

2

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many

features varies across reading devices and applications. Use your device or app settings to

customize the presentation to your liking. Settings that you can customize often include font,

font size, single or double column, landscape or portrait mode, and figures that you can click or

tap to enlarge. For additional information about the settings and features on your reading device

or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation

of these elements, view the eBook in single-column, landscape mode and adjust the font size to

the smallest setting. In addition to presenting code and configurations in the reflowable text

format, we have included images of the code that mimic the presentation found in the print

book; therefore, where the reflowable format may compromise the presentation of the code

listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity

code image. To return to the previous page viewed, click the Back button on your device or app.

3

The Design and Implementation of the

FreeBSD®

Operating System

Second Edition

Marshall Kirk McKusick

George V. Neville-Neil

Robert N.M. Watson

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

UNIX is a registered trademark of X/Open in the United States and other countries. FreeBSD

and the FreeBSD logo used on the cover of this book are registered and unregistered trademarks

of the FreeBSD Foundation and are used by Pearson Education with the permission of the

FreeBSD Foundation. Many of the designations used by manufacturers and sellers to

distinguish their products are claimed as trademarks. Where those designations appear in this

book, and Pearson was aware of a trademark claim, the designations have been printed with

initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or omissions.

No liability is assumed for incidental or consequential damages in connection with or arising out

of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to your

business, training goals, marketing focus, or branding interests), please contact our corporate

sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com

4

For questions about sales outside the United States, please contact

international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

McKusick, Marshall Kirk.

 The design and implementation of the FreeBSD operating system / Marshall

Kirk McKusick, George V. Neville-Neil, Robert N. M. Watson.

 pages cm

 Includes bibliographical references and index.

 ISBN-13: 978-0-321-96897-5 (hardcover : alk. paper)

 ISBN-10: 0-321-96897-2 (hardcover : alk. paper)

 1. FreeBSD. 2. Free computer software. 3. Operating systems (Computers)

 I. Neville-Neil, George V. II. Watson, Robert N. M. III. Title.

 QA76.774.F74M35 2014

 005.4’32—dc23 2014020072

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by

copyright, and permission must be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use

material from this work, please submit a written request to Pearson Education, Inc.,

Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may

fax your request to (201) 236-3290.

ISBN-13: 978-0-321-96897-5

ISBN-10: 0-321-96897-2

Text printed on recycled and acid-free paper at Courier in Westford, Massachusetts.

First Printing, September 2014

mailto:international@pearsoned.com
http://informit.com/aw

5

Dedication

This book is dedicated to the BSD community.

Without the contributions of that community’s members,

there would be nothing about which to write.

6

Table of Contents

Preface .. 12

About the Authors ... 21

Part I: Overview ... 23

Chapter 1. History and Goals .. 23

1.1 History of the UNIX System.. 23

1.2 BSD and Other Systems .. 28

1.3 The Transition of BSD to Open Source .. 30

1.4 The FreeBSD Development Model ... 35

Chapter 2. Design Overview of FreeBSD.. 44

2.1 FreeBSD Facilities and the Kernel ... 44

2.2 Kernel Organization .. 46

2.3 Kernel Services .. 49

2.4 Process Management .. 50

2.5 Security .. 53

2.6 Memory Management... 60

2.7 I/O System Overview .. 64

2.8 Devices ... 69

2.9 The Fast Filesystem .. 70

2.10 The Zettabyte Filesystem ...75

2.11 The Network Filesystem .. 76

2.12 Interprocess Communication .. 77

2.13 Network-Layer Protocols .. 78

2.14 Transport-Layer Protocols .. 79

2.15 System Startup and Shutdown ... 79

Chapter 3. Kernel Services .. 84

3.1 Kernel Organization .. 84

3.2 System Calls ... 89

7

3.3 Traps and Interrupts .. 91

3.4 Clock Interrupts .. 93

3.5 Memory-Management Services ... 98

3.6 Timing Services ... 102

3.7 Resource Services .. 104

3.8 Kernel Tracing Facilities .. 107

Part II: Processes ...117

Chapter 4. Process Management ... 117

4.1 Introduction to Process Management .. 117

4.2 Process State .. 120

4.3 Context Switching ... 128

4.4 Thread Scheduling ...144

4.5 Process Creation ... 157

4.6 Process Termination .. 159

4.7 Signals ... 161

4.8 Process Groups and Sessions ..169

4.9 Process Debugging ... 175

Chapter 5. Security ... 183

5.1 Operating-System Security ... 184

5.2 Security Model ..185

5.3 Process Credentials ... 188

5.4 Users and Groups ... 191

5.5 Privilege Model ...194

5.6 Interprocess Access Control .. 197

5.7 Discretionary Access Control ..199

5.8 Capsicum Capability Model... 213

5.9 Jails .. 220

5.10 Mandatory Access-Control Framework ... 225

5.11 Security Event Auditing ... 242

5.12 Cryptographic Services.. 248

5.13 GELI Full-Disk Encryption ... 256

8

Chapter 6. Memory Management ... 266

6.1 Terminology ... 266

6.2 Overview of the FreeBSD Virtual-Memory System .. 272

6.3 Kernel Memory Management .. 276

6.4 Per-Process Resources .. 293

6.5 Shared Memory ... 299

6.6 Creation of a New Process .. 309

6.7 Execution of a File .. 313

6.8 Process Manipulation of Its Address Space ... 314

6.9 Termination of a Process ... 317

6.10 The Pager Interface ... 318

6.11 Paging ... 328

6.12 Page Replacement ... 344

6.13 Portability... 355

Part III: I/O System ... 372

Chapter 7. I/O System Overview .. 372

7.1 Descriptor Management and Services ... 373

7.2 Local Interprocess Communication ... 393

7.3 The Virtual-Filesystem Interface ... 399

7.4 Filesystem-Independent Services .. 406

7.5 Stackable Filesystems ..414

Chapter 8. Devices ... 425

8.1 Device Overview .. 425

8.2 I/O Mapping from User to Device ... 432

8.3 Character Devices ... 435

8.4 Disk Devices .. 440

8.5 Network Devices.. 444

8.6 Terminal Handling ... 449

8.7 The GEOM Layer ... 460

8.8 The CAM Layer ... 468

8.9 Device Configuration .. 472

9

8.10 Device Virtualization .. 485

Chapter 9. The Fast Filesystem ... 506

9.1 Hierarchical Filesystem Management ... 506

9.2 Structure of an Inode .. 508

9.3 Naming.. 521

9.4 Quotas .. 529

9.5 File Locking ... 533

9.6 Soft Updates .. 539

9.7 Filesystem Snapshots .. 565

9.8 Journaled Soft Updates .. 572

9.9 The Local Filestore .. 583

9.10 The Berkeley Fast Filesystem ... 588

Chapter 10. The Zettabyte Filesystem ... 615

10.1 Introduction .. 615

10.2 ZFS Organization .. 618

10.3 ZFS Structure ... 625

10.4 ZFS Operation ... 629

10.5 ZFS Design Tradeoffs ...641

Chapter 11. The Network Filesystem .. 646

11.1 Overview .. 646

11.2 Structure and Operation.. 648

11.3 NFS Evolution .. 664

Part IV: Interprocess Communication ... 690

Chapter 12. Interprocess Communication ... 690

12.1 Interprocess-Communication Model ... 690

12.2 Implementation Structure and Overview .. 697

12.3 Memory Management ... 698

12.4 IPC Data Structures ... 705

12.5 Connection Setup ... 712

12.6 Data Transfer .. 714

12.7 Socket Shutdown ... 720

10

12.8 Network-Communication Protocol Internal Structure ... 721

12.9 Socket-to-Protocol Interface ...727

12.10 Protocol-to-Protocol Interface.. 733

12.11 Protocol-to-Network Interface .. 735

12.12 Buffering and Flow Control .. 746

12.13 Network Virtualization ...747

Chapter 13. Network-Layer Protocols .. 753

13.1 Internet Protocol Version 4 ... 753

13.2 Internet Control Message Protocols (ICMP) ... 762

13.3 Internet Protocol Version 6 .. 763

13.4 Internet Protocols Code Structure ... 776

13.5 Routing ... 782

13.6 Raw Sockets ... 793

13.7 Security ... 795

13.8 Packet-Processing Frameworks ... 809

Chapter 14. Transport-Layer Protocols .. 834

14.1 Internet Ports and Associations .. 834

14.2 User Datagram Protocol (UDP) ... 836

14.3 Transmission Control Protocol (TCP) ... 838

14.4 TCP Algorithms ... 846

14.5 TCP Input Processing .. 856

14.6 TCP Output Processing ... 860

14.7 Stream Control Transmission Protocol (SCTP) .. 877

Part V: System Operation .. 891

Chapter 15. System Startup and Shutdown ... 891

15.1 Firmware and BIOSes .. 892

15.2 Boot Loaders .. 893

15.3 Kernel Boot .. 899

15.4 User-Level Initialization .. 917

15.5 System Operation .. 920

Glossary .. 928

11

Index ... 976

FreeBSD Kernel Internals on Video .. 1136

Advanced FreeBSD Course on Video... 1138

FreeBSD Networking from the Bottom Up on Video ... 1140

CSRG Archive CD-ROMs.. 1142

History of UNIX at Berkeley .. 1144

Teaching a Course Using This Book .. 1145

Code Snippets .. 1149

12

Preface

This book follows the earlier authoritative and full-length descriptions of the design and

implementation of the 4.3BSD and 4.4BSD versions of the UNIX system developed at the

University of California at Berkeley. Since the final Berkeley release in 1994, several groups have

continued development of BSD. This book details FreeBSD, the system with the largest set of

developers and the most widely distributed releases. Although the FreeBSD distribution

includes nearly 1000 utility programs in its base system and nearly 25,000 optional utilities in

its ports collection, this book concentrates almost exclusively on the kernel.

UNIX-like Systems

UNIX-like systems include the traditional vendor systems such as Solaris and HP-UX; the

Linux-based distributions such as Red Hat, Debian, Suse, and Slackware; and the BSD-based

distributions such as FreeBSD, NetBSD, OpenBSD, and Darwin. They run on computers ranging

from smart phones to the largest supercomputers. They are the operating system of choice for

most multiprocessor, graphics, and vector-processing systems, and are widely used for the

original purpose of timesharing. The most common platform for providing network services

(from FTP to WWW) on the Internet, they are collectively the most portable operating system

ever developed. This portability is due partly to their implementation language, C [Kernighan &

Ritchie, 1989] (which is itself a widely ported language), and partly to the elegant design of the

system.

Since its inception in 1969 [Ritchie & Thompson, 1978], the UNIX system has developed in

several divergent and rejoining streams. The original developers continued to advance the state

of the art with their Ninth and Tenth Edition UNIX inside AT&T Bell Laboratories, and then

their Plan 9 successor to UNIX. Meanwhile, AT&T licensed UNIX System V as a product before

merging it with Sun Microsystem’s BSD-based SunOS to produce Solaris. Ninth Edition UNIX,

System V, and Solaris were all strongly influenced by the Berkeley Software Distributions

produced by the Computer Systems Research Group (CSRG) of the University of California at

Berkeley. The Linux operating system, although developed independently of the other UNIX

variants, implements the UNIX interface. Thus, applications developed to run on other

UNIX-based platforms can be easily ported to run on Linux.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref09

13

Berkeley Software Distributions

The distributions from Berkeley were the first UNIX-based systems to introduce many

important features including the following:

• Demand-paged virtual-memory support

• Automatic configuration of the hardware and I/O system

• A fast and recoverable filesystem

• The socket-based interprocess-communication (IPC) primitives

• The reference implementation of TCP/IP

The Berkeley releases found their way into the UNIX systems of many vendors and were used

internally by the development groups of many other vendors. The implementation of the

TCP/IP networking protocol suite in 4.2BSD and 4.3BSD, and the availability of those systems,

played a key role in making the TCP/IP networking protocol suite a world standard. Even the

non-UNIX vendors such as Microsoft have adopted the Berkeley socket design in their Winsock

IPC interface.

The BSD releases have also been a strong influence on the POSIX (IEEE Std 1003.1)

operating-system interface standard, and on related standards. Several features—such as

reliable signals, job control, multiple access groups per process, and the routines for directory

operations—have been adapted from BSD for POSIX.

Early BSD releases contained licensed UNIX code, thus requiring recipients to have an AT&T

source license to be able to obtain and use BSD. In 1988, Berkeley separated its distribution into

AT&T-licensed and freely redistributable code. The freely redistributable code was licensed

separately and could be obtained, used, and redistributed by anyone. The final freely

redistributable 4.4BSD-Lite2 release from Berkeley in 1994 contained nearly the entire kernel

and all the important libraries and utilities.

Two groups, NetBSD and FreeBSD, sprang up in 1993 to begin supporting and distributing

systems built from the freely redistributable releases being done by Berkeley. The NetBSD group

emphasized portability and the minimalist approach, porting the systems to nearly 60 platforms

and they were determined to keep the system lean to aid embedded applications. The FreeBSD

group emphasized maximal support for the PC architecture and pushed to ease installation for,

and market their system to, as wide an audience as possible.

14

In 1995, the OpenBSD group split from the NetBSD group to develop a distribution that

emphasized security. In 2003, the Dragonfly group split from the FreeBSD group to develop a

distribution that used a significantly lighter-weight mechanism to support multiprocessing.

Over the years, there has been a healthy competition among the BSD distributions, with many

ideas and much code flowing between them.

Material Covered in this Book

This book is about the internal structure of the FreeBSD 11 kernel and about the concepts, data

structures, and algorithms used in implementing FreeBSD’s system facilities. The book covers

FreeBSD from the system-call level down—from the interface to the kernel to the hardware itself.

The kernel includes system facilities, such as process management, security, virtual memory, the

I/O system, filesystems, the socket IPC mechanism, and network protocol implementations.

Material above the system-call level—such as libraries, shells, commands, programming

languages, and other user interfaces—is excluded, except for some material related to the

terminal interface and to system startup. Following the organization first established by

Organick’s book about Multics [Organick, 1975], this book is an in-depth study of a

contemporary operating system.

Where particular hardware is relevant, the book refers to the Intel 32-bit architecture and the

similar AMD 64-bit architecture. Because FreeBSD has emphasized development on these

architectures, they are the architectures with the most complete support and so provide a

convenient point of reference.

Use by Computer Professionals

FreeBSD is widely used to support the core infrastructure of many companies worldwide.

Because it can be built with a small footprint, it is also seeing increased use in embedded

applications. The licensing terms of FreeBSD do not require the distribution of changes and

enhancements to the system. The licensing terms of Linux require that all changes and

enhancements to the kernel be made available in source form at minimal cost. Thus, companies

that need to control the distribution of their intellectual property build their products using

FreeBSD.

This book is of direct use to the professionals who work with FreeBSD systems. Individuals

involved in technical and sales support can learn the capabilities and limitations of the system;

applications developers can learn how to interface with the system effectively and efficiently;

system administrators without direct experience with the FreeBSD kernel can learn how to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref07

15

maintain, tune, and configure the system; and systems programmers can learn how to extend,

enhance, and interface with the system.

Readers who will benefit from this book include operating-system implementors, system

programmers, UNIX application developers, administrators, and curious users. The book can be

read as a companion to the source code of the system, falling as it does between the manual

pages and the code in its level of detail. But this book is neither exclusively a UNIX

programming manual nor a user tutorial. Familiarity with the use of some version of the UNIX

system (see, for example, Stevens [1992]) and with the C programming language (see, for

example, Kernighan & Ritchie [1989]) would be extremely useful. The FreeBSD Handbook gives

a comprehensive introduction to the setting up, operation, and programming of FreeBSD

[FreeBSD Mall, 2004; FreeBSD.org, 2014]. FreeBSD packaging, designed to be easy to install

and use for both desktop and laptop users, is available in the PC-BSD distribution [Lavigne,

2010; PC-BSD.org, 2014].

Use in Courses on Operating Systems

This book is suitable for use as a reference text to provide background for a primary textbook in

a first-level course on operating systems. It is not intended for use as an introductory

operating-system textbook; the reader should have already encountered terminology such as

‘‘memory management,’’ ‘‘process scheduling,’’ and ‘‘I/O systems’’ [Silberschatz et al., 2012].

Familiarity with the concepts of network protocols [Comer, 2000; Stallings, 2000; Tanenbaum,

2010] will be useful for understanding some of the later chapters.

This book can be used in combination with a copy of the FreeBSD system for more advanced

operating-systems courses. Students’ assignments can include changes to, or replacements of,

key system components such as the scheduler, the paging daemon, the filesystems, thread

signalling, various networking layers, and I/O management. The ability to load, replace, and

unload modules from a running kernel allows students to experiment without the need to

compile and reboot the system. By working with a real operating system, students can directly

measure and experience the effects of their changes. Because of the intense peer review and

insistence on well-defined coding standards throughout its 35-year lifetime, the FreeBSD kernel

is considerably cleaner, more modular, and thus easier to understand and modify than most

software projects of its size and age. Sample course material is available at www.teachbsd.com

(see description following the index).

Exercises are provided at the end of each chapter. The exercises are graded into three categories

indicated by zero, one, or two asterisks. The answers to exercises that carry no asterisks can be

found in the text. Exercises with a single asterisk require a step of reasoning, critical thinking, or

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref13
http://www.teachbsd.com/

16

intuition beyond a concept presented in the text. Exercises with two asterisks present major

design projects or open research questions.

Organization

This text discusses both philosophical and design issues, as well as details of the system’s actual

implementation. Often, the discussion starts at the system-call level and descends into the

kernel. Tables and figures are used to clarify data structures and control flow. Pseudocode

similar to the C language displays algorithms. A bold font identifies program names and

filesystem pathnames. A bold and italic font introduces glossary terms. An italic font identifies

the names of system calls, variables, routines, and structure names. Routine names (other than

system calls) are further identified by the name followed by parentheses (e.g., malloc() is the

name of a routine, whereas argv is the name of a variable).

The book is divided into five parts, organized as follows:

• Part I, Overview Three introductory chapters provide the context for the complete

operating system and for the rest of the book. Chapter 1, History and Goals, sketches the

historical development of the system, emphasizing the system’s research orientation. Chapter 2,

Design Overview of FreeBSD, describes the services offered by the system and outlines the

internal organization of the kernel. It also discusses the design decisions that were made as the

system was developed. Sections 2.3 through 2.15 in Chapter 2 give an overview of their

corresponding chapters. Chapter 3, Kernel Services, explains how system calls are performed

and describes in detail several of the basic services of the kernel.

• Part II, Processes The first chapter in this part—Chapter 4, Process Management—lays the

foundation for later chapters by describing the structure of a process, the algorithms used for

scheduling the execution of the threads that make up a process, and the synchronization

mechanisms used by the system to ensure consistent access to kernel-resident data structures.

Chapter 5, Security, explains the security framework used throughout the kernel. It also details

the security facilities that are available to control process access to the resources on the system

and to each other. In Chapter 6, Memory Management, the virtual-memory-management

system is discussed in detail.

• Part III, I/O System First, Chapter 7, I/O System Overview, explains the system interface

to I/O and describes the structure of the facilities that support this interface. Following this

introduction are four chapters that give the details of the main parts of the I/O system. Chapter

8, Devices, gives a description of the I/O architecture of the Intel and AMD systems, and

describes how the I/O subsystem is managed and how the kernel initially maps out and later

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part01.html#part01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part01.html#part01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part02.html#part02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part02.html#part02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part03.html#part03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part03.html#part03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08

17

manages the arrival and departure of connected devices. Chapter 9, The Fast Filesystem, details

the data structures and algorithms that implement the original local filesystem as seen by

application programs, as well as how local filesystems are interfaced with the device interface

described in Chapter 8. Chapter 10, The Zettabyte Filesystem, describes the filesystem most

recently added to FreeBSD from the OpenSolaris operating system. Chapter 11, The Network

Filesystem, explains the latest version 4.2 network filesystem from both the server and client

perspectives.

• Part IV, Interprocess Communication Chapter 12, Interprocess Communication,

describes the mechanism for providing communication between related or unrelated processes.

Chapters 13 and 14, Network-Layer Protocols and Transport-Layer Protocols, are closely related

because the facilities explained in the former are used by the protocols, such as the UDP, TCP,

and SCTP, explained in the latter.

• Part V, System Operation Chapter 15, System Startup and Shutdown, explains system

initialization at the process level from kernel initialization to user login.

The book is intended to be read in the order that the chapters are presented, but the parts other

than Part I are independent of one another and can be read separately. Chapter 15 should be

read after all the others, but knowledgeable readers may find it useful independently.

At the end of the book are a glossary with brief definitions of major terms and an index. Each

chapter contains a Reference section with citations of related material.

Getting BSD

All the BSD distributions are available either for downloading from the net or on removable

media such as CD-ROM or DVD. Information on obtaining source and binaries for FreeBSD can

be obtained from http://www.FreeBSD.org. The NetBSD distribution is compiled and ready to

run on most workstation architectures. For more information, contact the NetBSD Project at

http://www.NetBSD.org/. The OpenBSD distribution is compiled and ready to run on a wide

variety of workstation architectures and has been extensively vetted for security and reliability.

For more information, visit the OpenBSD project’s Web site at http://www.OpenBSD.org/.

You diehards that read to the end of the preface are rewarded by finding out that you can get a

32-hour introductory video course based on this book, a 40-hour advanced video course based

on the FreeBSD 5 source code, a 2.5-hour video lecture on the history of BSD, and a 4-CD set

containing all the releases and the source-control history of BSD from Berkeley. These items are

described in the advertisements that follow the index.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part04.html#part04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part04.html#part04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part05.html#part05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part05.html#part05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/part01.html#part01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15
http://www.freebsd.org/
http://www.netbsd.org/
http://www.openbsd.org/

18

Acknowledgments

We extend special thanks to Matt Ahrens (Delphix) who provided invaluable insight on the

workings of the ZFS filesystem including countless e-mails answering our questions about how

it works and why specific design decisions were made.

We also thank the following people who provided extensive review of areas of the kernel in

which they have deep knowledge: John Baldwin (The FreeBSD Project) on locking, scheduling,

and virtual memory; Alan Cox (Rice University) on virtual memory; Jeffrey Roberson (EMC) on

the ULE scheduler; and Randall Stewart (Adara Networks) on the SCTP implementation.

We thank the following people, all of whom read and commented on early drafts of various

chapters of the book: Jonathan Anderson (Memorial University of Newfoundland); David

Chisnall (University of Cambridge); Paul Dagnelie (Delphix); Brooks Davis (SRI International);

Paweł Jakub Dawidek (Wheel Systems); Peter Grehan (The FreeBSD Project); Scott Long

(Netflix); Jake Luck; Rick Macklem (The FreeBSD Project); Ilias Marinos (University of

Cambridge); Roger Pau Monné (Citrex); Mark Robert Vaughan Murray; Edward Tomasz

Napierała (The FreeBSD Project); Peter G. Neumann (SRI International); Rui Paolo; Luigi Rizzo

(Universitá di Pisa, Italy); Margo Seltzer (Harvard University); Keith Sklower (University of

California, Berkeley); Lawrence Stewart (Swinburne University of Technology); Michael Tuexen

(Muenster University of Applied Sciences); Bryan Venteicher (NetApp); Erez Zadok (Stony

Brook University); and Bjoern A. Zeeb (The FreeBSD Project).

We are grateful to our now-retired editor of 25 years, Peter Gordon, who had faith in our ability

to get the book written despite several years of delays on our part. We are equally grateful to our

new editor, Debra Williams, who saw this project to completion and who accelerated the

production when we finally had a completed manuscript. We thank all the professional people at

Addison-Wesley and Pearson Education who helped us bring the book to completion: managing

editor John Fuller; production editor Mary Kesel Wilson; cover designer Chuti Prasertsith; copy

editor Deborah Thompson; and proofreader Melissa Panagos. Finally we acknowledge the

contributions of Jaap Akkerhuis, who designed the troff macros for the BSD books.

This book was produced using James Clark’s implementations of pic, tbl, eqn, and groff. The

index was generated by awk scripts derived from indexing programs written by Jon Bentley and

Brian Kernighan [Bentley & Kernighan, 1986]. Most of the art was created with xfig. Figure

placement and widow elimination were handled by the groff macros, but orphan elimination

and production of even page bottoms had to be done by hand.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#pref01ref01

19

We encourage readers to send us suggested improvements or comments about typographical or

other errors found in the book; please send electronic mail to

FreeBSDbook-bugs@McKusick.COM.

References

Bentley & Kernighan, 1986.

J. Bentley & B. Kernighan, ‘‘Tools for Printing Indexes,’’ Computing Science Technical Report

128, AT&T Bell Laboratories, Murray Hill, NJ, October 1986.

Comer, 2000.

D. Comer, Internetworking with TCP/IP Volume 1, 4th ed., Prentice-Hall, Upper Saddle River,

NJ, 2000.

FreeBSD Mall, 2004.

FreeBSD Mall, The FreeBSD Handbook, available from http://www.freebsdmall.com, March

2004.

FreeBSD.org, 2014.

FreeBSD.org, The Online FreeBSD Handbook, available from

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook, March 2014.

Kernighan & Ritchie, 1989.

B. W. Kernighan & D. M. Ritchie, The C Programming Language, 2nd ed., Prentice-Hall,

Englewood Cliffs, NJ, 1989.

Lavigne, 2010.

D. Lavigne, The Definitive Guide to PC-BSD, Apress / Springer-Verlag, March 2010.

Organick, 1975.

E. I. Organick, The Multics System: An Examination of Its Structure, MIT Press, Cambridge,

MA, 1975.

PC-BSD.org, 2014.

mailto:FreeBSDbook-bugs@McKusick.COM
http://www.freebsdmall.com/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook

20

PC-BSD.org, The PC-BSD Users Handbook, available from http://wiki.pcbsd.org, June 2014.

Ritchie & Thompson, 1978.

D. M. Ritchie & K. Thompson, ‘‘The UNIX Time-Sharing System,’’ Bell System Technical

Journal, vol. 57, no. 6, Part 2, pp. 78–90, July–August 1978. The original version [Comm. ACM

vol. 7, no. 7, pp. 365–375 (July 1974)] described the 6th edition; this citation describes the 7th

edition.

Silberschatz et al., 2012.

A. Silberschatz, P. Galvin, & G. Gagne, Operating System Concepts, 9th ed., John Wiley and

Sons, Hoboken, NJ, 2012.

Stallings, 2000.

R. Stallings, Data and Computer Communications, 6th ed., Prentice Hall, Hoboken, NJ, 2000.

Stevens, 1992.

W. Stevens, Advanced Programming in the UNIX Environment, Addison-Wesley, Reading, MA,

1992.

Tanenbaum, 2010.

A. S. Tanenbaum, Computer Networks, 5th ed., Prentice-Hall, Englewood Cliffs, NJ, 2010.

http://wiki.pcbsd.org/

21

About the Authors

left to right

Marshall Kirk McKusick, Robert N.M. Watson, and George V. Neville-Neil

Marshall Kirk McKusick writes books and articles, consults, and teaches classes on UNIX-

and BSD-related subjects. While at the University of California at Berkeley, he implemented the

4.2BSD fast filesystem and was the Research Computer Scientist at the Berkeley Computer

Systems Research Group (CSRG), overseeing the development and release of 4.3BSD and

4.4BSD. His particular areas of interest are the virtual-memory system and the filesystem. He

earned his undergraduate degree in electrical engineering from Cornell University and did his

graduate work at the University of California at Berkeley, where he received master’s degrees in

computer science and business administration, and a doctoral degree in computer science. He

has twice been president of the board of the Usenix Association, is currently a member of the

FreeBSD Foundation Board of Directors, a member of the editorial board of ACM’s Queue

magazine, a senior member of the IEEE, and a member of the Usenix Association, ACM, and

AAAS. In his spare time, he enjoys swimming, scuba diving, and wine collecting. The wine is

stored in a specially constructed wine cellar (accessible from the Web at

http://www.McKusick.com/cgi-bin/readhouse) in the basement of the house that he shares

with Eric Allman, his partner of 35-and-some-odd years and husband since 2013.

http://www.mckusick.com/cgi-bin/readhouse

22

George V. Neville-Neil hacks, writes, teaches, and consults in the areas of Security,

Networking, and Operating Systems. Other areas of interest include embedded and real-time

systems, network time protocols, and code spelunking. In 2007, he helped start the AsiaBSDCon

series of conferences in Tokyo, Japan, and has served on the program committee every year

since then. He is a member of the FreeBSD Foundation Board of Directors, and was a member

of the FreeBSD Core Team for 4 years. Contributing broadly to open source, he is the lead

developer on the Precision Time Protocol project (http://ptpd.sf.net) and the developer of the

Packet Construction Set (http://pcs.sf.net). Since 2004, he has written a monthly column,

‘‘Kode Vicious,’’ that appears both in ACM’s Queue and Communications of the ACM. He serves

on the editorial board of ACM’s Queue magazine, is vice-chair of ACM’s Practitioner Board, and

is a member of the Usenix Association, ACM, IEEE, and AAAS. He earned his bachelor’s degree

in computer science at Northeastern University in Boston, Massachusetts. He is an avid bicyclist,

hiker, and traveler who has lived in Amsterdam, The Netherlands, and Tokyo, Japan. He is

currently based in Brooklyn, New York, where he lives with his husband, Kaz Senju.

Robert N.M. Watson is a University Lecturer in Systems, Security, and Architecture in the

Security Research Group at the University of Cambridge Computer Laboratory. He supervises

doctoral students and postdoctoral researchers in cross-layer research projects spanning

computer architecture, compilers, program analysis, program transformation, operating

systems, networking, and security. Dr. Watson is a member of the FreeBSD Foundation Board

of Directors, was a member of the FreeBSD Core Team for 10 years, and has been a FreeBSD

committer for 15 years. His open-source contributions include work on FreeBSD networking,

security, and multiprocessing. Having grown up in Washington, D. C., he earned his

undergraduate degree in Logic and Computation, with a double major in Computer Science, at

Carnegie Mellon University in Pittsburgh, Pennsylvania, and then worked at a series of

industrial research labs investigating computer security. He earned his doctoral degree at the

University of Cambridge, where his graduate research was in extensible operating-system access

control. Dr. Watson and his wife Dr. Leigh Denault have lived in Cambridge, England, for 10

years.

http://ptpd.sf.net/
http://pcs.sf.net/

23

Part I: Overview

Chapter 1. History and Goals

1.1 History of the UNIX System

The UNIX system has been in wide use for over 40 years and has helped to define many areas of

computing. Although numerous individuals and organizations have contributed (and still

contribute) to the development of the UNIX system, this book primarily concentrates on the

BSD thread of development:

• Bell Laboratories, which invented UNIX

• The Computer Systems Research Group (CSRG) at the University of California at Berkeley,

which gave UNIX virtual memory and the reference implementation of TCP/IP

• The FreeBSD project, the NetBSD project, the OpenBSD project, and the Dragonfly project,

which continue the work started by the CSRG

• The Darwin operating system at the core of Apple’s OS X (Darwin is based on FreeBSD)

Origins

The first version of the UNIX system was developed at Bell Laboratories in 1969 by Ken

Thompson as a private research project to use an otherwise idle PDP-7. Thompson was joined

shortly thereafter by Dennis Ritchie, who not only contributed to the design and

implementation of the system, but also invented the C programming language. The system was

completely rewritten into C, leaving almost no assembly language. The original elegant design of

the system [Ritchie, 1978] and developments of the first 15 years [Ritchie, 1984a; Compton,

1985] have made the UNIX system an important and powerful operating system [Ritchie, 1987].

Ritchie, Thompson, and other early UNIX developers at Bell Laboratories had worked

previously on the Multics project [Peirce, 1985; Organick, 1975], which had a strong influence

on the newer operating system. Even the name UNIX is merely a pun on Multics; in areas where

Multics attempted to do many tasks, UNIX tried to do only one task but do it well. The basic

organization of the UNIX filesystem, the idea of using a user process for the command

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref23

24

interpreter, the general organization of the filesystem interface, and many other system

characteristics come directly from Multics.

Ideas from various other operating systems, such as the Massachusetts Institute of Technology’s

(MIT’s) CTSS, also have been incorporated. The fork operation to create new processes comes

from Berkeley’s GENIE (SDS-940, later XDS-940) operating system. Allowing a user to create

processes inexpensively led to using one process per command rather than commands being run

as procedure calls, as is done in Multics.

Research UNIX

The first major editions of UNIX were the Research systems from Bell Laboratories. In addition

to the earliest versions of the system, these systems include the UNIX Time-Sharing System,

Sixth Edition, commonly known as V6, which in 1976 was the first version widely available

outside of Bell Laboratories. Systems are identified by the edition numbers of the UNIX

Programmer’s Manual that were current when the distributions were made.

The UNIX system was distinguished from other operating systems in three important ways:

1. It was written in a high-level language.

2. It was distributed in source form.

3. It provided powerful primitives normally found in only those operating systems that ran on

much more expensive hardware.

Most of the system source code was written in C rather than in assembly language. The

prevailing belief at the time was that an operating system had to be written in assembly

language to provide reasonable efficiency and to get access to the hardware. The C language

itself was at a sufficiently high level to allow it to be compiled easily for a wide range of

computer hardware, without it being so complex or restrictive that systems programmers had to

revert to assembly language to get reasonable efficiency or functionality. Access to the hardware

was provided through assembly-language stubs for the 3 percent of the operating-system

functions—such as context switching—that needed them. Although the success of UNIX does not

stem solely from its being written in a high-level language, the use of C was a critical first step

[Kernighan & Ritchie, 1978; Kernighan & Ritchie, 1989; Ritchie et al., 1978]. Ritchie’s C

language is descended [Rosler, 1984] from Thompson’s B language, which was itself descended

from BCPL [Richards & Whitby-Strevens, 1980]. C continues to evolve [Tuthill, 1985; ISO,

2011].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref12

25

The second important distinction of UNIX was its early release from Bell Laboratories to other

research environments in source form. By providing source, the system’s founders ensured that

other organizations would be able not only to use the system, but also to tinker with its inner

workings. The ease with which new ideas could be adopted into the system always has been key

to the changes that have been made to it. Whenever a new system that tried to upstage UNIX

came along, somebody would dissect the newcomer and clone its central ideas into UNIX. The

unique ability to use a small, comprehensible system, written in a high-level language, in an

environment swimming in new ideas led to a UNIX system that evolved far beyond its humble

beginnings. Though recipients of the source code had to be licensed, campus-wide licenses were

cheaply available to universities. Thus, many people became versed in the way that UNIX

worked, setting the stage for the open-source world that would follow.

The third important distinction of UNIX was that it provided individual users with the ability to

run multiple processes concurrently and to connect these processes into pipelines of commands.

At the time, only operating systems running on large and expensive machines had the ability to

run multiple processes, and the number of concurrent processes usually was controlled tightly

by a system administrator.

Most early UNIX systems ran on the PDP-11, which was inexpensive and powerful for its time.

Nonetheless, there was at least one early port of Sixth Edition UNIX to a machine with a

different architecture: the Interdata 7/32 [Miller, 1978]. The PDP-11 also had an inconveniently

small address space. The introduction of machines with 32-bit address spaces, especially the

VAX-11/780, provided an opportunity for UNIX to expand its services to include virtual memory

and networking. Earlier experiments by the Research group in providing UNIX-like facilities on

different hardware had led to the conclusion that it was as easy to move the entire operating

system as it was to duplicate UNIX’s services under another operating system. The first UNIX

system with portability as a specific goal was UNIX Time-Sharing System, Seventh Edition (V7),

which ran on the PDP-11 and the Interdata 8/32 and had a VAX variety called UNIX/32V

TimeSharing, System Version 1.0 (32V). The Research group at Bell Laboratories has also

developed UNIX Time-Sharing System, Eighth Edition (V8); UNIX TimeSharing System, Ninth

Edition (V9); and UNIX Time-Sharing System, Tenth Edition (V10). Their 1996 system is Plan 9.

Regrettably, Bell Laboratories was disbanded after the release of Plan 9.

AT&T UNIX System III and System V

After the distribution of Seventh Edition in 1978, the Research group turned over external

distributions to the UNIX Support Group (USG). USG had previously distributed such systems

internally as the UNIX Programmer’s Work Bench (PWB), and had sometimes distributed them

externally as well [Mohr, 1985].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref22

26

USG’s first external distribution after Seventh Edition was UNIX System III (System III) in 1982,

which incorporated features of Seventh Edition, of 32V, and also of several UNIX systems

developed by groups other than the Research group. Features of UNIX/RT (a real-time UNIX

system) were included, as were many features from PWB. USG released UNIX System V

(System V) in 1983; that system is largely derived from System III. The court-ordered

divestiture of the Bell Operating Companies from AT&T permitted AT&T to market System V

aggressively [Bach, 1986; Wilson, 1985].

USG metamorphosed into the UNIX System Development Laboratory (USDL), which released

UNIX System V, Release 2 in 1984. System V, Release 2, Version 4 introduced paging [Jung,

1985; Miller, 1984], including copy-on-write and shared memory, to System V. The System V

implementation was not based on the Berkeley paging system. USDL was succeeded by AT&T

Information Systems (ATTIS), which distributed UNIX System V, Release 3, in 1987. That

system included STREAMS, an IPC mechanism adopted from V8 [Presotto & Ritchie, 1985].

Shortly after the release of UNIX System V as a product, AT&T and Sun Microsystems worked

together to merge it with Sun Microsystem’s BSD-based SunOS to produce Solaris. Solaris and

its open-source variant Open Solaris are the primary System V variants of UNIX still in use

today.

Berkeley Software Distributions

The most influential of the non-Bell Laboratories and non-AT&T UNIX development groups was

the University of California at Berkeley [DiBona et al., 1999]. Software from Berkeley was

released in Berkeley Software Distributions (BSD)—for example, as 4.4BSD. Berkeley was the

source of the BSD name, and its distributions were the first distinct identity for the BSD

operating system. The first Berkeley VAX UNIX work was the addition to 32V of virtual memory,

demand paging, and page replacement in 1979 by William Joy and Ozalp Babao lu, to produce

3BSD [Babao lu & Joy, 1981]. The reason for the large virtual-memory space of 3BSD was the

development of what at the time were large programs, such as Berkeley’s Franz LISP. This

memory-management work convinced the Defense Advanced Research Projects Agency

(DARPA) to fund the Berkeley team for the later development of a standard system (4BSD) for

DARPA’s contractors to use.

A goal of the 4BSD project was to provide support for the DARPA Internet networking protocols,

TCP/IP [Comer, 2000]. The networking implementation was general enough to communicate

among diverse network facilities, ranging from local networks, such as Ethernets and token

rings, to long-haul networks, such as DARPA’s ARPANET.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref05

27

We refer to all the Berkeley VAX UNIX systems following 3BSD as 4BSD, although there were

really several releases: 4.0BSD, 4.1BSD, 4.2BSD, 4.3BSD, 4.3BSD Tahoe, and 4.3BSD Reno.

4BSD was the UNIX operating system of choice for VAXes from the time that the VAX first

became available in 1977 until the release of System V in 1983. Most organizations would

purchase a 32V license but would order 4BSD from Berkeley. Many installations inside the Bell

System ran 4.1BSD (and replaced it with 4.3BSD when the latter became available). A new

virtual-memory system was released with 4.4BSD. The VAX was reaching the end of its useful

lifetime, so 4.4BSD was not ported to that machine. Instead, 4.4BSD ran on the newer 68000,

SPARC, MIPS, and Intel PC architectures.

The 4BSD work for DARPA was guided by a steering committee that included many notable

people from both commercial and academic institutions. The culmination of the original

Berkeley DARPA UNIX project was the release of 4.2BSD in 1983; further research at Berkeley

produced 4.3BSD in mid-1986. The next releases included the 4.3BSD Tahoe release of June

1988 and the 4.3BSD Reno release of June 1990. These releases were primarily ports to the

Computer Consoles Incorporated hardware platform. Interleaved with these releases were two

unencumbered networking releases: the 4.3BSD Net1 release of March 1989 and the 4.3BSD

Net2 release of June 1991. These releases extracted nonproprietary code from 4.3BSD; they

could be redistributed freely in source and binary form to companies and individuals not

covered by a UNIX source license. The final CSRG release requiring an AT&T source license was

4.4BSD in June 1993. Following a year of litigation (see Section 1.3), the free-redistributable

4.4BSDLite was released in April 1994. The final CSRG release was 4.4BSD-Lite Release 2 in

June 1995.

UNIX in the World

The UNIX system is also a fertile field for academic endeavor. Thompson and Ritchie were given

the Association for Computing Machinery Turing award for the design of the system [Ritchie,

1984b]. The UNIX system and related, specially designed teaching systems—such as Tunis

[Ewens et al., 1985; Holt, 1983], XINU [Comer, 1984], and MINIX [Tanenbaum, 1987]—are

widely used in courses on operating systems. Linus Torvalds reimplemented the UNIX interface

in his freely redistributable Linux operating system. The UNIX system is ubiquitous in

universities and research facilities throughout the world, and is ever more widely used in

industry and commerce.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref35

28

1.2 BSD and Other Systems

The CSRG incorporated features from not only UNIX systems but from other operating systems.

Many of the features of the 4BSD terminal drivers are from TENEX/TOPS-20. Job control (in

concept—not in implementation) is derived from TOPS-20 and from the MIT Incompatible

Timesharing System (ITS). The virtual-memory interface first proposed for 4.2BSD, and finally

implemented in 4.4BSD, was based on the file-mapping and page-level interfaces that first

appeared in TENEX/TOPS-20. The current FreeBSD virtual-memory system (see Chapter 6)

was adapted from Mach, which was itself an offshoot of 4.3BSD. Multics has often been a

reference point in the design of new facilities.

The quest for efficiency was a major factor in much of the CSRG’s work. Some efficiency

improvements were made because of comparisons with the proprietary VMS operating system

for the VAX [Joy, 1980; Kashtan, 1980].

Other UNIX variants have adopted many 4BSD features. AT&T UNIX System V [AT&T, 1987],

the IEEE POSIX.1 standard [P1003.1, 1988], and the related National Bureau of Standards (NBS)

Federal Information Processing Standard (FIPS) have adopted the following:

• Job control (Chapter 2)

• Reliable signals (Chapter 4)

• Multiple file-access permission groups (Chapter 5)

• Filesystem interfaces (Chapter 9)

The X/OPEN Group (originally consisting of only European vendors but now including most US

UNIX vendors) produced the X/OPEN Portability Guide [X/OPEN, and, more recently, the

Spec 1170 Guide. These documents specify both the kernel interface and many of the utility

programs available to UNIX system users. When Novell purchased UNIX from AT&T in 1993, it

transferred exclusive ownership of the UNIX name to X/OPEN. Thus, all systems that want to

brand themselves as UNIX must meet the X/OPEN interface specifications. To date, no BSD

system has ever been put through the X/OPEN interface-specification tests, so none of them can

be called UNIX. The X/OPEN guides have adopted many of the POSIX facilities. The POSIX.1

standard is also an ISO International Standard, named SC22 WG15. Thus, the POSIX facilities

have been accepted in most UNIX-like systems worldwide.

The 4BSD socket interprocess-communication mechanism (see Chapter 12) was designed for

portability and was immediately ported to AT&T System III, although it was never distributed

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12

29

with that system. The 4BSD implementation of the TCP/IP networking protocol suite (see

Chapter 14) is widely used as the basis for further implementations on systems ranging from

AT&T 3B machines running System V to VMS to embedded operating systems such as VxWorks.

The CSRG cooperated closely with vendors whose systems are based on 4.2BSD and 4.3BSD.

This simultaneous development contributed to the ease of further ports of 4.3BSD and to

ongoing development of the system.

The Influence of the User Community

Much of the Berkeley development work was done in response to the user community. Ideas and

expectations came not only from DARPA, the principal direct-funding organization, but also

from users of the system at companies and universities worldwide.

The Berkeley researchers accepted not only ideas from the user community but also actual

software. Contributions to 4BSD came from universities and other organizations in Australia,

Canada, Europe, Japan, and the United States. These contributions included major features,

such as autoconfiguration and disk quotas. A few ideas, such as the fcntl system call, were taken

from System V, although licensing and pricing considerations prevented the use of any code

from System III or System V in 4BSD. In addition to contributions that were included in the

distributions proper, the CSRG also distributed a set of user-contributed software.

An example of a community-developed facility is the public-domain time-zone-handling

package that was adopted with the 4.3BSD Tahoe release. It was designed and implemented by

an international group, including Arthur Olson, Robert Elz, and Guy Harris, partly because of

discussions in the USENET newsgroup comp.std.unix. This package takes

time-zone-conversion rules completely out of the C library, putting them in files that require no

system-code changes to change time-zone rules; this change is especially useful with binary-only

distributions of UNIX. The method also allows individual processes to choose rules rather than

keeping one ruleset specification systemwide. The distribution includes a large database of rules

used in many areas throughout the world, from China to Australia to Europe. Distributions are

thus simplified because it is not necessary to have the software set up differently for different

destinations, as long as the whole database is included. The adoption of the time-zone package

into BSD brought the technology to the attention of commercial vendors, such as Sun

Microsystems, causing them to incorporate it into their systems. This time-zone framework is

still in use 30 years later.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14

30

1.3 The Transition of BSD to Open Source

Up through the release of 4.3BSD Tahoe, all recipients of BSD had to first get an AT&T source

license. That was because the BSD systems were never released by Berkeley in a binary-only

format; the distributions always contained the complete source to every part of the system. The

history of the UNIX system, and the BSD system in particular, had shown the power of making

the source available to the users. Instead of passively using the system, they actively worked to

fix bugs, improve performance and functionality, and even add completely new features.

With the increasing cost of the AT&T source licenses, vendors that wanted to build stand-alone

TCP/IP-based networking products for the PC market using the BSD code found the per-binary

costs prohibitive. So they requested that Berkeley break out the networking code and utilities,

and provide them under licensing terms that did not require an AT&T source license. The

TCP/IP networking code clearly did not exist in 32/V and thus had been developed entirely by

Berkeley and its contributors. The BSD-originated networking code and supporting utilities

were released in June 1989 as Networking Release 1, the first freely redistributable code from

Berkeley.

The licensing terms were liberal. A licensee could release the code modified or unmodified in

source or binary form with no accounting or royalties to Berkeley. The only requirements were

that the copyright notices in the source file be left intact and that products that incorporated the

code include in their documentation that the product contained code from the University of

California and its contributors. Although Berkeley charged a $1000 fee to get a tape, anyone was

free to get a copy from somebody who already had it. Indeed, several large sites put it up for

anonymous FTP shortly after it was released. Though the code was freely available, several

hundred organizations purchased tapes, which helped to fund the CSRG and encouraged further

development.

Networking Release 2

With the success of the first open-source release, the CSRG decided to see how much more of

BSD they could spring free. Keith Bostic led the charge by soliciting people to rewrite the UNIX

utilities from scratch based solely on their published descriptions. Their only compensation

would be to have their name listed among the Berkeley contributors next to the name of the

utility that they rewrote. The contributions started slowly and were mostly for the trivial utilities.

But as the list of completed utilities grew, and Bostic continued to hold forth for contributions at

public events such as Usenix, the rate of contributions continued to grow. Soon the list crossed

31

100 utilities, and within 18 months nearly all the important utilities and libraries had been

rewritten.

The kernel proved to be a bigger task because it could not easily be rewritten from scratch. The

entire kernel was reviewed, file by file, removing code that had originated in the 32/V release.

When the review was completed, there were only six remaining kernel files that were still

contaminated and that could not be trivially rewritten. While consideration was given to

rewriting those six files so that a complete kernel could be released, the CSRG decided to release

just the less-controversial set. The CSRG sought permission for the expanded release from folks

higher up in the university administration. After much internal debate and verification of the

methods used for detecting proprietary code, the CSRG was given permission to do the release.

The initial thought was to come up with a new name for the second freely redistributable release.

However, getting a new license written and approved by the university lawyers would have taken

many months. So, the new release was named Networking Release 2, since that could be done

with just a revision of the approved Networking Release 1 license agreement. This second,

greatly expanded, freely redistributable release began shipping in June 1991. The redistribution

terms and cost were the same as the terms and cost of the first networking release. As before,

several hundred individuals and organizations paid the $1000 fee to get the distribution from

Berkeley.

Closing the gap from the Networking Release 2 distribution to a fully functioning system did not

take long. Within 6 months of the release, Bill Jolitz had written replacements for the six

missing files. He promptly released a fully compiled and bootable system for the 386-based PC

architecture in January 1992, which he called 386/BSD. Jolitz’s 386/BSD distribution was done

almost entirely on the net. He simply put it up for anonymous FTP and let anyone who wanted it

download it for free. Within weeks he had a huge following.

Unfortunately, the demands of keeping a full-time job meant that Jolitz could not devote the

time needed to keep up with the flood of incoming bug fixes and enhancements to 386/BSD. So

within a few months of the release of 386/BSD, a group of avid 386/BSD users formed the

NetBSD group to pool their collective resources to help maintain and later enhance the system.

By early 1993, they were doing releases that became known as the NetBSD distribution. The

NetBSD group chose to emphasize the support of as many platforms as possible and continued

the research-style development done by the CSRG. Until 1998, their distribution was done solely

over the net with no distribution media available. Their group continues to target primarily the

hard-core technical users.

The FreeBSD group was formed a few months after the NetBSD group with a charter to support

just the PC architecture and to go after a larger and less technically advanced audience, much as

32

Linux had done. They built elaborate installation scripts and began shipping their system on a

low-cost CD-ROM in December 1993. The combination of ease-of-installation and heavy

promotion on the net and at major trade shows, such as Comdex, led to a large, rapid growth

curve. FreeBSD quickly rose to have the largest installed base of all the Networking Release

2-derived systems.

FreeBSD also rode the wave of Linux popularity by adding a Linux emulation mode that allows

Linux binaries to run on the FreeBSD platform. This feature allows FreeBSD users to use the

ever growing set of applications available for Linux while getting the robustness, reliability, and

performance of the FreeBSD system.

In 1995, OpenBSD spun off from the NetBSD group. Their technical focus was aimed at

improving the security of the system. Their marketing focus was to make the system easier to

use and more widely available. Thus, they began producing and selling CD-ROMs, with many of

the ease of installation ideas from the FreeBSD distribution.

The Lawsuit

In addition to the groups organized to freely redistribute systems originating from the

Networking Release 2 tape, a company, Berkeley Software Design Incorporated (BSDI), was

formed to develop and distribute a commercially supported version of the code. Like the other

groups, it started by adding the six missing files that Bill Jolitz had written for his 386/BSD

release. BSDI began selling its system, including both source and binaries, in January 1992 for

$995. It began running advertisements touting its 99 percent discount over the price charged for

System V source plus binary systems. Interested readers were told to call 1-800-ITS-UNIX.

Shortly after BSDI began its sales campaign, it received a letter from UNIX System Laboratory

(USL) (a mostly owned subsidiary of AT&T spun off to develop and sell UNIX) [Ritchie, 2004].

The letter demanded that BSDI stop promoting its product as UNIX and, in particular, that it

stop using the deceptive phone number. Although the phone number was promptly dropped and

the advertisements changed to explain that the product was not UNIX, USL was still unhappy

and filed suit to enjoin BSDI from selling its product. The suit alleged that the BSDI product

contained USL proprietary code and trade secrets. USL sought to get an injunction to halt

BSDI’s sales until the lawsuit was resolved claiming that it would suffer irreparable harm from

the loss of its trade secrets if the BSDI distributions continued.

At the preliminary hearing for the injunction, BSDI contended that it was simply using the

sources being freely distributed by the University of California plus six additional files. BSDI

was willing to discuss the content of any of the six added files but did not believe it should be

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref32

33

held responsible for the files being distributed by the University of California. The judge agreed

with BSDI’s argument and told USL that it would have to restate its complaint based solely on

the six files or the case would be dismissed. Recognizing that it would have a hard time making a

case from just the six files, USL decided to refile the suit against both BSDI and the University of

California. As before, USL requested an injunction on the shipping of Networking Release 2

from the university and of the BSDI products.

With the impending injunction hearing just a few short weeks away, preparation began in

earnest. All the members of the CSRG were deposed, as was nearly everyone employed by BSDI.

Briefs, counterbriefs, and counter-counterbriefs flew back and forth between the lawyers. The

staff of the CSRG turned from writing code to writing several hundred pages of material that

found its way into various briefs.

In December 1992, Dickinson R. Debevoise, a United States District Judge in New Jersey, heard

the arguments for the injunction. Although judges usually rule on injunction requests

immediately, he decided to take it under advisement. On a Friday about 6 weeks later, he issued

a 40-page opinion in which he denied the injunction and threw out all but two of the complaints

[Debevoise, 1993]. The remaining two complaints were narrowed to recent copyrights and the

possibility of the loss of trade secrets. He also suggested that the matter should be heard in a

state court system before being heard in federal court.

The University of California took the hint and rushed to California state court the following

Monday morning with a countersuit against USL. By filing first in California, the university had

established the locale of any further state court action. Constitutional law requires all state

filings to be done in a single state to prevent litigants with deep pockets from bleeding

opponents dry by filing 50 cases against them, one in each state. The result was that if USL

wanted to take any action against the university in state courts, it would be forced to do so in

California rather than in its home state of New Jersey.

The university’s suit claimed that USL had failed in its obligation to provide due credit to the

university for the use of BSD code in System V as required by the license that it had signed with

the university [Linzner & MacDonald, 1993]. If the claim were found to be valid, the university

asked that USL be forced to reprint all its documentation with the appropriate due credit added,

to notify all its licensees of its oversight, and to run full-page advertisements in major

publications such as the Wall Street Journal and Fortune magazine, notifying the business

world of its inadvertent oversight.

Soon after the filing in state court, USL was bought from AT&T by Novell. The CEO of Novell,

Ray Noorda, stated publicly that he would rather compete in the marketplace than in court. By

the summer of 1993, settlement talks had started. Unfortunately, the two sides had dug in so

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref18

34

deep that the talks proceeded very slowly. With some further prodding by Ray Noorda on the

USL side, many of the sticking points were removed, and a settlement was finally reached in

January 1994. The result was that three files were removed from the 18,000 that made up

Networking Release 2, and a few minor changes were made to other files. In addition, the

university agreed to add USL copyrights to about 70 files, although those files continued to be

freely redistributed.

4.4BSD

The newly blessed release was called 4.4BSD-Lite and was released in June 1994 under terms

identical to those used for the Networking releases. Specifically, the terms allow free

redistribution in source and binary form, subject only to the constraint that the university

copyrights remain intact and that the university receive credit when others use the code.

Simultaneously, the complete system was released as 4.4BSD-Encumbered, which still required

recipients to have a USL source license.

The lawsuit settlement also stipulated that USL would not sue any organization using

4.4BSD-Lite as the base for its system. So all the extant BSD groups—BSDI, NetBSD, and

FreeBSD—had to restart their code base with the 4.4BSD-Lite sources into which they then

merged their enhancements and improvements. While this reintegration caused a short-term

delay in the development of the various BSD systems, it was a blessing in disguise, since it

forced all the divergent groups to resynchronize with the 3 years of development that had

occurred at the CSRG since the release of Networking Release 2.

4.4BSD-Lite Release 2

The money received from the 4.4BSD-Encumbered and 4.4BSD-Lite releases was used to fund a

part-time effort to integrate bug fixes and enhancements. These changes continued for 2 years

until the rate of bug reports and feature enhancements had died down to a trickle. The final set

of changes was released as 4.4BSD-Lite Release 2 in June 1995. Most of the changes

incorporated into 4.4BSD-Lite Release 2 eventually made it into the other systems’ source bases.

Though the license term requiring that due credit be given to the university had been extremely

helpful in the lawsuit, the university agreed to drop it following the final release. As many people

began using the BSD-style copyrights for their own code, the proliferation of due-credit clauses

in open-source software became difficult to determine and unmanageably large. By agreeing to

drop the due-credit clause, the university hoped to set an example for others using its license.

Over time, and with much effort from the BSD community, the due-credit clause has been

dropped from many of the open-source programs that use the BSD-style license.

35

Following the release of 4.4BSD-Lite Release 2, the CSRG was disbanded. After 15 years of

piloting the BSD ship, it was time to let others with fresh ideas and boundless enthusiasm take

over. While it might seem best to have a single centralized authority overseeing the system

development, the idea of having several groups with different charters ensures that many

different approaches will be tried and that there is no single point of failure. Because the system

is released in source form, the best ideas can easily be picked up by other groups. Indeed,

cross-pollination of ideas between open-source projects is common.

1.4 The FreeBSD Development Model

Running an open-source project is different from running traditional software development. In

traditional development, the staff are paid, so it is possible to have managers and a system

architect that set schedules and direct the programmers’ activities. With open source, the

developers are volunteers. They tend to be transient, usually doing a project or two before

finding some other activity on which they prefer to spend their free time. They cannot be

directed because they only work on what interests them. Because their jobs, families, and social

lives often take precedence over their work on the project, it is impossible to put together

schedules. Finally, there is no paid staff to fill the management role of traditional development.

Thus, a successful open-source-development project must be self-organizing and set up to

gracefully handle a high turnover of its active developers.

The development model used by FreeBSD (as well as NetBSD and OpenBSD) was first set in

motion by the CSRG [McKusick et al., 1989]. The CSRG was always a small group of software

developers. This resource limitation required careful software-engineering management.

Careful coordination was needed not only of the CSRG personnel but also of members of the

general community who contributed to the development of the system. Certain outside

developers had permission to modify the master copy of the system source directly. People given

access to the master sources were carefully screened beforehand but were not closely supervised.

Everyone committing changes to the system source received notification of all changes, allowing

everyone to be aware of changes going into the system. Everyone was required to have any

nontrivial changes reviewed by at least one other person before committing them to the tree.

This model allowed many lines of development to proceed concurrently while still keeping the

project coherent.

The FreeBSD project is organized in much the same way as the CSRG. The entire FreeBSD

project, including all the source code, documentation, bug reports, mailing-list archives, and

even administrative data, is maintained in a publicly readable source-code-control system.

Anyone may view the source code and existing bug reports, track progress on fixing bugs, and

post bug reports. Anyone may join and participate in the numerous FreeBSD mailing lists. There

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref19

36

are three groups of people that directly work on FreeBSD: developers, committers, and the core

team.

There are 5000 to 6000 developers, each of whom works on some part of the system such as

maintaining the FreeBSD kernel, continuing development of the 1000 core FreeBSD utilities,

writing FreeBSD documentation, and updating other open-source software in the FreeBSD ports

collection. Developers are able to access the source-code repository, but they are not permitted

to change it. Instead, they must work with a committer or file a problem report to get their

changes added to the system.

There are currently 300 to 400 committers. Like the developers, most of them specialize in

some part of the system. Unlike the developers, they are permitted to make changes to those

parts of the source-code repository in which they have been authorized to work. All nontrivial

changes should be reviewed by one or more other committers before being checked into the

source tree. Most committers are doing work of their own as well as reviewing and committing

the work of several developers.

Nomination for advancement from developer to committer is done by the existing committers.

Most commonly a developer will be nominated by the committer with whom he has been

working. The nomination, along with a description and evaluation of past work and an initial

scope of new work, is sent to the core team for approval.

At the center of the project is the core team. The core team is composed of nine people who are

elected every 2 years. The candidates for the core team come from the committers and the

committers elect the core team. The core team acts as the final gatekeepers of the source code.

They monitor what is being committed and resolve conflicts if two or more committers cannot

agree on how to solve a particular problem. The core team also approves the advancement of

developers to committers and (in rare circumstances) temporarily or permanently evicts

someone from the committer group. The usual reason for departure from the committer group

is inactivity (making no changes to the system for more than a year).

The development structure of the FreeBSD project is directly derived from the one that we had

established at the CSRG. Both the CSRG and FreeBSD use a central source-code-controlled

repository. The FreeBSD core team is analogous to the CSRG staff. The FreeBSD committers are

much like the people to whom Berkeley gave accounts on the CSRG development machine that

allowed them to commit changes to the CSRG sources. And the FreeBSD developers are similar

to the people that contributed to Berkeley, but they did not have accounts on the CSRG

development machine.

37

The FreeBSD project has made some important improvements. First, its members recognize

that even the most dedicated programmer will eventually burn out, lose interest, or otherwise

decide to move on. There must be some way to let these people gracefully step aside rather than

letting their inattention create a void at a critical point in the project. So unlike the CSRG model

of having staff that were dictators for life, FreeBSD went to an elected core that is answerable to

the committers. A core member who is burned out can decide (or be persuaded) not to run for

reelection when his or her term ends. Core members who are not serving the interest of the

committers will not be reelected. Equally important, active and energetic people have plenty of

opportunity to move up through the ranks. Because the core team is elected, people rise into

that rank because their peers who are actively working on the project feel that they should have

the job. This approach works better than advancing because you are good buddies with

somebody at the top. It also ensures that the core team is made up of those who are good at

communicating with others, an important skill to have in that position.

Another significant improvement made by the FreeBSD project is to automate many tasks and

set up remote mirrors of the source-code repository, Web site, and bug reports. These changes

have allowed the project to support many more contributors than would have been possible

under the CSRG model. The FreeBSD project has also managed to become much less

US–centric by welcoming developers from around the world, including active people in Japan,

Australia, Russia, South Africa, Ukraine, Hungary, India, Denmark, France, Germany, and the

United Kingdom, to name just a few of the countries with active FreeBSD development.

The CSRG used to release new versions of the system about every 2 years. Changes to these

distributions were rare, typically only small and critical security-or stability-related changes.

Between versions, the CSRG would do test releases to gain experience with the new features that

were being developed.

The FreeBSD project has greatly expanded on the CSRG distribution scheme. At any point in

time there are at least two FreeBSD distributions. The first is the “stable” release that is

intended to be used in production environments. The second is the “current” release that

represents the current state of the FreeBSD system and is intended for use by developers and

users needing the latest features.

The stable release changes slowly, and the changes are limited to fixing bugs, improving

performance, and adding incremental hardware support. The stable system is released three to

four times per year, although users wishing to upgrade more often can download and install the

latest stable code as frequently as they need to do so (for example, after a major security patch

has been made). The stable version of FreeBSD is analogous to the CSRG major-version releases

except that they are more actively updated and are made available to the users. Like the stable

38

release, snapshots of the current release are created every few months. However, most users of

the current release update much more frequently (daily updates are common). By having

mirrored copies of the stable and current distributions available throughout the world, the

FreeBSD project allows its worldwide user base to stay up to date much more easily than was

possible with the CSRG distributions.

About every 2 years, the current branch is forked to create a new stable release. Once the new

stable branch has proven to be reliable enough for production use, work largely ceases on the

old stable branch and production users switch over to the new stable release. The mainline

development continues on the current branch. Nearly all changes are made first to the current

branch. Only after a change has been tested in the current branch and proven to work in that

environment is it merged-from-current (MFC-ed) to the stable release.

One advantage that the CSRG long had over the FreeBSD project was that the CSRG was part of

the University of California at Berkeley. Since the university is a nonprofit organization,

contributions made to the CSRG were tax-deductible to the contributor. Some people at the

FreeBSD project had long felt that they should find a way to let contributors to the project get a

tax deduction. In 2000, they set up the FreeBSD Foundation, which after 3 years of good

nonprofit work, was granted 501(c)3 status by the United States taxing authorities. This

certification means that contributions made to the FreeBSD Foundation can be deducted from

United States federal and state taxes in the same way as a contribution made to the university

can be deducted. The ability to get a tax deduction has markedly increased the volume of

monetary contributions to the FreeBSD project, which has enabled them to fund development of

parts of the system that are tedious to create but necessary and important.

Over the past 20 years, the FreeBSD project has grown at a steady but sustainable pace.

Although Linux has attracted a mass following, FreeBSD continues to hold its place in the

high-performance-server space. Indeed, Linux has helped to evangelize the viability of open

source to the corporate marketplace, and FreeBSD has ridden on its coattails. It is far easier to

convince your management to switch from Linux to FreeBSD than it is to convince them to

move from Microsoft’s Windows to FreeBSD. Linux has also supplied a steady stream of

developers for FreeBSD. Until recently, Linux had no central source-code repository, so to

contribute you had to work for a Linux distributor or you had to get the ear of a member of the

small set of people who could get changes put into the system. The much more egalitarian and

merit-based organization of the FreeBSD project has provided a steady influx of high-quality

developers. The typical new committer to the FreeBSD project is in his or her mid- to late 20s

and has been programming Linux or other open-source projects for a decade. These people have

enough experience and maturity that they are quickly able to become effective contributors to

the project. And the mentoring inherent in the progression of developer to committer ensures

39

that by the time someone has the right to directly commit code to the FreeBSD tree, they

understand the style and code-clarity guidelines that are critically important to preserving the

quality, robustness, and maintainability of FreeBSD.

The goal of the FreeBSD project is to provide software that may be used for any purpose and

without strings attached. Many of the developers have a significant investment in the code (and

project) and certainly do not mind a little financial compensation occasionally, but they

certainly do not insist on it. They believe that their first and foremost mission is to provide code

to any and all comers, for whatever purpose, so that the code gets the widest possible use and

provides the greatest possible benefit [Hubbard, 2014].

References

AT&T, 1987.

AT&T, The System V Interface Definition (SVID), Issue 2, American Telephone and Telegraph,

Murray Hill, NJ, January 1987.

Babao lu & Joy, 1981.

Ö. Babao lu & W. N. Joy, “Converting a Swap-Based System to Do Paging in an Architecture

Lacking Page-Referenced Bits,” Proceedings of the Eighth Symposium on Operating Systems

Principles, pp. 78–86, December 1981.

Bach, 1986.

M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, NJ,

1986.

Comer, 1984.

D. Comer, Operating System Design: The Xinu Approach, Prentice-Hall, Englewood Cliffs, NJ,

1984.

Comer, 2000.

D. Comer, Internetworking with TCP/IP Volume 1, 4th ed., Prentice-Hall, Upper Saddle River,

NJ, 2000.

Compton, 1985.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#ch01ref11

40

M. Compton, editor, “The Evolution of UNIX,” UNIX Review, vol. 3, no. 1, January 1985.

Debevoise, 1993.

D. Debevoise, Civ. No. 92-1667, UNIX System Laboratories Inc. vs. Berkeley Software Design

Inc., available from http://sco.tuxrocks.com/Docs/USL/Doc-92.html, March 3, 1993.

DiBona et al., 1999.

C. DiBona, S. Ockman, & M. Stone, Open Sources: Voices from the Open Source Revolution, pp.

31–46, Chapter 2—Twenty Years of Berkeley UNIX: From AT&T-Owned to Freely

Redistributable, available from

http://www.oreilly.com/catalog/opensources/book/kirkmck.html, ISBN 1-56592-582-3,

O’Reilly & Associates, Inc., Sebastopol, CA, 1999.

Ewens et al., 1985.

P. Ewens, D. R. Blythe, M. Funkenhauser, & R. C. Holt, “Tunis: A Distributed Multiprocessor

Operating System,” USENIX Association Conference Proceedings, pp. 247–254, June 1985.

Holt, 1983.

R. C. Holt, Concurrent Euclid, the UNIX System, and Tunis, Addison-Wesley, Reading, MA,

1983.

Hubbard, 2014.

J. Hubbard, “A Brief History of FreeBSD,” FreeBSD Handbook, section 1.3.1, available from

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/history.html, March 2014.

ISO, 2011.

ISO, “ISO/IEC 9899:2011 Programming Language C Standard,” ISO 9899:2011, available from

http://www.iso.org, December, 2011.

Joy, 1980.

W. N. Joy, “Comments on the Performance of UNIX on the VAX,” Technical Report, University

of California Computer System Research Group, Berkeley, CA, April 1980.

Jung, 1985.

http://sco.tuxrocks.com/Docs/USL/Doc-92.html
http://www.oreilly.com/catalog/opensources/book/kirkmck.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/history.html
http://www.iso.org/

41

R. S. Jung, “Porting the AT&T Demand Paged UNIX Implementation to Microcomputers,”

USENIX Association Conference Proceedings, pp. 361–370, June 1985.

Kashtan, 1980.

D. L. Kashtan, “UNIX and VMS: Some Performance Comparisons,” Technical Report, SRI

International, Menlo Park, CA, February 1980.

Kernighan & Ritchie, 1978.

B. W. Kernighan & D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood

Cliffs, NJ, 1978.

Kernighan & Ritchie, 1989.

B. W. Kernighan & D. M. Ritchie, The C Programming Language, 2nd ed., Prentice-Hall,

Englewood Cliffs, NJ, 1989.

Linzner & MacDonald, 1993.

J. Linzner & M. MacDonald, University of California at Berkeley versus UNIX System

Laboratories Inc., available from

http://cm.bell-labs.com/cm/cs/who/dmr/bsdi/930610.ucb_complaint.txt, June 1993.

McKusick et al., 1989.

M. K. McKusick, M. Karels, & K. Bostic, “The Release Engineering of 4.3BSD,” Proceedings of

the New Orleans USENIX Workshop on Software Management, pp. 95–100, April 1989.

Miller, 1978.

R. Miller, “UNIX—A Portable Operating System,” ACM Operating System Review, vol. 12, no. 3,

pp. 32–37, July 1978.

Miller, 1984.

R. Miller, “A Demand Paging Virtual Memory Manager for System V,” USENIX Association

Conference Proceedings, pp. 178–182, June 1984.

Mohr, 1985.

A. Mohr, “The Genesis Story,” UNIX Review, vol. 3, no. 1, p. 18, January 1985.

http://cm.bell-labs.com/cm/cs/who/dmr/bsdi/930610.ucb_complaint.txt

42

Organick, 1975.

E. I. Organick, The Multics System: An Examination of Its Structure, MIT Press, Cambridge,

MA, 1975.

P1003.1, 1988.

P1003.1, IEEE P1003.1 Portable Operating System Interface for Computer Environments

(POSIX), Institute of Electrical and Electronic Engineers, Piscataway, NJ, 1988.

Peirce, 1985.

N. Peirce, “Putting UNIX in Perspective: An Interview with Victor Vyssotsky,” UNIX Review, vol.

3, no. 1, p. 58, January 1985.

Presotto & Ritchie, 1985.

D. L. Presotto & D. M. Ritchie, “Interprocess Communication in the Eighth Edition UNIX

System,” USENIX Association Conference Proceedings, pp. 309–316, June 1985.

Richards & Whitby-Strevens, 1980.

M. Richards & C. Whitby-Strevens, BCPL: The Language and Its Compiler, Cambridge

University Press, Cambridge, U.K., 1980.

Ritchie, 1978.

D. M. Ritchie, “A Retrospective,” Bell System Technical Journal, vol. 57, no. 6, pp. 1947–1969,

July–August 1978.

Ritchie, 1984a.

D. M. Ritchie, “The Evolution of the UNIX Time-Sharing System,” AT&T Bell Laboratories

Technical Journal, vol. 63, no. 8, pp. 1577–1593, October 1984.

Ritchie, 1984b.

D. M. Ritchie, “Reflections on Software Research,” Comm ACM, vol. 27, no. 8, pp. 758–760,

August 1984.

Ritchie, 1987.

43

D. M. Ritchie, “UNIX: A Dialectic,” USENIX Association Conference Proceedings, pp. 29–34,

January 1987.

Ritchie, 2004.

D. M. Ritchie, Documents on UNIX System Laboratories Inc. versus Berkeley Software Design

Inc., available from http://cm.bell-labs.com/cm/cs/who/dmr/bsdi/bsdisuit.html, March 2004.

Ritchie et al., 1978.

D. M. Ritchie, S. C. Johnson, M. E. Lesk, & B. W. Kernighan, “The C Programming Language,”

Bell System Technical Journal, vol. 57, no. 6, pp. 1991–2019, July–August 1978.

Rosler, 1984.

L. Rosler, “The Evolution of C—Past and Future,” AT&T Bell Laboratories Technical Journal,

vol. 63, no. 8, pp. 1685–1699, October 1984.

Tanenbaum, 1987.

A. S. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall, Englewood

Cliffs, NJ, 1987.

Tuthill, 1985.

B. Tuthill, “The Evolution of C: Heresy and Prophecy,” UNIX Review, vol. 3, no. 1, p. 80,

January 1985.

Wilson, 1985.

O. Wilson, “The Business Evolution of the UNIX System,” UNIX Review, vol. 3, no. 1, p. 46,

January 1985.

X/OPEN, 1987.

X/OPEN, The X/OPEN Portability Guide (XPG), Issue 2, Elsevier Science, Amsterdam,

Netherlands, 1987.

http://cm.bell-labs.com/cm/cs/who/dmr/bsdi/bsdisuit.html

44

Chapter 2. Design Overview of FreeBSD

2.1 FreeBSD Facilities and the Kernel

The FreeBSD kernel provides four basic facilities: processes, filesystems, communications, and

system startup. This section outlines where each of these four basic services is described in this

book:

1. A process is composed of an address space with one or more threads of control running within

it. Mechanisms for creating, terminating, and otherwise controlling processes are discussed in

Chapter 4. The system multiplexes separate virtual-address spaces for each process. This

memory management is discussed in Chapter 6.

2. The user interfaces to the filesystem and devices are similar; common aspects are discussed

in Chapter 7. The organization and management of the devices in the I/O subsystem is described

in Chapter 8. The filesystem provides operations to manipulate a set of named files, organized in

a tree-structured hierarchy of directories. The filesystem must organize the storage of these files

and directories on physical media, such as disks. The role of the traditional fast filesystem in

doing these tasks is presented in Chapter 9; the role of the Zettabyte filesystem in doing these

tasks is presented in Chapter 10. Access to files on remote machines is the subject of Chapter 11.

3. Communication mechanisms provided by traditional UNIX systems include simplex reliable

byte streams between related processes (see pipes, Section 7.1), and notification of exceptional

events (see Signals, Section 4.7). FreeBSD also has a general interprocess-communication

facility. This facility, described in Chapter 12, uses access mechanisms distinct from those of the

filesystem, but once a connection is set up, a process can access it as though it were a pipe. There

is a general networking framework, discussed in Chapter 13, that is normally used as a layer

underlying the IPC facility. Chapter 14 describes particular networking implementations in

detail.

4. Any real operating system has operational issues, such as how to start it running. Startup and

operational issues are described in Chapter 15.

Sections 2.3 through 2.15 present introductory material related to Chapters 3 through 15. We

define terms, examine basic system calls, and explore historical developments. Finally, we give

the reasons for many major design decisions.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15

45

The Kernel

The kernel is the part of the system that runs in protected mode and mediates access by all user

programs to the underlying hardware (e.g., CPU, keyboard, monitor, disks, network links) and

software constructs (e.g., filesystem, network protocols). The kernel provides the basic system

facilities; it creates and manages processes and provides functions to access the filesystem and

communication facilities. These functions, called system calls, appear to user processes as

library subroutines. These system calls are the only interface that processes have to these

facilities. Details of the system-call mechanism are given in Chapter 3, as are descriptions of

several kernel mechanisms that do not execute as the direct result of a process doing a system

call.

A kernel, in traditional operating-system terminology, is a small nucleus of software that

provides only the minimal facilities necessary for implementing additional operating-system

services. Through much of the 1980s, research operating systems—such as Tunis [Ewens et al.,

1985], Chorus [Rozier et al., 1988], Mach [Accetta et al., 1986], and the V Kernel [Cheriton,

1988]—attempted to make this division of functionality into more than just a logical one.

Services such as filesystems and networking protocols were implemented as client application

processes of the nucleus or kernel. These micro-kernels largely failed because of the high

overhead of transitioning between kernel processes.

The FreeBSD kernel is not partitioned into multiple processes. This basic design decision was

made in the earliest versions of UNIX. The first two implementations by Ken Thompson had no

memory mapping and thus made no hardware-enforced distinction between user and kernel

space [Ritchie, 1988]. A message-passing system could have been implemented as readily as the

actually implemented model of kernel and user processes. The monolithic kernel was chosen for

simplicity and performance. And the early kernels were small; the inclusion of facilities such as

networking into the kernel has increased its size, although the kernel is still small compared to

many of the applications that run on it.

Users ordinarily interact with the system through a command-language interpreter, called a

shell, and through additional user application programs. Such programs and the shell are

implemented with processes rather than being part of the kernel. Details of such programs are

beyond the scope of this book, which instead concentrates almost exclusively on the kernel.

Sections 2.3 and 2.4 describe the services provided by the FreeBSD kernel and give an overview

of the latter’s design. Later chapters describe the detailed design and implementation of these

services as they appear in FreeBSD.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_431
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec4

46

2.2 Kernel Organization

In this section, we view the organization of the FreeBSD kernel in two ways:

1. As a static body of software, categorized by the functionality offered by the modules that make

up the kernel

2. By its dynamic operation, categorized according to the services provided to users

The largest part of the kernel implements the system services that applications access through

system calls. In FreeBSD, this software has been organized according to the following:

• Basic kernel facilities: timer and system-clock handling, descriptor management, and process

management

• Security features: conventional UNIX model, but also sandboxing, virtualization, event

auditing, and cryptographic services

• Memory-management support: paging and swapping

• Generic system interfaces: the I/O, control, and multiplexing operations performed on

descriptors

• Filesystems: files, directories, pathname translation, file locking, and I/O buffer management

• Terminal-handling support: the pseudo-terminal interface and terminal line disciplines

• Interprocess-communication facilities: sockets

• Support for network communication: communication protocols and generic network facilities,

such as routing

Most of the software in these categories is machine independent and is portable across different

hardware architectures.

The machine-dependent aspects of the kernel are isolated from the mainstream code. In

particular, none of the machine-independent code contains conditional code for specific

architectures. When an architecture-dependent action is needed, the machine-independent code

calls an architecture-dependent function that is located in the machine-dependent code. The

software that is machine dependent includes the following:

• Low-level system-startup actions

47

• Trap and fault handling

• Low-level manipulation of the run-time context of a process

• Configuration and initialization of hardware devices

• Run-time support for I/O devices

Table 2.1 summarizes the machine-independent software that constitutes the FreeBSD kernel

for the 64-bit AMD architecture. The numbers in column 2 are for lines of C source code, header

files, and assembly language. Virtually all the software in the kernel is written in the C

programming language; a mere 0.6 percent is written in assembly language. As the statistics in

Table 2.2 show, the machine-dependent software, excluding device support, accounts for a

minuscule 3.8 percent of the kernel. Not shown are the 2,814,900 lines of code for the hundreds

of supported devices, only a few of which will be loaded into any particular kernel.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02tab02

48

Table 2.1 Machine-independent software in the FreeBSD kernel.

Table 2.2 Machine-dependent software for the PC in the FreeBSD kernel.

In the 10 years since the previous edition of this book, the total size of the kernel has grown from

798,140 to 1,573,780 lines. The merger of ZFS into FreeBSD represents about a third of this

growth. The machine-independent code has grown from 689,794 lines (86.4%) to 1,515,700

lines (96.2%). The machine-dependent code has shrunk from 108,346 lines (13.6%) to 58,077

lines (3.8%). These statistics do not include the device driver code that has grown from 846,525

lines to 2,814,900 lines.

49

Only a small part of the kernel is devoted to initializing the system. This code is used when the

system is bootstrapped into operation and is responsible for setting up the kernel hardware

and software environment (see Chapter 15). Some operating systems (especially those with

limited physical memory) discard or overlay the software that performs these functions after

that software has been executed. The FreeBSD kernel does not reclaim the memory used by the

startup code because that memory space is barely 0.2 percent of the kernel resources used on a

typical machine. Also, the startup code does not appear in one place in the kernel—it is scattered

throughout, and it usually appears in places logically associated with what is being initialized.

2.3 Kernel Services

The boundary between the kernel- and user-level code is enforced by hardware-protection

facilities provided by the underlying hardware. The kernel operates in a separate address space

that is inaccessible to user processes. Privileged operations—such as starting I/O and halting the

central processing unit (CPU)—are available to only the kernel. Applications request services

from the kernel with system calls. System calls are used to cause the kernel to execute

complicated operations, such as writing data to secondary storage, and simple operations, such

as returning the current time of day. All system calls appear synchronous to applications: An

application does not run while the kernel performs the actions associated with a system call. The

kernel may finish some operations associated with a system call after it has returned. For

example, a write system call will copy the data to be written from the user process to a kernel

buffer while the process waits, but it will usually return from the system call before the kernel

buffer is written to the disk.

A system call usually is implemented as a hardware trap that changes the CPU’s execution mode

and the current address-space mapping. Parameters supplied by users in system calls are

validated by the kernel before being used. Such checking ensures the integrity of the system. All

parameters passed into the kernel are copied into the kernel’s address space to ensure that

validated parameters are not changed as a side effect of the system call. System-call results are

returned by the kernel, either in hardware registers or by their values being copied to

user-specified memory addresses. Like parameters passed into the kernel, addresses used for

the return of results must be validated to ensure that they are part of an application’s address

space. If the kernel encounters an error while processing a system call, it returns an error code

to the user. For the C programming language, this error code is stored in the global variable

errno, and the function that executed the system call returns the value -1.

User applications and the kernel operate independently of each other. FreeBSD does not store

I/O control blocks or other operating-system-related data structures in the application’s address

space. Each user-level application is provided an independent address space in which it executes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_107

50

The kernel makes most state changes—such as suspending a process while another is

running—invisible to the processes involved.

2.4 Process Management

FreeBSD supports a multitasking environment. Each task or thread of execution is termed a

process. In FreeBSD, the process context consists of user-level state, including the contents

of its address space and the run-time environment, and kernel-level state, which includes

scheduling parameters, resource controls, and identification information. The context includes

everything used by the kernel in providing services for the process. Users can create processes,

control the processes’ execution, and receive notification when the processes’ execution status

changes. Every process is assigned a unique value, termed a process identifier (PID). This

value is used by the kernel to identify a process when reporting status changes to a user, and by

a user when referencing a process in a system call.

The kernel creates a process by duplicating the context of another process. The new process is

termed a child process of the original parent process. The context duplicated in process

creation includes both the user-level execution state of the process and the process’s system

state managed by the kernel. Important components of the kernel state are described in Chapter

4.

The process lifecycle is depicted in Figure 2.1. A process may create a new process that is a copy

of the original by using the fork system call. The fork call returns twice: once in the parent

process, where the return value is the process identifier of the child, and once in the child

process, where the return value is 0. The parent–child relationship induces a hierarchical

structure on the set of processes in the system. The new process shares all its parent’s resources,

such as file descriptors, signal-handling status, and memory layout.

Figure 2.1 Process-management system calls.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_288
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02fig01

51

Although there are occasions when the new process is intended to be a copy of the parent, the

loading and execution of a different program is a more useful and typical action. A process can

overlay itself with the memory image of another program, passing to the newly created image a

set of parameters, using the system call execve. One parameter is the name of a file whose

contents are in a format recognized by the system—either a binary-executable file or a file that

causes the execution of a specified interpreter program to interpret its contents.

A process may terminate by executing an exit system call, sending 8 bits of exit status to its

parent. If a process wants to communicate more than a single byte of information with its parent,

it must either set up an interprocess-communication channel using pipes or sockets, or use an

intermediate file. Interprocess communication is discussed extensively in Chapter 12.

A process can suspend execution until any of its child processes terminate using the wait system

call, which returns the PID and exit status of the terminated child process. A parent process can

arrange to be notified by a signal when a child process exits or terminates abnormally. Using the

wait4 system call, the parent can retrieve information about the event that caused termination

of the child process and about resources consumed by the process during its lifetime. If a

process is orphaned because its parent exits before it is finished, then the kernel arranges for the

child’s exit status to be passed back to a special system process, init (see Sections 3.1 and 15.5).

The details of how the kernel creates and destroys processes are given in Chapter 6.

Processes are scheduled for execution according to a process-priority parameter. Under the

default timesharing scheduler, this priority is managed by a kernel-based scheduling algorithm.

Users can influence the scheduling of a process by specifying a parameter (nice) that weights

the overall scheduling priority but are still obligated to share the underlying CPU resources

according to the kernel’s scheduling policy. FreeBSD also has a real-time scheduler. Processes

running under the real-time scheduler manage their own priority, which is not changed by the

kernel. The kernel will run the highest priority real-time process to the exclusion of all other

processes. Thus, real-time processes are not obliged to share the underlying CPU resources.

Signals

The system defines a set of signals that may be delivered to a process. Signals in FreeBSD are

modeled after hardware interrupts. A process may specify a user-level subroutine to be a

handler to which a signal should be delivered. When a signal is generated, it is blocked from

further occurrence while it is being caught by the handler. Catching a signal involves saving the

current process context and building a new one in which to run the handler. The signal is then

delivered to the handler, which can either abort the process or return to the executing process

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_239
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_41

52

(perhaps after setting a global variable). If the handler returns, the signal is unblocked and can

be generated (and caught) again.

Alternatively, a process may specify that a signal is to be ignored or that a default action, as

determined by the kernel, is to be taken. The default action of certain signals is to terminate the

process. This termination may be accompanied by creation of a core file that contains the

current memory image of the process for use in postmortem debugging.

Some signals cannot be caught or ignored. These signals include SIGKILL, which kills runaway

processes, and the job-control signal SIGSTOP.

A process may choose to have signals delivered on a special stack so that sophisticated software

stack manipulations are possible. For example, a language supporting co-routines needs to

provide a stack for each co-routine. The language run-time system can allocate these stacks by

dividing up the single stack provided by FreeBSD. If the kernel does not support a separate

signal stack, the space allocated for each co-routine must be expanded by the amount of space

required to catch a signal.

All signals have the same priority. If multiple signals are pending simultaneously, the order in

which signals are delivered to a process is implementation specific. Signal handlers execute with

the signal that caused their invocation to be blocked, but other signals may yet occur.

Mechanisms are provided so that processes can protect critical sections of code against the

occurrence of specified signals.

The design and implementation of signals are described in Section 4.7.

Process Groups and Sessions

Processes are organized into process groups. Process groups are used to control access to

terminals and to provide a means of distributing signals to collections of related processes. A

process inherits its process group from its parent process. Mechanisms are provided by the

kernel to allow a process to alter its process group or the process group of its descendants.

Creating a new process group is easy; the value of a new process group is ordinarily the process

identifier of the creating process.

The group of processes in a process group is sometimes referred to as a job and is manipulated

by high-level system software, such as the shell. A common kind of job created by a shell is a

pipeline of several processes connected by pipes, such that the output of the first process is the

input of the second, the output of the second is the input of the third, and so forth. The shell

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_273

53

creates such a job by forking a process for each stage of the pipeline, and then putting all those

processes into a separate process group.

A user process can send a signal to each process in a process group as well as to a single process.

A process in a specific process group may receive software interrupts affecting the group,

causing the group to suspend or resume execution, or to be interrupted or terminated.

A terminal (or more commonly a software emulation of a terminal called a pseudo-terminal) has

a process-group identifier assigned to it. This identifier is normally set to the identifier of a

process group associated with the terminal. A job-control shell may create several process

groups associated with the same terminal; the terminal is the controlling terminal for each

process in these groups. A process may read from a descriptor for its controlling terminal only if

the terminal’s process-group identifier matches that of the process. If the identifiers do not

match, the process will be blocked if it attempts to read from the terminal. By changing the

process-group identifier of the terminal, a shell can arbitrate a terminal among several different

jobs. This arbitration is called job control and is described, with process groups, in Section

4.8.

Just as a set of related processes can be collected into a process group, a set of process groups

can be collected into a session. The main uses for sessions are to create an isolated

environment for a daemon process and its children, and to collect a user’s login shell and the

jobs that that shell spawns.

2.5 Security

The FreeBSD security model has been developed over 40 years of evolving application needs.

The key insight is that security must be part of system design; it cannot be successfully added

later. The model addresses many different goals:

• Support authenticated local and remote access by multiple users, as well as integration with

distributed authentication and directory services

• Allow users to define permissions/access control lists to control use of their files by other users

and groups

• Support application authors in implementing compartmentalization for the purposes of

intra-application policy and vulnerability mitigation

• Implement efficient lightweight virtualization allowing administrators to delegate safe subsets

of root access to guest operating-system instances

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_372

54

• Allow the system administrator to control interactions between multiple users subject to

various mandatory policies including information flow

• Permit fine-grained logging of security events in the system such as filesystem operations or

network accesses

• Support and implement higher-level cryptographic services such as IPSec, ssh, transport-layer

security (TLS), and full-disk encryption (GELI)

Application developers and system administrators can build on these features in a broad variety

of ways. Software authors can implement features such as application-level sandboxing,

cryptographic protocols such as https and PGP, or intrusion detection and security monitoring

tools. System administrators and integrators can build systems or appliances providing Virtual

Private Networks (VPNs), multiuser file servers, or virtual hosting platforms. These concrete

goals in turn imply several design principles and elements for the kernel and core

operating-system components themselves:

• A self-protecting Trusted Computing Base (TCB) guarantees enough system integrity to

implement features such as multiple users and key storage

• Strong process isolation using virtual memory ensures that the kernel is protected from user

code, and that user processes are protected from one another

• Identification and instrumentation of security-relevant operations throughout the kernel to

implement access control, resource limits, and event auditing

• A coherent privilege model, internal to the kernel, that allows exceptional operations (such as

system administration, device-driver implementations) to occur in a structured way despite

being outside the regular access-control model

• Design abstractions that facilitate future security models, as well as security localization in

downstream products; for example, clean separation of policy and mechanism, object-oriented

structure (subject to the limitations of C), and a userspace capability-system model providing

protection, rather than policy, as the primitive for application compartmentalization

• Cryptographic primitives, such as secure random number generation and a library of

encryption and signature functions, that can support many different higher-level

operating-system features and applications

55

Process Credentials

The kernel associates a set of process credentials with each process, which contain its

various UNIX user identifiers (UIDs), group identifiers (GIDs), resource limits, audit properties,

mandatory access control labels, capability-mode state, etc. Security-relevant operations

throughout the kernel check these credentials, known as the subject, along with object

properties (such as file permissions and ownership), before allowing the operation to proceed.

Credential contents are protected by virtue of being in the kernel address space: they can be

modified only using system calls that impose rules preventing circumvention of security policies.

FreeBSD implements the UNIX set-user-identity (setuid) and set-group-identity (setgid)

permissions that allow programs executed by one user to operate with the privileges of another

user or group. When the kernel detects an execution of such a binary, the process’s credentials

are modified to have a user or group ID reflecting the file’s own IDs.

When the file is owned by the root user, it allows elevated privileges to be acquired—but only for

the purposes of running the program in question. The program can then implement specific

functions, such as modifying the system password file to change the user’s password, but not the

password of any other user. However, the technique is not limited to the root user: several users

and groups serve to own common directories or devices, such as printers or terminals, which

can be accessed by normal users only through specific binaries.

Privilege Model

Privilege refers to the necessary “safety valves” that exist in operating-system design to

describe exceptions to normal access-control rules; for example:

• configuring network interfaces and network filtering;

• mounting, unmounting, and exporting filesystems;

• accessing or modifying kernel data and modules;

• overriding ACLs as a system administrator or for backups; or

• debugging system processes.

Historically, UNIX implemented a simple privilege model: processes with UID 0 (the root user)

were able to bypass almost all protections in the system. BSD, and later FreeBSD, have gradually

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_336

56

refined this approach through the introduction of securelevels, jails, and mandatory access

control.

The privilege model has required a change from a single in-kernel function, suser(), that simply

checks to see if the current thread has root credentials, to a more complex in-kernel interface

named priv_check(). Although the user-visible policy remains roughly similar to the UNIX root

model, internal subdivision into roughly 200 named privileges allows a variety of refinements,

such as subsetting of rights allowed in jails versus the remainder of the OS, as well as allowing

MAC policies to have controlled interactions with the privilege model. These changes have also

proven valuable in meeting the goal of supporting downstream consumers: product localizations

frequently seek to extend the privilege model, and the privilege space itself is extensible.

