of other jails or 

virtual stacks. 

The sysctl system call describes the kernel namespace using a management information base 

(MIB). A MIB is a hierarchical namespace much like the filesystem namespace, except that each 

component is described with an integer value rather than with a string name. A hierarchical 

namespace has several benefits: 

• New subtrees can be added without existing applications being affected. 

• If the kernel omits support for a subsystem, the sysctl information for that part of the system 

can be omitted. 

• Each kernel subsystem can define its own naming conventions. Thus, the network can be 

divided into protocol families. Each protocol family can be divided into protocol-specific 

information, and each protocol can describe its own state. 

• The namespace can be divided into those parts that are machine independent and are available 

on every architecture, and those parts that are machine dependent and are defined on an 

architecture-by-architecture basis. 

Since the addition of the sysctl system call in 4.4BSD, the number of variables it controls has 

been expanded to include about 3000 values that control the virtual memory system, 

filesystems, networking stacks, and the underlying hardware, as well as the kernel itself. 
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Exercises 

15.1 What is the purpose of each stage in the boot-loader sequence? 

15.2 What is the job of the assembly-language startup? Why is this program written in assembly 

language? 

15.3 What processes are started when the system is booted? 

15.4 How are kernel modules loaded into the system at boot time? Give an example of a kernel 

module. 

15.5 The reboot system call causes the system to halt or reboot. Give two reasons why this 

system call is useful. 

15.6 Give two reasons why loadable kernel modules are useful in developing kernel services. 

Give one reason not to use them. 

15.7 Why is it necessary to have a particular order in which kernel services are loaded and 

initialized? Why is it also necessary to have a particular order in which kernel services are shut 

down? 

*15.8 Suppose that a machine does not have a battery-backup time-of-day clock. Propose a 

method for determining that the time-of-day clock is incorrect. Describe a way to initialize the 

clock’s time of day. What are the limitations of your method? 

**15.9 What are the necessary macros to create a loadable kernel module? How would you test 

your module without linking it directly into the kernel? 
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Glossary 

absolute pathname See pathname. 

access control list (ACL) A form of discretionary access control that replaces the group 

permissions for a file with a more specific list of the users that are permitted to access the files. 

The ACL also includes a list of the permissions that each user is granted. These permissions 

include the traditional read, write, and execute permissions along with other properties such as 

the right to rename or delete the file. See also discretionary access control; file permissions. 

ACL See access control list. 

address family A collection of related address formats, as found in a single communication 

domain. For example, the IPv4 domain uses the Internet address family. 

address-resolution protocol (ARP) A communication protocol used to map one network 

address to another dynamically. For example, ARP is used in FreeBSD to map Internet 

addresses into Ethernet addresses dynamically. See also neighbor discovery. 

address translation A mechanism, typically implemented in hardware, that translates 

memory addresses supplied by a program into physical memory addresses. This facility is 

important in supporting multiprogramming because it allows an operating system to load 

programs into different areas of memory and yet have each program execute as though it were 

loaded at a single, fixed memory location. See also memory-management unit. 

advisory lock A lock that is enforced only when a process explicitly requests its enforcement. 

An advisory lock is contrasted with a mandatory lock, which is always enforced. See also 

mandatory lock. 

ambient authority Refers to the right to name objects via global namespaces such as the 

filesystem root or TCP/IP port namespace. Processes in Capsicum’s capability mode are denied 

ambient authority, and hence are able to operate only on objects to which they have been 

delegated capabilities. See also capability system; Capsicum; sandbox. 

ancillary data Specially interpreted data sent on a network connection. Ancillary data may 

include protocol-specific data, such as addressing or options. 
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anonymous object Represents a region of transient backing storage. Pages of an anonymous 

object are zero-filled on first reference and modified pages will be stored in the swap area if 

memory becomes tight. The object is destroyed when no references remain. 

application compartmentalization Sometimes referred to as privilege separation, this 

technique decomposes applications into a set of sandboxed processes, each delegated narrow 

sets of rights necessary to perform their specific function. This technique, implemented using 

Capsicum in FreeBSD, helps to mitigate security vulnerabilities: successful attacks gain only 

limited rights in the system. See also ambient authority; Capsicum; sandbox. 

ARP See address-resolution protocol. 

association In the interprocess-communication facilities, a logical binding between two 

communication endpoints that must be established before communication can take place. 

Associations may be long lived, such as in stream-based communication, or short lived, such as 

in a datagram-based communication paradigm. 

AST See asynchronous system trap. 

asymmetric cryptography A cryptographic system that does not use the same key for 

decrypting data as it does for encrypting data; sometimes referred to as public-key cryptography. 

See also symmetric cryptography. 

asynchronous An asynchronous thread usually has nothing to do with the currently running 

process. Examples are unrelated hardware interrupts. 

asynchronous system trap (AST) A software-initiated interrupt to a service routine. ASTs 

enable a process to be notified of the occurrence of a specific event asynchronously with respect 

to its execution. In FreeBSD, ASTs are used to initiate thread rescheduling. 

autoconfiguration The probing and identification of hardware attached to the system. 

Successfully identified hardware is attached to the I/O subsystem. Autoconfiguration is 

performed when the kernel bootstraps itself into operation and any time that a new piece of 

hardware is attached to the system. In a network protocol, the process by which a system 

discovers important information about itself and the network (such as its network address and 

default router) without any help from a user. 

background process In job-control-oriented process-management systems, a process whose 

process group is different from that of its controlling terminal; thus, this process is currently 

blocked from most terminal access. Otherwise, a background process is one for which the 
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command interpreter is not waiting—that is, the process was set running with the “&” operator. 

The opposite of a background process is a foreground process. 

backing storage Storage that holds objects that are removed from main memory during 

paging and swapping operations. See also secondary storage. 

black-hole route Used to temporarily block packets from moving through the network. A 

packet with a destination address that matches a black-hole route is dropped before it can be 

routed or forwarded. 

block In the filesystem, a unit of allocation. The filesystem allocates space in block-size units or 

in fragments of block-size units. 

block accounting The process of maintaining a count of the number of disk blocks available 

for the storage of new data in the fast filesystem. 

block size The natural unit of space allocated to a file (filesystem block size) or the smallest 

unit of I/O that a character device can do (for disk devices, usually the sector size). In FreeBSD, 

the filesystem block size is a parameter of the filesystem that is fixed at the time that the 

filesystem is created. 

bootstrapping The task of bringing a system up into an operational state. When a machine is 

first powered on, it is typically not running any program. Bootstrapping initializes the machine, 

loads a program from secondary storage into main memory, and sets that program running. 

bottom half With regard to system operation, the collection of routines in the kernel that is 

invoked as a result of interrupts. These routines cannot depend on any per-process state. See 

also top half. 

breakpoint fault A hardware trap that is generated when a process executes a breakpoint 

instruction. 

broadcast A transmission to all parties. In a network, a broadcast message is transmitted to all 

stations attached to a common communication medium. 

broadcast storm Occurs when a router is misconfigured such that it forwards all broadcast 

packets to its adjacent networks. A broadcast storm can be caused by a single broadcast packet 

being copied and transmitted multiple times throughout the network resulting in a waste of 

bandwidth and high levels of network congestion, degrading the overall quality of network 

services. 
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bss segment The portion of a program that is to be initialized to zero at the time the program 

is loaded into memory. The name bss is an abbreviation for “block started by symbol.” See also 

data segment; stack segment; text segment. 

buffer bloat A problem caused by overly large buffers present in many network routers. A 

network path with too much buffering can cause unnecessarily high packet delays, reducing 

overall network performance. 

buffer cache A cache of recently used disk blocks. In FreeBSD, the buffer cache has been 

merged with the virtual-memory cache. 

bus A standardized electrical and mechanical interconnection for components of a computer. 

byte A unit of measure applied to data. A byte is almost always 8 bits. 

callback In the kernel, a mechanism to notify a subsystem that an asynchronous operation has 

completed. In NFS, a scheme where a server keeps track of all the objects that each of its clients 

has cached. When a cached object is held by two or more clients and one of them modifies it, the 

server sends a notice to all the other clients holding that object so that they can purge it from 

their cache. See also lease. 

callout queue The kernel data structure that describes waiting events. Each event in the queue 

is described by a structure that contains a function to be called, a pointer to be passed as an 

argument to the function, and the number of clock ticks until the event should occur. 

canonical mode A terminal mode. Characters input from a terminal or a pseudo-terminal that 

is running in canonical mode are processed to provide standard line-oriented editing functions, 

and input is presented to a process on a line-by-line basis. When the terminal is processing in 

noncanonical mode, input is passed through to the reading process immediately and without 

interpretation. Canonical mode is also known as cooked mode, and noncanonical mode is also 

known as raw mode. 

capability A communicable, unforgeable token of authority. In FreeBSD, capabilities are file 

descriptors whose permissible operations have been “refined,” or limited to a specific set of 

operations. Capabilities are unforgeable as the kernel prevents improper modification. 

Capabilities are communicable as they are inherited across fork and exec, and can be delegated 

via local-domain sockets. See also capability system; Capsicum; descriptor. 

capability system Permits access to underlying objects only via capabilities. Capability mode 

prevents processes from acquiring new capabilities via global namespaces. Applications 

selectively delegate capabilities to sand-boxed processes to enforce access-control policies and 
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mitigate vulnerabilities by minimizing unnecessary rights. See also ambient authority; 

capability; Capsicum; sandbox. 

Capsicum A lightweight, kernel-based sandboxing framework based on the idea of a capability 

system. Capsicum’s primary use is in limiting the impact of vulnerabilities via application 

compartmentalization: sandboxed processes execute without ambient authority and have access 

only to objects for which they have been granted capabilities. See also ambient authority; 

application compartmentalization; capability; capability system; sandbox. 

caught signal A signal that, when delivered to a process, results in a signal-handler procedure 

being invoked. A signal handler is installed by a process with the sigaction system call. 

central processing unit (CPU) The primary computational unit in a computer. The CPU is 

the processing unit that executes applications. A multiprocessor will have more than one CPU. 

Other processing units may be present in a computer—for example, for handling I/O. 

character-at-a-time mode A mode of operation for a pseudo-terminal device whereby 

processes reading from the pseudo-terminal receive input immediately as it is typed. This mode 

differs from raw mode in that certain input processing, such as interpreting the interrupt 

character, is still performed by the system. See also canonical mode. 

character device A device that provides either a character-stream-oriented I/O interface or, 

alternatively, an unstructured (raw) interface. All devices in FreeBSD use the character-device 

interface. 

checksum The value of a mathematical function computed for a block of data; used to detect 

corruption of the data block. 

child process A process that is a direct descendant of another process as a result of being 

created with a fork system call. 

client ID In NFS, a client identifier uniquely identifies a client to a single server. The client ID 

is generated by the server and assigned to the client as part of the exchange ID operation. 

client process In the client–server model of communication, a process that contacts a server 

process to request services. A client process is usually unrelated to a server process; the client’s 

only association with the server is through a communication channel. See also server process. 

cluster The logical grouping of contiguous pages of virtual memory or a file. In FreeBSD, this 

grouping is used by the kernel to aggregate pages when writing or reading them to or from the 

disk to reduce the number of I/O operations needed to move data in and out of memory. 
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cold start The initial phase of a bootstrap procedure. The term is derived from the fact that the 

software assumes nothing about the state of the machine—as though the machine had just been 

turned on and were cold. 

communication domain An abstraction used by the interprocess-communication facilities to 

organize the properties of a communication network or similar facility. A communication 

domain includes a set of protocols, termed the protocol family; rules for manipulating and 

interpreting names; the address family; and, possibly, other intrinsic properties. The facilities 

provided by the system for interprocess communication are defined such that they are 

independent of the communication domains supported by the system. This design makes it 

possible for applications to be written in a communication-domain-independent manner. 

communication protocol A set of conventions and rules used by two communicating 

processes. Communication protocols are most often associated with networking. 

configuration file A file that contains parameters for the system-configuration program 

/usr/sbin/config. This file describes the device drivers that should be configured into the 

kernel and other basic kernel functionality such as the enabling of symmetric multiprocessing 

support. 

connect request A request passed to the user-request routine of a communication-protocol 

module as a result of a process making a connect system call on a socket. The request causes the 

system to attempt to establish an association between a local and a remote socket. 

context switching The action of interrupting the currently running thread and switching to 

another thread. Context switching occurs as one thread after another is scheduled for execution. 

An interrupted thread’s context is saved in that thread’s thread control block, and another 

thread’s context is loaded. 

continuation style A style of programming where two or more functions operate 

cooperatively by calling each other instead of returning directly at the end of execution. When 

the currently executing function is done with its work, it calls another function, which was 

passed as one of the first function’s arguments, as part of its return() call. Programming with 

continuations has the effect of creating a function chain and is often used when a system wants 

to submit work to a hardware coprocessor but wishes to have a cleanup routine called by the 

hardware coprocessor when the coprocessor has completed the job. 

continue signal Signal 19 (SIGCONT). A signal that, when delivered to a stopped or sleeping 

process, causes that process to resume execution. 
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controlling process The session leader that established the connection to the controlling 

terminal. See also session leader. 

controlling terminal The pseudo-terminal associated with a process’s session from which 

keyboard-related signals may be generated. The controlling terminal for a process is normally 

inherited from the process’s parent. 

control request A request passed to a communication-protocol module as a result of a process 

making an ioctl or setsockopt system call on a socket. 

cooked mode See canonical mode. 

copy-on-write A technique whereby multiple references to a common object are maintained 

until the object is modified (written). Before the object is written, a copy is made; the 

modification is made to the copy rather than to the original. In virtual-memory management, 

copy-on-write is a common scheme that the kernel uses to manage pages shared by multiple 

processes. All the page-table entries mapping a shared page are set such that the first write 

reference to the page causes a page fault. When the page fault is serviced, the faulted page is 

replaced with a private copy, which is writable. 

core file A file (named procname.core) that is created by the system when certain signals are 

delivered to a process. The file contains a record of the state of the process at the time the signal 

occurred. This record includes the contents of the process’s virtual address space and, on most 

systems, the user structure. 

CPU See central processing unit. 

crash Among computer scientists, an unexpected system failure. 

crash dump A record of the state of a machine at the time of a crash. This record is usually 

written to a place on secondary storage that is thought to be safe so that it can be saved until the 

information can be recovered. 

credential See user credential. 

current working directory The directory from which relative pathnames are interpreted for 

a process. The current working directory for a process is set with the chdir or fchdir system call. 

cylinder group In the fast filesystem, a collection of blocks on a disk drive that is grouped and 

managed together. The filesystem allocates inodes and data blocks on a per-cylinder-group basis. 

Cylinder group is a historic name from the days when the geometry of disks was known. 
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DAC See discretionary access control. 

daemon A long-lived process that provides a system-related service. There are daemon 

processes that execute in kernel mode (e.g., the pageout daemon) and daemon processes that 

execute in user mode (e.g., the routing daemon). The Old English term daemon means “a 

deified being,” as distinguished from the term demon, which means “an evil spirit.” 

DARPA Defense Advanced Research Projects Agency. An agency of the US Department of 

Defense that is responsible for managing defense-sponsored research in the United States. 

datagram socket A type of socket supporting an unreliable message transport that preserves 

message boundaries. 

datalink layer The network software component responsible for handling packets for a 

particular media protocol such as Ethernet. It normally resides above the physical layer and 

beneath the network layer in the ISO model of layered network protocols. 

data segment The segment of a process’s address space that contains the initialized and 

uninitialized data portions of a program. See also bss segment; stack segment; text segment. 

decapsulation In network communication, the removal of the outermost header information 

from a message. See also encapsulation. 

delegation In NFS, the process by which a server can allow a client to perform operations, such 

as reading and writing data, for a period of time without contacting the server. The server 

delegates responsibility for the reading and writing of data cached at the client. 

demand paging A memory-management technique in which memory is divided into pages 

and the pages are provided to processes as needed—that is, on demand. See also pure demand 

paging. 

demon See daemon. 

denial-of-service attack Any attempt to overload a system such that it is unable to do work 

for legitimate users of the system. For example, sending a system so many packets that it runs 

out of mbufs and thus cannot process any other network traffic. 

descriptor An integer assigned by the system when a file is referenced by the open system call 

or when a socket is created with the socket, pipe, or socketpair system calls. The integer 

uniquely identifies an access path to the file or socket from a given process or from any of that 

process’s children. Descriptors can also be duplicated with the dup and fcntl system calls. 
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descriptor table A per-process table that holds references to objects on which I/O may be 

done. I/O descriptors are indices into this table. 

device In UNIX, a peripheral connected to the CPU. 

device driver A software module that is part of the kernel and supports access to a peripheral 

device. 

device special file A file through which processes can access hardware devices on a machine. 

For example, a sound card is accessed through such a file. 

direct memory access (DMA) A facility whereby a peripheral device can access main 

memory without the assistance of the CPU. DMA is typically used to transfer contiguous blocks 

of data between main memory and a peripheral device. 

directory In UNIX, a special type of file containing entries that are references to other files. By 

convention, a directory contains at least two entries: dot (.) and dot-dot (..). Dot refers to the 

directory itself; dot-dot refers to the parent directory. 

directory entry An entry that is represented by a variable-length record structure in the 

directory file. Each structure holds an ASCII string that represents the filename, the number of 

bytes of space provided for the string, the number of bytes of space provided for the entry, the 

type of the file referenced by the entry, and the number of the inode associated with the 

filename. By convention, a directory entry with a zero inode number is treated as unallocated, 

and the space held by the entry is available for use. 

directory table The top level of a two-level hierarchy of data structures used by a 

forward-mapped page-table algorithm to describe the virtual address space of a process. Each 

entry in a directory table points to a page of page-table pages. A two-level mapping hierarchy is 

used on the PC architectures. See also forward-mapped page table; page-table entry; 

page-table pages. 

dirty In computer systems, modified. A system usually tracks whether an object has been 

modified—is dirty—because it needs to save the object’s contents before reusing the space held 

by the object. For example, in the virtual-memory system, a page in the virtual-memory cache is 

dirty if its contents have been modified. Dirty pages must be written to the swap area or 

filesystem before they are reused. 

discretionary access control (DAC) Refers to forms of access-control policy in which object 

owners control access by other users; for example, file permissions and access control lists 

(ACLs). See also access control list; file permissions; mandatory access control. 
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disk partition A software scheme that divides a disk drive into one or more linear extents or 

partitions. Each partition is a contiguous region of a disk drive that is used as a swap area or to 

hold a filesystem. 

distributed program A program that is partitioned among multiple processes, possibly 

spread across multiple machines. 

DMA See direct memory access. 

dnode A data structure used by the Zettabyte filesystem to describe objects that may change in 

size from tiny to huge. Dnodes describe filesystems, snapshots, clones, ZVOLs, space maps, 

property lists, and dead-block lists. When used to describe objects like files and directories, a 

dnode is embedded with a znode. 

domain Defines a set of related network protocols. The IPv4 protocols, including TCP, UDP, 

SCTP, and ICMP, are all members of the Internet domain, while the IPX and SPX protocols are 

members of the netipx domain. The network protocols defined for IPv6 are likewise members of 

their own, Internet version 6, domain. 

double indirect block See indirect block. 

effective GID See effective group identifier. 

effective group identifier (effective GID) The first entry in the groups array. The effective 

GID, along with the other GIDs in the groups array, is used by the filesystem to check group 

access permission. The effective GID is set when a set-group-identifier program is executed. See 

also credential; group identifier; real group identifier; saved group identifier. 

effective UID See effective user identifier. 

effective user identifier (effective UID) The UID that the system uses to check many user 

permissions. For example, the effective UID is used by the filesystem to check owner-access 

permission on files. The effective UID is set when a set-user-identifier program is executed. See 

also credential; real user identifier; saved user identifier; user identifier. 

elevator sorting algorithm An algorithm used by the device drivers for I/O requests to move 

disk heads. The algorithm sorts requests into a cyclic ascending order based on the block 

number of the request. The name is derived from the fact that the algorithm orders disk requests 

in a manner similar to the way ride requests for an elevator would be handled most efficiently. 
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emulate FreeBSD can emulate the system-call interface of other variants of the UNIX 

operating system. For example, FreeBSD can run binaries compiled for Linux. 

encapsulation In network communication, the procedure by which a message is created that 

has an existing message enclosed in it as data. A protocol normally encapsulates a message by 

crafting a leading protocol header that indicates the original message is to be treated as data. 

See also decapsulation. 

erase character The character that is recognized by the terminal handler, when the latter is 

running in canonical mode, to mean “delete the last character in the line of input.” Each 

terminal session can have a different erase character, and that erase character can be changed at 

any time with a tcsetattr system call. The terminal handler does not recognize the erase 

character on terminals that are in noncanonical mode. See also kill character; word-erase 

character. 

errno The global variable in C programs that holds an error code indicating why a system call 

failed. The value to be placed in errno is returned by the kernel in the standard return register; 

it is moved from this return register to errno by code in the C run-time library. 

event handler A function, registered with a software system, that is to be called at a later time 

when a particular event occurs. See also callout queue; kqueue. 

exactly once semantics A distributed system, built in such a way that certain client 

operations can be serialized and can occur only once, is said to provide exactly once semantics. 

Remote locking operations are one instance where exactly once semantics are desirable. 

extension header Message header that can be easily added and removed from a packet 

because it contains the header’s length and some indication of where and how to begin 

processing the next header, if such exists. 

fault rate The rate at which a process generates page faults. For a reference string, the fault 

rate is defined to be time independent by its being specified as the number of page faults divided 

by the length of the reference string. 

fetch policy The policy used by a demand-paged, virtual-memory-management system in 

processing page faults. Fetch policies differ primarily in the way that they handle prepaging of 

data. 

fifo file In the filesystem, a type of file that can be used for interprocess communication. Data 

written by one process to a fifo are read by another in the order in which they were sent. The 

name refers to the fact that data are transferred in a first-in, first-out fashion. 
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file An object in the filesystem that is treated as a linear array of bytes. A file has at least one 

name and the file exists until all its names are deleted explicitly. 

file entry See file structure. 

file handle A globally unique token created by an NFS server and passed back to an NFS client. 

The client can then use the file handle to refer to the associated file on the server. A handle is 

created when a file is first opened; it is passed to the server by the client in later operations, such 

as read and write, that reference the open file. 

filename A string of ASCII characters that names an ordinary file, special file, or directory. The 

characters in a filename cannot include null (0) or the ASCII code for slash (/). 

file offset A byte offset associated with an open file descriptor. The file offset for a file 

descriptor is set explicitly with the lseek system call, or implicitly as a result of a read or write 

system call. 

file permissions A bitmask associated with each file or directory that limits how the owner, 

group, and other users in the system are able to access the object. Each can be granted read, 

write, or execute access; in addition, file permissions include the sticky, setuid, and setgid bits. 

Permissions may be managed by the file’s owner, or the root user. See also access control list; 

discretionary access control. 

file structure The data structure used by the kernel to hold the information associated with 

one or more open file descriptors that reference a file. Usually, each open file descriptor 

references a unique file structure. File structures may be shared, however, when open 

descriptors are duplicated with the dup and dup2 system calls, inherited across a fork system 

call, or received in a message through the interprocess-communication facilities. 

filesystem A collection of files. The UNIX filesystem is hierarchical, with files organized into 

directories. Filesystems include facilities for naming files and for controlling access to files. A 

filesystem resides on a single, logical device that may be built from part of a single disk drive or 

from a set of disk drives that have been aggregated together. 

fill-on-demand page fault The first page fault for an individual page; it must be resolved by 

retrieval of data from the filesystem or by allocation of a zero-filled page. 

first-level bootstrap The initial code that is executed in a multilevel bootstrapping operation. 