Discretionary Access Control

Another area of refinement of the original UNIX security model is through the more flexible and

fine-grained discretionary access control, the specification of protections properties for

other users by object owners. UNIX allowed read, write, and execute permission controls for the

file owner, the file group, and everyone else. FreeBSD added access-control lists, in which the

set of permissions is expanded to read, write, execute, lookup, and administration. These

expanded permissions can be applied to a list of users each with their own permissions, a list of

groups each with their own permissions, and access granted for everyone else. This model

permits full backward compatibility with historical implementations while also providing vastly

finer-grain control.

Capability Model

The Capsicum security framework is a new feature added in FreeBSD 9 to provide sandboxing of

libraries or modules, either because the code is of untrustworthy origin, or because it is

suspected that the code might experience vulnerabilities when acting on data of unknown or

dubious provenance. Capsicum allows the creation of processes that execute with only the

system rights that they have been explicitly delegated.

A process running in capability mode can only work with the set of file descriptors that it was

explicitly granted at creation time, or later delegated via IPC. The creator can further limit the

set of operations that may be performed on the granted descriptors. For example, it may allow

I/O on a descriptor, but not the right to change file modes or test for events using select, poll, or

kqueue. The process is denied access to the system’s global namespaces such as process

identifiers or the filesystem. Thus the open system call will fail but the openat system call will

work if given an appropriately privileged descriptor open on a directory from which to start.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92

57

Jail Lightweight Virtualization

While FreeBSD operates well under several full-machine virtualization technologies such as Xen

and its own bhyve hypervisor, FreeBSD jails provide lighter-weight virtual machines at a

much lower resource commitment. Each jail creates a group of processes with their own

root-administered environment giving the illusion that it is running on its own dedicated

hardware. Unlike a full virtual machine emulator that can run any operating system, a jail can

only provide a FreeBSD kernel environment. However, it can provide that environment much

more efficiently than a full virtual machine emulator: a single physical machine is typically

limited to dozens or hundreds of concurrent full virtual machines, while it can support

thousands of jails simultaneously.

Three techniques underly the jail implementation:

• access control, which prevents operations such as inter-jail process debugging;

• resource subsetting, which limits jails to a specific subset of the hierarchical filesystem

namespace (via chroot); and

• true virtualization, in which jails are each presented a unique instance of global system

namespaces.

Access control and resource subsetting come at little cost, whereas full virtualization can incur

substantial kernel-memory overhead. Virtualization is therefore configurable: jails may be

granted access to a subset of system IP addresses within the global network-stack instance, or

optional full network-stack virtualization can be configured.

In a typical configuration, each jail has an independent FreeBSD userspace installation in a

jail-specific filesystem tree—or for stronger resource isolation at greater resource commitment,

its own filesystem instance. Each jail will be delegated its own subset of system IP addresses.

Processes will operate as normal, but will be limited to those addresses; for example, an ISP

might grant each virtual-domain customer its own virtual FreeBSD installation, with its own

user account database, and each of which contains a webserver instance binding only the jail’s

IP addresses. Most operations are permitted within a jail including:

• running or signalling processes within the jail;

• changing files within the jail;

• binding low port numbers on the jail’s IP addresses; and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_481

58

• optionally managing ZFS data sets within a larger volume delegated to the jail.

Processes running within a jail are not permitted to perform operations that would allow them

to see or affect anything running outside their jail. This restriction is implemented in large part

by masking the set of named system privileges available to root processes running within a jail.

Constrained privileges include:

• getting information on processes outside the jail;

• changing kernel variables;

• mounting or unmounting filesystems;

• modifying physical network interfaces or configurations; and

• rebooting the system.

Mandatory Access Control

Mandatory access control (MAC) describes a broad class of security policies that allow the

system administrator (or system integrator) to control systemic behaviors such as information

flow (for example, multilevel security (MLS)), or fine-grained system-scale rules (such as

type enforcement (TE)). As there remains significant disagreement about which mandatory

policies best solve particular practical security problems, FreeBSD implements a framework for

kernel access-control extensibility, the MAC framework.

The framework allows policies compiled into the kernel or kernel modules to instrument kernel

security decisions, but also provides common infrastructure required by many policies such as

object label storage, policy-agnostic APIs for security management, and tracing/debugging

features. Kernel subsystems invoke MAC framework entry points at strategic points in kernel

operation—creation and destruction of objects, before access to operations on objects, and

system security events such as privilege checks. The framework in turn invokes different policy

modules, composing their results.

Security policies are able to control access to a broad set of security-relevant system objects and

services including filesystem objects such as files/directories, IPC objects such as pipes, and

access to network sockets. They can also limit interprocess operations such as execution,

visibility, signalling, and tracing.

Many policies use security labels to tag processes and objects with additional security metadata

to be used during access control checks; for example, labels might contain per-object or

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_230

59

per-process confidentiality information for MLS to use in blocking illegitimate information flow,

or domain and type information that will be checked against Type Enforcement rules controlling

their interactions.

The MAC framework requires maintaining labels not just on userspace-visible objects acted on

directly by system calls, but also internal objects such as in-flight network data stored in mbuf

chains. A key design concern in the framework is performance proportionality: more intrusive

policies, such as labelled MAC policies, may incur greater expense for labelling, but policies

using only existing security information, such as process-credential UIDs and file ownership,

should not.

FreeBSD includes several sample policy modules such as confidentiality and integrity models,

but downstream consumers of FreeBSD have used the framework to implement many other

policies including Apple’s sandboxing models for Mac OS X and iOS, and application

sandboxing in Juniper’s Junos router operating system.

Event Auditing

The original UNIX accounting and the added FreeBSD tracing have been expanded to include

full auditing to provide accountability and intrusion detection. It is based on Open Basic

Security Module. When enabled, it generates records for kernel events involving access control,

authentication, security management, audit management, and user-level audit reports. For each

event, it records the user credentials that can be augmented with an audit identifier that holds

terminal and session information to be added to each audit record.

The volume of the audit trail is controllable using a global audit preselection policy with an

optional audit mask to subset the global policy. Audit records can be further thinned using the

auditreduce utility.

Cryptography and Random-Number Generators

Contemporary operating systems depend on a variety of cryptographic services:

• one-way hashes protect user passwords;

• digital signatures protect software updates and user data from tampering; and

• symmetric and asymmetric encryption protect user data on disk and the network.

60

All these functions require strong cryptographic foundations. The FreeBSD kernel includes a

strong cryptographic random number generator, and libraries of encryption, integrity checking,

and hashing algorithms. These libraries are used by kernel services such as GELI disk

encryption and IPSec virtual private networks, but also userspace applications such as ssh, GPG,

and Kerberos.

FreeBSD employs the Yarrow cryptographic pseudorandom number generator to implement

both sources of in-kernel randomness and /dev/random. Yarrow reuses existing

cryptographic primitives such as cryptographic hashes and counter-mode block encryption. The

key to making the output of Yarrow unguessable is having a good source of truly random seeds;

Yarrow is able to combine multiple sources of entropy, and tolerate compromise of a subset of

sources.

Many CPUs now implement built-in hardware random number generators using oscillator loops

to generate difficult-to-predict output. The first of these built-in hardware random number

generators was the VIA generator used since FreeBSD 5.3. More recently, Intel introduced a

random number generator that is accessed using the rdrand instruction, supported since

FreeBSD 9.2. Since 10.1, FreeBSD feeds the output of hardware entropy sources through Yarrow

as it is hard to determine whether these sources are operating correctly, or have perhaps been

compromised. With FreeBSD 11, Yarrow was replaced by Fortuna, which automates the

estimation of how and when to use alternate entropy sources.

FreeBSD makes use of cryptographic services within the kernel such as for providing full-disk

encryption. These cryptographic services may be implemented in software or by hardware

accelerators—historically they were found in add-on boards, but increasingly, they are

implemented via instruction-set extensions. Access to hardware encryption is also exported to

processes that need to provide large streams of encrypted data.

These security components combine to meet the requirements of the diverse systems that run

FreeBSD, ranging across hand-held computing devices, network devices, storage appliances,

and Internet service providers’ large-scale hosting environments.

2.6 Memory Management

Each process has its own private address space. The address space is initially divided into three

logical segments: text, data, and stack. The text segment is read-only and contains the

machine instructions of a program. The data and stack segments are both readable and writable.

The data segment contains the initialized and uninitialized data portions of a program, whereas

the stack segment holds the application’s run-time stack. The stack segment is extended

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_405

61

automatically by the kernel as the process executes. A process can expand or contract its data

segment by making a system call, whereas a process can change the size of its text segment only

when the segment’s contents are overlaid with data from the filesystem or when debugging takes

place. The initial contents of the segments of a child process are duplicates of the segments of a

parent process.

The entire contents of a process address space do not need to be resident for a process to

execute. If a process references a part of its address space that is not resident in main memory,

the system pages the necessary information into memory. When system resources are scarce,

the system uses a two-level approach to maintain available resources. If a modest amount of

memory is available, the system will take memory resources away from processes if these

resources have not been used recently. Should there be a severe resource shortage, the system

will resort to swapping the entire context of a process to secondary storage. The demand

paging and swapping done by the system are effectively transparent to processes. A process

may, however, advise the system about expected future memory utilization as a performance

aid.

BSD Memory-Management Design Decisions

The support of large, sparse address spaces, mapped files, and shared memory was a

requirement for 4.2BSD. An interface was specified, called mmap(), that allowed unrelated

processes to request a shared mapping of a file into their address spaces. If multiple processes

mapped the same file into their address spaces, changes to the file’s portion of an address space

by one process would be reflected in the area mapped by the other processes, as well as in the

file itself. Ultimately, 4.2BSD was shipped without the mmap() interface, because of pressure to

make other features, such as networking, available.

Further development of the mmap() interface continued during the work on 4.3BSD. Over 40

companies and research groups participated in the discussions leading to the revised

architecture that was described in the Berkeley Software Architecture Manual [McKusick et al.,

1994]. The first UNIX implementation of the interface was done by Sun Microsystems [Gingell

et al., 1987].

Once again, time pressure prevented 4.3BSD from providing an implementation of the interface.

Although the latter could have been built into the existing 4.3BSD virtual-memory system, the

developers decided not to put it in because that implementation was nearly 10 years old.

Furthermore, the original virtual-memory design was based on the assumption that computer

memories were small and expensive, whereas disks were locally connected, fast, large, and

inexpensive. Thus, the virtual-memory system was designed to be frugal with its use of memory

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref04

62

at the expense of generating extra disk traffic. In addition, the 4.3BSD implementation was

riddled with VAX memory-management hardware dependencies that impeded its portability to

other computer architectures. Finally, the virtual-memory system was not designed to support

the tightly coupled multiprocessors that were becoming increasingly common and important.

Attempts to improve the old implementation incrementally seemed doomed to failure. A

completely new design, on the other hand, could take advantage of large memories, conserve

disk transfers, and have the potential to run on multiprocessors. Consequently, the

virtual-memory system was completely replaced in 4.4BSD. The 4.4BSD virtual-memory system

was based on the Mach 2.0 virtual-memory system [Tevanian, 1987], with updates from Mach

2.5 and Mach 3.0.

The FreeBSD virtual-memory system is an extensively tuned version of the virtual-memory

implementation in 4.4BSD. It features efficient support for sharing, a clean separation of

machine-independent and machine-dependent features, as well as multiprocessor support.

Processes can map files anywhere in their address space. They can share parts of their address

space by doing a shared mapping of the same file. Changes made by one process are visible in

the address space of the other process and also are written back to the file itself. Processes can

also request private mappings of a file, which prevents any changes that they make from being

visible to other processes mapping the file or being written back to the file itself.

Another issue with the virtual-memory system is the way that information is passed into the

kernel when a read or write system call is made. For these system calls, FreeBSD always copies

data from the process address space into a buffer in the kernel. The copy is done for several

reasons:

• Often, the user data are not page aligned and are not a multiple of the hardware page length.

• If the page is taken away from the process, it will no longer be able to reference that page.

Some programs depend on the data remaining in the buffer even after those data have been

written.

• If the process is allowed to keep a copy of the page (as it is in current FreeBSD semantics), the

page must be made copy-on-write. A copy-on-write page is one that is protected against being

written by being made read-only. If the process attempts to modify the page, the kernel gets a

write fault. The kernel then makes a copy of the page that the process can modify. Unfortunately,

the typical process will immediately try to write new data to its output buffer, forcing the data to

be copied anyway.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_63

63

• When pages are remapped to new virtual-memory addresses, most memory-management

hardware requires that the hardware address-translation cache be purged selectively. The cache

purges are often slow. The net effect is that remapping is slower than copying for blocks of data

less than 4 to 8 Kbyte.

For read or write operations that are transferring large quantities of data, doing the copy can be

time consuming. An alternative to doing the copying is to remap the process memory into the

kernel. The biggest incentives for memory mapping are the needs for accessing big files and for

passing large quantities of data between processes. The mmap() interface provides a way for

both of these tasks to be done without copying.

The mmap system call is not supported between processes running on different machines. Such

processes must communicate using sockets connected across the network. Thus, sending the

contents of a file across the network is another common operation where it is desirable to avoid

copying. Historically, the sending of a file was done by reading the file into an application buffer,

and then writing that buffer to a socket. This approach required two copies of the data: first

from the kernel to the application buffer, and then from the application buffer back into the

kernel to send on the socket. FreeBSD pioneered the sendfile system call that sends data from a

file down a socket without doing any copying.

Memory Management Inside the Kernel

The kernel often does allocations of memory that are needed for only the duration of a single

system call. In a user process, such short-term memory would be allocated on the run-time stack.

Because the kernel has a limited run-time stack, it is not feasible to allocate even moderate-size

blocks of memory on it. Consequently, such memory must be allocated through a more dynamic

mechanism. For example, when the system must translate a pathname, it must allocate a

1-Kbyte buffer to hold the name. Other blocks of memory must be more persistent than a single

system call, and thus could not be allocated on the stack even if there were space. An example is

protocol-control blocks that remain throughout the duration of a network connection.

Demands for dynamic memory allocation in the kernel have increased as more services have

been added. A generalized memory allocator reduces the complexity of writing code inside the

kernel. Thus, the FreeBSD kernel has a general memory allocator that can be used by any part of

the system. It has an interface similar to the C library routines malloc() and free() that provide

memory allocation to application programs [McKusick & Karels, 1988]. Like the C library

interface, the allocation routine takes a parameter specifying the size of memory that is needed.

The range of sizes for memory requests is not constrained; however, physical memory is

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref07

64

allocated and is not paged. The free routine takes a pointer to the storage being freed, but it does

not require the size of the piece of memory being freed.

Some large and persistent allocations, such as the structure that tracks information about a

process during its lifetime, are not well handled by the general memory allocator. The kernel

provides a zone allocator for these types of allocations. Each memory type is given its own zone

from which all its allocations are made. Memory allocated in one zone cannot be used by any

other zone or by the general memory allocator. The semantics of the interface are similar to the

general-memory allocator; memory is allocated from a zone with the zalloc() routine and freed

with the zfree() routine.

2.7 I/O System Overview

The basic model of the UNIX I/O system is a sequence of bytes that can be accessed either

randomly or sequentially. There are no access methods and no control blocks in a typical UNIX

user process.

Different programs expect various levels of structure, but the kernel does not impose structure

on I/O. For instance, the convention for text files is lines of ASCII characters separated by a

single newline character (the ASCII line-feed character), but the kernel knows nothing about

this convention. For the purposes of most programs, the model is further simplified to just a

stream of data bytes, or an I/O stream. It is this single common data form that makes the

characteristic UNIX tool-based approach work [Kernighan & Pike, 1984]. An I/O stream from

one program can be fed as input to almost any other program.

Descriptors and I/O

UNIX processes use descriptors to reference I/O streams. Descriptors are small unsigned

integers obtained from the open and socket system calls. The open system call takes as

arguments the name of a file and a permission mode to specify whether the file should be open

for reading or for writing, or for both. This system call also can be used to create a new, empty

file. A read or write system call can be applied to a descriptor to transfer data. The close system

call can be used to deallocate any descriptor.

Descriptors represent underlying objects supported by the kernel and are created by system

calls specific to the type of object. In FreeBSD, seven kinds of objects can be represented by

descriptors—files, pipes, fifos, sockets, POSIX IPC, event queues, and processes:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_82

65

1. A file is a linear array of bytes with at least one name. A file exists until all of its names are

deleted explicitly and no process holds a descriptor for it. A process acquires a descriptor for a

file by opening that file’s name with the open system call. Most I/O devices are accessed as files.

2. A pipe is a linear array of bytes, as is a file, but it is used solely as an I/O stream, and it is

unidirectional. It also has no name and thus cannot be opened with open. Instead, it is created

by the pipe system call, which returns two descriptors, one of which accepts input that is sent to

the other descriptor reliably, without duplication, and in order.

3. A fifo is often referred to as a named pipe. A fifo has properties identical to a pipe, except

that it appears in the filesystem; thus, it can be opened using the open system call. Two

processes that wish to communicate each open the fifo: one opens it for reading, the other for

writing.

4. A socket is a transient object that is used for interprocess communication; it exists only as

long as some process holds a descriptor referring to it. A socket is created by the socket system

call, which returns a descriptor for it. There are different kinds of sockets that support various

communication semantics, such as reliable delivery of data, preservation of message ordering,

and preservation of message boundaries.

5. POSIX IPC includes message queues, shared memory, and semaphores. Each type of IPC has

its own set of system calls that are described in Section 7.2.

6. An event queue is a descriptor for which an application registers notification requests for a

wide set of events. The events include arrival of data for a descriptor, availability of space for

output on a descriptor, completion of asynchronous I/O, various timer-based events, and

change in status of a set of its processes. An event queue is created by the kqueue system call,

which returns a descriptor for it.

7. A process descriptor is used by the Capsicum capability model to control the set of processes

to which a sandboxed process can have access. A process descriptor is created by specifying the

RFPROCDESC flag to the rfork system call. Capsicum and its use of process descriptors is

described in Section 5.8.

In systems before 4.2BSD, pipes were implemented using the filesystem; when sockets were

introduced in 4.2BSD, pipes were reimplemented as sockets. For performance reasons, FreeBSD

no longer uses sockets to implement pipes and fifos. Rather, it uses a separate implementation

optimized for local communication.

The kernel keeps a descriptor table for each process, which is a table that the kernel uses to

translate the external representation of a descriptor into an internal representation. (The

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_113
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_394
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_83

66

descriptor is merely an index into this table.) The descriptor table of a process is inherited from

that process’s parent, and thus access to the objects to which the descriptors refer also is

inherited. The main ways that a process can obtain a descriptor are

1. by opening or creating an object, or

2. by inheriting from the parent process.

In addition, socket IPC allows passing descriptors in messages between unrelated processes on

the same machine.

Every valid descriptor has an associated file offset in bytes from the beginning of the object.

Read and write operations start at this offset, which is updated after each data transfer. For

objects that permit random access, the file offset also may be set with the lseek system call.

Ordinary files permit random access, and some devices do, too. The remaining descriptor types

including pipes, fifos, and sockets do not.

When a process terminates, the kernel reclaims all the descriptors that were in use by that

process. If the process was holding the final reference to an object, the object’s manager is

notified so that it can do any necessary cleanup actions, such as final deletion of a file or

deallocation of a socket.

Descriptor Management

Most processes expect three descriptors to be open already when they start running. These

descriptors are 0, 1, and 2, more commonly known as standard input, standard output,

and standard error, respectively. Usually, all three are associated with the user’s terminal by

the login process (see Section 15.4) and are inherited through fork and exec by processes run by

the user. Thus, a program can read what the user types by reading standard input, and the

program can send output to the user’s screen by writing to standard output. The standard error

descriptor also is open for writing and is used for error output, whereas standard output is used

for ordinary output.

These (and other) descriptors can be mapped to objects other than the terminal; such mapping

is called I/O redirection, and all the standard shells permit users to do it. The shell can direct

the output of a program to a file by closing descriptor 1 (standard output) and opening the

desired output file to produce a new descriptor 1. It can similarly redirect standard input to

come from a file by closing descriptor 0 and opening the file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_118
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_411
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_412
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_171

67

Pipes allow the output of one program to be input to another program without rewriting or even

relinking of either program. Instead of descriptor 1 (standard output) of the source program

being set up to write to the terminal, it is set up to be the input descriptor of a pipe. Similarly,

descriptor 0 (standard input) of the sink program is set up to reference the output of the pipe

instead of the terminal keyboard. The resulting set of two processes and the connecting pipe is

known as a pipeline. Pipelines can be arbitrarily long series of processes connected by pipes.

The open, pipe, and socket system calls produce new descriptors with the lowest unused number

usable for a descriptor. For pipelines to work, some mechanism must be provided to map such

descriptors into 0 and 1. The dup system call creates a copy of a descriptor that points to the

same file-table entry. The new descriptor is also the lowest unused one, but if the desired

descriptor is closed first, dup can be used to do the desired mapping. Care is required, however:

If descriptor 1 is desired, and descriptor 0 happens also to have been closed, descriptor 0 will be

the result. To avoid this problem, the system provides the dup2 system call; it is like dup, but it

takes an additional argument specifying the number of the desired descriptor (if the desired

descriptor was already open, dup2 closes it before reusing it).

Devices

Hardware devices have filenames and may be accessed by the user via the same system calls

used for regular files. The kernel can distinguish a device special file or special file, and it

can determine to what device it refers, but most processes do not need to make this

determination. Terminals, printers, and tape drives are all accessed as though they were streams

of bytes, like FreeBSD disk files. Thus, device dependencies and peculiarities are kept in the

kernel as much as possible, and even in the kernel most of them are segregated in the device

drivers.

Processes typically access devices through special files in the filesystem. I/O operations to these

files are handled by kernel-resident software modules termed device drivers. Most

network-communication hardware devices are accessible through only the

interprocess-communication facilities and do not have special files in the filesystem namespace,

because the raw-socket interface provides a more natural interface than does a special file.

Device special files are created in the /dev filesystem by their device driver when the hardware

is first found. The ioctl system call manipulates the underlying device parameters of special files.

The operations that can be done differ for each device. This system call allows the special

characteristics of devices to be accessed, rather than overloading the semantics of other system

calls. For example, there is an ioctl on a sound card to set the audio-encoding format instead of

there being a special or modified version of write.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_86
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_313

68

Socket IPC

The 4.2BSD kernel introduced an IPC mechanism more flexible than pipes, based on sockets. A

socket is an endpoint of communication referred to by a descriptor, just like a file or a pipe. Two

processes can each create a socket and then connect those two endpoints to produce a reliable

byte stream. Once connected, the descriptors for the sockets can be read or written by processes,

just as the latter would do with a pipe. The transparency of sockets allows the kernel to redirect

the output of one process to the input of another process residing on another machine. A major

difference between pipes and sockets is that pipes require a common parent process to set up

the communications channel. A connection between sockets can be set up by two unrelated

processes, possibly residing on different machines.

Fifos appear as an object in the filesystem that unrelated processes can open and send data

through in the same way as they would communicate through a pair of sockets. Thus, fifos do

not require a common parent to set them up; they can be connected after a pair of processes are

up and running. Unlike sockets, fifos can be used on only a local machine; they cannot be used

to communicate between processes on different machines.

The socket mechanism requires extensions to the traditional UNIX I/O system calls to provide

the associated naming and connection semantics. Rather than overloading the existing interface,

the developers used the existing interfaces to the extent that the latter worked without being

changed and designed new interfaces to handle the added semantics. The read and write system

calls were used for byte-stream-type connections, but six new system calls were added to allow

sending and receiving addressed messages such as network datagrams. The system calls for

writing messages include send, sendto, and sendmsg. The system calls for reading messages

include recv, recvfrom, and recvmsg. In retrospect, the first two in each class are special cases

of the others; recvfrom and sendto probably should have been added as library interfaces to

recvmsg and sendmsg, respectively.

Scatter-Gather I/O

In addition to the traditional read and write system calls, 4.2BSD introduced the ability to do

scatter-gather I/O. Scatter input uses the readv system call to allow a single read to be

placed in several different buffers. Conversely, the writev system call allows several different

buffers to be written in a single atomic write. Instead of passing a single buffer and length

parameter, as is done with read and write, the process passes in a pointer to an array of buffers

and lengths, along with a count describing the size of the array.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_354

69

This facility allows buffers in different parts of a process address space to be written atomically,

without the need to copy them to a single contiguous buffer. Atomic writes are necessary in the

case where the underlying abstraction is record based, such as datagrams that output a single

message on each write request. It is also convenient to be able to read a single request into

several different buffers (such as a record header into one place and the data into another).

Although an application can simulate the ability to scatter data by reading the data into a large

buffer and then copying the pieces to their intended destinations, the cost of

memory-to-memory copying in such cases often would more than double the running time of

the affected application.

Just as send and recv could have been implemented as library interfaces to sendto and recvfrom,

it also would have been possible to simulate read using readv and write using writev. However,

read and write are used so much more frequently that the added cost of simulating them would

not have been worthwhile.

Multiple Filesystem Support

With the expansion of network computing, it became desirable to support both local and remote

filesystems. To simplify the support of multiple filesystems, the developers added a new virtual

node or vnode interface to the kernel. The set of operations exported from the vnode interface

appear much like the filesystem operations previously supported by the local filesystem.

However, they may be supported by a wide range of filesystem types:

• Local disk-based filesystems

• Files imported using a variety of remote filesystem protocols

• Read-only CD-ROM filesystems

• Filesystems providing special-purpose interfaces, for example, the /dev filesystem

By using loadable kernel modules (see Section 15.3), FreeBSD allows filesystems to be loaded

dynamically when the filesystems are first referenced by the mount system call. The vnode

interface is described in Section 7.3; its ancillary support routines are described in Section 7.4;

several of the special-purpose filesystems are described in Section 7.5.

2.8 Devices

Historically, the device interface was static and simple. Devices were discovered as the system

was booted and did not change thereafter. A typical disk driver could be written in a few

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec5

70

hundred lines of code. As the system has evolved, the complexity of the I/O system has

increased, with the addition of new functionality. Devices may appear and later disappear while

the system is running. With increasing complexity and types of I/O buses, the routing of I/O

requests has become complex. In a multiprocessor, for example, device interrupts must be

routed to the most appropriate processor, which may not be the same one that previously

handled the device. An overview of the PC architecture is given in Section 8.1.

Devices are described by character device drivers. Sections 8.2 through 8.6 introduce the

structure of device drivers and then detail device drivers for disks, network interfaces, and

terminals.

Logical disks may no longer refer to a partition on a single physical disk but instead may

combine several slices and/or partitions to create a virtual partition on which to build a

filesystem that spans several disks. The aggregation of physical disk partitions into a virtual

partition in these ways is referred to as volume management. Rather than building all this

functionality into all the filesystems or disk drivers, it has been abstracted out into the GEOM

(geometry) layer. The operation of the GEOM layer is described in Section 8.7. The management

of the disk subsystem in FreeBSD is described in Section 8.8.

Autoconfiguration is the procedure carried out by the system to recognize and enable the

hardware devices present in a system. Historically, autoconfiguration was done just once when

the system was booted. In current machines, particularly portable machines such as laptop

computers, devices routinely come and go while the machine is operating. Thus, the kernel must

be prepared to configure, initialize, and make available hardware when it arrives and to drop

operations with hardware that has departed. FreeBSD uses a device-driver infrastructure called

newbus to manage the devices on the system. The newbus architecture is described in Section

8.9.

2.9 The Fast Filesystem

A regular file is a linear array of bytes and can be read and written starting at any byte in the file.

The kernel distinguishes no record boundaries in regular files, although many programs

recognize line-feed characters as distinguishing the ends of lines, and other programs may

impose other structure. No system-related information about a file is kept in the file itself, but

the filesystem stores a small amount of ownership, protection, and usage information with each

file.

A filename component is a string of up to 255 characters. These filenames are stored in a type

of file called a directory. The information in a directory about a file is called a directory

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_88
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_89

71

entry and includes, in addition to the filename, a pointer to the file itself. Directory entries may

refer to other directories, as well as to plain files. A hierarchy of directories and files is thus

formed, called a filesystem; a small one is shown in Figure 2.2. Directories may contain

subdirectories, and there is no inherent limitation to the depth with which directory nesting may

occur. To protect the consistency of the filesystem, the kernel does not permit processes to write

directly into directories. A filesystem may include not only plain files and directories but also

references to other objects, such as sockets and fifos.

Figure 2.2 A small filesystem tree.

The filesystem forms a tree, the beginning of which is the root directory, sometimes referred

to by the name slash, spelled with a single solidus character (/). The root directory contains

files; in our example in Figure 2.2, it contains kernel, a copy of the kernel-executable object file.

It also contains directories; in this example, it contains the usr directory. Within the usr

directory is the bin directory, which mostly contains executable object code of programs, such

as the files ls and vi.

A process identifies a file by specifying that file’s pathname, which is a string composed of zero

or more filenames separated by slash (/) characters. The kernel associates two directories with

each process for use in interpreting pathnames. A process’s root directory is the topmost point

in the filesystem that the process can access; it is ordinarily set to the root directory of the entire

filesystem. A pathname beginning with a slash is called an absolute pathname and is

interpreted by the kernel starting with the process’s root directory.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_121
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_01

72

A pathname that does not begin with a slash is called a relative pathname and is interpreted

relative to the current working directory of the process. (This directory also is known by

the shorter names current directory or working directory.) The current directory itself may

be referred to directly by the name dot, spelled with a single period (.). The filename dot-dot

(..) refers to a directory’s parent directory. The root directory is its own parent.

A process may set its root directory with the chroot system call and its current directory with the

chdir system call. Any process may do chdir at any time, but chroot is permitted only a process

with superuser privileges. Chroot is normally used to set up restricted access to the system.

Using the filesystem shown in Figure 2.2, if a process has the root of the filesystem as its root

directory and has /usr as its current directory, it can refer to the file vi either from the root with

the absolute pathname /usr/bin/vi or from its current directory with the relative pathname

bin/vi.

System utilities and databases are kept in certain well-known directories. Part of the

well-defined hierarchy includes a directory that contains the home directory for each

user—for example, /usr/staff/mckusick and /usr/staff/gnn in Figure 2.2. When users log

in, the current working directory of their shell is set to the home directory. Within their home

directories, users can create directories as easily as they can regular files. Thus, a user can build

arbitrarily complex subhierarchies.

The user usually knows of only one filesystem, but the system may know that this one virtual

filesystem is really composed of several physical filesystems, each on a different device. A

physical filesystem may not span multiple logical devices. Since most physical disk devices are

divided into several logical devices, there may be more than one filesystem per physical device,

but there will be no more than one per logical device. Conversely, several physical devices may

be combined through striping or RAID into a single larger logical device.

One filesystem—the filesystem that anchors all absolute pathnames—is called the root

filesystem and is always available. Others may be mounted—that is, they may be integrated

into the directory hierarchy of the root filesystem. References to a directory that has a filesystem

mounted on it are converted transparently by the kernel into references to the root directory of

the mounted filesystem.

The link system call takes the name of an existing file and another name to create for that file.

After a successful link, the file can be accessed by either filename. A filename can be removed

with the unlink system call. When the final name for a file is removed (and the final process that

has the file open closes it), the file is deleted.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_493
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_145
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_335

73

Files are organized hierarchically in directories. A directory is a type of file, but, in contrast to

regular files, a directory has a structure imposed on it by the system. A process can read a

directory as it would an ordinary file, but only the kernel is permitted to modify a directory.

Directories are created by the mkdir system call and are removed by the rmdir system call.

Before 4.2BSD, the mkdir and rmdir system calls were implemented by a series of link and

unlink system calls being performed. There were three reasons for adding system calls explicitly

to create and delete directories:

1. The operation could be made atomic. If the system crashed, the directory would not be left

half-constructed, as could happen when a series of link operations were used.

2. When a networked filesystem is being run, the creation and deletion of files and directories

need to be specified atomically so that they can be serialized.

3. When supporting non-UNIX filesystems, such as an NTFS filesystem, on another partition of

the disk, the other filesystem may not support link operations. Although other filesystems might

support the concept of directories, they probably would not create and delete the directories

with links, as the UNIX filesystem does. Consequently, they could create and delete directories

only if explicit directory create and delete requests were presented.

The chown system call sets the owner and group of a file, and chmod changes protection

attributes. Stat applied to a filename can be used to read back such properties of a file. The

fchown, fchmod, and fstat system calls are applied to a descriptor instead of to a filename to do

the same set of operations. The rename system call can be used to give a file a new name in the

filesystem, replacing one of the file’s old names. Like the directory-creation and

directory-deletion operations, the rename system call was added to 4.2BSD to provide atomicity

to name changes in the local filesystem. Later, it proved useful explicitly to export renaming

operations to foreign filesystems and over the network.

The truncate system call was added to 4.2BSD to allow files to be set to an arbitrary size. Thus,

truncate is poorly named because it may be used to both shorten and lengthen a file. Files may

have holes in them. Holes are void areas in the linear extent of the file where data have never

been written. A process can create these holes by positioning the pointer past the current

end-of-file and writing. Alternatively, a hole may be added to the end of a file by using the

truncate system call to increase its length. When read, holes are treated by the system as

zero-valued bytes.

Once the filesystem had the ability to shorten files, the kernel took advantage of that ability to

shorten large, empty directories. The advantage of shortening empty directories is that it

reduces the time spent in the kernel searching them when names are being created or deleted.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_144

74

Newly created files are assigned the user identifier of the process that created them and the

group identifier of the directory in which they were created. A three-level access-control

mechanism is provided for the protection of files. The following three levels specify the

accessibility of a file:

1. To the user who owns the file

2. To the group that owns the file

3. To everybody else

Each level of access has separate indicators for read permission, write permission, and execute

permission. If finer granularity access control is needed, FreeBSD 5 also provides ACLs (access

control lists) to allow specification of read, write, execute, and administrative permission on a

per-user or per-group level.

Files are created with zero length and may grow when they are written. While a file is open, the

system maintains a pointer into the file showing the current location in the file associated with

the descriptor. This pointer can be moved about in the file in a random-access fashion.

Processes sharing a file descriptor through a fork or dup system call share the current location

pointer. Descriptors created by separate open system calls have separate current location

pointers.

Filestores

The user-visible part of the filesystem is its hierarchical naming, locking, quotas, attribute

management, and protection. But the bulk of the filesystem implementation involves the

organization and management of the data on the storage media. Laying out the contents of files

on the storage media is the responsibility of the filestore. By default, FreeBSD uses the

traditional Berkeley fast filesystem format. The disk is organized into groups of contiguous

blocks called cylinder groups. Files that are likely to be accessed together, based on their

locations in the filesystem hierarchy, are stored in the same cylinder group. Files that are not

expected to be accessed together are moved into different cylinder groups.

A key responsibility of the filestore is to ensure that the filesystem is always kept in a state in

which it can be recovered after a hardware or software failure. While recoverability can be

maintained by using synchronous writes to the disk, the performance of a filesystem using this

technique would be unacceptably slow. FreeBSD uses a technique called soft updates (see

Sections 9.6 and 9.8) to ensure recoverability while still delivering good performance and fast

restart after a system crash.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_398
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec8

75

Another useful feature of the FreeBSD filestore is the ability to take a filesystem snapshot

quickly. Snapshots can be taken every few hours and mounted in a well-known location so that

users can recover inadvertently deleted files that they created or wrote earlier in the day.

Snapshots can also be used to allow the creation of consistent archives of filesystems that are in

continuous active use. Snapshots are described in Section 9.7.

2.10 The Zettabyte Filesystem

The Zettabyte filesystem (ZFS) is in a class of filesystems that never overwrite existing data. This

type of filesystem design was pioneered at Berkeley and a production-capable implementation

was released as the log-structured filesystem in 4.4BSD.

The idea of a non-overwriting filesystem is sound and was picked up and greatly enhanced by

Sun Microsystems, which released it as the Zettabye filesystem in OpenSolaris. The FreeBSD

Project replaced the little-used log-structured filesystem with ZFS in 2007. Within a few years,

ZFS became the filesystem of choice for FreeBSD installations with large storage components.

The design of ZFS provides many benefits:

• Creation of snapshots (read-only) and clones (writable) is easy and cheap. Many of them can

be created with no performance hit.

• The on-disk filesystem state is never inconsistent. A ZFS filesystem moves from one consistent

state to the next without ever passing through an inconsistent state.

• All the disks on the machine can be pooled together and the pool of space is then shared

among all the filesystems. Allocation of the pool space can be controlled through the use of

several types of quotas and reservations.

• Massive scale supports petabyte-size storage pools with data structures that allow scalability to

zettabytes.

• Provides for fast remote replication and backups.

• Strong data integrity is provided by checksums and disk-level redundancy through mirroring

and single, double, and triple parity RAID.

• Supports a hybrid storage pool by using fast devices such as solid-state disks (SSDs) to cache

reads and non-volatile memory (NVRAM) to accelerate synchronous writes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7

76

ZFS was designed to easily manage and operate enormous filesystems, which it does well. Its

design assumed that it would have many fast 64-bit CPUs with large amounts of memory to

support these enormous filesystems. When these resources are available, it works extremely well.

However, it is neither designed for nor is it well suited to run on resource-constrained systems

using 32-bit CPUs with less than 8 Gbytes of memory and one small, nearly full disk typical of

many embedded systems. Thus, the fast filesystem continues to be the filesystem of choice for

these smaller systems.

2.11 The Network Filesystem

Initially, networking was used to transfer data from one machine to another. Later, it evolved to

allowing users to log in remotely to another machine. The next logical step was to bring the data

to the user, instead of having the user go to the data—and network filesystems were born. Users

working locally do not experience the network delays on each keystroke, so they have a more

responsive environment.

Bringing the filesystem to a local machine was among the first of the major client–server

applications. The server is the remote machine that exports one or more of its filesystems. The

client is the local machine that imports those filesystems. From the local client’s point of view, a

remotely mounted filesystem appears in the file-tree namespace just like any other locally

mounted filesystem. Users and programs running on clients can change into directories on the

remote filesystem and can read, write, and execute binaries within that remote filesystem

identically to the way they can do these operations on a local filesystem.

When the client performs an operation on a remote filesystem, the request is packaged and sent

to the server. The server performs the requested operation and returns either the requested

information or an error explaining why the request was denied. To get reasonable performance,

the client must cache frequently accessed data. The complexity of remote filesystems lies in

maintaining cache consistency between the server and its many clients.

Although many remote-filesystem protocols have been developed over the years, the most

pervasive one in use among UNIX systems is the Network Filesystem (NFS), whose protocol and

most widely used implementation were done by Sun Microsystems. The FreeBSD kernel

supports the NFS protocol, although the implementation was done independently from the

protocol specification [Macklem, 1994]. The continued success of NFS has resulted in a

significant update of the protocol in version 4. The new protocol has little in common with its

predecessors other than its name and its goal of giving a set of clients shared access to a single

store of files. It adds several new features including integrated security, better caching, and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02ref06

77

enhanced file and byte-range locking. Both of the currently used NFS protocols, NFSv3 and

NFSv4 are described in Chapter 11.

2.12 Interprocess Communication

Interprocess communication in FreeBSD is organized in communication domains. The

most important domains currently supported include the local domain, for communication

between processes executing on the same machine; the IPv4 domain, for communication

between processes using the TCP/IP protocol suite (version 4); and the IPv6 domain, which is

the newest version of the Internet protocols.

Within a domain, communication takes place between communication endpoints known as

sockets. As mentioned in Section 2.7, the socket system call creates a socket and returns a

descriptor; other IPC system calls are described in Chapter 12. Each socket has a type that

defines its communications semantics; these semantics include properties such as reliability,

ordering, and prevention of the duplication of messages.

Each socket has associated with it a communication protocol. This protocol provides the

semantics required by the socket according to the latter’s type. Applications may request a

specific protocol when creating a socket or may allow the system to select a protocol that is

appropriate for the type of socket being created.

Sockets may have addresses bound to them. The form and meaning of socket addresses are

dependent on the communication domain in which the socket is created. Binding a name to a

socket in the local domain causes a file to be created in the filesystem, while binding an IP

address to a socket only updates an entry in the socket structure.

Normal data transmitted and received through sockets are untyped. Data-representation issues

are the responsibility of libraries built on top of the interprocess-communication facilities.

Networking implementations on UNIX before 4.2BSD usually worked by overloading the

character-device interfaces. One goal of the socket interface was for naive programs to be able to

work without change on stream-style connections. Such programs can work only if the read and

write system calls are unchanged. Consequently, the original interfaces were left intact and were

made to work on stream-type sockets. A new interface was added for datagram sockets, where a

destination address must be presented with each send call.

Implementations of the sockets API exist for pretty much every modern operating system,

including several that differ greatly from UNIX.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_199
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_52

78

FreeBSD also supports several local IPC mechanisms not related to networking, including

semaphores, message queues, and shared memory. These mechanisms are covered in

Section 7.2.

The increasing power of computer systems has lead to the virtualization of many kernel services,

including those related to IPC. A recent feature of FreeBSD is a virtualized network stack in

which elements such as sockets, network addresses, and network routing tables may not be

global across the entire system, but contained within a single network stack instance. The

purpose of these virtualization features is to allow a system administrator to configure a single

system to serve several separate networks as might be common at an ISP.

2.13 Network-Layer Protocols

Most of the communication domains supported by the socket IPC mechanism provide access to

network protocols. These protocols are implemented as a separate software layer logically below

the socket software in the kernel. The kernel provides many ancillary services, such as buffer

management, message routing, standardized interfaces to the protocols, and interfaces to the

network interface drivers for the use of the various network protocols.

Network layer protocols are layered just above or close to the network-interface software that

manages the networking hardware. The Internet protocols IPv4 and IPv6 are two examples of a

network layer protocol. FreeBSD has supported multiple protocols since 4.2BSD, providing

interoperability and resource sharing among the diverse set of machines that exist in the

Internet. Multiple-protocol support also provides for future changes. Today’s protocols designed

for 1- and 10-Gbit Ethernets are likely to be inadequate for tomorrow’s 40- to 100-Gbit networks.

Consequently, the network-communication layer is designed to support multiple protocols. New

protocols are added to the kernel without the support for older protocols being affected. Older

applications can continue to operate using the old protocol over the same physical network as is

used by newer applications running with a newer network protocol.

The original Internet protocols were not designed with security in mind. Protocols for securing

the Internet have been added at multiple layers of the network stack, including the network

layer itself. The IPSec suite of protocols introduces a framework for authenticating packet data

and making them private at the network layer of the system.

Network firewalls such as PF and IPFW that need to modify network data as they pass through a

system are also implemented at the network layer of the kernel software. The FreeBSD kernel

has several packet-processing frameworks that manipulate network data as they pass through

the system and that are outside the normal processing of incoming or outgoing network traffic.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec2

79

Other packet-processing frameworks exist for protocol experimentation and to give applications

high-speed access to raw network packets without any network or transport layer protocol

processing.

2.14 Transport-Layer Protocols

Transport layer protocols are responsible for end-to-end connectivity in a network. The

Transmission Control Protocol (TCP) remains by far the most commonly used end-to-end

transport protocol. However, key Internet services, such as the Domain Name System, allow

users to look up systems by name using the User Datagram Protocol (UDP). The popularity of

TCP has lead to a continuous set of improvements to the protocol that enhances stability and

improves performance. FreeBSD includes a framework specific to TCP that allows the tuning of

certain performance and stability features. Newer transport protocols such as SCTP have added

features for security and failover across communication paths. The UDP, TCP, and SCTP

implementations are described in detail in Chapter 14.

2.15 System Startup and Shutdown

Bootstrapping (or “booting”) the operating system is a complex multistep process that begins

with the hardware platform’s BIOS or firmware loading an escalating series of operating-system

vendor boot loaders, which in turn load a kernel and modules. Once loaded, the kernel begins

execution and after initialization it starts the first user process, init. The init process is

responsible for starting the userspace boot process. The startup details vary by hardware

platform: higher-end servers and workstations will, on the path to kernel load, run a series of

smaller boot loaders that ultimately start /boot/loader, a scriptable loader environment

supporting interactive selection of kernels, and network booting via NFS. By contrast, lower-end

embedded systems often have a kernel that will be loaded directly by firmware without any

intervening stages.

The kernel starts by initializing a variety of internal subsystems such as the kernel memory

allocator and scheduler. It uses platform-specific hardware enumeration methods to identify

available hardware resources and attach drivers. Different techniques reflect different

operational models: some hardware buses are self-enumerating (e.g., PCI), whereas other

require manual description (e.g., many system-on-chip buses). On desktop/server systems, one

kernel will frequently be used on a variety of machine types from many different vendors. By

contrast, embedded installations usually have a kernel configured for each target device. On the

PC, this enumeration is normally done via ACPI, which allows the BIOS to describe the

processor configuration, bus topology, and directly attached hardware devices. On embedded

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_25

80

systems, device enumeration is done via systems such as Flattened Device Trees (FDT) that

provide a static description of directly attached resources. Unlike ACPI, whose hardware

descriptors are almost always shipped with the hardware itself, FDT hardware descriptions are

usually embedded in the kernel. Buses such as PCI can do further dynamic enumeration by

discovering attached devices such as Ethernet NICs, and bridges to further buses to enumerate.

The in-kernel boot process is controlled by a system known as SYSINIT, which takes advantage

of a compiler/linker feature called linker sets. Linker sets allow symbols for data structures and

functions to be tagged for inclusion in a particular part of the kernel. Subsystem initializers are

tagged for inclusion in the kernel initialization section along with information on the order in

which they should be done. When the kernel and its modules are linked, the kernel linker

iterates through various tagged functions, sorting and then invoking them to start those kernel

subsystems. A similar SYSUNINIT mechanism exists to perform ordered shutdown of modules

before unloading them and in preparation for kernel shutdown or reboot.

The kernel starts by initializing its own data structures, such as its virtual-memory structures

that describe physical memory. Next, it starts a set of kernel threads that implement services

such as timers. Devices are enumerated, and device drivers attached. The network stack may

perform not only per-protocol initialization, but also per-device initialization such as address

generation and router discovery. The GEOM subsystem will identify storage devices and

configure transforms such as RAID or encryption via GELI. Encryption services may require the

user to have entered a passphrase in the boot loader. Eventually, a storage device suitable to use

as the root filesystem will be discovered and its filesystem then mounted. Additional processors

are enumerated and their schedulers likewise started. The final kernel-bootstrap step is to create

the first user process with PID 1, to execute the /sbin/init binary. The init process is

responsible for executing the startup scripts that perform filesystem checks, configure network

interfaces, start accounting and quotas, start system daemons such as inetd and sshd, and

bring the system up to full multiuser operation.

In multiuser operation, the system may act as a general timesharing system, supporting direct

or network-based logins by users who then start processes running on their behalf. FreeBSD

often acts as a server, providing file services and serving Web requests to network clients. All

these network-based services can be started automatically at boot time. When used as a server,

there is typically just one human user logged into the system (the administrator).

Exercises

2.1 How does a user process request a service from the kernel?

81

2.2 How are data transferred between a process and the kernel? What alternatives are

available?

2.3 How does a process access an I/O stream? List three types of I/O streams.

2.4 What are the four steps in the lifecycle of a process?

2.5 Why are process groups provided in FreeBSD?

2.6 Describe four machine-dependent functions of the kernel.

2.7 Describe the difference between an absolute and a relative pathname.

2.8 Give three reasons why the mkdir system call was added to 4.2BSD.

2.9 Define scatter-gather I/O. Why is it useful?

2.10 What is the difference between a pipe and a socket?

2.11 Describe how to create a group of processes in a pipeline.

*2.12 List the three system calls that were required to create a new directory foo in the current

directory before the addition of the mkdir system call.

*2.13 Explain the difference between interprocess communication and networking.

References

Accetta et al., 1986.

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, & M. Young, “Mach: A New

Kernel Foundation for UNIX Development,” USENIX Association Conference Proceedings, pp.

93–113, June 1986.

Cheriton, 1988.

D. R. Cheriton, “The V Distributed System,” Comm ACM, vol. 31, no. 3, pp. 314–333, March

1988.

Ewens et al., 1985.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_354

82

P. Ewens, D. R. Blythe, M. Funkenhauser, & R. C. Holt, “Tunis: A Distributed Multiprocessor

Operating System,” USENIX Association Conference Proceedings, pp. 247–254, June 1985.

Gingell et al., 1987.

R. Gingell, J. Moran, & W. Shannon, “Virtual Memory Architecture in SunOS,” USENIX

Association Conference Proceedings, pp. 81–94, June 1987.

Kernighan & Pike, 1984.

B. W. Kernighan & R. Pike, The UNIX Programming Environment, Prentice-Hall, Englewood

Cliffs, NJ, 1984.

Macklem, 1994.

R. Macklem, “The 4.4BSD NFS Implementation,” in 4.4BSD System Manager’s Manual, pp.

6:1–14, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

McKusick & Karels, 1988.

M. K. McKusick & M. Karels, “Design of a General Purpose Memory Allocator for the 4.3BSD

UNIX Kernel,” USENIX Association Conference Proceedings, pp. 295–304, June 1988.

McKusick et al., 1994.

M. K. McKusick, M. Karels, S. J. Leffler, W. N. Joy, & R. S. Fabry, “Berkeley Software

Architecture Manual, 4.4BSD Edition,” in 4.4BSD Programmer’s Supplementary Documents,

pp. 5:1–42, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

Ritchie, 1988.

D. M. Ritchie, “Early Kernel Design,” private communication, March 1988.

Rozier et al., 1988.

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,

S. Langlois, P. Leonard, & W. Neuhauser, “Chorus Distributed Operating Systems,” USENIX

Computing Systems, vol. 1, no. 4, pp. 305–370, Fall 1988.

Tevanian, 1987.

A. Tevanian, “Architecture-Independent Virtual Memory Management for Parallel and

Distributed Environments: The Mach Approach,” Department of Computer Science,

83

Carnegie-Mellon University, available from http://reports-archive.adm.cs.cmu.edu/cs.html,

December 1987.

http://reports-archive.adm.cs.cmu.edu/cs.html

84

Chapter 3. Kernel Services

3.1 Kernel Organization

The FreeBSD kernel can be viewed as a service provider to user processes. Processes usually

access these services through system calls. Some services, such as process scheduling and

memory management, are implemented as processes that execute in kernel mode or as routines

that execute periodically within the kernel. In this chapter, we describe how kernel services are

provided to user processes, and we explain some of the ancillary processing done by the kernel.

Then we describe the basic kernel services provided by FreeBSD and provide details of their

implementation.

System Processes

All FreeBSD user-level processes originate from a single process that is crafted by the kernel at

startup. Table 3.1 lists the most important of the processes that are created immediately and

exist always. They are kernel processes, and they function wholly within the kernel. Kernel

processes execute code that is compiled into the kernel’s load image and operate with the

kernel’s privileged execution mode. Often these processes have many threads. For example, the

intr process starts a kernel thread for each device to handle interrupts for that device.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_187

85

Table 3.1 Permanent kernel processes.

After creating the kernel processes, the kernel creates the first process to execute a program in

user mode; it serves as the parent process for all subsequent processes. The first user-mode

process is the init process—historically, process 1. This process does administrative tasks, such

as spawning getty processes for each terminal on a machine, collecting exit status from

orphaned processes, and handling the orderly shutdown of a system from multiuser to

single-user operation. The init process is a user-mode process, running outside the kernel (see

Section 15.4).

System Entry

Entrances into the kernel can be categorized according to the event or action that initiates them:

• Hardware interrupt

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4

86

• Hardware trap

• Software-initiated trap

Hardware interrupts arise from external events, such as an I/O device needing attention or a

clock reporting the passage of time. (For example, the kernel depends on the presence of a

real-time clock or interval timer to maintain the current time of day, to drive process scheduling,

and to initiate the execution of system timeout functions.) Hardware interrupts occur

asynchronously and may not relate to the context of the currently executing process.

Hardware traps may be either synchronous or asynchronous but are related to the current

executing process. Examples of hardware traps are those generated as a result of an illegal

arithmetic operation, such as dividing by zero.

Software-initiated traps are used by the system to force the scheduling of an event, such as

process rescheduling or network processing, as soon as possible. Software-initiated traps are

implemented by setting a flag that is checked whenever a process is preparing to exit from the

kernel. If the flag is set, the software-interrupt code runs instead of exiting from the kernel.

System calls are a special case of a software-initiated trap—the machine instruction used to

initiate a system call typically causes a hardware trap that is handled specially by the kernel.

Run-Time Organization

The kernel can be logically divided into a top half and a bottom half, as shown in Figure 3.1.

The top half of the kernel provides services to processes in response to system calls or traps.

This software can be thought of as a library of routines shared by all processes. The top half of

the kernel executes in a privileged execution mode, in which it has access both to kernel data

structures and to the context of user-level processes. The context of each process is contained in

two areas of memory reserved for process-specific information. The first of these areas is the

process structure, which has historically contained the information that is necessary even if

the process has been swapped out. In FreeBSD, this information includes the identifiers

associated with the process, the process’s rights and privileges, its descriptors, its memory map,

pending external events and associated actions, maximum and current resource utilization, and

many other things. The second is the thread structure, which has historically contained the

information that is not necessary when the process is swapped out. In FreeBSD, the

thread-structure information of each process includes the hardware thread state block (TSB), its

kernel stack, and minor additional information for debugging and creating a core dump.

Deciding what was to be stored in the process structure and the thread structure was far more

important in previous systems than it was in FreeBSD. As memory became a less limited

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_443

87

resource, most of the thread structure was merged into the process structure for convenience

(see Section 4.2).

Figure 3.1 Run-time structure of the kernel.

The bottom half of the kernel comprises routines that are invoked to handle hardware interrupts.

Activities in the bottom half of the kernel are synchronous with respect to the interrupt

source but are asynchronous, with respect to the top half, and the software cannot depend on

having a specific (or any) process running when an interrupt occurs. Thus, the state information

for the process that initiated the activity is not available. The top and bottom halves of the kernel

communicate through data structures, generally organized around work queues.

The FreeBSD kernel is rarely preempted to run another user process while executing in the top

half of the kernel—for example, while executing a system call—although it will explicitly give up

the processor if it must wait for an event or for a shared resource. Its execution may be

interrupted, however, by the need to run a real-time process or by interrupts for the bottom half

of the kernel. When an interrupt is received, the kernel process that handles that device is

scheduled to run. Normally these device-interrupt processes have a higher priority than user

processes or processes running in the top half of the kernel. Thus, when an interrupt causes a

device-interrupt process to be made runnable, it will usually preempt the currently running

process. When a process running in the top half of the kernel wants to add an entry to the work

list for a device, it needs to ensure that it will not be preempted by that device part way through

linking the new element onto the work list. In FreeBSD, the work list is protected by a mutex.

Any process (top or bottom half) seeking to modify the work list must first obtain the mutex.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_16

88

Once held, any other process seeking to obtain the mutex will wait until the process holding it

has finished modifying the list and released the mutex.

Processes cooperate in the sharing of system resources, such as the disks and memory. The top

and bottom halves of the kernel also work together in implementing certain system operations,

such as I/O. Typically, the top half will start an I/O operation, and then relinquish the processor;

then the requesting process will sleep, awaiting notification from the bottom half that the I/O

request has completed.

Entry to the Kernel

When a process enters the kernel through a trap or an interrupt, the kernel must save the

current machine state before it begins to service the event. For the PC, the machine state that

must be saved includes the program counter, the user stack pointer, the general-purpose

registers, and the processor status longword. The PC trap instruction saves the program counter

and the processor status longword as part of the exception stack frame; the user stack pointer

and registers must be saved by the software trap handler. If the machine state were not fully

saved, the kernel could change values in the currently executing program in improper ways.

Since interrupts may occur between any two user-level instructions (and on some architectures

between parts of a single instruction), and because they may be completely unrelated to the

currently executing process, an incompletely saved state could cause correct programs to fail in

mysterious and not easily reproducible ways.

The exact sequence of events required to save the process state is completely machine

dependent, although the PC provides a good example of the general procedure. A trap or system

call will trigger the following events:

• The hardware switches into kernel (supervisor) mode, so that memory-access checks are made

with kernel privileges, references to the stack use the per-process kernel stack, and privileged

instructions can be executed.

• The hardware pushes onto the per-process kernel stack the program counter, processor status

longword, and information describing the type of trap. (On architectures other than the PC, this

information can include the system-call number and general-purpose registers as well.)

• An assembly-language routine saves all state information not saved by the hardware. On the

PC, this information includes the general-purpose registers and the user stack pointer, also

saved onto the per-process kernel stack.

89

After this preliminary state saving, the kernel calls a C routine that can freely use the

general-purpose registers as any other C routine would, without concern about changing the

unsuspecting process’s state.

There are three major kinds of handlers, corresponding to particular kernel entries:

1. Syscall() for a system call

2. Trap() for hardware traps and for software-initiated traps other than system calls

3. The appropriate device-driver interrupt handler for a hardware interrupt

Each type of handler takes its own specific set of parameters. For a system call, they are the

system-call number and an exception frame. For a trap, they are the type of trap, the relevant

floating-point and virtual-address information related to the trap, and an exception frame. (The

exception-frame arguments for the trap and system call are not the same. The PC hardware

saves different information based on different types of traps.) For a hardware interrupt, the only

parameter is a unit (or board) number.

Return from the Kernel

When the handling of the system entry is completed, the user-process state is restored, and

control returns to the user process. Returning to the user process reverses the process of

entering the kernel:

• An assembly-language routine restores the general-purpose registers and user-stack pointer

previously pushed onto the stack.

• The hardware restores the program counter and program status longword, and switches to

user mode, so that future references to the stack pointer use the user’s stack pointer, privileged

instructions cannot be executed, and memory-access checks are done with user-level privileges.

Execution then resumes at the next instruction in the user’s process.

3.2 System Calls

The most frequent trap into the kernel (after clock processing) is a request to do a system call.

System performance requires that the kernel minimize the overhead in fielding and dispatching

a system call. The system-call handler must do the following work:

90

• Verify that the parameters to the system call are located at a valid user address, and copy them

from the user’s address space into the kernel

• Call a kernel routine that implements the system call

Result Handling

Eventually, the system call returns to the calling process, either successfully or unsuccessfully.

On the PC architecture, success or failure is returned as the carry bit in the user process’s

program status longword: If it is zero, the return was successful; otherwise, it was unsuccessful.

On many machines, return values of C functions are passed back through a general-purpose

register (for the PC, data register EAX). The routines in the kernel that implement system calls

return the values that are normally associated with the global variable errno. After a system call,

the kernel system-call handler leaves this value in the register. If the system call failed, a C

library routine moves that value into errno, and sets the return register to -1. The calling process

is expected to notice the value of the return register, and then to examine errno. The mechanism

involving the carry bit and the global variable errno exists for historical reasons derived from

the PDP-11.

There are two kinds of unsuccessful returns from a system call: those where kernel routines

discover an error and those where a system call is interrupted. The most common case is a

system call that is interrupted when it has relinquished the processor to wait for an event that

may not occur for a long time (such as terminal input), and a signal arrives in the interim. When

signal handlers are initialized by a process, they specify whether system calls that they interrupt

should be restarted or whether the system call should return with an interrupted system call

(EINTR) error.

When a system call is interrupted, the signal is delivered to the process. If the process has

requested that the signal abort the system call, the handler then returns an error, as described

previously. If the system call is to be restarted, however, the handler resets the process’s

program counter to the machine instruction that caused the system-call trap into the kernel.

(This calculation is necessary because the program-counter value that was saved when the

system-call trap was done is for the instruction after the trap-causing instruction.) The handler

replaces the saved program-counter value with this address. When the process returns from the

signal handler, it resumes at the program-counter value that the handler provided and

reexecutes the same system call.

Restarting a system call by resetting the program counter has certain implications. First, the

kernel must not modify any of the input parameters in the process address space (it can modify

91

the kernel copy of the parameters that it makes). Second, it must ensure that the system call has

not performed any actions that cannot be repeated. For example, in the current system, if any

characters have been read from the terminal, the read must return with a short count. Otherwise,

if the call were to be restarted, the already-read bytes would be lost.

Returning from a System Call

While the system call is running or sleeping with signals blocked, a signal may be posted to the

process, or another process may attain a higher scheduling priority. After the system call

completes, the system-call exit code checks to see whether either event has occurred.

The system-call exit code first checks for a posted signal. Such signals include signals that

interrupted the system call, as well as signals that arrived while a system call was in progress but

were held pending until the system call completed. Signals that are ignored, by default or by

explicit programmatic request, are never posted to the process. Signals with a default action

have that action taken before the process runs again (i.e., the process may be stopped or

terminated as appropriate). If a signal is to be caught (and is not currently blocked), the

system-call exit code arranges to have the appropriate signal handler called rather than have the

process return directly from the system call. After the signal handler returns, the process will

resume execution at system-call return (or system-call execution, if the system call is being

restarted).

After checking for posted signals, the system-call exit code checks to see whether any process

has a priority higher than that of the currently running one. If such a process exists, the

system-call exit code calls the context-switch routine to cause the higher-priority process to run.

At a later time, the current process will again have the highest priority and will resume

execution by returning from the system call to the user process.

If a process has requested that the system do profiling, the system-call exit code also calculates

the amount of time that has been spent in the system call—that is, the system time accounted to

the process between the latter’s entry into and exit from the kernel. This time is charged to the

routine in the user’s process that made the system call.

3.3 Traps and Interrupts

Traps, like system calls, occur synchronously for a process. Traps normally occur because of

unintentional errors, such as division by zero or indirection through an invalid pointer. The

process becomes aware of the problem either by catching a signal or by being terminated. Traps

92

can also occur because of a page fault, in which case the system makes the page available and

restarts the process without the process being aware that the fault occurred.

The trap handler is invoked like the system-call handler. First, the process state is saved. Next,

the trap handler determines the trap type and then arranges to post a signal or to cause a pagein

as appropriate. Finally, it checks for pending signals and higher-priority processes, and exits like

the system-call handler except that it has no return value.

I/O Device Interrupts

Interrupts from I/O and other devices are handled by interrupt routines that are loaded as part

of the kernel’s address space. These routines handle the console terminal interface, one or more

clocks, and several software-initiated interrupts used by the system for low-priority clock

processing and for networking facilities.

Unlike traps and system calls, device interrupts occur asynchronously. The process that

requested the service is unlikely to be the currently running process and may no longer exist!

The process that started the operation will be notified that the operation has finished when that

process runs again. As occurs with traps and system calls, the entire machine state must be

saved, since any changes could cause errors in the currently running process.

Device-interrupt handlers run only on demand. Unlike the pre-multiprocessing versions of

FreeBSD, modern FreeBSD kernels create a thread context for each device driver. Thus, just as

one process cannot access the context of the previously running process, interrupt handlers

cannot access any of the context of the previously running interrupt handler. The stack normally

used by the kernel is part of a process context. Since each device has its own context, it also has

its own stack on which to run.

Interrupts in pre-multiprocessing FreeBSD systems had no context, so they had to run to

completion without sleeping. In modern FreeBSD kernels, interrupts can block to wait for

resources. However, while blocked they cannot be invoked with another event, so to reduce the

chance for lost interrupts, most handlers still run to completion without sleeping.

An interrupt handler is never invoked from the top half of the kernel. Thus, it must get all the

information it needs from the data structures that it shares with the top half of the

kernel—generally, its global work queue. Similarly, all information provided to the top half of

the kernel by the interrupt handler must be communicated the same way.

93

Software Interrupts

Many events in the kernel are driven by hardware interrupts. For high-speed devices such as

network controllers, these interrupts are scheduled at a high priority. A network controller must

quickly acknowledge receipt of a packet and reenable the controller to accept more packets to

avoid losing closely spaced packets. However, the further processing of passing the packet to the

receiving process, although time-consuming, does not need to be done quickly. Thus, the further

processing can be scheduled at a lower priority, so critical operations will not be blocked from

executing longer than necessary.

The mechanism for performing lower-priority processing is called a software interrupt.

Typically, a high-priority interrupt creates a queue of work to be done at a lower-priority level.

As with hardware devices in FreeBSD, each software interrupt has a process context associated

with it. The software-interrupt processes are generally given a lower scheduling priority than the

device-driver processes but a higher priority than those given to user processes. Whenever a

hardware interrupt arrives, the process associated with the device driver will attain the highest

priority and be scheduled to run. When there are no device-driver processes that are runnable,

the highest priority software-interrupt process will be scheduled to run. If there are no

software-interrupt processes that are runnable, then the highest priority user process will run. If

either a software-interrupt process or a user process is running when an interrupt arrives and

makes its device-driver process runnable, the scheduler will preempt the software-interrupt or

user process to run the device-driver process.

The delivery of network packets to destination processes is handled by a packet-processing

function that runs at a lower priority than the network-controller device driver. As packets come

in, they are put onto a work queue and the controller is immediately reenabled. Between packet

arrivals, the packet-processing process works to deliver the packets. Thus, the controller can

accept new packets without having to wait for the previous packet to be delivered. In addition to

network processing, software interrupts are used to handle time-related events and process

rescheduling.

3.4 Clock Interrupts

The system is driven by a clock that interrupts at regular intervals. Each interrupt is referred to

as a tick. On the PC, the clock ticks 1000 times per second. At each tick, the system updates the

current time of day as well as user-process and system timers.

Handling 1000 interrupts per second can be time consuming. To reduce the interrupt load, the

kernel computes the number of ticks in the future at which an action may need to be taken. It

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_445

94

then schedules the next clock interrupt to occur at that time. Thus, clock interrupts typically

occur much less frequently than the 1000 ticks-per-second rate implies. This reduced interrupt

rate is particularly helpful for systems with limited power budgets such as laptop computers and

embedded systems as it allows them to spend much more time in low-power-consumption sleep

mode.

Interrupts for clock ticks are posted at a high hardware-interrupt priority. After switching to the

clock-device process, the hardclock() routine is called. It is important that the hardclock()

routine finish its job quickly:

• If hardclock() runs for more than one tick, it will miss the next clock interrupt. Since

hardclock() maintains the time of day for the system, a missed interrupt will cause the system to

lose time.

• Because of hardclock()’s high interrupt priority, nearly all other activity in the system is

blocked while hardclock() is running. This blocking can cause network controllers to miss

packets.

So the time spent in hardclock() is minimized, less critical time-related processing is handled by

a lower-priority software-interrupt handler called softclock(). In addition, if multiple clocks are

available, some time-related processing can be handled by other routines supported by alternate

clocks. On the PC there are two additional clocks that run at a different frequency than the

system clock: the statclock(), which runs at 127 ticks per second to collect system statistics, and

the profclock(), which runs at 8128 ticks per second to collect profiling information.

The work done by hardclock() is as follows:

• If the currently running process has a virtual or profiling interval timer (see Section 3.6), it

decrements the timer and delivers a signal if the timer has expired.

• It increments the current time of day by the number of ticks since the previous call to

hardclock().

• If the system does not have a separate clock for process profiling, the hardclock() routine does

the operations normally done by profclock(), as described in the next section.

• If the system does not have a separate clock for statistics gathering, the hardclock() routine

does the operations normally done by statclock(), as described in the next section.

• If softclock() needs to be run, it makes the softclock process runnable.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec6

95

Statistics and Process Scheduling

On historic FreeBSD systems, the hardclock() routine collected resource-utilization statistics

about what was happening when the clock interrupted. These statistics were used to do

accounting, to monitor what the system was doing, and to determine future scheduling priorities.

In addition, hardclock() forced context switches so that all processes would get a share of the

CPU.

This approach has weaknesses because the clock supporting hardclock() interrupts on a regular

basis. Processes can become synchronized with the system clock, resulting in inaccurate

measurements of resource utilization (especially CPU) and inaccurate profiling [McCanne &

Torek, 1993]. It is also possible to write programs that deliberately synchronize with the system

clock to outwit the scheduler.

On architectures with multiple high-precision, programmable clocks—such as the PC—a

statistics clock is run at a different frequency than the time-of-day clock. The FreeBSD statclock()

runs at 127 ticks per second and is responsible for accumulating resource usage to processes. At

each tick, it charges the currently running process with a tick; if the process has accumulated

four ticks, it recalculates its priority. If the new priority is less than the current priority, it

arranges for the process to be rescheduled. Thus, processes that become synchronized with the

system clock still have CPU time accounted to them.

The statclock() also collects statistics on what the system was doing at the time of the tick

(sitting idle, executing in user mode, or executing in system mode). Finally, it collects basic

information on system I/O, such as which disk drives are currently active.

To allow the collection of more accurate profiling information, FreeBSD supports a profiling

clock. When one or more processes are requesting profiling information, the profiling clock is

set to run at a tick rate that is relatively prime to the main system clock (8128 ticks per second

on the PC). At each tick, it checks to see if one of the processes that it has been asked to profile is

running. If so, it obtains the current location of the program counter and increments a counter

associated with that location in the profiling buffer associated with the process.

Timeouts

The remaining time-related processing involves processing timeout requests and periodically

reprioritizing processes that are ready to run. These functions are handled by the softclock()

routine.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref04

96

When hardclock() completes, if there were any softclock() functions to be done, hardclock()

schedules the softclock process to run.

The primary task of the softclock() routine is to arrange for the execution of periodic events,

such as the following:

• Process real-time timer (see Section 3.6)

• Retransmission of dropped network packets

• Watchdog timers on peripherals that require monitoring

• System process-rescheduling events

An important event is the scheduling that periodically raises or lowers the CPU priority for each

process in the system based on that process’s recent CPU usage (see Section 4.4). The

rescheduling calculation is done once per second. The scheduler is started at boot time, and each

time that it runs, it requests that it be invoked again 1 second in the future.

On a heavily loaded system with many processes, the scheduler may take a long time to

complete its job. Posting its next invocation 1 second after each completion may cause

scheduling to occur less frequently than once per second. However, as the scheduler is not

responsible for any time-critical functions, such as maintaining the time of day, scheduling less

frequently than once a second is normally not a problem.

The data structure that describes waiting events is called the callout queue. Figure 3.2 shows

an example of the callout queue. When a process schedules an event, it specifies a function to be

called, a pointer to be passed as an argument to the function, and the number of clock ticks until

the event should occur.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02

97

Figure 3.2 Timer events in the callout queue.

The kernel maintains an array of queue headers, each representing a particular time. There is a

pointer that references the queue header for the current time, marked “now” in Figure 3.2. The

queue header that follows the currently referenced one represents events that are one tick in the

future. The queue header after that is two ticks in the future. The list wraps around, so if the last

queue header in the list represents time t, then the first queue header in the list represents time

t + 1. The queue header immediately preceding the currently referenced one represents the time

furthest in the future. In Figure 3.2 there are 200 queue headers, so the queue header

immediately preceding the one marked “now” represents events that are 199 ticks in the future.

Each time the hardclock() routine runs, it increments the callout queue-head pointer. If the

queue is not empty, it schedules the softclock() process to run. The softclock() process scans the

events in the current queue. It compares the current time to the time stored in the event

structure. If the times match, the event is removed from the list and its requested function is

called, being passed the argument specified when it was registered.

When an event n ticks in the future is to be posted, its queue header is calculated by taking the

index of the queue labelled “now” in Figure 3.2, adding n to it, and then taking the resulting

value modulo the number of queue headers. If an event is to occur further in the future than the

number of queue headers, then it will end up on a list with other events that are to happen

sooner. Thus, the actual time of the event is stored in its entry so that when the queue is scanned

by softclock(), it can determine which events are current and which are to occur in the future. In

Figure 3.2, the second entry in the “now” queue will be skipped on the current scan of the queue,

but it will be handled 200 ticks in the future when softclock() next processes this queue.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig02

98

An argument is provided to the callout-queue function when it is called so that one function can

be used by multiple processes. For example, there is a single real-time timer function that sends

a signal to a process when a timer expires. Every process that has a real-time timer running

posts a timeout request for this function; the argument that is passed to the function is a pointer

to the process structure for the process. This argument enables the timeout function to deliver

the signal to the correct process.

Timeout processing is more efficient when the timeouts are specified in ticks. Time updates

require only an integer decrement, and checks for timer expiration require only an integer

comparison. If the timers contained time values, decrementing and comparisons would be more

complex. The approach used in FreeBSD is based on the work of Varghese & Lauck [1987].

Another possible approach is to maintain a heap with the next-occurring event at the top

[Barkley & Lee, 1988].

3.5 Memory-Management Services

The memory organization and layout associated with a FreeBSD process is shown in Figure 3.3.

Each process begins execution with three memory segments: text, data, and stack. The data

segment is divided into initialized data and uninitialized data (also known as bss). The text is

read-only and is normally shared by all processes executing the file, whereas the data and stack

areas can be written by, and are private to, each process. The text and initialized data for the

process are read from the executable file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig03

99

Figure 3.3 Layout of a FreeBSD process in memory and on disk.

An executable file is distinguished by being a plain file (rather than a directory, special file, or

symbolic link) and by having one or more of its execute bits set. Each executable file has an exec

header containing a magic number that specifies the type of the executable file. FreeBSD

supports multiple executable formats including the following:

1. Files that must be read by an interpreter

2. Files that are directly executable including AOUT, ELF, and gzipped ELF

An executable file is initially parsed by the image activation (imgact) framework. The header of

a file to be executed is passed through a list of registered image activators to find a matching

format. When a matching format is found, the corresponding image activator prepares the file

for execution.

Files falling into the first classification have as their magic number (located in the first 2 bytes of

the file) the two-character sequence #! followed by the pathname of the interpreter to be used.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_165

100

This pathname is currently limited by a compile-time constant to 128 characters. For example,

#!/bin/sh refers to the Bourne shell. The image activator that will be selected is the one that

handles the invocation of interpreters. It will load and run the named interpreter, passing the

name of the file that is to be interpreted as an argument. To prevent loops, FreeBSD allows only

one level of interpretation, and a file’s interpreter may not itself be interpreted.

For performance reasons, most files fall into the second classification and are directly executable.

Information in the header of a directly executable file includes the architecture and operating

system for which an executable was built and whether it is statically linked or uses shared

libraries. The selected image activator can use information such as knowledge of the operating

system for which an executable was compiled to configure the kernel to use the proper system

call interpretation when running the program. For example, an executable built to run on Linux

can be seamlessly run on FreeBSD by using the system-call dispatch vector that provides

emulation of the Linux system calls.

The header also specifies the sizes of text, initialized data, uninitialized data, and additional

information for debugging. The debugging information is not used by the kernel or by the

executing program. Following the header is an image of the text, followed by an image of the

initialized data. Uninitialized data are not contained in the executable file because they can be

created on demand using zero-filled memory.

To begin execution, the kernel arranges to have the text portion of the file mapped into the low

part of the process address space starting at the beginning of the second page of the virtual

address space. The first page of the virtual address space is marked as invalid so that attempts to

read or write through a null pointer will fault. The initialized data portion of the file is mapped

into the address space following the text. An area equal to the uninitialized data region is

created with zero-filled memory after the initialized data region. The stack is also created from

zero-filled memory. Although the stack should not need to be zero filled, early UNIX systems

made it so. In an attempt to save some startup time in 4.2BSD, the developers modified the

kernel to not zero-fill the stack, leaving the random previous contents of the page instead. But

concerns about surreptitious misuse of data from previously running programs and

unrepeatable errors in previously working programs lead to restoration of the zero filling of the

stack by the time that 4.3BSD was released.

Copying into memory the entire text and initialized data portion of a large program causes a

long startup latency. FreeBSD avoids this startup time by demand paging the program into

memory rather than preloading the program. In demand paging, the program is loaded in small

pieces (pages) as it is needed rather than all at once before it begins execution. The system does

demand paging by dividing up the address space into equal-size areas called pages. For each

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_79

101

page, the kernel records the offset into the executable file of the corresponding data. The first

access to an address on each page causes a page-fault trap in the kernel. The page-fault handler

reads the correct page of the executable file into the process memory. Thus, the kernel loads

only those parts of the executable file that are needed. Chapter 6 explains paging details.

It might seem more efficient to load the whole process at once rather than in many little pieces.

However, most processes use less than half of their address space during their entire execution

lifetime. The reason for the low utilization is that typical user commands have many options,

only a few of which are used on any invocation. The code and data structures that support the

unused options are not needed. Thus, the cost of loading the subset of pages that are used is

lower than the cost of initially loading the whole process. In addition to the time saved by

avoiding the loading of the entire process, demand paging also reduces the amount of physical

memory that is needed to run the process.

The uninitialized data area can be extended with zero-filled pages using the system call sbrk,

although most user processes use the library routine malloc(), a more programmer-friendly

interface to sbrk. This allocated memory, which grows from the top of the original data segment,

is called the heap. On the PC, the stack grows down from the top of memory, whereas the heap

grows up from the bottom of memory.

Above the user stack are areas of memory that are created by the system when the process is

started. Directly above the user stack is the number of arguments (argc), the argument vector

(argv), and the process environment vector (envp) set up when the program was executed.

Following them are the argument and environment strings themselves. Next is the signal code,

used when the system delivers signals to the process. At the top is the ps_strings structure, used

by ps to locate the argv of the process.

Historically, most executables were statically linked. In a statically linked binary, all the library

routines and system-call entry stubs are loaded into the binary image at the time that it is

compiled. Today, most binaries are dynamically linked. A dynamically linked binary contains

only the compiled application code and a list of the routines (library and system-call entry stubs)

that it needs. When the executable is run, a set of shared libraries containing the routines that it

needs to use are mapped into its address space as part of its startup. The first time that it calls a

routine, that routine is located in the shared library and a dynamic linkage is created to it.

When the dynamic loader does the mmap system call to allocate space for the shared libraries,

the kernel must find a place within the process address space to place them. The convention in

FreeBSD is to place them just below the administrative lower limit for the stack. Since the stack

will not be permitted to grow below the administrative stack size limit, there is no danger of the

shared libraries being overwritten. A side effect of this implementation is that the stack limit

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_142

102

cannot be safely changed after a binary begins running. Ideally, a bigger stack limit can be set by

the process (such as the shell) before it starts the application. However, applications that know

at startup that they will need a bigger stack can increase their stack limit and then call the exec

system call on themselves to restart with their shared libraries relocated at the bottom of their

new stack limit.

An alternative would be to place the shared libraries just above the heap limit. However, this

would mean that the heap limit could not be increased once the binary began running. As

applications much more frequently want to increase their heap size than their stack size, the

stack limit was selected as the appropriate location to place the shared libraries.

A process requires the use of some global system resources. The kernel maintains a linked list of

processes that has an entry for each process in the system. Among other data, the process

entries record information on scheduling and on virtual-memory allocation. Because the entire

process address space, including the kernel stack for the process, may be swapped out of main

memory, the process entry must record enough information to be able to locate the process and

to bring that process back into memory. In addition, information needed while the process is

swapped out (e.g., scheduling information) must be maintained in the process entry rather than

in the thread structure to avoid the kernel swapping in the process only to decide that it is not at

a high enough priority to be run.

Other global resources associated with a process include space to record information about

descriptors and page tables that record information about physical-memory utilization.

3.6 Timing Services

The kernel provides several different timing services to processes. These services include timers

that run in real time and timers that run only while a process is executing.

Real Time

The system’s time offset since January 1, 1970, Universal Coordinated Time (UTC), also known

as the Epoch, is returned by the system call gettimeofday. Most modern processors (including

the PC processors) maintain a battery-backup time-of-day register. This clock continues to run

even if the processor is turned off. When the system boots, it consults the processor’s

time-of-day register to find out the current time. The system’s time is then maintained by the

clock interrupts. At each interrupt, the system increments its global time variable by an amount

equal to the number of microseconds per tick. For the PC, running at 1000 ticks per second,

each tick represents 1000 microseconds.

103

External Representation

Time is always exported from the system as microseconds, rather than as clock ticks, to provide

a resolution-independent format. Internally, the kernel is free to select whatever tick rate best

trades off clock-interrupt-handling overhead with timer resolution. As the tick rate per second

increases, the resolution of the system timers improves, but the time spent dealing with

hardclock interrupts increases. As processors become faster, the tick rate can be increased to

provide finer resolution without adversely affecting user applications. Systems with real-time

constraints often run the clock at 5000 or 10,000 ticks per second. As explained in Section 3.4,

the kernel can usually eliminate most of the interrupts associated with a high tick rate.

All filesystem (and other) timestamps are maintained in UTC offsets from the Epoch.

Conversion to local time, including adjustment for daylight saving time, is handled externally to

the system in the C library.

Adjustment of the Time

Often, it is desirable to maintain the same time on all the machines on a network. It is also

possible to keep more accurate time than that available from the basic processor clock. For

example, hardware is readily available that listens to the set of radio stations that broadcast UTC

synchronization signals in the United States. When processes on different machines agree on a

common time, they will wish to change the clock on their host processor to agree with the

networkwide time value. One possibility is to change the system time to the network time using

the settimeofday system call. Unfortunately, the settimeofday system call will result in time

running backward on machines whose clocks were fast. Time running backward can confuse

user programs (such as make) that expect time to invariably increase. To avoid this problem,

the system provides the adjtime system call [Mills, 1992]. The adjtime system call takes a time

delta (either positive or negative) and changes the rate at which time advances by 10 percent,

faster or slower, until the time has been corrected. The operating system does the speedup by

incrementing the global time by 1100 microseconds for each tick and does the slowdown by

incrementing the global time by 900 microseconds for each tick. Regardless, time increases

monotonically, and user processes depending on the ordering of file-modification times are not

affected. However, time changes that take tens of seconds to adjust will affect programs that are

measuring time intervals by using repeated calls to gettimeofday.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref05

104

Interval Time

The system provides each process with three interval timers. The real timer decrements in real

time. An example of use for this timer is a library routine maintaining a wakeup-service queue.

A SIGALRM signal is delivered to the process when this timer expires. The real-time timer is run

from the timeout queue maintained by the softclock() routine (see Section 3.4).

The profiling timer decrements both in process virtual time (when running in user mode) and

when the system is running on behalf of the process. It is designed to be used by processes to

profile their execution statistically. A SIGPROF signal is delivered to the process when this timer

expires. Each time that profclock() runs, it checks to see whether the currently running process

has requested a profiling timer; if it has, profclock() decrements the timer and sends the process

a signal when zero is reached.

The virtual timer decrements in process virtual time. It runs only when the process is executing

in user mode. A SIGVTALRM signal is delivered to the process when this timer expires. The

virtual timer is also implemented in profclock() as the profiling timer is, except that it

decrements the timer for the current process only if it is executing in user mode and not if it is

running in the kernel.

3.7 Resource Services

All systems have limits imposed by their hardware architecture and configuration to ensure

reasonable operation and to keep users from accidentally (or maliciously) creating resource

shortages. At a minimum, the hardware limits must be imposed on processes that run on the

system. It is usually desirable to limit processes further, below these hardware-imposed limits.

The system measures resource utilization and allows limits to be imposed on consumption

either at or below the hardware-imposed limits.

Process Priorities

The default scheduling policy in the FreeBSD system is managed by the share scheduler that

gives CPU scheduling priority to processes that have not used CPU time recently. This priority

scheme tends to favor processes that execute for only short periods of time—for example,

interactive processes. The priority selected for each process is maintained internally by the

kernel. The calculation of the priority is affected by the per-process nice variable. Positive nice

values mean that the process is willing to receive less than its share of the processor. Negative

values of nice mean that the process wants more than its share of the processor. Most processes

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_239

105

run with the default nice value of zero, asking neither higher nor lower access to the processor.

It is possible to determine or change the nice currently assigned to a process, to a process group,

or to the processes of a specified user. Many factors other than nice affect scheduling, including

the amount of CPU time that the process has used recently, the amount of memory that the

process has used recently, and the current load on the system.

In addition to the share scheduler described here, the FreeBSD system also has a real-time

scheduler available. The real-time scheduler allows processes to precisely control their order of

execution and the amount of time given to each process. The details of the share and real-time

scheduling algorithms are described in Section 4.4.

Resource Utilization

As a process executes, it uses system resources such as the CPU and memory. The kernel tracks

the resources used by each process and compiles statistics describing this usage. The statistics

managed by the kernel are available to a process while the latter is executing. When a process

terminates, the statistics are made available to its parent via the wait family of system calls.

The resources used by a process are returned by the system call getrusage. The resources used

by the current process, or by all the terminated children of the current process, may be

requested. The following information is included:

• The amount of user and system time used by the process

• The memory utilization of the process

• The paging and disk I/O activity of the process

• The number of voluntary and involuntary context switches taken by the process

• The amount of interprocess communication done by the process

The resource-usage information is collected at locations throughout the kernel. The CPU time is

collected by the statclock() function, which is called either by the system clock in hardclock(), or,

if an alternate clock is available, by the alternate-clock interrupt process. The kernel scheduler

calculates memory utilization by sampling the amount of memory that an active process is using

at the same time that it is recomputing process priorities. The vm_fault() routine recalculates

the paging activity each time that it starts a disk transfer to fulfill a paging request (see Section

6.11). The I/O activity statistics are collected each time that the process has to start a transfer to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11

106

fulfill a file or device I/O request, as well as when the general system statistics are calculated.

The IPC communication activity is updated each time that information is sent or received.

Resource Limits

The kernel also supports limiting certain per-process resources. These resources include the

following:

• The maximum amount of CPU time that can be accumulated

• The maximum bytes that a process can request be locked into memory

• The maximum size of a process’s data segment

• The maximum size of a process’s stack segment

• The maximum amount of private physical memory that a process may have at any given

moment

• The maximum amount of private or shared physical memory that a process may have at any

given moment

• The maximum amount of physical memory that a process may have dedicated to socket buffers

• The maximum size of a file that can be created by a process

• The maximum size of a core file that can be created by a process

• The maximum number of simultaneous open files for a process

• The maximum number of simultaneous processes allowed to a user

For each resource controlled by the kernel, two limits are maintained: a soft limit and a hard

limit. All users can alter the soft limit within the range of 0 to the corresponding hard limit. All

users can (irreversibly) lower the hard limit, but only the superuser can raise the hard limit. If a

process exceeds certain soft limits, a signal is delivered to the process to notify it that a resource

limit has been exceeded. Normally, this signal causes the process to terminate, but the process

may either catch or ignore the signal. If the process ignores the signal and fails to release

resources that it already holds, further attempts to obtain more resources will result in errors.

Resource limits are generally enforced at or near the locations that the resource statistics are

collected. The CPU time limit is enforced in the process context-switching function. The stack

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_139

107

and data-segment limits are enforced by a return of allocation failure once those limits have

been reached. The file-size limit is enforced by the filesystem.

Filesystem Quotas

In addition to limits on the size of individual files, the kernel optionally enforces limits on the

total amount of space that a user or group can use on a filesystem. Our discussion of the

implementation of these limits is deferred to Section 9.4.

3.8 Kernel Tracing Facilities

Operating-system kernels are large and complex pieces of software, encompassing thousands of

lines of mainly C code, organized into dozens of subsystems and including hundreds of device

drivers. Understanding what is happening within the operating system while it is running is

important not only to developers of the code but also to the much larger group of people who

use the system every day to get their work done. FreeBSD includes several facilities that allows

users and administrators of the system to understand what is happening inside the system as it

executes.

System-Call Tracing

The ktrace facility allows a user to get a detailed trace of the order of, arguments to, and results

from all the system calls done by an application. This information includes such important

details as pathnames being looked up, type and timing of signals being posted, and even the

contents of all input and output operations.

The facility is available for any application without the need for prior compilation or inclusion of

special hooks. Thus, it can be particularly helpful when trying to debug an application for which

the source code is unavailable.

Tracing can be flexibly applied. It can be started at the time an application begins running or to

an already running application. It can be applied to individual processes, to all the processes in a

process group, or through inheritance to all current or future children processes.

The traces are generated in a compact binary format to keep them as dense as possible. The use

of a binary format also minimizes the time spent collecting and writing the information while

the application runs and avoids the need to do string processing in the kernel. The binary dump

is converted to a human-readable format using the kdump program that converts the system

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec4

108

call numbers to names, ioctl values to their macro names, system error numbers to their

standard error strings, and displays the running time between and during system calls.

A similar facility is provided by the truss command popularized in System V and Solaris.

Rather than having specialized hooks inside the kernel to collect tracing information, it collects

its information by stopping and restarting the processes being monitored using the ptrace

system call. As a result, it has higher overhead and provides less information than ktrace.

DTrace

The information collected by ktrace is limited to the set of information available from its fixed

set of hooks in the kernel. Further, this set of hooks has to be limited to those pieces of

information deemed to be most generally useful. If ktrace collected every possibly useful bit of

information, it would generate an overwhelming amount of data for even trivial applications. Its

other major limitation is that it collects information only about system calls. When trying to

track down bugs or performance problems, one needs to analyze the entire software stack that

includes the application itself, the libraries that it uses, and the system calls that it makes. The

DTrace facility was developed to address all these issues [Cantrill et al., 2004]. Originally

written for Sun’s Solaris operating system, DTrace support was added to FreeBSD 8, and is

present by default in kernels starting with FreeBSD 10.

DTrace greatly expands the set of information from system calls by adding thousands of hooks,

referred to as tracepoints, that can identify many details of what is happening. To avoid the

resulting avalanche of data, each tracepoint can be configured to conditionally collect and

output its information. DTrace defines the D language that allows application developers and

systems administrators to write a small D-language program to describe the information that

they want to collect. They can specify the tracepoint that they are interested in inspecting and

refine the information that they output. For example, a D program might monitor a routine that

changes a reference counter to collect the highest value that it ever reached, or collect the total

number of times that a resource was referenced rather than just blindly outputting some

information every time the routine is called. Only those tracepoints that are useful to the

analysis are activated, while all others are left dormant. With its ability to trigger only a small

number of tracepoints at anyone one time, DTrace can collect detailed information on a narrow

set of interesting events with low overhead and carefully bounded output.

The tracing information is expanded into the rest of the software stack by adding DTrace

tracepoints to the system libraries and to the application itself. A standard set of tracepoints is

available with no programming effort required by the library or application developers. The

standard tracepoints are the set of all functions in a library, application, or the kernel itself, and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref02

109

include the ability to capture parameter information at every subroutine call and return. In

addition to these function boundary tracepoints, many system libraries have had additional

application-specific hooks added by their developers.

The tracing functionality in DTrace is implemented using probes and providers. A probe is a

specific tracepoint within the running kernel, such as a function boundary, while a provider is a

kernel module that supports a set of probes. The DTrace system was designed to be extended so

that new kernel modules or services could have tracepoints that were not envisioned by the

original authors. The providers found in FreeBSD are listed in Table 3.2. The mac_framework,

sched, and vfs providers are unique to FreeBSD. A complete discussion of DTrace providers and

how they are used by developers and administrators can be found in Gregg & Mauro [2011]. In

this section, we describe only how DTrace interacts with the FreeBSD kernel and do not discuss

how to use DTrace in general.

Table 3.2 FreeBSD DTrace providers.

Before the advent of DTrace, any system to which logging or tracing was added demonstrated a

significant probe effect. Consider what happens when a function contains a conditional

statement that determines whether to report a statistic. Whether or not the statistic is reported,

the effect of having the conditional statement in the function, compared to no conditional

statement being present at all, is measurable. The overhead seen by having the conditional

statement is called the probe effect.

DTrace implements its probes by patching the executable when a probe is activated. For

example, to monitor a call to a routine, the first instruction of the called routine is replaced with

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_286
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_287

110

a call to the probe. The probe then collects its information, executes the instruction its call

replaced, and returns to the instruction following the one that it patched. When the probe is

deactivated, the original patched-instruction location with the call to the probe is replaced with

the instruction that was originally at that location. This technique avoids any probe effect for

inactive probes. Debuggers, such as lldb, use the same technique to add breakpoints to the

program they are debugging. Patching an instruction stream that is currently executing is both

tricky to do safely, and an explicit violation of the security and privacy of data structures on the

system; thus, super-user privileges are required to enable kernel probes. DTrace is safe to use in

production systems as it ensures that its patches to the program or kernel cannot cause either to

behave incorrectly. An example of a precaution taken by DTrace to ensure safe operation is that

it will not instrument a jump table, an operation that could easily lead to a system failure.