Usually, the first-level bootstrap is limited in size and does little more than bootstrap into 

operation a larger, more intelligent program. Typically, the first-level bootstrap loads the /boot 

program so that /boot can, in turn, bootstrap the kernel. 
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foreground process In job-control-oriented process-management systems, a process whose 

process group is the same as that of its controlling terminal; thus, the process is allowed to read 

from and to write to the terminal. Otherwise, a foreground process is one for which the 

command interpreter is currently waiting. The opposite of a foreground process is a background 

process. 

fork file A directory containing named files for NFSv4 attributes. Each file in the directory 

names an attribute and each file’s contents are the value associated with that attribute. 

forward The direction a network packet takes through a system if it is received by a host for 

which it is not, ultimately, destined. See also inbound; router. 

forward-mapped page table A large, contiguous array indexed by the virtual address that 

contains one element, or page-table entry, for each virtual page in the address space. This 

element contains the physical page to which the virtual page is mapped, as well as access 

permissions and status bits telling whether the page has been referenced or modified, and a bit 

showing whether the entry contains valid information. Most current memory-management-unit 

designs for architectures with 32-bit address spaces use some variant of a forward-mapped page 

table. See also reverse-mapped page table; memory-management unit. 

fragment In the filesystem, a part of a block. The filesystem allocates new disk space to a file as 

a full block or as one or more fragments of a block. The filesystem uses fragments, rather than 

allocating space in only full block-size units, to reduce wasted space when the size of a full block 

is large. 

fragment-descriptor table A data structure in the fast filesystem that describes the 

fragments that are free in an entry of the allocation map. The filesystem uses the 

fragment-descriptor table by taking a byte in the allocation map and using the byte to index into 

the fragment-descriptor table. The value in the fragment-descriptor table indicates how many 

fragments of a particular size are available in the entry of the allocation map. By doing a logical 

AND with the bit corresponding to the desired fragment size, the system can determine quickly 

whether a desired fragment is contained within the allocation-map entry. 

free list In the memory-management system, the list of available pages of physical memory 

(also called the memory free list). There is a similar free list in the system for dynamically 

allocated kernel memory. Many kernel data structures are dynamically allocated, including 

vnodes, file-table entries, and disk-quota structures. 
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free-space reserve A percentage of space in a filesystem that is held in reserve to ensure that 

certain allocation algorithms used by the filesystem will work well. By default, 8 percent of the 

available space in the fast filesystem is held in reserve. 

gateway See router. 

generation number The number assigned to an inode each time that the latter is allocated to 

represent a new file. Each generation number is used only once. To make file handles harder to 

guess, most NFS implementations, including FreeBSD, use a random-number generator to 

select a new generation number. 

GID See group identifier. 

global page-replacement algorithm An algorithm that does page replacement according to 

systemwide criteria. A global-page-replacement strategy tends to make the most efficient use of 

the system memory. However, a single process can thrash the entire system by trying to use all 

the available memory. 

group identifier (GID) An integer value that uniquely identifies a collection of users. GIDs 

are used in the access-control facilities provided by the filesystem. See also credential; effective 

group identifier; real group identifier; saved group identifier; set-group-identifier program. 

half-open connection A connection that is open for communication in one direction between 

two endpoints. For example, a client may close its sending side of a stream connection because it 

has no more data to send but leave its receiving half of the connection open so that it can 

continue to receive data from the server. 

handler A procedure that is invoked in response to an event such as a signal. 

hard limit A limit that cannot be exceeded. See also soft limit. 

hard link A directory entry that directly references an inode. If there are multiple hard links to 

a single inode and if one of the links is deleted, the remaining links still reference the inode. By 

contrast, a symbolic link is a file that holds a pathname referencing a file. See also symbolic link. 

header prediction A heuristic used by TCP on incoming packets to detect two common cases: 

the next expected data segment for an existing connection or an acknowledgment plus a window 

update for one or more data segments. When one of these two cases arises, and the packet has 

no additional flags or state indications, the fully general TCP input processing is skipped. 
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heap The region of a process that can be expanded dynamically with the sbrk system call (or 

malloc() C library call). The name is derived from the disorderly fashion in which data are 

placed in the region. 

high watermark An upper bound on the number of data that may be buffered. In the 

interprocess-communication facilities, each socket’s data buffer has a high watermark that 

specifies the maximum number of data that may be queued in the data buffer before a request to 

send data will block the process (or will return an error if nonblocking I/O is being used). See 

also low watermark. 

hole In a file, a region that is part of the file but has no associated data blocks. The filesystem 

returns zero-valued data when a process reads from a hole in a file. A hole is created in a file 

when a process positions the file pointer past the current end-of-file, writes some data, and then 

closes the file. The hole appears between the previous end-of-file and the beginning of the newly 

written data. 

home directory The current working directory that is set for a user’s shell when the user logs 

into a system. This directory is usually private to the user. The home directory for a user is 

specified in a field in the password-file entry for the user. 

hop limit The number of routers through which a network packet may be forwarded before it is 

dropped. See also router. 

host-unreachable message A network-layer error message indicating that the host to which 

a previous message was directed is unavailable because there is no known path to the desired 

host. 

ICMP See Internet control message protocol. 

ICV See integrity-check value. 

idempotent An operation that can be repeated several times without changing the final result 

or causing an error. For example, writing the same data to the same offset in a file is idempotent 

because it will yield the same result whether it is done once or many times. However, trying to 

remove the same file more than once is nonidempotent because the file will no longer exist after 

the first try. 

idle loop The block of code inside the kernel that is executed when there is nothing else to run. 

In FreeBSD, the idle loop zeros pages on the free list while it waits for a thread to be added to 

the run queue. 
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idle queue The queue where all idle threads are stored. An idle thread is run only when a CPU 

has nothing else to do. See also run queue; sleep queue; turnstile queue. 

IKE See Internet key exchange. 

inbound The direction a network packet is traveling if it has reached the system for which it is 

destined. An inbound network packet is delivered to an application on a system or causes an 

error if no appropriate application is found. See also forward. 

indirect block In the filesystem, an auxiliary data block that holds the number of a data block. 

The first 12 blocks of a file are pointed to directly by the inode. Additional data blocks are 

described with a pointer from the inode to an indirect block; the system must first fetch the 

indirect block that holds the number of the data block. In FreeBSD, the kernel may have to fetch 

as many as three indirect blocks to locate the desired data block. An indirect block that contains 

data-block numbers is termed a single indirect block; an indirect block that contains block 

numbers of single indirect blocks is called a double indirect block; an indirect block that 

contains block numbers of double indirect blocks is called a triple indirect block. 

init The first user program (/sbin/init) that runs when the system is booted. 

initial sequence number See sequence space. 

inode A data structure used by the filesystem to describe a file. The contents of an inode 

include the file’s type and size, the UID of the file’s owner, the GID of the directory in which it 

was created, and a list of the disk blocks and fragments that make up the file. Note that inodes 

do not have names; directory entries are used to associate a name with an inode. 

input/output (I/O) The transfer of data between the computer and its peripheral devices. 

integrity-check value (ICV) A value computed over a range of data by a sender that is used 

by a receiver to ensure that data transmitted across a network was not corrupted. See also 

checksum. 

interactive program A program that must periodically obtain user input to do its work. A 

screen-oriented text editor is an example of an interactive program. 

Internet control message protocol (ICMP) A communication protocol used for reporting 

errors and controlling the operation of the Internet protocols. Each of IPv4 and IPv6 includes its 

own version of ICMP, called ICMPv4 and ICMPv6, respectively. 
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Internet key exchange (IKE) A network protocol for exchanging keys used in the IPSec 

security protocols. 

Internet protocol See IPv4 domain. 

interpreter A program that parses and executes a descriptive language in a single step, rather 

than using the more common two-stage process of compiling the language and executing the 

resulting binary. The shell is an example of an interpreter; it parses and executes a shell script 

rather than first compiling it. 

interprocess communication (IPC) The transfer of data between processes. Most facilities 

for interprocess communication are designed such that data are transferred between objects 

other than processes. An interprocess-communication model that is not directly process 

oriented is advantageous because it is possible to model scenarios in which communication 

endpoints are location independent and, possibly, are migrated dynamically. For example, in 

FreeBSD, communication is between sockets rather than between processes. 

interprocessor interrupt (IPI) A special type of interrupt by which one processor may 

interrupt another processor in a multiprocessor system if the interrupting processor requires 

action from the other processor. 

interrupt In computer systems, an event external to the currently executing process that 

causes a change in the normal flow of instruction execution. Interrupts usually are generated by 

hardware devices that are external to the CPU. 

inverted page table See reverse-mapped page table. 

I/O See input/output. 

I/O redirection The redirection of an I/O stream from the default assignment. For example, 

all the standard shells permit users to redirect the standard output stream to a file or process. 

I/O redirection is implemented in the shell by first closing the descriptor associated with the I/O 

stream and then opening or duplicating another descriptor in its place. 

I/O stream A stream of data directed to, or generated from, a process. Most I/O streams in 

UNIX have a single common data format that permits users to write programs in a tool-oriented 

fashion and to combine these programs in pipelines by directing the standard output stream of 

one program to the standard input stream of another. 

iovec A data structure used to specify user I/O requests made to the kernel. Each structure 

holds the address of a data buffer and the number of bytes of data to be read or written. Arrays 
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of such structures are passed to the kernel in readv and writev system calls. See also 

scatter-gather I/O. 

I/O vector See iovec. 

IPC See interprocess communication. 

IPI See interprocessor interrupt. 

IPSec The set of protocols that implement network layer security in the Internet protocols, 

versions 4 and 6. 

IPv4 domain Version 4 of the Internet protocols. IPv4 used to be called the Internet protocols 

until version 6 was developed. See also IPv6 domain. 

IPv6 domain Version 6 of the Internet protocols. The newest version of the Internet protocols 

with support for larger addresses, security, and autoconfiguration. See also IPv4 domain. 

job In UNIX, a set of processes that all have the same process-group identifier. Jobs that have 

multiple processes are normally created with a pipeline. A job is the fundamental object that is 

manipulated with job control. 

job control A facility for managing jobs. With job control, a job may be started, stopped, and 

killed, as well as moved between the foreground and the background. The terminal handler 

provides facilities for automatically stopping a background job that tries to access the 

controlling terminal and for notifying a job’s controlling process when such an event occurs. 

keepalive packet A type of packet used by TCP to maintain information about whether a 

destination host is up. Keepalive packets are sent to a remote host, which, if it is up, must 

respond. If a response is not received in a reasonable time to any of several keepalive packets, 

then the connection is terminated. Keepalive packets are used on only those TCP connections 

that have been created for sockets that have the SO_KEEPALIVE option set on them. 

keepalive timer A timer used by the TCP protocol when using keepalive packets. The timer is 

set when a keepalive packet is transmitted. If a response to the packet is not received before the 

timer expires several times, then the connection is shut down. 

kernel The central controlling program that provides basic system facilities. The FreeBSD 

kernel creates and manages processes, provides functions to access the filesystem, and supplies 

communication facilities. The FreeBSD kernel is the only part of FreeBSD that a user cannot 

replace. 
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kernel-event polling A generic method of notifying a process when an event happens or a 

condition holds based on the results of small pieces of kernel code termed filters. The process 

describes a set of events for which the process referencing the descriptor wants to be notified. 

Events include both dynamic transitions, such as the arrival of data to read, and state transitions, 

such as a rename of the file associated with the descriptor. See also nonblocking I/O; polling 

I/O; signal-driven I/O. 

kernel mode The most privileged processor-access mode. The FreeBSD kernel operates in 

kernel mode. See also user mode. 

kernel process A process that executes with the processor in kernel mode. The pageout 

daemon and swapper processes are examples of kernel processes. 

kernel state The run-time execution state for the kernel. This state, which includes the 

program counter, general-purpose registers, and run-time stack, must be saved and restored on 

each context switch. 

key In the kernel, a piece of data that uniquely identifies some resource in the system. When 

used by an interprocess communication system, it identifies an endpoint of communication such 

as a message queue or a shared facility like a region of shared memory. 

kill character The character that is recognized by the terminal handler in canonical mode to 

mean “delete everything typed on this terminal after the most recent end-of-line character.” 

Each terminal session can have a different kill character, and the user can change that kill 

character at any time with an tcsetattr system call. The terminal handler does not recognize the 

kill character on terminals that are in noncanonical mode. See also erase character; word-erase 

character. 

kqueue A kernel data structure associated with a file descriptor that describes a set of events 

for which the process referencing the descriptor wants to be notified. Events include both 

dynamic transitions, such as the arrival of data to read, and state transitions, such as a rename 

of the file associated with the descriptor. 

lease A ticket permitting an activity that is valid until a specified expiration time. In the NQNFS 

protocol, a client gets a lease from its server to read, write, or read and write a file. As long as the 

client holds a valid lease, it knows that the server will notify it if the file status changes. Once the 

lease has expired, the client must contact the server to request a new lease before using any data 

that it has cached for the file. See also callback. 

least recently used (LRU) A policy of reuse whereby the least recently used items are reused 

first. For example, in the filesystem, there is a fixed number of vnodes available for accessing 
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files. Vnodes that hold valid file data are reallocated in an LRU order, in the hope that the file 

referenced by the vnode may be reused by a later open request. 

line discipline A processing module in the kernel that provides semantics for an asynchronous 

serial interface or for a software emulation of such an interface. Line disciplines are described by 

a procedural interface whose entry points are stored in the linesw data structure. 

line mode See canonical mode. 

link layer Layer 2 in the ISO Open Systems Interconnection Reference Model. In this model, 

the link layer is responsible for the (possibly unreliable) delivery of messages within a single 

physical network. The link layer corresponds most closely to the network-interface layer of the 

FreeBSD network subsystem. See also network-interface layer. 

listen request A request passed to a communication-protocol module as a result of a process 

making a listen system call on a socket. This request indicates that the system should listen for 

requests to establish a connection to the socket. Otherwise, the system will reject any connection 

requests that it receives for the socket. 

loadable kernel modules A collection of software that implements a kernel service but that is 

not statically linked into the kernel’s image. Loadable kernel modules are brought into the 

system dynamically, possibly at run time, by actions initiated either by the system or a user. See 

also permanent kernel modules. 

local domain A communication domain in the interprocess-communication facilities that 

supports stream- and datagram-oriented styles of communication between processes on a single 

machine. 

locality of reference A phenomenon whereby memory references of a running program are 

localized within the virtual address space over short periods. Most programs tend to exhibit 

some degree of locality of reference. This locality of reference makes it worthwhile for the 

system to prefetch pages that are adjacent to a page that is faulted, reducing the fault rate of a 

running program. 

local page-replacement algorithm An algorithm for page replacement that first chooses a 

process from which to replace a page and then chooses a page within that process based on 

per-process criteria. Usually, a process is given a fixed number of pages and must then select 

from them when it needs a new page. 

logical block A block defined by dividing a file’s linear extent by the underlying filesystem 

block size. Each logical block of a file is mapped into a physical block. This additional level of 
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mapping permits physical blocks to be placed on disk without concern for the linear 

organization of the logical blocks in a file. 

long-term-scheduling algorithm See short-term-scheduling algorithm. 

low watermark A lower bound that specifies the minimum number of data that must be 

present before an action can be taken. In the interprocess-communication facilities, each 

socket’s data buffer has a low watermark that specifies the minimum number of data that must 

be present in the data buffer before a reception request will be satisfied. See also high 

watermark. 

LRU See least recently used. 

MAC See mandatory access control. 

machine check An exceptional machine condition that indicates the CPU detected an error in 

its operation. For example, a machine check is generated if a parity error is detected in a cache 

memory. 

magic number The number located in the first few bytes of an executable file that indicates 

the file’s type. Many on-disk data structures have a magic number to help verify their contents. 

main memory The primary memory system on a machine. 

mandatory access control (MAC) An infrastructure that allows the system administrator to 

impose security policies on all users in the system, in contrast to discretionary access control in 

which users control access to their own files. Policies include multilevel security in which labels 

on processes and files control access to use based on a user’s clearance level and the file’s 

confidentiality level. MAC is implemented via a reference monitor, the MAC framework. See also 

discretionary access control; multilevel security; reference monitor. 

mandatory lock A lock that cannot be ignored or avoided. A mandatory lock is contrasted 

with an advisory lock, which is enforced only when a process explicitly requests its enforcement. 

See also advisory lock. 

mapped object An object whose pages are mapped into a process address space. Processes 

map objects into their virtual address space using the mmap system call. 

mapping structure The machine-dependent state required to describe the translation and 

access rights of a single page. See also page-table entry. 
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marshalling Preparing a set of parameters to be sent across a network. Marshalling includes 

replacing pointers by the data to which they point and converting binary data to the canonical 

network byte order. See also remote procedure call. 

masked signal A signal blocked in a sigprocmask system call. When a signal is masked, its 

delivery is delayed until it is unmasked. In addition, in FreeBSD, the system automatically 

masks a caught signal while that signal is being handled. 

maximum segment lifetime (MSL) The maximum time that a segment of data may exist in 

the network. See also 2MSL timer. 

maximum transmission unit (MTU) The largest packet that can be communicated across a 

network link in a single transaction. 

mbuf A data structure that describes a block of data. Mbufs are used in the 

interprocess-communication facilities for holding network packets, as well as data that are 

internal to the network protocol modules. “Mbuf” is shorthand for “memory buffer.” 

memory address A number that specifies a memory location. Memory addresses are often 

categorized as physical or virtual according to whether they reference physical or virtual 

memory. 

memory free list See free list. 

memory-management system The part of the operating system that is responsible for the 

management of memory resources available on a machine. 

memory-management unit (MMU) A hardware device that implements 

memory-management-related tasks, such as address translation and memory protection. Most 

contemporary memory-management units also provide support for demand-paged 

virtual-memory management. See also address translation. 

message queue A local interprocess-communication mechanism that supports in-order 

delivery of messages. Messages are inserted at one end of the queue and removed from the other, 

and the kernel guarantees their ordering. 

metadata In filesystems, metadata provides pointers and descriptions for linking multiple disk 

sectors into files and identifying those files. Metadata are the directories, inodes, and free block 

maps that give structure to raw storage capacity. 

MLS See multilevel security. 
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MMU See memory-management unit. 

MSL See maximum segment lifetime. 

MTU See maximum transmission unit. 

multilevel feedback queue A queueing scheme in which requests are partitioned into 

multiple prioritized subqueues, with requests moving between subqueues based on dynamically 

varying criteria. The FreeBSD kernel uses a multilevel-feedback-queueing scheme for 

scheduling the execution of threads. 

multilevel security (MLS) A mandatory access control (MAC), sometimes referred to as the 

Bell-LaPadula policy, that controls access based on data confidentiality. In MLS, processes are 

labeled with clearances and objects (e.g., files) are labeled with classifications. Two rules are 

enforced: higher-clearance processes cannot “write down” to lower-classification objects, and 

lower-clearance processes cannot “read up” from higher-classification objects. See also 

mandatory access control. 

multiple-root problem A problem that results from the implementation details of filesystems 

in non-Unix environments, such as Windows-based operating systems, in which each filesystem 

has its own root directory without the benefit of a single root to bind all filesystems. Directory 

traversal in a system with multiple root directories required changes in the NFS protocol so that 

users and programs could move smoothly across filesystems without the need to know about 

multiple root directories. 

neighbor discovery The technique by which a system on a network discovers the hardware 

address of its neighbors, including its router, so that it can send network packets to them. The 

neighbor discovery protocol is used by IPv6. See also address-resolution protocol. 

netmask A network mask defines the boundary between the host and network parts of a 

network address. The mask is used by various parts of the network protocol and routing systems 

to make decisions about whether a network address is meant for a specific node, or if it should 

be routed to another system in the Internet. 

network byte order The order defined by a network for the transmission of protocol fields 

that are larger than one byte. In IPv4 and IPv6, this order is “most significant byte first.” 

network-interface layer The layer of software in the FreeBSD network subsystem that is 

responsible for transporting messages between hosts connected to a common transmission 

medium. This layer is mainly concerned with driving the transmission media involved and with 
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performing any necessary link-level protocol encapsulation and decapsulation. See also link 

layer. 

network layer The layer of software in the FreeBSD network subsystem that is responsible for 

implementing ISO layer 2 functionality. In the IPv4 domain, this functionality is implemented 

in the IP protocol module. 

network mask See netmask. 

newbus The device-driver infrastructure used in FreeBSD to manage the devices on the system. 

Newbus includes machine-independent routines and data structures for use by 

machine-dependent layers and provides a framework for dynamic allocation of data structures 

for each device. See also autoconfiguration. 

nice A user-controllable process-scheduling parameter. The value of a process’s nice variable is 

used in calculating the scheduling priority of the process’s threads. Positive values of nice mean 

that the process is willing to receive less than its share of the processor. Negative values of nice 

mean that the process requests more than its share of the processor. 

nonblocking I/O A mode in which a descriptor may be placed, whereby the system will return 

an error if any I/O operation on the descriptor would cause the process to block. For example, if 

a read system call is done on a descriptor that is in nonblocking I/O mode, and no data are 

available, the system will return the error code EAGAIN, rather than block the process until data 

arrive. See also kernel-event polling; polling I/O; signal-driven I/O. 

noncanonical mode See canonical mode. 

nonlocal goto A transfer in control that circumvents the normal flow of execution in a 

program across routine boundaries. For example, if procedure A calls procedure B, and B calls C, 

then a direct transfer of control from C back to A (bypassing B) would be a nonlocal goto. 

nonresident object An object that is not present in main memory. For example, a page in the 

virtual address space of a process may be nonresident if it has never been referenced. 

nonuniform memory access (NUMA) A computer memory design with nonuniform 

memory access (NUMA) used in systems with multiple CPUs. Access time to the memory 

depends on the memory location relative to the CPU. Under NUMA, a CPU can access its own 

local memory faster than memory local to another CPU or shared between CPUs. See also 

symmetric multiprocessing. 

NUMA See nonuniform memory access. 
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object See virtual-memory object. 

optimal replacement policy A replacement policy that optimizes the performance of a 

demand-paging virtual-memory system. In this book, a policy whereby the full reference string 

of a program is known in advance, and pages are selected such that the number of page faults is 

minimized. 

orphaned process group A process group in which the parent of every member is either 

itself a member of the group or is not a member of the group’s session. Such a parent would 

normally be a job-control shell capable of resuming stopped child processes. 

out-of-band data Data transmitted and received out of the normal flow of data. Stream 

sockets support a logically separate out-of-band data channel through which at least one 

message of at least 1 byte of data may be sent. The system immediately notifies a receiving 

process of the presence of out-of-band data, and out-of-band data may be retrieved from the 

stream out of the order in which normal data are received. 

overlay In computer systems, a region of code or data that may be replaced with other such 

regions on demand. Overlays are usually loaded into a process’s address space on demand, 

possibly on top of another overlay. Overlays are a commonly used scheme for programs that are 

too large to fit in the address space of a machine that does not support virtual memory. 

page In memory management, the fixed-sized unit of measure used to divide a physical or 

virtual address space. See also demand paging. 

page fault An exception generated by a process’s reference to a page of that process’s virtual 

address space that is not marked as resident in memory. 

pagein An operation done by the virtual-memory system in which the contents of a page are 

read from secondary storage. 

pageout An operation done by the virtual-memory system in which the contents of a page are 

written to secondary storage. 

pageout daemon In FreeBSD, the kernel process that is responsible for writing parts of the 

address space of a process to secondary storage, to support the paging facilities of the 

virtual-memory system. See also swapper. 

pager A kernel module responsible for providing the data to fill a page and for providing a place 

to store that page when it has been modified and the memory associated with it is needed for 

another purpose. 
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page reclaim A page fault where the page that was faulted is located in memory, usually on the 

inactive or cache list. 

page table The data structure used by the virtual-memory system to store the mapping 

between virtual addresses and physical addresses. See also page-table entry; page-table pages. 

page-table entry (PTE) The machine-dependent data structure that identifies the location 

and status of a page of a virtual address space. When a virtual page is in memory, the PTE 

contains the page-frame number that the hardware needs to map the virtual page to a physical 

page. 

page-table pages The top level of a two-level hierarchy of data structures used by a 

forward-mapped page-table algorithm to describe the virtual address space of a process. On the 

PC, page-table pages are stored in an array called the directory table; each entry in a page-table 

page points to a page of bottom-level page-table entries. See also directory table; 

forward-mapped page table; page-table entry; page table. 

paging The action that brings pages of an executing process into main memory when they are 

referenced and that removes them from memory when they are replaced. When a process 

executes, all its pages are said to reside in virtual memory. Only the actively used pages, however, 

need to reside in main memory. The remaining pages can reside on disk until they are needed. 

panic In UNIX, an unrecoverable system failure detected by the kernel. FreeBSD automatically 

recovers from a panic by rebooting the machine, repairing any filesystem damage, and then 

restarting normal operation. See also crash dump. 

parent process A process that is a direct relative of another process as a result of a fork system 

call. 

partition See disk partition. 

path MTU discovery An algorithm and set of messages used to find the largest packet that 

can be sent between two endpoints in the network. 

pathname A null-terminated character string starting with an optional slash (/), followed by 

zero or more directory names separated by slashes, and optionally followed by a filename. If a 

pathname begins with a slash, it is said to be an absolute pathname, and the path search begins 

at the root directory. Otherwise, the pathname is said to be a relative pathname, and the path 

search begins at the current working directory of the process. A slash by itself names the root 

directory. A null pathname refers to the current working directory. 
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permanent kernel modules A collection of software that implements a kernel service that 

must be present at boot time and may not be removed while the system is running. See also 

loadable kernel module. 

persist timer A timer used by TCP for maintaining output flow on a connection. This timer is 

started whenever data are ready to be sent, but the send window is too small to bother sending 

and no data are already outstanding. If no window update is received before the timer expires, a 

window probe is sent. 

physical block One or more contiguous disk sectors to which the system maps a logical block. 

physical mapping The software state, also referred to as the pmap structure, needed to 

manage the machine-dependent translation and access tables that are used either directly or 

indirectly by the memory-management hardware. This mapping state includes information 

about access rights, in addition to address translation. 

PID See process identifier. 

pipe An interprocess-communication facility that supports the unidirectional flow of data 

between related processes. Data transfer is stream oriented, reliable, and flow controlled. A pipe 

is specified to the shell with the “|” symbol. For example, to connect the standard output of 

program a to the standard input of program b, the user would type the command “a | b.” 

pipeline A collection of processes in which a pipe connects the standard output of one process 

to the standard input of the next process. 

placement policy The policy used by the virtual-memory system to place pages in main 

memory when servicing a page fault. FreeBSD uses page coloring to optimize the placement of 

pages. 

pmap See physical mapping. 

pmap module The physical-mapping module manages machine-dependent translation and 

access tables that are used either directly or indirectly by the memory-management hardware. 

polling I/O The normal mode for a descriptor whereby the system will block if a read request 

has no data available or a write request has no buffering available. A process can determine 

whether an I/O operation will block by polling the kernel using the select or poll system call. The 

select or poll system call can be requested to return immediately with the information or to 

block until at least one of the requested I/O operations can be completed. See also kernel-event 

polling; nonblocking I/O; signal-driven I/O. 
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POSIX The standards group for P1003, the portable operating-system interfaces established by 

the IEEE. Its first established standard was the kernel interface, 1003.1, which was ratified in 

1988. The final POSIX standard was ratified in 1999. Since 1999, the only changes have been to 

keep the existing POSIX standards current. 

prefetching The retrieval of data before they are needed. Many machines prefetch machine 

instructions so that they can overlap the time spent fetching instructions from memory with the 

time spent decoding instructions. 

prepaging The prefetching of pages of memory. Prepaging is a technique used by 

virtual-memory systems to reduce the number of page faults. See also cluster. 

priority inversion A problematic scenario in scheduling where a high-priority thread is 

indirectly preempted by a lower-priority thread effectively inverting the relative priorities of the 

two threads. This inversion violates the priority model that high-priority threads can only be 

prevented from running by higher-priority threads and briefly by low-priority threads that will 

quickly complete their use of a resource shared by the high- and low-priority threads. See also 

priority propagation. 

priority propagation The propagation of the priority of a high-priority thread blocking on a 

mutex to a low-priority thread holding that mutex. The current owner temporarily assumes the 

priority of the higher-priority thread waiting on the mutex. This higher priority allows the owner 

to resume running if it was preempted by a mid-priority thread, and to continue running should 

a mid-priority thread become ready to run. When the owner releases the mutex, it drops back to 

its original priority. See also priority inversion. 

private mapping When privately mapping a file in virtual memory, changes made to the 

memory mapping the file are not written back to the mapped file and are not visible to other 

processes mapping the file. See also shared mapping. 

privilege The right to bypass normal system protections and access control. Normally, the 

kernel grants privilege only to processes owned by the superuser. Root users within jails have 

restricted privilege to prevent escape from jail. Mandatory access control may also grant or limit 

privilege to processes as dictated by policy. See also mandatory access control; superuser. 

privilege separation See application compartmentalization. 

probe The operation of checking to see whether a hardware device is present on a machine. 

Newer bus designs have a standardized way to identify the devices that are attached to them. 
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probe effect Placing data collection or debugging code in a program incurs extra execution 

time and a different layout of memory. These changes are referred to as the probe effect and 

may even cause different results. 

process In operating systems, a task that contains one or more threads of execution. In UNIX, 

user processes are created with the fork system call. 

process context The context of a FreeBSD process consists of user-level state, including the 

contents of its address space and the run-time environment, and kernel-level state, including 

scheduling parameters, resource controls, and identification information. The process context 

includes everything used by the kernel in providing services for the process. See also process 

credential; thread; virtual address space. 

process credential A data structure describing the security context associated with each user 

process as well as cached with open files, sockets, mount-points, and other system objects that 

must authorize asynchronous operations. In addition to authorizing UIDs, GIDs, security labels, 

and jail information, the credential contains event-auditing configuration and resource limits. 

See also user credential. 

process group A collection of processes on a single machine that all have the same 

process-group identifier. The kernel uses this grouping to arbitrate among multiple jobs 

contending for the same terminal. 

process-group identifier A positive integer used to identify uniquely each active process 

group in the system. Process-group identifiers are typically defined to be the PID of the 

process-group leader. Process-group identifiers are used by command interpreters in 

implementing job control when the command interpreter is broadcasting signals with the killpg 

system call, and when the command interpreter is altering the scheduling priority of all 

processes in a process group with the setpriority system call. 

process-group leader The process in a process group whose PID is used as the process-group 

identifier. This process is typically the first process in a pipeline. 

process identifier (PID) A nonnegative integer used to identify uniquely each active process 

in the system. 

process model A model inherited from the Multics operating system that places 

userspace-program instances in separate virtual-address spaces for robustness and security. In 

the early 2000s, threads (encapsulating execution context such as register state) were 

differentiated from processes (process context containers for executing threads) to support 

multithreaded programming. See also process context; thread. 
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process open-file table See descriptor table. 

processor affinity In an SMP system, a desire to run a thread on the same processor. For 

performance reasons, a thread should not be migrated between processors unnecessarily 

because of the loss of its cached working memory. 

processor group A set of CPU cores on a processor supporting symmetric multi-threading or 

a set of processors in an SMP system that is treated as a unit by the scheduler. 

process priority A parameter used by the kernel to schedule the execution of the threads 

within a process. The priority for threads running in the timesharing class changes dynamically 

according to the operation of the thread. In addition, the nice parameter can be set for a process 

to weight the overall scheduling priority for its threads. See also scheduling class; scheduling 

priority. 

process structure A data structure maintained by the kernel for each active process in the 

system. The process structure for a process is always resident in main memory. See also thread 

structure. 

/proc filesystem A filesystem-based interface to active processes that provides 

process-debugging facilities. Each process is represented by a directory entry in a 

pseudo-directory named /proc. Applications access the virtual address space of a process by 

opening the file in /proc that is associated with the process and then using the read and write 

system calls as though the process were a regular file. 

protocol family A collection of communication protocols, the members of which are related by 

being part of a single network architecture. For example, the TCP, UDP, IPv4, and ICMPv4 

protocols are part of the protocol family for the IPv4 domain. 

protocol-switch structure A data structure that holds all the entry points for a 

communication protocol supported by the kernel. 

pseudo-terminal A software emulation of a hardware terminal, built from a pair of character 

devices: a master device and a slave device. The slave device provides a process with an interface 

identical to that for a hardware terminal. However, instead of having a hardware device driving 

it, the slave device has another process manipulating it through the master half of the 

pseudo-terminal. Anything written on the master device is given to the slave device as input, 

and anything written on the slave device is presented as input on the master device. 

PTE See page-table entry. 
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public-key encryption A cryptographic system in which the keys used to encrypt data can be 

shared publicly, in contrast to systems that require all keys be kept secret to guarantee the 

security of the data. 

pure demand paging Demand paging without prepaging. 

push migration When the scheduler actively moves a thread from one CPU to another to 

balance the computational load in a system. 

race condition When two or more actions for an operation occur in an undefined order. 

Trouble arises if there exists a possible order that results in an incorrect outcome. 

rapid connection reuse A new connection that exactly duplicates the addresses and ports of 

a recently closed stream socket in the TIME_WAIT state. 

raw-device interface The character-device interface for block-oriented devices such as disks. 

This interface provides raw access to the underlying device, arranging for direct I/O between a 

process and the device. 

raw mode See canonical mode. 

raw socket A socket that provides direct access to a communication protocol beneath the 

transport layer. For example, a raw socket in the IPv4 domain gives the user the ability to read 

and write IP packets directly without using a transport protocol such as UDP or TCP. 

real GID See real group identifier. 

real group identifier (real GID) The GID that is recorded in the accounting record when a 

process terminates. The real GID for a process is initially set at the time that a user logs into a 

system and is then inherited by child processes across later fork and exec system calls 

(irrespective of whether a program is set-group-identifier). See also credential; effective group 

identifier; saved group identifier; set-group-identifier program. 

real UID See real user identifier. 

real user identifier (real UID) With respect to a process, the true identity of the user that is 

running the process. The real UID for a process is initially set at the time a user logs into a 

system and is then inherited by child processes across later fork and exec system calls 

(irrespective of whether a program is set-user-identifier). The real UID is recorded in the 

accounting record when a process terminates. See also credential; effective user identifier; 

saved user identifier; set-user-identifier program. 
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receive window In TCP, the range of sequence numbers that defines the data the system will 

accept for a connection. Any data with sequence numbers outside this range that are received 

are dropped. See also sliding-window scheme. 

reclaim See page reclaim. 

reclaim from inactive A page reclaim from the inactive list. A page can be reclaimed from the 

inactive list if that page is freed by the page-replacement algorithm, but the page is not 

reassigned before a process faults on it. 

red zone A read-only region of memory immediately below the last page of the per-thread, 

kernel-mode, run-time stack. The red zone is set up by the system so that a fault will occur if a 

thread overflows the space allocated for its kernel stack. 

referenced page In the virtual-memory system, a page that is read or written. 

reference monitor Controls access to objects in order to implement security policies such as 

mandatory access control. The classical definition requires that a reference monitor be 

tamper-proof, always invoked (non-bypassable), and small enough to subject to analysis and 

tests. See also mandatory access control. 

reference string A dataset that describes the pages referenced by a process over the time of 

the process’s execution. This description represents the memory-related behavior of the process 

at discrete times during that process’s lifetime. 

region A range of memory that is being treated in the same way. For example, the text of a 

program is a region that is read-only and is demand paged from the file on disk that contains it. 

relative pathname See pathname. 

relocation The copying of a program’s contents from one place in an address space to another. 

This copying may be accompanied by modifications to the image of the program so that memory 

references encoded in the program remain correct after that program is copied. Code that is not 

bound to a particular starting memory address is said to be relocatable or position independent. 

remote procedure call (RPC) A procedure call made from a client process to invoke a 

subroutine in a server process. Typically, the client and server processes are running on 

different machines. A remote procedure call operates much like a local procedure call: the client 

makes a procedure call, and then waits for the result while the procedure executes. See also 

marshalling. 
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replacement policy The policy that a demand-paged virtual-memory-management system 

uses to select pages for reuse when memory is otherwise unavailable. 

resident object An object that is present in main memory. For example, a page in the virtual 

address space of a process is resident if its contents are present in main memory. 

resident-set size The number of pages of physical memory held by a process. In a well-tuned 

system, the resident-set size of a process will be that process’s working set. Usually, the precise 

working set cannot be calculated, so a process will have additional pages beyond that needed for 

its working set. 

retransmit timer A timer used by TCP to trigger the retransmission of data. This timer is set 

each time that data are transmitted to a remote host. It is set to a value that is expected to be 

greater than the time it will take the receiving host to receive the data and return an 

acknowledgment. 

reverse-mapped page table A hardware-maintained memory-resident table that contains 

one entry per physical page and that is indexed by physical address instead of by virtual address. 

An entry contains the virtual address to which the physical page is currently mapped; the entry 

also includes protection and status attributes. The hardware does virtual-to-physical address 

translation by computing a hash function on the virtual address to select an entry in the table. 

The hardware handles collisions by linking together table entries and making a linear search of 

this chain until it finds the matching virtual address. See also forward-mapped page table. 

root directory The directory that the kernel uses in resolving absolute pathnames. Each 

process has a root directory that can be set with the chroot system call, and the system has a 

unique root directory, the identity of which is set at the time that the system is bootstrapped. 

root filesystem The filesystem containing the root directory that is considered the root of all 

filesystems on a machine. The identity of a default root filesystem is compiled into a kernel, 

although the actual root filesystem used by a system may be set to some other filesystem at the 

time that a system is bootstrapped. 

root user See superuser. 

round robin In queueing, an algorithm in which each requester is serviced for a fixed time in a 

first-come, first-served order; requests are placed at the end of the queue if they are incomplete 

after service. 

route In packet-switched-network communication, a route to a destination specifies the host or 

hosts through which data must be transmitted to reach the destination. 
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router A machine, also known as a gateway, that has two or more network interfaces and that 

forwards packets between the networks to which it is connected. Typically, a router runs a 

routing process that gathers information on the network topology; it uses that information to 

devise a set of next-hop routes that it installs in the kernel’s routing table. See also routing 

mechanism; routing policy. 

router solicitation A message sent by a host in an attempt, without human intervention, to 

discover which machine is its router. See also autoconfiguration; neighbor discovery. 

routing daemon A process in FreeBSD that provides a routing-management service for the 

system. This service uses a protocol that implements a distributed database of routing 

information updated dynamically to reflect changes in topological connectivity. 

routing mechanism The routing facilities included in the kernel that implement externally 

defined policies. The routing mechanism uses a lookup mechanism that provides a first-hop 

route (a specific network interface and immediate destination) for each destination. See also 

router; routing policies. 

routing policies The routing facilities provided in a user-level process that define external 

policies. Routing policies include all the components that the routing daemon uses in choosing 

the first-hop routes, such as discovery of the local network topology, implementation of various 

routing protocols, and configuration information specifying local policies. See also router; 

routing mechanism. 

routing redirect message A message generated by a router when the latter recognizes that a 

message it has received can be delivered via a more direct route. 

RPC See remote procedure call. 

run queue The queue of those threads that are ready to execute. See also idle queue; sleep 

queue; turnstile queue. 

run-to-completion A model of processing in which the maximum amount of work is done on 

a piece of data without deferring any work until a later period. Earlier versions of network 

protocols repeatedly deferred work between protocol modules so that packets could be buffered 

and the buffers tuned to fit the application. Run-to-completion reduces per-packet overhead 

because important data remain in the CPU cache for as long as the processing continues, and in 

modern processors cache misses are a significant source of overhead. 

SA See security association. 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_328
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_361


 

962 

sandbox A restricted execution environment in which untrustworthy code can be executed 

without granting it the ambient authority of the user who has executed it. See also ambient 

authority; application compartmentalization; Capsicum. 

saved GID See saved group identifier. 

saved group identifier (saved GID) A mechanism that records the identity of a setgid 

program by copying the value of the effective GID at the time that the exec for the program is 

done. During its execution, the program may temporarily revoke its setgid privilege by setting its 

effective GID to its real GID. It can later recover its setgid privilege by setting its effective GID 

back to its saved GID. See also credential; effective group identifier. 

saved UID See saved user identifier. 

saved user identifier (saved UID) A mechanism that records the identity of a setuid 

program by copying the value of the effective UID at the time that the exec for the program is 

done. During its execution, the program may temporarily revoke its setuid privilege by setting 

its effective UID to its real UID. It can later recover its setuid privilege by setting its effective 

UID back to its saved UID. See also credential; effective user identifier. 

scatter-gather I/O Scatter input allows a single read to be placed in several different buffers. 

Scatter output allows several different buffers to be written in a single atomic write. 

Scatter-gather I/O uses an iovec structure, an array of buffers and lengths, to identify the buffers 

to be used for the I/O. See also iovec. 

scheduling In operating systems, the planning used to share a resource. For example, process 

scheduling shares the CPU and main memory. 

scheduling class The FreeBSD kernel has five scheduling classes: kernel interrupts, system 

calls, real time, time sharing, and idle. Each process is placed into a scheduling class. Within 

each class, threads of the process are organized by their scheduling priority. See also scheduling 

priority; process priority. 

scheduling priority A per-process parameter maintained by the kernel that specifies the 

priority with which the latter will schedule the execution of the threads of the process. When a 

thread is executing in user mode in the timesharing class, the system periodically calculates the 

scheduling priority using the thread priority and the nice parameter. See also process priority; 

scheduling class. 

SCTP See stream transmission control protocol. 
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secondary storage Storage that holds data that do not fit in main memory. Secondary storage 

is usually located on rotating magnetic media, such as disk drives. See also backing storage. 

sector The smallest contiguous region on a disk that can be accessed with a single I/O 

operation. 

security association (SA) The basic channel of secure communication in IPSec. Data is 

secured only in one direction by a security association, which means that two security 

associations are required to create a fully secure channel between two hosts. See also 

security-parameter index. 

security-event auditing Refers to the fine-grained logging of security-related events in the 

trusted computing base. The audit framework tracks security-related system calls and 

application events (such as user authentication) to the audit trail in the filesystem. Typical uses 

include post-mortem analysis following compromise and live intrusion detection. See also 

trusted computing base. 

security label Additional security metadata associated with processes and objects (e.g., files 

and sockets) used as input to access-control polices. For example, the MAC policy MLS 

associates confidentiality labels with processes and objects, and the MAC policy Biba associates 

integrity labels with processes and objects. 

security-parameter index (SPI) A 32-bit piece of data used to identify the end of a security 

association on a host using IPSec. The security-parameter index is used as a key when working 

with security associations in a system’s security databases. See also security association. 

segment A contiguous range of data defined by a base and an extent. In memory management, 

a segment describes a region of a process’s address space. In the TCP protocol, a segment is a 

range of bytes within a single connection defined by starting and ending sequence numbers. 

semaphores Data structures and a set of functions used for synchronizing access to a shared 

resource, such as an area of memory. Semaphores implement two functions: a take and a give, 

such that once one thread has taken a semaphore, all others that follow the first are blocked 

until the first thread gives the semaphore back. 

send window In TCP, the range of sequence numbers that defines the data the system can 

transmit on a connection and be assured that the receiving party has space to hold the data on 

receipt. Any data with sequence numbers before the start of the send window have already been 

sent and acknowledged. Any data with sequence numbers after the end of the window will not 

be sent until the send window changes to include them. See also sliding-window scheme. 
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sense request A request passed to a communication-protocol module as a result of a process 

making a stat system call on a socket. 

sequenced-packet socket A type of socket that models sequenced, reliable, unduplicated, 

connection-based communication that preserves message boundaries. 

sequence space The range of sequence numbers that are assigned to data transmitted over a 

TCP connection. In TCP, sequence numbers are taken from a 32-bit circular space that starts 

with an arbitrary value called the initial sequence number. 

server process A process that provides services to client processes via an 

interprocess-communication facility. See also client process. 

session A collection of process groups established for job control purposes. Normally, a session 

is created for each login shell. All processes started by that login shell are part of its session. 

session ID Defines a single conversation and set of communications parameters between an 

NFSv4 client and server. 

session leader A process that has created a session. The session leader is the controlling 

process for the session and is permitted to allocate and assign the controlling terminal for the 

session. Normally, a session is created for each login shell. All processes started by that login 

shell are part of its session. 

set-group-identifier program A program that runs with an additional group privilege. 

Set-group-identifier programs are indicated by a bit in the inode of the file. When a process 

specifies such a file in an exec system call, the GID of the file is made the effective GID of the 

process. 

set-user-identifier program A program that runs with an UID different from that of the 

process that started it running. Set-user-identifier programs are indicated by a bit in the inode 

of the file. When a process specifies such a file in an exec system call, the UID of the file is made 

the effective UID of the process. 

shadow object An anonymous object that is interposed between a process and an underlying 

object to prevent changes made by the process from being reflected back to the underlying 

object. A shadow object is used when a process makes a private mapping of a file so that changes 

made by the process are not reflected in the file. 
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shared mapping When doing a shared mapping to a file in virtual memory, changes made to 

the memory mapping the file are written back to the mapped file and are visible to other 

processes mapping the file. See also private mapping. 

shared memory An area of memory that can be read and written by two different processes. It 

is the fastest way to share information between processes on the same system. See also 

semaphores. 

shell A program that interprets and executes user commands. When a user logs into a UNIX 

system, a shell process is normally created with its standard input, standard output, and 

standard error descriptors directed to the terminal or pseudo-terminal on which the user logged 

in. 

short-term-scheduling algorithm The algorithm used by the system to select the next 

process to run from among the set of processes that are deemed runnable. The 

long-term-scheduling algorithm, on the other hand, can influence the set of runnable processes 

by swapping processes in and out of main memory (and thus in and out of the set of runnable 

processes). 

signal In UNIX, a software event. In FreeBSD, this event is modelled after a hardware 

interrupt. 

signal-driven I/O A mode in which a descriptor can be placed, whereby the system will deliver 

a SIGIO signal to a process whenever I/O is possible on the descriptor. See also kernel-event 

polling; nonblocking I/O; polling I/O. 

signal handler A procedure that is invoked in response to a signal. 

signal post A notification to a process that a signal is pending for that process. Since most of 

the actions associated with a signal are done by the receiving process, a process that is posting a 

signal usually does little more than to record the pending signal in the receiving process’s 

process structure and to arrange for the receiving process to be run. 

signal-trampoline code A piece of code that invokes a signal handler. The signal-trampoline 

code contains instructions that set up parameters for calling a signal handler, perform the actual 

call to the signal handler, and, on return, perform a sigreturn system call to reset kernel state 

and resume execution of the process after the signal is handled. 

silly-window syndrome A condition observed in window-based flow-control schemes in 

which a receiver sends several small (i.e., silly) window allocations rather than waiting for a 

reasonable-size window to become available. 
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single indirect block See indirect block. 

sleep queue The queue of those threads that are blocked awaiting a long-term event such as 

completion of a disk read. They cannot run until the event has occurred. The name is derived 

from the sleep() routine that places threads on this queue. See also idle queue; run queue; 

turnstile queue. 

sliding-window scheme A flow-control scheme in which the receiver limits the number of 

data that it is willing to receive. This limit is expressed as a contiguous range of sequence 

numbers termed the receive window. It is periodically communicated to the sender, who is 

expected to transmit only those data that are within the window. As data are received and 

acknowledged, the window slides forward in the sequence space. See also receive window; send 

window; sequence space. 

small-packet avoidance In networking, avoiding the transmission of a packet so small that 

its transmission would be inefficient. 