As part of the kernel build process, a separate program, ctfconvert, is executed against all the

kernel’s object files to generate updated object files that can be understood by DTrace. The

ctfconvert program takes information from the debugging section of an object file and creates

a new section .SUNW_ctf that contains type information for each function’s arguments that can

be used by DTrace. Every type that appears in the .SUNW_ctf section of the object file is

converted into data that can be used by the function boundary trace provider to associate data

types with function arguments, allowing userspace D scripts to interrogate function arguments

in much the same way as the debugger allows a programmer to inspect program data with

associated type information. All functions found in the debugging section are exposed to the

user as individual trace-points. The FreeBSD kernel contains over 45,000 function boundary

tracepoints, or fbt probes, each of which can be triggered on entry to or exit from a routine in the

kernel. Because the generation of the function boundary tracing probes happens automatically

at system build time, new probes come into existence whenever new code is added to the

FreeBSD kernel, relieving developers of the need to add tracepoints to the system by hand, and

to keep the tracepoints up to date with other code changes. Function boundary tracepoints can

change with each release of the operating system, which means that function boundary

tracepoints may change or disappear, so cannot be depended upon in scripts when upgrading

across major releases, for example, from FreeBSD 9 to FreeBSD 10. Compiler optimization or

the redefinition of a function as static can also cause a function boundary tracepoint to

disappear. Statically defined tracepoints (SDT) do not change unless they are specifically

updated by a programmer and are therefore considered stable across major releases.

Tracepoints are reached through DTrace providers, each of which is a kernel module that

exposes a uniform interface to the rest of the kernel. All DTrace providers expose a uniform API

via a set of function pointers embedded in a DTrace-provider operations structure, dtrace_pops.

Each provider registers itself with the DTrace system by calling the dtrace_register() routine

that allows DTrace to track all the available providers and expose them to the user through the D

111

programming language. The dtrace_register() routine passes the dtrace_pops structure for the

provider as one of its arguments. Provider operations include enabling, disabling, suspending,

and resuming probes, as well as retrieving argument names and values, from within the probe.

DTrace understands not only functions but also basic types, such as integers, strings, and

programmer-defined structures.

When the fbt module is loaded, tracepoints are created for the kernel using the kernel’s linker

functions. The fbt_provide_module_function() routine is responsible for disassembling the

entry and exit points of each function in the kernel as well as all the loaded modules, building up

a list of fbt_probe_t structures that contain the address of the functions that can be probed. The

fbt_probe_t structure contains three key components used by DTrace when turning tracing on

or off. The fbtp_patchpoint is the address of the instruction that needs to be replaced when

tracing is enabled or disabled. When the fbt_provide_module_function() runs, it determines

the address of the instruction that must later be replaced with a function call to the DTrace

system during active tracing. The address of that instruction is stored in fbtp_patchpoint. At the

same time, the instruction that must be replaced during tracing is put into the fbtp_savedval

element of the structure and the instruction that will be used to cause the entry point to change

is placed into fbtp_patchval. Whenever the DTrace command enables a tracepoint, the

fbtp_patchpoint is set to the instruction stored in fbtp_patchval. When tracing is turned off, the

instruction stored in fbtp_savedval is again placed back into fbtp_patchpoint. Storing the

instructions during module load time makes the fbt_enable() and fbt_disable() routines shorter

and safer than they would be if the functions to be traced had to be disassembled whenever the

user enabled a trace-point.

While the automatic generation of tracepoints for functions is a powerful feature of DTrace, the

ability to add specific tracepoints not associated with a function boundary is an important part

of the system. Any subsystem or collection of subsystems can be encapsulated as a provider to

be monitored by developers and administrators. The collection of locking statistics for

individual threads is an example of a DTrace provider that was written by hand into the kernel’s

source code. The DTrace lockstat provider piggybacks on the preexisting lockstat statistics

collection by adding a probe to each of the lockstat macros.

The FreeBSD kernel provides several synchronization primitives, referred to collectively as locks,

that are described fully in Section 4.3. To track the locking and unlocking actions of the kernel at

a low level, it is necessary to know more than just the lock that is being requested. We often

want to know if it was necessary to wait for the lock, and if so, which other thread blocked us

from getting it. The information we want from a locking operation is not evident from the

parameters to the lock call, but is embedded within the code implementing the lock. Locking

statistics are collected by manually placing macros at key points in the locking-implementation

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3

112

code to record data about the lock when it is acquired or released. These locking statistics reside

in the lockstat provider. The macros for collecting the lockstat statistics are written generically

enough that they can be used in all the locking primitives in the system. When a lock is acquired,

the macro is given a pointer to the lock object, a Boolean flag telling whether the lock was

contested, the time that the thread started waiting for the the lock, and the kernel file name and

the line number within the function from which the lock primitive was called. The macros call

an appropriate function to collect statistics on how often the lock is acquired, average time that

it is held, how often it is contested, and when it is contested, as well as the average time that the

blocked thread had to wait. These statistics identify the contested locks in the kernel. One

important way of improving system performance is to use finer-grain locking for the most highly

contested locks in the system. For example, a single global lock controlling access to a hash table

might be replaced with one lock per hash chain.

The lockstat DTrace provider is only available if the lockstat lock profiling has been compiled

into the kernel. Each probe is defined by a lockstat_probe structure that contains the function

and name of the probe, which is exported to the user as well as a probe number and probe

identifier that the lockstat provider uses when the probes fire.

The macro shown in Figure 3.4 is placed into various locking functions to record data whenever

a lock is acquired. The lockstat information is collected by the

lock_profile_obtain_lock_success() function. The remainder of the macro implements the

lockstat provider probe. The probe is active if its entry in the lockstat_probemap is non-NULL,

which occurs only when a probe is activated via the lockstat provider’s lockstat_enable() routine.

Configuring the kernel to collect lockstat statistics introduces a fixed amount of overhead. The

lockstat DTrace provider introduces a variable amount of overhead depending on which probes

are active at any time.

Figure 3.4 Lockstat probe macro.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig04

113

Kernel Tracing

Any large software system usually includes a logging system to aid in debugging problems that

arise after the software has been released and FreeBSD is no different. The kernel tracing facility

(KTR) is a set of logging facilities that can be compiled into the kernel with a configuration

option. This tracing facility primarily helps debug the kernel as compared to the other tracing

described in this section that primarily helps debug user-level processes.

Before the addition of KTR, developers would sprinkle calls to printf() throughout their code,

and conditionally compile them in or out of the kernel using

#ifdef DEBUG

printf()

#endif DEBUG

statements. The KTR system introduced a single logging system for the kernel that could be

shared by the entire source base and centrally controlled from kernel configuration files.

Kernel trace events are described by a ktr_entry structure, shown in Figure 3.5. Each entry

contains a timestamp, the CPU on which the event occurred, the file and line of source code

from which the event was logged, a programmer specified description, a pointer to the thread

that executed the event, and up to six parameters.

Figure 3.5 Kernel trace-entry structure.

Calls into the kernel tracing system are implemented as a set of macros, shown in Figure 3.6.

Unlike the printf() routine, the kernel tracing facility does

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03fig06

114

Figure 3.6 Kernel tracing macros.

not allow for a variable number of arguments. Variable argument parsing is computationally

expensive, and is not appropriate for a kernel logging facility because the extra CPU time

expended might prevent developers from catching timing-related problems.

When support for the KTR system is compiled into the kernel, there is a statically sized array,

used as a circular buffer, that contains all the trace events. It is important to size the event buffer

correctly as it is possible to overwrite entries before they are read out of the kernel if many

events are logged in a short amount of time.

If enabling KTR recorded all the more than the 1700 defined events, the system would grind to a

near halt. Thus, the rate of event generation is controlled by tagging each event with a

programmer-defined event mask. The event mask collects a related set of events so that

recording them can be turned on or off as a group. When a kernel with KTR is first booted, the

system’s event mask is cleared so that no events are recorded. The event mask is set either from

user level, using the debug.ktr.mask sysctl, or in the boot configuration file /boot/loader.conf,

if events are to be recorded from the time the system boots.

Kernel tracing events can be recorded to disk using the asynchronous logging facility which runs

as a kernel resident thread. It reads events from the kernel trace buffer and writes them to a file

specified by the user using a sysctl. Writing events to a file, whether on local disk or a remote

filesystem, introduces extra I/O load onto the system, which may make it inappropriate for

finding timing-related problems in the system.

Exercises

3.1 Describe three types of system activity.

3.2 When can a routine executing in the top half of the kernel be preempted? When can it be

interrupted?

115

3.3 Why are routines executing in the bottom half of the kernel precluded from using

information located in the current user process?

3.4 Why does the system defer as much work as possible from high-priority interrupts to

lower-priority software-interrupt processes?

3.5 What determines the shortest (nonzero) time period that a user process can request when

setting a timer?

3.6 How does the kernel determine the system call for which it has been invoked?

3.7 How are initialized data represented in an executable file? How are uninitialized data

represented in an executable file? Why are the representations different?

3.8 Describe how the “#!” mechanism can be used to make programs that require emulation

appear as though they were normal executables.

3.9 What facilities does the DTrace facility provide that is not available in the ktrace facility?

*3.10 Describe the security implications of not zero filling the stack region at program startup.

*3.11 Why is the conversion from UTC to local time done by user processes rather than in the

kernel?

*3.12 What is the advantage of having the kernel rather than an application restart an

interrupted system call?

*3.13 Describe a scenario in which the timer-wheel algorithm used for the callout queue does

not work well. Suggest an alternative data structure that runs more quickly than does the

timer-wheel algorithm for your scenario.

*3.14 The SIGPROF profiling timer was originally intended to replace the profil system call to

collect a statistical sampling of a program’s program counter. Give two reasons why the profil

facility had to be retained.

**3.15 What weakness in the process-accounting mechanism makes the latter unsuitable for use

in a commercial environment?

References

Barkley & Lee, 1988.

116

R. E. Barkley & T. P. Lee, “A Heap-Based Callout Implementation to Meet Real-Time Needs,”

USENIX Association Conference Proceedings, pp. 213–222, June 1988.

Cantrill et al., 2004.

B. M. Cantrill, M. W. Shapiro, & A. H. Leventhal, “Dynamic Instrumentation of Production

Systems,” USENIX Annual Technical Conference, General Track, June 2004.

Gregg & Mauro, 2011.

B. Gregg & J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD,

Pearson Education, Upper Saddle River, NJ, 2011.

McCanne & Torek, 1993.

S. McCanne & C. Torek, “A Randomized Sampling Clock for CPU Utilization Estimation and

Code Profiling,” USENIX Association Conference Proceedings, pp. 387–394, January 1993.

Mills, 1992.

D. L. Mills, “The NTP Time Synchronization Protocol,” RFC 1305, available from

http://www.faqs.org/rfcs/rfc1305.html, March 1992.

Varghese & Lauck, 1987.

G. Varghese & T. Lauck, “Hashed and Hierarchical Timing Wheels: Data Structures for the

Efficient Implementation of a Timer Facility,” Proceedings of the Eleventh Symposium on

Operating Systems Principles, pp. 25–38, November 1987.

http://www.faqs.org/rfcs/rfc1305.html

117

Part II: Processes

Chapter 4. Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process has an address space containing a mapping of

its program’s object code and global variables. It also has a set of kernel resources that it can

name and on which it can operate using system calls. These resources include its credentials,

signal state, and its descriptor array that gives it access to files, pipes, sockets, and devices. Each

process has at least one and possibly many threads that execute its code. Every thread

represents a virtual processor with a full context worth of register state and its own stack

mapped into the address space. Every thread running in the process has a corresponding kernel

thread, with its own kernel stack that represents the user thread when it is executing in the

kernel as a result of a system call, page fault, or signal delivery.

A process must have system resources, such as memory and the underlying CPU. The kernel

supports the illusion of concurrent execution of multiple processes by scheduling system

resources among the set of processes that are ready to execute. On a multiprocessor, multiple

threads of the same or different processes may execute concurrently. This chapter describes the

composition of a process, the method that the system uses to switch between the process’s

threads, and the scheduling policy that it uses to promote sharing of the CPU. It also introduces

process creation and termination, and details the signal and process-debugging facilities.

Two months after the developers began the first implementation of the UNIX operating system,

there were two processes: one for each of the terminals of the PDP-7. At age 10 months, and still

on the PDP-7, UNIX had many processes, the fork operation, and something like the wait

system call. A process executed a new program by reading in a new program on top of itself. The

first PDP-11 system (First Edition UNIX) saw the introduction of exec. All these systems allowed

only one process in memory at a time. When a PDP-11 with memory management (a KS-11) was

obtained, the system was changed to permit several processes to remain in memory

simultaneously, to reduce swapping. But this change did not apply to multiprogramming

because disk I/O was synchronous. This state of affairs persisted into 1972 and the first

PDP-11/45 system. True multiprogramming was finally introduced when the system was

rewritten in C. Disk I/O for one process could then proceed while another process ran. The basic

structure of process management in UNIX has not changed since that time [Ritchie, 1988].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref05

118

The threads of a process operate in either user mode or kernel mode. In user mode, a thread

executes application code with the machine in a nonprivileged protection mode. When a thread

requests services from the operating system with a system call, it switches into the machine’s

privileged protection mode via a protected mechanism and then operates in kernel mode.

The resources used by a thread are split into two parts. The resources needed for execution in

user mode are defined by the CPU architecture and typically include the CPU’s general-purpose

registers, the program counter, the processor-status register, and the stack-related registers, as

well as the contents of the memory segments that constitute FreeBSD’s notion of a program (the

text, data, shared library, and stack segments).

Kernel-mode resources include those required by the underlying hardware such as registers,

program counter, and the stack pointer. These resources also include the state required for the

FreeBSD kernel to provide system services for a thread. This kernel state includes parameters

to the current system call, the current process’s user identity, scheduling information, and so on.

As described in Section 3.1, the kernel state for each process is divided into several separate data

structures, with two primary structures: the process structure and the thread structure.

The process structure contains information that must always remain resident in main memory,

along with references to other structures that remain resident, whereas the thread structure

tracks information that needs to be resident only when the process is executing such as its

kernel run-time stack. Process and thread structures are allocated dynamically as part of process

creation and are freed when the process is destroyed as it exits.

Multiprogramming

FreeBSD supports transparent multiprogramming: the illusion of concurrent execution of

multiple processes or programs. It does so by context switching—that is, by switching

between the execution context of the threads within the same or different processes. A

mechanism is also provided for scheduling the execution of threads—that is, for deciding

which one to execute next. Facilities are provided for ensuring consistent access to data

structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation is influenced by

the underlying hardware facilities. Some architectures provide machine instructions that save

and restore the hardware-execution context of a thread or an entire process including its

virtual-address space. On others, the software must collect the hardware state from various

registers and save it, then load those registers with the new hardware state. All architectures

must save and restore the software state used by the kernel.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_56
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_355

119

Context switching is done frequently, so increasing the speed of a context switch noticeably

decreases time spent in the kernel and provides more time for execution of user applications.

Since most of the work of a context switch is expended in saving and restoring the operating

context of a thread or process, reducing the amount of the information required for that context

is an effective way to produce faster context switches.

Scheduling

Fair scheduling of threads and processes is an involved task that is dependent on the types of

executable programs and on the goals of the scheduling policy. Programs are characterized

according to the amount of computation and the amount of I/O that they do. Scheduling policies

typically attempt to balance resource utilization against the time that it takes for a program to

complete. In FreeBSD’s default scheduler, which we shall refer to as the timeshare scheduler, a

process’s priority is periodically recalculated based on various parameters, such as the amount

of CPU time it has used, the amount of memory resources it holds or requires for execution, etc.

Some tasks require more precise control over process execution called real-time scheduling.

Real-time scheduling must ensure that threads finish computing their results by a specified

deadline or in a particular order. The FreeBSD kernel implements real-time scheduling using a

separate queue from the queue used for regular timeshared processes. A process with a

real-time priority is not subject to priority degradation and will only be preempted by another

thread of equal or higher real-time priority. The FreeBSD kernel also implements a queue of

threads running at idle priority. A thread with an idle priority will run only when no other

thread in either the real-time or timeshare-scheduled queues is runnable and then only if its idle

priority is equal to or greater than all other runnable idle-priority threads.

The FreeBSD timeshare scheduler uses a priority-based scheduling policy that is biased to favor

interactive programs, such as text editors, over long-running batch-type jobs. Interactive

programs tend to exhibit short bursts of computation followed by periods of inactivity or I/O.

The scheduling policy initially assigns a high execution priority to each thread and allows that

thread to execute for a fixed time slice. Threads that execute for the duration of their slice have

their priority lowered, whereas threads that give up the CPU (usually because they do I/O) are

allowed to remain at their priority. Threads that are inactive have their priority raised. Jobs that

use large amounts of CPU time sink rapidly to a low priority, whereas interactive jobs that are

mostly inactive remain at a high priority so that, when they are ready to run, they will preempt

the long-running lower-priority jobs. An interactive job, such as a text editor searching for a

string, may become compute-bound briefly and thus get a lower priority, but it will return to a

high priority when it is inactive again while the user thinks about the result.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_448

120

Some tasks, such as the compilation of a large application, may be done in many small steps in

which each component is compiled in a separate process. No individual step runs long enough

to have its priority degraded, so the compilation as a whole impacts the interactive programs. To

detect and avoid this problem, the scheduling priority of a child process is propagated back to its

parent. When a new child process is started, it begins running with its parent’s current priority.

As the program that coordinates the compilation (typically make) starts many compilation

steps, its priority is dropped because of the CPU-intensive behavior of its children. Later

compilation steps started by make begin running and stay at a lower priority, which allows

higher-priority interactive programs to run in preference to them as desired.

The system also needs a scheduling policy to deal with problems that arise from not having

enough main memory to hold the execution contexts of all processes that want to execute. The

major goal of this scheduling policy is to minimize thrashing—a phenomenon that occurs

when memory is in such short supply that more time is spent in the system handling page faults

and scheduling processes than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by observing the

amount of free memory. When the system has little free memory and a high rate of new memory

requests, it considers itself to be thrashing. The system reduces thrashing by marking the least

recently run process as not being allowed to run, allowing the pageout daemon to push all the

pages associated with the process to backing store. On most architectures, the kernel also can

push to backing store the kernel stacks of all the threads of the marked process. The effect of

these actions is to cause the process and all its threads to be swapped out (see Section 6.12). The

memory freed by blocking the process can then be distributed to the remaining processes, which

usually can then proceed. If the thrashing continues, additional processes are selected to be

blocked from running until enough memory becomes available for the remaining processes to

run effectively. Eventually, enough processes complete and free their memory that blocked

processes can resume execution. However, even if there is not enough memory, the blocked

processes are allowed to resume execution after about 20 seconds. Usually, the thrashing

condition will return, requiring that some other process be selected for being blocked (or that an

administrative action be taken to reduce the load).

4.2 Process State

Every process in the system is assigned a unique identifier termed the process identifier

(PID). PIDs are the common mechanism used by applications and by the kernel to reference

processes. PIDs are used by applications when the latter send a signal to a process and when

receiving the exit status from a deceased process. Two PIDs are of special importance to each

process: the PID of the process itself and the PID of the process’s parent process.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_294

121

The layout of process state is shown in Figure 4.1. The goal is to support multiple threads that

share an address space and other resources. A thread is the unit of execution of a process; it

requires an address space and other resources, but it can share many of those resources with

other threads. Threads sharing an address space and other resources are scheduled

independently and in FreeBSD can all execute system calls simultaneously. The process state in

FreeBSD is designed to support threads that can select the set of resources to be shared, known

as variable-weight processes [Aral et al., 1989].

Figure 4.1 Process state.

Each of the components of process state is placed into separate substructures for each type of

state information. The process structure references all the substructures directly or indirectly.

The thread structure contains just the information needed to run in the kernel: information

about scheduling, a stack to use when running in the kernel, a thread state block (TSB), and

other machine-dependent state. The TSB is defined by the machine architecture; it includes the

general-purpose registers, stack pointers, program counter, processor-status word, and

memory-management registers.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_442

122

The first threading models that were deployed in systems such as FreeBSD 5 and Solaris used an

N:M threading model in which many user level threads (N) were supported by a smaller number

of threads (M) that could run in the kernel [Simpleton, 2008]. The N:M threading model was

light-weight but incurred extra overhead when a user-level thread needed to enter the kernel.

The model assumed that application developers would write server applications in which

potentially thousands of clients would each use a thread, most of which would be idle waiting for

an I/O request.

While many of the early applications using threads, such as file servers, worked well with the

N:M threading model, later applications tended to use pools of dozens to hundreds of worker

threads, most of which would regularly enter the kernel. The application writers took this

approach because they wanted to run on a wide range of platforms and key platforms like

Windows and Linux could not support tens of thousands of threads. For better efficiency with

these applications, the N:M threading model evolved over time to a 1:1 threading model in which

every user thread is backed by a kernel thread.

Like most other operating systems, FreeBSD has settled on using the POSIX threading API often

referred to as Pthreads. The Pthreads model includes a rich set of primitives including the

creation, scheduling, coordination, signalling, rendezvous, and destruction of threads within a

process. In addition, it provides shared and exclusive locks, semaphores, and condition variables

that can be used to reliably interlock access to data structures being simultaneously accessed by

multiple threads.

In their lightest-weight form, FreeBSD threads share all the process resources including the PID.

When additional parallel computation is needed, a new thread is created using the

pthread_create() library call. The pthread library must keep track of the user-level stacks being

used by each of the threads, since the entire address space is shared including the area normally

used for the stack. Since the threads all share a single process structure, they have only a single

PID and thus show up as a single entry in the ps listing. There is an option to ps that requests it

to list a separate entry for each thread within a process.

Many applications do not wish to share all of a process’s resources. The rfork system call creates

a new process entry that shares a selected set of resources from its parent. Typically, the signal

actions, statistics, and the stack and data parts of the address space are not shared. Unlike the

lightweight thread created by pthread_create(), the rfork system call associates a PID with each

thread that shows up in a ps listing and that can be manipulated in the same way as any other

process in the system. Processes created by fork, vfork, or rfork initially have just a single

thread structure associated with them. A variant of the rfork system call is used to emulate the

Linux clone() functionality.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref07

123

The Process Structure

In addition to the references to the substructures, the process entry shown in Figure 4.1 contains

the following categories of information:

• Process identification: the PID and the parent PID

• Signal state: signals pending delivery and summary of signal actions

• Tracing: process tracing information

• Timers: real-time timer and CPU-utilization counters

The process substructures shown in Figure 4.1 have the following categories of information:

• Process-group identification: the process group and the session to which the process belongs

• User credentials: the real, effective, and saved user and group identifiers; credentials are

described more fully in Chapter 5

• Memory management: the structure that describes the allocation of virtual address space used

by the process; the virtual-address space and its related structures are described more fully in

Chapter 6

• File descriptors: an array of pointers to file entries indexed by the process’s open file

descriptors; also, the open file flags and current directory

• System call vector: the mapping of system call numbers to actions; in addition to current and

deprecated native FreeBSD executable formats, the kernel can run binaries compiled for several

other UNIX variants such as Linux and System V Release 4 by providing alternative system call

vectors when such environments are requested

• Resource accounting: the rlimit structures that describe the utilization of the many resources

provided by the system (see Section 3.7)

• Statistics: statistics collected while the process is running that are reported when it exits and

are written to the accounting file; also includes process timers and profiling information if the

latter is being collected

• Signal actions: the action to take when a signal is posted to a process

• Thread structure: the contents of the thread structure (described at the end of this section)

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec7

124

The state element of the process structure holds the current value of the process state. The

possible state values are shown in Table 4.1. When a process is first created with a fork system

call, it is initially marked as NEW. The state is changed to NORMAL when enough resources are

allocated to the process for the latter to begin execution. From that point onward, a process’s

state will be NORMAL until the process terminates. Its thread(s) will fluctuate among

RUNNABLE—that is, preparing to be or actually executing; SLEEPING—that is, waiting for an

event; and STOPPED—that is, stopped by a signal or the parent process. A deceased process is

marked as ZOMBIE until it has freed its resources and communicated its termination status to

its parent process.

Table 4.1 Process states.

The system organizes process structures into two lists. Process entries are on the zombproc list

if the process is in the ZOMBIE state; otherwise, they are on the allproc list. The two queues

share the same linkage pointers in the process structure, since the lists are mutually exclusive.

Segregating the dead processes from the live ones reduces the time spent both by the wait

system call, which must scan the zombies for potential candidates to return, and by the

scheduler and other functions that must scan all the potentially runnable processes.

Most threads, except the currently executing thread (or threads if the system is running on a

multiprocessor), are also in one of three queues: a run queue, a sleep queue, or a turnstile

queue. Threads that are in a runnable state are placed on a run queue, whereas threads that are

blocked while awaiting an event are located on either a turnstile queue or a sleep queue. Stopped

threads awaiting an event are located on a turnstile queue, a sleep queue, or they are on no

queue. The run queues are organized according to thread-scheduling priority and are described

in Section 4.4. The sleep and turnstile queues are organized in a data structure that is hashed by

an event identifier. This organization optimizes finding the sleeping threads that need to be

awakened when a wakeup occurs for an event. The sleep and turnstile queues are described in

Section 4.3.

The p_pptr pointer and related lists (p_children and p_sibling) are used in locating related

processes, as shown in Figure 4.2. When a process spawns a child process, the child process is

added to its parent’s p_children list. The child process also keeps a backward link to its parent

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig02

125

in its p_pptr pointer. If a process has more than one child process active at a time, the children

are linked together through their p_sibling list entries. In Figure 4.2, process B is a direct

descendant of process A, whereas processes C, D, and E are descendants of process B and are

siblings of one another. Process B typically would be a shell that started a pipeline (see Sections

2.4 and 4.8) including processes C, D, and E. Process A probably would be the

system-initialization process init (see Sections 3.1 and 15.4).

Figure 4.2 Process-group hierarchy.

CPU time is made available to threads according to their scheduling class and scheduling

priority. As shown in Table 4.2, the FreeBSD kernel has two kernel and three user scheduling

classes. The kernel will always run the thread in the highest-priority class. Any kernel-interrupt

threads will run in preference to anything else followed by any runnable real-time threads. Any

top-half-kernel threads are run in preference to runnable threads in the share and idle classes.

Runnable timeshare threads are run in preference to runnable threads in the idle class. The

priorities of threads in the real-time and idle classes are set by the applications using the rtprio

system call and are never adjusted by the kernel. The bottom-half interrupt priorities are set

when the devices are configured and never change. The top-half priorities are set based on

predefined priorities for each kernel subsystem and never change.

Table 4.2 Thread-scheduling classes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab02

126

The priorities of threads running in the timeshare class are adjusted by the kernel based on

resource usage and recent CPU utilization. A thread has two scheduling priorities: one for

scheduling user-mode execution and one for scheduling kernel-mode execution. The

td_user_pri field associated with the thread structure contains the user-mode scheduling

priority, whereas the td_priority field holds the current scheduling priority. The current priority

may be different from the user-mode priority when the thread is executing in the top half of the

kernel. Priorities range between 0 and 255, with a lower value interpreted as a higher priority

(see Table 4.2). User-mode priorities range from 120 to 255; priorities less than 120 are used

only by real-time threads or when a thread is asleep—that is, awaiting an event in the

kernel—and immediately after such a thread is awakened. Threads asleep in the kernel are given

a higher priority because they typically hold shared kernel resources when they awaken. The

system wants to run them as quickly as possible once they get a resource so that they can use the

resource and return it before another thread requests it and gets blocked waiting for it.

When a thread goes to sleep in the kernel, it must specify whether it should be awakened and

marked runnable if a signal is posted to it. In FreeBSD, a kernel thread will be awakened by a

signal only if it sets the PCATCH flag when it sleeps. The msleep() interface also handles sleeps

limited to a maximum time duration and the processing of restartable system calls. The msleep()

interface includes a reference to a string describing the event that the thread awaits; this string

is externally visible—for example, in ps. The decision of whether to use an interruptible sleep

depends on how long the thread may be blocked. Because it is complex to handle signals in the

midst of doing some other operation, many sleep requests are not interruptible; that is, a thread

will not be scheduled to run until the event for which it is waiting occurs. For example, a thread

waiting for disk I/O will sleep with signals blocked.

For quickly occurring events, delaying to handle a signal until after they complete is

imperceptible. However, requests that may cause a thread to sleep for a long period, such as

waiting for terminal or network input, must be prepared to have its sleep interrupted so that the

posting of signals is not delayed indefinitely. Threads that sleep interruptibly may abort their

system call because of a signal arriving before the event for which they are waiting has occurred.

To avoid holding a kernel resource permanently, these threads must check why they have been

awakened. If they were awakened because of a signal, they must release any resources that they

hold. They must then return the error passed back to them by sleep(), which will be EINTR if the

system call is to be aborted after the signal or ERESTART if it is to be restarted. Occasionally, an

event that is supposed to occur quickly, such as a disk I/O, will get held up because of a

hardware failure. Because the thread is sleeping in the kernel with signals blocked, it will be

impervious to any attempts to send it a signal, even a signal that should cause it to exit

unconditionally. The only solution to this problem is to change sleep()s on hardware events that

may hang to be interruptible.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab02

127

In the remainder of this book, we shall always use sleep() when referring to the routine that puts

a thread to sleep, even when one of the mtx_sleep(), sx_sleep(), rw_sleep(), or t_sleep()

interfaces is the one that is being used.

The Thread Structure

The thread structure shown in Figure 4.1 contains the following categories of information:

• Scheduling: the thread priority, user-mode scheduling priority, recent CPU utilization, and

amount of time spent sleeping; the run state of a thread (runnable, sleeping); additional status

flags; if the thread is sleeping, the wait channel, the identity of the event for which the thread

is waiting (see Section 4.3), and a pointer to a string describing the event

• TSB: the user- and kernel-mode execution states

• Kernel stack: the per-thread execution stack for the kernel

• Machine state: the machine-dependent thread information

Historically, the kernel stack was mapped to a fixed location in the virtual address space. The

reason for using a fixed mapping is that when a parent forks, its runtime stack is copied for its

child. If the kernel stack is mapped to a fixed address, the child’s kernel stack is mapped to the

same addresses as its parent kernel stack. Thus, all its internal references, such as frame

pointers and stack-variable references, work as expected.

On modern architectures with virtual address caches, mapping the kernel stack to a fixed

address is slow and inconvenient. FreeBSD removes this constraint by eliminating all but the

top call frame from the child’s stack after copying it from its parent so that it returns directly to

user mode, thus avoiding stack copying and relocation problems.

Every thread that might potentially run must have its stack resident in memory because one task

of its stack is to handle page faults. If it were not resident, it would page fault when the thread

tried to run, and there would be no kernel stack available to service the page fault. Since a

system may have many thousands of threads, the kernel stacks must be kept small to avoid

wasting too much physical memory. In FreeBSD on the Intel architecture, the kernel stack is

limited to two pages of memory. Implementors must be careful when writing code that executes

in the kernel to avoid using large local variables and deeply nested subroutine calls to avoid

overflowing the run-time stack. As a safety precaution, some architectures leave an invalid page

between the area for the run-time stack and the data structures that follow it. Thus, overflowing

the kernel stack will cause a kernel-access fault instead of disastrously overwriting other data

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3

128

structures. It would be possible to simply kill the process that caused the fault and continue

running. However, the cleanup would be difficult because the thread may be holding locks or be

in the middle of modifying some data structure that would be left in an inconsistent or invalid

state. So the FreeBSD kernel panics on a kernel-access fault because such a fault shows a

fundamental design error in the kernel. By panicking and creating a crash dump, the error can

usually be pinpointed and corrected.

4.3 Context Switching

The kernel switches among threads in an effort to share the CPU effectively; this activity is

called context switching. When a thread executes for the duration of its time slice or when it

blocks because it requires a resource that is currently unavailable, the kernel finds another

thread to run and context switches to it. The system can also interrupt the currently executing

thread to run a thread triggered by an asynchronous event, such as a device interrupt. Although

both scenarios involve switching the execution context of the CPU, switching between threads

occurs synchronously with respect to the currently executing thread, whereas servicing

interrupts occurs asynchronously with respect to the current thread. In addition,

interprocess context switches are classified as voluntary or involuntary. A voluntary context

switch occurs when a thread blocks because it requires a resource that is unavailable. An

involuntary context switch takes place when a thread executes for the duration of its time slice

or when the system identifies a higher-priority thread to run.

Each type of context switching is done through a different interface. Voluntary context switching

is initiated with a call to the sleep() routine, whereas an involuntary context switch is forced by

direct invocation of the low-level context-switching mechanism embodied in the mi_switch()

and setrunnable() routines. Asynchronous event handling is triggered by the underlying

hardware and is effectively transparent to the system.

Thread State

Context switching between threads requires that both the kernel- and user-mode context be

changed. To simplify this change, the system ensures that all of a thread’s user-mode state is

located in the thread structure while most kernel state is kept elsewhere. The following

conventions apply to this localization:

• Kernel-mode hardware-execution state: Context switching can take place in only kernel mode.

The kernel’s hardware-execution state is defined by the contents of the TSB that is located in the

thread structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_56
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_16

129

• User-mode hardware-execution state: When execution is in kernel mode, the user-mode state

of a thread (such as copies of the program counter, stack pointer, and general registers) always

resides on the kernel’s execution stack that is located in the thread structure. The kernel ensures

this location of user-mode state by requiring that the system-call and trap handlers save the

contents of the user-mode execution context each time that the kernel is entered (see Section

3.1).

• The process structure: The process structure always remains resident in memory.

• Memory resources: Memory resources of a process are effectively described by the contents of

the memory-management registers located in the TSB and by the values present in the process

and thread structures. As long as the process remains in memory, these values will remain valid

and context switches can be done without the associated page tables being saved and restored.

However, these values need to be recalculated when the process returns to main memory after

being swapped to secondary storage.

Low-Level Context Switching

The localization of a process’s context in that process’s thread structure permits the kernel to

perform context switching simply by changing the notion of the current thread structure and (if

necessary) process structure, and restoring the context described by the TSB within the thread

structure (including the mapping of the virtual address space). Whenever a context switch is

required, a call to the mi_switch() routine causes the highest-priority thread to run. The

mi_switch() routine first selects the appropriate thread from the scheduling queues, and then

resumes the selected thread by loading its context from its TSB.

Voluntary Context Switching

A voluntary context switch occurs whenever a thread must await the availability of a resource or

the arrival of an event. Voluntary context switches happen frequently in normal system

operation. In FreeBSD, voluntary context switches are initiated through a request to obtain a

lock that is already held by another thread or by a call to the sleep() routine. When a thread no

longer needs the CPU, it is suspended, awaiting the resource described by a wait channel, and

is given a scheduling priority that should be assigned to the thread when that thread is

awakened. This priority does not affect the user-level scheduling priority.

When blocking on a lock, the wait channel is usually the address of the lock. When blocking for a

resource or an event, the wait channel is typically the address of some data structure that

identifies the resource or event for which the thread is waiting. For example, the address of a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_488

130

disk buffer is used while the thread is waiting for the buffer to be filled. When the buffer is filled,

threads sleeping on that wait channel will be awakened. In addition to the resource addresses

that are used as wait channels, there are some addresses that are used for special purposes:

• When a parent process does a wait system call to collect the termination status of its children,

it must wait for one of those children to exit. Since it cannot know which of its children will exit

first, and since it can sleep on only a single wait channel, there is a quandary about how to wait

for the next of multiple events. The solution is to have the parent sleep on its own process

structure. When a child exits, it awakens its parent’s process-structure address rather than its

own. Thus, the parent doing the wait will awaken independently of which child process is the

first to exit. Once running, it must scan its list of children to determine which one exited.

• When a thread does a sigsuspend system call, it does not want to run until it receives a signal.

Thus, it needs to do an interruptible sleep on a wait channel that will never be awakened. By

convention, the address of the signal-actions structure is given as the wait channel.

A thread may block for a short, medium, or long period of time depending on the reason that it

needs to wait. A short wait occurs when a thread needs to wait for access to a lock that protects a

data structure. A medium wait occurs while a thread waits for an event that is expected to occur

quickly such as waiting for data to be read from a disk. A long wait occurs when a thread is

waiting for an event that will happen at an indeterminate time in the future such as input from a

user.

Short-term waits arise only from a lock request. Short-term locks include mutexes, read-writer

locks, and read-mostly locks. Details on these locks are given later in this section. A requirement

of short-term locks is that they may not be held while blocking for an event as is done for

medium- and long-term locks. The only reason that a thread holding a short-term lock is not

running is that it has been preempted by a higher-priority thread. It is always possible to get a

short-term lock released by running the thread that holds it and any threads that block the

thread that holds it.

A short-term lock is managed by a turnstile data structure. The turnstile tracks the current

owner of the lock and the list of threads waiting for access to the lock. Figure 4.3 shows how

turnstiles are used to track blocked threads. Across the top of the figure is a set of hash headers

that allow a quick lookup to find a lock with waiting threads. If a turnstile is found, it provides a

pointer to the thread that currently owns the lock and lists of the threads that are waiting for

exclusive and shared access. The most important use of the turnstile is to quickly find the

threads that need to be awakened when a lock is released. In Figure 4.3, Lock 18 is owned by

thread 1 and has threads 2 and 3 waiting for exclusive access to it. The turnstile in this example

also shows that thread 1 holds contested Lock 15.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig03

131

Figure 4.3 Turnstile structures for blocked threads.

A turnstile is needed each time a thread blocks on a contested lock. Because blocking is common,

it would be prohibitively slow to allocate and free a turnstile every time one is needed. So each

thread allocates a turnstile when it is created. As a thread may only be blocked on one lock at

any point in time, it will never need more than one turnstile. Turnstiles are allocated by threads

rather than being incorporated into each lock structure because there are far more locks in the

132

kernel than there are threads. Allocating one turnstile per thread rather than one per lock

results in lower memory utilization in the kernel.

When a thread is about to block on a short-term lock, it provides its turnstile to be used to track

the lock. If it is the first thread to block on the lock, its turnstile is used. If it is not the first

thread to block, then an earlier thread’s turnstile will be in use to do the tracking. The additional

turnstiles that are provided are kept on a free list whose head is the turnstile being used to track

the lock. When a thread is awakened and is being made runnable, it is given a turnstile from the

free list (which may not be the same one that it originally provided). When the last thread is

awakened, the free list will be empty and the turnstile no longer needed, so it can be taken by

the awakening thread.

In Figure 4.3, the turnstile tracking Lock 18 was provided by thread 2 as it was the first to block.

The spare turnstile that it references was provided by thread 3. If thread 2 is the first to be

awakened, it will get the spare turnstile provided by thread 3 and when thread 3 is awakened

later, it will be the last to be awakened so will get the no-longer-needed turnstile originally

provided by thread 2.

A priority inversion occurs when a thread trying to acquire a short-term lock finds that the

thread holding the lock has a lower priority than its own priority. The owner and list of blocked

threads tracked by the turnstile allows priority propagation of the higher priority from the

thread that is about to be blocked to the thread that holds the lock. With the higher priority, the

thread holding the lock will run, and if, in turn, it is blocked by a thread with lower priority, it

will propagate its new higher priority to that thread. When finished with its access to the

protected data structure, the thread with the temporarily raised priority will release the lock. As

part of releasing the lock, the propagated priority will be dropped, which usually results in the

thread from which the priority was propagated getting to run and now being able to acquire the

lock.

Processes blocking on medium-term and long-term locks use sleepqueue data structures rather

than turnstiles to track the blocked threads. The sleepqueue data structure is similar to the

turnstile except that it does not need to track the owner of the lock. The owner need not be

tracked because sleepqueues do not need to provide priority propagation. Threads blocked on

medium- and long-term locks cannot proceed until the event for which they are waiting has

occurred. Raising their priority will not allow them to run any sooner.

Sleepqueues have many similarities to turnstiles including a hash table to allow quick lookup of

contested locks and lists of the threads blocked because they are awaiting shared and exclusive

locks. When created, each thread allocates a sleepqueue structure. It provides its sleepqueue

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_281
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_282

133

structure when it is about to be put to sleep and is returned a sleepqueue structure when it is

awakened.

Unlike short-term locks, the medium- and long-term locks can request a time limit so that if the

event for which they are waiting has not occurred within the specified period of time, they will

be awakened with an error return that indicates that the time limit expired rather than the event

occurring. Finally, long-term locks can request that they be interruptible, meaning that they will

be awakened if a signal is sent to them before the event for which they are waiting has occurred.

Suspending a thread takes the following steps in its operation:

1. Prevents events that might cause thread-state transitions. Historically a global scheduling

lock was used, but it was a bottleneck. Now each thread uses a lock tied to its current state to

protect its per-thread state. For example, when a thread is on a run queue, the lock for that run

queue is used; when the thread is blocked on a turnstile, the turnstile’s lock is used; when a

thread is blocked on a sleep queue, the lock for the wait channels hash chain is used.

2. Records the wait channel in the thread structure and hashes the wait-channel value to check

for an existing turnstile or sleepqueue for the wait-channel. If one exists, links the thread to it

and saves the turnstile or sleepqueue structure provided by the thread. Otherwise places the

turnstile or sleepqueue onto the hash chain and links the thread into it.

3. For threads being placed on a turnstile, if the current thread’s priority is higher than the

priority of the thread currently holding the lock, propagates the current thread’s priority to the

thread currently holding the lock. For threads being placed on a sleepqueue, sets the thread’s

priority to the priority that the thread will have when the thread is awakened and sets its

SLEEPING flag.

4. For threads being placed on a turnstile, sort the thread into the list of waiting threads such

that the highest priority thread appears first in the list. For threads being placed on a sleepqueue,

place the thread at the end of the list of threads waiting for that wait-channel.

5. Calls mi_switch() to request that a new thread be scheduled; the associated mutex is released

as part of switching to the other thread.

A sleeping thread is not selected to execute until it is removed from a turnstile or sleepqueue

and is marked runnable. This operation is done either implicitly as part of a lock being released,

or explicitly by a call to the wakeup() routine to signal that an event has occurred or that a

resource is available. When wakeup() is invoked, it is given a wait channel that it uses to find the

corresponding sleepqueue (using a hashed lookup). It awakens all threads sleeping on that wait

channel. All threads waiting for the resource are awakened to ensure that none are inadvertently

134

left sleeping. If only one thread were awakened, it might not request the resource on which it

was sleeping. If it does not use and release the resource, any other threads waiting for that

resource will be left sleeping forever. A thread that needs an empty disk buffer in which to write

data is an example of a thread that may not request the resource on which it was sleeping. Such

a thread can use any available buffer. If none is available, it will try to create one by requesting

that a dirty buffer be written to disk and then waiting for the I/O to complete. When the I/O

finishes, the thread will awaken and will check for an empty buffer. If several are available, it

may not use the one that it cleaned, leaving any other threads to sleep forever as they wait for

the cleaned buffer.

In instances where a thread will always use a resource when it becomes available, wakeup_one()

can be used instead of wakeup(). The wakeup_one() routine wakes up only the first thread that

it finds waiting for a resource as it will have been asleep the longest. The assumption is that

when the awakened thread is done with the resource, it will issue another wakeup_one() to

notify the next waiting thread that the resource is available. The succession of wakeup_one()

calls will continue until all threads waiting for the resource have been awakened and had a

chance to use it. Because the threads are ordered from longest to shortest waiting, that is the

order in which they will be awakened and gain access to the resource.

When releasing a turnstile lock, all waiting threads are released. Because the threads are

ordered from highest to lowest priority, that is the order in which they will be awakened. Usually

they will then be scheduled in the order in which they were released. When threads end up being

run concurrently, the adaptive spinning (described later in this section) usually ensures that

they will not block. And because they are released from highest to lowest priority, the highest

priority thread will usually be the first to acquire the lock. There will be no need for, and hence

no overhead from, priority propagation. Rather, the lock will be handed down from the highest

priority threads through the intermediate priorities to the lowest priority.

To avoid having excessive numbers of threads awakened, kernel programmers try to use locks

and wait channels with fine-enough granularity that unrelated uses will not collide on the same

resource. For example, they put locks on each buffer in the buffer cache rather than putting a

single lock on the buffer cache as a whole.

Resuming a thread takes the following steps in its operation:

1. Removes the thread from its turnstile or sleepqueue. If it is the last thread to be awakened,

the turnstile or sleepqueue is returned to it. If it is not the last thread to be awakened, a turnstile

or sleepqueue from the free list is returned to it.

135

2. Recomputes the user-mode scheduling priority if the thread has been sleeping longer than

one second.

3. If the thread had been blocked on a turnstile, it is placed on the run queue. If the thread had

been blocked on a sleepqueue, it is placed on the run queue if it is in a SLEEPING state and if its

process is not swapped out of main memory. If the process has been swapped out, the swapin

process will be awakened to load it back into memory (see Section 6.12); if the thread is in a

STOPPED state, it is not put on a run queue until it is explicitly restarted by a user-level process,

either by a ptrace system call (see Section 4.9) or by a continue signal (see Section 4.7).

If any threads are placed on the run queue and one of them has a scheduling priority higher than

that of the currently executing thread, it will also request that the CPU be rescheduled as soon as

possible.

Synchronization

The FreeBSD kernel supports both symmetric multiprocessing (SMP) and nonuniform

memory access (NUMA) architectures. An SMP architecture is one in which all the CPUs are

connected to a common main memory while a NUMA architecture is one in which the CPUs are

connected to a non-uniform memory. With a NUMA architecture, some memory is local to a

CPU and is quickly accessible while other memory is slower to access because it is local to

another CPU or shared between CPUs. Throughout this book, references to multiprocessors and

multiprocessing refer to both SMP and NUMA architectures.

A multiprocessing kernel requires extensive and fine-grained synchronization. The simplist

form of synchronization is a critical section. While a thread is running in a critical section, it can

neither be migrated to another CPU nor preempted by another thread. A critical section protects

per-CPU data structures such as a run queue or CPU-specific memory-allocation data structures.

A critical section controls only a single CPU, so it cannot protect systemwide data structures;

one of the locking mechanisms described below must be used. While critical sections are useful

for only a limited set of data structures, they are beneficial in those cases because they have

significantly lower overhead than locks. A critical section begins by calling critical_enter() and

continues until calling the function critical_exit().

Table 4.3 shows the hierarchy of locking that is necessary to support multiprocessing. The

column labelled Sleep in Table 4.3 shows whether a lock of that type may be held when a thread

blocks for a medium- or long-term sleep.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab03

136

Table 4.3 Locking hierarchy.

Although it is possible to build locks using single-memory operations [Dekker, 2013], to be

practical, the hardware must provide a memory interlocked compare-and-swap instruction. The

compare-and-swap instruction must allow two operations to be done on a main-memory

location—the reading and comparing to a specified compare-value of the existing value followed

by the writing of a new value if the read value matches the compare-value—without any other

processor being able to read or write that memory location between the two memory operations.

All the locking primitives in the FreeBSD system are built using the compare-and-swap

instruction.

Mutex Synchronization

Mutexes are the primary method of short-term thread synchronization. The major design

considerations for mutexes are as follows:

• Acquiring and releasing uncontested mutexes should be as fast as possible.

• Mutexes must have the information and storage space to support priority propagation. In

FreeBSD, mutexes use turnstiles to manage priority propagation.

• A thread must be able to acquire a mutex recursively if the mutex is initialized to support

recursion.

Mutexes are built from the hardware compare-and-swap instruction. A memory location is

reserved for the lock. When the lock is free, the value of MTX_UNOWNED is stored in the

memory location; when the lock is held, a pointer to the thread owning the lock is stored in the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref02

137

memory location. The compare-and-swap instruction tries to acquire the lock. The value in the

lock is compared with MTX_UNOWNED; if it matches, it is replaced with the pointer to the

thread. The instruction returns the old value; if the old value was MTX_OWNED, then the lock

was successfully acquired and the thread may proceed. Otherwise, some other thread held the

lock so the thread must loop doing the compare-and-swap until the thread holding the lock (and

running on a different processor) stores MTX_OWNED into the lock to show that it is done with

it.

There are currently two flavors of mutexes: those that block and those that do not. By default,

threads will block when they request a mutex that is already held. Most kernel code uses the

default lock type that allows the thread to be suspended from the CPU if it cannot get the lock.

Mutexes that do not sleep are called spin mutexes. A spin mutex will not relinquish the CPU

when it cannot immediately get the requested lock, but it will loop, waiting for the mutex to be

released by another CPU. Spinning can result in deadlock if a thread interrupted the thread that

held a mutex and then tried to acquire the mutex. To protect an interrupt thread from blocking

against itself during the period that it is held, a spin mutex runs inside a critical section with

interrupts disabled on that CPU. Thus, an interrupt thread can run only on another CPU during

the period that the spin mutex is held.

Spin mutexes are specialized locks that are intended to be held for short periods of time. A

thread may hold multiple spin mutexes, but it is required to release the mutexes in the opposite

order from which they were acquired. A thread may not go to sleep while holding a spin mutex.

On most architectures, both acquiring and releasing an uncontested spin mutex are more

expensive than the same operation on a nonspin mutex. Spin mutexes are more expensive than

blocking locks because spin mutexes have to disable or defer interrupts while they are held to

prevent races with interrupt handling code. As a result, holding spin mutexes can increase

interrupt latency. To minimize interrupt latency and reduce locking overhead, FreeBSD uses

spin mutexes only in code that does low-level scheduling and context switching.

The time to acquire a lock can vary. Consider the time to wait for a lock needed to search for an

item on a list. The thread holding the search lock may have to acquire another lock before it can

remove an item it has found from the list. If the needed lock is already held, it will block to wait

for it. A different thread that tries to acquire the search lock uses adaptive spinning. Adaptive

spinning is implemented by having the thread that wants the lock extract the thread pointer of

the owning thread from the lock structure. It then checks to see if the thread is currently

executing. If so, it spins until either the lock is released or the thread stops executing. The effect

is to spin so long as the current lock holder is executing on another CPU. The reasons for taking

this approach are many:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_403

138

• Locks are usually held for brief periods of time, so if the owner is running, then it will probably

release the lock before the current thread completes the process of blocking on the lock.

• If a lock holder is not running, then the current thread has to wait at least one context switch

time before it can acquire the lock.

• If the owner is on a run queue, then the current thread should block immediately so it can lend

its priority to the lock owner.

• It is cheaper to release an uncontested lock with a single atomic operation than a contested

lock. A contested lock has to find the turnstile, lock the turnstile chain and turnstile, and then

awaken all the waiters. So adaptive spinning reduces overhead on both the lock owner and the

thread trying to acquire the lock.

The lower cost for releasing an uncontested lock explains the algorithm used to awaken waiters

on a mutex. Historically, the mutex code would only awaken a single waiter when a contested

lock was released, which left the lock in a contested state if there were more than one waiter.

However, leaving a contested lock ensured that the new lock holder would have to perform a

more expensive unlock operation. Indeed, all but the last waiter would have an expensive unlock

operation. In the current FreeBSD system, all the waiters are awakened when the lock is

released. Usually they end up being scheduled sequentially, which results in them all getting to

do cheaper unlock operations. If they do all end up running concurrently, they will then use

adaptive spinning and will finish the chain of lock requests sooner since the context switches to

awaken the threads are performed in parallel rather than sequentially. This change in behavior

was motivated by documentation of these effects noted in Solaris Internals [McDougall & Mauro,

2006].

It is wasteful of CPU cycles to use spin mutexes for resources that will be held for long periods of

time (more than a few microseconds). For example, a spin mutex would be inappropriate for a

disk buffer that would need to be locked throughout the time that a disk I/O was being done.

Here, a sleep lock should be used. When a thread trying to acquire a medium- or long-term lock

finds that the lock is held, it is put to sleep so that other threads can run until the lock becomes

available.

Spin mutexes are never appropriate on a uniprocessor since the only way that a resource held by

another thread will ever be released will be when that thread gets to run. Spin mutexes are

always converted to sleep locks when running on a uniprocessor. As with the multi-processor,

interrupts are disabled while the spin mutexes are held. Since there is no other processor on

which the interrupts can run, interrupt latency becomes much more apparent on a uniprocessor.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref04

139

Mutex Interface

The mtx_init() function must be used to initialize a mutex before it can be used. The mtx_init()

function specifies a type that the witness code uses to classify a mutex when doing checks of lock

ordering. It is not permissible to pass the same mutex to mtx_init() multiple times without

intervening calls to mtx_destroy().

The mtx_lock() function acquires a mutual exclusion lock for the currently running kernel

thread. If another kernel thread is holding the mutex, the caller will sleep until the mutex is

available. The mtx_lock_spin() function is similar to the mtx_lock() function except that it will

spin until the mutex becomes available. A critical section is entered when the spin mutex is

obtained and is exited when the spin mutex is released. Interrupts are blocked on the CPU on

which the thread holding the spin mutex is running. No other threads, including interrupt

threads, can run on the CPU during the period that the spin mutex is held.

It is possible for the same thread to acquire a mutex recursively with no ill effects if the

MTX_RECURSE bit was passed to mtx_init() during the initialization of the mutex. The witness

module verifies that a thread does not recurse on a non-recursive lock. A recursive lock is useful

if a resource may be locked at two or more levels in the kernel. By allowing a recursive lock, a

lower layer need not check if the resource has already been locked by a higher layer; it can

simply lock and release the resource as needed.

The mtx_trylock() function tries to acquire a mutual exclusion lock for the currently running

kernel thread. If the mutex cannot be immediately acquired, mtx_trylock() will return 0;

otherwise the mutex will be acquired and a nonzero value will be returned. The mtx_trylock()

function cannot be used with spin mutexes.

The mtx_unlock() function releases a mutual exclusion lock; if a higher-priority thread is

waiting for the mutex, the releasing thread will be put to sleep to allow the higher-priority

thread to acquire the mutex and run. A mutex that allows recursive locking maintains a

reference count showing the number of times that it has been locked. Each successful lock

request must have a corresponding unlock request. The mutex is not released until the final

unlock has been done, causing the reference count to drop to zero.

The mtx_unlock_spin() function releases a spin-type mutual exclusion lock; the critical section

entered before acquiring the mutex is exited.

The mtx_destroy() function destroys a mutex so the data associated with it may be freed or

otherwise overwritten. Any mutex that is destroyed must previously have been initialized with

mtx_init(). It is permissible to have a single reference to a mutex when it is destroyed. It is not

140

permissible to hold the mutex recursively or have another thread blocked on the mutex when it

is destroyed. If these rules are violated, the kernel will panic.

Normally, a mutex is allocated within the structure that it will protect. For long-lived structures

or structures that are allocated from a zone (structures in a zone are created once and used

many times before they are destroyed), the time overhead of initializing and destroying it is

insignificant. For a short-lived structure that is not allocated out of a zone, the cost of initializing

and destroying an embedded mutex may exceed the time during which the structure is used. In

addition, mutexes are large and may double or triple the size of a small short-lived structure (a

mutex is often the size of a cache line, which is typically 128 bytes). To avoid this overhead, the

kernel provides a pool of mutexes that may be borrowed for use with a short-lived structure. The

short-lived structure does not need to reserve space for a mutex, just space for a pointer to a

pool mutex. When the structure is allocated, it requests a pool mutex to which it sets its pointer.

When it is done, the pool mutex is returned to the kernel and the structure freed. An example of

a use of a pool mutex comes from the poll system call implementation that needs a structure to

track a poll request from the time the system call is entered until the requested data arrives on

the descriptor.

Lock Synchronization

Interprocess synchronization to a resource typically is implemented by associating it with a lock

structure. The kernel has several lock managers that manipulate a lock. The operations provided

by all the lock managers are:

• Request shared: Get one of many possible shared locks. If a thread holding an exclusive lock

requests a shared lock, some lock managers will downgrade the exclusive lock to a shared lock

while others simply return an error.

• Request exclusive: When all shared locks have cleared, grant an exclusive lock. To ensure that

the exclusive lock will be granted quickly, some lock managers stop granting shared locks when

an exclusive lock is requested. Others grant new shared locks only for recursive lock requests.

Only one exclusive lock may exist at a time, except that a thread holding an exclusive lock may

get additional exclusive locks if the canrecurse flag was set when the lock was initialized. Some

lock managers allow the canrecurse flag to be specified in the lock request.

• Request release: Release one instance of a lock.

In addition to these basic requests, some of the lock managers provide the following additional

functions:

141

• Request upgrade: The thread must hold a shared lock that it wants to have upgraded to an

exclusive lock. Other threads may get exclusive access to the resource between the time that the

upgrade is requested and the time that it is granted. Some lock managers allow only a limited

version of upgrade where it is granted if immediately available, but do not provide a mechanism

to wait for an upgrade.

• Request exclusive upgrade: The thread must hold a shared lock that it wants to have upgraded

to an exclusive lock. If the request succeeds, no other threads will have received exclusive access

to the resource between the time that the upgrade is requested and the time that it is granted.

However, if another thread has already requested an upgrade, the request will fail.

• Request downgrade: The thread must hold an exclusive lock that it wants to have downgraded

to a shared lock. If the thread holds multiple (recursive) exclusive locks, some lock managers

will downgrade them all to shared locks; other lock managers will fail the request.

• Request drain: Wait for all activity on the lock to end, and then mark it decommissioned. This

feature is used before freeing a lock that is part of a piece of memory that is about to be released.

Locks must be initialized before their first use by calling their initialization function. Parameters

to the initialization function may include the following:

• A top-half kernel priority at which the thread should run if it was blocked before it acquired the

lock

• Flags such as canrecurse that allow the thread currently holding an exclusive lock to get

another exclusive lock rather than panicking with a “locking against myself” failure

• A string that describes the resource that the lock protects, referred to as the wait channel

message

• An optional maximum time to wait for the lock to become available

Not all types of locks support all these options. When a lock is no longer needed, it must be

released.

As shown in Table 4.3, the lowest-level type of lock is the reader-writer lock. The reader-writer

lock operates much like a mutex except that a reader-writer lock supports both shared and

exclusive access. Like a mutex, it is managed by a turnstile so it cannot be held during a

medium- or long-term sleep and provides priority propagation for exclusive (but not shared)

locks. Reader-writer locks may be recursed.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab03

142

Next up in Table 4.3 is the read-mostly lock. The read-mostly lock has the same capabilities and

restrictions as reader-writer locks while they also add priority propagation for shared locks by

tracking shared owners using a caller-supplied tracker data structure. Read-mostly locks are

used to protect data that are read far more often than they are written. They work by trying the

read without acquiring a lock assuming that the read will succeed and only fall back to using

locks when the assumption fails. Reads usually happen more quickly but at a higher cost if the

underlying resource is modified. The routing table is a good example of a read-mostly data

structure. Routes are rarely updated, but are read frequently.

The remaining types of locks all permit medium- and long-term sleeping. None of these locks

support priority propagation. The shared-exclusive locks are the fastest of these locks with the

fewest features. In addition to the basic shared and exclusive access, they provide recursion for

both shared and exclusive locks, the ability to be interrupted by a signal, and limited upgrade

and downgrade capabilities.

The lock-manager locks are the most full featured but also the slowest of the locking schemes. In

addition to the features of the shared-exclusive locks, they provide full upgrade and downgrade

capabilities, the ability to be awakened after a specified interval, the ability to drain all users in

preparation for being deallocated, and the ability to pass ownership of locks between threads

and to the kernel.

Condition variables are used with mutexes to wait for conditions to occur. Threads wait on

condition variables by calling cv_wait(), cv_wait_sig() (wait unless interrupted by a signal),

cv_timedwait() (wait for a maximum time), or cv_timedwait_sig() (wait unless interrupted by

a signal or for a maximum time). Threads unblock waiters by calling cv_signal() to unblock one

waiter, or cv_broadcast() to unblock all waiters. The cv_waitq_remove() function removes a

waiting thread from a condition-variable wait queue if it is on one.

A thread must hold a mutex before calling cv_wait(), cv_wait_sig(), cv_timedwait(), or

cv_timedwait_sig(). When a thread waits on a condition, the mutex is atomically released

before the thread is blocked, and then atomically reacquired before the function call returns. All

waiters must use the same mutex with a condition variable. A thread must hold the mutex while

calling cv_signal() or cv_broadcast().

Deadlock Prevention

The highest-level locking primitive prevents threads from deadlocking when locking multiple

resources. Suppose that two threads, A and B, require exclusive access to two resources, R1 and

R2, to do some operation as shown in Figure 4.4. If thread A acquires R1 and thread B acquires

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig04

143

R2, then a deadlock occurs when thread A tries to acquire R2 and thread B tries to acquire R1. To

avoid deadlock, FreeBSD maintains a partial ordering on all the locks. The two partial-ordering

rules are as follows:

1. A thread may acquire only one lock in each class.

2. A thread may acquire only a lock in a higher-numbered class than the highest-numbered class

for which it already holds a lock.

Figure 4.4 Partial ordering of resources.

Figure 4.4 shows two classes. Class 1 with resources R1, R1′, and R1″. Class 2 with resources R2,

R2′, and R2″. In Figure 4.4, Thread A holds R1 and can request R2 as R1 and R2 are in different

classes and R2 is in a higher-numbered class than R1. However, Thread B must release R2 before

requesting R1, since R2 is in a higher class than R1. Thus, Thread A will be able to acquire R2

when it is released by Thread B. After Thread A completes and releases R1 and R2, Thread B will

be able to acquire both of those locks and run to completion without deadlock.

Historically, the class members and ordering were poorly documented and unenforced.

Violations were discovered when threads would deadlock and a careful analysis was done to

figure out what ordering had been violated. With an increasing number of developers and a

growing kernel, the ad hoc method of maintaining the partial ordering of locks became

untenable. A witness module was added to the kernel to derive and enforce the partial ordering

of the locks. The witness module keeps track of the locks acquired and released by each thread.

It also keeps track of the order in which locks are acquired relative to each other. Each time a

lock is acquired, the witness module uses these two lists to verify that a lock is not being

acquired in the wrong order. If a lock order violation is detected, then a message is output to the

console detailing the locks involved and the locations in the code in which they were acquired.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig04

144

The witness module also verifies that no locks that prohibit sleeping are held when requesting a

sleep lock or voluntarily going to sleep.

The witness module can be configured to either panic or drop into the kernel debugger when an

order violation occurs or some other witness check fails. When running the debugger, the

witness module can output the list of locks held by the current thread to the console along with

the filename and line number at which each lock was last acquired. It can also dump the current

order list to the console. The code first displays the lock order tree for all the sleep locks. Then it

displays the lock order tree for all the spin mutexes. Finally, it displays a list of locks that have

not yet been acquired.

4.4 Thread Scheduling

The FreeBSD scheduler has a well-defined set of kernel-application programming interfaces

(kernel APIs) that allow it to support different schedulers. Since FreeBSD 5.0, the kernel has

had two schedulers available:

• The ULE scheduler first introduced in FreeBSD 5.0 and found in the file

/sys/kern/sched_ule.c [Roberson, 2003]. The name is not an acronym. If the underscore in

its filename is removed, the rationale for its name becomes apparent. This scheduler is used by

default and is described later in this section.

• The traditional 4.4BSD scheduler found in the file /sys/kern/sched_4bsd.c. This scheduler

is still maintained but no longer used by default.

Because a busy system makes millions of scheduling decisions per second, the speed with which

scheduling decisions are made is critical to the performance of the system as a whole. Other

UNIX systems have added a dynamic scheduler switch that must be traversed for every

scheduling decision. To avoid this overhead, FreeBSD requires that the scheduler be selected at

the time the kernel is built. Thus, all calls into the scheduling code are resolved at compile time

rather than going through the overhead of an indirect function call for every scheduling

decision.

The Low-Level Scheduler

Scheduling is divided into two parts: a simple low-level scheduler that runs frequently and a

more complex high-level scheduler that runs at most a few times per second. The low-level

scheduler runs every time a thread blocks and a new thread must be selected to run. For

efficiency when running thousands of times per second, it must make its decision quickly with a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref06

145

minimal amount of information. To simplify its task, the kernel maintains a set of run queues

for each CPU in the system that are organized from high to low priority. When a task blocks on a

CPU, the low-level scheduler’s sole responsibility is to select the thread from the highest-priority

non-empty run queue for that CPU. The high-level scheduler is responsible for setting the

thread priorities and deciding on which CPU’s run queue they should be placed. Each CPU has

its own set of run queues to avoid contention for access when two CPUs both need to select a

new thread to run at the same time. Contention between run queues occurs only when the

high-level scheduler decides to move a thread from the run queue of one CPU to the run queue

of another CPU. The kernel tries to avoid moving threads between CPUs as the loss of its

CPU-local caches slows it down.

All threads that are runnable are assigned a scheduling priority and a CPU by the high-level

scheduler that determines in which run queue they are placed. In selecting a new thread to run,

the low-level scheduler scans the run queues of the CPU needing a new thread from highest to

lowest priority and chooses the first thread on the first nonempty queue. If multiple threads

reside on a queue, the system runs them round robin; that is, it runs them in the order that

they are found on the queue, with equal amounts of time allowed. If a thread blocks, it is not put

back onto any run queue. Instead, it is placed on a turnstile or a sleepqueue. If a thread uses up

the time quantum (or time slice) allowed it, it is placed at the end of the queue from which it

came, and the thread at the front of the queue is selected to run.

The shorter the time quantum, the better the interactive response. However, longer time quanta

provide higher system throughput because the system will incur less overhead from doing

context switches and processor caches will be flushed less often. The time quantum used by

FreeBSD is adjusted by the high-level scheduler as described later in this subsection.

Thread Run Queues and Context Switching

The kernel has a single set of run queues to manage all the thread scheduling classes shown in

Table 4.2. The scheduling-priority calculations described in the previous section are used to

order the set of timesharing threads into the priority ranges between 120 and 223. The real-time

threads and the idle threads priorities are set by the applications themselves but are constrained

by the kernel to be within the ranges 48 to 79 and 224 to 255, respectively. The number of

queues used to hold the collection of all runnable threads in the system affects the cost of

managing the queues. If only a single (ordered) queue is maintained, then selecting the next

runnable thread becomes simple but other operations become expensive. Using 256 different

queues can significantly increase the cost of identifying the next thread to run. The system uses

64 run queues, selecting a run queue for a thread by dividing the thread’s priority by 4. To save

time, the threads on each queue are not further sorted by their priorities.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_448
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab02

146

The run queues contain all the runnable threads in main memory except the currently running

thread. Figure 4.5 shows how each queue is organized as a doubly linked list of thread structures.

The head of each run queue is kept in an array. Associated with this array is a bit vector,

rq_status, that is used in identifying the nonempty run queues. Two routines, runq_add() and

runq_remove(), are used to place a thread at the tail of a run queue, and to take a thread off the

head of a run queue. The heart of the scheduling algorithm is the runq_choose() routine. The

runq_choose() routine is responsible for selecting a new thread to run; it operates as follows:

1. Ensures that our caller acquired the lock associated with the run queue.

2. Locates a nonempty run queue by finding the location of the first nonzero bit in the rq_status

bit vector. If rq_status is zero, there are no threads to run, so selects an idle loop thread.

3. Given a nonempty run queue, removes the first thread on the queue.

4. If this run queue is now empty as a result of removing the thread, clears the appropriate bit in

rq_status.

5. Returns the selected thread.

Figure 4.5 Queueing structure for runnable threads.

The context-switch code is broken into two parts. The machine-independent code resides in

mi_switch(); the machine-dependent part resides in cpu_switch(). On most architectures,

cpu_switch() is coded in assembly language for efficiency.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_151

147

Given the mi_switch() routine and the thread-priority calculations, the only missing piece in the

scheduling facility is how the system forces an involuntary context switch. Remember that

voluntary context switches occur when a thread calls the sleep() routine. Sleep() can be invoked

only by a runnable thread, so sleep() needs only to place the thread on a sleep queue and to

invoke mi_switch() to schedule the next thread to run. Often, an interrupt thread will not want

to sleep() itself but will be delivering data that will cause the kernel to want to run a different

thread than the one that was running before the interrupt. Thus, the kernel needs a mechanism

to request that an involuntary context switch be done at the conclusion of the interrupt.

This mechanism is handled by setting the currently running thread’s TDF_NEEDRESCHED flag

and then posting an asynchronous system trap (AST). An AST is a trap that is delivered to

a thread the next time that thread is preparing to return from an interrupt, a trap, or a system

call. Some architectures support ASTs directly in hardware; other systems emulate ASTs by

checking an AST flag at the end of every system call, trap, and interrupt. When the hardware

AST trap occurs or the AST flag is set, the mi_switch() routine is called instead of the current

thread resuming execution. Rescheduling requests are made by the sched_lend_user_prio(),

sched_clock(), sched_setpreempt(), and sched_affinity() routines.

With the advent of multiprocessor support, FreeBSD can preempt threads executing in kernel

mode. However, such preemption is generally not done for threads running in the timesharing

class, so the worst-case real-time response to events when running with the timeshare scheduler

is defined by the longest path through the top half of the kernel. Since the system guarantees no

upper bounds on the duration of a system call, when running with just the timeshare scheduler

FreeBSD is decidedly not a hard real-time system.

Real-time and interrupt threads do preempt lower-priority threads. The longest path that

preemption is disabled for real-time and interrupt threads is defined by the longest time a

spinlock is held or a critical section is entered. Thus, when using real-time threads, microsecond

real-time deadlines can be met. The kernel can be configured to preempt timeshare threads

executing in the kernel with other higher-priority timeshare threads. This option is not used by

default as the increase in context switches adds overhead and does not help make timeshare

threads response time more predictable.

Timeshare Thread Scheduling

The goal of a multiprocessing system is to apply the power of multiple CPUs to a problem, or set

of problems, to achieve a result in less time than it would run on a single-processor system. If a

system has the same number of runnable threads as it does CPUs, then achieving this goal is

easy. Each runnable thread gets a CPU to itself and runs to completion. Typically, there are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_17

148

many runnable threads competing for a few processors. One job of the scheduler is to ensure

that the CPUs are always busy and are not wasting their cycles. When a thread completes its

work, or is blocked waiting for resources, it is removed from the processor on which it was

running. While a thread is running on a processor, it brings its working set—the instructions it is

executing and the data on which it is operating—into the CPU’s memory cache. Migrating a

thread has a cost. When a thread is moved from one CPU to another, its CPU-cache working set

is lost and must be removed from the CPU on which it was running and then loaded into the

new CPU to which it has been migrated. The performance of a multiprocessing system with a

naive scheduler that does not take this cost into account can fall beneath that of a

single-processor system. The term processor affinity describes a scheduler that only

migrates threads when necessary to give an idle processor something to do.

A multiprocessing system may be built with multiple processor chips. Each processor chip may

have multiple CPU cores, each of which can execute a thread. The CPU cores on a single

processor chip share many of the processor’s resources, such as memory caches and access to

main memory, so they are more tightly synchronized than the CPUs on other processor chips.

Handling processor chips with multiple CPUs is a derivative form of load balancing among

CPUs on different chips. It is handled by maintaining a hierarchy of CPUs. The CPUs on the

same chip are the cheapest between which to migrate threads. Next down in the hierarchy are

processor chips on the same motherboard. Below them are chips connected by the same

backplane. The scheduler supports an arbitrary depth hierarchy as dictated by the hardware.

When the scheduler is deciding to which processor to migrate a thread, it will try to pick a new

processor higher in the hierarchy because that is the lowest-cost migration path.

From a thread’s perspective, it does not know that there are other threads running on the same

processor because the processor is handling them independently. The one piece of code in the

system that needs to be aware of the multiple CPUs is the scheduling algorithm. In particular,

the scheduler treats each CPU on a chip as one on which it is cheaper to migrate threads than it

would be to migrate the thread to a CPU on another chip. The mechanism for getting tighter

affinity between CPUs on the same processor chip versus CPUs on other processor chips is

described later in this section.

The traditional FreeBSD scheduler maintains a global list of runnable threads that it traverses

once per second to recalculate their priorities. The use of a single list for all runnable threads

means that the performance of the scheduler is dependent on the number of tasks in the system,

and as the number of tasks grow, more CPU time must be spent in the scheduler maintaining

the list.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_297

149

The ULE scheduler was developed during FreeBSD 5.0 with major work continuing into

FreeBSD 9.0, spanning 10 years of development. The scheduler was developed to address

shortcomings of the traditional BSD scheduler on multiprocessor systems. A new scheduler was

undertaken for several reasons:

• To address the need for processor affinity in multiprocessor systems

• To supply equitable distribution of load between CPUs on multiprocessor systems

• To provide better support for processors with multiple CPU cores on a single chip

• To improve the performance of the scheduling algorithm so that it is no longer dependent on

the number of threads in the system

• To provide interactivity and timesharing performance similar to the traditional BSD scheduler.

The traditional BSD scheduler had good interactivity on large timeshare systems and single-user

desktop and laptop systems. However, it had a single global run queue and consequently a

single global scheduler lock. Having a single global run queue was slowed both by contention for

the global lock and by difficulties implementing CPU affinity.

The priority computation relied on a single global timer that iterated over every runnable thread

in the system and evaluated its priority while holding several highly contended locks. This

approach became slower as the number of runnable threads increased. While the priority

calculations were being done, processes could not fork or exit and CPUs could not context

switch.

The ULE scheduler can logically be thought of as two largely orthogonal sets of algorithms;

those that manage the affinity and distribution of threads among CPUs and those that are

responsible for the order and duration of a thread’s runtime. These two sets of algorithms work

in concert to provide a balance of low latency, high throughput, and good resource utilization.

The remainder of the scheduler is event driven and uses these algorithms to implement various

decisions according to changes in system state.

The goal of equalling the exceptional interactive behavior and throughput of the traditional BSD

scheduler in a multiprocessor-friendly and constant-time implementation was the most

challenging and time consuming part of ULE’s development. The interactivity, CPU utilization

estimation, priority, and time slice algorithms together implement the timeshare scheduling

policy.

150

The behavior of threads is evaluated by ULE on an event-driven basis to differentiate interactive

and batch threads. Interactive threads are those that are thought to be waiting for and

responding to user input. They require low latency to achieve a good user experience. Batch

threads are those that tend to consume as much CPU as they are given and may be background

jobs. A good example of the former is a text editor, and for the latter, a compiler. The scheduler

must use imperfect heuristics to provide a gradient of behaviors based on a best guess of the

category to which a given thread fits. This categorization may change frequently during the

lifetime of a thread and must be responsive on timescales relevant to people using the system.

The algorithm that evaluates interactivity is called the interactivity score. The interactivity score

is the ratio of voluntary sleep time to run time normalized to a number between 0 and 100. This

score does not include time waiting on the run queue while the thread is not yet the highest

priority thread in the queue. By requiring explicit voluntary sleeps, we can differentiate threads

that are not running because of inferior priority versus those that are periodically waiting for

user input. This requirement also makes it more challenging for a thread to be marked

interactive as system load increases, which is desirable because it prevents the system from

becoming swamped with interactive threads while keeping things like shells and simple text

editors available to administrators. When plotted, the interactivity scores derived from a matrix

of possible sleep and run times becomes a three-dimensional sigmoid function. Using this

approach means that interactive tasks tend to stay interactive and batch tasks tend to stay

batched.

A particular challenge is complex X Window applications such as Web browsers and office

productivity packages. These applications may consume significant resources for brief periods of

time, however the user expects them to remain interactive. To resolve this issue, a

several-second history of the sleep and run behavior is kept and gradually decayed. Thus, the

scheduler keeps a moving average that can tolerate bursts of behavior but will quickly penalize

timeshare threads that abuse their elevated status. A longer history allows longer bursts but

learns more slowly.

The interactivity score is compared to the interactivity threshold, which is the cutoff point for

considering a thread interactive. The interactivity threshold is modified by the process nice

value. Positive nice values make it more challenging for a thread to be considered interactive,

while negative values make it easier. Thus, the nice value gives the user some control over the

primary mechanism of reducing thread-scheduling latency.

A thread is considered to be interactive if the ratio of its voluntary sleep time versus its run time

is below a certain threshold. The interactivity threshold is defined in the ULE code and is not

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_239

151

configurable. ULE uses two equations to compute the interactivity score of a thread. For threads

whose sleep time exceeds their run time, Eq 4.1 is used:

When a thread’s run time exceeds its sleep time, Eq. 4.2 is used instead:

The scaling factor is the maximum interactivity score divided by two. Threads that score below

the interactivity threshold are considered to be interactive; all others are noninteractive. The

sched_interact_update() routine is called at several points in a threads existence—for example,

when the thread is awakened by a wakeup() call—to update the thread’s run time and sleep time.

The sleep- and run-time values are only allowed to grow to a certain limit. When the sum of the

run time and sleep time pass the limit, they are reduced to bring them back into range. An

interactive thread whose sleep history was not remembered at all would not remain interactive,

resulting in a poor user experience. Remembering an interactive thread’s sleep time for too long

would allow the thread to get more than its fair share of the CPU. The amount of history that is

kept and the interactivity threshold are the two values that most strongly influence a user’s

interactive experience on the system.

Priorities are assigned according to the thread’s interactivity status. Interactive threads have a

priority that is derived from the interactivity score and are placed in a priority band above batch

threads. They are scheduled like real-time round-robin threads. Batch threads have their

priorities determined by the estimated CPU utilization modified according to their process nice

value. In both cases, the available priority range is equally divided among possible interactive

scores or percent-cpu calculations, both of which are values between 0 and 100. Since there are

fewer than 100 priorities available for each class, some values share priorities. Both

computations roughly assign priorities according to a history of CPU utilization but with

different longevities and scaling factors.

The CPU utilization estimator accumulates run time as a thread runs and decays it as a thread

sleeps. The utilization estimator provides the percent-cpu values displayed in top and ps. ULE

delays the decay until a thread wakes to avoid periodically scanning every thread in the system.

Since this delay leaves values unchanged for the duration of sleeps, the values must also be

decayed before any user process inspects them. This approach preserves the constant-time and

event-driven nature of the scheduler.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04equ01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04equ01

152

The CPU utilization is recorded in the thread as the number of ticks, typically 1 millisecond,

during which a thread has been running, along with window of time defined as a first and last

tick. The scheduler attempts to keep roughly 10 seconds of history. To accomplish decay, it waits

until there are 11 seconds of history and then subtracts one-tenth of the tick value while moving

the first tick forward 1 second. This inexpensive, estimated moving-average algorithm has the

property of allowing arbitrary update intervals. If the utilization information is inspected after

more than the update interval has passed, the tick value is zeroed. Otherwise, the number of

seconds that have passed divided by the update interval is subtracted.

The scheduler implements round-robin through the assignment of time slices. A time slice is a

fixed interval of allowed run time before the scheduler will select another thread of equal

priority to run. The time slice prevents starvation among equal priority threads. The time slice

times the number of runnable threads in a given priority defines the maximum latency a thread

of that priority will experience before it can run. To bound this latency, ULE dynamically adjusts

the size of slices it dispenses based on system load. The time slice has a minimum value to

prevent thrashing and balance throughput with latency. An interrupt handler calls the scheduler

to evaluate the time slice during every statclock tick. Using the stat-clock to evaluate the time

slice is a stochastic approach to slice accounting that is efficient but only grossly accurate.

The scheduler must also work to prevent starvation of low-priority batch jobs by higher-priority

batch jobs. The traditional BSD scheduler avoided starvation by periodically iterating over all

threads waiting on the run queue to elevate the low-priority threads and decrease the priority of

higher-priority threads that had been monopolizing the CPU. This algorithm violates the desire

to run in constant time independent of the number of system threads. As a result, the run queue

for batch-policy timeshare threads is kept in a similar fashion to the system callwheel, also

known as a calendar queue. A calendar queue is one in which the queue’s head and tail rotate

according to a clock or period. An element can be inserted into a calendar queue many positions

away from the head and gradually migrate toward the head. Because this run queue is special

purpose, it is kept separately from the real-time and idle queues while interactive threads are

kept along with the real-time threads until they are no longer considered interactive.

The ULE scheduler creates a set of three arrays of queues for each CPU in the system. Having

per-CPU queues makes it possible to implement processor affinity in a multiprocessor system.

One array of queues is the idle queue, where all idle threads are stored. The array is arranged

from highest to lowest priority. The second array of queues is designated the realtime queue.

Like the idle queue, it is arranged from highest to lowest priority.

The third array of queues is designated the timeshare queue. Rather than being arranged in

priority order, the timeshare queues are managed as a calendar queue. A pointer references the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_152

153

current entry. The pointer is advanced once per system tick, although it may not advance on a

tick until the currently selected queue is empty. Since each thread is given a maximum time slice

and no threads may be added to the current position, the queue will drain in a bounded amount

of time. This requirement to empty the queue before advancing to the next queue means that the

wait time a thread experiences is not only a function of its priority but also the system load.

Insertion into the timeshare queue is defined by the relative difference between a thread’s

priority and the best possible timeshare priority. High-priority threads will be placed soon after

the current position. Low-priority threads will be placed far from the current position. This

algorithm ensures that even the lowest-priority timeshare thread will eventually make it to the

selected queue and execute in spite of higher-priority timeshare threads being available in other

queues. The difference in priorities of two threads will determine their ratio of run-time. The

higher-priority thread may be inserted ahead of the lower-priority thread multiple times before

the queue position catches up. This run-time ratio is what grants timeshare CPU hogs with

different nice values, different proportional shares of the CPU.

These algorithms taken together determine the priorities and run times of timesharing threads.

They implement a dynamic tradeoff between latency and throughput based on system load,

thread behavior, and a range of effects based on user-scheduling decisions made with nice.

Many of the parameters governing the limits of these algorithms can be explored in real time

with the sysctl kern.sched tree. The rest are compile-time constants that are documented at the

top of the scheduler source file (/sys/kern/sched_ule.c).

Threads are picked to run, in priority order, from the realtime queue until it is empty, at which

point threads from the currently selected timeshare queue will be run. Threads in the idle

queues are run only when the other two arrays of queues are empty. Real-time and interrupt

threads are always inserted into the realtime queues so that they will have the least possible

scheduling latency. Interactive threads are also inserted into the realtime queue to keep the

interactive response of the system acceptable.

Noninteractive threads are put into the timeshare queues and are scheduled to run when the

queues are switched. Switching the queues guarantees that a thread gets to run at least once

every pass around the array of the timeshare queues regardless of priority, thus ensuring fair

sharing of the processor.

Multiprocessor Scheduling

A principal goal behind the development of ULE was improving performance on multiprocessor

systems. Good multiprocessing performance involves balancing affinity with utilization and the

154

preservation of the illusion of global scheduling in a system with local scheduling queues. These

decisions are implemented using a CPU topology supplied by machine-dependent code that

describes the relationships between CPUs in the system. The state is evaluated whenever a

thread becomes runnable, a CPU idles, or a periodic task runs to rebalance the load. These

events form the entirety of the multiprocessor-aware scheduling decisions.

The topology system was devised to identify which CPUs were symmetric multi-threading peers

and then made generic to support other relationships. Some examples are CPUs within a

package, CPUs sharing a layer of cache, CPUs that are local to a particular memory, or CPUs

that share execution units such as in symmetric multi-threading. This topology is implemented

as a tree of arbitrary depth where each level describes some shared resource with a cost value

and a bitmask of CPUs sharing that resource. The root of the tree holds CPUs in a system with

branches to each socket, then shared cache, shared functional unit, etc. Since the system is

generic, it should be extensible to describe any future processor arrangement. There is no

restriction on the depth of the tree or requirement that all levels are implemented.

Parsing this topology is a single recursive function called cpu_search(). It is a path-aware,

goal-based, tree-traversal function that may be started from arbitrary subtrees. It may be asked

to find the least- or most-loaded CPU that meets a given criteria, such as a priority or load

threshold. When considering load, it will consider the load of the entire path, thus giving the

potential for balancing sockets, caches, chips, etc. This function is used as the basis for all

multiprocessing-related scheduling decisions. Typically, recursive functions are avoided in

kernel programming because there is potential for stack exhaustion. However, the depth is fixed

by the depth of the processor topology that typically does not exceed three.

When a thread becomes runnable as a result of a wakeup, unlock, thread creation, or other event,

the sched_pickcpu() function is called to decide where it will run. ULE determines the best CPU

based on the following criteria:

• Threads with hard affinity to a single CPU or short-term binding pick the only allowed CPU.

• Interrupt threads that are being scheduled by their hardware interrupt handlers are scheduled

on the current CPU if their priority is high enough to run immediately.

• Thread affinity is evaluated by walking backwards up the tree starting from the last CPU on

which it was scheduled until a package or CPU is found with valid affinity that can run the

thread immediately.

• The whole system is searched for the least-loaded CPU that is running a lower-priority thread

than the one to be scheduled.

155

• The whole system is searched for the least-loaded CPU.

• The results of these searches are compared to the current CPU to see if that would give a

preferable decision to improve locality among the sleeping and waking threads as they may

share some state.

This approach orders from most preferential to least preferential. The affinity is valid if the sleep

time of the thread was shorter than the product of a time constant and a largest-cache-shared

level in the topology. This computation coarsely models the time required to push state out of

the cache. Each thread has a bitmap of allowed CPUs that is manipulated by cpuset and is

passed to cpu_search() for every decision. The locality between sleeper and waker can improve

producer/consumer type threading situations when they have shared cache state but it can also

cause underutilization when each thread would run faster given its own CPU. These examples

exemplify the types of decisions that must be made with imperfect information.

The next major multiprocessing algorithm runs when a CPU idles. The CPU sets a bit in a

bitmask shared by all processors that says that it is idle. The idle CPU calls tdq_idled() to search

other CPUs for work that can be migrated, or stolen in ULE terms, to keep the CPU busy. To

avoid thrashing and excessive migration, the kernel sets a load threshold that must be exceeded

on another CPU before some load will be taken. If any CPU exceeds this threshold, the idle CPU

will search its run queues for work to migrate. The highest-priority work that can be scheduled

on the idle CPU is then taken. This migration may be detrimental to affinity but improves many

latency-sensitive workloads.

Work may also be pushed to an idle CPU. Whenever an active CPU is about to add work to its

own run queue, it first checks to see if it has excess work and if another CPU in the system is idle.

If an idle CPU is found, then the thread is migrated to the idle CPU using an interprocessor

interrupt (IPI). Making a migration decision by inspecting a shared bitmask is much faster

than scanning the run queues of all the other processors. Seeking out idle processors when

adding a new task works well because it spreads the load when it is presented to the system.

The last major multiprocessing algorithm is the long-term load balancer. This form of migration,

called push migration, is done by the system on a periodic basis and more aggressively

offloads work to other processors in the system. Since the two scheduling events that distribute

load only run when a thread is added and when a CPU idles, it is possible to have a long-term

imbalance where more threads are running on one CPU than another. Push migration ensures

fairness among the runnable threads. For example, with three runnable threads on a

two-processor system, it would be unfair for one thread to get a processor to itself while the

other two had to share the second processor. To fulfill the goal of emulating a fair global run

queue, ULE must periodically shuffle threads to keep the system balanced. By pushing a thread

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_308

156

from the processor with two threads to the processor with one thread, no single thread would

get to run alone indefinitely. An ideal implementation would give each thread an average of 66

percent of the CPU available from a single CPU.

The long-term load balancer balances the worst path pair in the hierarchy to avoid socket-,

cache-, and chip-level imbalances. It runs from an interrupt handler in a randomized interval of

roughly 1 second. The interval is randomized to prevent harmonic relationships between

periodic threads and the periodic load balancer. In much the same way a stochastic sampling

profiler works, the balancer picks the most- and least-loaded path from the current tree position

and then recursively balances those paths by migrating threads.

The scheduler must decide whether it is necessary to send an IPI when adding a thread to a

remote CPU, just as it must decide whether adding a thread to the current CPU should preempt

the current thread. The decision is made based on the current priority of the thread running on

the target CPU and the priority of the thread being scheduled. Preempting whenever the pushed

thread has a higher priority than the currently running thread results in excessive interrupts and

preemptions. Thus, a thread must exceed the timesharing priority before an IPI is generated.

This requirement trades some latency in batch jobs for improved performance.

A notable omission to the load balancing events is thread preemption. Preempted threads are

simply added back to the run queue of the current CPU. An additional load-balancing decision

can be made here. However, the runtime of the preempting thread is not known and the

preempted thread may maintain affinity. The scheduler optimistically chooses to wait and

assume affinity is more valuable than latency.

Each CPU in the system has its own set of run queues, statistics, and a lock to protect these

fields in a thread-queue structure. During migration or a remote wakeup, a lock may be

acquired by a CPU other than the one owning the queue. In practice, contention on these locks is

rare unless the workload exhibits grossly overactive context switching and thread migration,

typically suggesting a higher-level problem. Whenever a pair of these locks is required, such as

for load balancing, a special function locks the pair with a defined lock order. The lock order is

the lock with the lowest pointer value first. These per-CPU locks and queues resulted in nearly

linear scaling with well-behaved workloads in cases where performance previously did not

improve with the addition of new CPUs and occasionally have decreased as new CPUs

introduced more contention. The design has scaled well from single CPUs to 512-thread network

processors.

157

Adaptive Idle

Many workloads feature frequent interrupts that do little work but need low latency. These

workloads are common in low-throughput, high-packet-rate networking. For these workloads,

the cost of waking the CPU from a low-power state, possibly with an IPI from another CPU, is

excessive. To improve performance, ULE includes a feature that optimistically spins, waiting for

load when the CPU has been context switching at a rate exceeding a set frequency. When this

frequency lowers or we exceed the adaptive spin count, the CPU is put into a deeper sleep.

Traditional Timeshare Thread Scheduling

The traditional FreeBSD timeshare-scheduling algorithm is based on multilevel feedback

queues. The system adjusts the priority of a thread dynamically to reflect resource

requirements (e.g., being blocked awaiting an event) and the amount of resources consumed by

the thread (e.g., CPU time). Threads are moved between run queues based on changes in their

scheduling priority (hence the word “feedback” in the name multilevel feedback queue).

When a thread other than the currently running thread attains a higher priority (by having that

priority either assigned or given when it is awakened), the system switches to that thread

immediately if the current thread is in user mode. Otherwise, the system switches to the

higher-priority thread as soon as the current thread exits the kernel. The system tailors this

short-term-scheduling algorithm to favor interactive jobs by raising the scheduling

priority of threads that are blocked waiting for I/O for 1 or more seconds and by lowering the

priority of threads that accumulate significant amounts of CPU time.

The time quantum is always 0.1 second. This value was empirically found to be the longest

quantum that could be used without loss of the desired response for interactive jobs such as

editors. Perhaps surprisingly, the time quantum remained unchanged over the 30-year lifetime

of this scheduler. Although the time quantum was originally selected on centralized timesharing

systems with many users, it has remained correct for decentralized laptops. While laptop users

expect a response time faster than that anticipated by the original timesharing users, the shorter

run queues on the single-user laptop made a shorter quantum unnecessary.

4.5 Process Creation

In FreeBSD, new processes are created with the fork family of system calls. The fork system call

creates a complete copy of the parent process. The rfork system call creates a new process entry

that shares a selected set of resources from its parent rather than making copies of everything.

The vfork system call differs from fork in how the virtual-memory resources are treated; vfork

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_381

158

also ensures that the parent will not run until the child does either an exec or exit system call.

The vfork system call is described in Section 6.6.

The process created by a fork is termed a child process of the original parent process. From

a user’s point of view, the child process is an exact duplicate of the parent process except for two

values: the child PID and the parent PID. A call to fork returns the child PID to the parent and

zero to the child process. Thus, a program can identify whether it is the parent or child process

after a fork by checking this return value.

A fork involves three main steps:

1. Allocating and initializing a new process structure for the child process

2. Duplicating the context of the parent (including the thread structure and virtual-memory

resources) for the child process

3. Scheduling the child process to run

The second step is intimately related to the operation of the memory-management facilities

described in Chapter 6. Consequently, only those actions related to process management will be

described here.

The kernel begins by allocating memory for the new process and thread entries (see Figure 4.1).

These thread and process entries are initialized in three steps: One part is copied from the

parent’s corresponding structure, another part is zeroed, and the rest is explicitly initialized. The

zeroed fields include recent CPU utilization, wait channel, swap and sleep time, timers, tracing,

and pending-signal information. The copied portions include all the privileges and limitations

inherited from the parent, including the following:

• The process group and session

• The signal state (ignored, caught, and blocked signal masks)

• The p_nice scheduling parameter

• A reference to the parent’s credential

• A reference to the parent’s set of open files

• A reference to the parent’s limits

The child’s explicitly set information includes:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig01

159

• The process’s signal-actions structure

• Zeroing the process’s statistics structure

• Entry onto the list of all processes

• Entry onto the child list of the parent and the back pointer to the parent

• Entry onto the parent’s process-group list

• Entry onto the hash structure that allows the process to be looked up by its PID

• A new PID for the process

The new PID must be unique among all processes. Early versions of BSD verified the uniqueness

of a PID by performing a linear search of the process table. This search became infeasible on

large systems with many processes. FreeBSD maintains a range of unallocated PIDs between

lastpid and pidchecked. It allocates a new PID by incrementing and then using the value of

lastpid. When the newly selected PID reaches pidchecked, the system calculates a new range of

unused PIDs by making a single scan of all existing processes (not just the active ones are

scanned—zombie and swapped processes also are checked).

The final step is to copy the parent’s address space. To duplicate a process’s image, the kernel

invokes the memory-management facilities through a call to vm_forkproc(). The vm_forkproc()

routine is passed a pointer to the initialized process structure for the child process and is

expected to allocate all the resources that the child will need to execute. The call to

vm_forkproc() returns through a different execution path directly into user mode in the child

process and via the normal execution path in the parent process.

Once the child process is fully built, its thread is made known to the scheduler by being placed

on the run queue. The alternate return path will set the return value of fork system call in the

child to 0. The normal execution return path in the parent sets the return value of the fork

system call to be the new PID.

4.6 Process Termination

Processes terminate either voluntarily through an exit system call or involuntarily as the result

of a signal. In either case, process termination causes a status code to be returned to the parent

of the terminating process (if the parent still exists). This termination status is returned through

the wait4 system call. The wait4 call permits an application to request the status of both

stopped and terminated processes. The wait4 request can wait for any direct child of the parent,

160

or it can wait selectively for a single child process or for only its children in a particular process

group. Wait4 can also request statistics describing the resource utilization of a terminated child

process. Finally, the wait4 interface allows a process to request status codes without blocking.

Within the kernel, a process terminates by calling the exit() routine. The exit() routine first kills

off any other threads associated with the process. The termination of other threads is done as

follows:

• Any thread entering the kernel from userspace will thread_exit() when it traps into the kernel.

• Any thread already in the kernel and attempting to sleep will return immediately with EINTR

or EAGAIN, which will force them back out to userspace, freeing resources as they go. When the

thread attempts to return to userspace, it will instead hit exit().

The exit() routine then cleans up the process’s kernel-mode execution state by doing the

following:

• Canceling any pending timers

• Releasing virtual-memory resources

• Closing open descriptors

• Handling stopped or traced child processes

With the kernel-mode state reset, the process is then removed from the list of active

processes—the allproc list—and is placed on the list of zombie processes pointed to by

zombproc. The process state is changed to show that no thread is currently running. The exit()

routine then does the following:

• Records the termination status in the p_xstat field of the process structure

• Bundles up a copy of the process’s accumulated resource usage (for accounting purposes) and

hangs this structure from the p_ru field of the process structure

• Notifies the deceased process’s parent

Finally, after the parent has been notified, the cpu_exit() routine frees any machine-dependent

process resources and arranges for a final context switch from the process.

The wait4 call works by searching a process’s descendant processes for ones that have entered

the ZOMBIE state (e.g., that have terminated). If a process in ZOMBIE state is found that

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_496

161

matches the wait criterion, the system will copy the termination status from the deceased

process. The process entry then is taken off the zombie list and is freed. Note that resources used

by children of a process are accumulated only as a result of a wait4 system call. When users are

trying to analyze the behavior of a long-running program, they will find it useful to be able to

obtain this resource usage information before the termination of a process. Although the

information is available inside the kernel and within the context of that program, there is no

interface to request it outside that context until process termination.

4.7 Signals

Signals were originally designed to model exceptional events, such as an attempt by a user to kill

a runaway program. They were not intended to be used as a general

interprocess-communication mechanism, and thus no attempt was made to make them

reliable. In earlier systems, whenever a signal was caught, its action was reset to the default

action. The introduction of job control brought much more frequent use of signals and made

more visible a problem that faster processors also exacerbated: If two signals were sent rapidly,

the second could cause the process to die, even though a signal handler had been set up to catch

the first signal. At this time, reliability became desirable, so the developers designed a new

framework that contained the old capabilities as a subset while accommodating new

mechanisms.

The signal facilities found in FreeBSD are designed around a virtual-machine model, in

which system calls are considered to be the parallel of a machine’s hardware instruction set.

Signals are the software equivalent of traps or interrupts, and signal-handling routines do the

equivalent function of interrupt or trap service routines. Just as machines provide a mechanism

for blocking hardware interrupts so that consistent access to data structures can be ensured, the

signal facilities allow software signals to be masked. Finally, because complex run-time stack

environments may be required, signals, like interrupts, may be handled on an alternate

application-provided run-time stack. These machine models are summarized in Table 4.4

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab04

162

Table 4.4 Comparison of hardware-machine operations and the corresponding software

virtual-machine operations.

FreeBSD defines a set of signals for software and hardware conditions that may arise during

the normal execution of a program; these signals are listed in Table 4.5. Signals may be

delivered to a process through application-specified signal handlers or may result in default

actions, such as process termination, carried out by the system. FreeBSD signals are designed to

be software equivalents of hardware interrupts or traps.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_384

163

Table 4.5 Signals defined in FreeBSD.

Each signal has an associated action that defines how it should be handled when it is delivered

to a process. If a process contains more than one thread, each thread may specify whether it

wishes to take action for each signal. Typically, one thread elects to handle all the

process-related signals such as interrupt, stop, and continue. All the other threads in the process

request that the process-related signals be masked out. Thread-specific signals such as

segmentation fault, floating point exception, and illegal instruction are handled by the thread

that caused them. Thus, all threads typically elect to receive these signals. The precise

disposition of signals to threads is given in the later subsection on posting a signal. First, we

describe the possible actions that can be requested.

The disposition of signals is specified on a per-process basis. If a process has not specified an

action for a signal, it is given a default action (see Table 4.5) that may be any one of the

following:

• Ignoring the signal

• Terminating all the threads in the process

• Terminating all the threads in the process after generating a core file that contains the

process’s execution state at the time the signal was delivered

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_64

164

• Stopping all the threads in the process

• Resuming the execution of all the threads in the process

An application program can use the sigaction system call to specify an action for a signal,

including these choices:

• Taking the default action

• Ignoring the signal

• Catching the signal with a handler

A signal handler is a user-mode routine that the system will invoke when the signal is

received by the process. The handler is said to catch the signal. The two signals SIGSTOP and

SIGKILL cannot be masked, ignored, or caught; this restriction ensures that a software

mechanism exists for stopping and killing runaway processes. It is not possible for a process to

decide which signals would cause the creation of a core file by default, but it is possible for a

process to prevent the creation of such a file by ignoring, blocking, or catching the signal.

Signals are posted to a process by the system when it detects a hardware event, such as an illegal

instruction, or a software event, such as a stop request from the terminal. A signal may also be

posted by another process through the kill system call. A sending process may post signals to

only those receiving processes that have the same effective user identifier (unless the sender is

the superuser). A single exception to this rule is the continue signal, SIGCONT, which always

can be sent to any descendant of the sending process. The reason for this exception is to allow

users to restart a setuid program that they have stopped from their keyboard.

Like hardware interrupts, each thread in a process can mask the delivery of signals. The

execution state of each thread contains a set of signals currently masked from delivery. If a

signal posted to a thread is being masked, the signal is recorded in the thread’s set of pending

signals, but no action is taken until the signal is unmasked. The sigprocmask system call

modifies the set of masked signals for a thread. It can add to the set of masked signals, delete

from the set of masked signals, or replace the set of masked signals. Although the delivery of the

SIGCONT signal to the signal handler of a process may be masked, the action of resuming that

stopped process is not masked.

Two other signal-related system calls are sigsuspend and sigaltstack. The sigsuspend call

permits a thread to relinquish the processor until that thread receives a signal. This facility is

similar to the system’s sleep() routine. The sigaltstack call allows a process to specify a run-time

stack to use in signal delivery. By default, the system will deliver signals to a process on the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_58

165

latter’s normal run-time stack. In some applications, however, this default is unacceptable. For

example, if an application has many threads that have carved up the normal run-time stack into

many small pieces, it is far more memory efficient to create one large signal stack on which all

the threads handle their signals than it is to reserve space for signals on each thread’s stack.

The final signal-related facility is the sigreturn system call. Sigreturn is the equivalent of a

user-level load-processor-context operation. The kernel is passed a pointer to a

(machine-dependent) context block that describes the user-level execution state of a thread. The

sigreturn system call restores state and resumes execution after a normal return from a user’s

signal handler.

Posting of a Signal

The implementation of signals is broken up into two parts: posting a signal to a process and

recognizing the signal and delivering it to the target thread. Signals may be posted by any

process or by code that executes at interrupt level. Signal delivery normally takes place within

the context of the receiving thread. When a signal forces a process to be stopped, the action can

be carried out on all the threads associated with that process when the signal is posted.

A signal is posted to a single process with the psignal() routine or to a group of processes with

the gsignal() routine. The gsignal() routine invokes psignal() for each process in the specified

process group. The actions associated with posting a signal are straightforward, but the details

are messy. In theory, posting a signal to a process simply causes the appropriate signal to be

added to the set of pending signals for the appropriate thread within the process, and the

selected thread is then set to run (or is awakened if it was sleeping at an interruptible priority

level).

The disposition of signals is set on a per-process basis. The kernel first checks to see if the signal

should be ignored, in which case it is discarded. If the process has specified the default action,

then the default action is taken. If the process has specified a signal handler that should be run,

then the kernel must select the appropriate thread within the process that should handle the

signal. When a signal is raised because of the action of the currently running thread (for

example, a segment fault), the kernel will only try to deliver it to that thread. If the thread is

masking the signal, then the signal will be held pending until it is unmasked. When a

process-related signal is sent (for example, an interrupt), then the kernel searches all the

threads associated with the process, searching for one that does not have the signal masked. The

signal is delivered to the first thread that is found with the signal unmasked. If all threads

associated with the process are masking the signal, then the signal is left in the list of signals

pending for the process for later delivery.

166

Each time that a thread returns from a call to sleep() (with the PCATCH flag set) or prepares to

exit the system after processing a system call or trap, it uses the cursig() routine to check

whether a signal is pending delivery. The cursig() routine determines the next signal that should

be delivered to a thread by inspecting the process’s signal list, p_siglist, to see if it has any

signals that should be propagated to the thread’s signal list, td_siglist. It then inspects the

td_siglist field to check for any signals that should be delivered to the thread. If a signal is

pending and must be delivered in the thread’s context, it is removed from the pending set, and

the thread invokes the postsig() routine to take the appropriate action.

The work of psignal() is a patchwork of special cases required by the process-debugging and

job-control facilities and by intrinsic properties associated with signals. The steps involved in

posting a signal are as follows:

1. Determine the action that the receiving process will take when the signal is delivered. This

information is kept in the p_sigignore and p_sigcatch fields of the process’s process structure.

If a process is not ignoring or catching a signal, the default action is presumed to apply. If a

process is being traced by its parent—that is, by a debugger—the parent process is always

permitted to intercede before the signal is delivered. If the process is ignoring the signal,

psignal()’s work is done and the routine can return.

2. Given an action, psignal() selects the appropriate thread and adds the signal to the thread’s

set of pending signals, td_siglist, and then does any implicit actions specific to that signal. For

example, if the signal is the continue signal, SIGCONT, any pending signals that would normally

cause the process to stop, such as SIGTTOU, are removed.

3. Next, psignal() checks whether the signal is being masked. If the thread is currently masking

delivery of the signal, psignal()’s work is complete and it may return.

4. If the signal is not being masked, psignal() must either perform the action directly or arrange

for the thread to execute so that the thread will take the action associated with the signal. Before

setting the thread to a runnable state, psignal() must take different courses of action depending

on the state of the thread as follows:

SLEEPING

The thread is blocked awaiting an event. If the thread is sleeping noninterruptibly, then nothing

further can be done. Otherwise, the kernel can apply the action—either directly or indirectly—by

waking up the thread. There are two actions that can be applied directly. For signals that cause a

process to stop, all the threads in the process are placed in the STOPPED state, and the parent

process is notified of the state change by a SIGCHLD signal being posted to it. For signals that

167

are ignored by default, the signal is removed from the signal list and the work is complete.

Otherwise, the action associated with the signal must be done in the context of the receiving

thread, and the thread is placed onto the run queue with a call to setrunnable().

STOPPED

The process is stopped by a signal or because it is being debugged. If the process is being

debugged, then there is nothing to do until the controlling process permits it to run again. If the

process is stopped by a signal and the posted signal would cause the process to stop again, then

there is nothing to do, and the posted signal is discarded. Otherwise, the signal is either a

continue signal or a signal that would normally cause the process to terminate (unless the signal

is caught). If the signal is SIGCONT, then all the threads in the process that were previously

running are set running again. Any threads in the process that were blocked waiting on an event

are returned to the SLEEPING state. If the signal is SIGKILL, then all the threads in the process

are set running again no matter what, so that they can terminate the next time that they are

scheduled to run. Otherwise, the signal causes the threads in the process to be made runnable,

but the threads are not placed on the run queue because they must wait for a continue signal.

RUNNABLE, NEW, ZOMBIE

If a thread scheduled to receive a signal is not the currently executing thread, its

TDF_NEEDRESCHED flag is set, so that the signal will be noticed by the receiving thread as

soon as possible.

Delivering a Signal

Most actions associated with delivering a signal to a thread are carried out within the context of

that thread. A thread checks its td_siglist field for pending signals at least once each time that it

enters the system by calling cursig().

If cursig() determines that there are any unmasked signals in the thread’s signal list, it calls

issignal() to find the first unmasked signal in the list. If delivering the signal causes a signal

handler to be invoked or a core dump to be made, the caller is notified that a signal is pending,

and the delivery is done by a call to postsig(). That is,

Click here to view code image

if (sig = cursig(curthread))

 postsig(sig);

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04_images.html#p135pro01

168

Otherwise, the action associated with the signal is done within issignal() (these actions mimic

the actions carried out by psignal()).

The postsig() routine has two cases to handle:

1. Producing a core dump

2. Invoking a signal handler

The former task is done by the coredump() routine and is always followed by a call to exit() to

force process termination. To invoke a signal handler, postsig() first calculates a set of masked

signals and installs that set in td_sigmask. This set normally includes the signal being delivered,

so that the signal handler will not be invoked recursively by the same signal. Any signals

specified in the sigaction system call at the time the handler was installed also will be included.

The postsig() routine then calls the sendsig() routine to arrange for the signal handler to execute

immediately after the thread returns to user mode. Finally, the signal in td_siglist is cleared and

postsig() returns, presumably to be followed by a return to user mode.

The implementation of the sendsig() routine is machine dependent. Figure 4.6 shows the flow of

control associated with signal delivery. If an alternate stack has been requested, the user’s stack

pointer is switched to point at that stack. An argument list and the thread’s current user-mode

execution context are stored by the kernel on the (possibly new) stack. The state of the thread is

manipulated so that, on return to user mode, a call will be made immediately to a body of code

termed the signal-trampoline code. This code invokes the signal handler (between steps 2

and 3 in Figure 4.6) with the appropriate argument list, and, if the handler returns, makes a

sigreturn system call to reset the thread’s signal state to the state that existed before the signal.

The signal-trampoline code, sigcode() contains several assembly-language instructions that are

copied onto the thread’s stack when the signal is about to be delivered. It is the responsibility of

the trampoline code to call the registered signal handler, handle any possible errors, and then

return the thread to normal execution. The trampoline code is implemented in assembly

language because it must directly manipulate CPU registers, including those relating to the stack

and return value.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_386
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig06

169

Figure 4.6 Delivery of a signal to a process. Step 1: The kernel places a signal context on the

user’s stack. Step 2: The kernel places a signal-handler frame on the user’s stack and arranges to

start running the user process in the sigtramp() code. When the sigtramp() routine starts

running, it calls the user’s signal handler. Step 3: The user’s signal handler returns to the

sigtramp() routine, which pops the signal-handler context from the user’s stack. Step 4: The

sigtramp() routine finishes by calling the sigreturn system call, which restores the previous user

context from the signal context, pops the signal context from the stack, and resumes the user’s

process at the point at which it was running before the signal occurred.

4.8 Process Groups and Sessions

Each process in the system is associated with a process group. The group of processes in a

process group is sometimes referred to as a job and is manipulated as a single entity by

processes such as the shell. Some signals (e.g., SIGINT) are delivered to all members of a

process group, causing the group as a whole to suspend or resume execution, or to be

interrupted or terminated.

Sessions were designed by the IEEE POSIX.1003.1 Working Group with the intent of fixing a

long-standing security problem in UNIX—namely, that processes could modify the state of

terminals that were trusted by another user’s processes. A session is a collection of process

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_372

170

groups, and all members of a process group are members of the same session. In FreeBSD, when

a user first logs onto the system, he is entered into a new session. Each session has a

controlling process, which is normally the user’s login shell. All subsequent processes

created by the user are part of process groups within this session, unless he explicitly creates a

new session. Each session also has an associated login name, which is usually the user’s login

name. This name can be changed by only the superuser.

Each session is associated with a terminal, known as its controlling terminal. Each

controlling terminal has a process group associated with it. Normally, only processes that are in

the terminal’s current process group read from or write to the terminal, allowing arbitration of a

terminal between several different jobs. When the controlling process exits, access to the

terminal is taken away from any remaining processes within the session.

Newly created processes are assigned process IDs distinct from all already-existing processes

and process groups, and are placed in the same process group and session as their parent. Any

process may set its process group equal to its process ID (thus creating a new process group) or

to the value of any process group within its session. In addition, any process may create a new

session, as long as it is not already a process-group leader.

Process Groups

A process group is a collection of related processes, such as a shell pipeline, all of which have

been assigned the same process-group identifier. The process-group identifier is the same

as the PID of the process group’s initial member; thus, process-group identifiers share the

namespace of process identifiers. When a new process group is created, the kernel allocates a

process-group structure to be associated with it. This process-group structure is entered into a

process-group hash table so that it can be found quickly.

A process is always a member of a single process group. When it is created, each process is

placed into the process group of its parent process. Programs such as shells create new process

groups, usually placing related child processes into a group. A process can change its own

process group or that of one of its child process by creating a new process group or by moving a

process into an existing process group using the setpgid system call. For example, when a shell

wants to set up a new pipeline, it wants to put the processes in the pipeline into a process group

different from its own so that the pipeline can be controlled independently of the shell. The shell

starts by creating the first process in the pipeline, which initially has the same process-group

identifier as the shell. Before executing the target program, the first process does a setpgid to set

its process-group identifier to the same value as its PID. This system call creates a new process

group, with the child process as the process-group leader of the process group. As the shell

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_293

171

starts each additional process for the pipeline, each child process uses setpgid to join the

existing process group.

In our example of a shell creating a new pipeline, there is a race condition. As the additional

processes in the pipeline are spawned by the shell, each is placed in the process group created by

the first process in the pipeline. These conventions are enforced by the setpgid system call. It

restricts the set of process-group identifiers to which a process may be set to either a value equal

to its own PID or to a value of another process-group identifier in its session. Unfortunately, if a

pipeline process other than the process-group leader is created before the process-group leader

has completed its setpgid call, the setpgid call to join the process group will fail. As the setpgid

call permits parents to set the process group of their children (within some limits imposed by

security concerns), the shell can avoid this race by making the setpgid call to change the child’s

process group both in the newly created child and in the parent shell. This algorithm guarantees

that, no matter which process runs first, the process group will exist with the correct

process-group leader. The shell can also avoid the race by using the vfork variant of the fork

system call that forces the parent process to wait until the child process either has done an exec

system call or has exited. In addition, if the initial members of the process group exit before all

the pipeline members have joined the group—for example, if the process-group leader exits

before the second process joins the group, the setpgid call could fail. The shell can avoid this

race by ensuring that all child processes are placed into the process group without calling the

wait system call, usually by blocking the SIGCHLD signal so that the shell will not be notified of

a child exit until after all the children have been placed into the process group. As long as a

process-group member exists, even as a zombie process, additional processes can join the

process group.

There are additional restrictions on the setpgid system call. A process may join process groups

only within its current session (discussed in the next section), and it cannot have done an exec

system call. The latter restriction is intended to avoid unexpected behavior if a process is moved

into a different process group after it has begun execution. Therefore, when a shell calls setpgid

in both parent and child processes after a fork, the call made by the parent will fail if the child

has already made an exec call. However, the child will already have joined the process group

successfully, and the failure is innocuous.

Sessions

Just as a set of related processes are collected into a process group, a set of process groups are

collected into a session. A session is a set of one or more process groups and may be associated

with a terminal device. The main uses for sessions are to collect a user’s login shell and the jobs

that it spawns and to create an isolated environment for a daemon process and its children. Any

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_372

172

process that is not already a process-group leader may create a session using the setsid system

call, becoming the session leader and the only member of the session. Creating a session also

creates a new process group, where the process-group ID is the PID of the process creating the

session, and the process is the process-group leader. By definition, all members of a process

group are members of the same session.

A session may have an associated controlling terminal that is used by default for

communicating with the user. Only the session leader may allocate a controlling terminal for the

session, becoming a controlling process when it does so. A device can be the controlling

terminal for only one session at a time. The terminal I/O system (described in Section 8.6)

synchronizes access to a terminal by permitting only a single process group to be the foreground

process group for a controlling terminal at any time. Some terminal operations are restricted to

members of the session. A session can have at most one controlling terminal. When a session is

created, the session leader is dissociated from its controlling terminal if it had one.

A login session is created by a program that prepares a terminal for a user to log into the system.

That process normally executes a shell for the user, and thus the shell is created as the

controlling process. An example of a typical login session is shown in Figure 4.7.

Figure 4.7 A session and its processes. In this example, process 3 is the initial member of the

session—the session leader—and is referred to as the controlling process if it has a controlling

terminal. It is contained in its own process group, 3. Process 3 has spawned two jobs: One is a

pipeline composed of processes 4 and 5, grouped together in process group 4, and the other one

is process 8, which is in its own process group, 8. No process-group leader can create a new

session; thus, process 3, 4, or 8 could not start its own session, but process 5 would be allowed

to do so.

The data structures used to support sessions and process groups in FreeBSD are shown in

Figure 4.8. This figure parallels the process layout shown in Figure 4.7. The pg_members field

of a process-group structure heads the list of member processes; these processes are linked

together through the p_pglist list entry in the process structure. In addition, each process has a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig07

173

reference to its process-group structure in the p_pgrp field of the process structure. Each

process-group structure has a pointer to its enclosing session. The session structure tracks

per-login information, including the process that created and controls the session, the

controlling terminal for the session, and the login name associated with the session. Two

processes wanting to determine whether they are in the same session can traverse their p_pgrp

pointers to find their process-group structures and then compare the pg_session pointers to see

whether the latter are the same.

Figure 4.8 Process-group organization.

174

Job Control

Job control is a facility first provided by the C shell [Joy, 1994] and today is provided by most

shells. It permits a user to control the operation of groups of processes termed jobs. The most

important facilities provided by job control are the abilities to suspend and restart jobs and to

do the multiplexing of access to the user’s terminal. Only one job at a time is given control of the

terminal and is able to read from and write to the terminal. This facility provides some of the

advantages of window systems, although job control is sufficiently different that it is often used

in combination with window systems. Job control is implemented on top of the process group,

session, and signal facilities.

Each job is a process group. Outside the kernel, a shell manipulates a job by sending signals to

the job’s process group with the killpg system call, which delivers a signal to all the processes in

a process group. Within the system, the two main users of process groups are the terminal

handler (Section 8.6) and the interprocess-communication facilities (Chapter 12). Both facilities

record process-group identifiers in private data structures and use them in delivering signals.

The terminal handler, in addition, uses process groups to multiplex access to the controlling

terminal.

For example, special characters typed at the keyboard of the terminal (e.g., control-C or

control-\) result in a signal being sent to all processes in one job in the session; that job is in the

foreground, whereas all other jobs in the session are in the background. A shell may change

the foreground job by using the tcsetpgrp() function, implemented by the TIOCSPGRP ioctl on

the controlling terminal. Background jobs will be sent the SIGTTIN signal if they attempt to

read from the terminal, normally stopping the job. The SIGTTOU signal is sent to background

jobs that attempt an ioctl system call that would alter the state of the terminal. The SIGTTOU

signal is also sent if the TOSTOP option is set for the terminal, and an attempt is made to write

to the terminal.

The foreground process group for a session is stored in the t_pgrp field of the session’s

controlling terminal tty structure (see Section 8.6). All other process groups within the session

are in the background. In Figure 4.8, the session leader has set the foreground process group for

its controlling terminal to be its own process group. Thus, its two jobs are in the background,

and the terminal input and output will be controlled by the session-leader shell. Job control is

limited to processes contained within the same session and to the terminal associated with the

session. Only the members of the session are permitted to reassign the controlling terminal

among the process groups within the session.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig08

175

If a controlling process exits, the system revokes further access to the controlling terminal and

sends a SIGHUP signal to the foreground process group. If a process such as a job-control shell

exits, each process group that it created will become an orphaned process group: a process

group in which no member has a parent that is a member of the same session but of a different

process group. Such a parent would normally be a job-control shell capable of resuming stopped

child processes. The pg_jobc field in Figure 4.8 counts the number of processes within the

process group that have the controlling process as a parent. When that count goes to zero, the

process group is orphaned. If no action were taken by the system, any orphaned process groups

that were stopped at the time that they became orphaned would be unlikely ever to resume.

Historically, the system dealt harshly with such stopped processes: They were killed. In POSIX

and FreeBSD, an orphaned process group is sent a hangup and a continue signal if any of its

members are stopped when it becomes orphaned by the exit of a parent process. If processes

choose to catch or ignore the hangup signal, they can continue running after becoming

orphaned. The system keeps a count of processes in each process group that have a parent

process in another process group of the same session. When a process exits, this count is

adjusted for the process groups of all child processes. If the count reaches zero, the process

group has become orphaned. Note that a process can be a member of an orphaned process

group even if its original parent process is still alive. For example, if a shell starts a job as a

single process A, that process then forks to create process B, and the parent shell exits; then

process B is a member of an orphaned process group but is not an orphaned process.

To avoid stopping members of orphaned process groups if they try to read or write to their

controlling terminal, the kernel does not send them SIGTTIN and SIGTTOU signals, and

prevents them from stopping in response to those signals. Instead, their attempts to read or

write to the terminal produce an error.

4.9 Process Debugging

FreeBSD provides a simple facility for controlling and debugging the execution of a process. This

facility, accessed through the ptrace system call, permits a parent process to control a child

process’s execution by manipulating user- and kernel-mode execution states. In particular, with

ptrace, a parent process can do the following operations on a child process:

• Attaches to an existing process to begin debugging it

• Reads and writes address space and registers

• Intercepts signals posted to the process

• Single steps and continues the execution of the process

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04fig08

176

• Terminates the execution of the process

The ptrace call is used almost exclusively by program debuggers, such as lldb.

When a process is being traced, any signals posted to that process cause it to enter the

STOPPED state. The parent process is notified with a SIGCHLD signal and may interrogate the

status of the child with the wait4 system call. On most machines, trace traps, generated when

a process is single stepped, and breakpoint faults, caused by a process executing a breakpoint

instruction, are translated by FreeBSD into SIGTRAP signals. Because signals posted to a traced

process cause it to stop and result in the parent being notified, a program’s execution can be

controlled easily.

To start a program that is to be debugged, the debugger first creates a child process with a fork

system call. After the fork, the child process uses a ptrace call that causes the process to be

flagged as “traced” by setting the P_TRACED bit in the p_flag field of the process structure. The

child process then sets the trace trap bit in the process’s processor status word and calls execve

to load the image of the program that is to be debugged. Setting this bit ensures that the first

instruction executed by the child process after the new image is loaded will result in a hardware

trace trap, which is translated by the system into a SIGTRAP signal. Because the parent process

is notified about all signals to the child, it can intercept the signal and gain control over the

program before it executes a single instruction.

Alternatively, the debugger may take over an existing process by attaching to it. A successful

attach request causes the process to enter the STOPPED state and to have its P_TRACED bit set

in the p_flag field of its process structure. The debugger can then begin operating on the

process in the same way as it would with a process that it had explicitly started.

An alternative to the ptrace system call is the /proc filesystem. The functionality provided by

the /proc filesystem is the same as that provided by ptrace; it differs only in its interface. The

/proc filesystem implements a view of the system process table inside the filesystem and is so

named because it is normally mounted on /proc. It provides a two-level view of process space.

At the highest level, processes themselves are named, according to their process IDs. There is

also a special node called curproc that always refers to the process making the lookup request.

Each node is a directory that contains the following entries:

ctl

A write-only file that supports a variety of control operations. Control commands are written as

strings to the ctl file. The control commands are:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_27

177

attach

Stops the target process and arranges for the sending process to become the debug control

process.

detach

Continues execution of the target process and remove it from control by the debug process (that

need not be the sending process).

run

Continues running the target process until a signal is delivered, a breakpoint is hit, or the target

process exits.

step

Single steps the target process, with no signal delivery.

wait

Waits for the target process to come to a steady state ready for debugging. The target process

must be in this state before any of the other commands are allowed.

The string can also be the name of a signal, lowercase and without the SIG prefix, in which case

that signal is delivered to the process.

dbregs

Sets the debug registers as defined by the machine architecture.

etype

The type of the executable referenced by the file entry.

file

A reference to the vnode from which the process text was read. This entry can be used to gain

access to the symbol table for the process or to start another copy of the process.

fpregs

178

The floating point registers as defined by the machine architecture. It is only implemented on

machines that have distinct general-purpose and floating-point register sets.

map

A map of the process’s virtual memory.

mem

The complete virtual memory image of the process. Only those addresses that exist in the

process can be accessed. Reads and writes to this file modify the process. Writes to the text

segment remain private to the process. Because the address space of another process can be

accessed with read and write system calls, a debugger can access a process being debugged with

much greater efficiency than it can with the ptrace system call. The pages of interest in the

process being debugged are mapped into the kernel address space. The data requested by the

debugger can then be copied directly from the kernel to the debugger’s address space.

regs

Allows read and write access to the register set of the process.

rlimit

A read-only file containing the process’s current and maximum limits.

status

The process status. This file is read-only and returns a single line containing multiple

space-separated fields that include the command name, the process id, the parent process id,

the process group id, the session id, the controlling terminal (if any), a list of the process flags,

the process start time, user and system times, the wait channel message, and the process

credentials.

Each node is owned by the process’s user and belongs to that user’s primary group, except for

the mem node, which belongs to the kmem group.

In a normal debugging environment, where the target does a fork followed by an exec by the

debugger, the debugger should fork and the child should stop itself (with a self-inflicted

SIGSTOP, for example). The parent should issue a wait and then an attach command via the

appropriate ctl file. The child process will receive a SIGTRAP immediately after the call to exec.

179

Users wishing to view process information often find it easier to use the procstat command

than to figure out how to extract the information from the /proc filesystem.

Exercises

4.1 For each state listed in Table 4.1, list the system queues on which a process in that state

might be found.

4.2 Why is the performance of the context-switching mechanism critical to the performance of a

highly multiprogrammed system?

4.3 What effect would increasing the time quantum have on the system’s interactive response

and total throughput?

4.4 What effect would reducing the number of run queues from 64 to 32 have on the scheduling

overhead and on system performance?

4.5 Give three reasons for the system to select a new process to run.

4.6 Describe the three types of scheduling policies provided by FreeBSD.

4.7 What type of jobs does the timeshare scheduling policy favor? Propose an algorithm for

identifying these favored jobs.

4.8 When and how does thread scheduling interact with memory-management facilities?

4.9 After a process has exited, it may enter the state of being a ZOMBIE before disappearing

from the system entirely. What is the purpose of the ZOMBIE state? What event causes a

process to exit from ZOMBIE?

4.10 Suppose that the data structures shown in Table 4.3 do not exist. Instead, assume that

each process entry has only its own PID and the PID of its parent. Compare the costs in space

and time to support each of the following operations:

a. Creation of a new process

b. Lookup of the process’s parent

c. Lookup of all of a process’s siblings

d. Lookup of all of a process’s descendants

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04tab03

180

e. Destruction of a process

4.11 What are the differences between a mutex and a lock-manager lock?

4.12 Give an example of where a mutex lock should be used. Give an example of where a

lock-manager lock should be used.

4.13 A process blocked without setting the PCATCH flag may never be awakened by a signal.

Describe two problems a noninterruptible sleep may cause if a disk becomes unavailable while

the system is running.

4.14 Describe the limitations a jail puts on the filesystem namespace, network access, and

processes running in the jail.

*4.15 In FreeBSD, the signal SIGTSTP is delivered to a process when a user types a “suspend

character.” Why would a process want to catch this signal before it is stopped?

*4.16 Before the FreeBSD signal mechanism was added, signal handlers to catch the SIGTSTP

signal were written as

Click here to view code image

catchstop()

{

 prepare to stop;

 signal(SIGTSTP, SIG_DFL);

 kill(getpid(), SIGTSTP);

 signal(SIGTSTP, catchstop);

}

This code causes an infinite loop in FreeBSD. Why does it do so? How should the code be

rewritten?

*4.17 The process-priority calculations and accounting statistics are all based on sampled data.

Describe hardware support that would permit more accurate statistics and priority calculations.

*4.18 Why are signals a poor interprocess-communication facility?

**4.19 A kernel-stack-invalid trap occurs when an invalid value for the kernel-mode stack

pointer is detected by the hardware. How might the system gracefully terminate a process that

receives such a trap while executing on its kernel-run-time stack?

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04_images.html#p145pro01

181

**4.20 Describe alternatives to the test-and-set instruction that would allow you to build a

synchronization mechanism for a multiprocessor FreeBSD system.

**4.21 A lightweight process is a thread of execution that operates within the context of a

normal FreeBSD process. Multiple lightweight processes may exist in a single FreeBSD process

and share memory, but each is able to do blocking operations, such as system calls. Describe

how lightweight processes might be implemented entirely in user mode.

References

Aral et al., 1989.

Z. Aral, J. Bloom, T. Doeppner, I. Gertner, A. Langerman, & G. Schaffer, “Variable Weight

Processes with Flexible Shared Resources,” USENIX Association Conference Proceedings, pp.

405–412, January 1989.

Dekker, 2013.

Dekker, “Dekker Algorithm,” Wikipedia, available from

http://en.wikipedia.org/wiki/Dekkers_algorithm, November 2013.

Joy, 1994.

W. N. Joy, “An Introduction to the C Shell,” in 4.4BSD User’s Supplementary Documents, pp.

4:1–46, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

McDougall & Mauro, 2006.

R. McDougall & J. Mauro, Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture

(2nd Edition), Prentice Hall, Upper Saddle River, NJ, 2006.

Ritchie, 1988.

D. M. Ritchie, “Multi-Processor UNIX,” private communication, April 25, 1988.

Roberson, 2003.

J. Roberson, “ULE: A Modern Scheduler For FreeBSD,” Proceedings of the USENIX BSDCon

2003, pp. 17–28, September 2003.

Simpleton, 2008.

http://en.wikipedia.org/wiki/Dekkers_algorithm

182

Caffeinated Simpleton, A Threading Model Overview, available from

http://justin.harmonize.fm/Development/2008/09/09/threading-model-overview.html,

September 2008.

http://justin.harmonize.fm/Development/2008/09/09/threading-model-overview.html

183

Chapter 5. Security

Security is an integral part of contemporary operating-system design, from supporting multiple

users and limiting their interactions via access-control, to mitigating software vulnerabilities via

sandboxing, and implementing cryptographic protection of network and disk data. The FreeBSD

security model addresses a broad range of use cases spanning classic UNIX servers and

workstations, storage appliances, network routers and switches, Internet Service Provider

hosting environments, and even hand-held devices. The security model has tracked these

evolving needs through 30 years of contributions from active security research and development

communities.

The kernel is the heart of FreeBSD’s Trusted Computing Base (TCB), the minimum subset of

system components that must be secure for the system as a whole to be secure. The kernel

protects itself from userspace interference using processor rings and virtual memory; these CPU

features also support the UNIX process model, which isolates application instances from one

another. Processes not only offer robustness in the face of application bugs, but also provide the

underlying assumption of isolation required to implement access control. The kernel also

maintains a tamper-proof credential for each process that holds security information such as the

user and groups on whose behalf the process acts. These credentials are used as inputs to

interprocess and discretionary access controls such as filesystem permissions, which in turn

allow administrators, application authors, and users to specify policies for data sharing in the

system. More recent additions to the FreeBSD security feature set include lightweight jail

virtualization, mandatory access control, the Capsicum capability model (used for sandboxing),

and security event auditing (or logging).

The kernel’s low-level security features are the foundation on which more complex userspace

security models can be based. For example, while the kernel itself has no notion of user

authentication, process credentials, root privilege, and filesystem permissions collectively

protect the password file and allow controlled switching of users at login. As network security

has become more important and threat models have expanded to include physical theft of

computer systems, kernel cryptographic features such as secure pseudorandom number

generation, encryption, and integrity checking have been introduced. These security features

support contemporary cryptographic protocols such as IPSec, ssh, and full-disk encryption.

In this chapter, we consider the underlying model and its practical implementation; these

design principles and low-level services directly affect the subsystems described throughout the

remaining chapters.

184

5.1 Operating-System Security

Operating-system security is a broad topic spanning the kernel, filesystem layout, and userspace

applications. Historic notions of operating-system security centered on authentication, access

control, and security-event auditing—features explored and largely standardized between the

1960s and 1990s. These features limit and account for user access to data, and were initially

found only in high-end computing systems with hardware support for memory protection:

mainframes, minicomputers, servers, and later high-end workstations [Saltzer & Schroeder,

1975]. By the end of the 1990s, higher-end technologies had become available to personal

workstations and notebook computers, and during the early 2000s, tablets and smart phones.

Fundamental new technologies emerged in the consumer space including digital subscriber

lines, local-area networks (LANs) wide-area networks (WANs), and wireless networking,

making personal computing devices the epicenter, rather than the periphery, of computer

security.

As a result, requirements for operating-system security have expanded to include features

previously found only in research or high-assurance trusted systems. They also incorporate new

technologies necessary to address the world of distributed systems that was unanticipated by

earlier development. Some of these features center on the concept of a trusted computing

base (TCB)—that self-protecting core in the operating system that provides confidence in its

security [Anderson, 1972]. Others place individual computer systems securely in a global

network context through services built on cryptography and cryptographic protocols, also

products of the 1980s and 1990s.

BSD, and later FreeBSD, have been central to this evolution, as they provide a bridge for

advanced operating systems from the traditional world of mainframe computers, first to

commodity server hardware and personal computers (PCs), and later to a variety of embedded

and mobile devices. FreeBSD has developed and adopted new security features to support the

security requirements of personal workstations, network servers, and derived systems including

the security models found in Juniper’s Junos operating system (used throughout Juniper’s

router, switch, and firewall products) and Apple’s Mac OS X and iOS operating systems (used on

Apple Mac computers, and also the iPhone, iPod Touch, and iPad mobile devices) [Watson,

2013].

FreeBSD provides the following security features:

• a self-protecting Trusted Computing Base (TCB) spanning kernel and userspace;

• kernel isolation and process separation based on virtual memory;

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref21

185

• authentication and multiplexing of multiple simultaneous users;

• discretionary and mandatory access-control models;

• sandboxing facilities to contain potentially malicious code;

• a range of mitigation techniques such as stack protection;

• security-event auditing for accountability and intrusion detection;

• Yarrow-based /dev/random supporting hardware and software entropy sources;

• support for Trusted Platform Modules (TPMs);

• a cryptographic framework supporting hardware and software implementations;

• support for full-disk encryption and cryptographic integrity protection;

• distributed authentication models (e.g., Kerberos, x.509 certificates);

• cryptographically protected network protocols (e.g., ssh, TLS, IPSec); and

• binary updates to remedy vulnerabilities discovered after release.

This chapter focuses on the kernel’s security model and facilities—foundations for userspace

security, including the ubiquitous multiuser UNIX model.

5.2 Security Model

The core of the FreeBSD security model is a trusted, self-protecting kernel hosting a user

process model. Discretionary and mandatory access control constrain communication

between processes and access to network and storage facilities. The privilege model allows

controlled violation of access-control policies for the purposes of system operation and

management. Collectively, these features support the definition of FreeBSD’s TCB: a

self-protecting core of the operating system that allows safe execution of untrustworthy code for

mutually distrusting users. Other features, such as mandatory access control, a

capability-system model, security event auditing, lightweight virtualization, and cryptographic

features both reinforce and build on these low-level elements.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_295

186

Process Model

The kernel relies on two hardware features to implement process isolation: virtual addressing,

which constructs independent virtual-memory address spaces for each process, and rings, which

restrict access to privileged CPU protection features while in user mode that otherwise might

allow breaking out of process confinement. System calls (e.g., syscall on MIPS and sysenter on

recent X86), virtual-memory traps, and interrupts allow transitions to and from the privileged

kernel; system calls occur via hardware-supported call gates that allow safe transition of control

from an untrusted user process to kernel execution on the same CPU. The kernel is permitted

access to user process memory, but user processes are allowed neither access to kernel memory,

nor to the memory of other processes. Exceptions are granted for the purposes of privileged

system management, debugging, and certain types of interprocess communication (e.g., shared

memory objects).

For most of the history of UNIX systems, only two hardware rings have been employed: user

and supervisor modes. More recently, full system virtualization has popularized the use of

additional rings, in which a hypervisor hosts a general-purpose operating-system kernel in

much the same way that an operating-system kernel hosts user processes. FreeBSD is able to

run on several such virtualization systems, and even host virtual machines itself, but they are

not considered further in this chapter, which focuses on security within a single operating

system instance.

Discretionary and Mandatory Access Control

Kernel services such as the filesystem, interprocess communication, and networking bridge

process isolation. They are constrained by access-control policies, which include

discretionary access control (DAC) and mandatory access control (MAC). As the

name suggests, DAC protects objects at the discretion of the object owner—for example, file

permissions or access control lists (ACLs). In contrast, MAC allows system administrators

to impose mandatory rules across all processes. MAC policies often take the form of

information-flow-based models (e.g., for confidentiality) or rule-based models (e.g., to constrain

the scope of an application program to certain operations regardless of the user that runs it).

Separation of policy and enforcement is a key design goal, preventing code duplication (and

associated bugs), making it easier to extend the security model as requirements change, and

facilitating security review. Access-control implementation is therefore split across two places in

the kernel: centralized implementations of policies, and more widely distributed enforcement

points in various subsystems. For example, the function vaccess_acl_posix1e() in

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_03

187

subr_acl_posix1e.c implements POSIX.1e ACL evaluation centrally, but is invoked by several

individual filesystems to check accesses. Mandatory access control and system privilege checks

are similarly structured.

Access control policies depend on the process credential to hold security metadata associated

with a process, such as user IDs and MAC labels, that can be compared with metadata on

filesystem objects, IPC objects, and other processes during access-control decision making.

Credentials are maintained and protected within the kernel address space so that modifications

can only be made in keeping with the security policy.

Trusted Computing Base (TCB)

One critical function of access control is protecting the integrity of the TCB itself from

unauthorized modification that might render other security protections moot. The FreeBSD TCB

consists of the boot loader, kernel, and userspace libraries and programs required to support

boot to multi-user mode, user login, and system administration functions (e.g., setuid-root

binaries). In practice, the TCB includes a significant fraction of the integrated FreeBSD

userspace, from /sbin/init, /etc/rc.d, and the libraries and tools necessary to run them, such

as /lib/libc.so, and /bin/sh, to user login and management components such as

/usr/sbin/sshd and /usr/bin/passwd. In a typical FreeBSD installation, protection of the

TCB occurs primarily through careful configuration of system users and file ownership: most

system files are owned by the root user, and cannot be unmodified by any other users.

Mandatory access-control policies, such as the Biba integrity model discussed in this chapter,

supplements this discretionary form of access control.

Other Kernel-Security Features

Other key concepts described in this chapter include the kernel’s privilege model, that allows

selective exemption from access-control rules for the purposes of system bootstrap,

management, and debugging. FreeBSD also implements a hybrid-capability-system model,

Capsicum, which provides APIs for application compartmentalization (running code

within a sandbox). Complex, security-aware applications such as Web browsers use Capsicum

to limit access to ambient authority, or the full rights of a user, for risky portions of their

functionality (e.g., Web-page rendering). FreeBSD jails build on access-control and privilege

features to provide operating-system virtualization. Security-event auditing logs

security-critical events for administrator review and automated intrusion detection systems.

Low-level cryptographic features in the kernel, such as the kernel’s cryptography framework and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_362

188

Yarrow random number generator, support higher-level services such as GELI disk encryption

and the IPSec network protocol.

5.3 Process Credentials

Process credentials represent the notion of a subject for a variety of security and

resource-management purposes: they hold UNIX security metadata such as User IDs (UIDs)

and Group IDs (GIDs), MAC labels, event auditing state, and references to current jail state and

resource limits. These fields collectively encapsulate the rights that a process has within the

system, which will vary based on the user owning the process, the groups of which the user is a

member, the jail the process is in, the binary that the process is executing, and other properties,

such as resource limits and MAC policies that may provide (or limit) finer-grained rights on a

per-process basis. When the kernel makes an access-control decision during a system call or in a

trap handler, the authorizing credential is checked against object properties such as file owners,

permissions, and labels. It is also checked against global policies to determine whether the

operation should be allowed to proceed.

User credentials, stored in the kernel ucred structure, are stored in kernel memory to protect

them from undesired modification by user processes; they can be modified only according to

system access-control rules. Each proc structure points to its process credential via the p_ucred

field. Individual threads within a process also have credential references via their td_ucred field.

Per-thread credentials act as a thread-local cache of the process credential that can be accessed

read-only without acquiring the process lock, avoiding contention. Avoiding lock contention is

particularly important during system calls that perform many access-control checks. For

example, pathname lookup uses the credential to determine the portion of the file permissions

bitmask that applies, and what privileges override it, for each looked-up intermediate directory.

Thread credentials are synchronized with the process credential by calling

cred_update_thread() whenever system calls or traps enter the kernel, or when a thread

modifies the process credential. This model allows system calls and traps to use a consistent

credential for their duration, avoiding race conditions when credentials change (e.g., because of

setuid in another thread) that might otherwise lead to inconsistent behavior. However, an

important result of this design choice is that downgrading of privilege by one thread will not

immediately affect in-flight operations in other threads, such as long-running I/O operations,

that will continue using the credential present when the system call began.

189

The Credential Structure

Credentials are represented by the ucred structure, illustrated in Figure 5.1. The credential

incorporates traditional UNIX IDs, including the effective, real, and saved UIDs and GIDs, and a

variable-length list of additional GIDs, described by cr_ngroups (number of additional groups

present), cr_groups (pointer to the group array), and cr_agroups (number of groups that will

fit in the currently allocated array). Historically, the additional group list was a fixed-size array

in the credential, but was moved to external, variable-size storage as larger group lists became

common. The credential also includes a flags field, cr_flags, that currently stores a single flag,

CRED_FLAG_CAPMODE, indicating that the process is in a Capsicum-capability-mode

sandbox, discussed later in this chapter.

Figure 5.1 The credential structure.

Credentials reference two additional classes of external data structures. Peruser resource usage

policy and accounting utilize reference-counted data structures pointed to by cr_uidinfo,

cr_ruidinfo, and cr_loginclass. Several optional security features conditionally allocate storage,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig01

190

including MAC (cr_label), security event auditing (cr_audit), and jail (cr_prison).

Reference-counted shared objects not only save space by avoiding storing the same information

for many credentials, but also provide for live reconfiguration of global subject state, such as

changes to a jail’s configuration.

Credential Memory Model

To conserve space, the credential structure is reference counted, copy-on-write, using the cr_ref

field; any credential with a reference count greater than 1 is immutable. Modifications to

credentials require that the original first be duplicated, then any updates done on the new

instance, with the old credential reference replaced with the new one when ready. As credentials

are rarely modified, this model conserves kernel memory and reduces cache footprint. Kernel

functions managing credentials are shown in Table 5.1.

Table 5.1 Functions for managing credentials.

Access-Control Checks

Access-control checks accept a thread (almost always the current thread) or an explicit

credential as an argument. The latter form handles cases where processes authorize operations

in asynchronous contexts. For example, credentials are cached with each open file descriptor

and propagated with I/O to the buffer cache. This propagation allows them to be used

asynchronously with NFS write-behind.

Credentials cached with sockets likewise allow asynchronous packet delivery to be authorized by

the firewall based on socket ownership. In both cases, authorization decisions may be made in

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab01

191

threads whose credentials differ from the original context, but that act on behalf of the earlier

(potentially less-privileged) context.

5.4 Users and Groups

Users and groups are inputs to several types of basic UNIX access control: interprocess access

control that determines whether one process may signal, debug, or otherwise observe, another;

discretionary access control, that includes file permissions and ACLs; and resource accounting

and limits, that allow tracking and control of resource utilization. Users and groups are named

by two independent 32-bit number spaces called user identifiers (UIDs) and group

identifiers (GIDs). Users and groups are typically assigned to represent real-world users and

the projects or organizations of which they are members. Pseudo-users are sometimes assigned

to represent system roles, such as the superuser (root user), or the execution of services,

such as the mail system, allowing them to be assigned ownership of files, resource limits, etc.

Likewise, groups delegate access to system objects, such as the right to dial out on modems or

the right to read audit trail files.

UIDs and GIDs are assigned by an external administrative authority, and are pushed into the

kernel via system calls, such as at user login or when file ownership is set. Using an outside

administrative authority allows user and group information to originate from databases in the

filesystem, or from distributed directory services such as NIS or LDAP. In effect, the kernel user

and group credential is a cache of authoritative data elsewhere—a property that must be

understood by administrators because of its implications on deletion of users, removal from

groups, etc. For example, removing a user from a group list in /etc/group does not affect

existing user processes, which will continue to hold that GID in their credential. Likewise,

deletion of a user from /etc/master.passwd does not terminate processes he or she may own,

nor revoke his or her access to filesystem objects.

The credential of the first process, init, has its UID and GID fields set to zero. Zero is a reserved

UID normally termed the superuser (usually given the user name root), that is trusted by the

system and is permitted to do any supported kernel operation. Each additional process created

with fork will inherit the credential of its parent, including its UIDs and GIDs.

User and group identifiers may then be manipulated using system calls such as setuid and setgid,

subject to access-control rules, or may be set as a result of executing a set-user-identifier or

set-group-identifier program. Credential manipulation rules are carefully structured so that

privilege, once given up, can be reacquired only by executing authorized programs. When a user

logs in, the login program (see Section 15.4) sets the UID and GIDs before running the user’s

login shell; thus, all later processes will inherit the appropriate identifiers.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4

192

UIDs and GIDs are stored with both subjects (process credentials) and objects (e.g., files and

shared memory objects) to identify ownership for the purposes of resource accounting, resource

limits, checking system privileges, and access control. As with processes, a set of controlled

system calls, such as chown and chgrp, manipulates file-object ownership. Use of file ownership

is described in Section 15.7.

Setuid and Setgid Binaries

Often, it is desirable to grant a user additional privileges. For example, a user who wants to send

mail must be able to append the message to another user’s mailbox file. Making the target

mailbox writable by all users would permit a user other than its owner to modify messages in it

(whether maliciously or unintentionally). To solve this problem, the kernel allows the creation of

programs that are granted additional privileges while they are running—also a privileged

operation. Programs that run with a different UID are called set-user-identifier (setuid)

programs; programs that run with an additional group privilege are called

set-group-identifier (setgid) programs [Ritchie, 1979]. When a setuid or setgid program is

executed, the rights of the process are augmented to include those of the additional UID or GID

associated with the program. The UID of the program is termed the effective UID of the

process, whereas the original UID of the process is termed the real UID. Similarly, executing a

setgid program augments a process’s permissions with those of the program’s GID, and the

effective GID and real GID are defined accordingly.

Systems can use setuid and setgid programs to provide controlled access to files or services. For

example, the program that adds mail to a user’s mailbox runs with the privileges of the

superuser, which allow it to write to any file in the system. Thus, users do not need permission

to write to other users’ mailboxes, but can still do so by running this program. Naturally, such

programs must be written carefully to have only a limited set of functionality!

The kernel stores a process’s UID and GIDs in the process credential. Historically, GIDs were

implemented as one distinguished GID (the effective GID) and a supplementary array of GIDs,

which were logically treated as one set of GIDs. In FreeBSD, the distinguished GID is the first

entry in the array of GIDs.

FreeBSD implements the setgid facility by setting the zeroth element of the supplementary

groups array of the process that executed the setgid program to the group of the file. Because of

the additional group, the setgid program may be able to access more files than can a user

process that runs a program without the special privilege. To avoid losing the privileges

associated with the group in the zeroth array element when running a setgid program, the login

program duplicates the zeroth array element into the first array element when initializing the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_316

193

user’s supplementary group array. Thus, when a setgid program is run and modifies the zeroth

element, the user does not lose any privileges as the group that had been contained in the zeroth

array element is still available in the first array element.

The setuid facility is implemented by the effective UID of the process being changed from that of

the user to that of the program being executed. As with setgid, the protection mechanism will

now permit access without any change or special knowledge that the program is running setuid.

Since a process can have only a single UID at a time, it is possible to lose some privileges while

running setuid. The previous real UID is still maintained as the real UID when the new effective

UID is installed. The real UID, however, is not used for any validation checking.

A setuid process may wish to revoke its special privilege temporarily while it is running. For

example, it may need its special privilege to access a restricted file at only the start and end of its

execution. During the rest of its execution, it should have only the real user’s privileges. In

earlier versions of BSD, revocation of privilege was done by switching of the real and effective

UIDs. Since only the effective UID is used for access control, this approach provided the desired

semantics and a place to hide the special privilege. The drawback of this approach was that it

was easy to lose track of the real and effective UIDs.

In FreeBSD, an additional identifier called the saved UID records the identity of setuid

programs. When a program is exec’ed, its effective UID is copied to its saved UID. The first line

of Table 5.2 shows an unprivileged program for which the real, effective, and saved UIDs are all

those of the real user. The second line of Table 5.2 shows a setuid program being run that causes

the effective UID to be set to its associated special-privilege UID. The special-privilege UID has

also been copied to the saved UID.

Table 5.2 Actions affecting the real, effective, and saved UIDs.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab02

194

The seteuid system call sets only the effective UID; it does not affect the real or saved UIDs. The

seteuid system call is permitted to set the effective UID to the value of either the real or the

saved UID. Lines 3 and 4 of Table 5.2 show how a setuid program can give up and then reclaim

its special privilege while continuously retaining its correct real UID. Lines 5 and 6 show how a

setuid program can run a subprocess without granting the latter the special privilege. First, it

sets its effective UID to the real UID. Then, when it exec’s the subprocess, the effective UID is

copied to the saved UID, and all access to the special-privilege UID is lost. A similar saved GID

mechanism permits processes to switch between the real GID and the initial effective GID.

5.5 Privilege Model

In FreeBSD, user processes are permitted access to kernel-managed objects (such as files and

IPC primitives) subject to access-control policy; as described in the previous section, privileges

are collectively granted to the root user. Privilege refers to a set of rights that, implicitly or

explicitly, connote the ability to bypass the system access-control policy. We consider these two

cases separately.

Implicit Privilege

Implicit privilege arises out of configuration of the system and its access-control policies, and

describes rights held by a user or process that would allow it to violate integrity of the TCB or

another security policy. Implicit privilege is best explained through an example: integrity of the

system boot depends on the integrity of the kernel loaded from disk. In traditional UNIX

systems, including FreeBSD in its default configuration, the kernel is owned by the root user,

and protected by restrictive file permissions. If the kernel file were owned by a malicious user,

or the permissions were not configured correctly, then system integrity could be violated. As a

result, the root user is implicitly trusted to maintain the correct configuration and support

integrity of the system. Implicit trust is not a property of the structure of the kernel

access-control model, but an application of it.

Physical access to a system also holds implicit privilege in many computer systems, as access to

the system might, for example, allow tampering with storage devices without passing through

OS protections.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab02

195

Explicit Privilege

In general, rights granted solely by access-control policies are enough to operate the system in

its steady state. However, certain cases require that user processes be given additional explicit

privilege that exempts them from access control to do critical system functions including:

• Kernel management operations that have global consequences across the system, such as

rebooting, or configuring IPv4 addresses on a network interface.

• Kernel management operations that effectively grant kernel privilege, such as the loading of

kernel modules. Misuse of these functions would violate integrity of the TCB.

• System management operations that imply system privileges, such as maintenance of system

binaries (including the kernel).

• Configuring access-control policies and, particularly, setting up process credentials during the

login process.

• Higher-level management operations that depend on bypassing per-object protections, such as

backing up the system, or changing the owner or permissions on a file in the role of system

administrator.

• Certain classes of debugging operations that offer insight into global behaviors normally

limited to avoid information leaks, such as using DTrace or hardware-performance-monitoring

counters on the kernel itself.

FreeBSD’s privilege model is an outlet for these cases by allowing processes to execute with

elevated privilege—i.e., outside the confines of the access-control policy. FreeBSD contains an

explicit enumeration of kernel privileges in sys/priv.h, and call sites around the kernel invoke

the functions priv_check() and priv_check_cred(), passing both an authorizing credential and

the privilege requested to test centrally for privileges (an instance of the separation of policy and

enforcement). Table 5.3 illustrates several examples of named privileges that support system

management, credential management, and overriding discretionary access control. However,

FreeBSD does not currently have a mechanism for fine-grained delegation of privileges to

arbitrary processes—it instead relies on a simple check of the effective or, in certain cases

involving resource limits, the real UID for the root user, sometimes known as the superuser

policy. As the system starts its first process with a UID of 0, the implicit authority of the root

user allows the system bootstrap to take place naturally, with privileges dropped when the login

process switches to another UID.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab03

196

Table 5.3 Example kernel privileges.

The privilege model is augmented by FreeBSD jails, which restrict access to certain privileges for

root users within jails, as discussed later in this chapter. Further, pluggable mandatory

access-control policies can restrict or grant access to privileges. For example, the Biba integrity

policy limits access to most, but not all, system privileges when the root user is executing a

process without the policy’s own notion of privilege. The limited system privilege allows Biba to

restrict loading kernel modules when executing at low integrity, while still allowing overriding of

discretionary access-control rules, subject to the integrity policy. The current privilege interfaces

have been designed to support future introduction of a general-purpose and fine-grained

privilege model.

197

5.6 Interprocess Access Control

Interprocess operations are system calls that allow one process (the subject) to monitor, manage,

or debug another process (the target). As these operations bypass process isolation, they are

subject to access control. Interprocess access controls are particularly tricky to enforce: ease of

monitoring is in direct competition with information flow-centric controls (e.g., the historic

choice to allow users to list each others’ processes in UNIX), and it proves difficult to reason

about the implied set of rights gained access to when debugging a second process. Interprocess

access control is centralized in kern_prot.c, and falls into several categories.

Visibility

Process visibility controls access to sysctl nodes, such as those used by ps to list processes, and

system calls, such as sched_getparam. The subject is always a process credential (cr_cansee),

or process (p_cansee), and the target is the individual process being monitored.

The behavior of cr_cansee is controlled by two global tunables: see_other_uids, which limits

process visibility between users; and see_other_gids, which limits visibility between processes

with nonoverlapping group sets. For reasons of both ease-of-use and historic compatibility,

displaying processes owned by other users and groups is enabled by default. Privilege can

override both of these features.

Two other aspects are considered when authorizing process visibility: jail and MAC. Jail

requires that, if the subject process is in a jail, then the target process must also be in the same

jail. For information-flow MAC policies such as Biba or Multilevel Security, checks determine

whether information may flow from the target to the subject.

Signals

Controls on signal delivery are much more complex than those on visibility: checks vary

depending on whether the subject process, or just its credential, is available; signals may be

authorized based on a common login session, not just the credentials involved; control depends

on which specific signal is being sent; and application races in signal-handling have led to past

security vulnerabilities, complicating access-control logic.

Two functions, cr_cansignal() and p_cansignal(), check signal delivery based on a subject

credential or thread, target process, and signal number. The p_cansignal() function allows

SIGCONT if the processes share a tty, and allows SIGTHR and other threading-related signals

within groups of processes acting as a thread group. It then invokes cr_cansignal().

198

The cr_cansignal() function enforces a variety of checks, all of which must pass: if the subject is

in a jail, then the object must be in the same jail; MAC must authorize signal delivery (e.g., via

information flow checks); and UID and GID visibility rules are checked. If a process has changed

credential since the last execve, that is, P_SUGID is set in the process’s flags, then only certain

signals can be delivered—for example, SIGKILL but not SIGTHR to prevent manipulation of

internal process state. Finally, credentials are checked: if neither of the subject’s real or effective

UIDs match the target’s real or saved UIDs, then privilege is required.

Scheduling Control

Scheduling checks occur when one process attempts to manipulate the scheduling properties of

another process—for example, assigning a process to a CPU set, or changing its scheduling

priority. p_cansched() accepts a subject thread and target process, and does a similar set of

checks to signal delivery: jail protections are enforced, MAC is queried, UID and GID visibility

constraints are enforced, and the subject real and effective UIDs are compared to the target’s

real UID. Privilege overrides UID-based checks.

Waiting on Process Termination

The wait4 system call allows a parent process to wait for a child process termination; interfering

with this mechanism, regardless of visibility and information flow goals, can have serious

consequences for the correctness of shells or the init process, which must reap zombie

processes to reclaim resources. Only jail and MAC checks are enforced here: a parent process is

allowed to collect child termination information regardless of UID and GID differences.

Debugging

Control of debugging and tracing interfaces requires great care to avoid inappropriately granting

a subject access to a target process’s rights, confidential mappings, or data (e.g., passwords or

private keys) in the target process address space. Thus, the rules authorizing debugging are

complicated and are employed by various subsystems including conventional process debugging

(ptrace), kernel tracing (ktrace), and also certain process-monitoring features, such as the sysctl

nodes providing access to target process-address-space layout and file-descriptor information.

First, the global unprivileged_proc_debug tunable is checked to determine whether debugging

features are available to unprivileged users (they are by default). Then, jail and MAC policies are

allowed to authorize the operation, followed by UID and GID visibility rules.

199

The next category of checks is concerned with whether the subject process has a superset of the

rights present in the target process—that is, whether full control of a target process grants the

subject additional rights. First, the target process-group set is checked to ensure it is a subset of

the subject’s; then, the effective, real, and saved UIDs are similarly compared. Finally, credential

change in the target (which might indicate that rights or data had been inherited from a UID no

longer in the credential) is checked. Privilege can override any of these checks.

Two further rules are enforced: first, that debugging the init process is only permitted when the

securelevel is less than or equal to zero; and second, that processes mid-exec cannot be

debugged, as their credentials (or other properties) may be in a state of flux that could lead to an

inconsistent access-control result.

5.7 Discretionary Access Control

Discretionary access control (DAC) allows each user to control the access rights granted

over his or her objects to other users of the system. DAC is often contrasted with MAC: in DAC,

object owners share (or not) access to objects at their own discretion, whereas in MAC, the

system administrator determines when users are able to share data. The primary focus of DAC is

filesystem objects: files, directories, fifos, and special devices. However, DAC controls access to

System V and POSIX shared memory segments, semaphores, and queues.

FreeBSD has historically implemented the UNIX permissions model, in which each file or

directory is associated with a short bitmask of rights, or file permissions. This model is simple,

easy-to-understand, and consumes minimal resources: per-file 32-bit UID and GID inode fields

are supplemented by a 32-bit file mode specifying rights granted to the file’s group, and any

other users on the system. More recently, access control lists (ACLs) have offered greater

flexibility, at some cost to performance and administrative complexity, allowing object owners

to specify rights for additional users and groups. FreeBSD supports two flavors of ACLs:

POSIX.1e (more compatible with historic file permissions) and NFSv4 (more compatible with

Windows and its CIFS protocol) [P1003.1e, 1998; Shepler et al., 2003].

The Virtual-Filesystem Interface and DAC

In early UNIX versions, the UNIX filesystem was solely responsible for implementing

discretionary access control: it stored file ownership information, maintained the file

permissions bitmask, and made checks when operations requiring authorization occurred. As

the number of filesystem types increased, code implementing common access-control checks

was centralized. Today, many virtual-filesystem interface (VFS)–linked kernel components,

including system calls such as open and execve, IPC implementations such as local domain

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref18

200

sockets and POSIX message queues, and the NFS server, request DAC checks before initiating

I/O operations. Filesystems also invoke checks directly; for example, when performing

pathname lookup or modifying file attributes.

Historically, a single vnode operation, VOP_ACCESS(), accepted a bitmask of coarse-grained

VFS permissions that reflected underlying UNIX mode bits: VEXEC, VWRITE (optionally with

VAPPEND), VREAD, and VADMIN. When NFSv4 ACLs were introduced, new VFS permissions

were required reflecting finer-grained NFSv4 ACL permissions. For example, previously

VWRITE encapsulated both the rights to modify a file’s data and to unlink an entry within a

directory, reflecting similar behavior in the UNIX file permissions bitmask. In NFSv4 ACLs,

ACL_WRITE_DATA and ACL_DELETE_CHILD are separate permissions; as a result, VWRITE

has now been subdivided into VWRITE and VDELETE_CHILD. A complete list of current

permissions appears in Table 5.4.

Table 5.4 VFS-layer access-control permissions passed to vaccess().

VOP_ACCESS() continues to accept the older, more limited set of VFS permissions; a new

vnode operation, VOP_ACCESSX(), accepts finer-grained permissions. All filesystems

implement one of these two operations, relying on the VFS layer to provide a wrapper function

where required: vop_stdaccessx(), for example, maps fine-grained VFS permissions into

historic ones supported by older filesystems using vfs_unixify_accmode(). Filesystems

implementing NFSv4 ACLs must implement the newer VOP_ACCESSX().

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab04

201

In addition to a VFS permissions bitmask, the vnode operations also accept the file or directory

to be operated on, a process credential, and thread pointer.

Internal use of the same abstraction allows filesystems to implement multiple access-control

models more easily: for example, UFS’s ufs_accessx() selects between POSIX.1e and NFSv4

ACLs on a per-mountpoint basis (for a discussion of UFS, see Chapter 9). Internal to these

vnode operations, the filesystem will load any necessary metadata (e.g., ACLs), and make

filesystem-specific checks (e.g., file flags). Most filesystems rely on a subset of three

model-specific but filesystem-independent authorization functions: vaccess() for UNIX

permissions, vaccess_acl_posix1e() for POSIX.1e ACLs, or vaccess_acl_nfs4() for NFSv4 ACLs.

Filesystems pass on the process credential from the vnode operation, but also extract and

directly pass file metadata such as file type, owner, group, and mode, along with any ACLs

required by the model. Access-control implementations compare credential data and VFS

permissions bitmask with file ownership, UNIX mode bits, and ACL entries, returning success

(0) or an errno value on failure.

Object Owners and Groups

All objects supporting DAC have an owner and group represented by a UID and GID pair stored

as object metadata. For filesystem objects, the UID and GID are stored in the inode’s i_uid and

i_gid fields. For IPC objects, the UID and GID are stored as fields of the in-memory data

structure describing the object.

Users have full access to objects they own, and can set the group field, permissions, and optional

ACLs to control access by other users and groups. The semantics of the object GID depend on

the ACL model used. For UNIX permissions, an object’s group controls whether processes

owned by other users will be affected by the group or “other” entries in the object’s file

permissions.

When a process creates a new object, the object inherits the process’s effective UID as its owner.

New files and directories inherit their groups from their parent directory at creation time. New

IPC objects inherit their group from the creating process’s effective GID. File UIDs and GIDs

can be modified after creation using the chown, fchown, and lchown system calls. Changing a

file’s UID requires privilege (e.g., root access). A file’s GID can be set by its owner to any group

of which that user is a member.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09

202

UNIX Permissions

In the UNIX permissions model, each object has associated file permissions that describe the

rights granted to the object’s owner, group, and “other”. In UFS, file permissions are stored as

the lower 12 bits of the 16-bit file mode stored in the i_mode field; the remainder holds the

inode’s file type. A file’s ownership and permissions can be queried using the stat, lstat, and

fstat system calls; permissions may be set using the chmod, lchmod, and fchmod system calls.

When processes create filesystem objects, they specify initial permissions as an argument to the

system call. Requested permissions will be masked by a process’s umask, which specifies the

maximum creation-time permissions that may be set on any object created by the process.

Interpretation of the umask depends on whether ACLs are enabled on the filesystem. However,

the commonly used umask of 022 allows new objects to be readable by any user on the system,

but prevents them from being world-writable unless explicitly set that way using a separate

system call.

File permissions are interpreted in the context of the accessing credential’s effective UID,

effective GID, and additional groups. These identifiers are compared with the i_uid and i_gid to

select which portion of the file’s permissions bitmask will be used in authorization. Each file has

three sets of permission bits for read, write, or execute permission for each of owner, group, and

“other”. If the target object is a directory, then the read bit authorizes listing of entries in the

directory, and the execute bit authorizes lookup of further files and subdirectories under it.

The vaccess() function combines credential, requested VFS permissions (mapped as shown in

Table 5.5), and file owner, group, and permissions bitmask as follows:

1. If the UID of the file is the same as the effective UID of the thread, only the owner

permissions apply; the group and other permissions are not checked.

2. If the UIDs do not match, but the GID of the file matches an effective or additional GID of the

thread, only the group permissions apply; the owner and other permissions are not checked.

3. Only if the UID and GIDs of the thread fail to match those of the file are the permissions for

all others checked. If these permissions do not allow the requested operation, it will fail.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab05

203

Table 5.5 Mapping of VFS permissions to UNIX permissions.

If the permissions present are insufficient to authorize the requested access, privilege will be

checked and may override DAC protections.

Three additional mode bits relate to the UNIX security model. The setuid and setgid bits control

credential UID and GID transition on execution of a binary as discussed earlier in the chapter.

There is one further quirk: the sticky bit. If present in a directory’s permissions, the bit

prevents users from unlinking children files or subdirectories that they do not own. This feature

is used almost exclusively for the shared /tmp directory.

Access Control Lists (ACLs)

UNIX permissions allow users to protect or share data with little storage or performance

overhead; however, the expressiveness of the model is limited. Group permissions are the only

means by which a file owner can differentiate rights granted to specific users from rights

granted to any other users of the system—but each file is limited to a single group. Any time a

file or directory must have permissions assigned to a previously unused combination of users, a

new group must be created—which under UNIX requires system-administrator intervention. In

multiuser environments where UNIX groups represent projects or teams, the permissions

model is unable to easily describe common setups such as having a directory be readable and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_415

204

writable by one group, read-only for a second group, but inaccessible to other users of the

system.

File permissions may be seen as a degraded form of access control list (ACL): a per-object list of

users, groups, and their individual assigned permissions. A full ACL implementation provides

greater expressive power at the cost of increased complexity, storage overhead, and performance

overhead. FreeBSD supports two ACL models: POSIX.1e, which emphasizes compatibility with

UNIX permissions; and NFSv4, a newer model improving interoperability between the network

filesystem (NFS) and Windows, now also used by Mac OS X. UFS supports simple UNIX

permissions (the default), POSIX.1e ACLs, and NFSv4 ACLs. ZFS supports only NFSv4 ACLs

(for a discussion of ZFS, see Chapter 10). Different ACL models may have markedly different

semantics: not only may different rights be expressed, and different compatibility behavior be

present for traditional UNIX permissions, but semantics such as the effect of entry ordering can

differ. For example, POSIX.1e ACLs, as described by the user, are ordering independent (and

will be sorted internally); in contrast, NFSv4 ACLs are interpreted differently based on the order

in which entries are specified.

Each ACL is described by an acl data structure containing an array of acl_entry structures,

illustrated in Figure 5.2. Each entry consists of a tag, ID, file permissions, entry type, and flags.

The tag and ID identify the principal described by the entry—typically a UID or GID. The

entry_type and flags fields are used only for NFSv4 ACLs: the former indicates whether a

particular ACL entry grants or denies rights; the latter indicates how the ACL entry will be

inherited. The perm field contains a bitmask of granted or denied rights specific to the ACL

model.

Figure 5.2 ACLs consist of a struct acl embedding instances of struct acl_entry.

System-call APIs are portable across models: the same system calls check, delete, get, and set

ACLs on filesystem objects, as illustrated in Table 5.6. Each system call accepts an object name

or file descriptor, a pointer to an acl structure in user memory, and an ACL type. ACLs set on

files must be of the appropriate type, and valid for the target (e.g., default ACLs may be set only

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab06

205

on directories); userspace programs can test an ACL for both internal consistency and

applicability to a specific filesystem object via the aclcheck() system calls. Table 5.7 lists

currently supported types; others may be added in the future as further ACL models are

introduced. ACL models may allow more than one ACL to be set on a file at a time: for example,

POSIX.1e supports both access and default ACLs on directories, controlling (respectively) access

control and ACL inheritance.

Table 5.6 ACL system calls are portable across different ACL models.

Table 5.7 ACL models may support multiple types of ACL.

ACL-aware filesystems implement three ACL-related vnode operations: VOP_GETACL(),

VOP_SETACL(), and VOP_ACLCHECK(). The ACL implementation is split across

filesystem-independent VFS code and individual filesystems implementations. Code portable

across ACL models and filesystems may be found in vfs_acl.c, and includes ACL system-call

code and utility functions for managing ACL memory. Model-specific ACL code may be found in

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab07

206

subr_acl_posix1e.c and subr_acl_nfs4.c. These files include functions for ACL evaluation

replacing vaccess(). They check the validity of ACLs, and implement new-file/directory creation

(e.g., ACL inheritance and mode initialization).

ACL-aware filesystems include three adaptations to implement ACLs: they provide

filesystem-specific storage of ACLs by implementing VOP_GETACL() and VOP_SETACL(); they

invoke VFS-layer ACL utility functions during file creation to ensure that the file mode and ACLs

on a new object are properly initialized; and they invoke VFS-layer vaccess() variations, passing

loaded ACLs as needed to implement access-control checks for various ACL models.

UFS is able to store the file owner, group, and permissions in each file’s inode because of their

small size (4 bytes each). ACLs, however, are substantially larger (several hundred bytes);

instead, they are stored in extended attributes outside of the inode. As a result, additional disk

accesses are required to read and update ACLs. UFS uses system extended attributes, which

prevents direct modification of ACL contents, even by the file owner. To centralize as much

access-control logic as possible, UFS performs internal checks using the VOP_ACCESSX()

vnode operation. ufs_vaccessx() loads ACLs and then invokes vaccess(), vaccess_acl_posix1e(),

or vaccess_acl_nfs4() depending on the ACL model enabled on the filesystem.

POSIX.1e Access Control Lists

POSIX.1e ACLs extend UNIX permissions to provide greater expressive power, at the cost of

greater complexity, storage requirements, and performance overheads. As in the file

permissions model, files and directories have an owner UID, an associated GID, and file

permissions bitmask that holds permissions for the owner, group, and “other”, that make up the

canonical entries in a file’s ACL. POSIX.1e allows these permissions to be supplemented with

further file permissions reflecting read, write, and execute rights for both additional users and

additional groups.

All files and directories have access ACLs that direct access control during pathname lookup and

file open. The access ACL directly solves many of the problems experienced with UNIX

permissions in multi-user environments: the file owner can add additional entries that assign

specific rights to multiple users and groups without encountering the single-group limit or

requiring administrator intervention to create groups when working with small sets of users.

In POSIX.1e, ACLs have six possible tag values illustrated in Table 5.8. The object owner, group,

and “other” entries are the canonical entries inherited from the UNIX model. The mask entry

plays a key role in compatibility with the permissions model. Applications continue to request

simple file permissions via open, mkdir; set rights and masks via chmod and umask; and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab08

207

retrieve file modes via stat. Likewise, users may reasonably expect reasonable behavior when

seeing permissions listed by ls or set via the chmod command. When only canonical entries are

present on a file or directory, then the group bits in set or retrieved via permissions will affect

the object-group ACL entry. However, if any additional user or group entries exist in an ACL,

then a new mask entry will be present, whose value will be set or retrieved instead. During ACL

evaluation, the mask entry limits the maximum rights granted by any noncanonical ACL entry.

As a result, setting a conservative umask or file permissions will cause rights set via additional

user and group fields to be limited to those the user specified for the file group. Likewise, the

file-mode output of ls will provide a conservative (overly permissive) estimate of rights granted

by any ACL present on the file, preferring to err on the side of suggesting less, rather than

greater, protection than is actually present.

Table 5.8 POSIX.1e ACL entry tags.

POSIX.1e ACL evaluation is implemented by vaccess_acl_posix1e() in subr_acl_posix1e.c.

VFS permissions are mapped to POSIX.1e ACL permissions as shown in Table 5.9. It replaces

vaccess()’s checks with the following algorithm that returns a result for the first ACL entry to

match the thread’s credential:

1. The file or directory’s access ACL (type ACL_TYPE_ACCESS) is searched for object-owner,

mask, and “other” entries, to be consulted at various points in evaluation.

2. If the credential’s effective UID matches the object-owner ACL entry, then the access request

is checked against the entry’s permissions. If sufficient, success is returned. If insufficient,

appropriate privilege is checked to supplement the entry’s permissions; if sufficient, success is

returned. Otherwise, access is denied and no further entries are consulted.

3. If the credential’s effective UID matches an additional user ACL entry, then the access request

is checked against the entry’s permissions—limited to those also granted by the ACL mask entry.

If sufficient, success is returned. If insufficient, appropriate privilege is checked to supplement

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab09

208

the entry’s permissions; if sufficient, success is returned. Otherwise, access is denied and no

further entries are consulted.

4. If either one of the credential’s effective or additional GIDs matches the object-group entry or

any of the additional group ACL entries, then the access request is checked against the entry’s

permissions—limited to those also granted by the ACL mask entry. If any entry is sufficient,

success is returned.

5. If no group entries were sufficient without privilege, then any matching group entries will be

retried with appropriate privilege checked to supplement the entry’s permissions; if sufficient,

success is returned. Otherwise, if there were any matching groups, access is denied and no

further entries are consulted.

6. Finally, the ACL “other” entry will be consulted; if sufficient, success is returned. If

insufficient, appropriate privilege is checked to supplement the entry’s permissions; if sufficient,

success is returned. Otherwise, access is denied.

Table 5.9 Mapping of VFS permissions to POSIX.1e ACL permissions.

A mask entry will always be present if any noncanonical ACL entries are present, and it applies

to all entries but the object’s owner and “other” entries. When multiple group entries match a

credential, then best match, rather than first match, selects an entry. Privilege is checked for a

matching entry only if the entry’s permissions are insufficient—this limitation of privilege

209

checking avoids unnecessary exercise of privilege, which in the future may be recorded in

event-audit records.

In addition, directories may have default ACLs (type ACL_TYPE_DEFAULT) used when new

objects are created in the directory; these entries are combined with the system-call mode field

and process umask by acl_posix1e_newfilemode(). FreeBSD implements the behavior specified

by POSIX.1e by allowing the umask to restrict all rights granted in the resulting ACL; this

behavior differs from Linux in which the directory’s mask entry is allowed to override the umask.

Both models have merit: strict adherence to POSIX.1e causes users and applications aware of

the permissions model to always get conservative behavior when setting the umask and file

modes; allowing the mask to override the umask makes it possible to create project directories

in which the directory owner need not worry about how process umasks are set for other users

and can, instead, ensure that (for example) files are always group writable.

The UFS implementation of POSIX.1e ACLs uses the inode UID, GID, mode fields to hold

canonical ACL entries. If an extended ACL is present, then additional entries are placed in an

extended attribute. If an ACL mask entry is present, then the group permissions in the inode

mode will be used for the mask entry, and permissions for the object-group entry will be stored

in the extended attribute instead. This approach is consistent with file permissions passed via

the system-call interface that also uses group bits for the file mask, and avoids

extended-attribute operations when implementing stat and chmod.

NFSv4 Access Control Lists

Whereas POSIX.1e ACLs are designed for UNIX compatibility, the primary design consideration

for NFSv4 ACLs is compatibility with Windows clients accessing a UNIX server via the Network

File System or CIFS protocols. As such, NFSv4 ACLs are modeled on those found in Windows’

filesystem NTFS. Largely because of inclusion of ZFS, FreeBSD has adopted Solaris semantics

for NFSv4 ACLs. There are necessarily design tradeoffs: where in POSIX.1e ACLs, compatibility

for users and applications that were aware only of the UNIX permissions model was a key goal,

in NFSv4 ACLs, users may experience unexpected behavior as ACL entries override more

UNIX-like expectations. For example, an ACL entry on a file granting deletion rights may

override a lack of write permission on its parent directory, to provide greater compatibility with

the Windows model.

In the NFSv4 ACL model, filesystem objects each have a single ACL of type ACL_TYPE_NFS4.

In contrast to UNIX permissions and POSIX.1e ACLs, NFSv4 ACL evaluation takes into account

all entries that match the credential’s effective UID, effective GID, and additional groups, not

just the first entry that matches the credential.

210

The set of tags supported by NFSv4 ACL entries is similar to those in POSIX.1e ACLs (see Table

5.10). An additional tag ACL_EVERYONE allows object owners to specify rights applicable to all

users and groups. There is no notion of an ACL_MASK entry in NFSv4, although changes to file

mode do affect ACL interpretation, and the mode is updated to reflect ACL changes.

Table 5.10 NFSv4 ACL entry tags.

NFSv4 defines four types of ACL entries: allow entries, deny entries, audit entries, and alarm

entries. Only allow and deny entries are implemented in FreeBSD; setting ACL entries of other

types will return an error. NFSv4 ACLs are defined as deny by default: operations not explicitly

authorized by ACL entries will be rejected. Further, explicit deny entries can block access that

might otherwise be granted by other allow entries. An exception to deny by default in the

FreeBSD implementation is that file owners are always allowed to get and set the file’s mode and

ACL, regardless of ACL contents. Table 5.11 contains a complete list of mappings from VFS

permissions to NFSv4 ACL permissions.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab11

211

Table 5.11 Mapping of VFS permissions to NFSv4 ACL permissions.

NFSv4 ACL evaluation is implemented in vaccess_acl_nfs4(). The function begins by

determining the set of NFSv4 ACL permissions that must be granted:

1. access_mask is initialized to the set of NFSv4 permissions corresponding to the requested

VFS permissions, calculated by _access_mask_from_accmode().

2. If the filer owner is equal to the credential’s effective UID, then ACL_READ_ACL,

ACL_WRITE_ACL, ACL_READ_ATTRIBUTES, and ACL_WRITE_ATTRIBUTES are removed

from access_mask.

3. If the target object is not a directory and ACL_APPEND_DATA is requested, then it is

replaced with ACL_WRITE_DATA.

Next, vaccess_acl_nfs4() must determine whether or not the ACL and other properties, such as

file mode and ownership, would grant the request:

4. _acl_denies() is invoked to iterate over and evaluate ACL entries: its conclusion will be

stored in a local variable denied. Each time a matching allow entry is encountered, any rights it

grants are removed from access_mask. If at any point a matching entry is encountered that

denies remaining permissions in access_mask, then denied will be set to EPERM, with

_acl_denies() returning immediately. If, while iterating over entries, access_mask reaches 0,

212

denied will be set to 0, with _acl_denies() returning immediately. If the end of the ACL is

reached without access_mask reaching 0, then denies will be set to EPERM, reflecting a

default-deny model.

After _acl_denies() returns, several other factors are considered that may deny access:

5. If the original operation request included VADMIN, and the effective UID is not equal to the

file owner, then denied will be set to EPERM.

6. If VEXEC has been requested, the object is not a directory, and the operation has not already

been denied, then the equivalent file permissions for the ACL is calculated by

acl_nfs4_sync_mode_from_acl(). Following the same rule enforced in execve, if the file mode

does not include S_IXUSR, S_IXGRP, or S_IXOTH, then denied will be set to EACCES.

If after these tests denied is 0 (success), then vaccess_acl_nfs4() will return success. Otherwise,

it continues:

7. If VEXPLICIT_DENY was set, and _acl_denies() did not fail because of a deny entry, then

success can be returned. This test is used only during file unlink, where finding a

VDELETE_CHILD deny entry can block unlink of a child in a directory, but failing to find an

allow entry is not sufficient to cause it to fail: general write permission on the parent directory is

also able to authorize unlink in the UNIX model.

8. Appropriate privilege will then be checked for any remaining ungranted rights, which may

cause vaccess_acl_nfs4() to return success.

9. Finally, an error value is selected: if the operation would have required ownership of the file

or directory, or involves unlinking, then EPERM will be returned; otherwise, EACCES will

reflect a DAC failure.

Unlike POSIX.1e ACLs, ACL inheritance is combined in the single NFSv4 ACL, rather than

stored in a separate default ACL. Per-ACL-entry flags indicate whether the entry is to be

inherited by new files or subdirectories, and whether or not the entry is used for access control

or just inheritance. acl_nfs4_compute_inherited_acl() computes the ACL of a newly created

filesystem object given the parent’s ACL and system-call requested permissions (combined with

umask). acl_nfs4_inherit_entries() allows an entry to be inherited if it is not an object-owner,

object-group, or everyone entry; if the entry is tagged as inheritable by directories or files; if the

object is not a directory, then only file-inheritable entries are used; and if the entry type must be

either allow or deny.

213

As with POSIX.1e ACLs, some effort has gone into UFS to allow what NFSv4 terms trivial ACLs

to be stored only using inode fields; only if more complex ACLs are defined will they overflow

into extended attributes. acl_nfs4_is_trivial() performs this calculation before writing out an

ACL by first converting the ACL to a file mode, then converting it back to an ACL and

determining whether it is semantically identical to the original ACL. Two NFSv4 ACLs are

semantically identical if they have the same number of entries, and each entry has identical tag,

ID, permissions, entry type, and flags.

5.8 Capsicum Capability Model

Through the mid-2000s, operating-system security research focused on multi-user systems:

discretionary and mandatory access-control models, fine-grained privilege, auditing, and

virtualization. As UNIX systems were scaled down for use in personal and mobile devices, such

as laptop computers, phones, tablets, and embedded and appliance devices, the aims of local OS

security changed significantly. Rather than control the interactions of multiple users, developers

instead sought to limit the rights of applications, or even components of applications, to protect

a single user, the system owner, from application vulnerabilities exploited by malicious content

originating from the Internet. Conventional OS security notions such as users and groups

sometimes found use in these environments (Android), and as well as in mandatory

access-control schemes (iOS, SELinux), but have proven mediocre tools for the particular

problem of application compartmentalization, sometimes referred to as privilege

separation.

Application compartmentalization decomposes programs into multiple isolated components

each running with different rights such that compromise of one component yields only its

individual rights, rather than the the total rights of the composed application, mitigating the

effects of a security vulnerability. In early work pioneered by Provos et al. [2002], and similar

work by Kilpatrick [2003], the goal was to reduce the exposure of all-powerful root privilege to

attacks in which arbitrary code execution was available to attackers (e.g., buffer overflows). In

later application-level work by Reis & Gribble [2009], and OS work by Watson et al. [2010],

compartmentalization is also applied to complex, security-aware applications without access to

system privilege, such as Web browsers. The argument for this approach is straightforward: in

computer systems with a single user, that user’s access to his or her own data overshadows the

importance of historic root access as all critical data on the system is available to the user

without local privilege escalation.

Capsicum is a capability-based scheme first shipped in FreeBSD 9 to provide improved OS

support for application compartmentalization. Capsicum adopts ideas from historic capability

systems in which ambient authority is deemphasized: rather than allowing all processes to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_285
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_285
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08

214

name all system objects, and then performing explicit access control based on permissions or

labels, sandboxes gain access to objects through program-driven delegation. This approach

matches the requirements of security-aware applications that must support their own

distributed system or user-facing security models such as the World Wide Web’s same-origin

policy or powerboxes that grant file access to sandboxes via a privileged file-open dialog box.

Capsicum Application Structure

While simple Capsicum-enabled applications may consist of a single sandboxed process, in

practice most complex applications consist of a set of tightly interconnected processes

collectively known as a logical application. Often, one process will have ambient authority,

acting as a gateway and source of global rights that will be selectively delegated to one or more

sandboxed processes encapsulating specific protection domains. For example, the Capsicumized

gunzip, illustrated in Figure 5.3, consists of two processes. The first process executes the main

loop, walking a series of pathname arguments on the command line with the ambient authority

required to open files by pathname. It selectively delegates open file descriptors to a second

sandboxed process that reads data from a read-only input capability, performs potentially risky

decompression operations on the data, and writes the decompressed data to a write-only output

capability. In the event of a vulnerability in the decompression logic allowing arbitrary code

execution, the attacker gains access to only the delegated capabilities rather than ambient

authority that would allow access to all the user’s files.

Figure 5.3 Compartmentalized gunzip using Capsicum.

Trade-offs necessarily exist in multiprocess sandboxing designs: the security benefits of

finer-grained compartmentalization must be weighed against context switch and interprocess

communication performance overhead; and debugging multiprocess programs is substantially

more difficult. For example, gunzip could be refined to use a new sandbox for each file being

decompressed, further limiting the data and capabilities leaked as a result of an exploit in one of

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig03

215

several files passed on the same command line. However, this restriction comes at the cost of

additional per-file process creation and destruction. Capsicum has proven effective for use in a

variety of high-risk applications, but research into the best approaches for applying

compartmentalization to software along with methods for decreasing overhead, remains active.

Capability Systems

Capsicum is a hybrid capability system that blends ideas from historic capability-system

research with a contemporary UNIX design. In capability systems, tasks do operations on all

resources via capabilities—unforgeable tokens of authority. In capability-based operating

systems, capabilities are communications endpoints that refer to objects; invocations on the

capability are implemented via message passing to a process that implements the underlying

object. Capabilities consist of not just a reference to an object, but also a mask of rights limiting

the set of methods that can be invoked via the capability. Applications are constructed from sets

of processes linked by capabilities; each process embodies a protection domain consisting of

access to a subset of overall capabilities in the system. By minimizing capabilities held by each

process, the scope of damage in the presence of a fault—or an exploited vulnerability—is also

minimized.

Capabilities are unforgeable in that their integrity is protected by the TCB that prevents tasks

from bypassing the protection model by constructing capabilities to arbitrary objects. For

OS-based schemes, capabilities are maintained in kernel; userspace code uses per-process

indices to identify on which capability a system call should operate. Processes can obtain

capabilities by creating a new object, inheriting a capability from the parent process, being

explicitly delegated the capability by another process (e.g., via message passing), or by deriving

it from another capability that they already hold. Refinement allows processes to create new

capabilities to objects for which they already hold a capability; rights on the new capability must

be a subset of rights on the original capability.

Capability systems support the construction of both hierarchical and nonhierarchical security

relationships between pairs of communicating processes. Hierarchical relationships are those in

which one process holds a struct subset of rights of the other (asymmetric distrust).

Nonhierarchical relationships are those in which the two processes have nonidentical sets of

rights, and yet neither is a strict subset of the other (symmetric distrust). Both types of

relationships are valuable in application compartmentalization.