SMP See symmetric multiprocessing. 

snapshot A filesystem snapshot is a frozen image of a filesystem at a given instant in time. 

socket In the FreeBSD interprocess-communication model, an endpoint of communication. 

Also, the data structure that implements the socket abstraction and the system call that creates a 

socket. 

socket address structure A generic structure for holding addresses for a socket. Many 

interprocess communication routines, such as connect() and bind(), need to know the network 

addresses of the communicating endpoints and require that a socket address structure be passed 

as a parameter. 

soft limit A limit that may be temporarily exceeded, or exceeded a limited number of times. A 

soft limit is typically used with a hard limit. See also hard limit. 

soft link See symbolic link. 

soft updates A technique to maintain filesystem consistency. It uses delayed writes for 

metadata changes, tracks dependencies between updates, and enforces these dependencies at 

write-back time. Despite allowing blocks to be written in any order, applications always see the 

most current copies of metadata blocks, and the disk always sees copies that are consistent with 

its other contents. 
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software interrupt A software-initiated interrupt. It is requested with an asynchronous 

system trap. 

software-interrupt thread A thread that is set running in response to a software interrupt. 

In FreeBSD, input processing for each transport-layer communication protocol is embodied in a 

software-interrupt thread. 

special file See device special file. 

SPI See security-parameter index. 

spin mutex A spin mutex will not relinquish the CPU when it cannot immediately get the 

requested lock, but it will loop, waiting for the mutex to be released by another CPU. 

stack An area of memory set aside for temporary storage or for procedure and interrupt-service 

linkages. A stack uses the last-in, first-out (LIFO) concept. On most architectures, the stack 

grows from high memory addresses to low memory addresses. As items are added to (pushed 

onto) the stack, the stack pointer decrements; as items are retrieved from (popped off) the stack, 

the stack pointer increments. 

stack segment A segment that holds a stack. See also bss segment; data segment; text 

segment. 

stale translation A translation or mapping that was previously true, but is no longer valid. For 

example, on machines that have a translation lookaside buffer, if a page-table entry in memory 

is changed to alter the mapping, any address translation for that page present in the translation 

lookaside buffer must be flushed to avoid a stale translation. 

standalone device driver A device driver that is used in a standalone program. A standalone 

device driver usually differs from a device driver used in an operating system in that it does not 

have interrupt services, memory management, or full support for virtual-memory mapping. In 

the FreeBSD stand-alone I/O library, for example, a standalone device driver polls a device to 

decide when an operation has completed. It is also responsible for setting up its own memory 

mapping when doing transfers between the device and main memory. 

standalone I/O library A library of software that is used in writing standalone programs. 

This library includes standalone device drivers that are used to perform I/O. 

standalone program A program that can run without the support of an operating system. 
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standard error The I/O stream on which error messages are conventionally placed. This 

stream is usually associated with descriptor 2 in a process. 

standard input The I/O stream on which input is conventionally received. This stream is 

usually associated with descriptor 0 in a process. 

standard output The I/O stream to which output is conventionally directed. This stream is 

usually associated with descriptor 1 in a process. 

start routine A device-driver routine that is responsible for starting a device operation after 

the system has acquired all the resources that are required for the operation. 

stateless server A server that does not need to maintain any information about which clients 

it is serving or which data have been passed to them. Every request that is received by such a 

server must be completely self-contained, providing all information needed to fulfill it. 

sticky bit The bit in an inode representing a directory that shows that an unprivileged user may 

not delete or rename files of other users in that directory. The sticky bit may be set by any user 

on a directory that the user owns or for which she has appropriate permissions. Historically, it 

was the bit in an inode that indicated that the text segment of the program was to be shared and 

kept memory or swap-space resident because of expected future use. That bit is no longer 

needed for this use because the virtual-memory system tracks recently used executables. 

stream socket A type of socket that models a reliable, connection-based byte stream that can 

support out-of-band data transmission. 

stream transmission control protocol (SCTP) A connection-oriented transport protocol 

used in the Internet. SCTP supports both stream and sequenced-packet styles of 

communication. 

superblock A data structure in the on-disk filesystem that specifies the basic parameters of the 

filesystem. 

superpages A capability of most hardware to allow for multiple page sizes. Larger page sizes 

are used to reduce pressure on the TLB. The page sizes available are dependent on the 

architecture. Common sizes in addition to the standard 4-Kbyte pages are 8-Kbyte, 64-Kbyte, 

512-Kbyte, 2-Mbyte, and 4-Mbyte pages. See also translation lookaside buffer. 

superuser The user whose UID is 0. Processes owned by the superuser are granted special 

privileges by UNIX. The superuser’s login name is usually root. See also privilege. 
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swap area A region on secondary storage that is used for swapping and paging. 

swap device A device on which a swap area resides. 

swapper In FreeBSD, the name of the kernel process that implements the swapping portion of 

the memory-management facilities. Historically, the swapper is process 0. See also pageout 

daemon. 

swapping A memory-management algorithm in which entire processes are moved to and from 

secondary storage when main memory is in short supply. 

swap space See swap area. 

symbolic link A file whose contents are interpreted as a pathname when it is supplied as a 

component of a pathname. Also called a soft link. See also hard link. 

symmetric cryptography A cryptographic system that uses the same key to encrypt data as it 

does to decrypt data, sometimes referred to as secret key cryptography. See also asymmetric 

cryptography. 

symmetric multiprocessing (SMP) A multiprocessor consists of two or more CPUs 

connected to a common main memory. Symmetric multiprocessing describes a kernel that can 

run simultaneously on all the CPUs at the same time. See also nonuniform memory access. 

synchronous Synchronized with the currently running process. For example, in UNIX, all I/O 

operations appear to be synchronous: The read and write system calls do not return until the 

operation has been completed. (For a write, however, the data may not really be written to their 

final destination until some time later—for example, in writing to a disk file.) 

system activity An entry into the kernel. System activities can be categorized according to the 

event or action that initiates them: system calls, hardware interrupts, hardware traps, and 

software-initiated traps or interrupts. 

system call In operating systems, a request to the system for service; also called a system 

service request. 

system clock The device that maintains the system’s notion of time of day. On most systems, 

this device is an interval timer that periodically interrupts the CPU. The system uses these 

interrupts to maintain the current time of day and to do periodic functions such as thread 

scheduling. 

system mode See kernel mode. 
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tag queueing Helps to coordinate I/O operations with a disk driver. Each request passed to the 

disk driver is assigned a unique numeric tag. After each request is finished, the tag of the 

completed request is returned as part of the completion interrupt. The disk driver gains 

efficiency by being able to reorder its I/O requests optimally. The client can ensure integrity by 

knowing when write requests have been saved to stable storage. 

tags An extensible system for adding arbitrary data to an mbuf or mbuf cluster to communicate 

information between different modules in the network stack without having to modify the 

packet data. 

TCB See trusted computing base. 

TCP See transmission control protocol. 

termios structure The structure used to describe terminal state. Terminal state includes 

special characters, such as the erase, kill, and word-erase characters; modes of operation, such 

as canonical or noncanonical; and hardware serial-line parameters, such as parity and baud 

rate. 

text segment The segment of a program that holds machine instructions. The system usually 

makes a program’s text segment read-only and shareable by multiple processes when the 

program image is loaded into memory. See also bss segment; data segment; stack segment. 

thrashing A condition where requested memory utilization far exceeds the memory availability. 

When a machine is thrashing, it usually spends more time doing system-related tasks than 

executing application code in user mode. 

thread The unit of execution of a process. A thread requires an address space and other 

resources, but it can share many of those resources with other threads. Threads sharing an 

address space and other resources are scheduled independently and can all do system calls 

simultaneously. 

thread state block (TSB) A data structure used to hold thread context. The hardware-defined 

TSB contains the hardware portion of this context. The software TSB contains the software 

portion and is located in memory immediately after the hardware TSB. 

thread structure A data structure maintained by the kernel for each active thread in the 

system. It contains the stack used when the thread is running in the kernel. Unlike the process 

structure, the thread structure can be moved to secondary storage if the process is swapped out. 

See also process structure. 
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three-way handshake A set of three messages used by a communication protocol, such as 

TCP, to initiate a reliable connection. Three messages is the minimum number necessary to 

ensure that both endpoints are aware of the connection process completing successfully. 

tick An interrupt by the system clock. 

time quantum In a timesharing environment, the period of time that the process scheduler 

gives a process to run before it preempts that process so that another process can execute. Also 

called a time slice. 

timer backoff The rate at which a timer value is increased. For example, in TCP, the value of 

the retransmit timer is determined by a table of multipliers that provide a near-exponential 

increase in timeout values. 

time slice See time quantum. 

time-stable identifier An identifier that refers uniquely to some entity both while it exists 

and for a long time after it is deleted. A time-stable identifier allows a system to remember an 

identity across transient failures and to detect and report errors for attempts to access deleted 

entities. 

TLB See translation lookaside buffer. 

top half With regard to system operation, the routines in the kernel that are invoked 

synchronously as a result of a system call or trap. These routines depend on per-process state 

and can block by calling sleep(). See also bottom half. 

trace trap A trap used by the system to implement single-stepping in program debuggers. On 

architectures that provide trace-bit support, the kernel sets the hardware-defined trace bit in the 

context of the thread being debugged and places the thread on the run queue. When the thread 

next runs, the trace bit causes a trap to be generated after the thread executes one instruction. 

This trap is fielded by the kernel, which stops the thread and returns control to the debugging 

process. 

track In computer systems, the sectors of a disk that are accessible by one head at one of its 

seek positions. 

track cache When the kernel is reading from a disk, memory associated with the disk that 

holds the data passing under the disk heads regardless of whether they have been requested 

explicitly. When the kernel is writing to a disk, memory associated with the disk in which data 

are stored until the disk heads reach the correct position for writing them. 
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translation lookaside buffer (TLB) A processor cache containing translations for recently 

used virtual addresses. 

transmission control protocol (TCP) A connection-oriented transport protocol used in the 

Internet. TCP provides for the reliable transfer of data, as well as for the out-of-band indication 

of urgent data. 

transport layer The layer of software in the network subsystem that is responsible for moving 

data between two sockets. Depending on the type of transport protocol used, the data may be 

delivered as a sequenced, in-order stream or as an unordered set of individual messages. See 

also transmission control protocol; user datagram protocol. 

transport mode One of two modes used for secure communications in IPSec. In transport 

mode, only the payload of a packet is protected, whereas the network-layer protocol header is 

left exposed. See also tunnel mode. 

triple indirect block See indirect block. 

trusted computing base (TCB) The smallest subset of a system that must be secure in order 

for the system as a whole to be secure. In FreeBSD, this includes the kernel, key system libraries, 

applications running as root, and system configuration files and startup scripts. 

TSB See thread state block. 

tunnel mode One of two modes used for secure communication in IPSec. In tunnel mode, the 

packet to be secured is completely contained within another packet that carries the inner packet 

between two endpoints. The endpoints are the boundaries of the tunnel. See also transport 

mode. 

turnstile Data structure used to manage threads awaiting a short-term event such as acquiring 

a mutex. See also turnstile queue. 

turnstile queue The queue of those threads that are blocked awaiting a short-term event such 

as acquiring a mutex. They may propagate their priority to the mutex holder to speed their 

release of it. See also idle queue; run queue; sleep queue. 

2MSL timer A timer used by the TCP protocol during connection shutdown. The name refers 

to the fact that the timer is set for twice the maximum time that a segment may exist in the 

network. This value is chosen to ensure that future connections will not mistakenly accept late 

messages from an older connection. See also maximum segment lifetime. 
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type-ahead Transmission of data to a system, usually by a user typing at a keyboard, before the 

data are requested by a process. 

uberblock An on-disk data structure in the Zettabyte filesystem that references the root of the 

tree of blocks representing the storage pool. 

UDP See user datagram protocol. 

UID See user identifier. 

uio A data structure used by the system to describe an I/O operation. This structure contains an 

array of iovec structures; the file offset at which the operation should start; the sum of the 

lengths of the I/O vectors; a flag showing whether the operation is a read or a write; and a flag 

showing whether the source and destination are both in the kernel’s address space or whether 

the source and destination are split between user and kernel address spaces. See also iovec. 

update dependency The required ordering of related updates to separate meta-data 

structures to ensure recoverability in the presence of unpredictable failures. An update that 

must be done later has an update dependency on an earlier update because it cannot be done 

until the earlier update is committed to stable storage. See also metadata. 

urgent data In TCP, data that are marked for urgent delivery. 

user credential A structure that identifies a user. It contains the real, effective, and saved user 

and group identifiers. See also real user identifier; real group identifier; effective user 

identifier; effective group identifier; saved UID; saved GID. See also process credential. 

user datagram protocol (UDP) A simple, unreliable datagram protocol used in the Internet 

protocols. UDP provide peer-to-peer, multicast and broadcast addressing, and optional data 

checksums. A single version of UDP works the same way on top of both IPv4 and IPv6. 

user identifier (UID) A nonnegative integer that identifies a user uniquely. UIDs are used in 

the access-control facilities provided by the filesystem. See also credential; effective user 

identifier; real user identifier; saved user identifier; set-user-identifier program. 

user mode The least-privileged processor-access mode. User processes run in user mode. See 

also kernel mode. 

user-request routine A set of routines provided by each communication protocol that 

directly supports a socket (a protocol that indirectly supports a socket is layered underneath a 

protocol that directly supports a socket). These routines serve as the main interface between the 
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layer of software that implements sockets and the communication protocol. The 

interprocess-communication facilities make calls to the user-request routines for most 

socket-related system calls. See also connect request; control request; listen request; sense 

request. 

virtual address An address that references a location in a virtual address space. 

virtual-address aliasing Two or more processes mapping the same physical page at different 

virtual addresses. When using an inverted page table, there can only be one virtual address 

mapping any given physical page at any one time. Here, the kernel must invalidate the 

page-table entry for the aliased page whenever it switches between the processes with the 

conflicting virtual addresses for that page. See also reverse-mapped page table. 

virtual address space A contiguous range of virtual-memory locations. 

virtual machine A machine whose architecture is emulated in software. The emulation may be 

at either the hardware level or at the operating-system level. 

virtual memory A facility whereby the effective range of addressable memory locations 

provided to a process is independent of the size of main memory; that is, the virtual address 

space of a process is independent of the physical address space of the CPU. 

virtual-memory object A kernel data structure that represents a repository of data—for 

example, a file. An object contains a pager to get and put the data from and to secondary storage, 

and a list of physical pages that cache pieces of the repository in memory. 

virtual private network (VPN) A network that is layered on top of, or tunneled through, the 

public Internet using encrypted links. 

vnode An extensible object-oriented interface containing generic information about a file. Each 

active file in the system is represented by a vnode, plus filesystem-specific information 

associated with the vnode by the filesystem containing the file. The kernel maintains a single 

systemwide table of vnodes that is always resident in main memory. Inactive entries in the table 

are reused on a least-recently-used basis. 

VPN See virtual private network. 

wait The system call that waits for the termination of a descendant process. 

wait channel A value used to identify an event for which a thread is waiting. In most situations, 

a wait channel is defined as the address of a data structure related to the event for which a 
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thread is waiting. For example, if a thread is waiting for the completion of a disk read, the wait 

channel is specified as the address of the buffer data structure supplied to the disk I/O system. 

wildcard route A route that is used if there is no explicit route to a destination. 

window probe In TCP, a message that is transmitted when data are queued for transmission, 

the send window is too small for TCP to bother sending data, and no message containing an 

update for the send window has been received in a long time. A window-probe message contains 

a single byte of data. 

wired page Memory that is not subject to replacement by the pageout daemon. A nonpageable 

range of virtual addresses has physical memory assigned when the addresses are allocated. 

Wired pages must never cause a page fault that might result in a blocking operation. Wired 

pages are typically used in the kernel’s address space. 

word-erase character The character that is recognized by the terminal handler in canonical 

mode to mean “delete the most recently typed word on this terminal.” By default, preceding 

whitespace and then a maximal sequence of nonwhitespace characters are erased. Alternatively, 

an alternate erase algorithm tuned to deleting pathname components may be specified. Each 

terminal session can have a different word-erase character, and the user can change that 

character at any time with a tcsetattr system call. The terminal handler does not recognize the 

word-erase character on terminals that are in non-canonical mode. See also erase character; 

kill character. 

working directory See current working directory. 

working set The set of pages in a process’s virtual address space to which memory references 

have been made over the most recent few seconds. Most processes exhibit some locality of 

reference, and the size of their working set is typically less than one-half of their total 

virtual-memory size. 

znode See dnode. 

zombie process A process that has terminated but whose exit status has not yet been received 

by its parent process (or by init). 
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access vnode operator, 432 

access_mask, 172–173 

accounting, process resource, 31, 67, 129, 790, 800 

accton, 799 

ACL. See access control list 

acl structure, 166 

acl_denies(), 172–173 

acl_entry structure, 166 

ACPI. See advanced configuration and power interface 

active page list, 290 

adaptive idle, 125 

adaptive replacement cache, 525, 539, 547–548 

address family, 596, 608, 611, 807 

address resolution protocol, 641, 655–657, 669, 807 

implementation of, 655–657 

purpose of, 655 

address-space management, process, 228–230 

address space. See virtual address space 

address structure 

Internet, 612 

local domain, 612 

socket, 182, 596, 611, 839 
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address translation, 222, 807 

addresses, IPv6, 660–662 

adjtime system call, 74 

advanced configuration and power interface, 53, 363–364, 777, 781, 783 

advanced-encryption standard, 210, 213 

block cipher, 213, 215 

Advanced Micro Devices Corporation, 25, 285, 362, 420–421, 784 

virtualization, 421–422 

advanced programmable interrupt controller, 363–364, 420, 423, 790 

advanced-technology-attachment disk, 363–364, 399, 402, 409–410 

advisory locking, 323, 432, 807 

advlock vnode operator, 432 

AES. See advanced-encryption standard 

AFS. See Andrew filesystem 

AH. See authentication header 

Ahrens, Matt, xxvi 

aio_error system call, 321–322, 330 

aio_read system call, 321, 359 

aio_return system call, 322, 330 

aio_suspend system call, 322, 330 

aio_waitcomplete system call, 322 

aio_write system call, 321, 359 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_285
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_409
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359


 

979 

algorithm 

for disksort(), 376 

elevator sorting, 375, 418 

mbuf storage-management, 605 

for physical I/O, 372 

TCP, 732–741 

TCP slow-start, 752–756 

Allman, Eric, xxix 

allocation 

descriptor, 614 

directory space, 444–445 

extent-based, 516–517 

FFS file block, 507, 511–513, 809 

FFS fragment, 512–514 

inode, 434 

kernel address space, 233–244, 787 

kernel memory, 38–39 

kernel resource, 259–260 
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allocator 
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application compartmentalization, 30, 149, 151, 174–175, 808 

application programming interface, 34, 51, 114, 166, 187, 191, 198, 201, 403, 700 
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architecture 

ARM, 405, 782, 784 

MIPS, 7, 405, 782–784, 790 
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arguments, marshalling of, 553, 824 

ARM architecture, 405, 782, 784 
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ARPANET, 6, 650 
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asynchronous 

I/O, 320–322, 326 

interrupt, 58, 60, 99 

logging facility, 84 

system trap, 116–117, 808 

transfer mode, 707–708 

ATA. See advanced-technology-attachment disk 

ATM. See asynchronous transfer mode 

AT&T, xxi, xxii, 6–9, 11–12 

ATTACHED flag, 466 

definition, 466 

attribute manipulation, filesystem, 432 

attribute update, filestore, 497 

attributes, extended, 436–438 

attributes, system extended, 168 

audit 

alarm entry, 171 

allow entry, 171 

deny entry, 171 

event, 35, 200–205 

informational entry, 171 

pipe, 200–205 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205


 

983 

preselection, 201, 204 

queue, 204–205 

record, 35, 200–205 

system call, 201, 203, 205 

trail, 35, 200–205 

UID, 35, 201–202, 204 

worker thread, 204–205 

auditing, security-event, 30–31, 35, 149, 151, 200–205, 792–793, 800, 836 

audit_init(), 793 

auditreduce, 35 

AUID. See audit UID 

authentication, 30, 35 

data, 691, 693 

header, 663–664, 689–691, 693, 697 

autoconfiguration, 402, 660, 808 

4.4BSD, 403 

contribution of, 8 

data structures, 407–410 

device driver support for, 369, 403–413 

IPv6, 666–670 

phase, 404 

resource, 412–413 
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B 

B programming language, 4 

back ends, device driver, 414–428 

background fsck, 486 

background process, 141, 387, 808, 817 

backing storage, 221, 397, 809 

bare-metal system library, 780 

basic input-output system, 52–53, 364, 377, 775–779, 781, 790 

basic kernel services, 787–792 

basic security module, 35, 201–203, 205 

bawrite(), 348 

BCPL programming language, 4 

bdwrite(), 348 

Bell Laboratories, 3–5 

benefit of global vnode table, 345 

Berkeley packet filter, 700–701, 703 

macro hook, 701 

Berkeley Software Design Inc., 11–13 

best fit, 234, 512–513 

bhyve, 184, 414–415 

Biba integrity policy, 151, 158, 186–187, 189–190, 195, 200, 797 

bind system call, 182, 664, 723, 767 
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definition, 597 

biodone(), 402, 469 

BIOS. See basic input-output system 

biowait(), 402 

bitmap dependencies, soft updates, 466–467 

black-hole route, 680, 809 

blkatoff vnode operator, 497–498 

block, 433, 809 

clustering, 498, 505–507, 514–517, 811 

I/O, 375, 498–501, 505, 543 

interface, Xen, 427 

protection, GELI, 215–216 

size, 368, 502, 809 

bmsafemap structure, 466–467, 470, 472, 490 

boot, 775–801, 817 

boot blocks, FFS, 503–504 

boot, cryptographically verified, 777 

boot device, 776–777, 783 

/boot/device.hints, 404 

boot flags, 779, 781, 783 

/boot/kernel/kernel, 781 

boot loader, 777–789 
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1st-stage, 777–779 

2nd-stage, 779 

final-stage, 779–781 

/boot/loader, 779–782 

/boot/loader.4th, 781 

/boot/loader.conf, 781 

boot menu, 778–781 

boot partition, FreeBSD, 779 

boot-time diagnostics, 776 

boot2, 782 

/boot.config, 779 

bootinfo structure, 781, 783 

bootstrapping, 25, 52, 809 

setting time when, 73 

see also boot 

bottom half of 

device driver, 369 

kernel, 59–60, 809 

terminal driver, 384 

BPF. See Berkeley packet filter 
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break character, 390 

breakpoint fault, 142, 809 

brelse(), 348 

bremfree(), 350 

broadcast message, 636, 674, 725, 809 

address, 636, 653–654 

IP handling of, 672 

BSD, obtaining, xxvi 

BSD, open source, 9–14 

BSDI. See Berkeley Software Design Inc. 

BSM. See basic security module 

bss segment, 69, 263, 784, 809 

BTX. See i386 boot extender 

buf structure, 375 

bufdaemon, 58 

buffer cache, 347, 435, 499–501, 790, 793–794, 809 

4.4BSD, 302 

consistency, 351 

effectiveness, 347 

implementation of, 350–351 

interface, 348–349 

management, 347–351 
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memory allocation, 351 

structure of, 349–350 

buffer list 

CLEAN, 350, 359 

DIRTY, 350, 359 

EMPTY, 350 

LOCKED, 349 

buffer update, 468–470 

buffer wait, 468–470, 473–474, 476, 496 

buffering 

filesystem, 499–501 

network, 643–644 

policy, protocol, 643 

bufinit(), 790 

bus_add_child(), 413 

bus_child_detached(), 413 

bus_driver_added(), 413 

bus_probe_nomatch(), 413 

bus_read_ivar(), 413 

bus_write_ivar(), 413 

bwrite(), 348, 375 
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C 

C-language startup, 784–785 

C library, 73 

system calls in the, 62 

C programming language, 3–4, 26, 62 

cache 

alias, virtual-memory, 282 

directory offset, 446–447 

filename, 346–347, 795 

inode, 442–443 

page list, 290 

vnode, 249 

caching delegation and callbacks, 574–581 

calendar queue, 121 

call gates, 150 

callback, 567, 579, 610, 810 

callout queue, 67–69, 733, 795, 810 

callout_callwheel_init(), 790 

CAM. See common access method 

camisr(), 402 

camisr_runqueue(), 402 

canonical mode, 383, 810 
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operations, 373 

character-oriented device, 373–374 

chdir system call, 46, 813 
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Chorus operating system, 22 
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chunk, SCTP, 762–766 

CIDR. See classless inter-domain routing 

CIFS. See common Internet filesystem 
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interaction, NFS, 562–564 
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programming, 596 
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common access-protection profile, 201 

common Internet filesystem, 162, 171, 552 

communication domain, 50, 594, 606–608, 811 

data structures, 608 

communication protocol. See protocol 

compartmentalization, application, 30, 149, 151, 174–175, 808 

COMPLETE flag, 466, 470, 472–473 

definition, 466 

composition, MAC policy, 194–195 

Computer Systems Research Group, xxii, xxix, 3, 7–16 

condition variables, 112 

config, 404, 408, 800, 811 

configuration 

file, 800, 811 

kernel, 800–801 

network device, 379–380 

congestion control 

network buffering, 643–644 

TCP, 752–761 

congestion window, 754, 757 

connect request, 628, 811 

connect system call, 182, 597, 612, 614, 664, 697, 723–725, 736, 767, 811 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_175
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_754
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_757
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811


 

994 

definition, 597 

connection 

queueing, socket, 610, 613 

setup, TCP, 727–728, 736–740 

shutdown, TCP, 729, 740–741 

states, TCP, 727–730 

console, 777, 779, 781, 785, 790, 798–799 

serial, 777, 779, 799 

contents update, filestore, 497 

context switching, 63, 90, 99–114, 812 

involuntary, 99, 116 

low-level, 100 

thread state, 100 

voluntary, 99, 101–106 

continuation style, 698, 812 

control, network device, 379–380 

control-output routine, protocol, 630–631 

control request, 629, 812 

controlling process, 136, 138, 812 

controlling terminal, 29, 137–138, 812 

revocation of, 345 

cooked mode, 383 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_729
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383


 

995 

copy object, 4.4BSD, 258 

copy-on-write, 6, 37, 261, 309, 812 

core file, 28, 130, 812 

coredump(), 136 

cpu_exit(), 129 

cpuid instruction, 422 

cpu_mp_announce(), 790 

cpu_search(), 123–124 

cpuset, 124 

cpu_set_fork_handler(), 793 

cpu_startup(), 789 

cpu_switch(), 116 

crash dump, 99, 369, 375, 801–803, 812, 828 

crash recovery, NFS, 584–586 

crash, system, 47–48, 322, 324, 348, 375, 405, 454, 459, 461, 463, 480, 486, 501, 518, 556–557, 

561–563, 566–567, 587, 727, 730, 734, 776, 799, 802–803, 812 

create vnode operator, 432–433 

create_init(), 793 

creation and deletion, filestore, 497 

credential, 95 

process, 31, 34–35, 127, 144, 150–157, 179, 181–182, 201–204, 259, 354–355, 556, 564, 793, 800, 

803, 830 

structure, 152, 160, 179, 181 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_123
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_518
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_587
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181


 

996 

critical_enter(), 107 

critical_exit(), 107 
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current working directory, 46, 449, 800, 813 
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DAC. See discretionary access control 

dadone(), 402 

daemon, 813 
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interprocess communication, 606–612 
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data transfer, SCTP, 764–766 
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dead filesystem, 345 
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avoidance during fork system call, 260 
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decapsulation, 622, 635, 813 

decision, local-remote, 678 

deduplication, ZFS, 545–546 

default pager, 272 

Defense Advanced Research Projects Agency, 6, 8, 650, 813 

steering committee, 7 

definition 

ATTACHED flag, 466 
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Delta-t, 761 
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denial-of-service attack, 739, 813 
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kernel-module, 776 

soft updates, 460–464 

virtual memory machine, 298–308 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_678
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308


 

1000 

descriptor, 39, 813 

allocation, 614 

duplication, 320–321 

management of, 41–42, 316–321 

multiplexing, 324–327 

table, 40, 316, 814 

table, local, 791 

use of, 39–41 

design 

4.2BSD IPC, 8 

FreeBSD IPC, 594, 599 

I/O system, 39–44 

mbuf, 604–605 

memory-management, 36–38 

NFS, 552–553 

/dev, 42, 334, 366–368, 408, 428, 794 

filesystem, 44 

operation of, 366–367 

/dev/console, 798 

/dev/cu, 368 

/dev/fd, 358 

/dev/kmem, 440, 803 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803


 

1001 

/dev/mem, 370, 374, 440 

/dev/netmap, 712 

/dev/null, 370 

/dev/pts, 383 

/dev/random, 35 

devclass, 408 

devd, 413 

development model, FreeBSD, 14–17 

DEVFS. See device filesystem 

device, 42, 44, 408 

boot, 776–777, 783 

character-oriented, 373–374 

close, 391 

configuration, 402–413 

enumeration, 777 

identification, 405–407 

interrupt handler, 64 

module initialization, 794–796 

overview, 361–367 

pager, 248, 270–271 

probing, 369, 405 

raw, 372–373 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_361
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373


 

1002 

special file, 42, 814 

swap, 225, 841 

device driver, 30, 42, 368, 777, 782, 787, 793–796, 814 

attach routine, 405, 407 

back ends, 414–428 

bottom half of, 369 

front ends, 414–428 

interrupt handling, 370 

maximum transfer size, 371 

probe-routine, 405–407 

sections of a, 368 

support for autoconfiguration, 369, 403–413 

support for select system call, 327, 374 

top half of, 369 

device filesystem, 316, 366–368, 383, 393, 794–795, 797 

device_attach(), 406–407 

device_identify(), 406 

device_probe(), 406–407 

devices, network, 378–382 

device_t, 367 

devinfo, 410, 429 

dev_t, 367 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367


 

1003 

df, 479 

diagnostics, boot-time, 776 

diradd structure, 468, 472–476 

DIRCHG flag, 476 

direct block dependencies, soft updates, 469–470 

direct dispatch, 397, 673 

direct map, 228 

direct memory access, 282, 373, 381, 399, 401, 414, 419, 427–429, 523, 814 

direct route, 677 

directly-mapped region, 783–784 

directory, 45, 443, 814 

dependencies, soft updates, 472–476 

entry, 45, 434, 814 

offset cache, 446–447 

operations, 46–47 

space allocation, 444–445 

structure, 444–447 

table, 298, 814 

dirrem structure, 464, 475–476, 495–496 

DIRTY buffer list, 350, 359 

discretionary access control, 32, 149–150, 161–174, 184, 217, 814 

disk device, 374–377 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_434
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377


 

1004 

interface, 374–375 

operations, 374 

disk label, 376–377 

disk, memory, 780 

disk partition, 376, 498, 777–782, 814 

disk structure, FFS, 502–504 

disk subsystem, 364–366 

disk write, ZFS, 536–538 

disksort(), 375–376, 401 

algorithm for, 376 

distributed filesystem, 47 

distributed program, 593 

DMA. See direct memory access 

DMU. See zettabyte-filesystem data-management unit 

dnode, 528, 815 

structure, 538 

ZFS, 528–529 

DNS. See domain name system 

doadump(), 802 

domain, 815 

and type enforcement, 186 

name system, 665 
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zero, 420–423, 426, 428 

see also communication domain 

double indirect block, 435, 815, 820 

dpcpu_startup(), 789 

dquot structure, 452–454 

Dragonfly BSD, xxii, 3 

DSL. See zettabyte-filesystem dataset and snapshot layer 

dsl_dataset structure, 533–534, 538, 542, 544 

dsl_dir structure, 533 

DTE. See domain and type enforcement 

DTrace, 78–82, 188–189, 790–791 

dtrace_debug_init(), 791 

dtrace_pops, 80 

dummynet, 702, 704–706 

dump, 372, 438, 487, 546 

live, 487 

dumpsys(), 802 

dup system call, 41–42, 48, 319–321, 814, 817 

implementation of, 320 

dup2 system call, 42, 178, 320, 817 

duplication, process virtual memory, 260–262 

dynamic inodes, 441–442 
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dynamic per-CPU allocator, 789 

E 

EACCES system error, 173, 193 

EAGAIN system error, 128, 320, 335–336, 391, 614, 617–618, 826 

ECAPMODE system error, 179 

ECMP. See equal-cost multi-path route 

ECN. See explicit congestion notification 

ECONNREFUSED system error, 615 

effective GID. See effective group identifier 

effective group identifier, 155, 815 

effective UID. See effective user identifier 

effective user identifier, 132, 155, 815 

EFI. See extended-firmware interface 

Eighth Edition UNIX, 5 

EINTR system error, 62, 98, 128 

EINVAL system error, 614, 697 

elevated privilege, 158 

elevator sorting algorithm, 375, 815 

ELF, 245, 779, 781, 785–786, 789 

executable format, 70 

ELOOP system error, 451 

Elz, Robert, 9, 451 
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embedded systems, 775, 778, 781–784, 796 

EMPTY buffer list, 350 

EMSGSIZE system error, 616 

encapsulating-security payload, 663–664, 689–690, 693, 697 

encapsulating security protocol, IPSec, 693 

encapsulation, 622, 635, 815 

encryption 

full-disk, 206, 209, 212–217 

initialization vector, 209, 213, 215 

public-key, 206, 832 

entry point, MAC, 34, 188–189, 191–194 

entry to kernel, 60–61 

enumeration, device, 777 

environment, kernel, 779, 781, 787, 794 

environment, location of process, 72 

EPERM system error, 173, 193 

epoch, 73 

equal-cost multi-path route, 682 

erase character, 383, 815 

ERESTART system error, 98 

errno, 26, 62, 163, 193–194, 694, 816 

ESP. See encapsulating-security payload 
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32-bit version, 435, 438, 440–441, 445, 447, 502–504, 516–517 
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ffs_balloc(), 506, 511–512 

ffs_read(), 505, 515 

ffs_realloccg(), 511–512 

ffs_write(), 506 

file block allocation, 507, 511–513, 809 

file block extension, 511 

file I/O, 505–507 

fragment allocation, 512–514 

fragment-descriptor table, 513, 817 

fragmentation, 504–507 

free-space reserve, 441, 507, 519, 818 

implementation of, 502–505, 507–517 

layout policies, 508–510 

local allocation routines, 510–511 

organization, 502–504 

overview, 45–48 

parameterization, 507 
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storage optimization, 504–507 

superblock, 501 
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fault rate, 224, 816 
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fbtp_patchpoint, 81 

fbtp_patchval, 81 

fbt_probe_t, 81 

fbtp_savedval, 81 

fchflags system call, 439, 481 

fchmod system call, 47, 164, 177, 481 

fchmodat system call, 180 

fchown system call, 47, 164, 481 

fcntl system call, 8, 178, 319–321, 390, 814 

fdesc filesystem, 358 

fdisk, 778 

FDT. See flattened device trees 

Federal Information Processing Standard, 8 

fetch policy, 223, 816 

FFS. See fast filesystem 

fget(), 179 

fhopen system call, 481 

FIB. See forwarding information base 

fifo, 40, 316 

file, 39, 443, 816 

access validation, 164 

append-only, 439 
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control, filesystem, 432 

deactivation, 344 

descriptor, 32, 48, 153, 161, 175–180, 183, 192–193, 200 

descriptor locking, 322–324 

executable, 69 

flags, 390, 439–441 

handle, NFS, 555, 816 

hole in, 47, 819 

I/O, FFS, 505–507 

I/O, user, 499–501 

immutable, 439 

interpretation, filesystem, 432 

management, filesystem, 432 

mapping, 264–265 

mode, 162, 164 

offset, 41, 318, 816 

owner, 31–32, 34, 150–152, 154–155, 158, 161–174, 186 

permissions, 30–32, 48, 150, 152, 161–174, 186, 816 

reclaim, 344–345 

file block 

allocation, FFS, 507, 511–513, 809 

allocation, ZFS, 542–543 
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locality of reference, 509–510 

reading, 505 

writing, 506 

file entry, 318–319, 816 

flag, 319, 321 

handling during fork system call, 319 

implementation of, 319 

object oriented, 318, 321 

operations, 318 

file locking, 319, 322–324, 454–459 

implementation of, 323–324, 456–459 

NFS, 553 

semantics of, 454–456 

filecaps structure, 178 

file structure, 316, 609, 817 

filedesc structure, 316 

filename, 45–46, 816 

cache, 346–347, 795 

negative caching of, 346 

whiteout, 356 

filestore 

abstraction, 498–501 
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support for multiple, 43–44 

umapfs, 354–355, 564 

union, 355–357 

see also buffer cache, quotas 

firewall, 31, 184, 701–707, 785 

firmware, 775–778, 782–790 

First Edition UNIX, 89 

first-level bootstrap, 377 

first prison, 181, 790–791, 794 

first process, 793 

fit, best, 234, 512–513 

fit, segregated, 234 

flattened device trees, 53, 777, 783–784 

fletcher4, 546, 549 

floating point in the kernel, use of, 736 

floating-point unit, 421 

flock system call, 553 
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deadlock avoidance during, 260 

file entry handling during, 319 

implementation of, 259–260 

implementation issues, 261 

see also process creation 

fork1(), 793 

Forth interpreter, 780 

Fortuna, 35, 212 

forward, 650, 655, 662, 664, 670, 673–675, 678, 682–683, 752, 754, 817 

forward-mapped page table, 282, 817 

forwarding information base, 677 

forwarding-mechanism, 677 

4.0BSD, 6–9, 501 

4.1BSD, 6 

4.2BSD, xxii, xxix, 6–8, 36, 40, 42–43, 47, 51–52, 54, 71, 227, 322–323, 326, 371, 385, 403, 593, 

653, 674 

filesystem, 502 

IPC design, 8 

scheduler, 791 

virtual-memory interface, 7 

4.3BSD, xxi, xxii, xxix, 6–8, 37, 71, 291, 309–310, 322, 653, 803 

filesystem, 342 

Reno release, 6–7 
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Tahoe release, 6–7, 9 

4.4BSD, xxi, xxix, 6–7, 13, 267, 804–805 

autoconfiguration, 403 
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copy object, 258 

filesystem, 342, 515 

Lite, xxii, 7, 13–14 

mbuf design, 604 
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page replacement, 289, 294 

stackable filesystem, 352–353 

supported architectures, 7 

swap out, 296 

swap pager, 273 

virtual memory, 37 

FPU. See floating-point unit 

fragmentation, FFS, 504–507 

framework, cryptographic, 30–31, 35–36, 149, 206–208 

framework, MAC, 30, 34, 184–200 

free(), 38, 241, 309 
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freeblks structure, 464, 468, 476, 495–496 

FreeBSD 

boot partition, 779 

development model, 14–17 

goals, 17 

IPC design, 594, 599 

kernel, division of software in, 25 

portability of, 23 

freefile structure, 468, 476, 495–496 

freefrag structure, 468, 470 

front ends, device driver, 414–428 

fsck, 372, 376, 463, 480, 486–490, 492–494, 501, 504, 509–510, 798–799 

background, 486 

dependencies, soft updates, 480 

fstat system call, 47, 164, 629 

fsync dependencies, soft updates, 477–478 

fsync system call, 253, 340, 348, 359, 436–437, 461–463, 474, 477–478, 482, 493, 501, 507, 514, 

518, 538–539, 566 

fsync vnode operator, 497–498 

ftruncate system call, 481 

full-disk encryption, 206, 209, 212–217 

full virtualization, 414 

futimes system call, 481 
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gateway, 658, 675, 818 

handling, 677–679 

g_down, 58, 396–397 

GELI, 30, 35, 53, 151, 206, 209, 212–217, 780 

block protection, 215–216 

flags, 214, 216 

I/O model, 216 

key management, 213–214 

keyfile, 213–214 

limitations, 216–217 

passphrase, 213–214, 216 

startup, 214 

threat model, 216–217 

g_eli_ctl_resume(), 216 

g_eli_start(), 216 

g_eli_suspend_one(), 216 

g_eli_takefirst(), 216 

g_eli_taste(), 214, 216 

g_eli_worker(), 216 

generation number, 556, 818 

generator, random-number, 31, 35, 206, 208–212, 790, 793 
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generator_gate(), 212 

generic security-service application-program interface, 206, 209, 584 

GENIE operating system, 4 

GEOM. See geometry layer 

geometry layer, 24, 44, 53, 206, 212, 214, 216, 362, 391–399, 401–402, 407, 429, 524–525, 

793–794 

flags, 178, 397 

operation, 396–397 

topology, 392–399 

getaddrinfo(), 665 

getaddrinfo library call definition, 665 

getattr vnode operator, 432 

getblk(), 350–351 

getdirentries system call, 445 

getfsstat system call, 344 

gethostbyname(), 665 

getlogin system call, 800 

getnewbuf(), 351 

getnewvnode(), 344–346 

getpeername system call, 599 

getrusage system call, 75 

getsockname system call, 599 

getsockopt system call, 599, 627, 631 
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gettimeofday system call, 73–74 

getty, 798–800 

getuid system call, 179 

GID. See group identifier 

g_init(), 793 

g_io_request(), 216 

gjournal, 398 

global page-replacement algorithm, 289, 818 

global vnode table, benefit of, 345 

globally-unique identifier partition table, 377, 778–779 

goals, FreeBSD, 17 

GPT. See globally-unique identifier partition table 

gptboot, 779, 781–782 

gptzfsboot, 779 

grant table, 423–427 

entry, 424–426 

reference, 424–427 

Greenwich time. See Universal Coordinated Time 

group identifier, 31, 151–152, 154–157, 160–166, 168, 170–171, 187, 355, 564, 815, 818, 820, 830, 

832, 835, 837 

use in file-access validation, 164 

gsched, 398 

gsignal(), 133 
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GSSAPI. See generic security-service application-program interface 

gunzip, 175–176 

g_up, 58, 396–397 

gvirstor, 398 

H 

H-TCP, 758 

half-open connection, 727 

halt, 801–802 

hammer_time structure, 784 

handle_written_inodeblock(), 469 

handling, terminal, 382–391 

hard limit, 76, 451, 818 

hard link, 449, 818 

hardclock(), 66–68, 76 

hardware performance-monitoring counters, 790–791 

processor, 790–791 

hardware virtual machine, 421–423, 788 

hardware_cache_fetch, 281 

Harris, Guy, 9 

hash anchor table, 284 

hash message-authentication code, 210–211, 216, 403, 546, 549 

SHA-256, 213, 215 
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SHA-512, 213, 215 

hash, Modulo-N, 682 

HAT. See hash anchor table 

HBA. See host bus adapter 

header prediction, TCP, 742, 818 

heap, 72, 819 

heartbeat requests, 767 

heartbeat response, 768 

heartbeat, SCTP, 767–768 

high watermark on, 819 

socket, 610, 616, 643 

terminal, 388 

history of 

job control, 7 

process management, 89 

UNIX, 3–7 

HMAC. See hash message-authentication code 

home directory, 46, 819 

hop-by-hop option, 664 

hop limit, 662, 819 

host bus adapter, 365, 415, 418 

host cache metrics, TCP, 737 
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host unreachable, 657 

message, 657, 819 

HVM. See hardware virtual machine 

HWPMC. See hardware performance-monitoring counters 

hybrid capability system model, 151 

hypercall, 414–428, 788 

region, 422 

hypervisor, 184, 414–428, 788 

I 

I/O, 820 

asynchronous, 320–322, 326 

memory management unit, 420 

model, GELI, 216 

nonblocking, 320, 325, 614, 617, 619, 826 

physical, 372–373 

queueing, 369 

redirection, 41, 821 

signal driven, 320, 325, 838 

system design, 39–44 

tree, root of, 366, 406, 410 

types of kernel, 367–368 

I/O buffer, 375 
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I/O stream, 39, 821 

I/O vector, 332–333 

i386 boot extender, 779, 781 

ICMP. See Internet control message protocol 

icmp_error(), 658 

icmp_input(), 658 

ICV. See integrity-check value 

idempotent, 554, 819 

identification, device, 405–407 

idle 

loop, 116, 819 

process, 58, 793 

queue, 819 

swap time, 296 

threads, 792–793 

IEEE. See Institute of Electrical and Electronic Engineers 

IETF. See Internet Engineering Task Force 

ifaddr structure, 635, 639 

if_data structure, 636 

if_input, 381 

ifnet, 378–379, 381–382 

structure, 419, 635, 637, 639–640 
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if_output(), 669–670 

IGMP. See Internet group-management protocol 

ignored signal, 28 

IKE. See Internet key exchange 

imgact, 70 

immutable file, 439 

implementation of 

ARP, 655–657 

buffer cache, 350–351 

dup system call, 320 

FFS, 502–505, 507–517 

file entry, 319 

file locking, 323–324, 456–459 

filestore, 498–501 

fork system call, 259–260 

ioctl system call, 321 

kernel malloc, 242–243 

kevent system call, 329–332 

munmap system call, 264–265 

NFS, 558–562 

pipe, 40 

pmap_enter(), 304–305 
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pmap_remove(), 305 

quotas, 451–454 

select system call, 327–329 

sleep(), 97–98, 101–104 

system call, 62–63 

uiomove(), 332–333 

wakeup(), 104–106 

implicit privilege, 157 

implicit send, 765 

inactive page list, 290, 307 

inactive, reclaim from, 294, 833 

inactive vnode operator, 344, 346, 432, 443 

INADDR_ANY, 182 

inbound, 820 

IN_CAPABILITY_MODE(), 180 

indirdep structure, 470–471 

indirect block dependencies, soft updates, 470–472 

indirect route, 677 

inetsw, 707 

init, 28, 57, 97, 161, 189, 292, 439, 782, 793–794, 798–800, 820, 846 

init_dtrace(), 790 

init_hwpmc(), 791 
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initialization 

filesystem, 799 

kernel, 782–783 

user-level system, 798–800 

virtual memory, 301–303, 308 

see also bootstrapping 

initiate_write_inodeblock(), 469 

inode, 339, 433, 498, 519, 820 

allocation, 434 

cache, 442–443 

contents, 433 

definition, 433–442 

dependencies, soft updates, 467–469 

locality of reference, 508 

management, 442–443 

number, 356, 437, 441–446, 467, 473, 476, 483, 495, 556, 814 

inode wait, 468, 470, 476 

inodedep structure, 467, 469–475, 496 

inodes, dynamic, 441–442 

inpcb structure, 722, 736 

in_pcballoc(), 723 

in_pcbbind(), 723 
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in_pcbconnect(), 723, 736 

in_pcbdetach(), 725 

in_pcblookup(), operation of, 725 

input-output memory-management unit, 420, 427–428 

in_rtalloc_ign(), 672 

insecure mode, 440 

Institute of Electrical and Electronic Engineers, 8, 136, 364–365, 829 

integrity-check value, 691–692, 820 

Intel virtualization technology, 421–422 

intelligent platform-management interface, 363–364 

interactive program, 91, 820 

Interdata 8/32, 5 

interface 

addresses, network, 635–636 

buffer cache, 348–349 

capabilities, 380 

capabilities, network, 636–639 

character device, 368, 371, 373–374 

disk device, 374–375 

filesystem, 368 

mmap system call, 251–253 

mutex, 109–110 
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network device, 378–379 

pager, 267–275 

protocol-network, 634–643 

protocol-protocol, 631–634 

queue, 381 

routines, network, 639–641 

routing-table, 683–684 

socket-to-protocol, 626–631 

International Organization for Standardization, 8, 823 

model, 622, 650 

protocol suite, 649 

Internet addresses 

broadcast, 653–654 

multicast, 654–655 

packet demultiplexing, 721 

structure, 612 

Internet association, 721–723 

Internet control message protocol, 634, 650–651, 657–659, 666, 669–670, 675, 684, 686, 691, 