Conventional sandboxing is hierarchical in that the sandbox has a strict subset of rights relative

to the ambient process that created it—for example, as seen in our earlier gunzip example. An

example of a useful nonhierarchical relationship is that found in an assured pipeline between

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38

216

two processes implementing a protocol proxy between two network interfaces. Each is granted

the right to communicate on its own interface, and to communicate with the other process;

however, neither has permission to access directly the other’s network interface. This restriction

allows both processes to enforce rules defensively on messages sent and received on its interface

even if the other process has been compromised.

Capsicum extends UNIX semantics to introduce capability-system behavior in three ways: file

descriptors are modified to have capability-like properties; a new capability mode is added that

restrict process use of ambient authority; and new capability-based primitives, such as process

descriptors, are introduced to translate UNIX services into forms that are more suitable for

capability-based software designs.

Capabilities

In UNIX, file descriptors have many of the properties of capabilities: the kernel protects their

integrity making them unforgeable, they encapsulate not just a reference to an object, but also

reference-specific access rights, and may be inherited across fork or passed between processes

using UNIX domain sockets. Despite these similarities, there are significant differences that

require modification to the file-descriptor model to build a capability system. Perhaps the most

important is that only a few of the many file-descriptor system calls are controlled by the

existing per-descriptor f_flag access-right mask. For example, a read-only descriptor returned

by open will not permit write I/O operations to be done; however, the fchmod system call is

allowed regardless of open-time flags. There is also no way to refine rights on a file descriptor

after it has been created but before delegating it on to other processes.

In Capsicum, these problems are solved by introducing a new type of file descriptor, the

capability, that allows rights to be restricted and refined in a fine-grained manner suitable for

delegation to sandboxes. Capability rights, a selection of which is illustrated in Table 5.12,

correspond to common operations on file descriptors. Once held, capabilities for objects may be

passed as arguments to any system calls to which the original file descriptors could be passed,

subject to appropriate rights being present. There is no one-to-one mapping of system calls to

rights: system calls may require more than one right and a single right may authorize more than

one system call. For example, the write, writev, pwrite, and pwritev system calls all require

CAP_WRITE to authorize a write on the file descriptor. However, pwrite and pwritev also

require CAP_SEEK as they write to locations other than the file descriptor’s current offset. lseek,

in contrast, requires only CAP_SEEK.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab12

217

Table 5.12 Selection of capability rights.

Capabilities are created using the cap_rights_limit system call, similar to dup2, which accepts

an existing file descriptor (possibly already a capability) and a requested access-rights mask,

returning a new capability with the new mask. The operation fails if the requested mask includes

any rights not already held on the argument capability, enforcing a monotonic decrease in

rights.

Capabilities are implemented via a struct filecaps embedded in each file-descriptor array entry,

struct filedescent. The capability rights for a descriptor include a mask of basic CAP_ rights that

authorize system calls on the descriptor, as shown in Figure 5.4. It also includes whitelists of

specific ioctl and fcntl commands that are permitted. ioctl operations are device-specific, and so

the regular mask on system calls alone provides insufficient granularity to usefully delegate

device nodes to sandboxes. For example, the whitelist allows the high-availability storage

daemon (hastd) to delegate kernel GEOM_GATE devices while permitting only suitable ioctl

commands.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig04

218

Figure 5.4 Each file-descriptor array entry has a capability mask that controls access.

Capabilities are evaluated when a file descriptor is looked up in a system call, typically in fget(),

which accepts a mask of required capability rights for the operation as an argument. fget()

invokes cap_rights() to extract the set of rights for a file descriptor, and then passes it to

cap_check() to confirm that the rights are sufficient to authorize the current system call on this

specific object.

Capability Mode

In strict capability systems, global capabilities are assigned to the first process, from which all

other capabilities will be directly or indirectly derived and then distributed through descendent

processes as the system runs. In UNIX, access to global namespaces, such as the filesystem

namespace accessible via open, gives processes the ability to acquire undelegated capabilities.

Capsicum therefore differentiates between regular UNIX processes, which retain ambient

authority, and those in capability mode, for which global namespace access is denied.

219

Capability-mode processes must be delegated any rights they are to use, supporting fine-grained

sandboxing based on a capability model. This hybrid approach allows portions of applications to

run with the full rights of the user, but other components may have access to only explicitly

delegated files, directories, devices, or network connections.

A process enters capability mode by invoking the cap_enter system call that sets the

CRED_FLAG_CAPMODE flag on the cr_flags field of the process credential. A child process

created with fork inherits the parent process credential, and so also inherits the capability-mode

flag. Processes may query whether they are in capability mode using cap_getmode, but there is

no system call to clear the flag and exit capability mode. Within capability mode, all system calls

must implement capability discipline: their actions must be scoped to the current process or an

object named using file-descriptor arguments.

System calls that naturally implement capability discipline when used with regular files and

directory descriptor arguments are left unfettered: for example, the read and write system calls

are not limited in capability mode. Similarly, certain system calls act only on the local process,

such as getuid and signal, and are also not limited in capability mode. These calls are listed in

capabilities.conf, which causes the SYF_CAPENABLED flag to be set in their system call

descriptions when the kernel is compiled. When a capability-mode process invokes a system call

without the SYF_CAPENABLED flag set, ECAPMODE will be returned by the system-call

handler.

Certain system calls implement multiple functions, only some of which follow capability

discipline. Their use may be permitted in capability mode, but certain aspects of their function

are restricted. For example, shm_open is permitted in capability mode, but only to create

anonymous, rather than named, shared memory objects. Likewise, while the open system call is

entirely blocked because of its dependence on the global filesystem namespace, openat is

permitted as long as it is used only to open files “under” the passed directory descriptor, rather

than relative to the filesystem root or current working directory. Implementing filesystem

subtree delegation proves tricky because of concurrency, and because the only effective

technique appears to be to prevent use of “..” in capability-mode path lookup.

System calls implement restrictions using IN_CAPABILITY_MODE(), which checks whether

the current thread should be limited. Sometimes checks are per-system call, such as in

shm_open, but frequently, checks are done centrally, such as in namei(), which implements

checks that lookups are under, rather than outside of, delegated directory descriptors for openat,

fchmodat, etc.

220

5.9 Jails

Jail, first introduced in FreeBSD 4.0, is a lightweight operating-system based virtualization

framework that allows safe delegation of subsets of a FreeBSD system to guest root users [Kamp

& Watson, 2000]. Administrators of guest instances, known as jails, can hold root access,

manage their own users and groups, install third-party software packages, and perform a variety

of other administrative activities safely without putting the host system at risk. When configured

to use ZFS, guest administrators can also manage data sets, set quotas, and prepare snapshots,

all localized to their individual jail. Combined with more recent IPC and network-stack

virtualization features, administrators can be granted the ability to manage networking

properties such as routing, VLANs, and firewalls. As of FreeBSD 9.0, enhanced resource control

allows resource limits to be set and strictly enforced for jails, including on CPU time, resident

memory use, open files, swap use, number of processes, and number of threads.

Jails see widespread use in confining integrated system-scale applications, such as

database/Web server combinations, where independently run services may require root

privilege but must also safely cohabit a single server system. They are an especially popular tool

for Internet Service Providers (ISPs) as customers can be granted administrative rights

(including root privilege) for systems they manage, while also allowing high-density

hosting—hundreds and even thousands of virtual instances on a single server. Security and

hosting density are frequently cited benefits of virtualization, but there are others—not least,

larger numbers of smaller and more specialized installations can be easier to manage, especially

where applications have complex and sensitive package dependencies making combined

upgrades tricky.

Jail’s origins lie in the chroot, or change root, system call, which transforms a process’s

filesystem namespace by modifying the process-local root vnode (fd_rdir) to differ from the

boot-time global root vnode. chroot saw early use in facilitating reproducible software builds,

but in the 1990s it became a popular technique for confining system daemons such as

anonymous FTP servers. The technique proved neither particularly convenient, nor particularly

secure. In practice, changing a process’s root directory proves tricky, as applications often

require access to system configuration files, libraries, and IPC channels reached via the

filesystem namespace. These requirements sometimes lead to replication of system content into

a per-application root; for example, when BIND’s named daemon runs chroot’ed for security, it

requires its own devfs mount.

More importantly, chroot is by design a namespace transformation rather than a security tool:

countless nonfilesystem system calls exist that permit access to global resources that may either

allow “escape” from chroot’s constraints, or the ability to negatively impact system operation in

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref07

221

ways that a sandboxing model would ideally not allow. For example, several supported

architectures have machine-dependent system calls unrestricted by chroot that provide direct

access to the hardware I/O space for root-owned processes. Finally, relevant to both usability

and security, chroot required root privilege, as the ability to change the filesystem namespace

affects the security of setuid binaries that rely on the sanctity of system directories such as

/usr/lib and /etc for correct—and secure—operation; being able to change where these paths

point can lead to security vulnerabilities.

Capsicum has now replaced chroot as the preferred means of confinement within a single

application by virtue of an unprivileged sandboxing primitive and application-centered security

model. Jails address the other important use case for chroot: the virtualization-like effect of

giving a set of applications their own filesystem namespace. Jail reuses ideas from chroot for

lightweight filesystem virtualization; it also addresses potential “escape” techniques and

restricts or denies use of system services that might allow processes in a jail to have more global

effects. This latter notion is necessarily configurable as the desirable limits on availability and

scope of system services vary with the specific requirements of a deployment environment and

its applications.

Jails are collections of processes with a common set of namespace transformations (including

filesystem root), virtualized networking and IPC subsystems, and mutual visibility for

interprocess operations. Within the kernel, each jail is represented by a reference-counted

prison structure as illustrated in Figure 5.5. Each process is in exactly one jail by virtue of the

cr_prison pointer in its process credential. At boot, the first user process, init, is placed in the

statically allocated prison0. As with other credential properties, jail references are inherited

across exec and fork, and so a new process will be in the same jail as its parent unless it is

explicitly changed. Jails can be nested, which is represented by a tree of prison structures linked

by their pr_children, pr_sibling, and pr_parent fields. Jails extend chroot with a number of

restrictions that:

• Prevent further use of chroot from allowing “escape” by differentiating between each process’s

current root directory (fd_rdir) and jail root directory (fd_jdir). Both will be tested for (and

blocked) when evaluating “..” lookups. With the introduction of nested jails, pr_parent pointers

must be walked to check the root of each ancestor jail.

• Limit the set of privileges available to root-owned processes in jail; for example, the

restrictions do not permit loading of kernel modules or direct kernel-memory access.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig05

222

Figure 5.5 Prison structures are the in-kernel representations of jails.

• Block interprocess operations on processes not in the same jail; for example, they do not allow

a jailed process to signal processes outside the jail, or in another jail, using kill, or attach a

debugger to them using ptrace.

• Do not allow processes in a jail to bind sockets to IPv4 and IPv6 addresses that have not been

delegated to the jail. Likewise, they force loopback network requests to connect only to sockets

bound in the jail.

• Prevent jailed processes from opening terminal devices already in use by another jail, in order

to prevent capture or forgery of user input via a pseudo-terminal.

• Limit use of the mount system call to jail-safe filesystems, marked as VFCF_JAIL in their VFS

declaration: nullfs, tmpfs, procfs devfs, and ZFS.

Jail implements these protections using several strategies across various kernel subsystems.

Entirely blocked services (such as jail-unsafe filesystems) are protected by calls to jailed() on the

process’s credential. The centralized priv_check() function calls out to prison_priv_check() to

validate privileges requested by a jail against a whitelist; examples are shown in Table 5.13.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab13

223

Certain constraints are implemented by rewriting system-call arguments; for example, the use

of IP addresses is scoped by rewriting sockaddr_in arguments to bind and connect to replace

INADDR_ANY with the jail’s own IP address. Finally, system calls such as ptrace have their

arguments checked for appropriate scope: p_candebug() checks that if an invoking process is in

a jail, that the target process is in the same jail. Pseudo-terminal access is likewise scoped by

tagging opened terminal devices with the jail of the process that first opened them; later

attempts to open a device will fail if the process is not in the same jail.

Table 5.13 Example privileges permitted and denied to jailed processes.

The simplest way for a process to create a new jail is via the jail system call, which takes a jail

structure specifying a new root directory, hostname, jail name, and lists of IPv4 and IPv6

addresses. The jail program is careful to close any open directory descriptors and resources

from outside of the jail that might allow escape before executing the requested binary. Each jail

224

is assigned a unique jail ID (JID), which can then be specified as an argument to other system

calls that will act on the jail after creation. Processes can attach to an existing jail using the

jail_attach system call, which allows new commands to be injected into the jail from outside;

extreme care is also required to prevent the undesirable leakage of resources into the jail. Jails

can be destroyed using the jail_remove system call, which will terminate any processes in the

jail.

In FreeBSD 8.0, new system calls were introduced to ease management of increasingly flexible

and configurable jails. The jail_get and jail_set system calls allow getting and setting sets of

name-value variables on an existing jail by JID. Possible option names are shown in Table 5.14.

In FreeBSD 8, jail was also integrated with the experimental VIMAGE facility, which allows IPC

and network-stack virtualization, described in greater detail in Chapter 12 and Chapter 13. With

this feature enabled, jailed root users can manage per-jail firewalls and routing tables, as well as

use packet-sniffing tools such as tcpdump. Instead of delegating IP addresses, virtual (or real)

network interfaces are assigned to jails.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13

225

Table 5.14 Jail options used with jail_get() and jail_set().

Unlike hypervisor-based virtualization systems such as bhyve, jails share a single kernel across

all instances; this allows significantly greater efficiency than virtual-machine approaches,

supports more integrated scheduling and memory management, and facilitates sharing between

virtual machines through regular OS-based IPC primitives such as pipes and sockets. Through

nullfs mounts and ZFS copy-on-write features, jail storage footprints can be minimized—while

also easing management of many virtual systems. On the other hand, jail-based virtualization is

more visible to guest administrators who cannot upgrade the kernel version, use tools that

require access to kernel memory, or directly access hardware. Jails also share a larger common

TCB than hypervisor-based solutions such as Xen, where common attack surfaces between

mutually distrusting guests are limited to a narrower hypercall interface and common

paravirtualized backend drivers (described in Chapter 8). Since their development, the approach

promoted by FreeBSD jails has also been adopted in other systems, including Solaris Zones and

Linux Containers.

5.10 Mandatory Access-Control Framework

Mandatory access control (MAC) describes a class of security models in which system or

security-administrator-defined policies constrain the behavior and interactions of all system

users. Whereas in DAC, object owners protect (or share) objects at their own discretion, MAC

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_206

226

enforces systemwide security invariants regardless of user preference. The security research

literature has defined a diverse set of mandatory security policies, the most influential of which

are described in the next section. There is also significant user-community interest in

product-specific security customization for appliance and embedded systems, such as firewalls

and smart phones. However, it is neither desirable to integrate all possible security models

directly into FreeBSD, nor to encourage extensive and difficult-to-maintain local modifications

of the OS kernel within every FreeBSD-derived product.

The MAC framework offers a logical solution to this problem: a kernel access-control-extension

infrastructure able to represent many different policies, offering improved maintainability and

significant flexibility supported by the OS vendor [Watson et al., 2003; Watson, 2012]. Similar

to the device-driver framework and VFS, the MAC framework allows policies compiled into the

kernel, or encapsulated in kernel modules, to modify the kernel security policy using

well-defined kernel-programming interfaces (KPIs). Policy modules can augment kernel

access-control decisions, and make use of common policy infrastructure, such as object labelling,

to avoid code replication or the need for direct kernel modification. Unlike filesystem stacking,

previously proposed for access-control extension, the framework supports enforcement of

ubiquitous policies spanning a broad range of kernel object types, from files to network

interfaces. The framework also supports tight integration of access-control policies with the

kernel concurrency model, unlike system-call interposition, another widely discussed technique

for kernel access-control extension [Watson, 2007].

Mandatory Policies

Early mandatory security models focused on information flow, and require ubiquitous

enforcement across all kernel services. Bell and LaPadula’s multilevel security (MLS),

protects confidentiality by controlling information flow through the operating system [Bell &

LaPadula, 1973]. The Biba integrity policy is the logical dual of MLS, protecting integrity [Biba,

1977]. Fraser’s low-watermark mandatory access control (LOMAC) is an integrity policy that

tracks the dynamic flow of taint through a system [Fraser, 2000]. These models are concerned

with maintaining invariants by permitting or denying operations that lead to the upgrade or

downgrade of information. To have this effect, they place security labels holding

policy-specific metadata on both subjects (credentials) and objects (files, sockets, etc.) to

support access-control decisions.

In MLS, subject labels capture the user’s security clearance and object labels capture an objects

classification; in Biba and LOMAC, labels represent subject and object integrity.

Information-flow control is imposed by controlling use of read and write functions; for example,

in MLS, a user with a SECRET clearance is not permitted to “write down” secret data to a file

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_363

227

marked UNCLASSIFIED; likewise, a user with a SECRET clearance is not permitted to “read up”

top-secret data from a file marked TOP SECRET. Integrity models instead prevent the upward

flow of lower-integrity data, blocking the upward write of data from low-integrity subjects to

higher-integrity files. Biba prevents “read down” by blocking read operations on lower-integrity

files, whereas LOMAC allows “read down” operations to succeed, but downgrades the subject

label of the reader, preventing later writes to higher-integrity objects, maintaining the same

information flow invariant.

Boebert’s Type Enforcement (TE) and Badger’s Domain and Type Enforcement (DTE) have also

proven influential, with TE seeing widespread deployment in SELinux and McAfee’s

FreeBSD-based Sidewinder firewall [Boebert & Kain, 1985; Badger et al., 1995; Loscocco &

Smalley, 2001]. Both models are flexible and fine-grained, with subjects and objects labelled

with symbolic domains and types. An administrator-controlled rule set defines how these labels

are interpreted, authorizing permitted interactions and domain transitions. Processes in the

user_d domain might be allowed to read, but not write, objects of type system_t, regardless of

filesystem ownership and permissions. Transitions between domains occur by executing

specially labelled programs in a similar way to setuid binaries, subject to policy. Processes can

also transition between domains dynamically, again subject to policy.

Finally, a broad class of hardening policies are also relevant, which take less principled

approaches, but offer direct control over OS-level services and features in a more

system-centered way, rather than relying on abstract information-flow or label-centered

approaches. For example, the ugidfw filesystem firewall policy allows a global set of

system-administrator-defined rules to control the interactions of users, groups, and

files/directories like a network firewall. This policy is similar, notionally, to TE, but applies only

to the filesystem, and relies on existing UID and GID elements of the process credential rather

than on supplemental security labels.

Guiding Design Principles

The dual goals of explicit access-control extensibility and engagement with downstream system

vendors lead to several philosophical and programmatic design principles:

1. Do not commit to a particular access-control policy as there is no consensus on a single true

policy or even policy language. Policy is therefore captured by C code that can compute results

dynamically, perhaps based on a configurable policy or labels, or that can implement purely

static decisions.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref11

228

2. Avoid policy-specific intrusions into kernel subsystems: encapsulate these details behind

policy-agnostic kernel interfaces. This approach leads naturally to an object-centered design:

access-control checks are relative to a subject (process credential), object, and method.

3. To avoid code redundancy, provide policy-agnostic infrastructure such as access-control

instrumentation points, label storage, label APIs, and tracing. Where possible, user APIs are also

policy-agnostic to permit shared command-line tools.

4. Policy authors determine their own security and performance trade-offs. The MAC

framework supports heavy-weight policy designs (such as the ubiquitous labelling of network

packets required by Biba and MLS), but only policies using those functions need pay for them.

5. Support multiple simultaneous and independent policies. Most commercial trusted systems

include at least two different mandatory policies: MLS for confidentiality, and Biba for TCB

protection. This approach allows third parties to extend the security model while base OS

policies are in place. Where possible, provide predictable, deterministic, and ideally sensible

compositions of simultaneously loaded policies.

6. Impose structures that simplify assurance arguments. In the parlance of Anderson, the MAC

framework acts as a reference monitor: tamper-proof, always invoked, and small enough to

be subjected to analysis and tests [Anderson, 1972]. The goals of tamper resistance and

nonbypassability are done through enforcement of access-control policies by the kernel. The

goal of analyzability is done through separation of policy and mechanism. Access-control

policies can be validated separately from the services they protect and the framework that allows

their enforcement.

7. Design for an increasingly concurrent operating system kernel. As even hand-held systems

have grown native parallelism, and demands on kernel scalability have grown, new security

policies need not only to behave correctly, but also scale with the kernel features they protect.

Architecture of the MAC Framework

The MAC framework architecture, illustrated in Figure 5.6, consists of a thin service layer

linking security-aware user applications, kernel services, and access-control-policy modules.

Policies employ the framework’s infrastructure to instrument policy-relevant kernel security

decisions, store and retrieve security labels on objects, and dynamically compose with other

loaded modules. In addition, the MAC framework implements a set of DTrace probes that

support debugging and profiling using the D script language, see Section 3.8. The framework

also exposes policy-independent but security-aware system calls so that policy-agnostic

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec8

229

monitoring and management tools, such as getfmac and setfmac, can query and manipulate

labels on objects. Several different interfaces are defined:

Figure 5.6 The MAC framework is a pluggable framework for kernel policy augmentation.

• The kernel services entry-point KPI is invoked by kernel services, such as the Virtual File

System (VFS) and interprocess communication (IPC), to notify the MAC framework of object

events such as allocation and destruction, and to do access-control checks. Roughly 240 entry

points are defined, most representing specific methods on particular object classes; generally,

access-control entry points take the perspective that a subject (typically represented by a process

credential) is invoking a method on an object. Kernel subsystems are responsible for providing

opaque storage for labels on their objects in the form of a void * pointer to be maintained by the

framework.

• The policy entry-point KPI sits between the MAC framework and registered policies. Many

policy entry points correspond directly to kernel entry points, albeit with explicit label

references added to the argument set. These label references are supplemented by policy

life-cycle events and a library of infrastructure functions available to policies, such as memory

allocation and label storage. Policy modules need to implement and invoke those KPIs that they

require, and the specifics of how object labels are stored is opaque to policies to insulate them

from changes in kernel implementation details.

230

• The label-management API allows userspace programs to query and set security labels on

various object types including files, sockets, and processes without knowing the details of loaded

policies.

• A set of DTrace probes allow framework operations to be monitored using D scripts: probes

are available on entry and return from every MAC framework access-control entry point,

providing access to arguments and return values so that decisions can be monitored or

manipulated.

Framework Startup

To meet the nonbypassability requirements of a reference monitor, the MAC framework must be

initialized and ready to handle access-control checks by the time the first user process, init,

begins execution. Ubiquitously labelled policies, such as Biba and MLS, require that the

framework be available significantly earlier to maintain security labels on all kernel objects from

inception. As a result, the framework is initialized early in boot—shortly after the kernel memory

allocator, console, and locking primitives become available, but before device probing and

process creation have begun. Initialization occurs in several phases:

1. Framework data structures, locks, and memory allocation are initialized.

2. Policies compiled into the kernel or loaded before boot are registered.

3. The global mac_late is set, indicating that from this point onward, kernel objects controlled

by the framework may be allocated.

4. The MAC framework steady state is entered and kernel boot continues.

Policies loaded after mac_late are not assured complete access to all events on all controlled

objects, and are unable to rely on label memory being present for objects allocated prior to

policy registration. These constraints are compatible with many UNIX-centric policies, and even

some labelling policies, but not policies such as MLS and Biba that require ubiquitous labelling

and control to enforce information-flow constraints. In practice, no special behavior currently

appears to be necessary at kernel shutdown.

Policy Registration

Policies must register with the MAC framework to instrument access-control decisions, receive

object life-cycle events, label object classes, and access framework services. The kernel linker

identifies MAC policies in the kernel and modules using the linker set facility. Each policy

231

declares a set of properties including whether or not the policy may be attached after boot (i.e.,

after mac_late is set), and whether the policy may be unloaded. These properties are stored in a

statically allocated per-policy data structure, mac_policy_conf, illustrated in Figure 5.7, along

with a reference to the complete set of policy entry points, stored in a mac_policy_ops

structure.

Figure 5.7 MAC policies are described by mac_policy_conf and mac_policy_ops structures.

When an entry point is invoked by a kernel service, the set of loaded policies is stabilized for the

lifetime of that invocation; attempts to change the set of loaded policies must wait to let in-flight

invocations drain before continuing. This design ensures consistent implementation of

access-control checks, and the prevention of implementation races such as use of code in a

policy after its containing module has been unloaded.

Figure 5.8 illustrates the policy life cycle: MAC policy mpo_init() and mpo_destroy() entry

points are invoked, respectively, during policy registration and deregistration. Exclusive

framework locks are held over both entry points to ensure that all steady-state entry-point

invocations on the policy are bracketed by the two events, allowing safe policy initialization and

cleanup.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig08

232

Figure 5.8 MAC policies have an explicit life cycle.

Framework Entry-Point Design Considerations

The kernel service entry point KPI is the means by which kernel subsystems, such as filesystems

and the network stack, engage the reference monitor in security-relevant events and decisions.

Wherever possible, the MAC framework takes the perspective that kernel subsystems implement

objects whose instances may be labelled, and that policies may be adequately enforced through

controls on method invocation. This approach is a natural fit for the kernel architecture, which

often takes on an object-oriented structure, despite an absence of supporting language features

in C.

In most cases, selection of the objects to protect is a straightforward result of analyzing the APIs

offered to userspace via system calls: methods on sockets, pipes, and files seem natural to

protect using the framework. In other cases, design choices are less clear: should all sysctl

management-information base (MIB) nodes be independent objects each with their own labels,

or should they be treated collectively as a single object with read and write methods? The MAC

framework takes the latter approach on the basis that sysctl nodes frequently provide access to

many individual back-end objects, as is the case with nodes that export process information for

use by ps. Here, it is the underlying process labels that are used for authorization.

Once objects have been identified, selecting and placing entry points also requires careful

thought: the more granular the KPI, the more expressive policies can be—however, this

granularity is at the cost of policy complexity. A consistent approach to placing entry-point

invocations is also important: the fewer the calling sites, the easier they are to validate—however,

too few invocations lead to inadequate protection. MAC entry-point design is necessarily

somewhat subjective, but generally requires placing the checks deep enough to allow both

adequate insight into object types, and a single enforcement point for a particular level of

abstraction.

As an example: in early versions of the MAC framework, access-control checks for files were

done in the filesystems themselves—in later versions, these access-control checks were moved to

the common VFS code invoking all filesystems to provide more consistent protection and

simpler implementation. Placing VFS access control too high in the call stack for I/O system

calls, however, would place them before file descriptors are differentiated into specific object

types such as vnodes and sockets. Filesystems are necessarily involved in the storage strategy for

persistent labels within the filesystem, but where possible, rely on common infrastructure code

in the MAC framework to implement common models, such as extended attribute-based storage.

Similarly, the labelling of vnodes rather than the on-demand provision of labels by filesystems

233

when policies make access-control decisions was motivated by a desire to share abstractions

across filesystems and provide a uniform caching model.

Policy Entry-Point Considerations

Most policy entry points are entered because of invocation of a corresponding kernel-service

entry point:

• Object life-cycle events, such as socket creation and destruction

• Access-control requests checking a subject’s use of a method on an object

• General and sometimes subject-free decision requests

Policy entry-point KPIs have been designed with great care to provide enough information so

that policies can meet functional goals while also discouraging unsafe constructions that might,

for example, lead to concurrency vulnerabilities, or excess dependence on kernel-internal binary

interfaces that are subject to change between minor releases. Thus, it is desirable to limit

policy-module exposure to kernel-internal data structures where not specifically required for

policy semantics. It is simultaneously desirable to offer the flexibility to use those internal

structures where required to avoid policy developers simply bypassing formal KPIs, which

would be counter to the maintainability goals of the MAC framework.

Structuring the MAC framework to prevent bugs in policy modules, and the framework itself, is

a central concern. Where possible, the framework employs language types to detect programmer

errors; its structure also enables static analysis (such as completeness checking on controlling

access to classes) through its use of symbols. Programmability and binary compatibility goals

sometimes come into conflict. Earlier versions of the framework, prior to the advent of C99

sparse-static-structure initialization, declared policy entry points via an array of integer

entry-point names and function pointers cast to void *. On face value, this approach offered

stronger binary compatibility by allowing new entry points to be defined without disrupting

current data-structure layouts. However, it also discards type information for arguments to

entry-point functions. When we experimentally switched to explicit, typed entry-point functions,

we discovered a number of previously unnoticed bugs in policy modules that had been

incorrectly interpreting their arguments.

234

Kernel Service Entry-Point Invocation

To understand how the MAC framework is integrated into the kernel, and its relationship with

policies, we will consider an example in the form of access-control checks that occur when a file

is read. An excerpt from vn_write(), the kernel function implementing the write system call on

files, is shown in Figure 5.9. When the MAC framework is compiled into the kernel, vn_write()

calls mac vnode check write() to authorize the request. The framework will return 0 to allow the

write to continue, or in the event that one or more policies denies the request, a nonzero errno

value is returned. In most cases, the framework is able to select the error number returned to

userspace; this approach allows policies to indicate, for example, whether an error is a result of

violation of a policy’s rules (EACCES) or holds inadequate privilege (EPERM).

Figure 5.9 Example MAC framework invocation from VFS.

vn_write() passes several arguments into the entry point: the credential authorizing the write

(active_cred), the credential cached in the file descriptor at the time of file open (file_cred), and

the vnode on which the write is being done (vp). The stability of arguments to entry points is

ensured by the kernel synchronization model’s interaction with the calling code. Credential

contents are copy-on-write, and references held by the calling thread and file descriptor prevent

them from being garbage collected. The vnode is protected by a reference count, and vnode data,

including the MAC label on the vnode, is stabilized by the vnode lock; vn_write() holds the lock

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig09

235

over both check and use to ensure adequate atomicity. This construction avoids several critical

races that might occur when using other security extension approaches, such as system-call

interposition.

The arguments excluded from entry-point invocation are as interesting as those included. For

example, vn_write()’s data pointer is not passed into the entry point as the data it references

resides in the user address space where it cannot be accessed race-free with respect to the

file-write operation that will follow. Similar design choices throughout the kernel service KPI

discourage the expression of policies that cannot be safely represented within the kernel

synchronization model.

Policy Composition

Kernel entry points correspond to one (or more) policy-level entry points, and will invoke any

policy implementations of those entry points on each call. Policy entry-point invocation is

nontrivial: access to the policy list must be synchronized to prevent races with policy load and

unload, the subset of policies interested in the event must have their entry point

implementations called, and the results of those calls must be sensibly composed. With one

exception, the granting of system privileges, MAC framework polices are only able to restrict,

not grant, rights, which leads to a simple composition in which the set of rights granted is the

intersection of those granted by the base system and any registered policies. This meta-policy is

simple, deterministic, predictable by developers, and above all, useful.

Policy entry points may be placed in three broad categories based on return type: event

notifications that do not return a value, access-control checks that return an errno value, and

decision functions that return a Boolean. The composition policy requires that for an

access-control check to succeed, all policies expressing interest in the entry point must return

success; as policies may return different error numbers in response to the same access-control

check, a composition function, mac_error_select(), orders and selects from among available

error values, as illustrated in Figure 5.10. Invocation of policy entry points and composition of

the results are done using a set of composition macros that combine synchronization, selective

policy invocation, and composition:

• MAC_POLICY_PERFORM() broadcasts event notifications to all interested policies. Events

may relate to policy changes, label management, policy management, or kernel object life-cycle

events.

• MAC_POLICY_CHECK() composes access-control results returned by multiple policies. Each

policy contributes an errno value; these values are composed using mac_error_select(), a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig10

236

function that encodes an ordering of failure classes. Success is returned only if all interested

policies accept the request.

• MAC_POLICY_BOOLEAN() composes boolean values returned by entry points augmenting

general kernel decisions. A boolean “and” is used during IP fragment reassembly; for example,

all interested policies must accept a fragment for it to be matched with a reassembly queue.

Figure 5.10 MAC policy results are combined using an explicit composition meta-policy.

• MAC_POLICY_GRANT(), added in FreeBSD 7, is used in allowing policies to grant privileges.

In contrast to MAC_POLICY_CHECK(), its composition function returns success if any

interested policy returns 0.

Some MAC framework operations invoke more than one entry point. For example, a label-set

system call will need to allocate and initialize temporary label storage for the object type, copy in

and internalize the userspace version of the label, perform an access control check, set the label,

and free the temporary storage, each of which requires a separate policy entry-point invocation.

This sequence supports one of the more interesting aspects of policy composition: a two-phase

commit on relabelling operations. This approach allows one policy to provide access-control

logic limiting the setting of labels associated with another policy on an object; for example, the

Biba policy can prevent MLS labels from being set on a high-integrity object by a low-integrity

subject.

237

Object Labelling

Several access-control policies of interest require additional policy-specific meta-data associated

with subjects (process credentials), and often some or all objects (files, pipes, network interfaces,

etc.). This metadata is referred to as a label, and provides subject- or object-specific information

required to make access-control decisions. For example, Biba labels subjects and objects with

integrity levels, and MLS labels subjects with clearance information and objects with

data-classification levels and compartments. The MAC framework provides a policy-agnostic

label abstraction for kernel objects, system calls for querying and setting those labels (subject to

control by policies), and persistent storage for labels on filesystem objects.

As shown in Figure 5.11, policy modules control label content and semantics—not just in terms

of the bytes stored, but also the runtime requirements for memory management,

synchronization, and persistence. For example, policies might store independent label data for

every object, or might reference-count a central data structure referred to by many different

subjects. Providing label infrastructure avoids the need for policy authors to replicate label

storage facilities, and by integrating the label model with the kernel’s synchronization model,

avoids race conditions.

Figure 5.11 Policies impose semantics on the MAC framework’s opaque label facility.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig11

238

Label Life Cycle and Memory Management

The MAC framework represents label storage using label, which can be converted into

policy-specific data for policies requesting label storage on an object type. In-memory kernel

data structures for labelled kernel objects, including process credentials, virtual filesystem

nodes, and IPC objects, are extended to hold references to labels, which are managed by the

MAC framework. Table 5.15 enumerates the kernel data structures that have label storage; for

some types, such as vnode, a label pointer is added to the data structure itself, referencing label

storage allocated and managed by the framework; where kernel data structures already support

a metadata scheme, such as mbuf tags, that facility holds the label data.

Table 5.15 Kernel object types supporting MAC labels.

The label structure is opaque to both kernel subsystems and MAC policies; the former invoke

kernel-service entry points to manage the field, and the latter employ two accessor functions,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05tab15

239

mac_label_get() and mac_label_set() to retrieve and set policy-specific opaque values of type

uintptr_t, which is large enough to hold a pointer or an integer. Internally, the MAC framework

implements label as an array of uintptr_t indexed by a per-policy slot number allocated on

policy load if requested by the policy. However, that mechanism may be changed in the future.

As of FreeBSD 8, labels are allocated only when a policy specifically registers an initialization

entry-point function for that object’s label. As a result, policies loaded after boot may find that

label structures are not present for objects instantiated before the policy was loaded, and must

be able to handle that case. Alternatively, policies can be marked as unloadable after boot.

In the FreeBSD kernel, data-structure allocation occurs in a number of forms; most frequently,

the slab allocator is used (described in Section 6.3), which caches partially initialized instances

of objects to avoid complete reinitialization on each reuse. In other cases, the kernel’s malloc()

allocator is used, in which case full object reinitialization occurs on each allocation. In rare cases,

a subsystem manages its own memory cache in more complex ways, such as the vnode cache,

that leaves structures fully initialized and available for continued use until the memory is

reclaimed because of pressure from the pageout daemon. The memory model for each labelled

object is reflected in MAC framework and policy entry points, requiring variation in the

handling of labels across object types.

Differing dispositions with respect to waiting for memory allocation under pressure are also

propagated to MAC framework label allocation in the form of arguments, indicating whether

sleeping is permitted, that are also exposed to policy entry points; failing to allocate a label will

also lead to object allocation failure. Contexts that prevent sleeping include interrupt threads

and kernel threads holding nonsleepable locks; in both of these scenarios, allowing

unconditional (and therefore potentially sleeping) memory allocations could lead to deadlock;

thus, allocations must be allowed to fail, with effects on the complexity of calling code, which

must be able to handle that failure.

Kernel object allocation is significantly more complex than simply allocating memory: once

memory is available, its fields must be initialized, including locks, and it must be hooked up to

namespaces, etc. Similarly, label allocation is notionally separate from object creation and object

association, the two mechanisms by which MAC policies may initialize their own label state in a

given security context.

Object creation occurs when an API to create a new object is invoked: for example, a call to open

may create a new file, socket a new socket, and pipe a new pipe. In these scenarios, the security

properties of the new object (including any policy-specific MAC label data) will be initialized

from sources such as the creating process’s credential or the security properties of a parent

object (such as a parent directory).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3

240

Object association occurs when the kernel associates an instance of a kernel data structure with

an existing underlying object in persistent storage, for which the kernel data structure is simply

a cache. For example, a specific file will have a vnode allocated for it only after it is pulled into

the in-memory working set of the filesystem, and may be detached from the vnode if it falls out

of the working set and the vnode must be reused for another file. In that scenario, label

association occurs at the point where the vnode is associated with the on-disk file, at which

point MAC policies are given the opportunity to set up policy-specific label states, perhaps

derived from the mount point from which the file is being loaded, or from extended attributes

from the on-disk file. Both the source of file label data and its interpretation are policy specific,

but the MAC framework provides the necessary entry points to interpret and propagate label

data as required. For kernel services such as the filesystem, creation and association operations

implemented by policy modules are permitted to fail, in turn propagating failure back to the

kernel service. This design prevents creation of a file if, for example, storage for its security label

cannot be allocated in the filesystem.

Object destruction, which may represent the destruction of an actual object (such as a process

exiting), or simply the recycling of in-memory storage for some persisting object (such as a file

falling out of the vnode cache), also triggers the destruction of the object’s label. The MAC

framework is given the opportunity to release storage for the label, permitting policies to free

any allocated storage or references associated with that label.

Label Synchronization

Where supported by the semantics of kernel locking, the MAC framework allows policy modules

to borrow existing kernel locks on labelled objects. This design offers not only the benefit of

improved performance by reducing the number of locks and locking operations, but also allows

label access to be synchronized with object access, avoiding time-of-check-to-time-of-use races.

Locking protocols are documented for each policy entry point, and enforced by locking

assertions in debugging versions of the kernel, allowing policy developers to rely on

synchronization properties.

In some cases, these semantics are insufficient for policy requirements: for example, if a policy

shares mutable label data between multiple objects (such as a reference-counted sandbox

descriptor), then additional synchronization may be required to protect policy data. Similar

concerns may arise where read-write locking is used on an object, and a policy needs to mutate

the label (taint tracking in LOMAC, for example) while only a read lock is held by the framework;

here, the policy must provide supplemental locking to ensure mutual exclusion on label data.

241

Another interesting case is the process credential, which itself is a reference-counted, read-only

object—an important performance optimization that reduces the memory overhead of credential

data, and also allows for lock-free and thread-local use of credentials in almost all access-control

scenarios. When the kernel needs to modify credentials, it will do a copy-on-write, allocating a

new credential, copying old data, and modifying required fields; however, this design means

that much of the time, credential data is shared among not just threads, but also processes.

Performing credential copy-on-write cannot be done in arbitrary contexts because of memory

allocation constraints and lock order, so the LOMAC policy uses an additional process label,

protected by its own locks, to tag processes for taint propagation asynchronously on the next

system-call return. However, existing object locking usually is able to protect label data for

objects. The mac test module validates that framework expectations for locking and label life

cycles in entry points are maintained. Detailed coverage of specific object behavior can be found

in Watson [2012].

Policy-Agnostic Label Management from Userspace

The MAC framework supports label manipulation by two classes of applications: those aware of

MAC but unaware of specific policies, and those intended to manage the labels of specific MAC

policies.

Policy-agnostic but MAC-aware applications, including traditional UNIX monitoring tools such

as /bin/ps, /bin/ls, and /sbin/ifconfig, have been extended to display subject and object

label information. New commands, such as /bin/getfmac and /bin/setfmac, have been

added to set the MAC labels on system objects such as files. The system login process has also

been extended to set labels on process credentials based on user classes defined in

/etc/login.conf. These programs all treat labels in an abstract, policy-agnostic manner. The

user-land framework relies on a configuration file, /etc/mac.conf, to determine

administrator-defined defaults for labels to query and list on files, interfaces, and processes.

Policy-specific applications are aware of the semantics of specific security policies, and if

applicable, the security labels they place on objects. Depending on the nature of the the

application, developers may choose to use the policy-agnostic interfaces provided by the MAC

framework, or new policy-specific interfaces exported specifically by the policy. For example,

applications that are aware of the semantics of MLS labels may perform labelling operations

involving only MLS label elements via policy-agnostic labelling interfaces. On the other hand,

the ugidfw policy module exports a rule list via the kernel sysctl management interface.

To implement these functions, the kernel provides new system calls and socket options to

support querying and setting labels in a policy-agnostic format, including mac_get_file,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref20

242

mac_get_fd, mac_set_file, and mac_set_fd, that get and set labels on files and file descriptors.

Applications handle MAC labels via the opaque mac_t type, which is implemented as a string

buffer internally.

Labels manipulated by applications are multipart, consisting of a series of name and value pairs,

allowing label components from different policies to be manipulated simultaneously (and with

mutual atomicity) up and down the software stack. Applications can convert labels to and from

an explicit text format for printing and user input; however, label parsing is generally left up to

the kernel, a design trade-off that appears acceptable, but motivated an expansion of safe

string-handling routines in the kernel. The string “biba/low,mls/10,” for example, describes a

label that consists of two elements: a low-integrity Biba label, and an MLS label of sensitivity 10.

Applications may address all of the elements available on an object or any subset. In earlier

MAC framework designs, we intended to allow the userspace framework for labels to be

run-time extended using plug-in modules, as is the case for the kernel, but this design was

abandoned in favor of a simpler approach.

5.11 Security Event Auditing

Security event auditing, often referred to simply as audit, is the secure, reliable, fine-grained,

and configurable logging of security-relevant system events. Events of potential interest include

security-related user authentication and authorization activities, as well as administrative events

that affect system security, such as network interface reconfiguration or rebooting. Historically,

OS vendors have provided audit facilities to support forensic analysis following compromise;

however, FreeBSD’s audit system has been designed more broadly to also allow live intrusion

detection and general-purpose system monitoring. For the purposes of this section, we are

concerned primarily with the kernel portions of the audit implementation and their effect on

general kernel design.

The FreeBSD event-auditing system was developed jointly by Apple and the FreeBSD Project

during Common Criteria certification of Mac OS X, targeting the Common Access Protection

Profile (CAPP). FreeBSD userspace audit libraries and tools are loosely compatible with Sun’s

Basic Security Module (BSM) APIs, and are separately distributed as OpenBSM. Its

BSM-compatible APIs and file format have been significantly extended to support

operating-system portability and operating-system features not present in Solaris—e.g.,

Capsicum in FreeBSD and catalogue operations in Mac OS X; it has also made byte-order

independent. The FreeBSD and Mac OS X kernel audit implementations are also derived from

the OpenBSM code base [Watson & Salamon, 2006].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref24

243

Audit Events and Records

Auditable events are those that the audit system is able to log, which include kernel-centered

activity (e.g., filesystem and network accesses) and user-level events (e.g., authentication). CAPP

requires that the set of auditable events in an operating system include any exercise of the

system’s access-control policies, authentication, security management, and audit management.

The kernel audit framework is primarily focused on capturing events originating in system calls,

which reflect the actions of subjects (processes) on controlled kernel objects. User processes,

such as login and su, may also submit audit records describing user-level events using the

audit system call. The act of submitting an audit record via audit is also an auditable event that

may need to be logged.

Each audited security event is described by an audit record that contains information on the

subject responsible for the event (e.g., the process, user, and where they were logged in from),

any objects affected by the event (e.g., files), and event-specific data (e.g., the new mode set on a

file by chmod). Records are stored sequentially to files, referred to as audit trails. Auditing is

subject to an audit pre-selection policy that specifies the subset of auditable events that will

actually be logged—without this feature, even casual system usage would generate vast

quantities of log data, filling disks rapidly, and severely impact performance. Audit trails can

also be reduced, or filtered post-capture, to remove generated records that may be of less

interest over time. For example, administrators might have a policy of keeping detailed

file-access logs for 1 month, but login information for 12 months. Here, the auditreduce

command thins the longs incrementally.

CAPP also describes attributable events, which may be traced back to an authenticated user—for

example, a file access by a logged-in user, and nonattributable events that occur as part of

system operation—for example, the starting of a security-relevant daemon during system boot.

The idea of attribution required adding a new audit UID (AUID) in the process credential,

illustrated in Figure 5.12. The AUID tracks the authenticated user who initiated an event,

regardless of any UID changes that may have occurred as a result of executing setuid binaries.

The process credential has also been extended to include the audit terminal and audit session

that will be tagged onto each audit record generated for the process, and the audit mask, which

together with global-audit configuration, will control which events will be audited for the

process.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig12

244

Figure 5.12 Audit-related additions to the process credential.

BSM Audit Records and Audit Trails

BSM audit trails are binary files made up of a sequence of machine-readable tokens, as

illustrated in Figure 5.13. Tokens have a type, captured by its token ID, and a value, whose

parsing is type-specific; omission of a length field from most token types makes unrecognized

tokens unparseable—arguably a weakness to the design, but one that saves considerable space.

Records begin with one of several possible header tokens that will include the total length of the

record, a timestamp, and an event type indicating what the record describes—for example,

whether it is a open system call or event submitted by login. The header is followed by a series

of data tokens holding credential information, arguments and return values for the event, and at

the end, a trailer token terminating the record. In addition to record-oriented tokens, audit trail

files also begin and end with stand-alone file tokens that contain start and stop timestamps.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig13

245

Figure 5.13 Records consist of tokens holding state, arguments, and return values.

While the FreeBSD kernel generates BSM directly, internal data structures used for the majority

of in-kernel processing are not BSM-specific, so they could be easily replaced to add support for

a new file format. However, records submitted by userspace via the audit system call also

contain BSM.

Kernel-Audit Implementation

Key components of the kernel-audit implementation are illustrated in Figure 5.14 and include

the following:

• System calls to set the global-audit configuration, including global pre-select parameters for

unattributed events and trail rotation; this global-audit configuration is mostly used by auditd

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig14

246

Figure 5.14 The audit daemon and login process configure audit state for user processes.

• Extensions to the process credential to hold the AUID and audit masks, managed with new

system calls used by programs such as login and sshd

• System-call entry code that performs initial pre-selection and optionally allocates an audit

record for the thread

• System-call instrumentation that captures arguments to the event, such as file paths or UIDs

• System-call return code that performs further pre-selection, once the system call return value

is known, and commits the record to the global-audit queue

• The audit worker thread, responsible for managing delivery of records to the active audit trail

and audit pipes; it also processes audit-trail rotation requests synchronously

• Audit pipe code responsible for further pipe-specific filtering that instruments both system call

entry and return ioctls to configure filtering

Mandatory monitoring and high reliability are both key requirements for the audit system: if an

event is configured to be audited, then either the event occurs and is audited, or it must not be

allowed to occur. Nonbypassability is implemented by performing auditing in the TCB; that is,

247

the kernel and trustworthy user processes; access to the audit trail is strictly controlled to ensure

integrity and confidentiality. Reliability, however, has a host of further implications, including

the need to track remaining disk storage carefully to ensure that records for in-progress events

can be stored. These requirements are quite different from those implemented by the system log

daemon, syslogd, that is intended for public log data, submittable by any user, and which will

drop records rather than affect system availability when they are submitted too quickly or fill the

disk.

Figure 5.15 illustrates the arrangement of queues in the system, each with different size and

reliability properties. Individual threads may carry up to two audit records describing

in-progress activities: an active kernel audit record, and an optional user-audit record submitted

via audit. On system-call return, audit records are submitted to the global queue that is both

reliable and bounded in length to prevent outstripping of available disk space. Once the audit

worker thread has removed a record from the global queue, it will convert the record to BSM

and optionally deliver it to the global-audit trail, based on global and per-process configuration,

and to any open audit pipes, subject to either global configuration or per-pipe configuration,

depending on how the pipe has been configured.

Figure 5.15 Records pass through a series of reliable and lossy kernel queues.

Figure 5.16 illustrates the data structures involved: the thread structure points at the current

kaudit_record, if any, for the in-flight system call. This structure describes both a

kernel-originated record, whose fields are stored in audit_record, with a bitmask showing

which fields have been set so that they can be converted to tokens, and k_udata, that points at

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig16

248

the BSM record as submitted from userspace. The global audit_queue is simply a linked list of

outstanding records, along with metadata on queue limits and length.

Figure 5.16 Per-thread in-flight audit record and global-audit record queue.

5.12 Cryptographic Services

The FreeBSD kernel integrates several low-level cryptographic services, including a framework

supporting software and hardware implementations of common encryption and cryptographic

hash functions, and a Yarrow-based cryptographic pseudo-random number generator.

Higher-level services, such as full-disk encryption (GBDE and GEOM), the GSSAPI

implementation used for NFS, and IPSec, depend integrally on these low-level cryptographic

services to provide local and distributed security. Random numbers support many other kernel

services, some with significant security implications; the kernel is well-placed to collect entropy

inputs to pseudo-random number generation. Cryptographic and random-number generation

services are also made available to userspace via /dev/crypto, /dev/random, and the

kern.arandom sysctl.

249

Cryptographic Framework

Underlying cryptographic services such as GELI and IPSec is a set of APIs and libraries that

support cryptography. The cryptographic subsystem in FreeBSD supports both symmetric and

asymmetric cryptography. Symmetric cryptography, used by IPSec, uses the same key to encrypt

data as it does to decrypt it. Asymmetric cryptography, which implements public-key encryption,

uses one key to encrypt data and another key to decrypt it. This section describes how

symmetric cryptography is implemented as it relates to a specific client, IPSec.

The cryptographic subsystem was ported from OpenBSD and optimized for a fully preemptive

multiprocessing kernel [Leffler, 2003]. In FreeBSD, cryptographic algorithms exist either in

software or in special-purpose hardware. The software module that provides support for

cryptography is implemented in exactly the same way as the drivers for cryptographic hardware.

This similarity means that, from the cryptography subsystem’s point of view, the software and

hardware drivers are the same. Upper-level consumers of the cryptography subsystem, such as

IPSec, are all presented with the same API whether the cryptographic operations they request

are being done in hardware or software.

The cryptography subsystem is implemented by two sets of APIs and two kernel threads. One set

of APIs is used by software that wishes to use cryptography; the other set is used by

device-driver writers to provide an interface to their hardware. The model of computation

supported by the cryptographic subsystem is one of job submission and callbacks where

consumers submit work to a queue and supply a pointer to a function that will be called when

the job is completed.

Before a cryptography consumer can submit work to the cryptography subsystem, it must first

create a session. A session is a way of encapsulating information about the type of work that the

consumer is requesting. It is also a way of controlling the amount of resources consumed on the

device, since some devices have a limitation to the amount of concurrent work they can support.

A consumer creates a session using the crypto_newsession() routine that returns either a valid

session identifier or an error.

Once the consumer has a proper session identifier, it then requests a cryptographic descriptor,

shown in Figure 5.17. The consumer fills in the fields of the cryptographic descriptor, including

supplying an appropriate callback in the crp_callback element. When the descriptor is ready, it

is handed to the cryptographic subsystem via the crypto_dispatch() routine that puts it on a

queue to be processed. When the work is complete, the callback is invoked. All callbacks have

this form:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig17

250

Click here to view code image

int (*crp_callback)(

 struct cryptop *arg);

Figure 5.17 Cryptographic descriptor.

If an error has occurred, the error code is contained in the crp_etype field of the cryptographic

descriptor that is passed to the callback.

A set of device drivers provides the low-level interface to specialized cryptographic hardware.

Each driver provides three function pointers to the cryptographic subsystem when it registers

itself. Driver registration is done via a call to the crypto_register() routine.

Click here to view code image

crypto_register(

 u_int32_t driverid,

 int alg,

 u_int16_t maxoplen,

 u_int32_t flags,

 int (*newsession)(void*, u_int32_t*, struct cryptoini*),

 int (*freesession)(void*, u_int64_t),

 int (*process)(void*, struct cryptop *, int),

 void *arg);

The newsession() or freesession() routines are called by the cryptographic subsystem whenever

the crypto_newsession() or crypto_freesession() routines are called by a consumer. The

process() routine is called by the crypto_proc() kernel thread to pass operations into the device.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05_images.html#p207pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05_images.html#p207pro02

251

The lower half of the cryptographic subsystem uses two software interrupt threads and two

queues to control the underlying hardware. Whenever there are requests on the crp_q queue,

the crypto_proc() thread dequeues them and sends them to the underlying device, using the

crypto_invoke() routine. Once invoked, the underlying hardware has the responsibility to

handle the request. The only requirement is that when the hardware has completed its work, the

device driver associated with the hardware must invoke crypto_done() that either enqueues the

callback on the crp_ret_q queue or, more rarely, directly calls the consumer’s callback. The

crp_ret_q queue is provided because the crypto_done() routine often will be called from an

interrupt context, and running the consumer’s callback with interrupts locked out will degrade

the interactive performance of the system. When running in an interrupt context, the callback

will be queued and then handled later by the crypto_ret_proc software interrupt thread. This

use of queues and software interrupt threads effectively decouples the kernel from any possible

performance issues introduced by a variety of cryptographic hardware.

Unfortunately, there are several problems with the system just described:

• Using multiple threads requires two context switches per cryptographic operation. The context

switches are nontrivial and severely degrade throughput.

• Some callback routines do little work, and so moving all callbacks out of the device driver’s

interrupt-service routine adds another context switch that is expensive and unnecessary.

• The dispatch queue batches operations, but many consumers of the cryptographic subsystem,

including IPSec, do not batch operations, so this shunting of work into the dispatch queue is

unnecessary overhead.

To address these performance problems, several changes were made to the cryptographic

subsystem. Cryptographic drivers are now supplied a hint if there is more work to follow when

work is submitted to them. The drivers can decide whether to batch work based on this hint and,

where requests are not batched, completely bypass the crp_q queue. Cryptographic requests

whose callback routines are short mark their requests so that the underlying device executes

them directly instead of queueing them on the crypto_ret_q queue. The optimization of

bypassing the crypto_req_q queue is especially useful to consumers of the /dev/crypto device,

whose callback routine awakens only the thread that wrote to it. All these optimizations are

described more fully in Leffler [2003].

Random-Number Generator

Random (or unpredictable) numbers are relied on throughout the FreeBSD kernel and

userspace. For example, some network protocols use randomly generated identifiers rather than

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref10

252

globally managed identifiers to benefit from unique names for hosts and users (e.g., UUIDs)

while avoiding the cost of global registries. Strong random numbers—those unpredictable to

even a motivated adversary—are of particular importance to security and robustness. They

generate:

• PIDs, and stack canaries, used for exploit mitigation;

• IP IDs, TCP initial sequence numbers (ISN), and the key for TCP SYN cookies (described in

Section 14.3);

• authentication and encryption keys and initialization vectors (IV)s used in network protocols:

kernel includes IPSec, and SCTP; userspace includes TLS, ssh, Kerberos, and GSSAPI;

• authentication and encryption keys, IVs used for GELI and GBDE;

• initial UFS inode generation numbers for NFS file handles;

• salt for cryptographic hashes used in the system password database; and

• keys, IVs, and nonces for third-party applications such as pretty-good privacy (PGP) e-mail

encryption.

Computers are by design highly deterministic, making unpredictable numbers hard to acquire in

the volumes that may be required by software. Even when in-hardware random-number

generators are present, there are open questions about their effectiveness as they can suffer

biases and supply-chain attacks that are difficult to identify or mitigate. Software developers

therefore rely on pseudo-random number generators (PRNGs) to generate sequences of

numbers that, given a smaller secret key (or seed) as an initial input, will prove effectively

unpredictable to attackers. Seeds are generated by collecting entropy from around the system to

which attackers will not have access: explicit hardware entropy sources, the layout and probe

time of hardware busses and peripherals present in the system, unique serial numbers, and

unpredictable timings from the system—e.g., interpacket and interrupt arrival times.

While the kernel is well-placed to collect entropy, generating and protecting seeds are

technically challenging: weak or improperly protected seeds may allow attackers to reduce the

search space for keys (or even completely reconstruct past pseudo-random sequences). Given

adequate processing and a strong cryptographic number generator, however, not all inputs to

the seed need be unpredictable, so systems can safely include sources that might be accessible to

some attackers. For example, interpacket arrival times contribute usefully to the seed even if

some adversaries might be able to sniff the same wireless network.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec3

253

Entropy is fed into the in-kernel random-number generator, which provides a stream of

pseudo-random bytes for in-kernel use. Entropy is exported to userspace via /dev/random

and the kern.arandom sysctl. Sometimes the generator provides the random data directly—for

example, read system calls on /dev/random. In other cases, differing security and

performance trade-offs allow use of a cheaper generator seeded from the strong generator; for

example, the arc4random() interface used in the network stack, and the kern.arandom sysctl

used for stack-canary initialization by the C runtime.

A key concern in random-number generator designs is perfect forward secrecy (PFS), which

guarantees that information about random numbers produced at a later time cannot attack

random numbers generated earlier in the sequence. For example, PFS prevents adversaries that

may gain access to a system following a theft (or via export of random numbers) from gaining an

advantage in breaking keys that protect on-disk storage or communications with another party

the previous day. PFS is done through intermittently reseeding the generator with new entropy;

the reseeding interval controls the window over which an attacker who has compromised the

system can derive information about earlier random sequences. Some care must be taken,

however: if entropy is mixed into the generator too frequently, then an attacker may be able to

gain information about the entropy source by inspecting generator output over time.

To address these concerns, FreeBSD employs the Yarrow cryptographic pseudo-random number

generator to generate sequences of random numbers for use throughout the system [Kelsey et al.,

1999; Murray, 2002]. Yarrow itself has four major components: an entropy accumulator that

gathers entropy samples in one of two pools using a cryptographic hash; a reseed mechanism

that, at routine intervals, reseeds the generator key; a generation mechanism that generates a

pseudo-random sequence from the key; and reseed control that determines at what interval

reseeding from fresh entropy should occur. These structures are directly reflected in the

software implementation.

An important design choice in Yarrow is using existing strong cryptographic primitives, such as

triply-DES and SHA-1 in the design, which comes at significant performance cost, but avoids use

of custom cryptographic primitives that have seen less cryptanalysis. The FreeBSD

implementation supports multiple cryptographic hashes and encryption algorithms, an

extension to the original design; by default, AES and SHA-256 are used—both defined after

Yarrow was published.

FreeBSD is able to collect entropy samples, which include both a timestamp and

context-dependent data (e.g., packet headers). Configurable entropy sources include:

• low-level hardware interrupt processing,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05ref12

254

• scheduling of a hardware interrupt to a thread,

• scheduling of a software interrupt (SWIs) to a thread,

• packet headers injected via Ethernet interfaces,

• packet headers injected via point-to-point interfaces,

• attach times during boot-time hardware enumeration,

• keyboard and mouse input,

• hardware random-number sources, such as Intel’s rdrand instruction, and

• entropy preserved in a file across reboot.

Entropy gathering occurs throughout the kernel. Individual sources will check whether they are

enabled before invoking random_harvest(). A timestamp is collected, typically via the

high-precision cycle counter available in most contemporary CPU designs. However, some older

architectures may not support the cycle counter, in which case a slower real-time clock will be

used. Sources also pass a pointer to optional data, its length, an estimated number of bits of

entropy in the sample, and the entropy source type.

The function random_harvestq_internal() enqueues entropy samples to a global linked list,

with further processing deferred to a dedicated kernel thread to avoid performing

computationally intensive hashes in performance-sensitive contexts such as interrupt handling.

If the queue is full, then the sample is discarded to bound memory use. random_kthread()

wakes up 10 times a second to drain the pending queue of samples and inject them into Yarrow

via random_process_event(). random_kthread() also samples high-volume dedicated

hardware entropy sources such as rdrand at the same interval by invoking

live_entropy_sources_feed(). This sampling interval, combined with limits on linked-list size,

bounds the total amount of entropy that can be collected each second, and therefore limits the

amount of CPU capacity that will be spent on computationally expensive hashing.

As entropy events arrive in Yarrow, they are alternately injected into either the slow pool or the

fast pool, which each consist of an instance of the selected cryptographic hash function. The

maximum entropy that a pool can store is limited by the width of the hash: 160 bits for SHA-1

and 256 bits for SHA-256 The complete sample, including data and timestamp, is passed to the

hash, and the entropy estimate provided by the caller updates the per-source running estimate.

The fast pool will reseed Yarrow when any one source has contributed at least 100 bits of

accumulated entropy. The slow pool will reseed Yarrow when any two sources have both

255

contributed at least 160 bits of accumulated entropy. Yarrow’s authors call for the use of

statistical tests to help measure entropy gathered from sources. However, devising valid

statistical tests has proven to be tricky and they are the most criticized aspect of the algorithm.

FreeBSD relies solely on a programmer estimate of entropy in each sample.

This approach spreads entropy from different sources over time to prevent a particularly fast,

low-quality (or even compromised) source of entropy from diluting the pool—while still allowing

strong fast-moving sources to reseed frequently. When a reseed occurs, the contents of the

fast-pool hash are always included; slow-pool contents are only included when a slow reseed is

triggered. The cryptographic hash is applied multiple times to ensure that if hash context and

key size differ, then all bits of stored entropy are evenly distributed over all bits of keying

material.

Yarrow’s generator runs only when randomness is required, as opposed to entropy

accumulation, which runs whenever entropy samples are available. Thus, generator cost is

proportional to randomness consumed, whereas accumulator cost is proportional to entropy

sampled, and there is greater tolerance for the performance overhead of a contemporary

encryption algorithm versus a cheaper cryptographic hash. Yarrow’s seed is not used directly as

a key; instead, it is used by generator_gate() to generate a short-lived current key. This

approach prevents the same encryption key from being used too many times, which might

otherwise allow output cycles to arise in the PRNG. Key generation feeds output bits from the

PRNG back in as keying material; as it does not introduce any new entropy, it does not

constitute reseeding. By default, the key will be regenerated every 10 output blocks.

When a read system call occurs on /dev/random, Yarrow is queried to determined whether it

has been seeded; if not, it will block. If it has been seeded, then it is invoked to do counter-mode

encryption using the current key. While some systems differentiate random and urandom

devices, offering blocking and nonblocking entropy sources, FreeBSD simply provides the

output of Yarrow directly to both device nodes, so once unblocked by seeding, Yarrow will

provide unlimited randomness on either device.

The /dev/random framework offers significant pluggability and flexibility, allowing both new

entropy sources and new cryptographic PRNGs to be introduced. In the current implementation,

FreeBSD passes all entropy sources through Yarrow, but can be configured to allow direct use of

hardware randomness sources if desired. Direct use of hardware randomness may be suitable on

low-end embedded devices where cryptographic schemes are particularly expensive, or where a

high level of trust can be placed in hardware sources. The authors of Yarrow have since

published a new scheme, Fortuna, that may in the long term replace Yarrow in FreeBSD; the

framework should allow both implementations to live side by side, with compile-time or

256

run-time selection. Another potential future direction would be to replicate PRNG instances

across CPUs, rather than using a single instance that requires communication between

processors.

5.13 GELI Full-Disk Encryption

GELI is a GEOM class that offers cryptographic privacy and integrity protection for storage

devices that might be lost or stolen. Its primary concern is ensuring that, once a shutdown has

occurred, confidential data cannot be recovered from the disk without access to suitable

cryptographic keys or passphrases. A secondary concern is detecting corruption of on-disk data

if the device is recovered.

Confidentiality and Integrity Protection

Confidentiality is ensured by applying symmetric encryption to each sector before it is written to

the disk, and decryption when the sector is read back in. While a provider is active (e.g., while

the filesystem is mounted), its encryption keys are held in memory; when the provider is

detached, or on system shutdown, keying material is discarded. GELI can also be configured to

discard keying material when a system is suspended, requiring that it be present when the

notebook is resumed to load further data from disk. Encryption occurs at measurable

computational cost, but requires only one additional sector of metadata storage (at the end of

the device) to support any number of data sectors. The default (and recommended) encryption

algorithm is the advanced-encryption standard (AES) AESXTS, an AES-derived block cipher

designed for use with storage devices.

Optional integrity protection is done by calculating keyed cryptographic hashes for disk sectors

on write; sector hashes are validated on each read from disk. Sector-level verification failures

are coerced into read failures that must be handled by the filesystem or application. Integrity

checking comes with additional computational costs, but also requires that hash values be

stored for each on-disk sector. The hash cannot be stored within a 512-byte sector while

maintaining filesystem sector-size expectations; to mitigate this overhead, GELI coalesces

multiple 512-byte sectors into 4-Kbyte sectors with one hash in each underlying disk sector,

resulting in about an 11 percent storage overhead. The recommended cryptographic hash is

HMAC SHA-256; integrity protection is disabled by default. GELI makes use of the kernel

cryptographic framework, and is therefore able to use offloaded or CPU-accelerated

cryptography, substantially improving performance.

257

Key Management

Each GELI partition is protected by two underlying cryptographic keys: a data-encryption key

and an initialization-vector key that collectively make up the GELI per-provider master key.

Separate per-block keys for data encryption, initialization vectors (IVs), and integrity checking

are generated from the master key using cryptographic hashes rather than using the master key

directly. This approach avoids reusing the same keys for multiple purposes (e.g., confidentiality

and authentication), a practice heavily discouraged in contemporary cryptography.

Master keys are stored encrypted on the disk and must be decrypted before the provider can be

attached. Typical use decrypts the master key using one or both of a passphrase entered on the

console (“something you know”) and a keyfile stored on a removable USB device (“something

you have”). Up to two copies of the master keying material, encrypted using different

passphrases or keyfiles, may be stored in on-disk metadata. This approach allows, for example,

the daily user of a corporate notebook to specify one passphrase and key, but the employer to

retain its own recovery passphrase or key in a vault to be used if the user passphrase is forgotten

or USB stick is lost. GELI can also operate with randomly generated keys for swap partitions,

entirely preventing data persistence across reboot.

Protecting the master key on-disk is critical to the security of GELI. Instances of the master are

protected on disk with a derived key generated by passing a concatenation of the on-disk keyfile,

on-disk salt, and user passphrase (optionally strengthened using PKCS#5v2) through unkeyed

HMAC SHA-512. The master-key encryption key is generated by running HMAC SHA-512 over

the string “\x01” keyed with the derived key. The same encryption algorithm and key length are

used for the master key as are configured for block storage. The decrypted master key is

validated by passing the derived key into HMAC SHA-512 over the string “\x00” and comparing

it with the decrypted verification hash. The comparison will fail if the passphrase or keyfile do

not match on-disk storage.

Once decrypted, the master keys are stored in memory for the lifetime of the provider. The

implementation is careful to zero memory that holds keys once they are no longer required.

Zeroing memory is especially important for the passphrase and keyfile, which are not used after

the GELI instance has attached.

Starting GELI

GELI providers are attached automatically at system boot, or explicitly at runtime using the

/sbin/geli command. During boot, suitably configured instances will be discovered using

GELI’s taste method, g_eli_taste(), which will be called as GEOM itself discovers new devices

258

and partitions. After boot, the ioctl system call is used by /sbin/geli to trigger GELI’s config

method, g_eli_config(), which will configure a new GELI provider for a device or partition.

Only GELI instances marked as G_ELI_FLAG_BOOT will be automatically started; required

key files must have been preloaded by the boot loader, and GELI may need to suspend the boot

before root-filesystem mount to interactively requested a user passphrase. For post-boot

attachment, keying material and passphrase are passed explicitly in the configuration request.

After the root filesystem has been mounted, auto-starting new GELI instances is disabled, and

only a user-driven configuration is supported.

GELI’s metadata is found in the last sector of the underlying device or partition. GELI supports

several multiple on-disk layout versions, allowing backward compatibility despite an evolving

feature set; version 7 of the disk trailer appears in Figure 5.18. The metadata includes the

encrypted master keys protecting all data stored in the GELI instance. Other information, such

as the encryption algorithm, key length, and salt, is unencrypted. Metadata is decoded by

g_eli_taste() into a g_eli_metadata structure that initializes the g_eli_softc data structure,

shown in Figure 5.19, which holds information about the attached provider.

Figure 5.18 GELI v7 on-disk metadata, including encrypted master keys.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05fig19

259

Figure 5.19 The g_eli_softc structure describes active GELI sessions.

Cryptographic Block Protection

GELI uses per-sector IVs to prevent identical data written to different sectors from having the

same ciphertext, which might allow attackers to gain insight into on-disk layout and content.

With most encryption algorithms, the per-sector IV is calculated by passing HMAC SHA-256,

keyed with the master key’s IV generation key, over the little-endian representation of the

sector’s byte offset. GELI caches a partially calculated version of the hash in its softc structure

for performance reasons. AES-XTS, the default encryption algorithm, takes sector number as a

direct argument, and so does not require explicit IV calculations by GELI.

Recent versions of GELI vary per-sector encryption keys across the disk to limit direct reuse of

the underlying master-key data-encryption key. A key number is associated with each 512 Mbyte

chunk of the disk; keys are calculated by passing a concatenation of the string “ekey” with the

little-endian representation of the key number to HMAC SHA-512 keyed with the master-key

data-encryption key. Because this calculation is expensive, GELI maintains a red-black tree of

cached calculated key value. Entries in the cache are reference-counted so that the cryptographic

framework can prevent cache entries from being freed while they are in use.

When suitably configured, GELI will generate and check keyed cryptographic hashes on sector

data. This approach imposes an additional metadata overhead for each block; to minimize this

overhead, GELI providers with authentication enabled will typically be configured to use larger

(4-Kbyte) block sizes, reducing overhead. As with per-block encryption keys and IVs, per-block

260

authentication keys are generated by passing a concatenation of the provider’s data-encryption

key and sector offset in bytes through SHA-256. As the hash of the data-encryption key is

common to all blocks, a partially calculated hash is stored in the softc, which is combined with

the per-block offset during I/O.

I/O Model

All GELI I/O activity originates in either g_eli_taste(), when GEOM discovers a new partition

during the boot, or g_eli_start(), which is invoked each time a new I/O request for the provider

is delivered down the storage stack from another layered GEOM provider, a filesystem, or direct

access to a /dev node by a user process. When a read operation is fielded, GELI will issue an

I/O operation to the underlying storage provider and then invoke the crypto framework to

decrypt (and optionally authenticate) the resulting data. When a write operation is fielded, GELI

will optionally hash and then encrypt the data using the crypto framework before issuing I/O to

the underlying storage provider. Interactions with both the underlying provider and crypto

framework are asynchronous: GELI provides callback functions that will be invoked when the

operation completes. Both success and failure are returned to GEOM by invoking g_io_request()

that will, in turn, trigger notification to the GEOM consumer that initiated the I/O operation.

GELI creates a pool of per-CPU worker threads to process cryptographic operations to avoid

congesting the GEOM thread that would otherwise synchronously execute I/O start and

completion events including encryption, decryption, and hashing. The g_eli_worker() routine

implements the thread worker body, which sleeps on the g_eli_softc structure pointer and

extracts new work from sc_queue using g_eli_takefirst() when signalled. A GELI instance is

marked as suspended by g_eli_suspend_one(), which it does by setting

G_ELI_FLAG_SUSPEND in sc_flags. Once suspended, all I/O requests will be stalled.

Suspension clears softc keying material, which must be restored before I/O can be resumed. I/O

is resumed by g_eli_ctl_resume() clearing the G_ELI_FLAG_SUSPEND flag.

Limitations

As with all security features, GELI must be used with an awareness of its threat model and

guarantees. For example, integrity protection can detect sector data that was written without

access to a master key for the provider. It is unable, however, to detect “replay attacks” in which

an older version of a sector replaces a newer version, as both will pass integrity checks. Multiple

losses of the same storage device therefore leave the disk vulnerable to rewinding—a difficult

problem to address, and one that GELI documents as outside of its threat model. GELI also

excludes a number of other attacker models including:

261

• Online snooping of encrypted I/O traffic on its way to the disk rather than offline analysis, for

example, tcpdump of iSCSI traffic carrying GELI-protected data.

• Social engineering to gain access to the key or passphrase. Any encryption scheme that

depends on a remembered passphrase can be broken if the person can be tricked into giving up

the passphrase. It does, however, provide significant benefit in limiting the access of an attacker

who has acquired a stolen notebook.

Exercises

5.1 Describe the difference between discretionary and mandatory access controls.

5.2 How do definitions of “implicit privilege” and “explicit privilege” affect TCB protection in

FreeBSD? What are the potential risks and benefits to implementing a flexible, fine-grained

privilege model?

5.3 Is it possible for a file to have UNIX permissions set such that its owner cannot read it, even

though a group can? Is this situation possible if the owner is a member of the group that can

read the file? Explain your answers.

*5.4 How do distributed authentication and authorization systems, such as Kerberos or NFS,

interact with local authentication and access control?

*5.5 When should distributed-filesystem access-control enforcement occur on the client, and

when on the server?

*5.6 Access control has changed significantly between historic DAC and MAC models, and more

contemporary approaches such as Capsicum. What similar considerations might apply to the

more traditional audit framework present in FreeBSD?

**5.7 FreeBSD uses a model in which the first process starts with complete privilege, which is

discarded as events such as user authentication take place. This model has proven a problem in

the past when system login services, such as sshd, have had security vulnerabilities that yielded

root privilege. How might the model be restructured so that user authentication takes place

without any privilege, and privilege is escalated rather than dropped?

**5.8 What sort of hardware support would make it more efficient for the kernel to implement

the FreeBSD security policies?

262

**5.9 This chapter has primarily considered the protection of objects maintained by a single

instance of the operating system, such as local files and IPC objects. As virtualization becomes

more prevalent, how might hypervisor and operating system access-control models interact?

References

Anderson, 1972.

J. P. Anderson, “Computer Security Technology Planning Study,” Technical Report, Electronic

Systems Division, Air Force Systems Command, Hanscom Field, Bedford, MA, October 1972.

Badger et al., 1995.

L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, & S. A. Haghighat, “Practical Domain and

Type Enforcement for UNIX,” Proceedings of the 1995 IEEE Symposium on Security and

Privacy, IEEE, May 1995.

Bell & LaPadula, 1973.

D. E. Bell & L. J. LaPadula, “Secure computer systems: Mathematical foundations and model,”

Technical Report M74-244, The MITRE Corporation, Bedford, MA, May 1973.

Biba, 1977.

K. Biba, “Integrity considerations for secure computer systems,” Technical Report TR-3153, The

MITRE Corporation, Bedford, MA, April 1977.

Boebert & Kain, 1985.

W. E. Boebert & R. Y. Kain, “A practical alternative to hierarchical integrity policies.,”

Proceedings of the 8th National Computer Security Conference, October 1985.

Fraser, 2000.

T. Fraser, “LOMAC: Low Water-Mark Integrity Protection for COTS Environments,”

Proceedings of the 2000 IEEE Symposium on Security and Privacy, IEEE, May 2000.

Kamp & Watson, 2000.

P. Kamp & R. Watson, “Jails: Confining the Omnipotent Root,” Proceedings of the Second

International System Administration and Networking Conference (SANE), available from

http://docs.freebsd.org/44doc/papers/jail/, May 2000.

http://docs.freebsd.org/44doc/papers/jail/

263

Kelsey et al., 1999.

J. Kelsey, B. Schneier, & N. Ferguson, “Yarrow-160: Notes on the Design and Analysis of the

Yarrow Cryptographic Pseudorandom Number Generator,” Proceedings of the Sixth Annual

Workshop on Selected Areas in Cryptography, available from

https://www.schneier.com/paper-yarrow.html, August 1999.

Kilpatrick, 2003.

D. Kilpatrick, “Privman: A Library for Partitioning Applications,” Proceedings of the USENIX

Annual Technical Conference, pp. 273–284, June 2003.

Leffler, 2003.

S. J. Leffler, “Cryptographic Device Support for FreeBSD,” Proceedings of BSDCon 2003,

September 2003.

Loscocco & Smalley, 2001.

P. A. Loscocco & S. D. Smalley, “Integrating Flexible Support for Security Policies into the Linux

Operating System,” Proceedings of the USENIX Annual Technical Conference, USENIX

Association, June 2001.

Murray, 2002.

M. R. V. Murray, “An Implementation of the Yarrow PRNG for FreeBSD,” Proceedings of

BSDCon 2002, available from https://www.usenix.org/legacy/event/bsdcon02/murray.html,

February 2002.

P1003.1e, 1998.

P1003.1e, “Unpublished Draft Standard for Information Technology—Portable Operating

System Interface (POSIX)—Part 1: System Application Program Interface—Amendment:

Protection, Audit and Control Interfaces [C Language] IEEE Standard 1003.1e Draft 17,” Editor

Casey Schaufler, Institute of Electrical and Electronic Engineers, Piscataway, NJ, 1998.

Provos et al., 2002.

N. Provos, M. Friedl, & P. Honeyman, “Preventing Privilege Escalation,” Proc. of the 12th

USENIX Security Symposium, pp. 207–225, August 2002.

Reis & Gribble, 2009.

https://www.schneier.com/paper-yarrow.html
https://www.usenix.org/legacy/event/bsdcon02/murray.html

264

C. Reis & S. D. Gribble, “Isolating Web Programs in Modern Browser Architectures,”

EuroSys ’09: Proceedings of the 4th ACM European Conference on Computer Systems, pp.

219–232, April 2009.

Ritchie, 1979.

D. M. Ritchie, “Protection of Data File Contents,” United States Patent, no. 4,135,240, United

States Patent Office, Washington, DC, January 16, 1979. Assignee: Bell Telephone Laboratories,

Inc., Murray Hill, NJ, Appl. No.: 377,591, Filed: July 9, 1973.

Saltzer & Schroeder, 1975.

J. H. Saltzer & M. D. Schroeder, “The Protection of Information in Computer Systems,”

Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, September 1975.

Shepler et al., 2003.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, & D. Noveck, “Network

File System (NFS) version 4 Protocol,” RFC 3530, available from

http://www.faqs.org/rfcs/rfc3530.html, April 2003.

Watson, 2007.

R. N. M. Watson, “Exploiting concurrency vulnerabilities in system call wrappers,” WOOT07:

Proceedings of the first USENIX Workshop on Offensive Technologies, USENIX Association,

Boston, MA, August 2007.

Watson, 2012.

R. N. M. Watson, “New approaches to operating system security extensibility,” Technical Report

UCAM-CL-TR-818, University of Cambridge, Computer Laboratory, William Gates Building, 15

JJ Thomson Avenue, Cambridge CB3 0FD, April 2012.

Watson, 2013.

R. N. M. Watson, “A Decade of OS access-control extensibility,” Communications of the ACM,

vol. 56, no. 2, pp. 52–63, February 2013.

Watson et al., 2003.

http://www.faqs.org/rfcs/rfc3530.html

265

R. N. M. Watson, B. Feldman, A. Migus, & C. Vance, “Design and Implementation of the

TrustedBSD MAC Framework,” Proceedings of the Third DARPA Information Survivability

Conference and Exhibition (DISCEX), IEEE, April 2003.

Watson et al., 2010.

R. N. M. Watson, B. Laurie, J. Anderson, & K. Kennaway, “Capsicum: Practical Capabilities for

UNIX,” Proceedings of the 19th USENIX Security Symposium, August 2010.

Watson & Salamon, 2006.

R. N. M. Watson & W. Salamon, “The FreeBSD Audit System,” Proceedings of UKUUG LISA

2006, March 2006.

266

Chapter 6. Memory Management

6.1 Terminology

A central component of any operating system is the memory-management system. As the

name implies, memory-management facilities are responsible for the management of memory

resources available on a machine. These resources are typically layered in a hierarchical fashion,

with memory-access times inversely related to their proximity to the CPU (see Figure 6.1). The

primary memory system is main memory; the next level of storage is secondary storage or

backing storage. Main-memory systems usually are constructed from random-access

memories, whereas secondary stores are placed on disk drives. In certain workstation

environments, the common two-level hierarchy is a three-level hierarchy, with the addition of

file-server machines or network-attached storage connected to a workstation via a local-area

network [Gingell et al., 1987].

Figure 6.1 Hierarchical layering of memory.

Each level in this hierarchy may have its own hierarchy. For example, there are usually several

layers of caches between the CPU and the main memory. The secondary storage often has

dynamic- or flash-memory caches to speed access to the moving-head disk drives.

In a multiprogrammed environment, it is critical for the operating system to share available

memory resources effectively among the processes. The operation of any memory-management

policy is directly related to the memory required for a process to execute. That is, if a process

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref09

267

must reside entirely in main memory for it to execute, then a memory-management system

must be oriented toward allocating large units of memory. On the other hand, if a process can

execute when it is only partially resident in main memory, then memory-management policies

are likely to be substantially different. Memory-management facilities usually try to optimize the

number of runnable processes that are resident in main memory. This goal must be considered

with the goals of the scheduler (Section 4.4) so that conflicts that can adversely affect overall

system performance are avoided.

Although the availability of secondary storage permits more processes to exist than can be

resident in main memory, it also requires additional algorithms that can be complicated. Space

management typically requires algorithms and policies different from those used for main

memory, and a policy must be devised for deciding when to move processes between main

memory and secondary storage.

Processes and Memory

Each process operates in a virtual address space that is defined by the architecture of the

underlying hardware on which it executes. A virtual address space is a range of memory

locations that a process references independently of the physical memory present in the system.

In other words, the virtual address space of a process is independent of the physical address

space of the CPU. For a machine to support virtual memory, we also require that the whole of a

process’s virtual address space does not need to be resident in main memory for that process to

execute.

References to the virtual address space—virtual addresses—are translated by hardware into

references to physical memory. This operation, termed address translation, permits

programs to be loaded into physical memory at any location without requiring

position-dependent virtual addresses in the program to be changed. This relocation of

position-dependent addressing is possible because the addresses known to the program do not

change. Address translation and virtual addressing are also important in efficient sharing of a

CPU, because they permit context switching to be done quickly.

When multiple processes are coresident in main memory, we must protect the physical memory

associated with each process’s virtual address space to ensure that one process cannot alter the

contents of another process’s virtual address space unless they explicitly choose to share parts of

their address space. This protection is implemented in hardware and is usually tightly coupled

with the implementation of address translation. Consequently, the two operations usually are

defined and implemented together as hardware termed the memory-management unit

(MMU).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_226

268

Virtual memory can be implemented in many ways, some of which are software based, such as

overlays. Most effective virtual-memory schemes are, however, hardware based. In these

schemes, the virtual address space is divided into fixed-size units, termed pages, as shown in

Figure 6.2. Virtual-memory references are resolved by the address-translation unit to a page in

main memory and an offset within that page. Hardware protection is applied by the

memory-management unit on a page-by-page basis.

Figure 6.2 Paged virtual-memory scheme.

Paging

Address translation provides the implementation of virtual memory by decoupling the virtual

address space of a process from what is contained in the physical address space of the CPU.

Each page of virtual memory is marked as resident or nonresident in main memory. If a

process references a location in virtual memory that is not resident, a hardware trap termed a

page fault is generated. The servicing of page faults, or paging, permits processes to execute

even if they are only partially resident in main memory.

Coffman & Denning [1973] characterize paging systems by three important policies:

1. When the system loads pages into memory—the fetch policy

2. Where the system places pages in memory—the placement policy

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_274

269

3. How the system selects pages to be removed from main memory when pages are unavailable

for a placement request—the replacement policy

The performance of modern computers is heavily dependent on one or more high-speed

hardware caches to reduce the need to access the much slower main memory. The placement

policy should ensure that contiguous pages in virtual memory make the best use of the

processor-memory cache and the address-translation cache [Kessler & Hill., 1992]. FreeBSD

uses superpages to ensure good placement. Under a pure demand-paging system, a

demand-fetch policy is used, in which only the missing page is fetched, and replacements occur

only when main memory is full. In practice, paging systems do not implement a pure

demand-paging algorithm. Instead, the fetch policy often is altered to do prepaging—fetching

pages of memory other than the one that caused the page fault—and the replacement policy is

invoked before main memory is full.

Replacement Algorithms

The replacement policy is an important aspect of any paging system. There are many algorithms

from which we can select in designing a replacement strategy for a paging system. Much

research has been carried out in evaluating the performance of different page-replacement

algorithms [Jiang et al., 2005; Bansal & Modha, 2004; Belady, 1966; Marshall, 1979; King,

1971].

A process’s paging behavior for a given input is described in terms of the pages referenced over

the time of the process’s execution. This sequence of pages, termed a reference string,

represents the behavior of the process at discrete times during the process’s lifetime.

Corresponding to the sampled references that constitute a process’s reference string are

real-time values that reflect whether the associated references resulted in a page fault. A useful

measure of a process’s behavior is the fault rate, which is the number of page faults

encountered during processing of a reference string, normalized by the length of the reference

string.

Page-replacement algorithms typically are evaluated in terms of their effectiveness on reference

strings that have been collected from execution of real programs. Formal analysis can also be

used, although it is difficult to do unless many restrictions are applied to the execution

environment. The most common metric used in measuring the effectiveness of a

page-replacement algorithm is the fault rate.

Page-replacement algorithms are defined by the criteria that they use for selecting pages to be

reclaimed. For example, the optimal replacement policy [Denning, 1970] states that the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_111
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref07

270

“best” choice of a page to replace is the one with the longest expected time until its next

reference. Clearly, this policy is not applicable to dynamic systems, as it requires a priori

knowledge of the paging characteristics of a process. The policy is useful for evaluation purposes,

however, as it provides a yardstick for comparing the performance of other page-replacement

algorithms.

Practical page-replacement algorithms require a certain amount of state information that the

system uses in selecting replacement pages. This state typically includes the reference pattern of

a process, sampled at discrete time intervals. On some systems, this information can be

expensive to collect [Babao lu & Joy, 1981]. As a result, the “best” page-replacement algorithm

may not be the most efficient.

Working-Set Model

The working-set model helps identify the set of pages that a process is actively using. The

working-set model assumes that processes exhibit a slowly changing locality of reference.

For a period of time, a process operates in a set of subroutines or loops, causing all its memory

references to refer to a fixed subset of its address space, termed the working set. The process

periodically changes its working set, abandoning certain areas of memory and beginning to

access new ones. After a period of transition, the process defines a new set of pages as its

working set. In general, if the system can provide the process with enough pages to hold that

process’s working set, the process will experience a low page-fault rate. If the system cannot

provide the process with enough pages for the working set, the process will run slowly and will

have a high page-fault rate.

Precise calculation of the working set of a process is impossible without a priori knowledge of

that process’s memory-reference pattern. However, the working set can be approximated by

various means. One method of approximation is to track the number of pages held by a process

and that process’s page-fault rate. If the page-fault rate increases above a high watermark, the

working set is assumed to have increased, and the number of pages held by the process is

allowed to grow. Conversely, if the page-fault rate drops below a low watermark, the working set

is assumed to have decreased, and the number of pages held by the process is reduced.

Swapping

Swapping is the term used to describe a memory-management policy in which entire

processes are moved to and from secondary storage when main memory is in short supply.

Swap-based memory-management systems usually are less complicated than are demand-paged

systems, since there is less bookkeeping to do. However, pure swapping systems typically are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_424

271

less effective than are paging systems, since the degree of multiprogramming is lowered by the

requirement that processes be fully resident to execute. Swapping is sometimes combined with

paging in a two-tiered scheme, whereby paging satisfies memory demands until a severe

memory shortfall requires drastic action, in which case swapping is used.

In this chapter, a portion of secondary storage that is used for paging or swapping is termed a

swap area or swap space. The hardware devices on which these areas reside are termed

swap devices.

Advantages of Virtual Memory

There are several advantages to the use of virtual memory on computers capable of supporting

this facility properly. Virtual memory allows large programs to be run on machines with

main-memory configurations that are smaller than the program size. On machines with a

moderate amount of memory, it allows more programs to be resident in main memory to

compete for CPU time, as the programs do not need to be completely resident. When programs

use sections of their program or data space for some time, leaving other sections unused, the

unused sections do not need to be present. Also, the use of virtual memory allows programs to

start up faster, since they generally require only a small section to be loaded before they begin

processing arguments and determining what actions to take. Other parts of a program may not

be needed at all during individual runs. As a program runs, additional sections of its program

and data spaces are paged in as needed (demand paging). Finally, there are many algorithms

that are more easily programmed by sparse use of a large address space than by careful packing

of data structures into a small area. Such techniques are too expensive for use without virtual

memory, but they may run much faster when that facility is available, without using an

inordinate amount of physical memory.

On the other hand, the use of virtual memory can degrade performance. It is more efficient to

load a program all at one time than to load it entirely in small sections on demand. There is a

cost for each operation, including saving and restoring state and determining which page must

be loaded, so some systems use demand paging for only those programs that are larger than

some minimum size.

Hardware Requirements for Virtual Memory

Nearly all versions of UNIX have required some form of memory-management hardware to

support transparent multiprogramming. To protect processes from modification by other

processes, the memory-management hardware must prevent programs from changing their own

address mapping. The FreeBSD kernel runs in a privileged mode (kernel mode or system

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_425
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_433

272

mode) in which memory mapping can be controlled, whereas processes run in an unprivileged

mode (user mode). There are several additional architectural requirements for support of

virtual memory. The CPU must distinguish between resident and nonresident portions of the

address space, must suspend programs when they refer to nonresident addresses, and must

resume programs’ operation once the operating system has placed the required section in

memory. Because the CPU may discover missing data at various times during the execution of

an instruction, it must provide a mechanism to save the machine state so that the instruction

can be continued or restarted later. This ability to restart an instruction is called a precise

exception. The CPU may implement restarting by saving enough state when an instruction

begins that the state can be restored when a fault is discovered. Alternatively, instructions could

delay any modifications or side effects until after any faults would be discovered so that the

instruction execution does not need to back up before restarting. On some computers,

instruction backup requires the assistance of the operating system.

Most machines designed to support demand-paged virtual memory include hardware support

for the collection of information on program references to memory. When the system selects a

page for replacement, it must save the contents of that page if they have been modified since the

page was brought into memory. The hardware usually maintains a per-page flag showing

whether the page has been modified. Many machines also include a flag recording any access to

a page for use by the replacement algorithm.

6.2 Overview of the FreeBSD Virtual-Memory System

The FreeBSD virtual-memory system is based on the Mach 2.0 virtual-memory system

[Tevanian, 1987; Rashid et al., 1987], with updates from Mach 2.5 and Mach 3.0. The Mach

virtual-memory system was adopted because it features efficient support for sharing and a clean

separation of machine-independent and machine-dependent features, as well as multiprocessor

support. Although parts of the original Mach abstractions persist, little of the code still remains.

None of the original Mach system-call interface remains. It has been replaced with the interface

first proposed for 4.2BSD that has been widely adopted by the UNIX industry; the FreeBSD

interface is described in Section 6.5.

The virtual address space of most architectures is divided into two parts: address space

dedicated to the kernel at high addresses and address space dedicated to run user processes at

low addresses. A typical address space layout is shown in Figure 6.3. Here, the kernel and its

associated data structures reside at the top of the address space. The initial text and data areas

of the user process start near the beginning of memory. By default, the first 4 or 8 Kbyte of

memory are kept off-limits to the process. The reason for this restriction is to limit the ability to

convert a kernel null-pointer dereference into a privilege escalation attack. This restriction also

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig03

273

eases program debugging; indirecting through a null pointer will cause an invalid address fault

instead of reading or writing the program text.

Figure 6.3 Layout of virtual address space.

Memory allocations made by the running process using the malloc() library routine are done in

the memory that starts immediately following the data area and grows to higher addresses. The

argument vector and environment vectors are at the top of the user portion of the address space.

The user’s stack starts just below these vectors and grows to lower addresses.

For a process running on an architecture with 64 bits of address space, its stack is mapped so far

above its malloc() arena that the two spaces should never run into each other as the process

would run out of memory resources long before the two address spaces would meet.

For processes running on 32-bit architectures, the top 1 Gbyte of the address space is reserved

for use by the kernel. Systems with many small processes making heavy use of kernel facilities

such as networking can be configured to use the top 2 Gbyte for the kernel. The remaining 3

Gbyte or 2 Gbyte of address space is available for use by processes. Unless administratively

limited, the stack and malloc() arena of a process can each grow until they meet.

The kernel’s address space on a 64-bit architecture is usually large enough to support a fixed

and permanent mapping to all the physical memory on the machine. This direct mapping to the

physical address space greatly simplifies many kernel operations since the kernel can always

directly read any page of physical memory.

274

On a 32-bit architecture, the physical memory usually exceeds the address space dedicated to

the kernel. Thus, the kernel must set aside part of its address space to temporarily map in

physical pages that it needs to read. Each time that it wants to read a new physical page, it must

find an existing page that it can unmap to make room for the new page. It must then manipulate

its memory mapping, invalidating the old mapping and any caching associated with that

mapping, and then enter the new mapping. The cost of cache invalidation on multiprocessor

machines is high because the cache on every CPU must be invalidated.

User Address-Space Management

The virtual-memory system implements protected address spaces into which can be mapped

data sources (objects) such as files, or private and anonymous pieces of swap space. Physical

memory is used as a cache of recently used pages from these objects and is managed by a global

page-replacement algorithm.

In FreeBSD and other modern UNIX systems that support the mmap system call, address-space

usage is less structured. Shared library implementations may place text or data arbitrarily,

rendering the notion of predefined regions obsolete. By default, shared libraries are placed just

above the run-time configured maximum heap area.

At any time, the currently executing process is mapped into the virtual address space. When the

system decides to context switch to another process, it must save the information about the

current-process address mapping, then load the address mapping for the new process to be run.

The details of this address-map switching are architecture dependent. Most architectures need

to change only a few memory-mapping registers that point to the base, and to give the length of

memory-resident page tables.

Both the kernel and user processes use the same basic data structures for the management of

their virtual memory. The data structures used to manage virtual memory are as follows:

vmspace

Structure that encompasses both the machine-dependent and machine-independent structures

describing a process’s address space

vm_map

Highest-level data structure that describes the machine-independent virtual address space

vm_map_entry

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_246

275

Structure that describes the mapping from a virtually contiguous range of addresses that share

protection and inheritance attributes to the backing-store vm_object

vm_object

Structure that describes a source of data such as physical memory or other resources containing

instructions or data

shadow vm_object

Special vm_object that represents modified copy of original data, described in Section 6.5.

vm_page

The lowest-level data structure that represents the physical memory being used by the

virtual-memory system

In the remainder of this section, we describe briefly how all these data structures fit together.

The remainder of this chapter describes the details of the structures and how the structures are

used.

Figure 6.4 shows a typical process address space and associated data structures. The vmspace

structure encapsulates the virtual-memory state of a particular process, including the

machine-dependent and machine-independent data structures, as well as statistics. The

machine-dependent vm_pmap structure is opaque to all but the lowest level of the system and

contains all information necessary to manage the memory-management hardware. This pmap

layer is the subject of Section 6.13 and is ignored for the remainder of the current discussion.

The machine-independent data structures include the address space that is described by a

vm_map structure. The vm_map points to an ordered linked list of vm_map_entry structures,

a binary-search tree for speeding up lookups during memory allocation and page-fault handling,

and a pointer to the associated machine-dependent vm_pmap structure contained in the

vmspace. A vm_map_entry structure describes a virtually contiguous range of addresses that

have the same protection and inheritance attributes. Every vm_map_entry points to a chain of

vm_object structures that describes sources of data (objects) that are mapped at the indicated

address range. At the tail of the vm_object chain is the original mapped data object, usually

representing a persistent data source, such as a file. Interposed between that vm_object and the

map entry are zero or more transient shadow vm_objects that represent modified copies of the

original data. These shadow vm_objects are discussed in detail in Section 6.5.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5

276

Figure 6.4 Data structures that describe a process address space.

Each vm_object structure contains an ordered list of vm_page structures representing the

physical-memory cache of the vm_object. A vm_page structure is most commonly and quickly

found using the radix tree maintained for each vm_object. The page is keyed within this radix

tree by its logical offset from the start of the vm_object. The cached pages are also kept in an

ordered list to provide fast iteration over all the pages within a range of virtual addresses. The

vm_page structure also records the type of, and a pointer to, the pager structure (not shown)

that contains information on how to page in or page out data from its backing store.

At boot time, the kernel allocates an array of vm_page structures with an entry for every page of

physical memory managed by the virtual-memory system where page N is entry N in the array.

The structure also contains the status of the page (e.g., modified or referenced) and links for

various paging queues.

All structures have the necessary interlocks for multithreading in a multiprocessor environment.

The locking is fine grained, with at least one lock per instance of a data structure. Many of the

structures have different locks protecting their individual fields.

6.3 Kernel Memory Management

For 64-bit address-space architectures, the kernel is always permanently mapped into the high

part of every process address space. However, for 32-bit address-space architectures, there are

two ways in which the kernel’s memory can be organized. The most common is for the kernel to

be permanently mapped into the high part of every process address space. In this model,

277

switching from one process to another does not affect the kernel portion of the address space.

The alternative organization is to switch between having the kernel occupy the whole address

space and mapping the currently running process into the address space. Having the kernel

permanently mapped does reduce the amount of address space available to a large process (and

the kernel), but it also reduces the cost of data copying. Many system calls require data to be

transferred between the currently running user process and the kernel. With the kernel

permanently mapped, the data can be copied via the efficient block-copy instructions. If the

kernel is alternately mapped with the process, data copying requires either the use of temporary

mappings or the use of special instructions that copy to and from the previously mapped

address space. Both of these approaches are up to a factor of 2 slower than the standard

block-copy instructions. Since up to one-third of the kernel time is spent in copying between the

kernel and user processes, slowing this operation by a factor of 2 significantly slows system

throughput.

When the kernel is permanently mapped into the address space, it is able to freely read and

write the address space of the user process but the converse is not true. The kernel’s range of

virtual address space is marked inaccessible to all user processes. Writing is restricted so user

processes cannot tamper with the kernel’s data structures. Reading is restricted so user

processes cannot watch sensitive kernel data structures, such as the terminal input queues, that

include such things as users typing their passwords.

Usually, the hardware dictates which organization can be used. All the architectures supported

by FreeBSD map the kernel into the top of the address space.

When the system boots, the first task that the kernel must do is to set up data structures to

describe and manage its address space. Table 6.1 lists the kernel’s hierarchy of allocators to

manage its address space. The relationship of the elements of the hierarchy are shown in Figure

6.5. The remainder of this section describes this hierarchy starting from the low-level vm_map

up to the per-CPU-level buckets.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig05

278

Table 6.1 Kernel memory allocator hierarchy.

Figure 6.5 Kernel memory allocator hierarchy.

Kernel Maps and Submaps

Like any process, the kernel has a vm_map with a corresponding set of vm_map_entry

structures that describe the use of a range of addresses (see Figure 6.6). Submaps are a special

kernel-only construct used to isolate and constrain address-space allocation for kernel

subsystems. One use is in subsystems that require contiguous pieces of the kernel address space.

To avoid intermixing of unrelated allocations within an address range, that range is covered by a

submap, and only the appropriate subsystem can allocate from that map. Maps associate data

objects with similar sizes and lifetimes to minimize internal and external fragmentation

respectively. Parts of the kernel may also require addresses with particular alignments or even

specific addresses. Both can be ensured by use of submaps. Finally, submaps can be used to

limit statically the amount of address space and hence the physical memory consumed by a

subsystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig06

279

Figure 6.6 Kernel address-space maps.

An example layout of the kernel map is shown in Figure 6.6. The kernel’s address space is

described by the vm_map structure shown in the upperleft corner of the figure. Pieces of the

address space are described by the vm_map_entry structures that are linked in ascending

address order from K0 to K8 on the vm_map structure. Here, the kernel text, initialized data,

uninitialized data, and initially allocated data structures reside in the range K0 to K1 and are

represented by the first vm_map_entry. The next vm_map_entry is associated with the

address range from K2 to K6. This piece of the kernel address space is being managed via a

submap headed by the referenced vm_map structure. This submap currently has two parts of its

address space used: the address range K2 to K3, and the address range K4 to K5. These two

address ranges represent the kernel exec arguments arena and the pipe buffer arena,

respectively. The final part of the kernel address space is being managed in the kernel’s main

map, the address range K7 to K8 representing the kernel I/O staging area.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig06

280

Kernel Address-Space Allocation

The virtual-memory system implements a set of primitive functions for allocating and freeing

the page-aligned, page-size virtual-memory ranges that the kernel uses. These ranges may be

allocated either from the main kernel-address map or from a submap. The allocation routines

take a map and size as parameters but do not take an address. Thus, specific addresses within a

map cannot be selected. There are different allocation routines for obtaining pageable and

nonpageable memory ranges.

Pageable kernel virtual memory is allocated with kmap_alloc_wait(). A pageable range has

physical memory allocated on demand, and this memory can be written out to backing store by

the pageout daemon (described in Section 6.12) as part of the latter’s normal replacement policy.

The kmap_alloc_wait() function will block until address space is available. The

kmap_free_wakeup() function deallocates kernel pageable memory and wakes up any

processes waiting for address space in the specified map. Currently, pageable kernel memory is

used for temporary storage of exec arguments and for pipe buffering.

A nonpageable, or wired, range has physical memory assigned at the time of the call, and this

memory is not subject to replacement by the pageout daemon. Wired pages never cause a page

fault as that might result in a blocking operation. Wired memory is allocated from either the

general allocator malloc(), or the zone allocator described in the last two subsections of this

section.

The base functions used by the general and zone allocators for allocating wired memory are

kmem_malloc() and kmem_free(). Normally, the allocator will block to wait for memory to be

freed to satisfy the allocation if memory is not immediately available. The allocator has a

nonblocking option that protects callers against inadvertently blocking. Callers that hold

non-sleepable locks use the nonblocking option so they will fail if insufficient physical memory

is available to fill the requested range. This nonblocking option is used when allocating memory

at interrupt time and during other critical sections of code.

Historically, the two general-purpose allocators used kernel submaps to manage their address

space. In FreeBSD 10, the management of the allocators address space was replaced with the

vmem resource manager first described in Solaris [Bonwick, 1994; Bonwick & Adams, 2001]. At

system boot, the kernel address ranges associated with the wired-memory arena are fully

allocated in a single large piece and that piece of kernel memory is then managed by the vmem

resource allocator.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_491
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref05

281

The motivation for the change to vmem is that the kernel-map allocator tends to fragment its

address space badly over time. The time to find a free piece of space goes up logarithmically with

the number of allocated pieces that it is managing. By contrast, vmem allocates space in

constant-time. The kernel-map allocator uses a first-fit strategy while vmem uses an

approximation to a best-fit strategy. Best fit results in lower fragmentation and less wasted

memory.

The data structures that vmem uses to manage its address-space arena are shown in Figure 6.7.

The granularity that it manages are single pages of memory. Shown across the bottom of Figure

6.7 is the set of pages that it is managing. The arena is broken up into the free memory (hashed)

and allocated memory (white). Each piece of free or allocated memory is described by a

boundary tag. All the boundary tags are linked together in a segment list sorted from lowest to

highest address.

Figure 6.7 Vmem data structures. Key: bt—boundary tag.

The boundary tags that reference allocated memory are kept in a hash table using their starting

address as their hash key. When a piece of memory is freed, its boundary tag is looked up and

removed from the hash table. If either (or both) of its neighbors on the sorted list of boundary

tags is free, they can be coalesced. The resulting free piece is then placed on the appropriate

freelist. When coalescing has occurred, any unneeded boundary tags are freed. Taking the

memory off the hash list when it is freed helps to detect multiple attempts to free the same

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig07

282

memory. A second attempt to free it will not find it on the hash list and can issue an appropriate

error.

The boundary tags that reference free memory are on power-of-two freelists where freelist[n] is

a list of free segments that are in the range 2n to 2n+1–1. To allocate a segment, we search the

appropriate freelist for a segment large enough to satisfy the allocation. This approach, called

segregated fit, approximates best fit because any segment on the chosen freelist is a good fit

[Wilson et al., 1995].

Approximations to best fit are appealing because they exhibit low fragmentation in practice for a

wide variety of workloads [Johnstone & Wilson, 1998].

The algorithm for selecting a free segment depends on the allocation policy specified in the

allocation request. Given a requested size in the range 2n to 2n+1–1, the following policies are

available:

• VM_BESTFIT: Search for the smallest segment on freelist[n] that can satisfy the allocation. If

none are found, search for the smallest segment on freelist[n + 1] that can satisfy the allocation.

• VM_INSTANTFIT: If the size is exactly 2n, take the first segment on freelist[n]. Otherwise,

take the first segment on freelist[n+1]. Any segment on this freelist is necessarily large enough

to satisfy the allocation, yielding constant-time performance with a reasonably good fit. Instant

fit is the default in FreeBSD because it guarantees constant-time performance, provides low

fragmentation in practice, and is easy to implement.

• VM_NEXTFIT: Ignore the freelists altogether and search the arena for the next free segment

after the one previously allocated. This option is not supported in FreeBSD 10. The vmem in

Solaris supports it for allocating resources like process identifiers.

There are many other techniques for choosing a suitable free segment in logarithmic time such

as keeping all free segments in a size-sorted tree. For a through survey, see Wilson et al. [1995].

Each vmem arena is protected by a single lock as allocations from the vmem arena are

infrequent. Most of the allocations are done by the general-purpose allocators that are described

in the last two subsections. The general purpose allocators manage their own arenas bringing

memory in from vmem when needed, and returning it to vmem when prompted to do so by the

pageout daemon. Thus, the fine-grained locking for handling multi-threaded allocations are in

these general purpose allocators.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref21

283

The Slab Allocator

A slab is a collection of items of identical size. Figure 6.8 shows how slabs are allocated from the

vmem layer. As required by the vmem layer, each slab is a multiple of the page size. The size of

the slab is dependent on the size of the objects that it will contain. If a slab contains N objects,

then the internal fragmentation is at most 1/N. Thus, the choice of slab size can control the

amount of internal fragmentation. However, larger slabs are more likely to cause external

fragmentation since the probability of being able to reclaim a slab decreases as the number of

objects per slab increases.

Figure 6.8 Slab data structures.

In the Solaris implementation of vmem, the size selected for the slab when allocating large

objects must be big enough to hold at least eight of the objects so that waste is at most 12.5

percent. Objects smaller than an eighth of a page are allocated on a single-page slab.

FreeBSD 11 does not implement the Solaris policy. It limits the slab size to a single page unless

the object itself needs more than one page. Here, the allocation will be the number of pages

required to hold one object. Historically, the reason for the single-page limitation was to reduce

fragmentation in the kernel submap used by the slab allocator. Since the running time for the

kernel-map allocator was logarithmic in the number of map entries, the time to allocate memory

for the slab was affected by fragmentation. Going to primarily single-page requests mitigated

this bad behavior.

With the addition of the vmem allocator, these concerns have been reduced because it allocates

in constant-time regardless of fragmentation. However, the FreeBSD developers chose to gain

more operational experience with the vmem allocator before putting it out in a production

release with a more challenging workload.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig08

284

Figure 6.8 shows three slabs. The top two slabs place the header that describes the slab

internally to the memory that holds the objects. The bottom slab places the header that

describes the slab in a separate allocation external to the memory that holds the objects. The

decision on whether to place the header internally or externally is based primarily on the size of

the objects. An external header is used if doing so makes it possible to fit an extra object in the

memory. For example, if an object is a power-of-2 size, then an internal header would allow one

fewer objects per slab than would be possible if an external header were used.

Most slabs have some unused space. FreeBSD 11 always puts the unused space at the end. In

Solaris, the unused space is sprinkled between the front and back in cache-alignment sized steps

to improve cache line utilization (hardware caching is described in Section 6.11). For example, if

the cache line is 64 bytes and the slab has 160 unused bytes, the slabs will start the object

allocations at 0-, 64-, and 128-byte offsets. Solaris reports significant performance improvement

using this scheme [Bonwick & Adams, 2001].

When an object is freed, the zone manager must determine the slab to which it belongs to be

able to return it. In Solaris, the slab is found using a hash table that maps the address of the

object to its corresponding slab header in the same way that the vmem system uses a hash table

to find the appropriate boundary tag. Instead of using a hash table, FreeBSD stores a pointer in

the vm_page structure that refers back to the slab header. The vm_page structure is found by

using pmap_kextract() to get the physical page address from the slab’s virtual address. The

physical address indexes the array of vm_page structures. Since every slab uses at least one

page, there is always a vm_page structure available to store the back pointer. Because wired

memory is not on any page queue, the existing page-queue linkage field can be used for this

purpose. Thus, no extra space must be added to the vm_page structure to support this

functionality.

Because the kernel must allocate a vm_page structure for every physical page of memory on the

machine, it is desirable to keep the vm_page structure as small as possible. To keep their size

small, vm_page structures do not contain a mutex to control access to their fields like most

other kernel data structures. Rather, there is a pool of mutexes from which a vm_page selects a

lock using a hash of its address. The result is some lock contention when multiple pages hash to

the same lock, but is far better than a single global lock.

The off-page slab header in Figure 6.8 shows its important fields. Slabs are allocated and

managed by kegs, described later in this section. Kegs use the linkage fields to track the slabs

that they are managing. The use of objects is tracked using the bitmask and the freecount. The

bitmask has one bit per object, set when it is free and cleared if it is in use. The freecount tracks

the number of available objects in the slab. When it reaches zero, all the objects have been

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig08

285

allocated. Finally the data-start field points to the starting location of the first object in the slab.

If the objects are offset from the beginning of the slab, the data-start pointer will reflect the

offset.

The Keg Allocator

A keg is a collection of slabs of items of identical size. Slabs are allocated to the keg as necessary.

Figure 6.9 shows how the keg data structure manages its collection of slabs. The keg tracks the

number of pages in each of its slabs, the number of objects held in each of its slabs, and a list of

its client zones. Typically, a keg has a single client zone, but it may have more than one. The keg

maintains its slabs in three lists:

• Those whose objects are currently all allocated

• Those whose objects are currently partially allocated

• Those whose objects are currently all free

Figure 6.9 Keg data structure.

When an allocation request is made to a keg, it first tries to allocate from a slab on its partially

allocated list. If the partially allocated list has no slabs, it tries to allocate from a slab on its fully

populated slab list. If the fully populated slab list has no slabs, it calls the vmem layer to allocate

a new slab of its selected number of pages. The slab is broken up into the number of objects that

it can hold as described above. The newly allocated slab has the requested object removed and is

placed on the partially allocated list.

When an item is freed, it is returned to the slab from which it came. If it is the first object to be

freed, the slab will move from the empty list to the partial list. If it is the last object to be freed,

the slab will move from the partial list to the fully populated list.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig09

286

Items in a keg with a single client zone are type stable. The memory in the keg will not be used

for any other purpose. A structure in the keg need only be initialized the first time that it is

handed out for use. Later uses may assume that the initialized values will retain their contents

as of the previous free.

Objects are handed out and returned as needed. Only when the pageout daemon does a memory

callback is an unused slab of objects uninitialized and the slab freed. A callback is provided on

each object in the slab to allow any persistent state to be cleaned up before the slab memory is

freed.

The Zone Allocator

A zone manages a set of objects in one or more kegs. The zone allocator keeps track of the active

and free items, and provides functions for allocating items from the zone and for releasing them

back to make them available for later use. Figure 6.10 shows how the zone allocator manages the

objects in its zone. A zone typically gets its objects from a single keg, though it may source its

objects from multiple kegs. The role of the zone is to fill buckets with objects that it then makes

available to service allocation requests.

Figure 6.10 Zone and bucket data structures.

The details of a bucket are shown on the right of Figure 6.10. A bucket holds an array of pointers

to available objects. The size field gives the size of the array and count is the number of available

objects in the array. The count is equal to size when the array is full and zero when it is empty.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig10

287

Unlike the global lock used by vmem and the slab allocator, each zone and its keg have their own

locks, so different zones can be accessed simultaneously without blocking. As described in the

next two subsections on kernel malloc() and the kernel zone allocator, most zones are used for

specific objects such as vnodes, process entries, etc. A set of zones are used by malloc() to supply

power-of-two sized objects ranging in size from 16 bytes to the number of bytes in a page. Since

each power-of-2 has its own zone, allocations for one power-of-2 size does not block allocations

for other power-of-2 sizes.

High demand on a single zone can still lead to lock contention. To aid performance on

multiprocessor systems, a zone provides separate buckets of objects to each CPU on the system.

Each CPU is able to allocate or free objects from its two buckets without the need for any lock.

The only requirement is that it needs to put a critical section around the insertion and removal

of an object from one of its buckets. As described in Section 4.3, a critical section prevents the

currently running thread from being preempted or moved to a different CPU.

As described in Section 4.4, the scheduler uses processor affinity to try to keep a thread running

on the same CPU. Objects such as process entries allocated from the CPU’s bucket are more

likely to already be in the cache for that processor. Thus, accesses to that structure are likely to

be faster than they would be if the object was drawn from a global pool.

Each CPU holds two buckets of size M, its current allocation bucket and its previous allocation

bucket. The reason for holding two buckets is to ensure that the CPU can allocate or free at least

M objects before it needs to get the zone lock to replenish its supply or to return a full bucket. If

it had only one bucket with just one object in it and two allocation requests, it would service the

first from its bucket and then need to get a new bucket to service the second allocation request.

If it then had two free requests, it would put the first object in its now-full bucket and then

would need to replace that bucket with an empty bucket to return the second object.

By having two buckets, it can simply switch the two buckets to continue servicing requests. If

both buckets become full, it can turn in a full one and replace it with an empty one. Or, if both

become empty, it can turn in an empty one and replace it with a full one. Once it has turned in

one bucket, it will be able to service at least M allocation or free requests before having to

replace one of its buckets.

The zone keeps a list of full buckets. When a CPU requests a full bucket, the zone returns one

from its list. If the list becomes empty, the zone allocates an empty bucket (from a bucket zone)

and requests that its keg fill it with objects. When a CPU has emptied a bucket, it returns it to its

bucket zone.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4

288

The level of contention for the keg lock can be controlled by the size of the bucket. If the number

of objects held by a bucket doubles, the number of requests to the keg drops by at least half.

FreeBSD tunes the size of the bucket based on the measured contention. Low rates of contention

get smaller buckets; high rates of contention get larger buckets.

The contention is measured by doing a trylock() for the keg lock when it is needed. If the

trylock() fails because some other CPU has the lock, the thread does a blocking lock. Once it gets

the lock, it increments the desired bucket size for its keg. Unlike the Solaris implementation, it is

not necessary to notify every CPU that the bucket size has changed. The size of each bucket is

stored in its header, so the bucket size can change over time. As new buckets are created, they

will have the larger size. Eventually, the older and smaller buckets will be retired and all the

buckets will have the new size. The more actively a bucket is used, the more quickly it will be

replaced, so the remaining small buckets are not involved in creating lock contention.

Zones only release memory when requested to do so by the paging daemon. Thus, if there is a

spike in demand for a zone, it will have a long list of full buckets. When the paging daemon

requests that memory be handed back, the zone walks its list of full buckets and, for each bucket,

returns all its objects to its keg and frees the bucket. In turn, the keg returns the objects to its

slabs. Once the return of objects from the zone to the keg is completed, the keg returns all the

slabs on its full list to vmem. The vmem layer then unwires and frees its areas of unused pages

so that they are available for other uses. When allocating the freed areas in the future, the vmem

layer must first request that the kernel mapping layer populate them with wired pages.

During periods of heavy paging activity, the paging daemon can request that the size of buckets

be reduced. If memory becomes critically low, the paging daemon can request that the per-CPU

caches be flushed. Per-CPU cache flushing requires binding a flushing thread to each CPU in

succession so that it can access the private per-CPU bucket pointers.

The zone allocator provides the uma_zone_set_max() function to set the upper limit of items in

the zone. The limit on the total number of items in the zone includes the allocated and free items,

including the items in the per-CPU caches. On multiprocessor systems, it may not be possible to

allocate a new item for a particular CPU because the limit has been hit and all the free items are

in the caches of the other CPUs. It is not possible to reclaim buckets from the CPU caches

because the caches are not protected by locks. Only a thread running on the CPU itself can enter

a critical section to manipulate the cache.

289

Kernel Malloc

The kernel provides a generalized nonpageable memory-allocation and freeing mechanism that

can handle requests of arbitrary size, as well as allocate memory at interrupt time. Malloc() is

the preferred way to allocate kernel memory other than large, fixed-size structures that are

better handled by the zone allocator. This mechanism has an interface similar to that of the

well-known memory allocator provided for applications programmers through the C library

routines malloc() and free(). Like the C library interface, the allocation routine takes a

parameter specifying the size of memory that is needed. The range of sizes for memory requests

are not constrained. The free routine takes a pointer to the storage being freed, but it does not

require the size of the piece of memory being freed.

Often, the kernel needs a memory allocation for the duration of a single system call. In a user

process, such short-term memory would be allocated on the run-time stack. Because the kernel

has a limited run-time stack, it is not feasible to allocate even moderate blocks of memory on it.

Consequently, such memory must be allocated dynamically. For example, when the system must

translate a pathname, it must allocate a 1-Kbyte buffer to hold the name. Other blocks of

memory must be more persistent than a single system call and have to be allocated from

dynamic memory. Examples include protocol control blocks that remain throughout the

duration of a network connection.

The design specification for a kernel memory allocator is similar, but not identical, to the design

criteria for a user-level memory allocator. One criterion for a memory allocator is that it make

good use of the physical memory. Use of memory is measured by the amount of memory needed

to hold a set of allocations at any point in time. Percentage utilization is expressed as

Here, requested is the sum of the memory that has been requested and not yet freed; required is

the amount of memory that has been allocated for the pool from which the requests are filled.

An allocator requires more memory than requested because of fragmentation and a need to have

a ready supply of free memory for future requests. A perfect memory allocator would have a

utilization of 100 percent. In practice, a 50 percent utilization is considered good [Korn & Vo,

1985].

Good memory utilization in the kernel is more important than in user processes. Because user

processes run in virtual memory, unused parts of their address space can be paged out. Thus,

pages in the process address space that are part of the required pool and are not being requested

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref15

290

do not need to tie up physical memory. Since the kernel malloc arena is not paged, all pages in

the required pool are held by the kernel and cannot be used for other purposes. To keep the

kernel-utilization percentage as high as possible, the kernel should release unused memory in

the required pool rather than hold it, as is typically done with user processes.

The most important criterion for a kernel memory allocator is that it be fast. A slow memory

allocator will degrade the system performance because memory allocation is done frequently.

Speed of allocation is more critical when executing in the kernel than it is in user code because

the kernel must allocate many data structures that user processes can allocate cheaply on their

run-time stack. In addition, the kernel represents the platform on which all user processes run,

and if it is slow, it will degrade the performance of every process that is running.

Another problem with a slow memory allocator is that programmers of frequently used kernel

interfaces will think that they cannot afford to use the memory allocator as their primary one.

Instead, they will build their own memory allocator on top of the original by maintaining their

own pool of memory blocks. Multiple allocators reduce the efficiency with which memory is

used. The kernel ends up with many different free lists of memory instead of a single free list

from which all allocations can be drawn. For example, consider the case of two subsystems that

need memory. If they have their own free lists, the amount of memory tied up in the two lists

will be the sum of the greatest amount of memory that each of the two subsystems has ever used.

If they share a free list, the amount of memory tied up in the free list may be as low as the

greatest amount of memory that either subsystem used. As the number of subsystems grows, the

savings from having a single free list grow.

The kernel memory allocator uses a hybrid strategy. Small allocations are done using a

power-of-2 list strategy. Using the zone allocator, the kernel creates a set of zones with one for

each power-of-two between 16 and the page size. The allocation simply requests a block of

memory from the appropriate zone. Usually, the zone will have an available piece of memory in

one of the buckets of the CPU on which it is running that it can return. Only if the CPUs buckets

are both empty will the zone allocator have to do a full allocation. As described in the zone

allocator subsection, when forced to do an additional allocation, it fills a whole bucket with the

appropriately sized pieces. This strategy speeds future allocations because several pieces of

memory become available as a result of the call into the allocator.

Freeing a small block is also fast. The memory is simply returned to the zone from which it

came.

Because of the inefficiency of power-of-2 allocation strategies for allocations larger than a page,

the allocation method for blocks larger than a page is based on allocating pieces of memory in

multiples of pages. The algorithm switches to the slower but more memory-efficient strategy for

291

allocation sizes larger than a page using the vmem allocator. This value is chosen because the

power-of-2 algorithm yields sizes of 2, 4, 8, 16, . . ., n pages, whereas the large block algorithm

that allocates in multiples of pages yields sizes of 2, 3, 4, 5, . . ., n pages. Thus, for allocations of

greater than one page, the large block algorithm will use less than or equal to the number of

pages used by the power-of-2 algorithm, so the threshold between the large and small allocators

is set at one page.

Large allocations are first rounded up to be a multiple of the page size. The allocator then uses

the algorithm described in the previous subsection to find space in the vmem arena.

Because the size is not specified when a block of memory is freed, the allocator must keep track

of the sizes of the pieces that it has handed out. Many allocators increase the allocation request

by a few bytes to create space to store the size of the block in a header just before the allocation.

However, this strategy doubles the memory requirement for allocations that request a

power-of-two-size block. Therefore, the kernel memory allocators store the size externally. For

allocations up to the size of a page that are allocated from a zone, the zone allocator associates

the size information with the memory page. Locating the allocation size outside the allocated

block improved utilization far more than expected. The reason is that many allocations in the

kernel are for blocks of memory whose size is exactly a power of 2. The size of these requests

would be nearly doubled if the more typical strategy were used. Now they can be accommodated

with no wasted memory.

The allocator can be called from anywhere in the kernel. Clients show their willingness (and

ability) to wait with a flag to the allocation routine. For clients that are willing to wait, the

allocator guarantees that their request will succeed. Thus, these clients do not need to check the

return value from the allocator. If memory is unavailable and the client cannot wait, the

allocator returns a null pointer. These clients must be prepared to cope with this (typically

infrequent) condition. Clients that cannot wait because they hold a short-term lock often release

it, wait for memory to become available, then reacquire their lock. The other strategy is to give

up and hope to succeed later.

Kernel Zone Allocator

Some commonly allocated items in the kernel such as process, thread, vnode, and control-block

structures are not well handled by the general purpose malloc() interface. These structures

share several characteristics:

• They tend to be large and hence wasteful of space. For example, the process structure is about

550 bytes, which when rounded up to a power-of-2 size requires 1024 bytes of memory.

292

• They tend to be common. Because they are individually wasteful of space, collectively they

waste too much space compared to a denser representation.

• They are often linked together in long lists. If the allocation of each structure begins on a page

boundary, then the list pointers will all be at the same offset from the beginning of the page.

When traversing these structures, the linkage pointers will all be competing for a small set of

hardware cache lines causing many steps along the list to produce a cache miss, making the list

traversal slow.

• These structures often contain many lists and locks that must be initialized before use. If there

is a dedicated pool of memory for each structure, then these substructures need to be initialized

only when the pool is first created rather than after every allocation.

For these reasons, FreeBSD allocates a separate zone for each of these kernel structures. Thus,

there is a zone that contains only process structures, another that contains only vnodes, etc.

A new zone is created with the uma_zcreate() function. It must specify the size of the items to

be allocated and register two sets of functions. The first set is called whenever an item is

allocated or freed from the zone. These routines typically track the number of allocated items.

The second set is called whenever memory is allocated or freed from the zone’s keg. When a new

slab of memory is allocated to the zone’s keg, all the locks and list heads for each object in the

new slab are initialized. When making allocations from the zone, the kernel knows that the locks

and list heads are already initialized and ready for use. Similarly, they need not be destroyed

when the structure is freed. Only when memory is reclaimed from the zone’s keg is it necessary

to destroy the locks.

Items are allocated with uma_zalloc(), which takes a zone identifier returned by uma_zcreate().

Items are freed with uma_zfree(), which takes a zone identifier and a pointer to the item to be

freed. No size is needed when allocating or freeing, since the item size was set when the zone

was created.

The creation of separate zones runs counter to the desire to keep all memory in a single pool to

maximize utilization efficiency. However, the benefits from segregating memory for the set of

structures for which the zone allocator is appropriate outweighs the efficiency gains from

keeping them in the general pool. The zone allocator minimizes the waste of the separate pools

by freeing memory from a zone based on a reduction in demand for objects from the zone and

when notified of a memory shortage by the pageout daemon.

293

6.4 Per-Process Resources

As we have already seen, a process requires a process entry and a kernel stack. The next major

resource that must be allocated is its virtual memory. The initial virtual-memory requirements

are defined by the header in the process’s executable. These requirements include the space

needed for the program text, the initialized data, the uninitialized data, and the run-time stack.

During the initial startup of the program, the kernel will build the data structures necessary to

describe these four areas. Most programs need to allocate additional memory. The kernel

typically provides this additional memory by expanding the uninitialized data area.

Most FreeBSD programs use shared libraries. The header for the executable will describe the

libraries that it needs (usually the C library, and possibly others). The kernel is not responsible

for locating and mapping these libraries during the initial execution of the program. Finding,

mapping, and creating the dynamic linkages to these libraries is handled by an interpreter

specified in the header. For ELF binaries, the interpreter is /libexec/ld-elf.so. This startup

code runs before control is passed to the main entry point of the program.

FreeBSD Process Virtual-Address Space

The initial layout of the address space for a process is shown in Figure 6.11. As discussed in

Section 6.2, the address space for a process is described by that process’s vmspace structure.

The contents of the address space are defined by a list of vm_map_entry structures, each

structure describing a region of virtual address space that resides between a start and an end

address. A region describes a range of memory that is being treated in the same way. For

example, the text of a program is a region that is read-only and executable, and is demand paged

from the file on disk that contains it. Thus, the vm_map_entry also contains the protection

mode to be applied to the region that it describes. Each vm_map_entry structure also has a

pointer to the vm_object that provides the initial data for the region. Finally, each

vm_map_entry structure has an offset that describes where within the vm_object the mapping

begins.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_325

294

Figure 6.11 Layout of an address space.

The example shown in Figure 6.11 represents a process just after it has started execution. The

first two map entries both point to the same vm_object; here, that vm_object is the executable.

The executable consists of two parts: the text of the program that resides at the beginning of the

file and the initialized data area that follows at the end of the text. Thus, the first

vm_map_entry describes a read-only region that maps the text of the program. The second

vm_map_entry describes the copy-on-write region that maps the initialized data of the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig11

295

program that follows the program text in the file (copy-on-write is described in Section 6.6). The

offset field in the entry reflects this different starting location. The third and fourth

vm_map_entry structures describe the uninitialized data and stack areas, respectively. Both of

these areas are represented by anonymous vm_objects. An anonymous vm_object provides

a zero-filled page on first use and arranges to store modified pages in the swap area if memory

becomes tight. Anonymous vm_objects are described in more detail later in this section.

Page-Fault Dispatch

When a process attempts to access a piece of its address space that is not currently resident, a

page fault occurs. The page-fault handler in the kernel is presented with the virtual address that

caused the fault and the type of access that was attempted (execute, read, or write). The fault is

handled with the following four steps:

1. Find the vmspace structure for the faulting process; from that structure, find the

binary-search tree for its vm_map_entries.

2. Look up the faulting address. If the lookup fails, the faulting address is not within any valid

part of the address space for the process, so send the process a segment fault signal. Lookups are

done using Tarjan and Sleator’s top-down splay algorithm. This algorithm reorders the tree so

that the most recently found entry is moved to the top of the tree. Recently found entries remain

near the top of the tree. The benefit of this algorithm is that it takes advantage of the frequent

locality of page faults. The drawback is that lookups often need to exclusively acquire the tree’s

lock to do the permutation causing lock contention between page-faulting threads sharing the

same address space.

3. Having found a vm_map_entry that contains the faulting address, convert that address to an

offset within the underlying vm_object. Calculate the offset within the vm_object as

Click here to view code image

object_offset = fault_address

 - vm_map_entry->start_address

 + vm_map_entry->object_offset

Subtract off the start address to give the offset into the region mapped by the vm_map_entry.

Add in the object_offset to give the absolute offset of the page within the vm_object.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p247pro01

296

4. Present the absolute object_offset to the underlying vm_object, which allocates a vm_page

structure and uses its pager to fill the page. The vm_object then returns a pointer to the

vm_page structure, which is mapped into the faulting location in the process address space.

Once the appropriate page has been mapped into the faulting location, the page-fault handler

returns and reexecutes the faulting instruction.

Mapping to Vm_objects

A vm_object holds information about either a file or an area of anonymous memory. Whether a

file is mapped by a single process in the system or by many processes in the system, it will

always be represented by a single vm_object. Thus, the vm_object is responsible for

maintaining all the state about those pages of a file that are resident. All references to that file

will be described by vm_map_entry structures that reference the same vm_object. A vm_object

never stores the same page of a file in more than one physical-memory page, so all mappings

will get a consistent view of the file.

A vm_object stores the following information:

• A collection of the pages for that vm_object that are currently resident in main memory; a

page may be mapped into multiple address spaces, but it is always claimed by exactly one

vm_object

• A count of the number of vm_map_entry structures or other vm_objects that reference the

vm_object

• The size of the file or anonymous area described by the vm_object

• The number of memory-resident pages held by the vm_object

• For shadow objects, a pointer to the next vm_object in the chain (shadow objects are described

in Section 6.5)

• The type of pager for the vm_object; the pager is responsible for providing the data to fill a

page and for providing a place to store the page when it has been modified (pagers are covered

in Section 6.10)

There are three types of vm_objects in the system:

• Named vm_objects represent files; they may also represent hardware devices that are able to

provide mapped memory such as frame buffers.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_256
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec10

297

• Anonymous vm_objects represent areas of memory that are zero filled on first use; they are

abandoned when they are no longer needed.

• Shadow vm_objects hold private copies of pages that have been modified; they are abandoned

when they are no longer referenced.

Shadow and all anonymous vm_objects (other than POSIX shmem) are often referred to as

“internal” vm_objects in the source code. The type of a vm_object is defined by the type of pager

that it uses to fulfill page-fault requests.

A named vm_object uses the device pager if it maps a hardware device, the vnode pager if it is

backed by a file in the filesystem, or the swap pager if it backs a POSIX shmem object. The

device pager services a page fault by returning the appropriate physical address for the device

being mapped. Since the device memory is separate from the main memory on the machine, it

will never be selected by the pageout daemon. Thus, the device pager never has to handle a

pageout request.

The vnode pager provides an interface to vm_objects that represent files in the filesystem. The

vnode pager keeps a reference to a vnode that represents the file being mapped in the vm_object.

The vnode pager services a pagein request by doing a read on the vnode; it services a pageout

request by doing a write to the vnode. Thus, the file itself stores the modified pages. In cases

where it is not appropriate to modify the file directly, such as an executable that does not want

to modify its initialized data pages, the kernel must interpose a shadow vm_object between the

vm_map_entry and the vm_object representing the file; see Section 6.5.

Anonymous or POSIX shmem vm_objects use the swap pager. An anonymous or POSIX shmem

vm_object services pagein requests by getting a page of memory from the free list and zeroing

that page. When a pageout request is made for a page for the first time, the swap pager is

responsible for finding an unused page in the swap area, writing the contents of the page to that

space, and recording where that page is stored. If a pagein request comes for a page that had

been previously paged out, the swap pager is responsible for finding where it stored that page

and reading back the contents into a free page in memory. A later pageout request for that page

will cause the page to be written out to the previously allocated location.

Shadow vm_objects also use the swap pager. They work just like anonymous or POSIX shmem

vm_objects, except that the swap pager does not need to provide their initial pages. The initial

pages are created by the vm_fault() routine by copying existing pages in response to

copy-on-write faults.

Further details on the pagers are given in Section 6.10.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec10

298

Vm_objects

Each virtual-memory vm_object has a pager type, pager handle, and pager private data

associated with it. The vm_objects that map files have a vnode-pager type associated with them.

The handle for the vnode-pager type is a pointer to the vnode on which to do the I/O, and the

private data is the size of the vnode at the time that the mapping was done. Every vnode that

maps a file has a vm_object associated with it. When a fault occurs for a file that is mapped into

memory, the vm_object associated with the file can be checked to see whether the faulted page

is resident. If the page is resident, it can be used. If the page is not resident, a new page is

allocated, and the vnode pager is requested to fill the new page.

Caching in the virtual-memory system is done by a vm_object that is associated with a file or

region that it represents. Each vm_object contains pages that are the cached contents of its

associated file or region. All vm_objects are reclaimed as soon as their reference count drops to

zero. Pages associated with reclaimed vm_objects are moved to the free list. Each vm_object

that represents anonymous memory is reclaimed as part of cleaning up a process as it exits.

However, vm_objects that refer to files are persistent. When the reference count on a vnode

drops to zero, it is stored on a least recently used (LRU) list known as the vnode cache;

vnodes are described in Section 7.3. The vnode does not release its vm_object until the vnode is

reclaimed and reused for another file. Unless there is pressure on the memory, the vm_object

associated with the vnode will retain its pages. If the vnode is reactivated and a page fault occurs

before the associated page is freed, that page can be used rather than being reread from disk.

This cache is similar to the text cache found in earlier versions of BSD in that it provides

performance improvements for short-running but frequently executed programs. Frequently

executed programs include those used to list the contents of directories, show system status, or

perform the intermediate steps involved in compiling a program. For example, consider a

typical application that is made up of multiple source files. Each of several compiler steps must

be run on each file in turn. The first time that the compiler is run, the executable files associated

with its various components are read in from the disk. For each file compiled thereafter, the

previously created executable files are found, as well as any previously read header files,

alleviating the need to reload them from disk each time.

Vm_objects to Pages

When the system is first booted, the kernel looks through the physical memory on the machine

to find out how many pages are available. After the physical memory that will be dedicated to

the kernel has been deducted, all the remaining pages of physical memory are described by

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec3

299

vm_page structures. These vm_page structures are all initially placed on the memory free list.

As the system starts running and processes begin to execute, they generate page faults. Each

page fault is matched to the vm_object that covers the faulting piece of address space. The first

time that a piece of a vm_object is faulted, it must allocate a page from the free list and must

initialize that page either by zero-filling it or by reading its contents from the filesystem. That

page then becomes associated with the vm_object. Thus, each vm_object has its current set of

vm_page structures linked to it.

If memory becomes scarce, the paging daemon will search for pages that have not been used

actively. Before these pages can be used by a new vm_object, they must be removed from all the

processes that currently have them mapped, and any modified contents must be saved by the

vm_object that owns them. Once cleaned, the pages can be removed from the vm_object that

owns them and can be placed on the free list for reuse. The details of the paging system are

described in Section 6.12.

6.5 Shared Memory

In Sections 6.2 and 6.4, we explained how the address space of a process is organized. This

section shows the additional data structures needed to support shared address space between

processes. Traditionally, the address space of each process was completely isolated from the

address space of all other processes running on the system. The only exception was read-only

sharing of program text. All interprocess communication was done through well-defined

channels that passed through the kernel: pipes, sockets, files, and special devices. The benefit of

this isolated approach is that, no matter how badly a process destroys its own address space, it

cannot affect the address space of any other process running on the system. Each process can

precisely control when data are sent or received; it can also precisely identify the locations

within its address space that are read or written. The drawback of this approach is that all

interprocess communication requires at least two system calls: one from the sending process

and one from the receiving process. For high volumes of interprocess communication, especially

when small packets of data are being exchanged, the overhead of the system calls dominates the

communications cost.

Shared memory provides a way to reduce interprocess-communication costs dramatically. Two

or more processes that wish to communicate map the same piece of read–write memory into

their address space. Once all the processes have mapped the memory into their address space,

any changes to that piece of memory are visible to all the other processes, without any

intervention by the kernel. Thus, interprocess communication can be achieved without any

system-call overhead other than the cost of the initial mapping. The drawback to this approach

is that, if a process that has the memory mapped corrupts the data structures in that memory,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec4

300

all the other processes mapping that memory also see the corrupted data structures. In addition,

there is the complexity faced by the application developer who must develop data structures to

control access to the shared memory and must cope with the race conditions inherent in

manipulating and controlling such data structures that are being accessed concurrently.

Some UNIX variants have a kernel-based semaphore mechanism to provide the needed

serialization of access to the shared memory. However, both getting and setting such

semaphores require system calls. The overhead of using such semaphores is comparable to that

of using the traditional interprocess-communication methods. Unfortunately, these semaphores

have all the complexity of shared memory, yet confer little of its speed advantage. The primary

reason to introduce the complexity of shared memory is for the commensurate speed gain. If

this gain is to be obtained, most of the data-structure locking needs to be done in the shared

memory segment itself. The kernel-based semaphores should be used for only those rare cases

where there is contention for a lock and one process must wait. Consequently, modern

interfaces, such as POSIX Pthreads, are designed such that the semaphores can be located in the

shared memory region. The common case of setting or clearing an uncontested semaphore can

be done by the user process, without calling the kernel. There are two cases where a process

must perform a system call. If a process tries to set an already-locked semaphore, it must call

the kernel to block until the semaphore is available. This system call has little effect on

performance because the lock is contested, so it is impossible to proceed, and the kernel must be

invoked to do a context switch anyway. If a process clears a semaphore that is wanted by

another process, it must call the kernel to awaken that process. Since most locks are uncontested,

the applications can run at full speed without kernel intervention.

Mmap Model

When two processes wish to create an area of shared memory, they must have some way to

name the piece of memory that they wish to share, and they must be able to describe its size and

initial contents. The system interface describing an area of shared memory accomplishes all

these goals by using files as the basis for describing a shared memory segment. A process creates

a shared memory segment by using

Click here to view code image

void *addr = mmap(

 void *addr, /* base address */

 size_t len, /* length of region */

 int prot, /* protection of region */

 int flags, /* mapping flags */

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p251pro01

301

 int fd, /* file to map */

 off_t offset); /* offset to begin mapping */

to map the file referenced by descriptor fd, starting at file offset offset into its address space,

starting at addr and continuing for len bytes with access permission prot. The flags parameter

allows a process to specify whether it wants to make a shared or private mapping. Changes

made to a shared mapping are written back to the file and are visible to other processes.

Changes made to a private mapping are not written back to the file and are not visible to other

processes. Two processes that wish to share a piece of memory request a shared mapping of the

same file into their address space. Thus, the existing and well-understood filesystem namespace

identifies shared objects. The contents of the file are used as the initial value of the memory

segment. All changes made to the mapping are reflected back into the contents of the file, so

long-term state can be maintained in the shared memory region, even across invocations of the

sharing processes.

Some applications want to use shared memory purely as a short-term

interprocess-communication mechanism. They need an area of memory that is initially zeroed

and whose contents are abandoned when they are done using it. Such processes want neither to

pay the relatively high startup cost associated with paging in the contents of a file to initialize a

shared memory segment nor to pay the shutdown costs of writing modified pages back to the file

when they are done with the memory. Although FreeBSD does provide the limited and quirky

naming scheme of the System V shmem interface as a rendezvous mechanism for such

short-term shared memory (see Section 7.2), the designers ultimately decided that all naming of

memory objects for mmap should use the filesystem namespace. To provide an efficient

mechanism for short-term shared memory, mappings that do not require stability across system

reboots use the MAP_NOSYNC flag to avoid the overhead of periodic syncing of dirty pages.

When this flag is specified, dirty pages are only written to the filesystem when memory is in high

demand.

When a mapping is no longer needed, it can be removed using

Click here to view code image

munmap(void *addr, size_t len);

The munmap system call removes any mappings that exist in the address space, starting at addr

and continuing for len bytes. There are no constraints between previous mappings and a later

munmap. The specified range may be a subset of a previous mmap, or it may encompass an area

that contains many mmap’ed files. When a process exits, the system does an implied munmap

over its entire address space.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p252pro01

302

During its initial mapping, a process can set the protections on a page to allow reading, writing,

and/or execution. The process can change these protections later by using

Click here to view code image

mprotect(const void *address, int length, int protection);

This feature can be used by debuggers when they are trying to track down a memory-corruption

bug. By disabling writing on the page containing the data structure that is being corrupted, the

debugger can trap all writes to the page and verify that they are correct before allowing them to

occur.

Traditionally, programming for real-time systems has been done with specially written

operating systems. In the interests of reducing the costs of real-time applications and of using

the skills of the large body of UNIX programmers, companies developing real-time applications

now use UNIX-based systems for writing these applications. Two fundamental requirements of

a real-time system are guaranteed maximum latencies and predictable execution times.

Predictable execution time is difficult to provide in a virtual-memory-based system, since a page

fault may occur at any point in the execution of a program, resulting in a potentially large delay

while the faulting page is retrieved from the disk or network. To avoid paging delays, the system

allows a process to force its pages to be resident, and not paged out, by using

Click here to view code image

mlock(const void *address, size_t length);

As long as the process limits its accesses to the locked area of its address space, it can be sure

that it will not be delayed by page faults. To prevent a single process from acquiring all the

physical memory on the machine to the detriment of all other processes, the system imposes a

resource limit to control the amount of memory that may be locked. Typically, this limit is set to

no more than one-third of the physical memory, and it may be set to zero by a system

administrator who does not want random processes to be able to monopolize system resources.

When a process has finished with its time-critical use of an mlock’ed region, it can release the

lock on the pages using

Click here to view code image

munlock(const void *address, size_t length);

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p252pro02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p253pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p253pro02

303

After the munlock call, the pages in the specified address range are still accessible, but they may

be paged out if memory is needed and they are not accessed.

An application may need to ensure that certain records are committed to disk without forcing

the writing of all the dirty pages of a file done by the fsync system call. For example, a database

program may want to commit a single piece of metadata without writing back all the dirty blocks

in its database file. A process does this selective synchronization using

Click here to view code image

msync(void *address, int length, int flags);

Only those modified pages within the specified address range are written back to the filesystem.

The msync system call has no effect on anonymous regions.

Shared Mapping

When multiple processes map the same file into their address space, the system must ensure

that all the processes view the same set of memory pages. As shown in Sections 6.2 and 6.4, each

file that is being used actively by a client of the virtual-memory system is represented by a

vm_object. Each mapping that a process has to a piece of a file is described by a vm_map_entry

structure. An example of two processes mapping the same file into their address space is shown

in Figure 6.12. When a page fault occurs in one of these processes, the process’s vm_map_entry

references the vm_object to find the appropriate page. Since all mappings reference the same

vm_object, the processes will all get references to the same set of physical memory, thus

ensuring that changes made by one process will be visible in the address spaces of the other

processes as well.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p253pro03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig12

304

Figure 6.12 Multiple mappings to a file.

Two processes sharing a mapping do not have to place it at the same virtual address in their

address spaces. Moreover, a process may have two or more vm_map entries to the same file (or

region of that file) in its address space. For example, when running an executable, a process has

a vm_map entry referencing the text portion of the executable and a vm_map entry referencing

the initialized-data portion of the executable.

Private Mapping

A process may request a private mapping of a file. A private mapping has two main effects:

1. Changes made to the memory mapping the file are not reflected back into the mapped file.

2. Changes made to the memory mapping the file are not visible to other processes mapping the

file.

An example of the use of a private mapping would be during program debugging. The debugger

will request a private mapping of the program text so that, when it sets a breakpoint, the

modification is not written back into the executable stored on the disk and is not visible to the

other (presumably nondebugging) processes executing the program.

The kernel uses shadow vm_objects to prevent changes made by a process from being reflected

back to the underlying vm_object. The use of a shadow vm_object is shown in Figure 6.13.

When the initial private mapping is requested, the file vm_object is mapped into the

requesting-process address space, with copy-on-write semantics.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_283
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig13

305

Figure 6.13 Use of a shadow vm_object for a private mapping.

If the process attempts to write a page of the vm_object, a page fault occurs and traps into the

kernel. If this fault is the first for the private mapping to the vm_object, then a new shadow

vm_object must be created. First, a new shadow vm_object is allocated with a pager type of

swap (pagers are described in Section 6.10). The new shadow vm_object is set to point to the

original vm_object that it will shadow. The faulting vm_map_entry is then changed to

reference the shadow vm_object. The kernel makes a copy of the page to be modified and hangs

it from the shadow vm_object. In this example, process A has modified page 0 of the file

vm_object. The kernel has copied page 0 to the shadow vm_object that is being used to provide

the private mapping for process A.

If free memory is limited, it would be better simply to move the modified page from the file

vm_object to the shadow vm_object. The move would reduce the immediate demand on the free

memory, because a new page would not have to be allocated. The drawback to this optimization

is that, if there is a later access to the file vm_object by some other process, the kernel will have

to allocate a new page. The kernel will also have to pay the cost of doing an I/O operation to

reload the page contents. In FreeBSD, the virtual-memory system never moves a page from a file

vm_object rather than copying it.

When a page fault for the private mapping occurs, the kernel traverses the list of vm_objects

headed by the vm_map_entry, looking for the faulted page. The first vm_object in the chain

that has the desired page is the one that is used. If the search gets to the final vm_object on the

chain without finding the desired page, then the page is requested from that final vm_object.

Thus, pages on a shadow vm_object will be used in preference to the same pages in the file

vm_object itself. The details of page-fault handling are given in Section 6.11.

When a process removes a mapping from its address space (either explicitly from an munmap

request or implicitly when the address space is freed on process exit), pages held by its shadow

vm_object are not written back to the file vm_object. The shadow-vm_object pages are simply

placed back on the memory free list for immediate reuse.

When a process forks, it does not want changes to its private mappings made after it forked to

be visible in its child; similarly, the child does not want its changes to be visible in its parent.

The result is that each process needs to create a shadow vm_object if it continues to make

changes in a private mapping. When process A in Figure 6.13 forks, a set of shadow-vm_object

chains is created, as shown in Figure 6.14. In this example, process A modified page 0 before it

forked and then later modified page 1. Its modified version of page 1 hangs off its new shadow

vm_object, so those modifications will not be visible to its child. Similarly, its child has modified

page 0. If the child were to modify page 0 in the original shadow vm_object, that change would

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig14

306

be visible in its parent. Thus, the child process must make a new copy of page 0 in its own

shadow vm_object.

Figure 6.14 Shadow-object chains.

If the system runs short of memory, the kernel may need to reclaim inactive memory held in a

shadow vm_object. The kernel assigns to the swap pager the task of backing the shadow

vm_object. The swap pager sets up data structures (described in Section 6.10) that can describe

the entire contents of the shadow vm_object. It then allocates enough swap space to hold the

requested shadow pages and writes them to that area. These pages can then be freed for other

uses. If a later page fault requests a swapped-out page, then a new page of memory is allocated

and its contents are reloaded with an I/O from the swap area.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec10

307

Collapsing of Shadow Chains

When a process with a private mapping removes that mapping either explicitly with an munmap

system call or implicitly by exiting, its parent or child process may be left with a chain of shadow

vm_objects. Usually, these chains of shadow vm_objects can be collapsed into a single shadow

vm_object, often freeing up memory as part of the collapse. Consider what happens when

process A exits in Figure 6.14. First, shadow vm_object 3 can be freed along with its associated

page of memory. This deallocation leaves shadow vm_objects 1 and 2 in a chain with no

intervening references. Thus, these two vm_objects can be collapsed into a single shadow

vm_object. Since they both contain a copy of page 0, and since only the page 0 in shadow

vm_object 2 can be accessed by the remaining child process, the page 0 in shadow vm_object 1

can be freed along with shadow vm_object 1 itself.

If the child of process A were to exit instead, then shadow vm_object 2 and the associated page

of memory could be freed. Shadow vm_objects 1 and 3 would then be in a chain that would be

eligible for collapse. Here, there are no common pages, so vm_object 3 would retain its own

page 1 and acquire page 0 from shadow vm_object 1. Vm_object 1 would then be freed. In

addition to merging the pages from the two vm_objects, the collapse operation requires a

similar merger of any swap space that has been allocated by the two vm_objects. If page 2 had

been copied to vm_object 3 and page 4 had been copied to vm_object 1, but these pages were

later reclaimed, the pager for vm_object 3 would hold a swap block for page 2, and the pager for

vm_object 1 would hold a swap block for page 4. Before freeing vm_object 1, its swap block for

page 4 would have to be moved over to vm_object 3.

A performance problem can arise if either a process or its children repeatedly fork. Without

some intervention, they can create long chains of shadow vm_objects. If the processes are

long-lived, the system does not get an opportunity to collapse these shadow-vm_object chains.

Traversing these long chains of shadow vm_objects to resolve page faults is time consuming,

and many inaccessible pages can build up forcing the system to needlessly page them out to

reclaim them.

One alternative would be to calculate the number of live references to a page after each

copy-on-write fault. When only one live reference remained, the page could be moved to the

shadow vm_object that still referenced it. When all the pages had been moved out of a shadow

vm_object, it could be removed from the chain. For example, in Figure 6.14, when the child of

process A wrote to page 0, a copy of page 0 was made in shadow vm_object 2. At that point, the

only live reference to page 0 in vm_object 1 was from process A. Thus, the page 0 in vm_object 1

could be moved to vm_object 3. That would leave vm_object 1 with no pages, so it could be

reclaimed leaving vm_objects 2 and 3 pointing at the file vm_object directly. Unfortunately, this

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig14

308

strategy would add considerable overhead to the page-fault handling routine which would

noticeably slow the overall performance of the system, so FreeBSD does not make this

optimization.

FreeBSD uses a lower-cost heuristic to reduce the copying of shadow pages. When a page of a

top-level shadow object is faulted, the kernel checks whether a lower-level shadow object

contains a copy of the page. If that lower-level shadow object has the page and is referenced only

by the top-level shadow object, (i.e., in principle the chain could be collapsed) the page is moved

rather than copied from the lower-level shadow object to the top-level shadow object and

mapped with write access.

Private Snapshots

When a process makes read accesses to a private mapping of a vm_object, it continues to see

changes made to that vm_object by other processes that are writing to the vm_object through

the filesystem or that have a shared mapping to the vm_object. When a process makes a write

access to a private mapping of an vm_object, a snapshot of the corresponding page of the

vm_object is made and is stored in the shadow vm_object, and the modification is made to that

snapshot. Thus, further changes to that page made by other processes that are writing to the

page through the filesystem or that have a shared mapping to the vm_object are no longer

visible. However, changes to unmodified pages of the vm_object continue to be visible. This mix

of changing and unchanging parts of the file can be confusing.

To provide a more consistent view of a file, a process may want to take a snapshot of the file at

the time that it is initially privately mapped. Historically, both Mach and 4.4BSD provided a

copy vm_object whose effect was to take a snapshot of a vm_object at the time that the private

mapping was set up. The copy vm_object tracked changes to a vm_object by other processes

and kept original copies of any pages that changed. Only Mac OS/X implemented copy

vm_objects, and there are no major applications that depend on them. The copy-vm_object

code in the virtual-memory system was large and complex, and it noticeably slowed

virtual-memory performance. Consequently, copy vm_objects were deemed unnecessary and

were removed from FreeBSD as part of the early cleanup and performance work done on the

virtual-memory system. Applications that want to get a snapshot of a file can do so by reading it

into their address space or by making a copy of it in the filesystem and then referring to the

copy.

309

6.6 Creation of a New Process

Processes are created with a fork system call. The fork is usually followed shortly thereafter by

an exec system call that overlays the virtual address space of the child process with the contents

of an executable image that resides in the filesystem. The process then executes until it

terminates voluntarily by exiting or involuntarily by receiving a signal. In Sections 6.6 to 6.9, we

trace the management of the memory resources used at each step in this cycle.

A fork system call duplicates the address space of an existing process, creating an identical child

process. The fork set of system calls is the only way that new processes are created in FreeBSD.

Fork duplicates all the resources of the original process (except for its kqueue descriptors) and

copies that process’s address space.

The virtual-memory resources of the process that must be allocated include the child’s process

structure and its associated substructures, and its kernel stack. In addition, the kernel can be

requested through the procctl system call to reserve storage (either memory, filesystem space, or

swap space) used to back the process. The general outline of the implementation of a fork is as

follows:

• If requested to do so, reserve virtual address space for the child process

• Allocate a process entry and thread structure for the child process, and fill it in

• Copy to the child the parent’s process group, credentials, file descriptors, limits, and signal

actions

• Allocate a new kernel stack, copying the bottom frame that returns from the system call in the

current one to initialize it

• Allocate a vmspace structure

• Duplicate the address space by creating copies of the parent vm_map_entry structures

marked copy-on-write

• Arrange for the child process to return 0, to distinguish its return value from the new PID that

is returned to the parent process

The allocation and initialization of the process structure, and the arrangement of the return

value, were covered in Chapter 4. The remainder of this section discusses the other steps

involved in duplicating a process.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04

310

Reserving Kernel Resources

The first resource to be reserved when an address space is duplicated is the required virtual

address space. To avoid running out of memory resources, the kernel must ensure that it does

not promise to provide more virtual memory than it is able to deliver. The total virtual memory

that can be provided by the system is limited to the amount of physical memory available for

paging plus the amount of swap space that is provided. A few pages are held in reserve to stage

I/O between the swap area and main memory.

The reason for this restriction is to ensure that processes get synchronous notification of

memory limitations. Specifically, a process should get an error back from a system call (such as

sbrk, fork, or mmap) if there are insufficient resources to allocate the needed virtual memory. If

the kernel promises more virtual memory than it can support, it can deadlock trying to service a

page fault. Trouble arises when it has no free pages to service the fault and no available swap

space to save an active page. Here, the kernel has no choice but to send a kill signal to the

process unfortunate enough to be page faulting. Such asynchronous notification of insufficient

memory resources is unacceptable.

Excluded from this limit are those parts of the address space that are mapped read-only, such as

the program text. Any pages that are being used for a read-only part of the address space can be

reclaimed for another use without being saved because their contents can be refilled from the

original source. Also excluded from this limit are parts of the address space that map shared

files. The kernel can reclaim any pages that are being used for a shared mapping after writing

their contents back to the filesystem from which they are mapped. Here, the filesystem is being

used as an extension of the swap area. Finally, any piece of memory that is used by more than

one process (such as an area of anonymous memory being shared by several processes) needs to

be counted only once toward the virtual-memory limit.

The limit on the amount of virtual address space that can be allocated causes problems for

applications that want to allocate a large piece of address space but want to use the piece only

sparsely. For example, a process may wish to make a private mapping of a large database from

which it will access only a small part. Because the kernel has no way to guarantee that the access

will be sparse, when requested to reserve space, it takes the pessimistic view that the entire file

will be modified and denies the request if it has insufficient resources.

Tracking the outstanding virtual memory accurately and determining when to limit further

allocation is a complex task. Because most processes use only about half of their virtual address

space, limiting outstanding virtual memory to the sum of process address spaces is needlessly

conservative. However, allowing greater allocation runs the risk of running out of

311

virtual-memory resources. Although FreeBSD calculates the outstanding-memory load, it only

enforces a total memory limit if the vm.overcommit sysctl has been enabled. Because the

vm.overcommit follows the conservative approach of limiting outstanding virtual memory to the

sum of process address spaces, vm.overcommit is turned off by default. Thus, it does not

enforce any total memory limit so it can be made to promise more than it can deliver. When

memory resources run out, it picks a process to kill favoring processes with large memory use.

An important future enhancement will be to develop a heuristic for better determining when

virtual-memory resources are in danger of running out and need to be limited. As a stopgap

measure, FreeBSD 10 added the procctl system call that can be accessed using the protect

utility to allow the system administrator to identify processes that are critical to system

operation and should not be considered as candidates to be killed.

Duplication of the User Address Space

The next step in fork is to allocate and initialize a new process structure. This operation must be

done before the address space of the current process is duplicated because it records state in the

process structure. From the time that the process structure is allocated until all the needed

resources are allocated, the parent process is locked against swapping to avoid deadlock. The

child is in an inconsistent state and cannot yet run or be swapped, so the parent is needed to

complete the copy of its address space. To ensure that the child process is ignored by the

scheduler, the kernel sets the process’s state to NEW during the entire fork procedure.

Historically, the fork system call operated by copying the entire address space of the parent

process. When large processes fork, copying the entire user address space is expensive and

wasteful if the fork is followed immediately by an exec, which discards all the existing pages

before allocating the new pages for the program that it has been requested to run. All the pages

that are on secondary storage must be read back into memory to be copied. If there is not

enough free memory for both complete copies of the process, this memory shortage will cause

the system to begin paging to create enough memory to do the copy (see Section 6.12). The copy

operation may result in parts of the parent and child processes being paged out, as well as the

paging out of parts of unrelated processes.

The technique used by FreeBSD to create processes without this overhead is called

copy-on-write. Rather than copy each page of a parent process, both the child and parent

processes resulting from a fork are given references to the same physical pages. The page tables

are changed to prevent either process from modifying a shared page. Instead, when a process

attempts to modify a page, the kernel is entered with a protection fault. On discovering that the

fault was caused by an attempt to modify a shared page, the kernel simply copies the page and

changes the protection field for the page to allow modification once again. Only pages modified

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_63

312

by one of the processes need to be copied. Because processes that fork typically overlay the child

process with a new image with exec shortly thereafter, this technique significantly improves the

performance of fork.

Using copy-on-write for fork is done by traversing the list of vm_map_entry structures in the

parent and creating a corresponding entry in the child. Each entry must be analyzed and the

appropriate action taken:

• If the entry maps a shared region, the child can take a reference to it.

• If the entry maps a privately mapped region (such as the data area or stack), the child must

create a copy-on-write mapping of the region. The parent must be converted to a copy-on-write

mapping of the region. If either process later tries to write the region, it will create a shadow

object to hold the modified pages.

With the virtual-memory resources allocated, the system sets up the kernel-and user-mode state

of the new process. It then clears the NEW flag and places the process’s thread on the run queue;

the new process can then begin execution.

Creation of a New Process Without Copying

When a process (such as a shell) wishes to start another program, it will generally fork, do a few

simple operations such as redirecting I/O descriptors and changing signal actions, and then

start the new program with an exec. In the meantime, the parent shell suspends itself with wait

until the new program completes. For such operations, it is not necessary for both parent and

child to run simultaneously, and therefore only one copy of the address space is required. This

frequently occurring set of system calls led to the implementation of the vfork system call.

Although it is extremely efficient, vfork has peculiar semantics and is generally considered to be

an architectural blemish.

The implementation of vfork will always be more efficient than the copy-on-write

implementation because the kernel avoids copying the address space for the child. Instead, the

kernel simply passes the parent’s address space to the child and suspends the parent. The child

process does not need to allocate any virtual-memory structures, receiving the vmspace

structure and all its pieces from its parent. The child process returns from the vfork system call

with the parent still suspended. The child does the usual activities in preparation for starting a

new program, then calls exec. Now the address space is passed back to the parent process, rather

than being abandoned, as in a normal exec. Alternatively, if the child process encounters an

error and is unable to execute the new program, it will exit. Again, the address space is passed

back to the parent instead of being abandoned.

313

With vfork, the entries describing the address space do not need to be copied, and the

page-table entries do not need to be set to read-only and then cleared of read-only. Vfork is

likely to remain more efficient than copy-on-write or other schemes that must duplicate the

process’s virtual address space. The architectural quirk of the vfork call is that the child process

may modify the contents and even the size of the parent’s address space while the child has

control. Although modification of the parent’s address space is bad programming practice, some

programs have been known to take advantage of this quirk.

6.7 Execution of a File

The exec system call was described in Sections 2.4 and 3.1; it replaces the address space of a

process with the contents of a new program obtained from an executable file. During an exec,

the target executable image is validated and then the arguments and environment are copied

from the current process image into a temporary area of pageable-kernel virtual memory.

To do an exec, the system must allocate resources to hold the new contents of the virtual address

space, set up the mapping for this address space to reference the new image, and release the

resources being used for the existing virtual memory.

The first step is to check whether the kernel has been requested to reserve memory resources for

the new executable image. If it has, a space reservation must be made for the space needed by

the new executable. Exec does this reservation without first releasing the currently assigned

space, because the system must be able to continue running the old executable until it is sure

that it will be able to run the new one. If the system released the current space and the memory

reservation failed, the exec would be unable to return to the original process. Once the

reservation is made, the address space and virtual-memory resources of the current process are

then freed as though the process were exiting; this mechanism is described in Section 6.9.

Now the process has only a kernel stack. The kernel now allocates a new vmspace structure and

creates the list of four or five vm_map_entry structures:

1. A copy-on-write, fill-from-file entry maps the text segment. A copy-on-write mapping is used,

rather than a read-only one, to allow active text segments to have debugging breakpoints set

without affecting other users of the binary.

2. A private (copy-on-write), fill-from-file entry maps the initialized data segment.

3. An anonymous zero-fill-on-demand entry maps the uninitialized data segment.

4. An anonymous zero-fill-on-demand entry maps the stack segment.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec9

314

5. For dynamically loaded binaries (most of them), a copy-on-write, fill-from-file entry maps the

runtime loader. Execution will begin in the loader that will map the needed shared libraries, link

the program with the libraries, and finish by invoking the program.

No further operations are needed to create a new address space during an exec system call; the

remainder of the work involves copying the arguments and environment out to the top of the

new stack. Initial values are set for the registers: The program counter is set to the entry point,

and the stack pointer is set to point to the argument vector. The new process image is then ready

to run.

6.8 Process Manipulation of Its Address Space

Once a process begins execution, it has several ways to manipulate its address space. The system

has always allowed processes to expand their uninitialized data area (usually done with the

malloc() library routine). The stack is grown on an as-needed basis. The FreeBSD system also

allows a process to map files and devices into arbitrary parts of its address space and to change

the protection of various parts of its address space, as described in Section 6.5. This section

describes how these address-space manipulations are done.

Change of Process Size

A process can change its size during execution by explicitly requesting more data space with the

sbrk system call. Also, the stack segment will be expanded automatically if an invalid address

fault is encountered because of an attempt to grow the stack below the end of the stack region.

In either case, the size of the process address space must be changed. The size of the request is

always rounded up to a multiple of page size. New pages are marked fill-with-zeros, since there

are no contents initially associated with new sections of the address space.

The first step of enlarging a process’s size is to check whether the new size would violate the size

limit for the process segment involved. If the new size is in range, the following steps are taken

to enlarge the data area:

1. Verify that the address space of the requested size immediately following the current end of

the data area is not already mapped.

2. If requested, verify that the virtual-memory resources are available.

3. If the existing vm_map_entry is the only reference to the swap vm_object, increment the

vm_map_entry’s ending address by the requested size and increase the size of the swap

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec5

315

vm_object by the same amount. If the swap vm_object has two or more references (as it would

after a process forked), a new vm_map_entry must be created with a starting address

immediately following the end of the previous fixed-size entry. Its ending address is calculated

to give it the size of the request. It will be backed by a new swap vm_object. Until this process

forks again, the new entry and its swap vm_object will be able to continue growing.

If the change is to reduce the size of the data segment, the operation is easy: Any memory

allocated to the pages that will no longer be part of the address space is freed. The ending

address of the vm_map_entry is reduced by the size. If the requested size reduction is bigger

than or equal to the range defined by the vm_map_entry, the entire entry is freed, and the

remaining reduction is applied to the vm_map_entry that precedes it. This algorithm is applied

until the entire reduction has been made. Future references to these addresses will result in

invalid address faults, as access is disallowed when the address range has been deallocated.

File Mapping

The mmap system call requests that a file be mapped into an address space. The system call may

request either that the mapping be done at a particular address or that the kernel pick an

unused area. If the request is for a particular address range, the kernel first checks to see

whether that part of the address space is already in use. If it is in use, the kernel first does an

munmap of the existing mapping, then proceeds with the new mapping.

The kernel implements the mmap system call by traversing the list of vm_map_entry

structures for the process. The various types of overlap to consider are shown in Figure 6.15. The

five types are as follows:

1. The new mapping exactly overlaps an existing mapping. The old mapping is deallocated as

described in Section 6.9. The new mapping is created in its place as described in the paragraph

following this list.

2. The new mapping is a subset of the existing mapping. The existing mapping is split into three

pieces (two pieces if the new mapping begins at the beginning or ends at the end of the existing

mapping). The existing vm_map_entry structure is augmented with one or two additional

vm_map_entry structures: one mapping the remaining part of the existing mapping before the

new mapping, and one mapping the remaining part of the existing mapping following the new

mapping. Its overlapped piece is replaced by the new mapping, as described in the paragraph

following this list.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec9

316

Figure 6.15 Five types of overlap that the kernel must consider when adding a new address

mapping.

3. The new mapping is a superset of an existing mapping. The old mapping is deallocated as

described in Section 6.9, and a new mapping is created as described in the paragraph following

this list.

4. The new mapping starts partway into and extends past the end of an existing mapping. The

existing mapping has its length reduced by the size of the unmapped area. Its overlapped piece

is replaced by the new mapping, as described in the paragraph following this list.

5. The new mapping extends into the beginning of an existing mapping. The existing mapping

has its starting address incremented and its length reduced by the size of the covered area. Its

overlapped piece is replaced by the new mapping, as described in the paragraph following this

list.

In addition to these five basic types of overlap, a new mapping request may span several existing

mappings. Specifically, a new request may be composed of zero or one of type 4, zero to many of

type 3, and zero or one of type 5. When a mapping is shortened, any shadow pages associated

with it are released because they are no longer needed.

Once the old mapping to the address range has been removed, the kernel allocates a

vm_map_entry to describe the new mapping to the address range. If the vm_object being

mapped is already being mapped by another process, the new vm_map_entry gets a reference

to the existing vm_object. This reference is obtained in the same way, as described in Section

6.6, when a new process is being created and needs to map each of the regions in its parent. If

this request is a mapping of a file, then the kernel sets the new vm_map_entry to reference its

vm_object. If this is a mapping to an anonymous region, then the kernel sets the new

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec6

317

vm_map_entry to reference its vm_object but sets the MAP_ENTRY_NEEDS_COPY flag so

that a new shadow vm_object will be created if a page in the vm_object is modified.

Change of Protection

A process may change the protections associated with a region of its virtual memory by using the

mprotect system call. The size of the region to be protected may be as small as a single page.

Because the kernel depends on the hardware to enforce the access permissions, the granularity

of the protection is limited by the underlying hardware. A region may be set for any combination

of read, write, and execute permissions. Many architectures do not distinguish between read

and execute permissions; on such architectures, the execute permission is treated as read

permission.

The kernel implements the mprotect system call by finding the existing vm_map_entry

structure or structures that cover the region specified by the call. If the existing permissions are

the same as the request, then no further action is required. Otherwise, the new permissions are

compared to the maximum protection value associated with the vm_map_entry. The maximum

value is set at mmap time and reflects the maximum value allowed by the underlying file. If the

new permissions are valid, one or more new vm_map_entry structures may have to be set up to

describe the new protections. The set of overlap conditions that must be handled is similar to

that described in the previous subsection. Any vm_map_entries wholly contained within the

mprotect’ed range can simply change their permissions. For vm_map_entries that have to be

split, the vm_map_entry on the unchanged address range retains it old permissions and the

vm_map_entry on the mprotect’ed address range changes to the new permissions. Instead of

replacing the vm_object underlying the new vm_map_entry structures, these vm_map_entry

structures still reference the same vm_object; the difference is that they grant different access

permissions to it.

6.9 Termination of a Process

The final change in process state that relates to the operation of the virtual-memory system is

exit; this system call terminates a process, as described in Chapter 4. The part of exit that is

discussed here is the release of the virtual-memory resources of the process. There are two sets

of virtual-memory resources that need to be freed:

1. The user portions of the address space, both memory and swap space

2. The kernel stack

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04

318

The first set of resources is freed in exit. The kernel stack is freed in wait. The release of the

kernel stack is delayed because it must be used until the process relinquishes the processor for

the final time.

The first step—freeing the user address space—is identical to the one that occurs during exec to

free the old address space. The free operation proceeds entry by entry through the list of

vm_map_entry structures associated with the address space. The first step in freeing an entry is

to call the machine-dependent routines to unmap and free up any page table or data structures

that are associated with the vm_map_entry. The next step is to traverse its list of shadow

vm_objects. If the entry is the last reference to a shadow vm_object, then any physical pages or

swap space that is associated with the vm_object can be freed. If the shadow vm_object is still

referenced by other vm_map_entry structures, its resources cannot be freed. Finally, if the

underlying vm_object referenced by the vm_map_entry is losing its last reference, then that

vm_object is a candidate for deallocation. If it is a vm_object that will never have any chance of

a future reuse (such as an anonymous vm_object associated with a stack or uninitialized data

area), then its resources are freed as though it were a shadow vm_object. However, if the

vm_object is associated with a vnode (e.g., it maps a file such as an executable), the vm_object

will persist until the vnode is reused for another purpose. Until the vnode is reused, the

vm_object and its associated pages will be available for reuse by newly executing processes or by

processes mapping in a file.

With all its resources free, the exiting process finishes detaching itself from its process group

and notifies its parent that it is done. The process has now become a zombie process—one with

no resources. Its parent will collect its exit status with a wait call. Because the process structure

and kernel stack are allocated using the zone allocator, they will normally be retained for future

use by another process rather than being broken down and their memory pages reclaimed. Thus,

there is nothing for the virtual-memory system to do when wait is called: All virtual-memory

resources of a process are removed when exit is done. On wait, the system just returns the

process status to the caller, releases the process structure and kernel stack back to the zone

allocator, and frees the space in which the resource-usage information was kept.

6.10 The Pager Interface

The pager interface provides the mechanism by which data are moved between backing store

and physical memory. The FreeBSD pager interface is an evolution of the interface present in

Mach 2.0 as evolved by 4.4BSD. The interface is page based, with all data requests made in

multiples of the page size. The vm_page structures are passed around as descriptors providing

the backing-store offset and physical-memory address of the desired data. This interface should

not be confused with the Mach 3.0 external paging interface [Young, 1989], where pagers are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref22

319

typically user applications outside the kernel and are invoked via asynchronous remote

procedure calls using the Mach interprocess-communication mechanism. The FreeBSD

interface is internal in the sense that the pagers are compiled into the kernel and pager routines

are invoked via simple function calls.

Each virtual-memory vm_object has a pager type, pager handle, and pager private data

associated with it. Conceptually, the pager describes a logically contiguous piece of backing store,

such as a chunk of swap space or a disk file. The pager type identifies the pager responsible for

supplying the contents of pages within the vm_object. Each pager registers a set of functions

that define its operations. These function sets are stored in an array indexed by pager type.

When the kernel needs to perform a pager operation, it uses the pager type to index into the

array of pager functions and then selects the routine that it needs such as getting or putting

pages. For example,

Click here to view code image

(*pagertab[object->type]->pgo_putpages)

 (object, vmpage, count, flags, rtvals);

writes count pages starting with page vmpage from object.

A pager type is specified when a vm_object is created to represent a file, device, or piece of

anonymous memory. The pager manages the vm_object throughout its lifetime. When a page

fault occurs for a virtual address mapping a particular vm_object, the fault-handling code

allocates a vm_page structure and converts the faulting address to an offset within the

vm_object. This offset is recorded in the vm_page structure, and the page is added to the

collection of pages cached by the vm_object. The page frame and vm_object are then passed to

the underlying pager routine. The pager routine is responsible for filling the page referenced by

the vm_page structure with the appropriate contents for that offset of the vm_object that it

represents.

The pager is also responsible for saving the contents of a dirty page if the system decides to write

out the page to backing store. When the pageout daemon decides that a particular page is no

longer needed, it requests the vm_object that owns the page to free the page. The vm_object

first passes the page with the associated logical offset to the underlying pager to be saved for

future use. The pager is responsible for finding an appropriate place to save the page and doing

any I/O necessary for the save. When it is done, the pager marks the page as clean and notifies

the vm_object that the page has been written so that the pageout daemon can move the

vm_page structure to the cache or free list for future use.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06_images.html#p268pro01

320

There are seven routines associated with each pager type; see Table 6.2. The pgo_init() routine

is called at boot time to do any one-time type-specific initializations, such as allocating a pool of

private pager structures. The pgo_alloc() routine associates a pager with a vm_object as part of

the creation of the vm_object. The pgo_dealloc() routine disassociates a pager from a

vm_object as part of the destruction of the vm_object.

Table 6.2 Operations defined by a pager.

The pgo_getpages() function is called to return one or more pages of data from a pager. The

main use of this routine is by the page-fault handler. The pgo_putpages() function writes back

one or more pages of data. This routine is called by the pageout daemon to write back one or

more pages asynchronously, and by msync to write back one or more pages synchronously or

asynchronously. Both the get and put routines are called with an array of pointers to vm_page

structures and a count indicating the affected pages.

The pgo_haspage() routine queries a pager to see whether it has data at a particular

backing-store offset. This routine is used in the clustering code of the page-fault handler to

determine whether pages on either side of a faulted page can be read in as part of a single I/O

operation. It is also used when collapsing chains of vm_objects to determine if the allocated

pages of a shadow vm_object completely obscure the allocated pages of the vm_object that it

shadows.

The four most commonly used pagers supported by the system are described in the next four

subsections.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_49

321

Vnode Pager

The vnode pager handles vm_objects that provide the physical memory for caching data from

files in a filesystem. Whenever a file is opened either explicitly by open or implicitly by exec, the

system must find an existing vnode that represents it or, if there is no existing vnode for the file,

allocate a new vnode for it. Part of allocating a new vnode is to allocate a vm_object to hold the

pages of the file and to associate the vnode pager with the vm_object. The vm_object handle is

set to point to the vnode and the private data stores the size of the file. Any time the vnode

changes size, the vm_object is informed by a call to vnode_pager_setsize().

When a pagein request is received by the vnode pager pgo_getpages() routine, it is passed an

array of pointers to physical pages, the size of the array, and the index into the array of the page

that is required to service the page fault. Only the required page must be read, but the

pgo_getpages() routine is encouraged to provide as many of the others as it can easily read at

the same time. For example, if the required page is in the middle of the block of a file, the

filesystem will usually read the entire file block since the file block can be read with a single I/O

operation. The larger read will fill in the required page along with the pages surrounding it.

The kernel has two types of I/O operations: mapped and unmapped. Mapped I/O requires that

the physical pages be mapped into the kernel’s address space. The I/O is done using a

physical-I/O buffer that maps the pages to be read into the kernel address space long enough for

the pager to call the device-driver strategy routine to load the pages with the file contents. Once

the pages are filled, the kernel mapping can be dropped, the physical-I/O buffer can be released,

and the pages can be returned.

Unmapped I/O does not require the physical pages to be mapped into the kernel’s address space.

Many devices have the ability to do I/O on unmapped pages through the use of a hardware I/O

map. For these devices, it is not necessary for the kernel to map them into its address space.

Rather the vm_page structures can be passed directly to the device. The device can copy the

physical page numbers into its I/O map and proceed with the I/O operation. The details of using

the hardware I/O map are described in Section 8.8.

When the vnode pager is asked to save a page to be freed, it simply arranges to write the page

back to the part of the file from which the page came. The request is made with the

pgo_putpages() routine, which is passed an array of pointers to physical pages, the size of the

array, and the index into the array of the page that must be written. Only the required page must

be written, but the pgo_putpages() routine is encouraged to write as many of the others as it

can easily handle at the same time. The filesystem will write out all the pages that are in the

same filesystem block as the required page. As with the pgo_getpages() routine, the pages are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec8

322

mapped into the kernel long enough to do the write operation only if the device to which they

are being written does not have the ability to do I/O on unmapped pages.

If a file is being privately mapped, then modified pages cannot be written back to the filesystem.

Such private mapping must use a shadow vm_object with a swap pager for all pages that are

modified. Thus, a privately mapped vm_object will never be asked to save any dirty pages to the

underlying file.

Historically, the BSD kernel had separate caches for the filesystems and the virtual memory.

FreeBSD has eliminated the filesystem buffer cache by replacing it with the virtual-memory

cache. Each vnode has a vm_object associated with it, and the blocks of the file are stored in the

pages associated with the vm_object. The file data is accessed using the same pages whether

they are mapped into an address space or accessed via read and write. An added benefit of this

design is that the filesystem cache is no longer limited by the address space in the kernel that

can be dedicated to it. Absent other demands on the system memory, it can all be dedicated to

caching filesystem data.

The ZFS filesystem integrated from OpenSolaris is the one exception to the integrated buffer

cache. ZFS has its own set of memory that it manages by itself. Files that are mmap’ed from ZFS

must be copied to the virtual-memory managed memory. In addition to requiring two copies of

the file in memory, extra copying occurs every time an mmap’ed ZFS file is being accessed

through the read and write interfaces. As detailed in Section 10.5, ZFS would require extensive

restructuring to integrate its buffer cache into the virtual-memory infrastructure.

Device Pager

The device pager handles vm_objects representing memory-mapped hardware devices.

Memory-mapped devices provide an interface that looks like a piece of memory. An example of

a memory-mapped device is a frame buffer, which presents a range of memory addresses with

one word per pixel on the screen. The kernel provides access to memory-mapped devices by

mapping the device memory into a process’s address space. The process can then access that

memory without further operating-system intervention. Writing to a word of the frame-buffer

memory causes the corresponding pixel to take on the appropriate color and brightness. The

device pager can also be used to create user-level mappings of kernel buffers. For example, a

network driver can make its buffers available to a user-level application to allow the application

to access their contents directly.

The device pager is fundamentally different from the other three pagers described in this section

in that it does not fill provided physical-memory pages with data. Instead, it creates and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10lev1sec5

323

manages its own vm_page structures, each of which describes a page of the device space. The

head of the list of these pages is kept in the pager private-data area of the vm_object. This

approach makes device memory look like wired physical memory. Thus, no special code should

be needed in the remainder of the virtual-memory system to handle device memory.

When a device object is mapped, the device-pager allocation routine will validate the desired

range by calling the device d_mmap() routine. If the device allows the requested access for all

pages in the range, an empty page list is created in the private-data area of the vm_object that

manages the device mapping. The device-pager allocation routine does not create vm_page

structures immediately—they are created individually by the pgo_getpages() routine as they are

referenced. The reason for this late allocation is that some devices export a large memory range

in which either not all pages are valid or the pages may not be accessed for common operations.

Complete allocation of vm_page structures for these sparsely accessed devices would be

wasteful.

The first access to a device page will cause a page fault and will invoke the device-pager

pgo_getpages() routine. The device pager creates a vm_page structure, initializes the latter

with the appropriate vm_object offset and a physical address returned by the device d_mmap()

routine, and flags the page as fictitious. This vm_page structure is added to the collection of all

such allocated pages for the vm_object. Since the fault code has no special knowledge of the

device pager, it has preallocated a physical-memory page to fill and has associated that

vm_page structure with the vm_object. The device-pager routine removes that vm_page

structure from the vm_object, returns the structure to the free list, and inserts its own vm_page

structure in the same place.

The device-pager pgo_putpages() routine expects never to be called and will panic if it is. This

behavior is based on the assumption that device-pager pages are never entered into any of the

paging queues and hence will never be seen by the pageout daemon. However, the device-pager

must be prepared to be called if an application does an msync on a part of its address space that

is mapped to a range of device memory. Although there is nothing that needs to be done, this

operation brings up an exception to the higher-level virtual-memory system’s ignorance of

device memory: The vm_object page-cleaning routine will skip pages that are flagged as

fictitious.

Finally, when a device is unmapped, the device-pager deallocation routine is invoked. This

routine deallocates all the vm_page structures that it allocated.

324

Physical-Memory Pager

The physical-memory pager handles vm_objects that contain nonpagable memory. It is used to

make a copy of the current time-of-day structure accessible to user processes to permit them to

get the time of day without the need to do a system call. It is also used for a page of data that the

kernel shares with all processes that contains the signal trampoline code. The trampoline code

used to be placed at the top of the stack for each process. To make stack overflow exploits more

difficult, the stack region is marked as nonexecutable. So the trampoline code was moved to a

kernel text page that is made read-only and executable to every process. The System V

shared-memory interface uses the physical-memory pager when it has been configured to use

nonpagable memory instead of the default swappable memory.

The first access to a physical-memory-pager page will cause a page fault and will invoke the

pgo_getpages() routine. Like the swap pager, the physical-memory pager zero-fills pages when

they are first faulted. Unlike the swap pager, the page is marked as unmanaged so that it will not

be considered for replacement by the pageout daemon. Unmanaged pages never require finding

all the instances of their mappings, so the associated data structure used to find all mappings

(described in Section 6.13) need not be allocated. Marking its pages unmanaged makes the

memory for the physical-memory pager look like wired physical memory. Thus, no special code

is needed in the remainder of the virtual-memory system to handle physical-memory-pager

memory.

The pgo_putpages() routine of the physical-memory-pager does not expect to be called, and it

panics if it is. This behavior is based on the assumption that physical-memory-pager pages are

never entered into any of the paging queues and hence will never be seen by the pageout

daemon. However, it is possible to msync a range of memory backed by the physical-memory

pager. This operation brings up an exception to the higher-level virtual-memory system’s

ignorance of physical-memory-pager memory: The vm_object page-cleaning routine will skip

pages that are flagged as unmanaged.

Finally, when a vm_object using a physical-memory pager is freed, each of its pages has its

unmanaged flag cleared and is released back to the list of free pages.

Swap Pager

The term swap pager refers to two functionally different pagers. In the most common use, swap

pager refers to the pager that is used by vm_objects that manage anonymous memory. This

pager has sometimes been referred to as the default pager because it is the pager that is used if

no other pager has been requested. It provides what is commonly known as swap space:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_425

325

nonpersistent backing store that is zero filled on first reference. When an anonymous vm_object

is first created, it is assigned the default pager. The default pager allocates no resources and

provides no storage backing. The default pager handles page faults (pgo_getpage()) by zero

filling and page queries (pgo_haspage()) as not held. The expectation is that free memory will

be plentiful enough that it will not be necessary to swap out any pages. The vm_object will

simply create zero-filled pages during the process lifetime that can all be returned to the free list

when the process exits. When a vm_object is freed with the default pager, no pager cleanup is

required since no pager resources were allocated.

However, on the first request by the pageout daemon to remove an allocated page from an

anonymous vm_object, the default pager replaces itself with the swap pager. The role of the

swap pager is swap-space management: figuring out where to store dirty pages and how to find

dirty pages when they are needed again. Shadow vm_objects require that these operations be

efficient. A typical shadow vm_object is sparsely populated: It may cover a large range of pages,

but only those pages that have been modified will be in the shadow vm_object’s backing store.

In addition, long chains of shadow vm_objects may require numerous pager queries to locate

the correct copy of a vm_object page to satisfy a page fault. Hence, determining whether a pager

contains a particular page needs to be fast, preferably requiring no I/O operations. A final

requirement of the swap pager is that it can do asynchronous writeback of dirty pages. This

requirement was necessitated by the original pageout daemon, which was a single-threaded

process. If a single-threaded pageout daemon blocked waiting for a page-clean operation to

complete before starting the next operation, it often could not keep enough memory free in

times of heavy memory demand. Even with asynchronous I/O, by the time of FreeBSD 10 it was

necessary to create multiple pageout-daemon threads to keep up with the memory demand on

busy systems.

In theory, any pager that meets these criteria can be used as the swap pager. In Mach 2.0, the

vnode pager was used as the swap pager. Special paging files could be created in any filesystem

and registered with the kernel. The swap pager would then suballocate pieces of the files to back

particular anonymous vm_objects. One obvious advantage of using the vnode pager is that swap

space can be expanded by the addition of more swap files or the extension of existing ones

dynamically (i.e., without rebooting or reconfiguring of the kernel). The main disadvantage is

that the filesystem does not provide as much bandwidth as direct access to the disk.