725, 815, 820 

interaction with routing, 658 

port unreachable message, 725 

Internet domain, 6, 50 

Internet Engineering Task Force, 552, 664 
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Internet group-management protocol, 655 

Internet key exchange, 693, 820 

Internet ports, 721–723 

Internet protocol, xxii, 3, 6, 33, 182, 194, 209, 419, 554, 650–658, 686, 715–716, 723–727, 741, 

746, 768–769, 821 

firewall, 52, 702–706 

fragmentation, 554, 650, 652, 672–673 

handling of broadcast message, 672 

input processing, 673–675 

multicast router, 675 

options, 651 

output processing, 671–673 
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packet forwarding, 658, 674–675 

protocol header, 652 
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responsibilities of, 650 

routines, 670–675 
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interprocess communication, 6, 22, 32, 34, 39–42, 51, 76, 129, 140, 150, 157, 162–164, 180–181, 

184, 188, 196, 217, 282, 333–335, 415, 593–646, 648, 790, 820 

connection setup, 612–615 

data structures, 606–612 

data transfer, 615–620 

design, 4.2BSD, 8 

design, FreeBSD, 594, 599 

layers, 599–600 

local, 333–338 

memory management in, 601–606 

message queue, 337–338, 593, 647 

model of, 593–599 

overview, 50–51 

receiving data, 617–620 

reliable delivery, 616 

semaphores, 335–336 

shared memory, 250–258, 338 

socket shutdown, 620–621 

transmitting data, 616–617 

virtualization, 182, 184, 644–646 

interprocessor interrupt, 124–125, 421–422, 426, 785, 790, 821 
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handler, device, 64 

process, kernel, 57 

request, 363 

synchronous, 60, 99 

interrupt handling, 64–65, 782, 790, 792–793, 795 

clock, 65–67 

device driver, 370 

interrupt-vector table, 783 

interrupted system call, 62–63 

interruptible sleep(), 97, 133 

interval time, 74 

inverted page table, 284 

involuntary context switching, 99, 116 

ioctl, character device, 374 

ioctl system call, 42, 78, 141, 178, 204, 214, 318, 321, 374, 379–380, 385–387, 620, 629, 635, 

638, 700, 712, 714–715, 812 

implementation of, 321 

ioctl vnode operator, 432 

IOMMU. See input-output memory-management unit 

iovec structure, 332–333, 821, 835, 844 

IP. See Internet protocol 

ip6_forward(), 702 

ip6_input(), 702 
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ip6_output(), 669, 702, 766 

IPC. See interprocess communication 
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ip_forward(), 699 

IPFW. See Internet-protocol firewall 

IPI. See interprocessor interrupt 

ip_input(), 699, 702, 707 

ipintr(), operation of, 673–675 

IPMI. See intelligent platform-management interface 

ip_output(), 671, 699, 702, 746, 766 

operation of, 671–673 

IPSec, 30, 35, 52, 148–149, 151, 206, 208–209, 626, 660, 671–673, 675, 688–690, 693, 695, 

698–700, 716–717, 820–821, 836, 843–844 

authentication header, 691 

encapsulating security protocol, 693 

implementation, 698–700 

overview, 689–690 
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ipsec_common_input(), 699 

IPv4, 182–183, 611, 623, 815 
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autoconfiguration, 666–670 

introduction, 659–660 

packet formats, 662–664 

socket API changes, 664–666 

IPX. See Xerox network protocols 

IRQ. See interrupt request 

ISA bus, 405–406, 413, 784 

ISA. See ISA bus 

iSCSI, 216, 365–366, 525, 792. See also small-computer system interface 

ISN. See transmission control protocol initial-sequence number 

ISO. See International Organization for Standardization 

ISP. See Internet service providers 

issignal(), operation of, 135 

ITS operating system, 7 

IV. See encryption initialization vector 

J 

jail, 30–34, 149, 151, 158, 180–184, 790, 797, 803, 805 

ID, 183–184 

jail system call, 183 

jail_attach system call, 183 

jail_get system call, 184 

jail_remove system call, 183 
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jail_set system call, 184, 645 

JID. See jail ID 

JIT. See just-in-time compilation 

job, 136, 139 

job control, 29, 139–141, 821 

history of, 7 

signals in FreeBSD, 28 

terminal driver support for, 387–388, 391 

use of process group, 29 

journaled soft updates, 487–496 

compatibility, 488 

future work, 494–495 

introduction, 487–488 

journal format, 488–489 

performance, 493–494 

recovery, 492–493 

requirements, 489–492 

Joy, William, 6 

just-in-time compilation, 701 

K 

KAME, 659 

kdump, 78 
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memory management, 230–244 

memory maps, 231–232 
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requirements, 241–242 

kernel_mount(), 794 

kevent system call, 325–326, 329–331, 715 

implementation of, 329–332 
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management, 693–698 
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kqueue, 40, 317–318, 822 

structure, 330–332 

system call, 32, 40, 259, 326, 330 

KTR. See kernel tracing facility 

ktrace, 77–78, 791 

ktrace system call, 161, 482 

ktrace_init(), 791 

ktr_entry structure, 83 

KVM. See kernel based virtual machine 

L 

L2ARC. See zettabyte-filesystem level-2 adaptive-replacement cache 

label structure, 189, 196–197 

la_hold structure, 657 

LAN. See local-area network 

lastlog, 800 

layer protocols, network, 51–52 

layout, virtual memory, 227–228 

lchmod system call, 164, 481 

lchown system call, 164, 481 

lease, 823 

NFS, 559, 580–581 

least recently used, 249, 454, 794, 823 
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LFS. See log-structured filesystem 
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library, bare-metal system, 780 
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lightweight process, 146 

limitations, GELI, 216–217 
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resource, 26, 75–77 

in system, 451 

line discipline, 383–385, 823 

line mode, 383, 823 

link count dependencies, soft updates, 478–480 

link layer, 622, 823 
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link system call, 46–47, 481. See also filesystem links 
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linker, kernel, 785–787, 789 

linker sets, 776, 786 

linker_init_kernel_modules(), 789 

linker_preload(), 789 

linker_stop_class_add(), 789 

linprocfs filesystem, 358 

Linux operating system, xxi, xxii, xxiii, 7, 11, 17, 71, 95, 358, 815 

LISP programming language, 6 

listen request, 628, 823 

listen system call, 597, 612–613, 738, 823 

definition, 597 

Lite, 4.4BSD, xxii, 7, 13–14 

live dump, 487 

lldb, 80, 142 

llentry structure, 655–656, 670 

lle_timer structure, 656 

lltable structure, 655 

ln_hold, 670 

loadable kernel modules, 31, 34, 44, 775–776, 779, 781, 783–786, 794–797, 823 

local-area network, 148, 364, 380, 568, 641, 690, 747–748, 777 

local descriptor table, 791 

local domain, 50, 432, 823 
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address structure, 612 

local IPC, 333–338 

local page-replacement algorithm, 289, 823 

local-remote decision, 678 

locality of reference, 225, 508–510, 823 

lock canrecurse flag, 111 

lock synchronization, 110–112 

lock vnode operator, 432 

LOCKED buffer list, 349 

locking 

advisory, 323, 432, 807 

file descriptor, 322–324 

mandatory, 323, 824 

NFS version 4, 581–583 

locking resources on a shared-memory multiprocessor, 106–114, 612 

locking resources, deadlock avoidance when, 112–114, 335–336, 647 

locking semantics of, file, 454–456 

lockstat probe macro, 82 

locore.S, 783–784 

log-structured filesystem, 537–538, 543 

logging, ZFS, 538–540 

logical block, 498, 824 
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login, 155–156, 440, 799–800 

login name, 137 

login shell, 22 

LOMAC. See low watermark mandatory access control 

long-term scheduling, 117 

lookup vnode operator, 342–343, 432 

lost+found, 480 

low-level context switching, 100 

low-level scheduling, 114–117 

low pin-count interface, 363–364 

low watermark, 824 

mandatory access control, 186, 199 

socket, 610 

terminal, 389 

lower half terminal input, 390–391 

lower half terminal output, 389 

LPC. See low pin-count interface 

LRO. See transmission control protocol large-receive offload 

LRU. See least recently used 

ls, 508 

lseek system call, 41, 178, 318, 816 

lstat system call, 164, 450 
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lutimes system call, 481 

M 

MAC. See mandatory access control 

mac_error_select(), 194 

mac_get_fd system call, 200 

mac_get_file system call, 200 

Mach operating system, 7, 22, 37, 227, 258, 267, 273, 299 

mac_init(), 791 

mac_init_late(), 791 

Macklem, Rick, xxvi, 558–559 

mac_label_get(), 197 

mac_label_set(), 197 

mac_late, 189–190 

mac_policy_conf structure, 190 

mac_policy_ops structure, 190 

mac_policy_register(), 791 

mac_set_fd system call, 200 

mac_set_file system call, 200 

mac_t, 200 

mac test, 199 

mac vnode check write(), 193 

m_adj(), 606 
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magic number, 69, 377, 824 

main memory, 221, 824 

malloc(), 38, 72, 198, 227–228, 234, 239, 241, 243, 263, 309, 351, 788, 819 

management information base, 191, 805 

management mode, system, 777 

mandatory access control, 30–32, 34, 149–152, 158, 160–161, 184–200, 217, 437, 630, 655, 791, 

793, 797, 800, 804, 824–825, 836 

entry point, 34, 188–189, 191–194 

framework, 30, 34, 184–200 

framework startup, 189–190 

object association, 198 

object destruction, 199 

policy composition, 194–195 

policy lifecycle, 190 

policy registration, 190 

security label, 34, 152, 186–189, 195–200, 836 

mandatory locking, 323, 824 

mapped object, 228, 824 

mapping, physical to virtual, 302–303, 781 

mapping structure, 299, 824 

maps, kernel memory, 231–232 

maps, virtual memory, 231–232 

marshalling, 553 
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of arguments, 553, 824 

masked signal, 132 

Massachusetts Institute of Technology, 4, 7 

master boot record, 377, 392–393, 395–396, 778–779 

maxcontig, 515 

maximum segment lifetime, 729–730, 769–770, 825. See also 2MSL timer 

maximum-segment-size option, TCP, 728, 737 

maximum transmission unit, 380, 680, 686, 737–738, 770, 825 

maxusers, 603 

mb_alloc(), 605 

MBR. See master boot record 

mbuf, 601–605, 795, 825 

allocation, 605, 795 

cluster, 601–606 

data structure description, 601–603 

design, 604–605 

design, 4.4BSD, 604 

storage-management algorithm, 605 

structure, 197 

utility routines, 606 

m_copy(), 746 

m_copydata(), 746 
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m_copym(), 606 

memcpy(), 389 

memory allocation 

buffer cache, 351 

kernel, 38–39 

memory deadlock, 259, 274–275, 295–296 

memory disk, 780 

memory management, 36–39, 221–308 

cache design, 280–282 

design, 36–38 

goals, 221–226 

hardware, VAX, 37 

in IPC, 601–606 

kernel, 230–244 

page-table design, 298–299 

portability of, 37 

system, 221, 825 

memory-management unit, 223, 280, 282–284, 298, 301, 307, 427, 825 

design, 282–284, 298–299 

I/O, 420 

memory overlay, 223 

memory, process, 222–223 
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memstat, 804 

menu, boot, 778–781 

merged from current, 16 

message queue, 51, 825 

POSIX, 337–338 

System V, 337–338, 593 

metadata, 253, 348, 351, 357, 395, 459–463, 478, 484–485, 516–517, 825, 844 

metrics, route, 680, 686 

MFC. See merged from current 

m_free(), 605 

m_get(), 605 

m_hdr structure, 601 

MIB. See management information base 

Microsoft NTFS filesystem, 47, 171 

MINIX operating system, 7 

MIPS architecture, 7, 405, 782–784, 790 

mi_startup(), 786 

mi_switch(), 100, 104, 116–117 

mkdir 

structure, 468, 475 

system call, 47, 54, 169, 475, 482 

vnode operator, 432 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_395
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_484
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_88
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432


 

1051 

MKDIR_BODY flag, 474–475 

MKDIR_PARENT flag, 475 

mkfifo system call, 481 

mknod system call, 481 

mknod vnode operator, 432 

mlock system call, 253, 290, 307 

definition of, 253 

MLS. See multilevel security 

mmap system call, 36–38, 72, 228, 251–252, 259, 264, 266, 270, 304, 334, 347, 548, 824 

definition of, 251 

interface, 251–253 

mmap vnode operator, 432 

MMU. See memory-management unit 

modular congestion control, 758 

TCP, 758–761 

module_init(), 789 

Modulo-N hash, 682 

MOS. See zettabyte-filesystem meta-object set 

motivation for select system call, 324–327 

mount, 487, 560–561 

mount options, 343 

mount system call, 44, 182, 352, 355, 357, 373, 560, 799 
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mountd, 559–561, 564 

mountroot, 794 

mprotect system call, 252, 266, 306 

definition of, 252 

mps_complete_command(), 401 

mpssas_action(), 401 

mp_start(), 790 

m_pullup(), 606, 724, 741 

mq_open system call, 318 

mq_receive system call, 337–338 

mq_send system call, 337 

MS-DOS fat filesystem, 552, 777 

MS-DOS operating system, 552, 778 

msgrcv system call, 337–338 

msgsnd system call, 337 

MSL. See maximum segment lifetime 

msleep (). See sleep () 

msync system call, 253, 268, 271–272 

definition of, 253 

mtod(), 606 

MTU. See maximum transmission unit 

mtx_destroy(), 109–110 
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mtx_init(), 109–110 

mtx_lock(), 109 

MTX_OWNED flag, 107 

MTX_RECURSE flag, 109 

mtx_trylock(), 109–110 

mtx_unlock(), 110 

MTX_UNOWNED flag, 107 

multicast, 636 

address, router, 667 

Internet addresses, 654–655 

message, 725 

router, IP, 675 

Multics operating system, 4, 7 

multihoming, SCTP, 766–767 

multilevel feedback queue, 125–126, 825 

multilevel security, 34, 186–187, 189–190, 195, 200, 825, 836 

multiple-root problem, 569, 825 

multiprocessor 

locking resources on a shared-memory, 106–114, 612 
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startup, 789 
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multiprogramming, 90–91 

multiuser mode, 798, 801 

munlock system call, 253 

definition of, 253 

munmap system call, 252, 255, 257, 264, 305 

definition of, 252 

implementation of, 264–265 

mutex, 107–110, 788 

interface, 109–110 

spin, 107, 839 

synchronization, 107–110 

N 

Nagle, John, 747–748 

name 

creation, filesystem, 432 

deletion, filesystem, 432 

login, 137 

lookup, filesystem, 446–447 

translation, filesystem, 46, 447–449 

named attributes, 573 

named object, 248 

namei(), 180 
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naming 

filesystem, 443–451 

shared memory, 252 

NAT. See network address translation 

National Bureau of Standards, 8 

nd6_na_input(), 670 

nd6_output(), 669 

nd6_output_lle(), 669–670 

nd6_timer(), 670 

nd_input(), 669 

NEEDRESCHED flag, 116, 134 

negative caching of filename, 346 

neighbor-discovery, 658, 666–670, 826 

Net1 release, 7 

Net2 release, 7 

NetBSD, xxi, xxii, xxvi, 3, 11, 13–14, 342 

netfront, 423 

netgraph, 707–711 

bridge, 708–711 

Ethernet, 708–709 

netmap, 712–715 

netmask, 652, 826 
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netstat, 636–637, 646 

network 

address translation, 700 

buffering, 643–644 

byte order, 651, 826 

data flow, 623–624 

deadlock, 324–325 

device configuration, 379–380 

device control, 379–380 

device interface, 378–379 

device reception, 380–381 

device transmission, 381–382 

devices, 378–382 

flow control, 643–644 

interrupt service routine, 642, 793 

layer, 621–623, 826 

layer protocols, 51–52 

mask, 826 

protocol capabilities, 626 

queue limiting, 643 

stack virtualization, 33, 180, 184, 644–646, 683, 717, 776, 786, 789, 791, 805 

stack virtualization linker set, 645 
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NFS. See Network Filesystem 
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open firmware, 777 

open source BSD, 9–14 
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open vnode operator, 432 
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OpenBSM, 201 

opendir(), 445 
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operations 
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definition of, 268–269 

device, 248, 270–271 

interface, 267–275 

physical-memory, 272 

swap, 248, 272–275 

vnode, 248, 269–270 

paging, 6, 36, 71, 223–224, 226, 245–247, 249–250, 276–289, 799, 813, 828 

parameters, 291 

systems, characteristics of, 223 

PAM. See pluggable authentication module 

panic, 801, 828. See also system crash 

paravirtualization, 184, 414–428, 788 

parent directory, 46 

parent process, 27, 96, 126, 828 

partial fail, 768 

partition. See disk partition 

passphrase, GELI, 213–214, 216 

path MTU discovery, 680, 738, 770, 828 

pathname, 46, 828 

translation, 342–343 

paths through network node, 624 

PC-BSD, xxiv 
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PC. See personal computer 

p_cansched(), 160 

PCB. See protocol control block 

PCH. See peripheral controller hub 

PCI. See peripheral-component interconnect 

PDP-11, 5, 62, 89–90 

PDP-7, 3, 89 

per-CPU allocator, dynamic, 789 

perfect forward secrecy, 210 

performance. See system performance 

peripheral-component interconnect, 24–25, 53, 363–366, 405–406, 408–410, 414–416, 420, 

423, 428, 777 

peripheral controller hub, 362–363 

permanent kernel modules, 775, 828 

persist timer, 734, 829 

personal computer, 7, 60–62, 65, 67, 73, 148, 504, 777, 790 

architecture, 362–364 

stack growth on, 72 

PF. See packet filter 

PF_KEY 

address extension, 695 

association extension, 695 

base header, 694 
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PF_KEY_V2, 693 

PF_LOCAL, 630 

PFS. See perfect forward secrecy 

pgo_alloc(), 268 

pgo_dealloc(), 268 

pgo_getpage(), 272 

pgo_getpages(), 268–272 

pgo_haspage(), 268, 272 

pgo_init(), 268 

pgo_putpages(), 268, 270–272, 275 

PGP. See pretty-good privacy 

physical block, 499, 829 

physical I/O, 372–373 

algorithm for, 372 

physical mapping, 299, 829 

physical-memory pager, 272 

physical to virtual mapping, 302–303, 781 

physio(), 372–374 

PIC. See programmable interrupt controller 

PID. See process identifier 

ping, 658, 686 

pipe, 40–41, 316, 594, 829 
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audit, 200–205 

implementation of, 40 

system call, 40–41, 198, 232, 318, 790, 813 

pipeline, 29, 41, 829 

assured, 176 

placement policy, 223, 829 

Plan 9, 5 

platform_start structure, 784 

pluggable authentication module, 800 

pmap, 299–300, 303–308 

functions, 300–301 

initialization, 302, 785 

module, 229, 299–301, 303–308, 829 

structure, 829 
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pmap_bootstrap structure, 785 

pmap_change_wiring(), 301, 307 
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pmap_copy_page(), 301, 308 
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pmap_init(), 300–302 

pmap_is_modified(), 301, 308 

pmap_pinit(), 301, 308 

pmap_protect(), 301, 304, 306 

pmap_qenter(), 300, 305 

pmap_qremove(), 300, 305 

pmap_release(), 301, 308 

pmap_remove(), 300, 305–308 

implementation of, 305 

pmap_remove_all(), 301, 306 

pmap_remove_write(), 301, 306 

pmap_ts_referenced(), 301, 307–308 

pmap_zero_page(), 301, 308 

PMBR. See protective MBR 

pmc_soft_ev_register(), 791 

point-to-point protocol, 707–708 

policy composition, MAC, 194–195 

policy registration, MAC, 190 

poll interface, System V, 326 

poll system call, 32, 110, 325–327, 329–330, 374, 385, 630, 715, 829 

poll vnode operator, 432 

pollfd structure, 326 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326


 

1069 

polling I/O, 325, 829 

portability of 

FreeBSD, 23 

memory management, 37 

Seventh Edition UNIX, 5 

portable operating-system interface, xxii, 8, 39–40, 94, 136, 141, 150, 162–163, 166, 168–171, 

173–174, 248, 251, 317, 321–323, 334, 336–338, 385–386, 455, 463, 524–525, 528, 780, 829 

message queue, 337–338 

real-time, 161–174 

shared memory, 338 

portal filesystem, 343, 357–358 

portmap, 559–560 

ports, Internet, 721–723 

POSIX. See portable operating-system interface 

postsig(), 133, 135–136 

operation of, 136 

PPC architecture, 405 

PPP. See point-to-point protocol 

pr_ctlinput(), 633–634, 658, 725 

pr_ctloutput(), 631, 725 

preadv system call, 419 

preemption 

kernel, 60 
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thread, 117 

prefix option, 668 

prepaging, 224, 829 

preselection, audit, 201, 204 

pretty-good privacy, 30, 209 

primary address, 767 

pr_input(), 632–633 

priority inversion, 103, 830 

priority propagation, 103, 830 

prison, first, 181, 790–791, 794 

prison structure, 181, 646 

private mapping, 251, 254–256, 830 

private memory, 254–256, 258 

priv_check(), 32, 158 

priv_check_cred(), 158 

privilege, 830 

model, 30–34, 149–151, 157–159, 181–182, 803–805 

separation, 174, 830 

PRNG. See pseudo-random number generator 

probe, 79, 830 

probe effect, 79, 830 

/proc filesystem, 142–144, 358, 831 
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procctl system call, 259–260 

procedures, NFS, 569, 572–573, 575–581 

process, 26, 89, 830 

address-space management, 228–230 

context, 26, 830 

creation, 126–128, 258–262 

credential, 31, 34–35, 127, 144, 150–157, 179, 181–182, 201–204, 259, 354–355, 556, 564, 793, 