The desire to provide the highest possible disk bandwidth led to the creation of a special

raw-partition pager to use as the swap pager for FreeBSD. Previous versions of BSD also used

dedicated disk partitions, commonly known as swap partitions, so this partition pager became

the swap pager. The remainder of this section describes how the swap pager is implemented and

how it provides the necessary capabilities for backing anonymous vm_objects.

326

In 4.4BSD, the swap pager preallocated a fixed-size structure to describe the backing space for

the vm_object. For a large vm_object, the structure would be large even if only a few pages of

the vm_object were written to backing store. Worse, the size of the vm_object was frozen at the

time of allocation. Thus, if the anonymous area continued to grow (such as the stack or heap of a

process), a new vm_object had to be created to describe the expanded area. On a system that

was short of memory, the result was that a large process could acquire many anonymous

vm_objects. Changing the swap pager to handle growing vm_objects dramatically reduced this

vm_object proliferation. Another problem with the 4.4BSD swap pager was that it used a block

list to track the swap space usage. The block list grew in size as the swap area became

fragmented. The system tends to swap when it is low on memory. To avoid potential deadlocks,

kernel memory should not be allocated at such times. The 4.4BSD swap pager’s simplistic

management of the swap space led to fragmentation, slow allocation under load, and deadlocks

brought on by its need to allocate kernel memory during periods of shortage. For all these

reasons, the swap pager was completely rewritten in FreeBSD 4.0.

Swap space tends to be sparsely allocated. On average, a process only accesses about half of its

allocated address space during its lifetime. Thus, only about half the pages in a vm_object ever

come into existence. Unless the machine is under heavy memory pressure and the process is

long-lived, most of the pages in the vm_object that do come into existence will never be written

to backing store. So the new swap pager replaced the old fixed-size block map for each

vm_object with a method that allocates a structure for each set of swap blocks that gets

allocated. Each structure tracks the swap blocks used by an aligned and contiguous region of 32

pages belonging to the vm_object. A large vm_object with two pages swapped out will use at

most two of these structures, and only one if the two swapped pages are close to each other (as

they often are). The amount of memory required to track swap space for a vm_object is

proportional to the number of pages that have been written to swap rather than to the size of the

vm_object. The size of the vm_object is no longer frozen when its first page is swapped out,

since any pages that are part of its larger size can be accommodated.

The structures that track swap space usage are kept in a global hash table managed by the swap

pager. While it might seem logical to store the structures separately on lists associated with the

vm_object of which they are a part, the single global hash table has two important advantages:

1. It ensures a short time to determine whether a page of a vm_object has been written to swap.

If the structures were linked onto a list headed by the vm_object, then vm_objects with many

swapped pages would require the traversal of a long list. The long list could be shortened by

creating a hash table for every vm_object, but that would require much more memory than

simply allocating a single large hash table that could be used by all vm_objects.

327

2. It allows operations that need to scan all the allocated swap blocks to have a centralized place

to find them rather than needing to scan all the anonymous vm_objects in the system. An

example is the swapoff system call that removes a swap partition from use. It needs to page in

all the blocks from the device that is to be taken out of service.

The free space in the swap area is managed with a bitmap with one bit for each page-size block

of swap space. The bitmap for the entire swap area is allocated when the swap space is first

added to the system. This initial allocation reduces the need to allocate kernel memory during

critical low-memory swapping operations.

Doing a linear scan of the swap-block bitmaps to find free space would be unacceptably slow.

Thus, the bitmap is organized in a radix-tree structure with free-space hinting in the radix-node

structures. The use of radix-tree structures makes swap-space allocation and release a

constant-time operation. To reduce fragmentation, the radix tree can allocate large contiguous

chunks at once, skipping over smaller fragmented chunks.

A future improvement would be to keep track of the different-size free areas as swap allocations

are done similarly to the way that the filesystem tracks the different sizes of free space. This

free-space information would increase the probability of doing contiguous allocation and

improve locality of reference.

Swap blocks are allocated at the time that swap out is done. They are freed when the page is

brought back in and becomes dirty or the vm_object is freed.

The swap pager is responsible for managing the I/O associated with the pgo_putpages() request.

Once it identifies the set of pages within the pgo_putpages() request that it will be able to write,

it must allocate a buffer and have those pages mapped into it. Because the swap pager does not

synchronously wait while the I/O is done, it does not regain control after the I/O operation

completes. Therefore, it marks the buffer with a callback flag and sets the routine for the

callback to be swp_pager_async_iodone().

When the write completes, swp_pager_async_iodone() is called. Each written page is marked

as clean, has its busy bit cleared, and calls the vm_page_io_finish() routine to notify the

pageout daemon that the write has completed and to awaken any processes waiting for it. The

swap pager then unmaps the pages from the buffer and releases it. A count of

pageouts-in-progress is kept for the pager associated with each vm_object; this count is

decremented when the pageout completes and, if the count goes to zero, a wakeup() is issued.

This operation is done so that a vm_object that is deallocating a swap pager can wait for the

completion of all pageout operations before freeing the pager’s references to the associated swap

space.

328

Because the swap pager uses the physical I/O buffers shared with other kernel subsystems and a

fixed number of these buffers are allocated when the system is booted, the swap pager must take

care to ensure that it does not use more than its fair share. Once this limit is reached, the

pgo_putpages() operations block until one of the swap pager’s outstanding writes completes.

This unexpected blocking of the pageout daemon is an unfortunate side effect of pushing the

buffer management down into the pagers. Any single pager hitting its buffer limit stops the

page-out daemon. While the pageout daemon might want to perform additional I/O operations

using other I/O resources such as the network, it is prevented from doing so. Worse, the failure

of any single pager can deadlock the system by preventing the pageout daemon from running.

6.11 Paging

When the memory-management hardware detects an invalid virtual address, it generates a trap

to the system. This page-fault trap can occur for several reasons. Most BSD programs are

created in a format that permits the executable image to be paged into main memory directly

from the filesystem. When a program in a demand-paged format is first run, the kernel marks as

invalid the pages for the text and initialized-data regions of the executing process. The text and

initialized data regions share a vm_object that provides fill-on-demand from the filesystem. As

part of mapping in the vm_object, the kernel traverses the collection of pages associated with

the vm_object and marks them as resident in the newly created process. For regions that are

writable (such as the initialized data of the executable), the pages are marked as copy-on-write.

For a heavily used executable with most of its pages already resident, this prepaging reduces

many of its initial page faults. As missing pages of the text or initialized-data region are first

referenced, or write attempts are made on pages in the initialized-data region, page faults occur.

Page faults can also occur when a process first references a page in the uninitialized-data region

of a program. Here, the anonymous vm_object managing the region automatically allocates

memory to the process and initializes the newly assigned page to zero. Other types of page faults

arise when previously resident pages have been reclaimed by the system in response to a

memory shortage.

The handling of page faults is done with the vm_fault() routine; this routine services all page

faults. Each time vm_fault() is invoked, it is provided the virtual address that caused the fault.

The first action of vm_fault() is to traverse the vm_map_entry list of the faulting process to

find the entry associated with the fault. The routine then computes the logical page within the

underlying vm_object and traverses the list of vm_objects to find or create the needed page.

Once the page has been found, vm_fault() must call the machine-dependent layer to validate

the faulted page and return to restart the process.

329

The details of calculating the address within the vm_object are described in Section 6.4. Having

computed the offset within the vm_object and determined the vm_object’s protection and

vm_object list from the vm_map_entry, the kernel is ready to find or create the associated page.

The page-fault-handling algorithm is shown in Figure 6.16. In the following overview, the

lettered points are references to the tags down the left side of the code.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig16

330

331

332

Figure 6.16 Page-fault handling.

A. The loop traverses the list of shadow, anonymous, and file vm_objects until it either finds a

vm_object that holds the sought-after page or reaches the final vm_object in the list. If no page

is found, the final vm_object will be requested to produce it.

B. A vm_object with the desired page has been found. If the page is busy, another process may

be in the middle of faulting it in, so this process is blocked until the page is no longer busy. Since

many things could have happened to the affected vm_object while the process was blocked, it

must restart the entire fault-handling algorithm. If the page was not busy, the algorithm exits

the loop with the page.

C. Anonymous vm_objects (such as those used to represent shadow vm_objects) do not

upgrade from the default pager to the swap pager until the first time that they need to write a

page to backing store. Thus, if a vm_object has a pager other than the default pager, then there

is a chance that the page previously existed but was paged out. If the vm_object has a

nondefault pager, then the kernel needs to allocate a page to give to the pager to be filled (see D).

The special case for the vm_object being the first vm_object is to avoid a race condition with

two processes trying to get the same page. The first process through will create the sought-after

page in the first vm_object but keep it marked as busy. When the second process tries to fault

the same page, it will find the page created by the first process and block on it (see B). When the

333

first process completes the pagein processing, it will unlock the first page, causing the second

process to awaken, retry the fault, and find the page created by the first process.

D. Before calling the pager, check to see if any of the eight pages on either side of the faulting

page are eligible to be brought in at the same time. To be eligible, a page must be part of the

vm_object and neither already in memory nor part of another I/O operation. The pager is given

the range of possible pages and told which one is the required page. It must return the required

page if it holds a copy of it. The other pages are produced only if they are held by the vm_object

and can be easily read at the same time. If the required page is present in the file or swap area,

the pager will bring it back into the newly allocated page. If the pagein succeeds, then the

sought-after page has been found. If the page never existed, then the pagein request will fail.

Unless this vm_object is the first, the page is freed and the search continues. If this vm_object is

the first, the page is not freed, so it will act as a block to further searches by other processes (as

described in C).

E. If the kernel created a page in the first vm_object but did not use that page, it will have to

remember that page so it can use the page in a shadow object or free the page when the pagein is

done (see J).

F. If the search has reached the end of the vm_object list and has not found the page, then the

fault is on an anonymous vm_object chain, and the first vm_object in the list will handle the

page fault using the page allocated in C. The first_page entry is set to NULL to show that it does

not need to be freed, the page is zero filled, and the loop is exited.

G. The search exits the loop with page as the page that has been found or allocated and

initialized, and object as the owner of that page. The page has been filled with the correct data at

this point.

H. If the vm_object providing the page is not the first vm_object, then this mapping must be

private, with the first vm_object being a shadow vm_object of the vm_object providing the page.

If pagein is handling a write fault, then the contents of the page that it has found have to be

copied to the page that it allocated for the first vm_object. Having made the copy, it can release

the vm_object and page from which the copy came, since the first vm_object and first page will

be used to finish the page-fault service. If pagein is handling a read fault, it can use the page that

it found, but it has to mark the page copy-on-write to avoid the page being modified in the

future.

I. If pagein is handling a write fault, then it has made any copies that were necessary, so it can

safely make the page writable. As any pages around the required page that were brought into

memory as part of the clustering were not copied, they are mapped read-only so that if a write is

334

done on one of them, the full page-fault analysis will be done and a copy made at that time if it is

necessary to do so.

J. As the page and possibly the first_page are released, any processes waiting for that page of

the vm_object will get a chance to run to get their own references.

Note that the page, vm_map, and vm_object locking has been elided in Figure 6.16 to simplify

the explanation.

Hardware-Cache Design

Because the speed of CPUs has increased far more rapidly than the speed of main memory, most

machines today require the use of a memory cache to allow the CPU to operate near its full

potential.

Code that describes the operation of a hardware cache is given in Figure 6.17. An actual cache is

entirely implemented in hardware, so the loop shown in Figure 6.17 would really be done by

parallel comparisons rather than iteratively. Historically, most machines had a direct-mapped

cache. With a direct-mapped cache, an access to byte B followed by an access to byte B +

(CACHELINES × LINESIZE) would cause the cached data for byte B to be lost. Most modern

caches are N-way set associative where N is typically 8 for high-speed caches such as the L1

cache, and 64 for lower-speed but larger caches such as the L3 cache. An N-way set-associative

cache allows access of N different memory regions that overlap the same cache memory without

destroying the previously cached data. But on the Nth + 1 access at that offset, an earlier cached

value is lost.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig17

335

Figure 6.17 Hardware-cache algorithm. Key: LINESIZE—Number of bytes in each cache line,

typically 64 or 128 bytes; CACHELINES—Number of lines in the cache, 8192 is a typical size;

SETSIZE—1 for a direct mapped cache, 2 for 2-way set associative, 4 for 4-way set associative,

etc.

There are several cache-design choices that require cooperation with the virtual-memory system.

The design option with the biggest effect is whether the cache uses virtual or physical addressing.

A physically addressed cache takes the address from the CPU, runs it through the

memory-management unit (MMU) to get the address of the physical page, then uses this

physical address to find out whether the requested memory location is available in the cache.

Although a translation lookaside buffer (described in the next subsection) significantly reduces

the average latency of the translation, there is still a delay in going through the MMU. A virtually

addressed cache uses the virtual address as that address comes from the CPU to find out

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_226

336

whether the requested memory location is available in the cache. The virtual-address cache is

faster than the physical-address cache because it avoids the time to run the address through the

MMU. However, the virtual-address cache must be flushed completely after each context switch,

because virtual addresses from one process are indistinguishable from the virtual addresses of

another process. By contrast, a physical-address cache does not need to be flushed after a

context switch. In a system with many short-running processes, a virtual-address cache gets

flushed so frequently that it is seldom useful.

A further refinement to the virtual-address cache is to add a process tag to the key field for each

cache line. At each context switch, the kernel loads a hardware context register with the tag

assigned to the process. Each time an entry is recorded in the cache, both the virtual address

and the process tag that faulted it are recorded in the key field of the cache line. The cache looks

up the virtual address as before, but when it finds an entry, it compares the tag associated with

that entry to the hardware context register. If they match, the cached value is returned. If they

do not match, the correct value and current process tag replace the old cached value. When this

technique is used, the cache does not need to be flushed completely at each context switch, since

multiple processes can have entries in the cache. The drawback is that the kernel must manage

the process tags. Usually, there are fewer tags (8 to 16) than there are processes. The kernel

must assign the tags to the active set of processes. When an old process drops out of the active

set to allow a new one to enter, the kernel must flush the cache entries associated with the tag

that it is about to reuse. Another major drawback to virtual caches with process tags are aliases.

An alias is the same page of data that is mapped to different virtual addresses in different

processes. An example of an alias is a shared library that is mapped to different locations in the

address space of different processes. First, the cache is polluted with duplicate read-only data

that reduce its efficiency. Second, two processes using shared memory for IPC have to prevent

aliases to avoid stale data by flushing their tag’s cache entries on every context switch.

A final consideration is a write-through versus a write-back cache. A write-through cache writes

the data back to main memory at the same time as it is writing to the cache, forcing the CPU to

wait for the memory access to conclude. A write-back cache writes the data to only the cache,

delaying the memory write until an explicit request or until the cache entry is reused. The

write-back cache allows the CPU to resume execution more quickly and permits multiple writes

to the same cache block to be consolidated into a single memory write. However, the writes

must be forced any time it is necessary for the data to be visible to a DMA request for a device or

to other CPUs on a multiprocessor.

337

Hardware Memory Management

The MMU implements address translation and access control when virtual memory is mapped

onto physical memory. One common MMU design uses memory-resident forward-mapped

page tables. These page tables are large contiguous arrays indexed by the virtual address.

There is one element, or page-table entry (PTE), in the array for each virtual page in the

address space. This element contains the physical page to which the virtual page is mapped, as

well as access permissions, status bits telling whether the page has been referenced or modified,

and a bit showing whether the entry contains valid information. For a 4-Gbyte address space

with 4-Kbyte virtual pages and a 32-bit page-table entry, 1 million entries, or 4 Mbyte, would be

needed to describe an entire address space. Since most processes use little of their address space,

most of the entries would be invalid, and allocating 4 Mbyte of physical memory per process

would be wasteful. Thus, most page-table structures are hierarchical, using two or more levels of

mapping. A 64-bit architecture using its entire address space would need five or six levels of

page tables. Implementations in 2014 limit the address space to a 48-bit address space that can

be handled with four levels of page tables. With a hierarchical structure, different portions of the

virtual address space index the various levels of the page tables. The intermediate levels of the

table contain the addresses of the next lower level of the page table. The kernel can mark as

unused large contiguous regions of an address space by inserting invalid entries at the higher

levels of the page table, eliminating the need for invalid page descriptors for each individual

unused virtual page.

The translation of a virtual address to a physical address during an access by a 32-bit CPU using

a two-level page table and 4 Kbyte pages is shown in Figure 6.18 and proceeds as follows:

1. The 10 most significant bits of the virtual address are used to index into the active-directory

table.

2. If the selected directory-table entry is valid and the access permissions grant the access being

made, the next 10 bits of the virtual address are used to index into the page-table page

referenced by the directory-table entry.

3. If the selected page-table entry is valid and the access permissions match, the final 12 bits of

the virtual address are combined with the physical page referenced by the page-table entry to

form the physical address of the access.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig18

338

Figure 6.18 Two-level page table.

This hierarchical page-table structure requires the hardware to make frequent memory

references to translate a virtual address. To speed the translation process, most

page-table-based MMUs also have a small, fast, hardware cache of recent address translations, a

structure known commonly as a translation looka-side buffer (TLB) that works much like

the hardware cache described in the previous subsection. When a memory reference is

translated, the TLB is first consulted and, only if a valid entry is not found there, the page-table

structure for the current process is traversed. Because most programs exhibit spatial locality in

their memory-access patterns, the typical 1024-entry TLB is large enough to hold their working

set.

As address spaces grew beyond 32 to 48 and, more recently, 64 bits, simple indexed data

structures with three to six levels of tables required to handle address translation caused CPU

architects to consider alternatives. A response to this page-table growth is the inverted page

table, also known as the reverse-mapped page table. In an inverted page table, the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_455
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_333

339

hardware still maintains a memory-resident table, but that table contains one entry per physical

page and is indexed by physical address instead of by virtual address. An entry contains the

virtual address to which the physical page is currently mapped, as well as protection and status

attributes. The hardware does virtual-to-physical address translation by computing a hash

function on the virtual address to select an entry in the hash anchor table (HAT). The entry in

the HAT points to an entry in the inverted page table. The system handles collisions in the

inverted page table by linking together table entries and making a linear search of this chain

until it finds the matching virtual address.

The advantages of an inverted page table are that the size of the table is proportional to the

amount of physical memory and that only one global table is needed, rather than one table per

process. A disadvantage to this approach is that there can be only one virtual address mapped to

any given physical page at any one time. This limitation makes virtual-address

aliasing—having multiple virtual addresses for the same physical page—difficult to handle. As

it is with the forward-mapped page table, a hardware TLB speeds the translation process.

A final common MMU organization consists of just a TLB. This architecture is the simplest

hardware design. It gives the software maximum flexibility by allowing the latter to manage

translation information in whatever structure it desires. However, unlike the other

hardware-based TLBs, a software-based TLB miss raises an exception to the kernel that runs a

handler to fill the missing TLB entry.

Superpages

Typical hardware today has a TLB with 1024 entries. A TLB does a set-associative lookup,

meaning that when presented with a virtual address, it must simultaneously compare that

address with every entry that it holds. The larger the number of entries, the longer it takes for

the TLB to produce an answer. If the TLB takes longer than reading the memory, then it ceases

to be useful. The reason for the slow growth of the size of TLBs is that they generally aim to

produce an answer in less than one clock cycle of the CPU, which limits the number of entries

that they can compare.

The size of hardware TLBs has grown much more slowly than the size of the main memory. Thus,

the working-set size of a typical process has grown more quickly than the ability of the TLB to

reference it. On a machine with 4-Kbyte pages and a 1024-entry TLB, the maximum-size

working set that fits in the TLB is 4 Mbyte. As soon as the working-set size of the program

exceeds 4 Mbyte, the TLB begins to miss translations, thus requiring one or more extra memory

references to read the page-table entries to resolve the location of a virtual page. While most of

these memory references will be in one of the processor’s memory caches, accessing those

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_479

340

caches is typically a factor of 10 slower than resolving the address in the TLB. The small

working-set size becomes even more acute on 64-bit architectures that are also limited to

1024-entry TLBs.

As the hardware vendors have been unable to increase the size of the TLB, their solution to the

small working-set problem is to create superpages. Most hardware allows for multiple page

sizes. The page sizes available are dependent on the architecture. Common sizes in addition to

the standard 4-Kbyte pages are 8-Kbyte, 64-Kbyte, 512-Kbyte, 2-Mbyte, and 4-Mbyte pages.

The PC architecture has a 4-Kbyte regular-size page. Unlike many other architectures, it

provides only a single alternate superpage size: 4-Mbyte super-pages on chips that support a

maximum of 4 Gbyte of physical memory and 2-Mbyte superpages on chips that support more

than 4 Gbyte of physical memory. The smaller superpage size on the machines with more

physical memory is because the additional address bits required to address the larger memory

require page table entries to be 64-bits rather than 32-bits. Thus, each 4-Kbyte page table

references only half as much address space. An address space may have a mix of regular and

superpages but virtual addresses must be aligned to page-size boundaries. Standard-size pages

must begin on 4-Kbyte boundaries and 2-Mbyte super-pages must begin on 2-Mbyte boundaries.

Note that recent 64-bit Intel and AMD processors also support 1 Gbyte superpages.

A process using entirely 2-Mbyte superpages to back its address space can fit a working set of 2

Gbyte into the same 1024-entry TLB. While a 2-Gbyte working set is large for an application

running on a 32-bit architecture, it is quite common for applications running on a 64-bit

architecture.

The implementation of superpages on the PC architecture is shown in Figure 6.19. The pointer

in the first level of the page table is set to point to a superpage rather than to a second level of

page tables. A flag bit in the top-level page table entry is set to indicate that the pointer

references a superpage rather than the usual second-level page table. As can be seen in Figure

6.19, superpages may be mixed with regular pages within an address space. Although the

hardware treats the superpage as a single entity, the software still maintains all 1024 vm_page

structures for its component 4-Kbyte pages. Maintaining the vm_page structures is necessary

so that if a superpage is demoted, the kernel can track the individual 4-Kbyte pages from which

it is built.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig19

341

Figure 6.19 Superpage hardware operation.

Providing hardware support for superpages is simple and, when used appropriately, is quite

effective at relieving pressure on the TLB. The difficult part is devising the software solution for

using them. Some operating systems simply provide an interface to allow applications to request

superpages for part or all of their address space. This approach rarely works as many application

writers are unaware of the ability to ask for superpages or the need to do so. Many of the

application writers that do ask for superpages do so in an inappropriate context and just end up

wasting system resources and slowing everything down.

The best solution (and the one used by FreeBSD) is to have the operating system monitor its

running processes and assign superpages to those parts of the processes for which they will

provide clear benefit [Navarro et al., 2002]. Here, the application writers do not have to concern

themselves with superpages knowing that they will be used where appropriate.

The kernel must be conservative in choosing to use a superpage within a process. The savings

from using a superpage are reduced misses in the TLB. As described below, the potential cost of

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref18

342

using a superpage is extra memory-to-memory copies or additional disk I/O. It does not take

many memory-to-memory copies or additional disk I/O to completely wipe out any savings of

TLB misses and indeed can quickly add up to more cost than benefit, which makes the

application and potentially the entire system run more slowly than if superpages were not used.

Thus, FreeBSD delays the promotion to superpages until it is clear that they will be a

performance win. While some promotion opportunities are missed, those that are made nearly

always provide a net improvement in performance.

Consideration of using a superpage begins with a superpage reservation. Superpages for a

process are considered on a region-by-region basis (a region is defined by an area of the process

memory described by a vm_map_entry structure; see Section 6.4). On the first page fault for

each region of memory, the virtual-memory system must decide whether the region should be

eligible to use super-pages. A region containing a mapped file must be of at least superpage size

to be eligible for a superpage reservation. Since such a region rarely grows, if it is not already at

least the size of a superpage, it is unlikely that it ever will be superpage size. By contrast,

anonymous memory such as a stack or a heap is always eligible for a superpage reservation since

it often grows. Additionally, kernel memory allocation is always given a reservation.

When a region is denied a superpage reservation, the first and all subsequent page faults are

provided with a normal 4-Kbyte page. If a region is granted a superpage reservation, then a

superpage is assigned to the part of the region that includes the faulted page. However, only the

single 4-Kbyte page within the superpage corresponding to the fault is initialized and placed into

the process page table. Each superpage has a population map to track its used pages. As the

process faults in additional parts of the superpage, the corresponding 4-Kbyte pages get

initialized and added into its page table and the appropriate entry in its population map is

updated.

When a vm_object first gets mapped, the virtual-memory system records its offset into a

superpage. Thus, if a vm_object’s mapping begins at a 7-Mbyte offset and the system has

2-Mbyte superpages, the vm_object is marked as beginning at a 1-Mbyte offset. If another

process asks to map the same vm_object, the virtual memory system will place the vm_object in

that new process at the same offset as it did in the first vm_object. The purpose for tracking and

using the alignment is to avoid the need to copy data around in memory to get necessary

alignment. If the application demands a particular alignment that does not match the current

superpage alignment, then that process will have to map that vm_object using regular 4-Kbyte

page-table entries.

A superpage reservation is eligible for promotion when it faults every page in its reservation. On

the PC architecture, promotion means that the 4-Kbyte page-table page holding the references

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec4

343

to all the individual 4-Kbyte pages is replaced with a pointer to the superpage itself (see Figure

6.19).

The superpage is marked read-only unless it has modified every page in its reservation. The

reason that it is made read-only is that the superpage active-directory entry has only a single bit

to indicate that the page has been modified. If the superpage were made writable and only a

single byte in the superpage is modified, the virtual-memory system would have no way of

knowing where in the superpage the modification had occurred. When it came time to write the

page to backing store, it would have to write the entire 2-Mbyte page. Thus, when a read-only

superpage is modified, it is demoted back to small pages so that the modifications can be

tracked on a 4-Kbyte by 4-Kbyte basis. Only when all the small pages are modified is it

promoted to a writable superpage.

This conservative approach ensures that the kernel does not get forced into doing extra I/O,

thus wiping out the TLB-miss savings. In practice, this approach works well. Applications either

have a large area that they change constantly such as a matrix multiplication, or an area that

they mostly read such as a database.

Providing superpage reservations requires a steady supply of superpages to be available. To this

end, the virtual-memory system must take the stream of cached and freed 4-Kbyte pages and

defragment them back into superpages. The cached and free pages are kept on buddy lists that

aggregate the small pages back into bigger groups. For architectures that support more than one

superpage size, the buddy lists track all the useful page sizes as the smaller groups are

aggregated into bigger groups and eventually make their way up to maximum-size superpages.

When servicing page faults for non-reserved areas of address space, the 4-Kbyte memory page is

taken from a list of pages that have few if any buddies, thus preserving the larger pieces. The

result may be that a cache page with known content is used rather than a free page with no

useful contents. But the benefit of having more superpages available usually outweighs the loss

of a page that is typically not used again.

The pageout daemon (described in Section 6.12) remains unchanged. It continues to move pages

between its lists based on its best estimate of when and how they will be used most effectively.

The superpages used for reservations are built from only pages on the cached and free lists. The

parts of reserved superpages that have not been faulted are counted as free or cached. Thus, the

rate at which pages are consumed from the cache and free lists does not change, which means

that the pageout daemon is not forced to run faster than it did before superpages were added.

We have considered changing the pageout daemon to allow it to grab more actively referenced

pages to fill out holes in the buddy lists. The question then arises as to how many actively

referenced 4-Kbyte pages the pageout daemon can take to complete a superpage before the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec12

344

filesystem-cache performance is too heavily impacted. It does not take many filesystem rereads

of lost cache data to wipe out the TLB-miss savings from a a single superpage. And the cost is

even higher if the filesystem-cache page was dirty and had to be written to reclaim the page only

to have it reread again. For all of these reasons, we have so far avoided these changes to the

pageout daemon.

The performance improvements of superpages is shown in Table 6.3. These numbers are taken

from much more extensive results in Navarro et al. [2002]. Of the more than 20 workloads

studied in the paper, the only one that showed a slowdown (-1.7 percent) was for one of the

programs in Spec Float 2000.

Table 6.3 Performance of superpages.

The first results column in the table shows the improvements on an architecture with four

superpage sizes while the second column shows the PC architecture with only a single 4-Mbyte

superpage size. Having multiple superpage sizes typically doubles the benefit derived from

superpages. The primary reason for the higher performance is the greater number of superpages

available and, hence, greater opportunity to use them.

6.12 Page Replacement

The service of page faults and other demands for memory may be satisfied from the free list for

some time, but eventually memory must be reclaimed for reuse. Some pages are reclaimed when

processes exit. On systems with a large amount of memory and low memory demand, exiting

processes may provide enough free memory to fill demand. This case arises when there is

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06tab03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref18

345

enough memory for the kernel and for all pages that have ever been used by any current process.

Obviously, many computers do not have enough main memory to retain all pages in memory.

Thus, it eventually becomes necessary to move some pages to secondary storage—back to the

filesystem or to the swap space. Bringing in a page is demand driven. For paging it out, however,

there is no immediate indication when a page is no longer needed by a process. The kernel must

implement some strategy for deciding which pages to move out of memory so that it can replace

these pages with the ones that are currently needed in memory. Ideally, the strategy will choose

pages for replacement that will not be needed soon. An approximation to this strategy is to find

pages that have not been used actively or recently.

The 4.4BSD system implemented demand paging with a page-replacement algorithm that

approximated global least recently used [Easton & Franaszek, 1979]. In FreeBSD, the one-bit

use field for each page has been augmented with an activity counter to approximate global least

actively used. Both these algorithms are examples of a global page-replacement

algorithm: one in which the choice of a page for replacement is made according to systemwide

criteria. A local page-replacement algorithm would choose a process for which to replace

a page and then chose a page based on per-process criteria. Although the algorithm in FreeBSD

is similar in nature to that in 4.4BSD, its implementation is considerably different.

The kernel scans physical memory on a regular basis, considering pages for replacement. The

use of a systemwide list of pages forces all processes to compete for memory on an equal basis.

Note that it is also consistent with the way that FreeBSD treats other resources provided by the

system. A common alternative to allowing all processes to compete equally for memory is to

partition memory into multiple independent areas, each localized to a collection of processes

that compete with one another for memory. This scheme is used, for example, by the VMS

operating system [Kenah & Bate, 1984]. With this scheme, system administrators can guarantee

that a process, or collection of processes, will always have a minimal percentage of memory.

Unfortunately, this scheme can be difficult to administer. Allocating too small a number of

pages to a partition can result in underutilization of memory and excessive I/O activity to

secondary-storage devices, whereas setting the number too high can result in excessive

swapping [Lazowska & Kelsey, 1978].

The kernel divides the main memory into five lists:

1. Wired: Wired pages are locked in memory and cannot be paged out. Typically, these pages are

being used by the kernel or the physical-memory pager, or they have been locked down with

mlock. In addition, all the pages being used to hold the thread stacks of loaded (i.e., not

swapped-out) processes are also wired.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06ref16

346

2. Active: Active pages are being used by one or more regions of virtual memory. Although the

kernel can page them out, doing so is likely to cause an active process to fault them back again.

3. Inactive: Inactive pages may be dirty and have contents that are still known, but they are not

usually part of any active region. If the contents of the page are dirty, the contents must be

written to backing store before the page can be reused. Once the page has been cleaned, it is

moved to the cache list. If the system becomes short of memory, the pageout daemon may try to

move active pages to the inactive list in the hopes of finding pages that are not really in use. The

selection criteria that are used by the pageout daemon to select pages to move from the active

list to the inactive list are described later in this section. When the free-memory and cache lists

drop too low, the pageout daemon traverses the inactive list to create more cache and free pages.

4. Cache: Cache pages have contents that are still known, but they are not part of any mapping.

If they are faulted into an active region, they will be moved from the cache list to the active list.

If they are used for a read or a write, they will be moved from the cache list first to the buffer

cache and eventually released to the inactive list. An mlock system call can reclaim a page from

the cache list and wire it. Pages on the cache list are similar to inactive pages except that they are

not dirty, either because they are unmodified since they were paged in or because they have

been written to their backing store. They can be claimed for a new use when a page is needed.

5. Free: Free pages have no useful contents and will be used to fulfill new page-fault requests.

The pages of main memory that can be used by user processes are those on the active, inactive,

cache, and free lists. Requests for new pages are usually taken first from the free list if it has

pages available, otherwise they will be taken from the cache list. Cache pages will be used in

preference to free-list pages that are part of a large cluster of pages or a superpage.

Ideally, the kernel would maintain a working set for each process in the system. It would then

know how much memory to provide to each process to minimize the latter’s page-fault behavior.

The FreeBSD virtual-memory system does not use the working-set model because it lacks

accurate information about the reference pattern of a process. It does track the number of pages

held by a process via the resident-set size, but it does not know which of the resident pages

constitute the working set. In 4.3BSD, the count of resident pages was used in making decisions

on whether there was enough memory for a process to be swapped in when that process wanted

to run. This feature was not carried over to the FreeBSD virtual-memory system. Although it

works well during periods of high memory demand, memory is so abundant on current

machines that swapping never happens, so it was not worth the effort to incorporate it into

FreeBSD systems.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_331

347

Paging Parameters

The memory-allocation needs of processes compete constantly, through the page-fault handler,

with the overall system goal of maintaining a minimum threshold of pages in the inactive, cache,

and free lists. As the system operates, it monitors main-memory utilization and attempts to run

the pageout daemon frequently enough to keep the amount of inactive, cache, and free memory

at or above the minimum threshold shown in Table 6.4. When the page-allocation routine,

vm_page_alloc(), determines that more memory is needed, it awakens the pageout daemon.

Table 6.4 Available-memory thresholds.

The number of pages to be reclaimed by the pageout daemon is a function of the memory needs

of the system. As more memory is needed by the system, more pages are scanned. This scanning

causes the number of pages freed to increase. The pageout daemon determines the memory

needed by comparing the number of available-memory pages against several parameters that

are calculated during system startup. The desired values for the paging parameters are

communicated to the pageout daemon through global variables that may be viewed or changed

with sysctl. Likewise, the pageout daemon records its progress in global counters that may be

viewed or reset with sysctl. Progress is measured by the number of pages scanned over each

interval that it runs.

The goal of the pageout daemon is to maintain the inactive, cache, and free queues between the

minimum and target thresholds shown in Table 6.4. The pageout daemon achieves this goal by

moving pages from more active queues to less active queues to reach the indicated ranges. It

never moves pages to the free list. Rather, pages from the anonymous areas of exiting processes

are placed on the free list. It moves pages from the inactive list to the cache list to keep the sum

of free and cached pages near its target. It moves pages from the active list to the inactive list to

maintain the inactive list near its target.

The Pageout Daemon

Page replacement is done by the pageout daemon. The paging policy of the page-out daemon

is embodied in the vm_pageout() and vm_pageout_scan() routines. When the pageout daemon

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06tab04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06tab04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_255

348

reclaims pages that have been modified, it is responsible for writing them to the swap area. Thus,

the pageout daemon must be able to use normal kernel-synchronization mechanisms, such as

sleep(). It therefore runs as a separate process, with its own process structure and kernel stack.

Like init, the pageout daemon is created by an internal fork operation during system startup

(see Section 15.4); unlike init, however, it remains in kernel mode after the fork. The pageout

daemon simply enters vm_pageout() and never returns. Unlike some other users of the disk I/O

routines, the pageout process needs to perform its disk operations asynchronously so that it can

continue scanning in parallel with disk writes.

When running on systems with many CPUs, the demand for pages can vastly exceed the number

of pages that a single pageout daemon can provide. Starting in FreeBSD 10, the paging daemon

was multithreaded so that it would be able to keep up with heavy paging demand.

Historically, the pages were handled by a least recently used algorithm. The drawback to this

algorithm is that a sudden burst of memory activity can flush many useful pages from the cache.

To mitigate this behavior, FreeBSD uses a least actively used algorithm to preserve pages that

have a history of usage so that they will be favored over the once-used pages brought in during a

period of high memory demand.

When a page is first brought into memory, it is given an initial usage count of 5. Further usage

information is gathered by the pageout daemon during its periodic scans of memory. As each

page of memory is scanned, its reference bit is checked. If the bit is set, it is cleared and the

usage counter for the page is incremented (up to a limit of 64) by the number of references to

the page. If the reference bit is clear, the usage counter is decremented. When the usage counter

reaches 0, the page is moved from the active list to the inactive list. Pages that are repeatedly

used build up large usage counts that will cause them to remain on the active list much longer

than pages that are used just once.

The goal of the pageout daemon is to keep the number of pages on the inactive, cache, and free

lists within their desired ranges. Whenever an operation that uses pages causes the amount of

free memory to fall below the minimum thresholds, the pageout daemon is awakened. The

pageout-handling algorithm is shown in Figure 6.20. In the following overview, the lettered

points are references to the tags down the left side of the code.

A. The pageout daemon calculates the number of pages that need to be moved from the inactive

list to the cache list. To avoid saturating the I/O system, the pageout daemon limits the number

of I/O operations that it will start concurrently.

B. Scans the inactive list until the desired number of pages are moved. Skips over busy pages,

since they are likely being paged out and can be moved later when they are clean.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig20

349

350

351

Figure 6.20 Pageout handling

C. If we find a page that has been referenced, then it has been moved to the inactive list

prematurely, so update its usage count and move it back to the active list. Pages with invalid

contents (usually caused by an I/O error) are removed from their vm_object and moved to the

free list. Pages that are clean can be moved to the cache list.

D. Dirty pages need to be paged out, but flushing a page is extremely expensive compared to

freeing a clean page. Thus, dirty pages are given extra time on the inactive queue by cycling

them through the queue twice before being flushed. They cycle through the list once more while

being cleaned. This extra time on the inactive queue will reduce unnecessary I/O caused by

prematurely paging out an active page. The clustering checks for up to 16 dirty pages on either

side of the selected page. The pager is only required to write the selected page. However, it may

write as many of the clustered dirty pages as it finds convenient. The scanning of the inactive list

stops initiating new writes if the number of pageouts in progress hits its limit. In 4.4BSD, the

I/O completions were handled by the pageout daemon. FreeBSD requires that pagers track their

own I/O operations including the appropriate updating of the written pages. The written-page

update at I/O completion does not move the page from the inactive list to the cache list. Rather,

the page remains on the inactive list until it is eventually moved to the cache list during a future

pass of the pageout daemon.

352

E. The pageout daemon calculates the number of pages that need to be moved from the active

list to the inactive list. As some will eventually need to be moved to the cache list, enough pages

must be moved to the inactive list to leave it at its target level after the cache list has been filled.

F. Scan the active list until the desired number of pages are moved. If we find a page that has

been referenced since our last scan, update its usage count and move it to the end of the active

list.

G. The page is not active, so decrements its usage count. If its usage is still above zero, moves it

to the end of the active list. Otherwise, moves it to the inactive list.

H. If the page-count targets have not been met, the swap-out daemon is started (see next

subsection) to try to clear additional memory.

I. If the kernel has been configured to not impose any limits on the amount of virtual memory

that it will grant, then it can find that it has nearly filled its memory and swap space. It avoids

going into deadlock by killing off the largest unprotected process.

Note that the page and vm_object locking has been elided in Figure 6.20 to simplify the

explanation.

Even when no additional pages are needed, the pageout daemon is awakened often enough to

ensure that it will scan all the pages on the active list once every vm_pageout_update_period

seconds. The default is to scan every active page once every 10 minutes. A 1-minute interval

would be better, but checking all of active memory on large memory machines once per minute

would put too much of a non-work load on the system. And even a 10-minute scan eliminates

the worst-case behaviors when no scanning is done for long periods of time.

Swapping

Although swapping is generally avoided, there are several times when it is used in FreeBSD to

address a serious memory shortage. Swapping is done in FreeBSD when any of the following

situations occur:

• The system becomes so short of memory that the paging process cannot free memory fast

enough to satisfy the demand. For example, a memory shortfall may happen when multiple

large processes are run on a machine lacking enough memory for the minimum working sets of

the processes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig20

353

• Processes are completely inactive for more than 10 seconds. Otherwise, such processes would

retain a few pages of memory associated with their thread stacks. Swapping out idle threads is

disabled by default as the extra delay in restarting them is not worth the small amount of

memory that is reclaimed. Swap operations completely remove a process from main memory,

including the process page tables, the pages of the data and the stack segments that are not

already in swap space, and the thread stacks.

Process swapping is invoked only when paging is unable to keep up with memory needs or when

short-term memory needs warrant swapping a process. In general, the swap-scheduling

mechanism does not do well under heavy load; system performance is much better when

memory scheduling can be done by the page-replacement algorithm than when the swap

algorithm is used.

Swap out is driven by the swap-out daemon, vmdaemon. The swap-out policy of the vmdaemon

is embodied in the vm_daemon() routine. If the swapping of idle processes is enabled and the

pageout daemon can find any processes that have been sleeping for more than 10 seconds

(swap_idle_threshold2, the cutoff for considering the time sleeping to be “a long time”), it will

swap them all out. Such processes have the least likelihood of making good use of the memory

that they occupy; thus, they are swapped out even if they are small. If none of these processes

are available, the pageout daemon will swap out all processes that has been sleeping for as

briefly as 2 seconds (swap_idle_threshold1). These criteria attempt to avoid swapping entirely

until the pageout daemon is clearly unable to keep enough memory free.

In 4.4BSD, if memory was still desperately low, the swap-out daemon would select to swap out

the runnable process that had been resident the longest. Once swapping of runnable processes

had begun, the processes eligible for swapping would take turns in memory so that no process

was frozen out entirely. The FreeBSD swap-out daemon will not select a runnable processes to

swap out. So, if the set of runnable processes do not fit in memory, the machine will effectively

deadlock. Current machines have enough memory that this condition usually does not arise. If it

does, FreeBSD avoids deadlock by killing the largest process. If the condition begins to arise in

normal operation, the 4.4BSD algorithm will need to be restored.

The mechanics of performing a swap out are simple. The swapped-in process flag P_INMEM is

cleared to show that the process is not resident in memory. The PS_SWAPPINGOUT flag is set

while the swap out is being done so that neither a second swap out nor a swap in is attempted at

the same time. If a runnable process is to be swapped (which currently never happens), it needs

to be removed from the runnable process queue. The kernel stacks for the threads of the process

are then marked as pageable, which allows the stack pages, along with any other remaining

354

pages for the process, to be paged out via the standard pageout mechanism. The swapped-out

process cannot be run until after it is swapped back into memory.

The Swap-In Process

Swap-in operations are done by the swapping process, swapper (process 0). This process is the

first one created by the system when the latter is started. The swap-in policy of the swapper is

embodied in the scheduler() routine. This routine swaps processes back in when memory is

available and they are ready to run. At any time, the swapper is in one of three states:

1. Idle: No swapped-out processes are ready to be run. Idle is the normal state.

2. Swapping in: At least one runnable process is swapped out, and scheduler() attempts to find

memory for it.

3. Swapping out: The system is short of memory, or there is not enough memory to swap in a

process. Under these circumstances, scheduler() awakens the pageout daemon to free pages and

to swap out other processes until the memory shortage abates.

If more than one swapped-out process is runnable, the first task of the swapper is to decide

which process to swap in. This decision may affect the decision about whether to swap out

another process. Each swapped-out process is assigned a priority based on:

• The length of time it has been swapped out

• Its nice value

• The amount of time it was asleep since it last ran

In general, the process that has been swapped out longest or was swapped out because it had

slept for a long time before being swapped will be brought in first. Once a process is selected, the

swapper checks to see whether there is enough memory free to swap in the process. Historically,

the system required as much memory to be available as was occupied by the process before that

process was swapped. Under FreeBSD, this requirement was reduced to a requirement that the

number of pages on the free and cache lists be at least equal to the minimum free-memory

threshold. If there is enough memory available, the process is brought back into memory. The

kernel stacks for the threads of the process are swapped in immediately, but the process loads

the rest of its working set by demand paging from the backing store. Thus, not all the memory

that is needed by the process is used immediately. Earlier BSD systems tracked the anticipated

demand and would only swap in runnable processes as free memory became available to fulfill

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_423

355

their expected needs. FreeBSD allows all swapped-out runnable processes to be swapped in as

soon as there is enough memory to load their thread stacks.

The procedure for swap in of a process is the reverse of that for swap out:

1. Memory is allocated for the kernel stack of each of the threads of the process and they are

read back from swap space.

2. The process is marked as resident, and its runnable threads are returned to the run queue

(i.e., those threads that are not stopped or sleeping).

After the swap in completes, the process is ready to run like any other, except that it has no

resident pages. It will bring in the pages that it needs by faulting them.

6.13 Portability

Everything discussed in this chapter up to this section has been part of the

machine-independent data structures and algorithms. These parts of the virtual-memory system

require little change when FreeBSD is ported to a new architecture. This section will describe

the machine-dependent parts of the virtual-memory system: the parts of the virtual-memory

system that must be written as part of a port of FreeBSD to a new architecture. The role of the

machine-dependent parts of the virtual-memory system are to manage the page tables used by

the hardware memory-management unit (see Section 6.11) to control access to process and

kernel memory.

Often, a port to another architecture with a similar memory-management organization can be

used as a starting point for a new port. The 32-bit PC architecture uses the typical two-level

page-table organization shown in Figure 6.21. An address space is broken into 4-Kbyte virtual

pages, with each page identified by a 32-bit entry in the page table. Each page-table entry

contains the physical page number assigned to the virtual page, the access permissions allowed,

modify and reference information, and a bit showing that the entry contains valid information.

The 4 Mbyte of page-table entries are likewise divided into 4-Kbyte page-table pages, each of

which is described by a single 32-bit entry in the directory table. Directory-table entries are

nearly identical to page-table entries: They contain access bits, modify and reference bits, a valid

bit, and the physical page number of the page-table page described. One 4-Kbyte page—1024

directory-table entries—covers the maximum-size 4-Gbyte address space. The CR3 hardware

register contains the physical address of the directory table for the currently active process. The

64-bit PC architecture is similar except that it needs more levels of page tables.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_90

356

Figure 6.21 Two-level page-table organization. Key: V—page-valid bit; M—page-modified bit;

R—page-referenced bit; ACC—page-access permissions.

The Role of the pmap Module

The machine-dependent code describes how the physical mapping is done between the

user-processes and kernel virtual addresses and the physical addresses of the main memory.

This mapping function includes management of access rights in addition to address translation.

The physical-mapping module, usually referred to as the pmap module, manages

machine-dependent translation and access tables that are used either directly or indirectly by

the memory-management hardware. For example, on the PC, the pmap maintains the

memory-resident directory and page tables for each process, as well as for the kernel. The

machine-dependent state required to describe the translation and access rights of a single page

is often referred to as a mapping or mapping structure.

The FreeBSD pmap interface shares many design characteristics with the pmap interface in

Mach 3.0. FreeBSD has added many functions to optimize range operations such as prefaulting

whole files and destroying an entire address space. The pmap module is intended to be logically

independent of the higher levels of the virtual-memory system. The interface deals strictly in

machine-independent page-aligned virtual and physical addresses and in machine-independent

protections. The machine-independent page size may be a multiple of the

architecture-supported page size. Thus, pmap operations must be able to affect more than one

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_213

357

physical page per logical page. The machine-independent protection is a simple encoding of

read, write, and execute permission bits. The pmap must map all possible combinations into

valid architecture-specific values.

A process’s pmap is considered to be a cache of mapping information kept in a

machine-dependent format. As such, it does not need to contain complete state for all valid

mappings. Mapping state is the responsibility of the machine-independent layer. With one

exception, the pmap module may throw away mapping state at its discretion to reclaim

resources. The exception is wired mappings, which should never cause a fault that reaches the

machine-independent vm_fault() routine. Thus, state for wired mappings must be retained in

its vm_pmap structure until it is removed explicitly.

In general, pmap routines may act either on a set of mappings defined by a virtual address range

or on all mappings for a particular physical address. Being able to act on individual or all virtual

mappings for a physical page requires that the mapping information maintained by the pmap

module be easily found by both virtual and physical addresses. For architectures such as the PC

that support memory-resident page tables, the virtual-to-physical, or forward lookup, may be a

simple emulation of the hardware page-table traversal. Physical-to-virtual, or reverse, lookup

uses a list of pv_entry structures, described in the next subsection, to find all the page-table

entries referencing a page. The list may contain multiple entries only if virtual-address

aliasing is allowed.

There are two strategies that can be used for management of pmap memory resources, such as

user-directory or page-table memory. The traditional and easiest approach is for the pmap

module to manage its own memory. Under this strategy, the pmap module can grab a fixed

amount of wired physical memory at system boot time, map that memory into the kernel’s

address space, and allocate pieces of the memory as needed for its own data structures. The

primary benefit is that this approach isolates the pmap module’s memory needs from those of

the rest of the system and limits the pmap module’s dependencies on other parts of the system.

This design is consistent with a layered model of the virtual-memory system in which the pmap

is the lowest, and hence self-sufficient, layer.

The disadvantage is that this approach requires the duplication of many of the

memory-management functions. The pmap module has its own memory allocator and

deallocator for its private heap—a heap that is statically sized and cannot be adjusted for varying

systemwide memory demands. For an architecture with memory-resident page tables, it must

keep track of noncontiguous chunks of processes’ page tables, because a process may populate

its address space sparsely. Handling this requirement entails duplicating much of the standard

list-management code, such as that used by the vm_map code.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_479

358

An alternative approach, used by the PC, is to use the higher-level virtual-memory code

recursively to manage some pmap resources. Here, the 4-Kbyte directory table for each user

process is mapped into the address space of the kernel as part of setting up the process and

remains resident until the process exits. While a process is running, its page-table entries are

mapped into a virtually contiguous 4-Mbyte array of page-table entries in the kernel’s address

space. This organization leads to an obscure memory-saving optimization, exploited in the PC

pmap module, where the kernel’s page-table page describing the 4-Mbyte user page-table range

can double as the user’s directory table. The kernel also maintains alternate maps to hold

individual page-table pages of other nonrunning processes if it needs to access their address

space.

Using the same page-allocation routines as all the other parts of the system ensures that

physical memory is allocated only when needed and from the systemwide free-memory pool.

Page tables and other pmap resources also can be allocated from pageable kernel memory. This

approach easily and efficiently supports large sparse address spaces, including the kernel’s own

address space.

The vm_pmap data structures are contained in the machine-dependent include directory in the

file pmap.h. Most of the code for these routines is in the machine-dependent source directory

in the file pmap.c. The main tasks of the pmap module are these:

• System initialization and startup (pmap_bootstrap(), pmap_init(), pmap_growkernel())

• Allocation and deallocation of mappings of physical to virtual pages (pmap_enter(),

pmap_remove(), pmap_qenter(), pmap_qremove())

• Change of access and wiring attributes for mappings (pmap_change_wiring(),

pmap_remove_all(), pmap_remove_write(), pmap_protect())

• Maintenance of physical page-usage information (pmap_clear_modify(),

pmap_is_modified(), pmap_ts_referenced())

• Initialization of physical pages (pmap_copy_page(), pmap_zero_page())

• Management of internal data structures (pmap_pinit(), pmap_release())

Each of these tasks is described in the following subsections.

359

Initialization and Startup

The first step in starting up the system is for the loader to bring the kernel image from a disk or

the network into the physical memory of the machine. The kernel load image looks much like

that of any other process; it contains a text segment, an initialized data segment, and an

uninitialized data segment. The loader places the kernel contiguously near the beginning of

physical memory. Unlike a user process that is demand paged into memory, the text and data

for the kernel are read into memory in their entirety. Following these two segments, the loader

zeros an area of memory equal to the size of the kernel’s uninitialized memory segment. After

loading the kernel, the loader passes control to the starting address given in the kernel

executable image. When the kernel begins executing, it is either executing with the MMU turned

off using the direct physical addresses or with a minimal predefined set of page tables.

The first task undertaken by the kernel is to set up the kernel vm_pmap, and any other data

structures that are necessary to describe the kernel’s virtual address space. On the PC, the initial

setup includes allocating and initializing the directory and page tables that map the statically

loaded kernel image and memory-mapped I/O address space, allocating a fixed amount of

memory for kernel page-table pages, allocating and initializing the kernel stack for the initial

process, reserving special areas of the kernel’s address space, and initializing assorted critical

vm_pmap-internal data structures. When done, it is possible to enable the MMU or switch to

the fully configured page tables. In either case, the kernel begins running in the context of

process zero.

Once the kernel is running in its virtual address space, it proceeds to initialize the rest of the

system. It determines the size of the physical memory, then calls pmap_bootstrap() and

vm_page_startup() to set up the initial vm_pmap data structures, to allocate the vm_page

structures, and to create a small, fixed-size pool of memory, which the kernel memory allocators

can use so that they can begin responding to memory allocation requests. Next, it makes a call to

set up the machine-independent portion of the virtual-memory system. It concludes with a call

to pmap_init(), which allocates all resources necessary to manage multiple user address spaces

and synchronizes the higher-level kernel virtual-memory data structures with the kernel

vm_pmap.

The pmap_init() function allocates a minimal amount of wired memory to use for kernel

page-table pages. The page-table space is expanded dynamically by the pmap_growkernel()

routine as it is needed while the kernel is running. Once allocated, it is never freed. The limit on

the size of the kernel’s address space is selected at boot time. On 64-bit architectures, the kernel

is typically given an address space large enough to directly map all of physical memory. On

32-bit architectures, the kernel is typically given a maximum of 1 Gbyte of address space.

360

In 4.4BSD, the memory managed by the buffer cache was separate from the memory managed

by the virtual-memory system. Since all the virtual-memory pages were used to map process

regions, it was sensible to create an inverted page table. This table was an array of pv_entry

structures. Each pv_entry described a single address translation and included the virtual

address, a pointer to the associated vm_pmap structure for that virtual address, a link for

chaining together multiple entries mapping this physical address, and additional information

specific to entries mapping page-table pages. Building a dedicated table was sensible, since all

valid pages were referenced by a vm_pmap, yet few had multiple mappings.

With the merger of the buffer cache into the virtual-memory system in FreeBSD, many pages of

memory are used to cache file data that is not mapped into any process address space. Thus,

preallocating a table of pv_entry structures is wasteful, since many of them would go unused. So,

FreeBSD allocates pv_entry structures on demand as pages are mapped into a process address

space.

Figure 6.22 shows the pv_entry references for a set of pages that have a single mapping. The

purpose of the pv_entry structures is to identify the address space that has the page mapped.

The machine-dependent part of each vm_page structure contains the head of a list of pv_entry

structures and a count of the number of entries on the list. In Figure 6.22, the vm_object has

cached its pages 5, 18, and 79. The list heads in the machine-dependent structures of these

vm_page structures would each point to a single pv_entry structure labelled in the figure with

the number of the vm_page structure that references them. Not shown in Figure 6.22 is that

each vm_pmap structure also maintains a list of all the pv_entry structures that reference it.

Figure 6.22 Physical pages with a single mapping.

Each pv_entry can reference only one physical map. When a vm_object becomes shared

between two or more processes, each physical page of memory may become mapped into two or

more sets of page tables. To track these multiple references, the pmap module must create

chains of pv_entry structures, as shown in Figure 6.23. Copy-on-write is an example of the need

to find all the mappings of a page as it requires that the page tables be set to read-only in all the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06fig23

361

processes sharing the vm_object. The pmap module can implement this request by walking the

collection of pages cached by the vm_object to be made copy-on-write. For each page, it

traverses that page’s list of pv_entry structures. It then makes the appropriate change to the

page-table entry associated with each pv_entry structure.

Figure 6.23 Physical pages with multiple mappings.

A system with many shared vm_objects can require many pv_entry structures, which can use

an unreasonable amount of the kernel memory. The alternative would be to keep a list

associated with each vm_object of all the vm_map_entry structures that reference it. When it

becomes necessary to modify the mapping of all the references to the page, the kernel could

traverse this list, checking the address space associated with each vm_map_entry to see if it

held a reference to the page. For each page found, it could make the appropriate update.

The pv_entry structures consume more memory but reduce the time to do a common operation.

For example, consider a system running 1000 processes that all share a common library.

Without the pv_entry list, the cost to change a page to copy-on-write would require checking all

1000 processes. With the pv_entry list, only those processes using the page would need to be

inspected.

362

Mapping Allocation and Deallocation

The primary responsibility of the pmap module is validating (allocating) and invalidating

(deallocating) mappings of physical pages to virtual addresses. The physical pages represent

cached portions of a vm_object that is providing data from a file or an anonymous memory

region. A physical page is bound to a virtual address because that vm_object is being mapped

into a process’s address space either explicitly by mmap or implicitly by fork or exec.

Physical-to-virtual address mappings are not created at the time that the vm_object is mapped;

instead, their creation is delayed until the first reference to a particular page is made. At that

point, an access fault will occur, and pmap_enter() will be called. The pmap_enter() function is

responsible for any required side effects associated with creation of a new mapping. Such side

effects are largely the result of entering a second translation for an already mapped physical

page—for example, as the result of a copy-on-write operation. Typically, this operation requires

flushing uniprocessor or multiprocessor TLB or cache entries to maintain consistency.

In addition to its use to create new mappings, pmap_enter() may also be called to modify the

wiring or protection attributes of an existing mapping or to rebind an existing mapping for a

virtual address to a new physical address. The kernel can handle changing attributes by calling

the appropriate interface routine, described in the next subsection. Changing the target physical

address of a mapping is simply a matter of first removing the old mapping and then handling it

like any other new mapping request.

The pmap_enter() function is the only routine that cannot lose state or delay its action. When

called, it must create a mapping as requested, and it must validate that mapping before

returning to the caller. On the PC, pmap_enter() must first check whether a page-table entry

exists for the requested address. If a physical page has not yet been allocated to the process

page-table at the location required for the new mapping, a zeroed page is allocated, wired, and

inserted into the directory table of the process.

After ensuring that all page-table resources exist for the mapping being entered, pmap_enter()

validates or modifies the requested mapping as follows:

1. Checks to see whether a mapping structure already exists for this virtual-to-physical address

translation. If one does, the call must be changing the protection or wiring attributes of the

mapping; it is handled as described in the next subsection on pmap_protect(). Returns from

pmap_enter().

2. Otherwise, if a mapping exists for this virtual address but it references a different physical

address, that mapping is removed.

363

3. The hold count on a page-table page is incremented each time a new page reference is added

and decremented each time an old page reference is removed. When the last valid page is

removed, the hold count drops to zero, the page is unwired, and the page-table page is freed as it

contains no useful information.

4. A page-table entry is created and validated, the hold count is set to 1, and the cache and TLB

entries are flushed as necessary.

5. If the physical address is outside the range managed by the pmap module (e.g., a

frame-buffer page), no pv_entry structure is needed. Otherwise, for the case of a new mapping

for a physical page that is mapped into an address space, a pv_entry structure is created.

6. For machines with a virtually indexed cache, a check is made to see whether this physical

page already has other mappings. If it does, all mappings may need to be marked cache

inhibited, to avoid cache inconsistencies.

When a vm_object is unmapped from an address space, either explicitly by munmap or

implicitly on process exit, the pmap module is invoked to invalidate and remove the mappings

for all physical pages caching data for the vm_object. Unlike pmap_enter(), pmap_remove()

can be called with a virtual-address range encompassing more than one mapping. Hence, the

kernel does the unmapping by looping over all virtual pages in the range, ignoring those for

which there is no mapping and removing those for which there is one.

The pmap_remove() function on the PC is simple. It loops over the specified address range,

invalidating individual page mappings. Since pmap_remove() can be called with large sparsely

allocated regions, such as an entire process virtual-address range, it needs to skip invalid entries

within the range efficiently. It skips invalid entries by first checking the directory-table entry for

a particular address and, if an entry is invalid, skipping to the next 4-Mbyte boundary. When all

page mappings have been invalidated, any necessary global cache flushing is done.

To invalidate a single mapping, the kernel locates and marks as invalid the appropriate

page-table entry. The reference and modify bits for the page are saved in the page’s vm_page

structure for future retrieval. If this mapping was a user mapping, the hold count for the

page-table page is decremented. When the count reaches zero, the page-table page can be

reclaimed because it contains no more valid mappings. When a user page-table page is removed

from the kernel’s address space (i.e., as a result of removing the final valid user mapping from

that page), the process’s directory table must be updated. The kernel does this update by

invalidating the appropriate directory-table entry. If the physical address from the mapping is

outside the managed range, nothing more is done. Otherwise, the pv_entry structure is found

and is deallocated.

364

The pmap_qenter() and pmap_qremove() are faster versions of the pmap_enter() and

pmap_remove() functions that can be used by the kernel to create and remove temporary

mappings quickly. They can only be used on nonpageable mappings in the address space of the

kernel. For example, the buffer-cache management routines use these routines to map file pages

into kernel memory so that they can be read or written by the filesystem.

Change of Access and Wiring Attributes for Mappings

An important role of the pmap module is to manipulate the hardware access protections for

pages. These manipulations may be applied to all mappings covered by a virtual-address range

within a vm_pmap via pmap_protect(), or they may be applied to all mappings of a particular

physical page across vm_pmaps via pmap_remove_write() and pmap_remove_all(). There are

two features common to both calls. First, either form may be called with a protection value of

VM_PROT_NONE to remove a range of virtual addresses or to remove all mappings for a

particular physical page, which it does by calling pmap_remove(). Second, these routines

should never add write permission to the affected mappings. Thus, calls including

VM_PROT_WRITE should make no changes. This restriction is necessary for the copy-on-write

mechanism to function properly. The request to make the page writable is made only in the

vm_map_entry structure. When a later write attempt on the page is made by the process, a

page fault will occur. The page-fault handler will inspect the vm_map_entry and determine that

the write should be permitted. If it is a copy-on-write page, the fault handler will make any

necessary copies before calling pmap_enter() to enable writing on the page. Thus, write

permission on a page is added only via calls to the pmap_enter() function.

The pmap_protect() function is used primarily by the mprotect system call to change the

protection for a region of process address space (though its functionality is also duplicated in

pmap_enter() as described in step 1 of the previous subsection). The strategy is similar to that

of pmap_remove(): Loop over all virtual pages in the range and apply the change to all valid

mappings that are found. Invalid mappings are left alone.

For the PC, pmap_protect() first checks for the special cases. If the requested permission is

VM_PROT_NONE, it calls pmap_remove() to handle the revocation of all access permission. If

VM_PROT_WRITE is included, it just returns immediately. For a normal protection value,

pmap_protect() loops over the given address range, skipping invalid mappings. For valid

mappings, the page-table entry is looked up, and, if the new protection value differs from the

current value, the entry is modified and any TLB and cache flushing is done. As occurs with

pmap_remove(), any global cache actions are delayed until the entire range has been modified.

365

The pmap_remove_write() function is used internally by the virtual-memory system to set

read-only permission when a copy-on-write operation is set up (e.g., during fork). The

pmap_remove_all() function removes all access permissions before doing page replacement to

force all references to a page to block pending the completion of its operation.

The addition of write enable must be done on a page-by-page basis by the page-fault handling

routine as described for pmap_protect(). Otherwise, pmap_remove_write() and

pmap_remove_all() traverse the list of pv_entry structures for the requested page, invalidating

the individual mappings as described in the previous subsection. As occurs with

pmap_protect(), the entry is checked to ensure that it is changing before expensive TLB and

cache flushes are done. Note that TLB and cache flushing differ from those for pmap_remove(),

since they must invalidate entries from multiple process contexts, rather than invalidating

multiple entries from a single process context.

The pmap_change_wiring() function is called to wire or unwire a single machine-independent

virtual page within a vm_pmap. As described in the previous subsection, wiring informs the

pmap module that a mapping should not cause a hardware fault that reaches the

machine-independent vm_fault() code. Wiring is typically a software attribute that has no effect

on the hardware MMU state: it simply tells the pmap not to throw away state about the mapping.

As such, if a pmap module never discards state, then it is not strictly necessary for the module

even to track the wired status of pages. The only side effect of not tracking wiring information in

the vm_pmap is that the mlock system call cannot be completely implemented without a wired

page-count statistic.

The PC pmap implementation maintains wiring information. An unused bit in the

page-table-entry structure records a page’s wired status. The pmap_change_wiring() function

sets or clears this bit when it is invoked with a valid virtual address. Since the wired bit is

ignored by the hardware, there is no need to modify the TLB or cache when the bit is changed.

Maintenance of Physical Page-Usage Information

The machine-independent page-management code needs to be able to get basic information

about the usage and modification of pages from the underlying hardware. The pmap module

facilitates the collection of this information without requiring the machine-independent code to

understand the details of the mapping tables by providing a set of interfaces to query and clear

the reference and modify bits. The pageout daemon can call vm_page_test_dirty() to

determine whether a page is dirty. If the page is dirty, the pageout daemon can write it to

backing store and then call pmap_clear_modify() to clear the modify bit. The

pmap_clear_modify() routine clears the modified bit in the attribute array and then loops over

366

all pv_entry structures associated with the physical page, clearing the hardware-maintained

page-table-entry bits. This final step may involve TLB or cache flushes along the way or

afterward. Similarly, when the pageout daemon wants to update the active count for a page, it

uses pmap_ts_referenced() to count and clear the number of uses of the page since it was last

scanned.

One important feature of the query routines is that they should return valid information even if

there are currently no mappings for the page in question. Thus, referenced and modified

information cannot just be gathered from the hardware-maintained bits of the various

page-table or TLB entries; rather, there must be a place where the information is retained when

a mapping is removed.

For the PC, the modified information for a page is stored in the dirty field of its vm_page

structure. Initially cleared, the information is updated by calling the vm_page_test_dirty()

routine whenever a mapping for a page is considered for removal. The vm_page_test_dirty()

routine first checks the dirty field and, if it is set, returns immediately. Since this attribute array

contains only past information, it still needs to check status bits in the page-table entries for

currently valid mappings of the page. This information is checked by calling the

machine-dependent pmap_is_modified() routine that traverses the pv_entry structures

associated with the physical page, examining the modified bit for the pv_entry’s associated

page-table entry. It can return TRUE as soon as it encounters a set bit or FALSE if the bit is not

set in any page-table entry. If it returns TRUE, vm_page_test_dirty() sets the dirty field before

returning.

The referenced information for a page is stored in the act_count field and as a flag of its

vm_page structure. Initially cleared, the information is updated periodically by the pageout

daemon. As it scans memory, the pageout daemon calls the pmap_ts_referenced() routine to

collect a count of references to the page. The pmap_ts_referenced() routine returns zero if it is

not passed a managed physical page. Otherwise, it traverses the pv_entry structures associated

with the physical page, examining and clearing the referenced bit for the pv_entry’s associated

page-table entry. It returns the number of referenced bits that it found.

Initialization of Physical Pages

Two interfaces are provided to allow the higher-level virtual-memory routines to initialize

physical memory. The pmap_zero_page() function takes a physical address and fills the page

with zeros. The pmap_copy_page() function takes two physical addresses and copies the

contents of the first page to the second page. Since both take physical addresses, the pmap

367

module will most likely have to first map those pages into the kernel’s address space before it

can access them.

Each CPU in the PC implementation has a pair of kernel virtual addresses reserved for zeroing

and copying pages. The pmap_zero_page() function maps the specified physical address into

the reserved virtual address, calls bzero() to clear the page, and then removes the temporary

mapping with the single translation-invalidation primitive used by pmap_remove(). Similarly,

pmap_copy_page() creates mappings for both physical addresses, uses bcopy() to make the

copy, and then removes both mappings.

Management of Internal Data Structures

The remaining pmap interface routines are used for management and synchronization of

internal data structures. The pmap_pinit() function creates an instance of the

machine-dependent vm_pmap structure. It is used by the vmspace_fork() and vmspace_exec()

routines when creating new address spaces during a fork or exec. The pmap_release() function

deallocates the vm_pmap’s resources. It is used by the vmspace_free() routine when cleaning

up a vmspace when a process exits.

Exercises

6.1 What does it mean for a machine to support virtual memory? What four hardware facilities

are typically required for a machine to support virtual memory?

6.2 What is the relationship between paging and swapping on a demand-paged virtual-memory

system? Explain whether it is desirable to provide both mechanisms in the same system. Can

you suggest an alternative to providing both mechanisms?

6.3 What three policies characterize paging systems?

6.4 What is copy-on-write? In most UNIX applications, the fork system call is followed

almost immediately by an exec system call. Why does this behavior make it particularly

attractive to use copy-on-write in implementing fork?

6.5 Explain why the vfork system call will always be more efficient than a clever

implementation of the fork system call.

6.6 When a process exits, all its pages may not be placed immediately on the memory free list.

Explain this behavior.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_63

368

6.7 Why does the kernel have both the traditional malloc() and free() interface and the zone

allocator? Explain when each type of interface is useful.

6.8 What is the purpose of superpages? Why is it needed?

6.9 What purpose does the pageout-daemon process serve in the virtual-memory system?

6.10 What is clustering? Where is it used in the virtual-memory system?

6.11 Why is the historic use of the sticky bit to lock a process image in memory no longer

useful in FreeBSD?

6.12 Give two reasons for swapping to be initiated.

*6.13 The 4.3BSD virtual-memory system had a text cache that retained the identity of text

pages from one execution of a program to the next. How does the caching of vnode vm_objects

in FreeBSD improve on the performance of the 4.3BSD text cache?

**6.14 FreeBSD reduces the length of shadow chains by checking at each copy-on-write fault

whether the vm_object taking the fault completely shadows the vm_object below it in the chain.

If it does, a collapse can be done. One alternative would be to calculate the number of live

references to a page after each copy-on-write fault and, if only one reference remains, to move

that page to the vm_object that references it. When the last page is removed, the chain can be

collapsed. Implement this algorithm and compare its cost to the current algorithm.

**6.15 The pv_entry structures could be replaced by keeping a list associated with each

vm_object of all the vm_map_entry structures that reference it. If each vm_map_entry

structure had only a single list pointer in it, only the final vm_object would be able to reference

it. Shadow vm_objects would have to find their final vm_object to find their referencing

vm_map_entry structure. Implement an algorithm to find all the references to the pages of a

shadow vm_object using this scheme. Compare its cost with that of the current algorithm using

pv_entry structures.

**6.16 Port the code from 4.3BSD that would forcibly swap out runnable processes when the

paging rate gets too high. Run three or more processes that each have a working set of 40

percent of the available memory. Compare the performance of this benchmark using the 4.3BSD

algorithm and the current algorithm.

References

Babao lu & Joy, 1981.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_415

369

Ö. Babao lu & W. N. Joy, “Converting a Swap-Based System to Do Paging in an Architecture

Lacking Page-Referenced Bits,” Proceedings of the Eighth Symposium on Operating Systems

Principles, pp. 78–86, December 1981.

Bansal & Modha, 2004.

S. Bansal & D. Modha, “CAR: Clock with Adaptive Replacement,” Proceedings of the Third

USENIX Conference on File and Storage Technologies, pp. 187–200, April 2004.

Belady, 1966.

L. A. Belady, “A Study of Replacement Algorithms for Virtual Storage Systems,” IBM Systems

Journal, vol. 5, no. 2, pp. 78–101, April 1966.

Bonwick, 1994.

J. Bonwick, “The Slab Allocator: An Object-Caching Kernel Memory Allocator,” Proceedings of

the 1994 USENIX Annual Technical Conference, pp. 87–98, June 1994.

Bonwick & Adams, 2001.

J. Bonwick & J. Adams, “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and

Arbitrary Resources,” Proceedings of the 2001 USENIX Annual Technical Conference, pp.

15–34, June 2001.

Coffman & Denning, 1973.

E. G. Coffman, Jr. & P. J. Denning, Operating Systems Theory, p. 243, Prentice-Hall,

Englewood Cliffs, NJ, 1973.

Denning, 1970.

P. J. Denning, “Virtual Memory,” Computer Surveys, vol. 2, no. 3, pp. 153–190, September

1970.

Easton & Franaszek, 1979.

M. C. Easton & P. A. Franaszek, “Use Bit Scanning in Replacement Decisions,” IEEE

Transactions on Computing, vol. 28, no. 2, pp. 133–141, February 1979.

Gingell et al., 1987.

370

R. Gingell, J. Moran, & W. Shannon, “Virtual Memory Architecture in SunOS,” USENIX

Association Conference Proceedings, pp. 81–94, June 1987.

Jiang et al., 2005.

S. Jiang, F. Chen, & X. Zhang, “CLOCK-Pro: An Effective Improvement of the CLOCK

Replacement,” USENIX Annual Technical Conference, General Track, pp. 323–336, June 2005.

Johnstone & Wilson, 1998.

M. Johnstone & P. Wilson, “The Memory Fragmentation Problem: Solved?,” ISMM’98

Proceedings of the ACM International Symposium on Memory Management, pp. 26–36,

available from ftp://ftp.dcs.gla.ac.uk/pub/drastic/gc/wilson.ps, October 1998.

Kenah & Bate, 1984.

L. J. Kenah & S. F. Bate, VAX/VMS Internals and Data Structures, Digital Press, Bedford, MA,

1984.

Kessler & Hill., 1992.

R. E. Kessler & M. D. Hill., “Page Placement Algorithms for Large Real-Indexed Caches.,” ACM

Transactions on Computer Systems, vol. 10, no. 4, pp. 338–359, available from

ftp://ftp.cs.wisc.edu/markhill/Papers/tocs92_coloring.pdf, July 1992.

King, 1971.

W. F. King, “Analysis of Demand Paging Algorithms,” IFIP, pp. 485–490, North Holland,

Amsterdam, 1971.

Korn & Vo, 1985.

D. Korn & K. Vo, “In Search of a Better Malloc,” USENIX Association Conference Proceedings,

pp. 489–506, June 1985.

Lazowska & Kelsey, 1978.

E. D. Lazowska & J. M. Kelsey, “Notes on Tuning VAX/VMS,” Technical Report 78-12-01,

Department of Computer Science, University of Washington, Seattle, WA, December 1978.

Marshall, 1979.

ftp://ftp.dcs.gla.ac.uk/pub/drastic/gc/wilson.ps
ftp://ftp.cs.wisc.edu/markhill/Papers/tocs92_coloring.pdf

371

W. T. Marshall, “A Unified Approach to the Evaluation of a Class of ‘Working Set Like’

Replacement Algorithms,” PhD Thesis, Department of Computer Engineering, Case Western

Reserve University, Cleveland, OH, May 1979.

Navarro et al., 2002.

J. Navarro, S. Iyer, P. Druschel, & A. Cox, “Practical, transparent operating system support for

superpages,” USENIX 5th Symposium on Operating Systems Design and Implementation, pp.

89–104, available from

http://www.usenix.org/publications/library/proceedings/osdi02/tech/navarro.html, December

2002.

Rashid et al., 1987.

R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, & J. Chew,

“Machine-Independent Virtual Memory Management for Paged Uniprocessor and

Multiprocessor Architectures,” Operating Systems Review, vol. 21, no. 4, pp. 31–39, October

1987.

Tevanian, 1987.

A. Tevanian, “Architecture-Independent Virtual Memory Management for Parallel and

Distributed Environments: The Mach Approach,” Department of Computer Science,

Carnegie-Mellon University, available from http://reports-archive.adm.cs.cmu.edu/cs.html,

December 1987.

Wilson et al., 1995.

P. Wilson, M. Johnstone, M. Neely, & D. Boles, “Dynamic Storage Allocation: A Survey and

Critical Review,” Proceedings of the International Workshop on Memory Management,

available from http://citeseer.nj.nec.com/wilson95dynamic.html, September 1995.

Young, 1989.

M. W. Young, Exporting a User Interface to Memory Management from a

Communication-Oriented Operating System, CMU-CS-89-202, Department of Computer

Science, Carnegie-Mellon University, November 1989.

http://www.usenix.org/publications/library/proceedings/osdi02/tech/navarro.html
http://reports-archive.adm.cs.cmu.edu/cs.html
http://citeseer.nj.nec.com/wilson95dynamic.html

372

Part III: I/O System

Chapter 7. I/O System Overview

Figure 7.1 shows an overview of the entire kernel. This chapter focuses on the upper part of that

figure. It describes the management and operation of file descriptors, the virtual filesystem

interface (VFS), the facilities provided by the kernel to the filesystems operating under the VFS,

and the provision that the kernel makes for stacking multiple filesystems.

Figure 7.1 Kernel I/O structure.

Chapter 8 will describe the lower part of Figure 7.1. It covers the various types of device drivers

in the system, their aggregation and delivery by their client subsystems, and the infrastructure

needed to support and operate them.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig01

373

7.1 Descriptor Management and Services

For user processes, all I/O is done through descriptors. The user interface to descriptors was

described in Section 2.7. This section describes how the kernel manages descriptors and how it

provides descriptor services, such as locking and polling.

System calls that refer to open files take a file descriptor as an argument to specify the file. The

file descriptor is used by the kernel to index into the descriptor table for the current process

(kept in the filedesc structure, a substructure of the process structure for the process) to locate a

file entry, or file structure. The relationships of these data structures are shown in Figure

7.2.

Figure 7.2 File-descriptor reference to a file entry.

The file entry provides a file type and a pointer to an underlying object for the descriptor. The

object types supported in FreeBSD are shown in Table 7.1:

• For data files, the file entry points to a vnode structure that references a substructure

containing the filesystem-specific information described in Chapters 9 through 11. The vnode

layer is described in Section 7.3. Special files do not have data blocks allocated on the disk; they

are handled by the special-device filesystem that calls appropriate drivers to handle I/O for

them.

• For access to interprocess communication including networking, the FreeBSD file entry may

reference a socket.

• For unnamed high-speed local communication, the file entry will reference a pipe. Earlier

FreeBSD systems used sockets for local communication, but optimized support was added for

pipes to improve their performance.

• For named high-speed local communication, the file entry will reference a fifo. As with pipes,

optimized support was added for fifos to improve performance.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_394
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_113

374

• For POSIX.1-2004-compliant named high-speed local communication, the file entry will

reference a message queue. As with pipes, optimized support was added for message queues to

improve performance.

• For notification of kernel events, the file entry will reference a kqueue. The kqueue interface

is described at the end of this section.

• For systems that have cryptographic support in hardware, the file entry will provide direct

access to that hardware.

• For POSIX.1-2004-compliant shared memory (using the shm_open system call), the file entry

will reference a shared-memory object. Before FreeBSD 7.0, POSIX shared memory was

implemented with files.

• For POSIX.1-2004-compliant semaphores (using the sem_open system call), the file entry will

reference a semaphore.

• For a pseudo-terminals device pair, file entries reference a pseudo-terminal’s master and slave

devices. Pseudo-terminals are described in Section 8.6.

• For compatibility with Linux, a file entry may reference a device directly rather than through

the vnode interface.

• For capability mode in which processes are unable to use PIDs, because PIDs are a global

namespace, a file entry references a process. The descriptor for this file entry allows systems

running in capability mode to create and manage child processes without recourse to PIDs. The

uses for processes referenced by descriptors are described in Section 5.7.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec7

375

Table 7.1 File descriptor types.

The virtual-memory system supports the mapping of files into a process’s address space. Here,

the file descriptor must reference a vnode or a POSIX shared-memory region that will be

partially or completely mapped into the user’s address space.

Open File Entries

The set of file entries is the focus of activity for file descriptors. They contain the information

necessary to access the underlying objects and to maintain common information.

The file entry is an object-oriented data structure. Each entry contains a type and an array of

function pointers that translate the generic operations on file descriptors into the specific

actions associated with their type. The operations that must be implemented for each type are as

follows:

• Read from the descriptor

• Write to the descriptor

• Truncate the descriptor

• Change the mode or owner of the descriptor

• Poll the descriptor

• Do ioctl operations on the descriptor

• Collect stat information for the descriptor

• Check to see if there are any kqueue events pending for the descriptor

• Close and possibly deallocate the object associated with the descriptor

Note that there is no open() routine defined in the object table. FreeBSD treats descriptors in an

object-oriented fashion only after they are created. This approach was taken because the various

descriptor types have different characteristics. Generalizing the interface to handle all types of

descriptors at open time would have complicated an otherwise simple interface. Vnode

descriptors are created by the open system call; socket descriptors are created by the socket

system call; fifo descriptors are created by the pipe system call; message queues are created

using the mq_open system call.

376

Each file entry has a pointer to a data structure that contains information specific to the instance

of the underlying object. The data structure is opaque to the routines that manipulate the file

entry. A reference to the data structure is passed on each call to a function that implements a file

operation. All state associated with an instance of an object must be stored in that instance’s

data structure; the underlying objects are not permitted to manipulate the file entry themselves.

The read and write system calls do not take an offset in the file as an argument. Instead, each

read or write updates the current file offset in the file according to the number of bytes

transferred. The offset determines the position in the file for the next read or write. The offset

can be set directly by the lseek system call. Since more than one process may open the same file,

and each such process needs its own offset for the file, the offset cannot be stored in the

per-object data structure. Thus, each open system call allocates a new file entry, and the open

file entry contains the offset.

Some semantics associated with all file descriptors are enforced at the descriptor level, before

the underlying system call is invoked. These semantics are maintained in a set of flags

associated with the descriptor. For example, the flags record whether the descriptor is open for

reading, writing, or both reading and writing. If a descriptor is marked as open for reading only,

an attempt to write it will be caught by the descriptor code. Thus, the functions defined for

performing reading and writing do not need to check the validity of the request; we can

implement them knowing that they will never receive an invalid request.

The application-visible flags are described in the next subsection. In addition to the

application-visible flags, the flags field also has information on whether the descriptor holds a

shared or exclusive lock on the underlying file. The locking primitives could be extended to work

on sockets, as well as on files. However, the descriptors for a socket rarely refer to the same file

entry. The only way for two processes to share the same socket descriptor is for a parent to share

the descriptor with its child by forking or for one process to pass the descriptor to another in a

message.

Each file entry has a reference count. A single process may have multiple references to the entry

because of calls to the dup or fcntl system calls. Also, file structures are inherited by the child

process after a fork, so several different processes may reference the same file entry. Thus, a

read or write by either process on the twin descriptors will advance the file offset. This semantic

allows two processes to read the same file or to interleave output to the same file. Another

process that has independently opened the file will refer to that file through a different file

structure with a different file offset. This functionality was the original reason for the existence

of the file structure; the file structure provides a place for the file offset between the descriptor

and the underlying object.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_118

377

Each time that a new reference is created, the reference count is incremented. When a

descriptor is closed (in any one of three ways: (1) explicitly with a close: (2) implicitly after an

exec because the descriptor has been marked as close-on-exec: or (3) on process exit), the

reference count is decremented. When the reference count drops to zero, the file entry is freed.

The close-on-exec flag is kept in the descriptor table rather than in the file entry. This flag is not

shared among all the references to the file entry because it is an attribute of the file descriptor

itself. The close-on-exec flag is the only piece of information that is kept in the descriptor table

rather than being shared in the file entry.

Management of Descriptors

The fcntl system call manipulates the file structure. It can be used to make the following changes

to a descriptor:

• Duplicate a descriptor as though by a dup system call.

• Get or set the close-on-exec flag. When a process forks, all the parent’s descriptors are

duplicated in the child. The child process then execs a new process. Any of the child’s

descriptors that were marked close-on-exec are closed. The remaining descriptors are available

to the newly executed process.

• Set the no-delay (O_NONBLOCK) flag to put the descriptor into nonblocking mode. In

nonblocking mode, if any data are available for a read operation, or if any space is available for a

write operation, an immediate partial read or write is done. If no data are available for a read

operation, or if a write operation would block, the system call returns an error (EAGAIN)

showing that the operation would block, instead of putting the process to sleep. This facility is

not implemented for local filesystems in FreeBSD, because local-filesystem I/O is always

expected to complete within a few milliseconds.

• Set the synchronous (O_FSYNC) flag to force all writes to the file to be written synchronously

to the disk.

• Set the direct (O_DIRECT) flag to request that the kernel attempt to write the data directly

from the user application to the disk rather than copying it via kernel buffers.

• Set the append (O_APPEND) flag to force all writes to append data to the end of the file,

instead of at the descriptor’s current location in the file. This feature is useful when, for example,

multiple processes are writing to the same log file.

378

• Set the asynchronous (O_ASYNC) flag to request that the kernel watch for a change in the

status of the descriptor, and arrange to send a signal (SIGIO) when a read or write becomes

possible.

• Send a signal to a process when an exception condition arises, such as when urgent data arrive

on an interprocess-communication channel.

• Set or get the process identifier or process-group identifier to which the two I/O-related

signals in the previous steps should be sent.

• Test or change the status of a lock on a range of bytes within an underlying file. Locking

operations are described later in this section.

The implementation of the dup system call is easy. If the process has reached its limit on open

files, the kernel returns an error. Otherwise, the kernel scans the current process’s descriptor

table, starting at descriptor zero, until it finds an unused entry. The kernel allocates the entry to

point to the same file entry as does the descriptor being duplicated. The kernel then increments

the reference count on the file entry and returns the index of the allocated descriptor-table entry.

The fcntl system call provides a similar function, except that it specifies a descriptor from which

to start the scan.

Sometimes, a process wants to allocate a specific descriptor-table entry. Such a request is made

with the dup2 system call. The process specifies the descriptor-table index into which the

duplicated reference should be placed. The kernel implementation is the same as for dup, except

that the scan to find a free entry is changed to close the requested entry if that entry is open and

then to allocate the entry as before. No action is taken if the new and old descriptors are the

same.

The system implements getting or setting the close-on-exec flag via the fcntl system call by

making the appropriate change to the flags field of the associated descriptor-table entry. Other

attributes that fcntl manipulates operate on the flags in the file entry. However, the

implementation of the various flags cannot be handled by the generic code that manages the file

entry. Instead, the file flags must be passed through the object interface to the type-specific

routines to do the appropriate operation on the underlying object. For example, manipulation of

the nonblocking flag for a socket must be done by the socket layer, since only that layer knows

whether an operation can block.

The implementation of the ioctl system call is broken into two major levels. The upper level

handles the system call itself. The ioctl call includes a descriptor, a command, and pointer to a

data area. The command argument encodes what the size is of the data area for the parameters

379

and whether the parameters are input, output, or both input and output. The upper level is

responsible for decoding the command argument, allocating a buffer, and copying in any input

data. If a return value is to be generated and there is no input, the buffer is zeroed. Finally, the

ioctl is dispatched through the file-entry ioctl function, along with the I/O buffer, to the

lower-level routine that implements the requested operation.

The lower level does the requested operation. Along with the command argument, it receives a

pointer to the I/O buffer. The upper level has already checked for valid memory references, but

the lower level may do more precise argument validation because it knows more about the

expected nature of the arguments. However, it does not need to copy the arguments in or out of

the user process. If the command is successful and produces output, the lower level places the

results in the buffer provided by the top level. When the lower level returns, the upper level

copies the results to the process.

Asynchronous I/O

Historically, UNIX systems did not have the ability to do asynchronous I/O beyond the ability to

do background writes to the filesystem. An asynchronous I/O interface was defined by the

POSIX.1b-1993 realtime group. Shortly after its ratification, an implementation was added to

FreeBSD.

An asynchronous read is started with aio_read; an asynchronous write is started with aio_write.

The kernel builds an asynchronous I/O request structure that contains all the information

needed to do the requested operation. If the request cannot be immediately satisfied from kernel

buffers, the request structure is queued for processing by an asynchronous kernel-based I/O

daemon and the system call returns. The next available asynchronous I/O daemon handles the

request using the usual kernel synchronous I/O path.

When the daemon finishes the I/O, the asynchronous I/O structure is marked as finished along

with a return value or error code. The application uses the aio_error system call to poll to find if

the I/O is complete. This call is implemented by checking the status of the asynchronous I/O

request structure created by the kernel. If an application gets to the point where it cannot

proceed until an I/O completes, it can use the aio_suspend system call to wait until an I/O is

done. Here, the application is put to sleep on its asynchronous I/O request structure and is

awakened by the asynchronous I/O daemon when the I/O completes. Alternatively, the

application can request that a specified signal be sent when the I/O is done.

The aio_return system call gets the return value from the asynchronous request once aio_error,

aio_suspend, or the arrival of a completion signal has indicated that the I/O is done. FreeBSD

380

has also added the nonstandard aio_waitcomplete system call that combines the functions of

aio_suspend and aio_return into a single operation. For either aio_return or

aio_waitcomplete, the return information is copied out to the application from the

asynchronous I/O request structure and the asynchronous I/O request structure is then freed.

File-Descriptor Locking

Early UNIX systems had no provision for locking files. Processes that needed to synchronize

access to a file had to use a separate “lock file.” A process would try to create a lock file. If the

creation succeeded, then the process could proceed with its update; if the creation failed, the

process would wait and then try again. This mechanism had three drawbacks:

1. Processes consumed CPU time by looping over attempts to create locks.

2. Locks left lying around because of system crashes had to be removed (normally in a

system-startup command script).

3. Processes running as the special system-administrator user, the superuser, are always

permitted to create files, and so were forced to use a different mechanism.

Although it is possible to work around all these problems, the solutions are not straightforward,

so a mechanism for locking files was added in 4.2BSD.

The most general locking schemes allow multiple processes to update a file concurrently. Several

of these techniques are discussed in Peterson [1983]. A simpler technique is to serialize access to

a file with locks. For standard system applications, a mechanism that locks at the granularity of

a file is sufficient. So, 4.2BSD and 4.3BSD provided only a fast, whole-file locking mechanism.

The semantics of these locks include allowing locks to be inherited by child processes and

releasing locks only on the last close of a file.

Certain applications require the ability to lock pieces of a file. Locking facilities that support a

byte-level granularity are well understood. Unfortunately, they are not powerful enough to be

used by database systems that require nested hierarchical locks, but are complex enough to

require a large and cumbersome implementation compared to the simpler whole-file locks.

Because byte-range locks are mandated by the POSIX standard, the developers added them to

BSD reluctantly. The semantics of byte-range locks come from the initial implementation of

locks in System V, which included releasing all locks held by a process on a file every time a close

system call was done on a descriptor referencing that file. The 4.2BSD whole-file locks are

removed only on the last close. A problem with the POSIX semantics is that an application can

lock a file, then call a library routine that opens, reads, and closes the locked file. Calling the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref10

381

library routine will have the unexpected effect of releasing the locks held by the application.

Another problem is that a file must be open for writing to be allowed to get an exclusive lock. A

process that does not have permission to open a file for writing cannot get an exclusive lock on

that file. To avoid these problems, yet remain POSIX compliant, FreeBSD provides separate

interfaces for byte-range locks and whole-file locks. The byte-range locks follow the POSIX

semantics; the whole-file locks follow the traditional 4.2BSD semantics. The two types of locks

can be used concurrently; they will serialize against each other properly.

Both whole-file locks and byte-range locks use the same implementation; the whole-file locks

are implemented as a range lock over an entire file. The kernel handles the other differing

semantics between the two implementations by having the byte-range locks be applied to

processes, whereas the whole-file locks are applied to descriptors. Because descriptors are

shared with child processes, the whole-file locks are inherited. Because the child process gets its

own process structure, the byte-range locks are not inherited. The last-close versus every-close

semantics are a small bit of special-case code in the close routine that checks whether the

underlying object is a process or a descriptor. It releases locks on every call if the lock is

associated with a process and only when the reference count drops to zero if the lock is

associated with a descriptor.

Locking schemes can be classified according to the extent that they are enforced. A scheme in

which locks are enforced for every process without choice is said to use mandatory locks,

whereas a scheme in which locks are enforced for only those processes that request them is said

to use advisory locks. Clearly, advisory locks are effective only when all programs accessing a

file use the locking scheme. With mandatory locks, there must be some override policy

implemented in the kernel. With advisory locks, the policy is left to the user programs. In the

FreeBSD system, programs with superuser privilege are allowed to override any protection

scheme. Because many of the programs that need to use locks must also run as the superuser,

4.2BSD implemented advisory locks rather than creating an additional protection scheme that

was inconsistent with the UNIX philosophy or that could not be used by privileged programs.

The use of advisory locks carried over to the POSIX specification of byte-range locks and is

retained in FreeBSD.