800, 803, 830 

debugging, 134, 142–144, 161, 182 

first, 793 

flags, 142 

isolation, 149 

kernel, 57, 786, 792–794, 822 

kernel interrupt, 57 

lightweight, 146 

memory, 222–223 

model, 149, 831 

open-file table, 442, 831 

profiling, 63, 74 

resource accounting, 31, 67, 129, 790, 800 

scheduling, 58, 68, 73, 91–92, 160–161, 782, 792, 794, 796 

state, change of, 128, 134, 142 

state organization, 92–99 
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structure, 59–60, 90, 94–98, 100, 804, 831 

termination, 128–129, 161, 266–267 

virtual address space, 245 

virtual memory duplication, 260–262 

virtual memory resources, 244–250 

virtual time, 74 

visibility, 34, 160 

process group, 29, 136–139, 830 

association with, socket, 140, 608 

hierarchy, 96 

identifier, 137, 320, 608, 831 

job-control use of, 29 

leader, 137 

orphaned, 141, 827 

terminal, 140, 387–388, 390 

process identifier, 27, 54, 92, 94, 126–128, 137–138, 145, 209, 259, 317, 387, 685, 831 

allocation, 127 

process management, 26–29, 69–73, 89–144 

history of, 89 

process priority, 28, 63, 75, 831 
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processor group, 117, 831 

processor hardware performance monitoring counters, 790–791 

processor rings, 149–150 

processor-status longword, 60–62 

procfs filesystem, 358 

procstat, 144, 804 

profclock(), 66, 74 

profil system call, 85 

profiling process, 63, 74 

timer, 66, 74 

program relocation, 833 

programmable interrupt controller, 427 

programming language 

B, 4 

C, 3–4, 26, 62 

D, 78, 80, 188–189 

LISP, 6 

protect, 260 

protected mode, 779, 781 

protection, virtual memory map, 306–307 

protective MBR, 779 

protocol, 51, 811 
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buffering policy, 643 

capabilities, network, 626 

communication, 624–626 

control block, 722–723, 766 

control-output routine, 630–631 

switch, 606, 608 

switch structure, 624, 831 

protocol family, 608, 805, 831 

protocol-network interface, 634–643 

protocol-protocol interface, 631–634 

protocols, network layer, 51–52 

protosw structure, 606, 608 

pr_output(), 632 

pr_usrreqs(), 631 

ps, 94, 98, 120 

pseudo-header, IP, 741 

pseudo-random number generator, 209, 212 

pseudo-terminal, 23, 29, 346, 367, 382–384, 388–390, 811–812, 832, 838 

psignal(), 133–135 

operation of, 133–134 

PSL. See processor-status longword 

ps_strings structure, 72 
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PTE. See page-table entry 

pthread model, 94 

pthread_create(), 94 

ptrace system call, 78, 106, 142–143, 161, 182 

public-key encryption, 206, 832 

pure demand-paging, 224, 832 

push migration, 832 

pv_entry structure, 299, 302–303, 305–310 

pwrite system call, 177–178 

pwritev system call, 177–178, 419 

Q 

QFQ. See quick fair queueing 

queue, audit, 204–205 

queue limiting, network, 643 

quick fair queueing, 705 

quotacheck, 454 

quotactl system call, 482 

quota.group, 452 

quotas 

contribution of, 8 

format of record, 452 

implementation of, 451–454 
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limits, 451 

quota.user, 452 

R 

racct_init(), 790 

race condition, 137–138, 250, 279, 324, 479, 832 

radix search trie, 680 

RAID. See redundant array of inexpensive disks 

RAIDZ. See zettabyte-filesystem RAIDZ variant of RAID 

random-number generator, 31, 35, 206, 208–212, 790, 793 

random_harvestq_internal(), 211 

range lock, System V, 323 

rapid connection reuse, 743, 832 

raw device, 372–373 

interface, 371, 832 

raw mode, 384 

raw socket, 42, 651, 658, 686–687, 832 

control block, 686 

input processing, 687 

output processing, 687 

rctl_init(), 790 

rdrand instruction, 35, 210–211 
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read system call, 37, 39, 43, 51, 143, 179, 209, 212, 318, 327, 333, 347, 352, 359, 385, 390–391, 

599, 615, 700, 816, 826, 831, 841 

read vnode operator, 497 

READ_10, 401 

readdir(), 445 

readdir vnode operator, 432 

readlink vnode operator, 432 

readv system call, 43, 332, 821 

real GID. See real group identifier 

real group identifier, 155, 832 

real mode, 779 

real-time 

clock, 58, 795–796 

POSIX, 161–174 

scheduling, 28, 75, 91, 117, 252–253 

timer, 67, 74 

real UID. See real user identifier 

real user identifier, 155–156, 832 

reboot, 801–802 

reboot system call, 801–802, 805 

receive 

descriptors, 381 

ring, 381 
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stream, ZFS, 546 

window, 732, 833, 838 

reception, network device, 380–381 

reclaim from inactive, 294, 833 

reclaim vnode operator, 345, 432, 443 

reclamation dependencies, soft updates, 476 

recommended attributes, 573 

record, audit, 35, 200–205 

recv system call, 43, 630 

recvfrom system call, 43, 615, 664, 761, 766 

recvit(), 615 

recvmsg system call, 43, 598, 615, 620, 630, 764 

data structures for, 598 

red zone, 38, 241, 833 

redundant array of inexpensive disks, 46, 49, 53, 362, 392, 394, 526, 529, 540, 547–548, 794 

reference monitor, 187, 189 

reference string, 224, 833 

refinement, capability, 176 

region, 245, 833 

directly-mapped, 783–784 

relative pathname, 46, 828, 833 

remote filesystem performance, 565–567 
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remote procedure call, 553–566, 569, 572–573, 575, 577–579, 581–586, 833 

remove vnode operator, 432 

rename system call, 47, 482, 557 

addition of, 47 

rename vnode operator, 432 

replacement policy, 223, 833 

replay protection, 691–692 

request for comments, 568, 573, 584, 659, 661, 688, 739–740 

required attributes, 573 

resident-set size, 290, 833 

resource 

accounting, process, 31, 67, 129, 790, 800 

autoconfiguration, 412–413 

limits, 26, 75–77 

process virtual memory, 244–250 

sharing, 106–114 

utilization, 75–76 

restore, 438, 546 

retransmit timer, 733, 738, 834 

return from kernel, 61–62 

return from system call, 63 

reverse-mapped page table, 284, 834 
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revocation of controlling terminal, 345 

revoke system call, 346, 387, 391, 482 

rewinddir(), 445 

RFC. See request for comments 

rfork system call, 40, 94, 126 

rip_input(), 658 

Ritchie, Dennis, 3–4, 7 

rlimit structure, 95 

rm, 479 

rmdir system call, 47, 475, 478, 482 

rmdir vnode operator, 432 

root 

directory, 45, 834 

filesystem, 46, 794, 799, 834 

of I/O tree, 366, 406, 410 

user, 30–31, 33, 151, 154–155, 157, 174, 181, 793, 834, 841 

root_hold_token(), 794 

root_mount_rel(), 794 

round robin, 115, 834 

round-trip time, 565, 735, 769 

TCP estimation of, 735–736 

route 
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black-hole, 680, 809 

metrics, 680, 686 

structure, 683 

weight, 682 

routed, 684 

router, 675, 834 

advertisement, 666 

entry, 667 

IP multicast, 675 

multicast address, 667 

solicitation, 667, 834 

routing, 675–686 

daemon, 684, 813, 834 

information protocol, 684 

interaction with ICMP, 658 

interface, 685–686 

lookup, 680–683 

mechanism, 677–684, 834 

policy, 684, 835 

redirect, 683, 835 

redirect message, 683 

socket, 685 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_685
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_685


 

1082 

table interface, 683–684 

tables, 677–684 

types of, 677 

RPC. See remote procedure call 

rpc.lockd, 557, 559, 561–562 

rpc.statd, 559, 561–562 

rtalloc(), 682–684 

rtentry structure, 671, 678, 683 

rtfree(), 683 

rtprio system call, 97 

rtredirect(), 658, 684 

RTT. See round-trip time 

run queue, 96, 114, 835 

management of, 115–117 

run-to-completion, 642, 835 

runq_add(), 115 

runq_choose(), 115 

operation of, 115 

runq_remove(), 115 

S 

SA. See security association 

SACK. See transmission control protocol selective acknowledgment 
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Samba, 552 

sandbox, 149, 151, 174–181, 835 

SAS. See serial-attached SCSI 

SATA. See serial advanced-technology attachment 

savecore, 802 

saved GID, 157, 835 

saved UID, 156–157, 835 

sbappendstream(), 744, 746 

/sbin/init, 793 

sbrk system call, 72, 259, 263, 819 

SC22 WG15 standard, 8 

scatter-gather I/O, 43, 54, 332–333, 416, 419, 615, 835 

sched_affinity(), 117 

sched_clock(), 117 

sched_getparam system call, 160 

sched_lend_user_prio(), 117 

sched_pickcpu(), 123 

sched_setpreempt(), 117 

sched_setup(), 791 

scheduler(), 296–297 

scheduler, packet, 705 

scheduling, 90, 414, 836 
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class, 97, 836 

long-term, 117 

low-level, 114–117 

multiprocessor, 122–125 

parameters, 26 

priority, 97, 836 

process, 58, 68, 73, 91–92, 160–161, 782, 792, 794, 796 

real-time, 28, 75, 91, 117, 252–253 

short-term algorithm, 126 

thread, 106, 114–126 

timeshare, 117–126 

traditional, 125–126 

scripts, user-level startup, 782 

SCSI. See small-computer system interface 

SCTP. See stream control transmission protocol 

sctp_bindx(), 767 

sctp_connectx(), 767 

SDT. See statically defined tracepoints 

secondary storage, 221, 836 

secure mode, 440 

securelevel, 161 

security, 688–700 
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association, 689, 691, 693–694, 697, 699, 836 

association, transport mode, 689 

association, tunnel mode, 690 

clearance, 186 

event auditing, 30–31, 35, 149, 151, 200–205, 792–793, 800, 836 

flavor, 584 

introduction, 688 

issues, NFS, 564 

label, MAC, 34, 152, 186–189, 195–200, 836 

level, kernel, 439 

localization, 30 

parameter index, 689–691, 697, 699, 836 

protocols, 690–693 

protocols implementation, 698–700 

triple, 584 

seekdir(), 445 

see_other_gids, 160 

see_other_uids, 160 

segment, 36, 69, 726, 836 

bss, 69, 263, 784, 809 

data, 36, 69, 71, 263, 813 

stack, 36, 69, 263, 839 
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text, 36, 69, 71, 263, 842 

segregated fit, 234 

select system call, 32, 325–327, 329–330, 359, 374, 610, 630, 715, 739, 829 

device driver support for, 327, 374 

implementation of, 327–329 

motivation for, 324–327 

selfd structure, 327–329 

selinfo structure, 327–329 

seltd structure, 327–329 

seltrue(), 374 

selwakeup(), 329, 389 

semaphores, 51, 593, 836 

System V, 333, 335 

virtual memory, 251 

semctl system call, 648 

semget system call, 336, 648 

semop system call, 336, 648 

sem_open system call, 317, 336 

sem_post system call, 336 

sem_wait system call, 336 

send stream, ZFS, 546 

send system call, 43, 51, 609, 694, 724, 765 
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send window, 731, 837 

sendfile system call, 38, 548 

sendit(), 615–616 

sendmsg system call, 43, 598, 615, 628, 723 

data structures for, 598 

sendsig(), 136 

sendto system call, 43, 615, 628, 664, 723, 761, 764–765 

sense request, 629, 837 

sequence 

numbers, TCP, 726 

space, 726, 837 

variables, TCP, 730–732 

sequenced-packet protocol, 761 

sequenced-packet socket, 595, 837 

serial advanced-technology attachment, 363, 365–366, 399, 402, 405, 407 

serial-attached SCSI, 365, 402 

serial console, 777, 779, 799 

server message block, 525, 552 

server process, 50, 837 

service location, 559 

session, 29, 136–139, 387–388, 837 

ID, 575, 837 
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leader, 138, 837 

set-group-identifier program, 155, 837 

set-user-identifier program, 155, 533, 837 

setattr vnode operator, 432 

seteuid system call, 157 

setfd structure, 329 

setgid binary, 31 

setgid system call, 155 

setlogin system call, 800 

setpgid system call, 137–138 

setpriority system call, 831 

setrunnable(), 100, 134 

setsid system call, 138 

setsockopt system call, 599, 621, 627, 631, 654, 748, 812 

settimeofday system call, 74 

setuid, 132 

binary, 31, 151, 181 

system call, 152, 155 

Seventh Edition UNIX, 5 

portability of, 5 

sh shell, 70, 798 

SHA. See hash message-authentication code 
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shadow object, 230, 248, 254–258, 837 

chain, 255–258 

collapse, 257–258 

share deny, 581 

share reservation, 581 

shared library, 72 

shared mapping, 36, 251, 253–254, 837 

shared memory, 51, 250–258, 593, 838 

naming, 252 

POSIX, 338 

System V, 252, 272, 338 

shared text segment, 6 

sharing, resource, 106–114 

shell, 838 

csh, 139 

login, 22 

sh, 70, 798 

shmat system call, 338 

shmdt system call, 338, 647 

shmem system call, 248, 252, 338 

shmget system call, 338 

shm_open system call, 179–180, 317, 338 
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shm_unlink system call, 338 

short-term-scheduling algorithm, 126, 838 

shutdown, system, 52–54, 801–802 

shutdown system call, 599, 619, 740 

shutdown_final, 802 

shutdown_post_sync, 802 

shutdown_pre_sync, 802 

sigaction system call, 130, 136, 810 

SIGALRM, 74 

sigaltstack system call, 132 

SIGCHLD, 134, 138, 142 

sigcode(), 136 

SIGCONT, 132, 134, 160, 812 

SIGHUP, 141, 387 

SIGINT, 136 

SIGIO, 320, 390, 608–609, 838 

SIGKILL, 28, 132, 134, 160 

signal, 28–29, 34, 94–95, 129–141, 160, 838 

checking for a pending, 63 

comparison with other systems, 129 

delivering, 135–136 

driven I/O, 320, 325, 838 
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handler, 28, 130–132, 838 

masked, 132 

posting, 63–64, 98, 132–134, 142, 838 

priority, 28 

restrictions on posting, 132 

stack, 28, 132 

system call, 179 

trampoline code, 136, 838 

sigprocmask system call, 132, 824 

SIGPROF, 74, 85 

sigreturn system call, 132, 135–136, 838 

SIGSTOP, 28, 132, 144 

sigsuspend system call, 101, 132 

SIGTHR, 160 

sigtramp(), 135 

SIGTRAP, 142, 144 

SIGTSTP, 145, 391 

SIGTTIN, 141, 390 

SIGTTOU, 134, 141, 388 

SIGURG, 608 

SIGVTALRM, 74 

silly-window syndrome, 746, 838 
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TCP handling of, 746–747 

single indirect block, 435, 820, 838 

single-user mode, 779, 781, 798, 801 

Sixth Edition UNIX, 4–5 

size update, filestore, 498 

slab allocator, 236–237, 787, 791 

sleep(), 98, 100–101, 116, 132–133, 292, 369, 615, 838, 843 

implementation of, 97–98, 101–104 

interruptible, 97, 133 

operation of, 104 

use of sleep(), 97–98, 101 

sleep queue, 96, 838 

sleepqueue structure, 103–105, 115 

sliding-window scheme, 726, 838 

slow-start algorithm, TCP, 752–756 

small-computer system interface, 363–365, 399–402, 405, 415, 418 

bus, 404 

I/O request, CAM, 400–402 

small-packet avoidance, 747, 839 

TCP implementation of, 747–748 

SMB. See server message block 

SMP. See symmetric multiprocessing 
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snapshot, 48, 480, 839 

on a large filesystem, 484–486 

creating a, 481–483 

deadlock, 485–486 

maintaining a, 483–484 

user visible, 487 

ZFS, 541–542 

socantrcvmore(), 745 

sockaddr structure, 611, 628, 630, 635, 641, 658, 677, 686, 695 

sockaddr_dl structure, 635–636 

sockaddr_in structure, 182, 664, 724 

sockaddr_in6 structure, 664 

socket, 40, 42–43, 50, 316, 368, 595, 839 

address structure, 182, 596, 611, 839 

connection queueing, 610, 613 

data buffering, 609, 616, 618 

data structures, 608–611 

error handling, 615 

low watermark, 610 

options, 626 

process group association with, 140, 608 

shutdown, 620–621 
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state transitions during rendezvous, 613 

state transitions during shutdown, 621 

states, 610 

structure, 192 

types, 595, 607 

using a, 596–599 

socket system call, 8, 39–41, 50, 198, 318, 596–597, 606, 612, 628, 631, 713, 761, 813 

definition, 596 

socket-to-protocol interface, 626–631 

socketpair system call, 630, 813 

SOCK_SEQPACKET, 761, 765 

SOCK_STREAM, 596 

soconnect(), 614 

soft limit, 76, 451, 839 

soft link, 449, 839, 841. See also symbolic link 

soft updates, 48, 459–480, 839 

bitmap dependencies, 466–467 

dependencies, 460–464 

direct block dependencies, 469–470 

directory dependencies, 472–476 

fsck dependencies, 480 

fsync dependencies, 477–478 
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indirect block dependencies, 470–472 

inode dependencies, 467–469 

link count dependencies, 478–480 

overview, 459–460 

reclamation dependencies, 476 

structures, 464–466 

truncation dependencies, 476 

softclock(), 66–69, 74 

softdep_disk_io_initiation(), 469 

softdep_disk_write_complete(), 469 

softdep_update_inodeblock(), 468 

software interrupt, 59, 65–66, 210, 839 

thread, 65, 208, 793, 795, 839 

sohasoutofband(), 744 

soisconnected(), 615 

soisconnecting(), 736 

soisdisconnected(), 745 

solid-state disk, 49, 402, 526, 539 

solisten(), 613 

sonewconn(), 613, 738 

soreceive(), 559, 617, 619–620, 647 

sorwakeup(), 619 
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sosend(), 559, 616–617, 647, 746, 768 

SPA. See zettabyte filesystem storage-pool allocator 

SPARC64 architecture, 790 

Spec 1170, 8 

special file, 42, 316, 839 

SPI. See security parameter index 

spin mutex, 107, 839 

split device-driver model, 414–428 

SPP. See sequenced-packet protocol 

SSD. See solid-state disk 

ssh, 30, 35, 148–149, 209, 383, 798 

stack, 839 

growth on PC, 72 

segment, 36, 69, 263, 839 

zero filling of user, 71 

stackable filesystem, 352–358 

4.4BSD, 352–353 

stale data, 565 

stale translation, 280–282, 839 

standalone 

device driver, 777, 840 

I/O library, 779–780, 840 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_131
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840


 

1097 

program, 777, 840 

standard 

error, 41, 840 

input, 41, 840 

output, 41, 840 

start routine, 401, 840 

start_init(), 793–794 

startup 

C-language, 784–785 

GELI, 214 

MAC framework, 189–190 

multiprocessor, 789 

scripts, user-level, 782 

system, 52–54, 775–800 

witness, 788 

stat structure, 318, 439, 629 

stat system call, 47, 164, 171, 345, 352, 438, 446, 837 

statclock(), 66–67, 76 

state cookie, 763 

stateless protocol, 556, 840 

statfs system call, 344 

statically defined tracepoints, 80 
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statistics collection, 66–67, 76 

statistics, system, 66–67 
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I/O system, 6 
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structures, soft-updates, 464–466 

su, 440 

Sun Microsystems, 9, 50, 339, 342, 515, 551, 554, 558 

superblock, 501, 841 

superpages, 284–289, 841 

superuser, 46, 154, 158, 322, 803, 805, 841 

supplementary group array, 156 

suser(), 32 

svc_dg_create(), 561 

svc_reg(), 561 

svc_vc_create(), 561 

swap 

area, 225, 841 

device, 225, 841 

out, 92, 295–296 

out, 4.4BSD, 296 

pager, 248, 272–275 

pager, 4.4BSD, 273 

partitions, 273, 802 

space, 225, 272, 841 

space management, 273–275 

swapin(), 106 
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operation of, 296–297 

swapoff system call, 274 

swapper, 296–297, 793, 822, 841 

swapping, 36, 73, 225, 295–297, 799, 841 

in FreeBSD, reasons for, 295 

SWI. See software interrupt 

swp_pager_async_iodone(), 275 

symbolic link, 449–451, 841 

symlink system call, 481 

symlink vnode operator, 432 

symmetric cryptography, 206, 700, 841 

symmetric multiprocessing, 106, 841 

syn-cache, TCP, 739–740, 762 

syn-cookie, TCP, 209, 739–740, 762 

sync system call, 341, 482 

syncer, 58, 359, 464 

synchronization, 81–82, 106–114 

lock, 110–112 

mutex, 107–110 

network time, 74, 796 

synchronous interrupt, 60, 99 

/sys/kern/sched_4bsd.c, 114 
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/sys/kern/sched_ule.c, 114 

/sys/sys/kernel.h, 786 

syscall(), 61 

sysctl system call, 84, 122, 160–161, 191, 200, 206, 209, 260, 291, 357, 639, 787, 803–805 

SYSINIT, 53, 785–797, 802 

syslogd, 799 

system activity, 61, 841 

system call, 22, 26, 32, 59–60, 150, 152, 200–205, 792, 797–798, 841 

handling, 37, 61–63, 100 

implementation of, 62–63 

result handling, 62–63 

return from, 63 

system calls accept, 597–598, 611–614, 646, 664, 739 

access, 353 

adjtime, 74 

aio_error, 321–322, 330 

aio_read, 321, 359 

aio_return, 322, 330 

aio_suspend, 322, 330 

aio_waitcomplete, 322 

aio_write, 321, 359 

audit, 201, 203, 205 
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system startup, 52–54, 775–800 

scripts, 798–799 

system statistics, 66–67 

System V, xxi, 6, 11–12, 95 

message queue, 337–338, 593 

poll interface, 326 

range lock, 323 

semaphores, 333, 335 

shared memory, 252, 272, 338 

terminal driver, 385 

SYSUNINIT, 53, 786 

T 

tag queueing, 514, 842 

tags, 604, 842 

tasklist, 464, 470, 476 

TCB. See trusted computing base 

TCP. See transmission control protocol 

tcp_attach(), 736 

tcpcb structure, 722, 736 

tcp_close(), 741 

tcp_connect(), 736 

tcp_ctloutput(), 748 
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tcp_delack(), 744 

tcpdump, 700 

tcp_hc_get(), 737 

tcp_hc_purge(), 738 

tcp_input(), 732, 742, 745, 757 

operation of, 741–745 

tcp_output(), 732–733, 736, 742, 744–748, 751 

operation of, 746 

tcp_slowtimo(), 733 

tcp_usr_send(), 732, 746 

tcp_usr_shutdown(), 740 

tcsetattr system call, 815, 822, 846 

tcsetpgrp(), 141 

tdq_idled(), 124 

TE. See type enforcement 

telldir(), 445 

TENEX operating system, 7 

Tenth Edition UNIX, 5 

terminal 

handling, 382–391 

low watermark, 389 

multiplexer, 368 
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operations, 388–391 

terminal driver, 384–385 

bottom half of, 384 

close(), 391 

data queues, 388–391 

functions, 385–387 

ioctl(), 385–387 

modes, 383–384, 390 

open(), 388 

special characters, 383 

System V, 385 

top half of, 384 

user interface, 7, 385–387 

terminal process group, 140, 387–388, 390 

termios structure, 385, 842 

text segment, 36, 69, 71, 263, 842. See also shared text segment 

Thompson, Ken, 3–4, 7, 22 

thrashing, 92, 842 

thread, 92, 251, 842 

preemption, 117 

priority, 96–97, 101 

priority, calculation of, 105, 117–126 
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priority, while sleeping, 97 

queues, 96 

scheduling, 106, 114–126 

software interrupt, 65, 208, 793, 795, 839 

state, 100 

state block, 60, 93, 98, 100, 842 

state, change of, 105 

structure, 59–60, 90, 98–99, 125, 842 

thread_exit(), 128 

threading model 

1:1, 94 

N:M, 93 

threads, idle, 792–793 
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TLB. See translation lookaside buffer 

TLS. See transport-layer security 
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data buffering, 754–755 
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implementation of small packet avoidance, 747–748 

implementation, use of 4BSD, 8 

initial-sequence number, 209, 726, 740, 837 

input processing, 741–745 

large-receive offload, 419 

maximum-segment-size option, 728, 737 

modular congestion control, 758–761 

options, 727 

output processing, 745–761 

packet header, 727 

receive window, 742 
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retransmission handling, 751–752 

segmentation offload, 419, 423, 427 

selective acknowledgment, 728, 740, 749–751, 764 

selective acknowledgment block, 750 

send policy, 733, 745–761 

sequence numbers, 726 

sequence variables, 730–732 

slow-start algorithm, 752–756 

state diagram, 730 

syn-cache, 739–740, 762 

syn-cookie, 209, 739–740, 762 

timer routines, 734 

timers, 733–735 

timestamp option, 728, 736 

window-scale option, 728 

window updates, 748–749 

transmission, network device, 381–382 

transmission sequence number, 764 

transmit descriptor, 382 

transmit ring, 382 

transport layer, 622, 843 

transport-layer security, 30, 149, 209, 688 
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transport mode, 689, 843 

security association, 689 

trap(), 61 

trap handling, 58, 61–62, 64–65, 100 

trap type code, 61 

TRIM disk advisory, 402 

triple indirect block, 435, 820, 843 

truncate system call, 47, 479, 481, 494 

addition of, 47 

truncate vnode operator, 498 

truncation dependencies, soft updates, 476 

truss, 78 

trusted computing base, 30, 147–149, 151, 157–158, 176, 184, 187, 204, 217, 797, 805, 844 

trusted system, 148 

trylock(), 240 

TSB. See thread state block 

TSC. See timestamp counter 

TSN. See transmission sequence number 

TSO. See transmission control protocol segmentation offload 

tty driver. See terminal driver 

ttydevsw, 385, 388 

ttydev_write(), 388 
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ttydisc_close(), 391 

ttydisc_getc(), 389, 391 

ttydisc_read(), 390–391 

ttydisc_reprint(), 389 

ttydisc_write(), 389 

ttypoll(), 385 

tunables, 787 

tunefs, 487 

Tunis operating system, 7, 22 

tunnel mode, 623, 632, 690, 844 

security association, 690 

turnstile, 107, 844 

queue, 96, 844 

structure, 102–105, 107–108, 112, 115 

2MSL timer, 735, 844. See also maximum segment lifetime 

TXG. See zettabyte filesystem transaction group 

type-ahead, 383, 844 

type enforcement, 34, 186–187 

U 

U-Boot, 777, 782 

uberblock, 523, 527, 532–533, 535, 538–540, 844 

ubldr, 782 
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ucred structure, 152 

UDP. See user datagram protocol 

udp_append(), 725 

udp_attach(), 723 

udp_bind(), 723 

udp_detach(), 725 

udp_input(), 724 

udp_output(), 724 

udp_send(), 724 

UEFI. See unified extensible-firmware interface 

UFS. See fast filesystem 

UFS1. See fast filesystem, 32-bit version 

UFS2. See fast filesystem, 64-bit version 

ufs_accessx(), 163 

ufs_bmap(), 505, 515 

ufs_vaccessx(), 168 

ugidfw, 187, 200 

UID. See user identifier 

uintptr_t, 197 

uio structure, 332–333, 373, 388, 390–391, 497, 765, 844 

uiomove(), 333, 373, 389 

implementation of, 332–333 
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ULE scheduling, xxvi, 114, 117–125, 791 

umapfs filesystem, 354–355, 564 

umask, 164, 170 

system call, 169 

uma_startup3(), 791 

uma_timeout(), 791 

uma_zalloc(), 244 

uma_zcreate(), 244 

uma_zfree(), 244 

uma_zone_set_max(), 241 

undelete system call, 357, 482 

unified extensible-firmware interface, 777, 797 

union filesystem, 355–357 

Universal Coordinated Time, 73–74, 85 

universal serial bus, 213, 363–366, 428 

universal UID, 208, 423 

University of California at Berkeley, 6 

UNIX 

32V, 5–6 

history of, 3–7 

Programmer’s Manual, 4 

Support Group, 5–6 
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System III, 5–6, 8 

System Laboratory, 11–13 

System V, 5–6, 8 

System V, Release 3, 6 

unlink system call, 46–47, 479, 481, 557 

unlock vnode operator, 432–433 

unmount, 478 

unmount system call, 352, 482 

unprivileged_proc_debug, 161 

update dependency, 461, 844 

update vnode operator, 467, 470, 472–473, 476, 497 

upper half terminal output, 388–389 

urgent data, 320, 726, 733, 746, 844 

TCP handling of, 744 

transmission, styles of, 617 

USB. See universal serial bus 

use of descriptor, 39–41 

USENET, 9, 516 

user credential, 152, 844 

user datagram protocol, 52, 552–554, 561, 564, 586, 649–651, 689, 691, 693, 698, 707, 721–726, 

733, 736, 741, 746, 761, 768–769, 815, 831, 845 

control operations, 725 

initialization, 723 

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_649
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723


 

1123 
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user-level startup scripts, 782 

user-level system initialization, 798–800 

user mode, 90, 226, 845 

user-request routine, 622, 625–630, 697, 845 

operations, 628–630 

USL. See UNIX System Laboratory 
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/usr/local/etc/rc.d, 798 
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UTC. See Universal Coordinated Time 
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UUID. See universal UID 
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V Kernel operating system, 22 
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vaccess_acl_nfs4(), 163, 168, 172–173 

vaccess_acl_posix1e(), 163, 168 

valloc filesystem operator, 497 

/var/quotas, 452 

/var/run/lock, 561 

VAX, 5–7 

memory management hardware, 37 

vegas congestion control algorithm, 759 

vfork system call, 94, 126, 138, 261–262, 309 

implementation issues, 261 

operation of, 262 

see also process creation 

vfree filesystem operator, 497 

VFS. See virtual filesystem interface 

vfs_mountroot(), 794 

vfs_mountroot_devfs(), 794 
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Virtio, Xen, 414–420, 423–424, 427 

virtual-address aliasing, 284, 845 

virtual address space, 779, 781–784, 787–789, 793, 845 

layout of user, 69–73 

process, 245 

virtual disk, 420, 428 

ZFS, 525 

virtual filesystem interface, 162–164, 167, 169, 172, 182, 184, 188, 191, 315, 339–344, 795 

virtual local area network, 180 

virtual machine, 32, 130, 545, 700, 845 

virtual memory, 6, 30, 149, 414, 419–421, 782, 785, 787–789, 792–794, 796, 804–805, 845 

4.4BSD, 37 

for a shared-memory multiprocessor, 37 

advantages of, 225–226 

cache alias, 282 

cache coherency, 270 

change protection, 266 

change size, 263–264 

data structures, 228–230 

duplication, process, 260–262 

hardware requirements for, 226 

implementation portability, 298–308 
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initialization, 301–303, 308 

interface, 4.2BSD, 7 

layout, 227–228 

machine dependencies, 298–308 

manipulation of, 263–266 

map allocation, 304–305 

map protection, 306–307 

maps, 231–232 

object, 247–250, 845 

overview, 227–230 

resources, process, 244–250 

semaphores, 251 

usage calculation of, 259–260, 263–264 

virtual-network stack allocator, 789 

virtual private network, 30, 35, 690, 845 

virtual-time timer, 66, 74 

virtualization, 32–34, 149–151, 180–184, 414–428, 788 

IPC, 182, 184, 644–646 

vmcall instruction, 422 
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vm_fault(), 76, 249, 276–278, 299, 307 
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vm_forkproc(), 127 

vm_ksubmit_init(), 789 

vm_map structure, 230–232, 254, 280, 300 
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vm.overcommit, 260 
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vm_page_alloc(), 291 
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vm_pageout(), 292 

vm_pageout_scan(), 292–294 
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vmspace_free(), 308 

vnet structure, 644–646 

vnet_data_startup(), 789 

vnlru vnode recycling daemon, 58 

vnode, 43, 316, 339, 609, 845 

cache, 249 

description of, 339–342 

operations, 342 

vnode operator 

access, 432 

advlock, 432 
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create, 432–433 

fsync, 497–498 

getattr, 432 
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ioctl, 432 
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mkdir, 432 
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mknod, 432 

mmap, 432 

open, 432 

poll, 432 

read, 497 

readdir, 432 

readlink, 432 

reclaim, 345, 432, 443 

remove, 432 

rename, 432 

rmdir, 432 

setattr, 432 

strategy, 469 

symlink, 432 

truncate, 498 

unlock, 432–433 

update, 467, 470, 472–473, 476, 497 

write, 497 

vnode pager, 248, 269–270 

vnode structure, 192–194, 196, 198 

vnode_pager_setsize(), 269 

vn_write(), 193–194 
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voluntary context switching, 99, 101–106 

VOP_ACCESS(), 162 

vop_access_args structure, 353 

VOP_ACCESSX(), 162, 168 

VOP_ACLCHECK(), 167 

VOP_GETACL(), 167 

VOP_SETACL(), 167 

vop_stdaccessx(), 162 

VPN. See virtual private network 

vring structure, 416 

vring_avail structure, 418 

vring_desc structure, 417 

vring_used structure, 418 

vring_used_elem structure, 418 

VT. See Intel virtualization technology 

W 

WAFL. See write-anywhere file-layout filesystem 

wait channel, 98, 101, 104–105, 111, 846 

wait system call, 27, 75, 89, 96, 101, 138, 144, 261, 266–267, 846 

wait4 system call, 27, 128–129, 142, 161 

operation of, 129 

wakeup(), 104–105, 120, 275 
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implementation of, 104–106 

operation of, 105 

wakeup_one(), 105 

wall clock time, 73–74 

WAN. See wide-area network 

watchdog timer, 67 

whiteout, filename, 356 

wide-area network, 568, 759 

wildcard route, 677, 725, 846 

window probe, 734, 846 

window-scale option, TCP, 728 

window system, 140. See also X Window System 

Windows operating system, xxii 

wine, xxix 

wired page, 271–272, 299–300, 302, 307, 846 

definition of, 233 

list, 290 

witness 

deadlock prevention, 109, 112–114 

startup, 788 

word-erase character, 383, 846 

working set, 225, 846 
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worklist structure, 464, 467 

workstation, 221 

write-anywhere file-layout filesystem, 543 

write system call, 26, 37, 39, 42–43, 51, 143, 177, 179, 193, 318, 325, 327, 333, 359, 385, 389, 452, 

481, 506, 536, 563, 565–566, 599, 609, 615, 694, 700, 816, 831, 841 

write vnode operator, 497 

writev system call, 43, 177, 332, 821 

wrmsr instruction, 422 

X 

X Display Manager, 799 

X/OPEN, 8 

X Window System, 748 

X.25, 641 

XDR. See external data representation 

Xen, 184, 414–415, 419–427, 788, 790 

block interface, 427 

network interface, 427 

Virtio, 414–420, 423–424, 427 

XenBus, 423 

xen_hvm_init(), 422 

XenStore, 420, 423 

Xerox network protocols, 631, 815 
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xform-switch structure, 699 

XINU operating system, 7 

XPT. See common access-method transport 

xpt_action(), 401 

xpt_done(), 402 

xpt_schedule(), 401 

xterm, 383 

Y 

Yarrow, 35, 210–212, 793 

Z 

zalloc(), 39, 243–244 

ZAP. See zettabyte-filesystem attribute processor 

zero filling of user stack, 71 

zettabyte-filesystem, xxvi, 25, 33, 166, 171, 180, 182, 184, 270, 420, 427, 496–497, 523–549, 556, 

574, 779–780, 794, 799 

attribute processor, 524, 528–529, 533–535, 545–546 

block free, 543–545 

block pointer, 529–531 

data-management unit, 524, 528, 530, 546 

dataset and snapshot layer, 524, 527, 529, 533 

deduplication, 545–546 

design tradeoffs, 546–549 
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disk write, 536–538 

dnode, 528–529 

features, 523–527 

file block allocation, 542–543 

input-output module, 525 

intent log, 524, 528, 535, 538 

level-2 adaptive-replacement cache, 525, 539 

logging, 538–540 

meta-object set, 525, 527–528, 531–534, 538–539, 542, 546 

objset layer, 534–535 

objset structure, 531–532 

operation, 535–546 

organization, 527–532 

overview, 49 

POSIX layer, 524, 528, 538 

RAIDZ variant of RAID, 524–525, 530–531, 540–541, 543, 547–549, 779 

receive stream, 546 

remote replication, 546 

send stream, 546 

snapshot, 541–542 

storage-pool allocator, 525, 527–529, 531, 533, 542–545 

structure, 532–535 
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transaction group, 530–532, 535–536, 538–539, 543 

virtual disk, 525 

ZVOL volume, 525, 527–528, 531–536, 539, 542–548, 815 

zfree(), 39 

ZFS. See zettabyte-filesystem 

ZIL. See zettabyte-filesystem intent log 

zil_header structure, 535 

ZIO. See zettabyte-filesystem input-output module 

znode, 528, 815 

zombie process, 96, 128–129, 846 

zone allocator, 239–241, 791, 793 

zone, red, 38, 241, 833 

zones, 239–241, 243–244 

ZPL. See zettabyte-filesystem POSIX layer 

ZVOL. See zettabyte-filesystem ZVOL volume 
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FreeBSD Kernel Internals on Video 

The course is based on this book and provides a firm background of the FreeBSD kernel. It 

covers all the topics in this book. In addition, it covers other related topics including 

performance measurement, system tuning, and crash dump analysis. The class consists of 

fifteen lectures on the FreeBSD kernel that align with the book chapters. There are assigned 

readings to be completed before viewing each lecture. The first thirteen lectures have a set of 

exercises to be done after each video is viewed. Follow-up comments on the exercises are 

provided at the beginning of the lecture following the one in which they are assigned. 

The planned syllabus for the the course is as follows: 

1. Introduction: kernel terminology and basic kernel services 

2. Processes: process structure and process management 

3. Kernel-resource management: scheduling and signals 

4. Security: security framework and policies, Capsicum, and jails 

5. Virtual memory: virtual-memory management, paging, and swapping 

6. Introduction to I/O: multiplexing I/O, support for multiple filesystems, the block I/O system 

(buffer cache), and stackable filesystems 

7. Kernel I/O structure: special files, pseudo-terminal handling, autoconfiguration strategy, 

structure of a disk device driver, and machine virtualization 

8. Local filesystem implementation: fast filesystem (FFS) 

9. Local filesystem implementation: zettabyte filesystem (ZFS) 

10. Remote filesystem implementation: network filesystem (NFS) 

11. Interprocess communication: concepts and terminology, basic IPC services, system layers 

and interfaces, and code review of a simple application that demonstrates use of the IPC and 

network facilities 

12. Network layer: IPv4 and IPv6 protocols, firewalls, and routing 
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13. Transport layer: TCP and SCTP 

14. System startup: boot loaders, kernel startup, and system launch 

15. System tuning: performance measurement, system tuning, and crash dump analysis 

In addition to the fifteen lecture videos, you also receive a copy of the course notes containing 

copies of all the overhead slides used in the course, a set of weekly readings from this textbook, 

thirteen sets of exercises (along with answers), and a set of papers that provide supplemental 

reading to the text. 

The course video will be produced in 2015. Until then, a course based on the first edition of this 

book can be purchased. Tiered pricing is available for companies, individuals, and students. 

On-site courses can be arranged. For up-to-date information on course availability and pricing 

or to place an order, see the Web page at 

http://www.mckusick.com/courses/ 

http://www.mckusick.com/courses/
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Advanced FreeBSD Course on Video 

This course provides an in-depth study of the source code of the FreeBSD kernel. It is aimed at 

users who already have a good understanding of the algorithms used in the FreeBSD kernel and 

want to learn the details of the algorithm’s implementation. Students are expected to have either 

taken a FreeBSD Kernel Internals class (such as the one described on the previous page) or to 

have thoroughly read and understood this book. They are also expected to have a complete 

background in reading and programming in the C programming language. Students will not 

need to prove relationship with a source license holder, as the course is based on the 

non-proprietary kernel sources released by the FreeBSD project. 

The class consists of fifteen lectures on the FreeBSD kernel source code. The lecture topics are: 

1. Organization, overview of source layout 

2. Kernel header files 

3. System calls and file opening 

4. Pathname translation and file creation 

5. Vnode interface mechanics, writing to a local file 

6. Opening, using, and closing locally connected sockets 

7. User datagram protocol and routing 

8. TCP algorithms 

9. Fork, exit, and exec 

10. Signal generation and delivery, scheduling 

11. Virtual memory header files, file mapping 

12. Page fault service, pageout processing 

13. NFS client and server operation 

14. Multiplexing with select, system startup 
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15. Special topics: ZFS filesystem 

In addition to the fifteen lecture videos, you also receive a CD-ROM with a copy of the FreeBSD 

kernel source covered in the lectures and a copy of the lecture notes. 

The course video will be produced in 2016. Until then a course based on FreeBSD 9.0 can be 

purchased. Tiered pricing is available for companies, individuals, and students. For up-to-date 

information on course availability and pricing or to place an order, see the Web page at 

http://www.mckusick.com/courses/ 

http://www.mckusick.com/courses/
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FreeBSD Networking from the Bottom Up on Video 

This course describes the FreeBSD networking stack. It is made up of a series of lectures derived 

from tutorials given by George Neville-Neil. 

The class currently consists of four lectures, though additional lectures are being developed. The 

current lecture topics are: 

1. Device Drivers: how to write and maintain network drivers in FreeBSD. By way of example it 

uses the Intel Gigabit Ethernet driver (igb). The lecture covers the basic data structures and 

APIs necessary to implement a network driver in FreeBSD. It is specific enough that given a 

device and a manual, you should be able to develop a working driver on your own. 

2. The IPv6 Stack: an in-depth discussion and code walk-through of version 6 of the IP 

protocols, describing and dissecting the paths that packets take from the driver layer up to the 

socket layer of the network stack. The lecture covers the four paths packets travel through the 

network stack: reception, transmission, forwarding, and error handling. 

3. Routing: packet forwarding and routing subsystems in FreeBSD. The routing and forwarding 

code are the glue that keeps the networking stack together, connecting the network protocols, 

such as IPv4 and IPv6, to their underlying data link layers and making sure that packets are sent 

to the correct next hop in the network. Topics in the lecture include the Routing Information 

Base (RIB), Forwarding Information Base (FIB), and the systems that interact with them. Also 

covered are routing sockets and the RIB/FIB APIs, the address-resolution protocol (ARP), 

Neighbor Discovery (ND6), the Common Address Redundancy Protocol (CARP), the IP firewall 

and traffic shaper control program (ipfw), and the packet filter interface (pfil). 

4. Packet Processing Frameworks: The FreeBSD Kernel has several different packet processing 

frameworks—software that is meant to transform packets but which are not traditionally 

considered to be network protocols. It is these packet processing frameworks that are often the 

basis for new products built with FreeBSD. This lecture covers all of the packet processing 

frameworks, including the Berkeley Packet Filter (BPF), IP Firewall (IPFW), Dummynet, Packet 

Filter (PF), Netgraph, and netmap. It discusses the appropriate use of each framework and takes 

a walk through the relevant sections of each framework. Working examples of extensions to each 

framework are given so that students can see how to build new systems with and around the 

frameworks that are present in the kernel. 
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Each lecture may be purchased separately and comes with a copy of its course notes. Tiered 

pricing is available for companies, individuals, and students. For up-to-date information on 

course availability and pricing or to place an order, see the Web page at 

http://www.mckusick.com/courses/ 

http://www.mckusick.com/courses/
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CSRG Archive CD-ROMs 

Thanks to the efforts of the volunteers of the “UNIX Heritage Society” (see http://www.tuhs.org) 

and the willingness of Caldera to release 32/V under an open source license (see 

http://www.mckusick.com/csrg/calder-lic.pdf), it is now possible to make the full source 

archives of the University of California at Berkeley’s Computer Systems Research Group (CSRG) 

available. 

The archive contains four CD-ROMs with the following content: 

 

The University of California at Berkeley wants you to know that these CDROMs contain software 

developed by the University of California at Berkeley and its many contributors. 

The CD-ROMs are produced using standard pressing technology, not with write-once CD-R 

technology. Thus, they are expected to have a 100-year lifetime rather than the 10–20 years 

expected of CD-R disks. The CDs are sold only in complete sets; they are not available 

individually. The price for the 4-CD set is $99. The archive can be ordered from 

http://www.mckusick.com/csrg/ 

http://www.tuhs.org/
http://www.mckusick.com/csrg/calder-lic.pdf
http://www.mckusick.com/csrg/
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The compilation of this archive is copyright © 1998 by Marshall Kirk McKu-sick. You may freely 

redistribute it to anyone else. However, I appreciate you buying your own copy to help cover the 

costs that I incurred in producing the archive. 
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History of UNIX at Berkeley 

Learn the history of the BSD (Berkeley Software Distributions) from one of the key developers 

who brings the history to life, complete with anecdotes and interesting footnotes to the historical 

narrative. 

Part I is titled “Twenty Years of Berkeley UNIX: From AT&T-Owned to Freely Redistributable.” 

The history of UNIX development at Berkeley has been recounted in detail by Marshall Kirk 

McKusick in his chapter in the O’Reilly book Open Sources: Voices from the Open Source 

Revolution and is now recounted in part one of this video. It begins with the start of the BSD 

community at the University of California at Berkeley in the late 1970s. It relates the triumphs 

and defeats of the project and its releases during its heydays in the 1980s. It concludes with the 

tumultuous lawsuit ultimately settled in Berkeley’s favor, which allowed the final release in 1992 

of 4.4BSD-Lite, an open-source version of BSD. 

Part II is titled “Building and Running An Open-Source Community: The FreeBSD Project.” It 

tells the story of the independent development by the FreeBSD project starting from the 

open-source release from Berkeley. The FreeBSD project patterned its initial community 

structure on the development structure built up at Berkeley. It evolved and expanded that 

structure to create a self-organizing project that supports an ever growing and changing group 

of developers around the world. This part concludes with a description of the roles played by the 

thousands of volunteer developers that make up the FreeBSD Project of today. 

Dr. Marshall Kirk McKusick’s work with UNIX and BSD development spans over thirty years. It 

begins with his first paper on the implementation of Berkeley Pascal in 1979, goes on to his 

pioneering work in the eighties on the BSD Fast File System, the BSD virtual memory system, 

and the final release of 4.4BSD-Lite from the University of California Berkeley Computer 

Systems Research Group. Since 1993, he has been working on FreeBSD, adding soft updates, 

snapshots, and the second-generation Fast Filesystem to the system. A key figure in UNIX and 

BSD development, his experiences chronicle not only the innovative technical achievements, but 

also the interesting personalities and philosophical debates in UNIX since its inception in 1970. 

The price for the video is $19.95. The video can be ordered from 

http://www.mckusick.com/history/ 

http://www.mckusick.com/history/
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Teaching a Course Using This Book 

The authors have put together course material suitable for both undergraduate and 

graduate-level teaching using this book. An example course outline and details on obtaining the 

materials for your own course follow. 

Systems research refers to the study of a broad range of behaviors arising from complex system 

design, including: 

• low-level operating systems; 

• resource sharing and scheduling; 

• interactions between hardware and software; 

• network-protocol design and implementation; 

• separation of mutually distrusting parties on a common platform; and 

• control of distributed-system behaviors such as concurrency and data replication. 

This course: 

• teaches systems-analysis methodology and practice through tracing and performance profiling 

experiments; 

• exposes students to real-world systems artifacts such as operating-systems schedulers and 

network stacks, and considers their hardware-software interactions with CPUs and 

network-interface cards; 

• develops scientific writing skills through laboratory-report exercises; and 

• assigns a selection of original research papers in these areas to gain insight into potential 

research topics and approaches. 

The teaching style blends lectures and hands-on labs that teach methodology, design principles, 

and practical skills. Students are taught about (and assessed via) a series of lab-report-style 

assignments based on in- and out-of-classroom practical work. The systems studied are real, 

and all wires will be live. 
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The materials for teaching this and other courses are available at no charge at 

http://www.teachbsd.com 

http://www.teachbsd.com/
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