The FreeBSD file-locking facilities allow cooperating programs to apply advisory shared or

exclusive locks on ranges of bytes within a file. Only one process may have an exclusive lock on a

byte range, whereas multiple shared locks may be present. A shared and an exclusive lock

cannot be present on a byte range at the same time. If any lock is requested when another

process holds an exclusive lock, or an exclusive lock is requested when another process holds

any lock, the lock request will block until the lock can be obtained. Because shared and exclusive

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_211
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_07

382

locks are only advisory, even if a process has obtained a lock on a file, another process may

access the file if it ignores the locking mechanism.

So that there are no races between creating and locking a file, a lock can be requested as part of

opening a file. Once a process has opened a file, it can manipulate locks without needing to close

and reopen the file. This feature is useful, for example, when a process wishes to apply a shared

lock, to read information, to determine whether an update is required, and then to apply an

exclusive lock and update the file.

A request for a lock will cause a process to block if the lock cannot be obtained immediately. In

certain instances, this blocking is unsatisfactory. For example, a process that wants only to

check whether a lock is present would require a separate mechanism to find out this information.

Consequently, a process can specify that its locking request should return with an error if a lock

cannot be obtained immediately. Being able to request a lock conditionally is useful to daemon

processes that wish to service a spooling area. If the first instance of the daemon locks the

directory where spooling takes place, later daemon processes can easily check to see whether an

active daemon exists. Since locks exist only while the locking processes exist, locks can never be

left active after the processes exit or if the system crashes.

The implementation of locks is done on a per-filesystem basis. The implementation for the local

filesystems is described in Section 9.5. A network-based filesystem has to coordinate locks with

a central lock manager that is usually located on the server exporting the filesystem. Client lock

requests must be sent to the lock manager. The lock manager arbitrates among lock requests

from processes running on its server and from the various clients to which it is exporting the

filesystem. The most complex operation for the lock manager is recovering lock state when a

client or server is rebooted or becomes partitioned from the rest of the network. The FreeBSD

network-based lock manager is described in Chapter 11.

Multiplexing I/O on Descriptors

A process sometimes wants to handle I/O on more than one descriptor. For example, consider a

remote login program that wants to read data from the keyboard and to send them through a

socket to a remote machine. This program also wants to read data from the socket connected to

the remote end and to write them to the screen. If a process makes a read request when there

are no data available, it is normally blocked in the kernel until the data become available. In our

example, blocking is unacceptable. If the process reads from the keyboard and blocks, it will be

unable to read data from the remote end that are destined for the screen. The user does not

know what to type until more data arrive from the remote end, so the session deadlocks.

Conversely, if the process reads from the remote end when there are no data for the screen, it

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11

383

will block and will be unable to read from the terminal. Again, deadlock would occur if the

remote end were waiting for input before sending any data. There is an analogous set of

problems to blocking on the writes to the screen or to the remote end. If a user has stopped

output to his screen by typing the stop character, the write will block until the user types the

start character. In the meantime, the process cannot read from the keyboard to find out that the

user wants to flush the output.

FreeBSD provides four mechanisms that permit multiplexing I/O on descriptors: polling I/O,

kernel-event polling, nonblocking I/O, and signal-driven I/O. Polling is done with the

select or poll system call, described in the next subsection. Kernel-event polling is done with the

kevent system call, described in the following subsection. Operations on nonblocking

descriptors finish immediately, partially complete an input or output operation and return a

partial count, or return an error that shows that the operation could not be completed at all.

Descriptors that have signalling enabled cause the associated process or process group to be

notified when the I/O state of the descriptor changes.

There are four possible alternatives that avoid the blocking problem:

1. Set all the descriptors into nonblocking mode. The process can then try operations on each

descriptor in turn to find out which descriptors are ready to perform I/O. The problem with this

busy-waiting approach is that the process must run continuously to discover whether there is

any I/O to be done, wasting CPU cycles.

2. Enable all descriptors of interest to signal when I/O can be done. The process can then wait

for a signal to discover when it is possible to perform I/O. The drawback to this approach is that

signals are expensive to catch. Hence, signal-driven I/O is impractical for applications that do

moderate to large amounts of I/O.

3. Have the system provide a method for asking which descriptors are capable of performing

I/O. If none of the requested descriptors are ready, the system can put the process to sleep until

a descriptor becomes ready. This approach avoids the problem of deadlock because the process

will be awakened whenever it is possible to perform I/O and will be told which descriptor is

ready. The drawback is that the process must do two system calls per operation: one to poll for

the descriptor that is ready to perform I/O and another to perform the operation itself.

4. Have the process register with the system all the events including I/O on descriptors that it is

interested in tracking. Have the system provide a system call for asking which events have

occurred. If none of the registered events have occurred, the system can put the process to sleep

until a registered event occurs. When the system call returns, the process is given a list of the

events that have occurred [Accetta et al., 1986; Lemon, 2001].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_277
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref07

384

The first approach is available in FreeBSD as nonblocking I/O. It typically is used for output

descriptors because the operation typically will not block. Rather than doing a select, poll, or

kevent, which nearly always succeeds, followed immediately by a write, it is more efficient to try

the write and revert to using select, poll, or kevent only during periods when the write returns a

blocking error.

The second approach is available in FreeBSD as signal-driven I/O. It typically is used for rare

events, such as the arrival of out-of-band data on a socket. For such rare events, the cost of

handling an occasional signal is lower than that of checking constantly with select, poll, or

kevent to find out whether there are any pending data.

The third approach is available in FreeBSD via the select or poll system call. Although less

efficient than the fourth approach, it is a more widely available interface.

The fourth approach is available in FreeBSD via the kevent system call. In addition to tracking

the status of multiple descriptors, it handles other notifications such as file modification

monitoring, signals, asynchronous I/O events (AIO), child process state change monitoring and

timers that support nanosecond resolution. Like select and poll, kqueue can timeout when no

I/O is possible. An interface similar in functionality to kevent is available in Linux as epoll and

in Windows and Solaris as completion ports.

The select and poll interfaces provide the same information. They differ only in their

programming interface. The select interface was first developed in 4.2BSD with the introduction

of socket-based interprocess communication. The poll interface was introduced in System V

several years later with its competing STREAMS-based interprocess communication. Although

STREAMS has fallen into disuse, the poll interface has proven popular enough to be retained.

The FreeBSD kernel supports both interfaces.

The select system call is of the form

Click here to view code image

int error = select(

 int numfds,

 fd_set *readfds,

 fd_set *writefds,

 fd_set *exceptfds,

 struct timeval *timeout);

It takes three masks of descriptors to be monitored, corresponding to interest in reading,

writing, and exceptional conditions. In addition, it takes a timeout value for returning from

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07_images.html#p326pro01

385

select if none of the requested descriptors becomes ready before a specified amount of time has

elapsed. The select call returns the same three masks of descriptors after modifying them to

show the descriptors that are able to perform reading, to perform writing, or that have an

exceptional condition. If none of the descriptors has become ready in the timeout interval, select

returns showing that no descriptors are ready for I/O. If a timeout value is given and a

descriptor becomes ready before the specified timeout period, the time that select spends

waiting for I/O to become ready is subtracted from the time given.

The poll interface copies in an array of pollfd structures, one array entry for each descriptor of

interest. The pollfd structure contains three elements:

• The file descriptor to poll

• A set of flags describing the information being sought

• A set of flags set by the kernel showing the information that was found

The flags specify availability of normal or out-of-band data for reading and the availability of

buffer space for normal or out-of-band data writing. The return flags can also specify that an

error has occurred on the descriptor, that the descriptor has been disconnected, or that the

descriptor is not open. These error conditions are raised by the select call by indicating that the

descriptor with the error is ready to perform I/O. When the application attempts to perform the

I/O, the error is returned by the read or write system call. Like the select call, the poll call takes

a timeout value to specify the maximum time to wait. If none of the requested descriptors

becomes ready before the specified amount of time has elapsed, the poll call returns. If a

timeout value is given and a descriptor becomes ready before the specified timeout period, the

time that poll spends waiting for I/O to become ready is subtracted from the time given.

Implementation of Select

The implementation of select is divided into a generic top layer and many device-or

socket-specific bottom pieces. At the top level, select or poll decodes the user’s request and then

calls the appropriate lower-level poll functions. The select and poll system calls have different

top layers to determine the sets of descriptors to be polled but use all the same device- and

socket-specific bottom pieces. Only the select top layer will be described here. The poll top layer

is implemented in a completely analogous way.

The data structures used to support the select and poll system calls are shown in Figure 7.3. A

selfd structure tracks each request. Across the top of Figure 7.3 is the list of threads waiting for

I/O to become available on a set of descriptors. Each of these threads has a seltd structure that

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03

386

heads the list of selfd structures tracking the descriptors of interest to the thread. This list is

protected by the mutex in the seltd structure. Down the lefthand side of Figure 7.3 is the set of

sockets and devices that have threads waiting for I/O to become possible. Each of these sockets

and devices has a selinfo structure that heads the list of selfd structures tracking the threads

interested in the socket or device. This list is protected by a pool mutex allocated the first time

an entry is referenced from the selinfo structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03

387

Figure 7.3 Select data structures.

The select top level takes the following steps:

388

1. Copies and validates the descriptor masks for read, write, and exceptional conditions.

Performing validation requires checking that each requested descriptor is currently open by the

process.

2. For each descriptor with a bit set in at least one select mask, calls the poll routine for the

socket or device. If the descriptor is not able to perform any of the requested I/O operations, the

poll routine records that the thread wants to perform I/O by allocating a selfd structure and

linking it into the requesting thread’s seltd structure and the associated socket or device selinfo

structure as shown in Figure 7.3. When I/O becomes possible for the descriptor—usually as a

result of an interrupt—a notification will be issued for all the threads selecting on it by

traversing the list of selfd structures headed by the selinfo structure for the socket or device and

awakening each of the associated threads.

3. Because the selection process may take a long time, the kernel does not want to block out I/O

during the time it takes to poll all the requested descriptors. Instead, the kernel arranges to

detect the occurrence of I/O that may affect the status of the descriptors being polled. When

such I/O occurs, the associated socket or device traverses the list of setfd structures, headed by

its selinfo structure, setting the PENDING flag in the flags field of the associated thread’s seltd

structure and marks the associated setfd structure as ready to do I/O. If the top-level select code

finds that the PENDING flag for the thread has been set while it has been performing the polling,

and it has not found any descriptors that are ready to perform an operation, then the top level

knows that the polling results are incomplete. It traverses the list of selfd structures headed by

its seltd structure to find and return the available descriptors.

4. If no descriptors are ready and the select specified a timeout, the kernel posts a timeout for

the requested amount of time. The thread blocks on the st_wait condition variable in its seltd

structure. Normally, a descriptor will become ready and the thread will be notified by

selwakeup(). When the thread is awakened, it traverses the list of selfd structures headed by its

seltd structure and returns the available descriptors. If none of the descriptors become ready

before the timer expires, the thread returns with a timed-out error and an empty list of available

descriptors. If a timeout value is given and a descriptor becomes ready before the specified

timeout period, the time that select spent waiting for I/O to become ready is subtracted from the

time given.

Kqueues and Kevents

The select and poll interfaces are limited because they are unable to handle other potentially

interesting activities in which an application might want to engage such as signals, filesystem

changes, and asynchronous I/O completions. Further, the select and poll system calls do not

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig03

389

scale well with increasing numbers of descriptors. Their inefficiency comes from being stateless.

The kernel does not keep any record of the application’s interest between system calls and must

recalculate it and build up the associated data structures every time that select or poll is called.

In addition, the application must scan the entire list of events that it passed to the kernel to

determine which events occurred.

The kevent interface is provided to mitigate both of these problems. Kevent is a generic

notification interface that allows an application to select from a wide range of event sources, and

be notified of activity on these sources in a scalable and efficient manner. The interface may be

extended to cover future event sources without changing the application interface.

An application registers the events in which it is interested. When one or more of these events

occur, the kernel returns a list containing just the occurring events to the application. Thus, the

kernel need only build the set of event notification structures once and the application is notified

of just those events that have occurred. The cost of the interface is a function of the number of

events that occur rather than the number of events being checked. The savings are most evident

for applications checking for many events that happen only infrequently.

The types of events that can be monitored using the kevent system are shown in Table 7.2. In

addition to the events that can be checked by the select and poll interfaces, kevent can also track

changes to files including being renamed, deleted, or having their attributes updated. It also

subsumes the aio_error and aio_suspend system calls to monitor and wait for an asynchronous

I/O. The process still needs to use aio_return system call to get the I/O completion status and

to free the kernel data structures associated with the I/O once the kevent system call has

notified it that the I/O has completed. It can track the posting of signals to a process and when

the process forks, execs, or exits. It can create and monitor timers and provides event

monitoring defined and triggered by user-level applications.

Table 7.2 Events that may be monitored with kevents

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07tab02

390

A process uses the kqueue system call to get a descriptor to use as a handle on which to register

the events that it wishes to track. This descriptor is then used to get notification of the registered

events as they occur. Additional events may be added and previously requested events deleted as

the process runs.

Figure 7.4 shows the data structures set up when a kqueue is created. Each event in which an

application registers interest is recorded using a knote. Each event has an identifier such as a

descriptor number for a file or socket descriptor-based event, a process identifier for a

process-based event, a signal number for a signal-based event, or an application-defined

identifier for a timer- or user-based event. Event registration also includes a filter describing the

action of interest such as reading or writing as well as further refinements such as a minimum

read/write size, whether this is a one-time request or should be reported until canceled. The

registration maps the filter to a filter function that will be called each time an event occurs for

that identifier to decide whether it merits being reported.

Figure 7.4 The data structures supporting an event queue.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig04

391

The kqueue structure links the knotes it is tracking into one of two lists: an array indexed by

descriptor for descriptor-identified events or a table hashed by the identifier for all other types

of events. The knote structure is also linked into a knote-list for the event-generating entity that

it is monitoring.

When an event occurs, the event-generating entity traverses its knote list invoking the filter

function for each knote on the list to let it know that an event has occurred. The filter function

decides if the event merits reporting. For example, a filter concerned with reading will not care

that buffer space has become available and return zero to indicate that it is not interested. But if

enough data has arrived to exceed the specified read threshold, it will return nonzero to indicate

that it should be added to its kqueue pending list.

Time will pass before the application next calls or awakens from a sleep in the kevent system call

to collect any pending events. During this time, the event may no longer be relevant. For

example, the buffering space for which a process has been waiting may have been used up by the

time it goes to collect the event. So, as the kevent system call walks the list of pending events, it

calls the associated filter function to verify that the event is still relevant. If it is still relevant, it

is copied out to the application along with any filter-function-specific information such as

number of bytes available to be read. If it is not relevant, it is dropped from the pending list. By

validating the data immediately before returning it, the kevent system call will never return stale

results. To further ensure valid results, any time that a resource is reclaimed (such as a

descriptor when it is last closed or a process when it exits), any knotes associated with it are

removed from all three lists on which they may reside and are reclaimed.

In Figure 7.4, kqueue A is tracking three events: status of a process identified by its

process-identifier (referenced from the kqueue hash table), data availability of a socket

identified by its descriptor number (referenced from the kqueue descriptor table), and buffer

space availability for the same socket. Kqueue B is tracking buffer space availability on the same

socket as Kqueue A. Data has become available for reading at the socket and a status change has

happened to the process so the two knotes associated with these events are on the pending list

for kqueue A.

Movement of Data Inside the Kernel

Within the kernel, I/O data are described by an array of vectors. Each I/O vector or iovec has

a base address and a length. The I/O vectors are identical to the I/O vectors used by the readv

and writev system calls.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_173

392

The kernel maintains another structure, called a uio structure, that holds additional

information about the I/O operation. A sample uio structure is shown in Figure 7.5; it contains

the following:

• A pointer to the iovec array

• The number of elements in the iovec array

• The file offset at which the operation should start

• The sum of the lengths of the I/O vectors

• A flag showing whether the source and destination are both within the kernel or whether the

source and destination are split between the user and the kernel

• A flag showing whether the data are being copied from the uio structure to the kernel

(UIO_WRITE) or from the kernel to the uio structure (UIO_READ)

• A pointer to the thread whose data area is described by the uio structure (the pointer is NULL

if the uio structure describes an area within the kernel)

Figure 7.5 An uio structure.

All I/O within the kernel is described with iovec and uio structures. System calls such as read

and write that are not passed an iovec create a uio to describe their arguments; this uio

structure is passed to the lower levels of the kernel to specify the parameters of an I/O operation.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig05

393

Eventually, the uio structure reaches the part of the kernel responsible for moving the data to or

from the process address space: the filesystem, the network, or a device driver. In general, these

parts of the kernel do not interpret uio structures directly. Instead, they arrange a kernel buffer

to hold the data and then use uiomove() to copy the data to or from the buffer or buffers

described by the uio structure. The uiomove() routine is called with a pointer to a kernel data

area, a data count, and a uio structure. As it moves data, it updates the counters and pointers of

the iovec and uio structures by a corresponding amount. If the kernel buffer is not as large as the

areas described by the uio structure, the uio structure will point to the part of the process

address space just beyond the location completed most recently. Thus, while servicing a request,

the kernel may call uiomove() multiple times, each time giving a pointer to a new kernel buffer

for the next block of data.

Character device drivers that do not copy data from the process generally do not interpret the

uio structure. Instead, there is one low-level kernel routine that arranges a direct transfer to or

from the address space of the process. Here, a separate I/O operation is done for each iovec

element, calling back to the driver with one piece at a time.

7.2 Local Interprocess Communication

The socket interfaces are not the only APIs that provide interprocess communication.

Applications that wish to divide up work on a single host use semaphores, messages queues, and

shared memory to communicate between their processes. Each type of local IPC has different

performance characteristics and provides a different form of communication. The local IPC

mechanisms originally supported in FreeBSD are derived from System V, as described in Bach

[1986]. For this reason, they are often referred to as System V semaphores, mutexes, and shared

memory. While most applications use the socket-based IPC mechanisms, a small but pertinent

subset of applications make use of the System V IPC mechanisms, especially semaphores and

shared memory. For example, X11 uses System V shared-memory segments between the X

server and applications to avoid sending large images (and especially, continuously updated

images) over sockets. PosgreSQL uses System V semaphores for synchronisation. The ipcs

command lists open System V IPC objects and can be used to discover the extent of their use on

a FreeBSD system.

The biggest drawback of the System V IPC is that it introduced a new, flat, number-oriented

object namespace but with filesystem-like permissions. As a result of it being flat, applications

cannot use directories to reserve portions of the namespace safely, and weird hash functions are

used to convert useful string names into possibly colliding numbers. Unlike other IPC objects,

no file descriptor is associated with these objects. Some implementations (notably Linux) store

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref02

394

these objects in special filesystems below /dev. This implementation is better than the System V

approach as it makes jail-like virtualisation possible.

As POSIX added specifications for IPC mechanisms, they were implemented in FreeBSD: shared

memory in FreeBSD 4.3, semaphores in FreeBSD 5.0, and message queues in FreeBSD 7.0. The

POSIX IPC manages to both improve on System V by building it using file descriptors while

simultaneously repeating its mistake of having a flat namespace. POSIX shared-memory objects

and semaphores are seeing increasing use as replacements for System V IPC objects as they

work well with both multi-threaded synchronisation and multi-process synchronisation. As

described in Section 5.8, Capsicum uses a version of the POSIX shared-memory interface to

create a file descriptor associated with an anonymously backed vm_object that can then be

shared using file descriptor passing. Prior to this addition, the only mechanism for sharing

memory was to rendezvous using the filesystem namespace and mmap or to agree on a name to

use in the System V shared-memory namespace.

Every type of IPC must make it possible for independently executing processes to rendezvous

and find the resources they are sharing. This piece of information must be known to all of them

and must be unique enough that no other process could come across the same information by

accident. Historically, UNIX used the filesystem namespace for rendezvous. It has the benefit of

being hierarchical with permissions to provide fine-grained access control. Applications that

wanted to share memory would pick a common file that each would map into its address space.

The System V IPC introduced a new key-based namespace. A key is a long integer that is treated

by the cooperating processes as an opaque piece of data, meaning that they do not attempt to

decipher or attribute any meaning to it. The library routine, ftok(), is used to generate a key

from a pathname. As long as each process uses the same pathname, they are guaranteed to get

the same key.

All of the local System V IPC subsystems were designed and implemented to be used in a similar

way. A summary of all the user-level System V APIs is given in Table 7.3, and an excellent

introduction to using them can be found in Stevens [1999]. Once a process has a key, it uses it to

create or retrieve the relevant object, using a subsystem specific get call, which is similar to a file

open or creat. To create an object, the IPC_CREAT flag is passed as an argument to the get call.

All get calls return an integer to be used in all subsequent local IPC system calls. Just like a file

descriptor, this integer is used to identify the object that the process is manipulating.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07tab03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref12

395

Table 7.3 System V local IPC, user-level APIs.

Each System V IPC subsystem has its own way of operating on the underlying object, and these

functions are described in the following sections. All control operations, such as retrieving

statistics or removing a previously created object, are handled by a subsystem-specific ctl

routine.

Semaphores

A semaphore is the smallest atom of IPC available to a set of cooperating processes. Each

semaphore contains a short integer that can be increased or decreased. A process that attempts

to reduce the value of the semaphore below 0 will either be blocked or, if called in a nonblocking

mode, will return immediately with an errno value of EAGAIN. The concept of semaphores and

how they are used in multiprocess programs was originally proposed in Dijkstra & Genuys

[1968].

Unlike the semaphores described in most computer science textbooks, semaphores in FreeBSD

are grouped into arrays so that the code in the kernel can protect the process using them from

causing a deadlock. Deadlocks were discussed in terms of locking within the kernel in Section

4.3 but are discussed here are well.

With System V semaphores, the deadlock occurs between two user-level processes rather than

between kernel threads. A deadlock occurs between two processes, A and B, when they both

attempt to take two semaphores, S1 and S2. If process A acquires S1 and process B acquires S2,

then a deadlock occurs when process A tries to acquire S2 and process B tries to acquire S1

because there is no way for either process to give up the semaphore that the other one needs to

make progress. It is always important when using semaphores that all cooperating processes

acquire and release them in the same order to avoid this situation.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3

396

The implementation of semaphores in System V protected against deadlock by forcing the users

of the API to group their semaphores into arrays and to perform semaphore operations as a

sequence of events on the array. If the sequence submitted in the call could cause a deadlock,

then an error was returned. The section on semaphores in Bach [1986] points out that this

complexity should never have been placed in the kernel, but in order to adhere to the previously

defined API, the same complexity exists in FreeBSD as well. At some point in the future, the

kernel should provide a simpler form of semaphores to replace the current implementation.

Creating and attaching to a semaphore is done with the System V semget or the POSIX

sem_open system call. Although semaphores were designed to look like file descriptors, they are

not stored in the file descriptor table. All the semaphores in the system are contained in a single

table in the kernel, whose size and shape are described by several tunable parameters. This table

is protected by a global semaphore lock so that multiple processes are protected from partially

creating entries in it. This lock is only taken when creating or attaching to a semaphore and is

not a bottleneck in the actual use of existing semaphores.

Once a process has created a semaphore, or attached to a preexisting one, it calls the System V

semop system call or the POSIX sem_post and sem_wait system calls to perform operations on

it. The operations on the semaphore are passed to the system call as an array. Each element of

the array includes the semaphore number to operate on (the index into the array returned by the

previous System V semget or the POSIX sem_open call), the operation to perform, and a set of

flags. The operation is a misnomer because it is not a command but simply a number. If the

number is positive, then the corresponding semaphore’s value is increased by that amount. If

the operation is 0 and the semaphore’s value is not 0, then either the process is put to sleep until

the value is 0 or, if the IPC_NOWAIT flag was passed, EAGAIN is returned to the caller. When

the operation is negative, there are several possible outcomes. If the value of the semaphore was

greater than the absolute value of the operation, then the value of the operation is subtracted

from the semaphore and the call returns. If subtracting the absolute value of the operation from

the semaphore would force its value to be less than zero, then the process is put to sleep, unless

the IPC_NOWAIT flag was passed. Here, EAGAIN is returned to the caller.

All of this logic is implemented in the System V semop system call or the POSIX sem_post and

sem_wait system calls. The call first does some rudimentary checks to make sure that it has a

chance of succeeding, including making sure there is enough memory to execute all the

operations in one pass and that the calling process has the proper permissions to access the

semaphore. Each semaphore ID returned to a process by the kernel has its own mutex to protect

against multiple processes modifying the same semaphore at the same time. The routine locks

this mutex and then attempts to perform all the operations passed to it in the array. It walks the

array and attempts to perform each operation in order. There is the potential for this call to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref02

397

sleep before it completes all its work. If this situation occurs, then the code rolls back all its work

before it goes to sleep. When it reawakens, the routine starts at the beginning of the array and

attempts to perform the operations again. Either the routine will complete all its work, return

with an appropriate error, or go back to sleep. Rolling back all the work is necessary to

guarantee the idempotence of the routine. Either all the work is done or none of it is.

Message Queues

A message queue facilitates the sending and receiving of typed, arbitrary-length messages. The

sending process adds messages at one end of the queue, and the receiving process removes

messages from the other. The queue’s size and other characteristics are controlled by a set of

tunable kernel parameters. Message queues are inherently half duplex, meaning that one

process is always the sender and the other is the receiver, but there are ways to use them as a

form of full duplex communication, as we will see later.

The messages passed between the endpoints contain a type and a data area, as shown in Figure

7.6. This data structure should not be confused with the mbufs that are used by the networking

code (see Section 12.3). MSGMNB is a tunable kernel parameter that defines the size of a

message queue, and therefore the largest possible message that can be sent between two

processes, and is set to 2048 by default.

Figure 7.6 Message data structure.

Message queues can be used to implement either a pure first-in first-out queue, where all

messages are delivered in the order in which they were sent, or a priority queue, where messages

with a certain type can be retrieved ahead of others. This ability is provided by the type field of

the message structure.

When a process sends a message, it invokes the System V msgsnd system call or the POSIX

mq_send system call, which checks all the arguments in the call for correctness and then

attempts to get enough resources to place the message into the queue. If there aren’t enough

resources, and the caller did not pass the IPC_NOWAIT flag, then the caller is put to sleep until

such time as resources are available. The resources come from a pool of memory that is

allocated by the kernel at boot time. The pool is arranged in fixed segments whose length is

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec3

398

defined by MSGSSZ. The memory pool is managed as a large array so the segments can be

located efficiently. Once the kernel has enough resources, it copies the message into the

segments in the array and updates the rest of the data structures related to this queue.

The kernel data structures that control the message queues in the system are protected by a

single lock which is taken and held by both the System V msgsnd and msgrcv system calls or the

POSIX mq_receive and mq_send system calls for the duration of their execution. The use of a

single lock for both routines protects the queue from being read and written simultaneously,

possibly causing data corruption. It is also a performance bottleneck because it means that all

other message queues are blocked when any one of them is being used.

To retrieve a message from the queue, a process calls the System V msgrcv system call or the

POSIX mq_receive system call. If the processes are using the queue as a simple fifo, then the

receiver passes a 0 in the msgtype argument to this call to retrieve the first available message in

the queue. To retrieve the first message in the queue of a particular type, a positive integer is

passed. Processes implement a priority queue by using the type as the priority of the message.

To implement a full duplex channel, each process picks a different type—say, 1 and 2. Messages

of type 1 are from process A, and messages of type 2 are from process B. Process A sends

messages with type 1 and receives messages with type 2, while process B does exactly the

opposite.

After acquiring the message queue mutex, the receive routine finds the correct queue from

which to retrieve data, and if there is an appropriate message, it returns data from the segments

to the caller. If no data are available and the caller specified the IPC_NOWAIT flag, then the call

returns immediately; otherwise, the calling process is put to sleep until there are data to be

returned. When a message is retrieved from a message queue, its data are deallocated after they

have been delivered to the receiving process.

Shared Memory

Shared memory is used when two or more processes need to communicate large amounts of

data between them. Each process stores data in the shared memory just as it would within its

own, per-process, memory. Care must be taken to serialize access to the shared memory so that

processes do not write over each other. Hence, shared memory is often used with semaphores to

synchronize read and write access.

Processes that are using shared memory are really sharing virtual memory (see Chapter 6).

When a process creates a segment of shared memory by calling the System V shmget system call

or the POSIX shm_open system call, the kernel allocates a set of virtual memory pages and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06

399

places a pointer to them in the shared memory handle that is then returned to the calling

process. To actually use the shared memory within a process, the System V interface must call

the shmat system call, which attaches the virtual memory pages into the calling process. The

attach routine uses the shared memory handle passed to it as an argument to find the relevant

pages and returns an appropriate virtual address to the caller. Once this call completes, the

process can then access the memory pointed to by the returned address as it would any other

kind of memory. The POSIX interface creates and attaches the memory in its shm_open system

call.

When the process is through using the shared memory, it detaches from it using the System V

shmdt system call or the POSIX shm_unlink system call. This routine does not free the

associated memory, because other processes may be using it, but it removes the virtual memory

mapping from the calling process.

The shared memory subsystem depends on the virtual memory system to do most of the real

work (mapping pages, handling dirty pages, etc.), so its implementation is relatively simple.

7.3 The Virtual-Filesystem Interface

In early UNIX systems, the file entries directly referenced the local filesystem inode. An inode

is a data structure that describes the contents of a file; it is more fully described in Section 9.2.

This approach worked fine when there was a single filesystem implementation. However, with

the advent of multiple filesystem types, the architecture had to be generalized. The new

architecture had to support importing of filesystems from other machines, including those that

were running different operating systems.

One alternative would have been to connect the multiple filesystems into the system as different

file types. However, this approach would have required massive restructuring of the internal

workings of the system, because current directories, references to executables, and several other

interfaces used inodes instead of file entries as their point of reference. Thus, it was easier and

more logical to add a new object-oriented layer to the system below the file entry and above the

inode. This new layer was first implemented by Sun Microsystems, which called it the

virtual-node, or vnode, layer. Interfaces in the system that had referred previously to inodes

were changed to reference generic vnodes. A vnode used by a local filesystem would refer to an

inode. A vnode used by a remote filesystem would refer to a protocol control block that

described the location and naming information necessary to access the remote file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec2

400

Contents of a Vnode

The vnode is an extensible object-oriented interface. It contains information that is generically

useful independent of the underlying filesystem object that it represents. The information stored

in a vnode includes the following:

• Flags are used for identifying generic attributes. An example of a generic attribute is a flag to

show that a vnode represents an object that is the root of a filesystem.

• The various reference counts include the number of file entries that are open for reading

and/or writing that reference the vnode, the number of file entries that are open for writing that

reference the vnode, and the number of pages and buffers that are associated with the vnode.

• A pointer to the mount structure describes the filesystem that contains the object represented

by the vnode.

• Various information to perform file read-ahead.

• A reference to the vm_object associated with the vnode.

• A reference to state about special devices, sockets, and fifos.

• A mutex to protect the flags and counters within the vnode.

• A lock-manager lock to protect parts of the vnode that may change while it has an I/O

operation in progress.

• Fields used by the name cache to track the names associated with the vnode.

• A pointer to the set of vnode operations defined for the object. These operations are described

in the next subsection.

• A pointer to private information needed for the underlying object. For the local filesystem, this

pointer will reference an inode; for NFS, it will reference an nfsnode.

• The type of the underlying object (e.g., regular file, directory, character device, etc.) is given.

The type information is not strictly necessary, since a vnode client could always call a vnode

operation to get the type of the underlying object. However, because the type often is needed,

the type of underlying objects does not change, and it takes time to call through the vnode

interface, the object type is cached in the vnode.

401

• There are clean and dirty buffers associated with the vnode. Each valid buffer in the system is

identified by its associated vnode and the starting offset of its data within the object that the

vnode represents. All the buffers that have been modified but have not yet been written back are

stored on their vnode dirty-buffer list. All buffers that have not been modified or have been

written back since they were last modified are stored on their vnode clean list. Having all the

dirty buffers for a vnode grouped onto a single list makes the cost of doing an fsync system call

to flush all the dirty blocks associated with a file proportional to the amount of dirty data. In

some UNIX systems, the cost is proportional to the smaller of the size of the file or the size of the

buffer pool. The list of clean buffers is used to free buffers when a file is deleted. Since the file

will never be read again, the kernel can immediately cancel any pending I/O on its dirty buffers,

then reclaim all its clean and dirty buffers and place them at the head of the buffer free list,

ready for immediate reuse.

• A count is kept of the number of buffer write operations in progress. To speed the flushing of

dirty data, the kernel does this operation by doing asynchronous writes on all the dirty buffers at

once. For local filesystems, this simultaneous push causes all the buffers to be put into the disk

queue so that they can be sorted into an optimal order to minimize seeking. For remote

filesystems, this simultaneous push causes all the data to be presented to the network at once so

that it can maximize their throughput. System calls that cannot return until the data are on

stable store (such as fsync) can sleep on the count of pending output operations, waiting for the

count to reach zero.

The position of vnodes within the system was shown in Figure 7.1. The vnode itself is connected

into several other structures within the kernel, as shown in Figure 7.7. Each mounted filesystem

within the kernel is represented by a generic mount structure that includes a pointer to a

filesystem-specific control block. All the vnodes associated with a specific mount point are

linked together on a list headed by this generic mount structure. When the filesystem is being

unmounted, the kernel needs to traverse this list to release all the vnodes associated with the

mount point.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig07

402

Figure 7.7 Vnode linkages. Key: D—dirty buffer; C—clean buffer.

The subset of vnodes that are actively being used are also linked together on a list headed by the

generic mount structure. Thus, when it is doing a sync system call for a filesystem, the kernel

traverses this list of active vnodes to visit just the subset of the filesystem’s vnodes that may

need to have data written to disk.

Also shown in the figure are the lists of clean and dirty buffers associated with each vnode.

Finally, there is a free list that links together all the vnodes in the system that are inactive (not

currently referenced). The free list is used when a filesystem needs to allocate a new vnode so

that the latter can open a new file; see Section 7.4.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4

403

Vnode Operations

Vnodes are designed as an object-oriented interface. Thus, the kernel manipulates them by

passing requests to the underlying object through a set of defined operations. Because of the

many varied filesystems that are supported in FreeBSD, the set of operations defined for vnodes

is both large and extensible. Unlike the original Sun Microsystems vnode implementation, the

one in FreeBSD allows dynamic addition of vnode operations either at system boot time or when

a new filesystem is dynamically loaded into the kernel. As part of activating a filesystem, it

registers the set of vnode operations that it is able to support. The kernel then builds a table that

lists the union of all operations supported by any filesystem. From that table, it builds an

operations vector for each filesystem. Supported operations are filled in with the entry point

registered by the filesystem. Filesystems may opt to have unsupported operations filled in with

either a default routine (typically a routine to bypass the operation to the next lower layer; see

Section 7.5) or a routine that returns the characteristic error “operation not supported”

[Heidemann & Popek, 1994].

In 4.3BSD, the local filesystem code provided both the semantics of the hierarchical filesystem

naming and the details of the on-disk storage management. These functions are only loosely

related. To enable experimentation with other disk-storage techniques without having to

reproduce the entire naming semantics, 4.4BSD split the naming and storage code into separate

modules. The vnode-level operations define a set of hierarchical filesystem operations. Below

the naming layer are a separate set of operations defined for storage of variable-size objects

using a flat namespace. About 60 percent of the traditional filesystem code became the

namespace management, and the remaining 40 percent became the code implementing the

on-disk file storage. The 4.4BSD system used this division to support two distinct disk layouts:

the traditional fast filesystem and a log-structured filesystem. Support for the log-structured

filesystem was dropped in FreeBSD due to lack of anyone willing to maintain it but remains as a

primary filesystem in NetBSD. The naming and disk-storage scheme are described in Chapter 8.

Pathname Translation

The translation of a pathname requires a series of interactions between the vnode interface and

the underlying filesystems. The pathname-translation process proceeds as follows:

1. The pathname to be translated is copied in from the user process or, for a remote filesystem

request, is extracted from the network buffer.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08

404

2. The starting point of the pathname is determined as either the root directory or the current

directory (see Section 2.9). The vnode for the appropriate directory becomes the lookup

directory used in the next step.

3. The vnode layer calls the filesystem-specific lookup() operation and passes to that operation

the remaining components of the pathname and the current lookup directory. Typically, the

underlying filesystem will search the lookup directory for the next component of the pathname

and will return the resulting vnode (or an error if the name does not exist).

4. If an error is returned, the top level returns the error. If the pathname has been exhausted,

the pathname lookup is done, and the returned vnode is the result of the lookup. If the

pathname has not been exhausted, and the returned vnode is not a directory, then the vnode

layer returns the “not a directory” error. If there are no errors, the top layer checks to see

whether the returned directory is a mount point for another filesystem. If it is, then the lookup

directory becomes the mounted filesystem; otherwise, the lookup directory becomes the vnode

returned by the lower layer. The lookup then iterates with step 3.

Although it may seem inefficient to call through the vnode interface for each pathname

component, doing so usually is necessary. The reason is that the underlying filesystem does not

know which directories are being used as mount points. Since a mount point will redirect the

lookup to a new filesystem, it is important that the current filesystem not proceed past a

mounted directory. Although it might be possible for a local filesystem to be knowledgeable

about which directories are mount points, it is nearly impossible for a server to know which of

the directories within its exported filesystems are being used as mount points by its clients.

Consequently, the conservative approach of traversing only a single pathname component per

lookup() call is used. There are a few instances where a filesystem will know that there are no

further mount points in the remaining path, and will traverse the rest of the pathname. An

example is crossing into a portal, described in Section 7.5.

Exported Filesystem Services

The vnode interface has a set of services that the kernel exports from all the filesystems

supported under the interface. The first of these is the ability to support the update of generic

mount options. These options include the following:

noexec

Do not execute any files on the filesystem. This option is often used when a server exports

binaries for a different architecture that cannot be executed on the server itself. The kernel will

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#ch02lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec5

405

even refuse to execute shell scripts; if a shell script is to be run, its interpreter must be invoked

explicitly.

nosuid

Do not honor the set-user-id or set-group-id flags for any executables on the filesystem. This

option is useful when a filesystem of unknown origin is mounted.

nodev

Do not allow any special devices on the filesystem to be opened. FreeBSD now uses a

special-device filesystem to manage all its special devices and no longer implements special

device nodes in the regular filesystem (see Section 8.1). However, some legacy systems still use

special device nodes, so this option can be used to explicitly ignore their interpretation.

noatime

When reading a file, do not update its access time. This option is useful on filesystems where

there are many files being frequently read and performance is more critical than updating the

file access time (which is rarely ever important).

sync

Request that all I/O to the filesystem be done synchronously.

It is not necessary to unmount and remount the filesystem to change these flags; they may be

changed while a filesystem is mounted. In addition, a filesystem that is mounted read-only can

be upgraded to allow writing. Conversely, a filesystem that allows writing may be downgraded to

read-only provided that no files are open for modification. The system administrator can

forcibly downgrade the filesystem to read-only by requesting that any files open for writing have

their access revoked.

Another service exported from the vnode interface is the ability to get information about a

mounted filesystem. The statfs system call returns a buffer that gives the numbers of used and

free disk blocks and inodes, along with the filesystem mount point, and the device, location, or

program from which the filesystem is mounted. The getfsstat system call returns information

about all the mounted filesystems. This interface avoids the need to track the set of mounted

filesystems outside the kernel, as is done in some other UNIX variants.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec1

406

7.4 Filesystem-Independent Services

The vnode interface not only supplies an object-oriented interface to the underlying filesystems

but also provides a set of management routines that can be used by the client filesystems. These

facilities are described in this section.

When the final file-entry reference to a file is closed, the usage count on the vnode drops to zero

and the vnode interface calls the inactive() vnode operation. The inactive() call notifies the

underlying filesystem that the file is no longer being used. The filesystem will often use this call

to write dirty data back to the file but will not typically reclaim the memory holding file data.

The filesystem is permitted to cache the file so that the latter can be reactivated quickly (i.e.,

without disk or network I/O) if the file is reopened.

In addition to the inactive() vnode operation being called when the reference count drops to

zero, the vnode is placed on a systemwide free list. Unlike many vendor’s vnode

implementations, which have a fixed number of vnodes allocated to each filesystem type, the

FreeBSD kernel keeps a single systemwide collection of vnodes. When an application opens a

file that does not currently have an in-memory vnode, the client filesystem calls the

getnewvnode() routine to allocate a new vnode. The kernel maintains two lists of free vnodes:

those that have data pages cached in memory and those that do not have any data pages cached

in memory. The preference is to reuse vnodes with no cached pages, since the reuse of a vnode

with cached pages will cause all the cached pages associated with that vnode to lose their

identity. If the vnodes were not classified separately, then an application that walked the

filesystem tree doing stat calls on each file that it encountered would eventually flush all the

vnodes referencing data pages, thus losing the identity of all the cached pages in the kernel. So

when allocating a new vnode, the getnewvnode() routine first checks the front of the free list of

vnodes with no cached pages and only if that list is empty does it select from the front of the list

of vnodes with cached pages.

Having selected a vnode, the getnewvnode() routine then calls the vnode’s reclaim() operation

to notify the filesystem currently using that vnode that it is about to be reused. The reclaim()

operation writes back any dirty data associated with the underlying object, removes the

underlying object from any lists that it is on (such as hash lists used to find it), and frees up any

auxiliary storage that was being used by the object. The vnode is then returned for use by the

new client filesystem.

The benefit of having a single global vnode table is that the kernel memory dedicated to vnodes

is used more efficiently than when several filesystem-specific collections of vnodes are used.

Consider a system that is willing to dedicate memory for 1000 vnodes. If the system supports 10

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_319

407

filesystem types, then each filesystem type will get 100 vnodes. If most of the activity moves to a

single filesystem (e.g., during the compilation of a kernel located in a local filesystem), all the

active files will have to be kept in the 100 vnodes dedicated to that filesystem while the other

900 vnodes sit idle. In a FreeBSD system, all 1000 vnodes could be used for the active filesystem,

allowing a much larger set of files to be cached in memory. If the center of activity moved to

another filesystem (e.g., compiling a program on an NFS mounted filesystem), the vnodes would

migrate from the previously active local filesystem over to the NFS filesystem. Here, too, there

would be a much larger set of cached files than if only 100 vnodes were available using a

partitioned set of vnodes.

The reclaim() operation is a disassociation of the underlying filesystem object from the vnode

itself. This ability, combined with the ability to associate new objects with the vnode, provides

functionality with usefulness that goes far beyond simply allowing vnodes to be moved from one

filesystem to another. By replacing an existing object with an object from the dead filesystem—a

filesystem in which all operations except close fail—the kernel revokes the object. Internally, this

revocation of an object is provided by the vgone() routine.

This revocation service is used for session management, where all references to the controlling

terminal are revoked when the session leader exits. Revocation works as follows: All open

terminal descriptors within the session reference the vnode for the special device representing

the session terminal. When vgone() is called on this vnode, the underlying special device is

detached from the vnode and is replaced with the dead filesystem. Any further operations on the

vnode will result in errors, because the open descriptors no longer reference the terminal.

Eventually, all the processes will exit and will close their descriptors, causing the reference count

to drop to zero. The inactive() routine for the dead filesystem returns the vnode to the front of

the free list for immediate reuse because it will never be possible to get a reference to the vnode

again.

The revocation service supports forcible unmounting of filesystems. If the kernel finds an active

vnode when unmounting a filesystem, it simply calls the vgone() routine to disassociate the

active vnode from the filesystem object. Processes with open files or current directories within

the filesystem find that they have simply vanished, as though they had been removed. It is also

possible to downgrade a mounted filesystem from read–write to read-only. Instead of access

being revoked on every active file within the filesystem, only those files with a nonzero number

of references for writing have their access revoked.

Finally, the ability to revoke objects is exported to processes through the revoke system call.

This system call can be used to ensure controlled access to a device such as a pseudo-terminal

port. First, the ownership of the device is changed to the desired user and the mode is set to

408

owner-access only. Then the device name is revoked to eliminate any interlopers that already

had it open. Thereafter, only the new owner is able to open the device.

The Name Cache

Name-cache management is another service that is provided by the vnode management routines.

The interface provides a facility to add a name and its corresponding vnode, to lookup a name to

get the corresponding vnode, and to delete a specific name from the cache. In addition to

providing a facility for deleting specific names, the interface also provides an efficient way to

invalidate all names that reference a specific vnode. Each vnode has a list that links together all

their entries in the name cache. When the references to the vnode are to be deleted, each entry

on the list is purged. Each directory vnode also has a second list of all the cache entries for

names that are contained within it. When a directory vnode is to be purged, it must delete all the

name-cache entries on this second list. A vnode’s name-cache entries must be purged each time

it is reused by getnewvnode() or when specifically requested by a client (e.g., when a directory is

being renamed).

The cache-management routines also allow for negative caching. If a name is looked up in a

directory and is not found, that name can be entered in the cache, along with a null pointer for

its corresponding vnode. If the name is later looked up, it will be found in the name table, and

thus the kernel can avoid scanning the entire directory to determine that the name is not there.

If a name is added to a directory, then the name cache must lookup that name and purge it if it

finds a negative entry. Negative caching provides a significant performance improvement

because of path searching in command shells. When executing a command, many shells will

look at each path in turn, searching for the executable. Commonly run executables will be

searched for repeatedly in directories in which they do not exist. Negative caching speeds these

searches.

The name cache does not solve the performance problems for directories with many entries that

are actively having names added and deleted. Each time a name is to be added, the entire

directory must be scanned to ensure that the name does not already exist. Similarly, when a

name is deleted, the directory must be scanned to find the name to be deleted. For a directory

with many entries, these linear scans are slow even if all the directory blocks are in the buffer

cache.

To avoid these costs, directories above a certain size are read into a hashed database in the

kernel memory. Every name in the directory is stored in the database along with its location in

the directory. Any free space in the directory is also noted in the database. When a file is to be

deleted, its name is found in the database, the needed write operation is queued for the directory

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_32

409

block to be updated, and the newly freed space is noted in the database for future use. When a

new entry is to be created, the database is consulted to find out if it already exists. If it does not

exist, a piece of free space of the needed size is allocated in the directory and the needed write

operation is queued for the directory block to be updated. Thus, the database eliminates all

linear scans of the directory.

A fixed-size arena is set aside to hold the directory databases. When a new directory is activated,

its needed space is reclaimed from the least recently used directory’s database. If the rate of

turnover of directory databases is too high, the kernel will consider raising the size of the arena.

Conversely, if other demands on the kernel memory arise and the turnover rate is low, the

kernel will decrease the size of the arena.

Buffer Management

Historically, UNIX systems divided the main memory into two primary pools. The first was the

virtual-memory pool that was used to cache process pages. The second was the buffer pool and

was used to cache filesystem data. The main memory was divided between the two pools when

the system booted and there was no memory migration between the pools once they were

created.

With the addition of the mmap system call, the kernel supported the mapping of files into the

address space of a process. If a file is mapped in with the MAP_SHARED attribute, changes

made to the mapped file are to be written back to the disk and should show up in read calls done

by other processes. Providing these semantics is difficult if there are copies of a file in both the

buffer cache and the virtual-memory cache. Thus, FreeBSD merged the buffer cache and the

virtual-memory cache into a single-page cache.

As described in Chapter 6, virtual memory is divided into a pool of pages holding the contents of

files and a pool of anonymous pages holding the parts of a process that are not backed by a file

such as its stack and heap. Pages backed by a file are identified by their vnode and logical block

number. Rather than rewrite all the filesystems to lookup pages in the virtual-memory pool, a

buffer-cache emulation layer was written. The emulation layer has the same interface as the old

buffer-cache routines but works by looking up the requested file pages in the virtual-memory

cache. When a filesystem requests a block of a file, the emulation layer calls the virtual-memory

system to see if it is in memory. If it is not in memory, the virtual-memory system arranges to

have it read. Normally, the pages in the virtual-memory cache are not mapped into the kernel

address space. However, a filesystem often needs to inspect the blocks that it requests—for

example, if it is a directory or filesystem metadata. Thus, the buffer-cache emulation layer must

not only find the requested block but also allocate some kernel address space and map the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06

410

requested block into it. The filesystem then uses the buffer to read, write, or manipulate the data

and, when done, releases the buffer. On release, the buffer may be held briefly but soon is

dissolved by releasing the kernel mapping, dropping the reference count on the virtual-memory

pages and releasing the header.

The virtual-memory system does not have any way to describe blocks that are identified as a

block associated with a disk. A small remnant of the buffer cache remains to hold these disk

blocks that are used to hold filesystem metadata such as superblocks, bitmaps, and inodes.

The internal kernel interface to the buffer-cache emulation layer is simple. The filesystem

allocates and fills buffers by calling the bread() routine. Bread() takes a vnode, a logical block

number, and a size, and returns a pointer to a locked buffer. The details on how a buffer is

created are given in the next subsection. Any other thread that tries to obtain the buffer will be

put to sleep until the buffer is released.

A buffer can be released in one of four ways. If the buffer has not been modified, it can simply be

released through use of brelse(), which checks for any threads that are waiting for it. If any

threads are waiting, they are awakened. Otherwise, the buffer is dissolved by returning its

contents back to the virtual-memory system, releasing its kernel address-space mapping and

releasing the buffer.

If the buffer has been modified, it is called dirty. Dirty buffers must eventually be written back

to their filesystem. Three routines are available based on the urgency with which the data must

be written. In the typical case, bdwrite() is used. Since the buffer may be modified again soon, it

should be marked as dirty but should not be written immediately. After the buffer is marked as

dirty, it is returned to the dirty-buffer list and any threads waiting for it are awakened. The

heuristic is that, if the buffer will be modified again soon, the I/O would be wasted. Because the

buffer is typically held for 20 to 30 seconds before it is written, a thread doing many small writes

will not repeatedly access the disk or network.

If a buffer has been filled completely, then it is unlikely to be written again soon, so it should be

released with bawrite(). The bawrite() routine schedules an I/O on the buffer but allows the

caller to continue running while the output completes.

The final case is bwrite(), which ensures that the write is complete before proceeding. Because

bwrite() can introduce a long latency to the writer, it is used only when a process explicitly

requests the behavior (such as the fsync system call), when the operation is critical to ensure the

consistency of the filesystem after a system crash, or when a stateless remote filesystem protocol

such as NFS is being served. A buffer that is written using bawrite() or bwrite() is placed on the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_91

411

appropriate output queue. When the output completes, the brelse() routine is called to awaken

any threads that are waiting for it or, if there is no immediate need for it, to dissolve the buffer.

Some buffers, though clean, may be needed again soon. To avoid the overhead of repeatedly

creating and dissolving buffers, the buffer-cache emulation layer provides the bqrelse() routine

to let the filesystem notify it that it expects to use the buffer again soon. The bqrelse() routine

places the buffer on a clean list rather than dissolving it.

Figure 7.8 shows a snapshot of the buffer pool. A buffer with valid contents is contained on

exactly one bufhash hash chain. The kernel uses the hash chains to determine quickly whether a

block is in the buffer pool and, if it is, to locate it. A buffer is removed only when its contents

become invalid or it is reused for different data. Thus, even if the buffer is in use by one thread,

it can still be found by another thread, although it will be locked so that it will not be used until

its contents are consistent.

Figure 7.8 Snapshot of the buffer pool. Key: V—vnode; X—file offset.

In addition to appearing on the hash list, each unlocked buffer appears on exactly one free list.

The first free list is the LOCKED list. Buffers on this list cannot be flushed from the cache. This

list was originally intended to hold superblock data; in FreeBSD, it holds only buffers being

written in background. In a background write, the contents of a dirty buffer are copied to

another anonymous buffer. The anonymous buffer is then written to disk. The original buffer

can continue to be used while the anonymous buffer is being written. Background writes are

used primarily for fast and continuously changing blocks such as those that hold filesystem

allocation bitmaps. If the block holding the bitmap was written normally, it would be locked and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig08

412

unavailable while it waited on the disk queue to be written. Thus, applications trying to write

files in the area described by the bitmap would be blocked from running while they waited for

the write of the bitmap to finish so that they could update the bitmap. By using background

writes for bitmaps, applications are rarely forced to wait to update a bitmap.

The second list is the DIRTY list. Buffers that have been modified, but not yet written to disk,

are stored on this list. The DIRTY list is managed using a least recently used algorithm. When a

buffer is found on the DIRTY list, it is removed and used. The buffer is then returned to the end

of the DIRTY list. When too many buffers are dirty, the kernel starts the buffer daemon running.

The buffer daemon writes buffers starting from the front of the DIRTY list. Thus, buffers written

repeatedly will continue to migrate to the end of the DIRTY list and are not likely to be

prematurely written or reused for new blocks.

The third free list is the CLEAN list. This list holds blocks that a filesystem is not currently using

but that it expects to use soon. The CLEAN list is also managed using a least recently used

algorithm. If a requested block is found on the CLEAN list, it is returned to the end of the list.

The final list is the list of empty buffers—the EMPTY list. The empty buffers are just headers and

have no memory associated with them. They are held on this list waiting for another mapping

request.

When a new buffer is needed, the kernel first checks to see how much memory is dedicated to

the existing buffers. If the memory in use is below its permissible threshold, a new buffer is

created from the EMPTY list. Otherwise, the oldest buffer is removed from the front of the

CLEAN list. If the CLEAN list is empty, the buffer daemon is awakened to clean up and release a

buffer from the DIRTY list.

Implementation of Buffer Management

Having looked at the functions and algorithms used to manage the buffer pool, we now turn our

attention to the implementation requirements for ensuring the consistency of the data in the

buffer pool. Figure 7.9 shows the support routines that implement the interface for getting

buffers. The primary interface to getting a buffer is through bread(), which is called with a

request for a data block of a specified size for a specified vnode. There is also a related interface,

breadn(), that both gets a requested block and starts read-ahead for additional blocks. Bread()

first calls getblk() to find out whether the data block is available in an existing buffer. If the

block is available in a buffer, getblk() calls bremfree() to take the buffer off whichever free list it

is on and to lock it; bread() can then return the buffer to the caller.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig09

413

Figure 7.9 Procedural interface to the buffer-allocation system.

If the block is not already in an existing buffer, getblk() calls getnewbuf() to allocate a new

buffer, using the algorithm described in the previous subsection. The new buffer is then passed

to allocbuf(), which is responsible for determining how to constitute the contents of the buffer.

The common case is that the buffer is to contain a logical block of a file. Here, allocbuf() must

request the needed block from the virtual-memory system. If the virtual-memory system does

not already have the needed block, it arranges to get it brought into its page cache. The allocbuf()

routine then allocates an appropriately sized piece of kernel address space and requests the

virtual-memory system to map the needed file block into that address space. The buffer is then

marked filled and returned through getblk() and bread().

The other case is that the buffer is to contain a block of filesystem metadata such as a bitmap or

an inode block that is associated with a disk device rather than a file. Because the virtual

memory does not (currently) have any way to track such blocks, they can be held in memory

only within buffers. Here, allocbuf() must call the kernel malloc() routine to allocate memory to

hold the block. The allocbuf() routine then returns the buffer to getblk() and bread() marked

busy and unfilled. Noticing that the buffer is unfilled, bread() passes the buffer to the strategy()

routine for the underlying filesystem to have the data read in. When the read completes, the

buffer is returned.

To maintain the consistency of the filesystem, the kernel must ensure that a disk block is

mapped into, at most, one buffer. If the same disk block were present in two buffers, and both

buffers were marked dirty, the system would be unable to determine which buffer had the most

current information. Figure 7.10 shows a sample allocation. In the middle of the figure are the

blocks on the disk. Above the disk an old buffer is shown containing a 4096-byte fragment for a

file that presumably has been removed or shortened. The new buffer is going to be used to hold

a 4096-byte fragment for a file that is presumably being created and that will reuse part of the

space previously held by the old file. The kernel maintains the consistency by purging old

buffers when files are shortened or removed. Whenever a file is removed, the kernel traverses

the file’s list of dirty buffers. For each buffer, the kernel cancels its write request and dissolves

the buffer so that the buffer cannot be found in the buffer pool again. For a file being partially

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig10

414

truncated, only the buffers following the truncation point are invalidated. The system can then

allocate the new buffer, knowing that the buffer maps the corresponding disk blocks uniquely.

Figure 7.10 Potentially overlapping allocation of buffers.

7.5 Stackable Filesystems

The early vnode interface was simply an object-oriented interface to an underlying filesystem.

As the demand grew for new filesystem features, it became desirable to find ways of providing

them without having to modify the existing and stable filesystem code. One approach was to

provide a mechanism for stacking several filesystems on top of one another other [Rosenthal,

1990]. The stacking ideas were refined and implemented in the 4.4BSD system [Heidemann &

Popek, 1994]. The implementation of the stacking has been refined in FreeBSD, but the

semantics remain largely unchanged from those found in 4.4BSD. The bottom of a vnode stack

tends to be a disk-based filesystem, whereas the layers used above it typically transform their

arguments and pass on those arguments to a lower layer.

In all UNIX systems, the mount command takes a special device as a source and maps that

device onto a directory mount point in an existing filesystem. When a filesystem is mounted on

a directory, the previous contents of the directory are hidden; only the contents of the root of the

newly mounted filesystem are visible. To most users, the effect of the series of mount commands

done at system startup is the creation of a single seamless filesystem tree.

Stacking also uses the mount command to create new layers. The mount command pushes a

new layer onto a vnode stack; an unmount command removes a layer. Like the mounting of a

filesystem, a vnode stack is visible to all processes running on the system. The mount command

identifies the underlying layer in the stack, creates the new layer, and attaches that layer into the

filesystem namespace. The new layer can be attached to the same place as the old layer (covering

the old layer) or to a different place in the tree (allowing both layers to be visible). An example is

shown in the next subsection.

If layers are attached to different places in the namespace, then the same file will be visible in

multiple places. Access to the file under the name of the new layer’s namespace will go to the

new layer, whereas that under the old layer’s namespace will go to only the old layer.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref04

415

When a file access (e.g., an open, read, stat, or close) occurs to a vnode in the stack, that vnode

has several options:

• Perform the requested operations and return a result.

• Pass the operation without change to the next-lower vnode on the stack. When the operation

returns from the lower vnode, it may modify the results or simply return them.

• Modify the operands provided with the request and then pass it to the next-lower vnode. When

the operation returns from the lower vnode, it may modify the results, or simply return them.

If an operation is passed to the bottom of the stack without any layer taking action on it, then

the interface will return the error “operation not supported.”

Vnode interfaces released before 4.4BSD implemented vnode operations as indirect function

calls. The requirements that intermediate stack layers bypass operations to lower layers and that

new operations can be added into the system at boot or module load time mean that this

approach is no longer adequate. Filesystems must be able to bypass operations that may not

have been defined at the time that the filesystem was implemented. In addition to passing

through the function, the filesystem layer must also pass through the function parameters,

which are of unknown type and number.

To resolve these two problems in a clean and portable way, the kernel places the vnode

operation name and its arguments into an argument structure. An example access-check call

and its implementation for the UFS filesystem are shown in Figure 7.11. Note that the

vop_access_args structure is normally declared in a header file, but here it is declared at the

function site to simplify the example. The argument structure is passed as a single parameter to

the vnode operation. Thus, all calls on a vnode operation will always have exactly one parameter,

which is the pointer to the argument structure. If the vnode operation is one that is supported by

the filesystem, then it will know what the arguments are and how to interpret them. If it is an

unknown vnode operation, then the generic bypass routine can call the same operation in the

next-lower layer, passing to the operation the same argument structure that it received. In

addition, the first argument of every operation is a pointer to the vnode operation description.

This description provides the information about the operation to a bypass routine, including the

operation’s name and the location of the operation’s parameters.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig11

416

Figure 7.11 Call to and function header for access vnode operation.

Simple Filesystem Layers

The simplest filesystem layer is nullfs. It makes no transformations on its arguments, simply

passing through all requests that it receives and returning all results that it gets back. Although

it provides no useful functionality if it is simply stacked on top of an existing vnode, nullfs can

provide a loopback filesystem by mounting the filesystem rooted at its source vnode at some

other location in the filesystem tree. The code for nullfs is also an excellent starting point for

designers who want to build their own filesystem layers. Examples that could be built include a

compression layer or an encryption layer.

417

A sample vnode stack is shown in Figure 7.12. The figure shows a local filesystem on the bottom

of the stack that is being exported from /local via an NFS layer. Clients within the

administrative domain of the server can import the /local filesystem directly because they are

all presumed to use a common mapping of UIDs to user names.

Figure 7.12 Stackable vnodes.

The umapfs filesystem works much like the nullfs filesystem in that it provides a view of the file

tree rooted at the /local filesystem on the /export mount point. In addition to providing a copy

of the /local filesystem at the /export mount point, it transforms the credentials of each

system call made to files within the /export filesystem. The kernel does the transformation

using a mapping that was provided as part of the mount system call that created the umapfs

layer.

The /export filesystem can be exported to clients from an outside administrative domain that

uses different UIDs and GIDs. When an NFS request comes in for the /export filesystem, the

umapfs layer modifies the credential from the foreign client by mapping the UIDs used on the

foreign client to the corresponding UIDs used on the local system. The requested operation with

the modified credential is passed down to the lower layer corresponding to the /local filesystem,

where it is processed identically to a local request. When the result is returned to the mapping

layer, any returned credentials are mapped inversely so that they are converted from the local

UIDs to the outside UIDs, and this result is sent back as the NFS response.

There are three benefits to this approach:

1. There is no cost of mapping imposed on the local clients.

2. There are no changes required to the local filesystem code or the NFS code to support

mapping.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig12

418

3. Each outside domain can have its own mapping. Domains with simple mappings consume

small amounts of memory and run quickly; domains with large and complex mappings can be

supported without detracting from the performance of simpler environments.

Vnode stacking is an effective approach for adding extensions, such as the umapfs service.

The Union Filesystem

The union filesystem is another example of a middle filesystem layer. Like the nullfs, it does not

store data but just provides a namespace transformation. It is loosely modeled on the work on

the 3-D filesystem [Korn & Krell, 1989], on the Translucent filesystem [Hendricks, 1990], and

on the Automounter [Pendry & Williams, 1994]. The union filesystem takes an existing

filesystem and transparently overlays the latter on another filesystem. Unlike most other

filesystems, a union mount does not cover up the directory on which the filesystem is mounted.

Instead, it shows the logical merger of both directories and allows both directory trees to be

accessible simultaneously [Pendry & McKusick, 1995].

A small example of a union-mount stack is shown in Figure 7.13. Here, the bottom layer of the

stack is the src filesystem that includes the source for the shell program. Being a simple

program, it contains only one source and one header file. The upper layer that has been union

mounted on top of src initially contains just the src directory. When the user changes directory

into shell, a directory of the same name is created in the top layer. Directories in the top layer

corresponding to directories in the lower layer are created only as they are encountered while

the top layer is traversed. If the user were to run a recursive traversal of the tree rooted at the

top of the union-mount location, the result would be a complete tree of directories matching the

underlying filesystem. In our example, the user now types make in the shell directory. The sh

executable is created in the upper layer of the union stack. To the user, a directory listing shows

the sources and executable all apparently together, as shown on the right in Figure 7.13.

Figure 7.13 A union-mounted filesystem. The /usr/src filesystem is on the bottom, and the

/tmp/src filesystem is on the top.

All filesystem layers, except the top one, are treated as though they were read-only. If a file

residing in a lower layer is opened for reading, a descriptor is returned for that file. If a file

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig13

419

residing in a lower layer is opened for writing, the kernel first copies the entire file to the top

layer and then returns a descriptor referencing the copy of the file. The result is that there are

two copies of the file: the original unmodified file in the lower layer and the modified copy of the

file in the upper layer. When the user performs a directory listing, any duplicate names in the

lower layer are suppressed. When a file is opened, a descriptor for the file in the uppermost layer

in which the name appears is returned. Thus, once a file has been copied to the top layer,

instances of the file in lower layers become inaccessible.

The tricky part of the union filesystem is handling the removal of files that reside in a lower

layer. Since the lower layers cannot be modified, the only way to remove a file is to hide it by

creating a whiteout directory entry in the top layer. A whiteout is an entry in a directory that has

no corresponding file; it is distinguished by having an inode number of 1. If the kernel finds a

whiteout entry while searching for a name, the lookup is stopped and the “no such file or

directory” error is returned. Thus, the file with the same name in a lower layer appears to have

been removed. If a file is removed from the top layer, it is necessary to create a whiteout entry

for it only if there is a file with the same name in the lower level that would reappear.

When a process creates a file with the same name as a whiteout entry, the whiteout entry is

replaced with a regular name that references the new file. Because the new file is being created

in the top layer, it will mask out any files with the same name in a lower layer. When a user

performs a directory listing, whiteout entries and the files that they mask usually are not shown.

However, there is an option that causes them to appear.

One feature that has long been missing in UNIX systems is the ability to recover files after they

have been deleted. For the union filesystem, the kernel can implement file recovery trivially by

simply removing the whiteout entry to expose the underlying file. For filesystems that provide

file recovery, users can recover files by using a special option to the remove command. Processes

can recover files by using the undelete system call.

When a directory whose name appears in a lower layer is removed, a whiteout entry is created

just as it would be for a file. However, if the user later attempts to create a directory with the

same name as the previously deleted directory, the union filesystem must treat the new

directory specially to avoid having the previous contents from the lower-layer directory reappear.

When a directory that replaces a whiteout entry is created, the union filesystem sets a flag in the

directory metadata to show that this directory should be treated specially. When a directory scan

is done, the kernel returns information about only the top-level directory; it suppresses the list

of files from the directories of the same name in the lower layers.

The union filesystem can be used for many purposes:

420

• It allows several different architectures to build from a common source base. The source pool

is NFS mounted onto each of several machines. On each host machine, a local filesystem is

union mounted on top of the imported source tree. As the build proceeds, the objects and

binaries appear in the local filesystem that is layered above the source tree. This approach not

only avoids contaminating the source pool with binaries, but also speeds the compilation

because most of the filesystem traffic is on the local filesystem.

• It allows compilation of sources on read-only media such as CD-ROMs. A local filesystem is

union mounted above the CD-ROM sources. It is then possible to change into directories on the

CD-ROM and to give the appearance of being able to edit and compile in that directory.

• It allows creation of a private source directory. The user creates a source directory in her own

work area and then union mounts the system sources underneath that directory. This feature is

possible because the restrictions on the mount command have been relaxed. If the sysctl

vfs.usermount option has been enabled, any user can do a mount if she owns the directory on

which the mount is being done and she has appropriate access permissions on the device or

directory being mounted (read permission is required for a read-only mount, read–write

permission is required for a read–write mount). Only the user who did the mount or the

superuser can unmount a filesystem.

Other Filesystems

There are several other filesystems included as part of FreeBSD. The portal filesystem mounts a

process onto a directory in the file tree. When a pathname that traverses the location of the

portal is used, the remainder of the path is passed to the process mounted at that point. The

process interprets the path in whatever way it sees fit, then returns a descriptor to the calling

process. This descriptor may be for a socket connected to the portal process. If it is, further

operations on the descriptor will be passed to the portal process for the latter to interpret.

Alternatively, the descriptor may be for a file elsewhere in the filesystem.

Consider a portal process mounted on /dialout used to manage a bank of dialout modems.

When a process wanted to connect to an outside number, it would open

/dialout/15105551212/28800 to specify that it wanted to dial 1-510-555-1212 at 28800 baud.

The portal process would get the final two pathname components. Using the final component, it

would determine that it should find an unused 28800-baud modem. It would use the other

component as the number to which to place the call. It would then write an accounting record

for future billing, and would return the descriptor for the modem to the process.

421

An interesting use of the portal filesystem is to provide an Internet service directory. For

example, with an Internet portal process mounted on /net, an open of

/net/tcp/McKusick.COM/smtp returns a TCP socket descriptor to the calling process that is

connected to the SMTP server on McKusick.COM. Because access is provided through the

normal filesystem, the calling process does not need to be aware of the special functions

necessary to create a TCP socket and to establish a TCP connection [Stevens & Pendry, 1995].

There are several filesystems that are designed to provide a convenient interface to kernel

information. The procfs filesystem is normally mounted at /proc and provides a view of the

running processes in the system. Its primary use is for debugging, but it also provides a

convenient interface for collecting information about the processes in the system. A directory

listing of /proc produces a numeric list of all the processes in the system. The /proc interface is

more fully described in Section 4.9.

The fdesc filesystem is normally mounted on /dev/fd and provides a list of all the active file

descriptors for the currently running process. An example where this is useful is specifying to an

application that it should read input from its standard input. Here, you can use the pathname

/dev/fd/0 instead of having to come up with a special convention, such as using the name “–”

to tell the application to read from its standard input.

The linprocfs emulates a subset of the Linux process filesystem and is normally mounted on

/compat/linux/proc. It provides similar information to that provided by the /proc filesystem,

but in a format expected by Linux binaries.

Finally, there is the cd9660 filesystem. It allows ISO-9660-compliant filesystems, with or

without Rock Ridge extensions, to be mounted. The ISO-9660 filesystem format is most

commonly used on CD-ROMs.

Exercises

7.1 Where are the read and write attributes of an open file descriptor stored?

7.2 Why is the close-on-exec bit located in the per-process descriptor table instead of in the

system file table?

7.3 Why are the file-table entries reference counted?

7.4 What three shortcomings of lock files are addressed by the FreeBSD descriptor-locking

facilities?

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec9

422

7.5 What two problems are raised by mandatory locks?

7.6 Why is the implementation of select split between the descriptor-management code and the

lower-level routines?

7.7 Describe how the process selecting flag is used in the implementation of select.

7.8 The syncer daemon starts as part of system boot. Once every second, it does an fsync on any

vnodes that it finds that have been dirty for 30 seconds. What problem could arise if this

daemon were not run?

7.9 When is a vnode placed on the free list?

7.10 Why must the lookup routine call through the vnode interface once for each component in

a pathname?

7.11 Give three reasons for revoking access to a vnode.

7.12 Why are the buffer headers allocated separately from the memory that holds the contents

of the buffer?

7.13 Asynchronous I/O is provided through the aio_read and aio_write systems calls rather

than through the traditional read and write system calls. What problems arise with providing

asynchronous I/O in the existing read–write interface?

*7.14 Why are there both a CLEAN list and a DIRTY list instead of all buffers being managed on

one list?

*7.15 If a process reads a large file, the blocks of the file will fill the virtual memory cache

completely, flushing out all other contents. All other processes in the system then will have to go

to disk for all their filesystem accesses. Write an algorithm to control the purging of the buffer

cache.

*7.16 Vnode operation parameters are passed between layers in structures. What alternatives

are there to this approach? Explain why your approach is more or less efficient, compared to the

current approach, when there are less than five layers in the stack. Also compare the efficiency

of your solution when there are more than five layers in the stack.

References

Accetta et al., 1986.

423

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, & M. Young, “Mach: A New

Kernel Foundation for UNIX Development,” USENIX Association Conference Proceedings, pp.

93–113, June 1986.

Bach, 1986.

M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, NJ,

1986.

Dijkstra & Genuys, 1968.

E. Dijkstra & F. Genuys, editor, “Cooperating Sequential Processes,” in Programming

Languages, pp. 43–112, Academic Press, New York, NY, 1968.

Heidemann & Popek, 1994.

J. S. Heidemann & G. J. Popek, “File-System Development with Stackable Layers,” ACM

Transactions on Computer Systems, vol. 12, no. 1, pp. 58–89, February 1994.

Hendricks, 1990.

D. Hendricks, “A Filesystem for Software Development,” USENIX Association Conference

Proceedings, pp. 333–340, June 1990.

Korn & Krell, 1989.

D. Korn & E. Krell, “The 3-D File System,” USENIX Association Conference Proceedings, pp.

147–156, June 1989.

Lemon, 2001.

J. Lemon, “Kqueue: A Generic and Scalable Event Notification Facility,” Proceedings of the

Freenix Track at the 2001 USENIX Annual Technical Conference, pp. 141–154, June 2001.

Pendry & McKusick, 1995.

J. Pendry & M. K. McKusick, “Union Mounts in 4.4BSD-Lite,” USENIX Association Conference

Proceedings, pp. 25–33, January 1995.

Pendry & Williams, 1994.

J. Pendry & N. Williams, “AMD: The 4.4BSD Automounter Reference Manual,” in 4.4BSD

System Manager’s Manual, pp. 13:1–57, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

424

Peterson, 1983.

G. Peterson, “Concurrent Reading While Writing,” ACM Transactions on Programming

Languages and Systems, vol. 5, no. 1, pp. 46–55, January 1983.

Rosenthal, 1990.

D. Rosenthal, “Evolving the Vnode Interface,” USENIX Association Conference Proceedings, pp.

107–118, June 1990.

Stevens, 1999.

R. Stevens, UNIX Network Programming Volume 2, Second Edition, Prentice-Hall, Englewood

Cliffs, NJ, 1999.

Stevens & Pendry, 1995.

R. Stevens & J. Pendry, “Portals in 4.4BSD,” USENIX Association Conference Proceedings, pp.

1–10, January 1995.

425

Chapter 8. Devices

8.1 Device Overview

This chapter describes the part of the system that interfaces with the hardware as is shown in

the bottom part of Figure 7.1. Historically, the device interface was static and simple. Devices

were discovered as the system was booted and did not change thereafter. Filesystems were built

in a partition of a single disk. When a disk driver received a request from a filesystem to write a

block, it would add the base offset of the partition and perform a bounds check based on

information from its disk label. It would then do the requested I/O and return the result or error

to the filesystem. A typical disk driver could be written in a few hundred lines of code.

As the system has evolved, the complexity of the I/O system has increased with the addition of

new functionality. The new functionality can be broken into three categories:

1. Disk management

2. I/O routing and control

3. Networking

Each of these areas is handled by a new subsystem in FreeBSD.

Disk management consists of organizing the myriad ways that disks can be used to build a

filesystem. A disk may be broken up into several slices, each of which can be used to support a

different operating system. Each of these slices may be further subdivided into partitions that

can be used to support filesystems as they did historically. However, it is also possible to

combine several slices and/or partitions to create a virtual partition on which to build a

filesystem that spans several disks. The virtual partition may concatenate several partitions to

stripe the filesystem across several disks, thus providing a high-bandwidth filesystem, or the

underlying partitions may be put together in a Redundant Array of Inexpensive Disks (RAID) to

provide a higher level of reliability and accessibility than a single disk. Or, the partitions may be

organized into two equal-size groups and mirrored to provide an even higher level of reliability

and accessibility than RAID. The aggregation of physical disk partitions into a virtual partition

in these ways is referred to as volume management.

Rather than building all this functionality into all the filesystems or disk drivers, it has been

abstracted out into the GEOM (geometry) layer. The GEOM layer takes as input the set of disks

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig01

426

available on the system. It is responsible for doing volume management. At a low level, volume

management creates, maintains, and interprets the slice tables and the disk labels defining the

partitions within each slice. At a higher level, GEOM combines the physical disk partitions

through striping, RAID, or mirroring to create the virtual partitions that are exported to the

filesystem layer above. The virtual partition appears to the filesystem as a single large disk. As

the filesystem does I/O within the virtual partition, the GEOM layer determines which disk(s)

are involved and breaks up and dispatches the I/O request to the appropriate physical drives.

The operation of the GEOM layer is described in Section 8.7.

The PC I/O Architecture

Historically, architectures had only one or two I/O busses and types of disk controllers. As

described in the next subsection, a modern PC today can have several types of disks connected

to the machine through five or more different types of interfaces. The complexity of these disk

controllers rivals that of the entire early UNIX operating system. Early controllers could only

handle one disk I/O at a time. Today’s controllers can typically juggle up to 64 simultaneous

requests through a scheme called tagged queueing. A request works its way through the

controller being posted as it is received, scheduled to be done, completed, and reported back to

the requester. I/O may also be cached in the controller to allow future requests to be handled

more quickly. Another task handled by the controller is to provide a replacement with an

alternate good sector for a disk sector with a permanent error.

The PC I/O architecture is shown in Figure 8.1. Far greater detail is available at Arch [2014]. On

the left of the figure is one or more CPUs that have a high-speed interconnect to the system’s

main memory and the graphics memory that drives the system display. Note that the L1 and L2

caches are not shown in this picture because they are considered as part of the CPU. Historically,

the memory and graphics were connected to the CPU via the northbridge bus. Modern Intel and

AMD CPUs have subsumed the roles of the memory controller and the graphics controller. Here,

they have converged with the system-on-chip design of small embedded architectures.

Figure 8.1 The PC I/O architecture. Key: PCH—Peripheral Controller Hub; SATA—Serial

Advanced Technology Attachment; USB—Universal Serial Bus; PCI-E—Peripheral Component

Interconnect Express; APIC—Advanced Programmable Interrupt Controller; ACPI—Advanced

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref04

427

Configuration and Power Interface; IPMI—Intelligent Platform Management Interface;

LPC—Low Pin Count interface.

Beneath the CPUs is the Peripheral Controller Hub (PCH) that connects all the I/O busses to the

system. These busses include the following:

• The SATA (Serial Advanced Technology Attachment) bus. SATA has replaced the parallel ATA

bus that was common in earlier PC designs. SATA supports the ability to hot-plug drives and

transfer data at up to 600 Mbyte per second. Devices connected via SATA have a one-to-one

relationship between the device and a port: there is no daisy chaining of devices as was present

in earlier busses such as SCSI. Commercially available systems have at least two and usually

more SATA ports available. Switching from a parallel to a serial bus allowed the size of the

connectors and cables to be shrunk to the point where having one cable per device does not

present any cable routing or space problems even in laptop systems.

• The USB (Universal Serial Bus). The USB provides a high-speed input typically used for

external hard disks, removable flash disks, video cameras, scanners, and printers, as well as

human input devices such as keyboards, mice, and joysticks. USB 2.0 provides speeds up to 48

Mbyte per second, while USB 3.0 provides speeds up to 500 Mbyte per second.

• The PCI (Peripheral Component Interconnect) and PCI-E (Peripheral Component

Interconnect Express) busses. These busses provide a well-designed architecture for high-speed

throughput and automated autoconfiguration for modern I/O cards. The older PCI bus uses a

parallel interface and a simple bus topology, while the newer PCI-E bus uses a star topology and

a serial interface that allows multiple channels to bond together to increase the bandwidth to the

peripheral. These busses also have the advantage of being available on many other computer

architectures besides the PC.

• The APIC (Advanced Programmable Interrupt Controller). The APIC maps the device

interrupts to IRQ (Interrupt ReQuest) values for the CPU. Most modern machines use an

IOAPIC (I/O Advanced Programmable Interrupt Controller) that provides much finer-grain

control over the device interrupts. All processors since the Pentium Pro (1997) have had an

LAPIC (Local Advanced Programmable Interrupt Controller) that works with the IOAPIC to

support distribution of interrupts among the CPUs.

• The Firewire (IEEE 1394) bus. Firewire transfers data at up to 80 Mbyte per second. It is used

by memory-card readers, external disks, and some professional digital cameras. Firewire is

largely being replaced by USB.

428

• The ACPI (Advanced Configuration and Power Interface). The ACPI is present on all mobile

systems, desktops, and servers. It provides topology and discovery information to the kernel for

system resources like PCI/PCI-E busses and APICs. It controls various components, including

power and sleep buttons, back-light intensity of screens, and cooling fans and status lights. It

also controls power-saving modes for the CPU, chassis, and system peripherals [ACPI, 2013].

• IPMI (Intelligent Platform Management Interface). The IPMI subsystem is provided on many

server-class machines to allow for remote monitoring and control of the system over a network

connection. The network connection may be shared with a network port on the system or a

completely separate network port may be present allowing for complete out-of-band control of

the machine. IPMI provides access to various environmental registers including component

temperatures, fan speeds, and power levels. It may also offer a serial-over-LAN capability where

a virtual serial console is available over the network.

• Support for the AC97 (Audio CODEC) sound standard. This standard allows a single DSP

(Digital Signal Processor) to be used to support both a modem and sound.

• The Low Pin Count (LPC) interface. A specialized combination of general-purpose I/O pins, it

can be used to emulate legacy interfaces. These interfaces include access to floppy disks, serial

ports, and the PS2 keyboard and mouse ports. Most machines connect the keyboard and mouse

through the USB port, but some systems still provide PS2 ports for legacy devices. The

emulation happens transparently in the Basic Input Output System (BIOS) code via the System

Management Interrupt. The result is that the kernel sees what appears to be classic controller.

For example, the kernel might detect a legacy serial port but it is really soft emulation in the

BIOS controlling pins assigned to the serial port on the LPC. The LPC exists as a transition

technology as the last remnants of first-generation PC devices are retired.

The Structure of the FreeBSD Mass Storage I/O Subsystem

There were several disk subsystems in early versions of FreeBSD. The first support for ATA and

SCSI disks came from Mach 2.5 and were present in FreeBSD 1.0. Both of these were highly

device specific. Efforts to replace both resulted in CAM (Common Access Method), introduced

in FreeBSD 3.0, and the new ATA driver, introduced in FreeBSD 4.0. As the ATA effort was

proceeding, the CAM maintainers attempted to have it become a CAM attachment. However, the

strange reservation and locking rules of the ATA register-file model was a poor match for the

CAM implementation, so the ATA implementation, with the exception of the CD-ROM driver,

remained separate until FreeBSD 9.0 when the CAM implementation replaced it.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref01

429

CAM is an ANSI (American National Standards Institute) standard (X3.232-1996). A revised

and enhanced version of CAM was proposed by the X3T10 group but was never approved [ANSI,

2002]. Although originally used for SCSI, CAM is a way of interfacing host-bus adapter (HBA)

drivers (software-interface-module drivers in CAM terminology), midlayer transport glue, and

peripheral drivers. This layering provides a powerful abstraction that separates the physical bus

protocol from the logical device protocol, making it suitable for many modern I/O systems.

While CAM seems unlikely to ever be approved as a standard, it still provides a useful

framework for implementing a storage subsystem.

The FreeBSD CAM implementation supports SPI (SCSI Parallel Interface), Fibre Channel [ANSI,

2003], UMASS (USB Mass Storage), IEEE 1394 (Firewire), SAS (Serial Attached SCSI), SATA,

and iSCSI (Internet SCSI). It has peripheral drivers for disks (da), cdrom (cd), tapes (sa), tape

changers (ch), processor devices (pt), and enclosure services (ses). Additionally, there is the

target emulator that allows a computer to emulate any of the supported devices and a

pass-through interface that allows user applications to send I/O requests to any CAM-controlled

peripheral. The operation of the CAM layer is described in Section 8.8.

The structure of the FreeBSD Disk I/O subsystem is shown in Figure 8.2. As the figure shows,

disk drives may be attached to the system through many busses.

Figure 8.2 The structure of the FreeBSD disk I/O subsystem.

Fibre Channel was once the fastest and most expensive disk connection technology, employing

fiberoptic or high-speed copper serial links. Such disk systems are usually used on large servers

or when the data must travel farther than just within the case of the computer or to an adjacent

rack. Its use is declining in favor of cheaper iSCSI and SAS.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig02

430

The more common fast choice is a controller that plugs into the PCI-E bus, such as a SAS

controller, which can typically support 8 to 16 devices directly attached, and hundred of devices

attached via a switched network of bus expanders. SAS disks generally are faster and more

reliable under heavy load than the more consumer-desktop-oriented SATA disks. SAS allows for

transfer speeds up to 1.2 Gbyte per second, twice the speed of the cheapest and most ubiquitous

SATA disks.

Serial interface SATA disks may also be connected through the other busses available on the PC

architecture. These include Firewire and USB. Usually, the disks are connected through an

interface that acts as a bridge from the interface to a PCI bus. The USB and Firewire busses may

also support other types of devices that will be directly connected to their device drivers rather

than be managed by the CAM layer. The iSCSI interface is a way to connect disk drives and disk

enclosures directly to a TCP/IP network. It provides many of the benefits of Fibre Channel but

at a fraction of the cost.

Network device drivers provide another important piece of functionality within the kernel and

are covered in Section 8.5.

Autoconfiguration is the procedure carried out by the system to recognize and enable the

hardware devices present in a system. Historically, autoconfiguration was done just once when

the system was booted. In current machines, particularly portable machines such as laptop

computers, devices routinely come and go while the machine is operating. Thus, the kernel must

be prepared to configure, initialize, and make available hardware when it arrives and to drop

operations with hardware that has departed. FreeBSD uses a device-driver infrastructure called

newbus to manage the devices on the system. Newbus builds a tree rooted at an abstract root0

node and descends in a treelike structure down the various I/O paths and terminates at the

various devices connected to the machine. On a uniprocessor system, the root0 node is

synonymous with the CPU. On a multiprocessor system the root0 node is logically connected to

each of the CPUs. Device autoconfiguration is described in Section 8.9, which gives the details of

configuring devices when they appear and cleaning up after them when they disappear.

Device Naming and Access

Historically, FreeBSD used static device nodes located in /dev to provide access to the hardware

devices on the system. This approach had several problems:

• The device nodes are persistent entities in the filesystem and do not necessarily represent the

hardware that is really connected to and available on the machine.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec9

431

• When new hardware is added to the kernel, the system administrator needs to create new

device nodes to access the hardware.

• If the hardware is later removed, the device nodes remain even though they are no longer

usable.

• Device nodes require coordination of the major and minor numbering schemes between the

device-driver tables in the kernel and the shell scripts that create them.

FreeBSD 5 replaced the static /dev directory with the DEVFS filesystem that is mounted on

/dev when the kernel is booted. As devices are discovered, either at boot or while the system is

running, their names appear in the /dev filesystem.

When a device disappears or becomes unavailable, its entries in /dev disappear. DEVFS has

several benefits over the old static /dev directory:

• Only devices that are currently available appear in /dev.

• Adding a device to the system causes its device nodes to appear in /dev, obviating the need for

a system administrator to create new device nodes.

• It is no longer necessary to coordinate device major and minor numbers between the kernel

and device-creation scripts or filesystem device nodes.

One benefit of the old static /dev was that device nodes could be given nonstandard names,

access permissions, owners, or groups. To provide the same flexibility, DEVFS has a rule-set

mechanism that allows these changes to be automated in the new /dev implementation. These

rule sets can be put in place when the system is booted and can be created or modified at any

time that the system is running. Each rule provides a pattern to identify the device nodes to be

affected. For each matched device node, it specifies one or more actions that should be taken.

Actions include creating a symbolic link to provide a nonstandard name as well as setting

nonstandard permissions, owner, or group. The rule sets are checked and applied whenever a

new device node is created or destroyed. They may also be checked and applied when explicitly

requested to do so by the system administrator, either manually or through a system-initiated

script.

Zero or more dev_t entries (major and minor numbers) in /dev may be created by the device

drivers each time that a device_t is created as part of the autoconfiguration process. Most device

drivers create a single /dev entry, but network device drivers do not create any entries, whereas

disk devices may create dozens. Additional entries may appear in /dev as the result of cloning

432

devices. For example, a cloning device such as a pseudo-terminal creates a new device each time

that it is opened.

8.2 I/O Mapping from User to Device

Computers store and retrieve data through supporting peripheral I/O devices. These devices

typically include mass-storage devices, such as disk drives, archival-storage devices, and

network interfaces. Storage devices such as disks are accessed through I/O controllers that

manage the operation of their attached devices according to I/O requests from the CPU.

Many hardware device peculiarities are hidden from the user by high-level kernel facilities, such

as the filesystem and socket interfaces. Other such peculiarities are hidden from the bulk of the

kernel itself by the I/O system. The I/O system consists of buffer-caching systems, general

device-driver code, and drivers for specific hardware devices that must finally address

peculiarities of the specific devices. An overview of the entire kernel is shown in Figure 7.1. The

bottom third of the figure comprises the various I/O systems.

There are three main kinds of I/O in FreeBSD: the character-device interface, the

filesystem, and the socket interface with its related network devices. The character interface

appears in the filesystem namespace and provides unstructured access to the underlying

hardware. The network devices do not appear in the filesystem; they are accessible through the

socket interface. Character devices are described in Section 8.3. The disk devices used by the

filesystems are described in Section 8.4. The fast filesystem is described in Chapter 9; the

Zettabyte filesystem (ZFS) is described in Chapter 10. The network devices used by the socket

interface are described in Section 8.5. Sockets are described in Chapter 12.

A character-device interface comes in two styles that depend on the characteristics of the

underlying hardware device. For some character-oriented hardware devices, such as terminal

multiplexers, the interface is truly character oriented, although higher-level software, such as

the terminal driver, may provide a line-oriented interface to applications. However, for

block-oriented devices such as disks, a character-device interface is an unstructured or raw

interface. For this interface, I/O operations do not go through the filesystem or the page cache;

instead, they are made directly between the device and buffers in the application’s virtual

address space. Consequently, the size of the operations must be a multiple of the underlying

block size required by the device and, on some machines, the application’s I/O buffer must be

aligned on a suitable boundary.

Internal to the system, I/O devices are accessed through a set of entry points provided by each

device’s device driver. A character-device interface uses a cdevsw structure. A cdevsw

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_121
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_394
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_85

433

structure is created for each device as the device is configured either at the time that the system

is booted or later when the device is attached to the system.

All devices in the system are managed by the DEVFS filesystem. As devices are configured,

entries are created for the device in the /dev filesystem. Each entry in the /dev filesystem has a

direct reference to its corresponding cdevsw entry. When a program accesses a device directly

by calling the open() system call with a path that terminates within the DEVFS filesystem, such

as /dev/cu, the DEVFS filesystem searches for a matching entry in its internal list of devices

and, if it finds a match, calls the the open() routine that is present in the device’s cdevsw. When

opened, most devices allocate new state to handle their new consumer. Devices that can only be

opened by one user will return an error when a second user attempts to call open().

Device Drivers

A device driver is divided into three main sections:

1. Autoconfiguration and initialization routines

2. Routines for servicing I/O requests (the top half)

3. Interrupt service routines (the bottom half)

The autoconfiguration portion of a driver is responsible for probing for a hardware device to

see whether the latter is present and to initialize the device and any associated software state

that is required by the device driver. This portion of the driver is typically called only once,

either when the system is initialized or, for transient devices, when they are connected to the

system. Autoconfiguration is described in Section 8.9.

The section of a driver that services I/O requests is invoked because of system calls or by the

virtual-memory system. This portion of the device driver executes synchronously in the top half

of the kernel and is permitted to block by calling the sleep() routine. We commonly refer to this

body of code as the top half of a device driver.

Interrupt service routines are invoked when the system fields an interrupt from a device.

Consequently, these routines cannot depend on any per-process state. In FreeBSD, an interrupt

has its own thread context, so it can block if it needs to do so. However, the cost of extra thread

switches is sufficiently high that for good performance device drivers should attempt to avoid

blocking. We commonly refer to a device driver’s interrupt service routines as the bottom half

of a device driver.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_286
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_26

434

In addition to these three sections of a device driver, an optional crash-dump routine may be

provided. This routine, if present, is invoked when the system recognizes an unrecoverable error

and wishes to record the contents of physical memory for use in postmortem analysis. Most

device drivers for disk controllers provide a crash-dump routine. The use of the crash-dump

routine is described in Section 15.5.

I/O Queueing

Device drivers typically manage one or more queues of I/O requests in their normal operation.

When an input or output request is received by the top half of the driver, it is recorded in a data

structure that is placed on a per-device queue for processing. When an input or output operation

completes, the device driver receives an interrupt from the controller. The interrupt service

routine removes the appropriate request from the device’s queue, notifies the requester that the

command has completed, and then starts the next request from the queue. The I/O queues are

the primary means of communication between the top and bottom halves of a device driver.

Because I/O queues are shared among asynchronous routines, access to the queues must be

synchronized. Routines in both the top and bottom half of the device driver must acquire the

mutex associated with the queue before manipulating it to avoid corruption from simultaneous

modifications (mutexes are described in Section 4.3). For example, a bottom-half interrupt

might try to remove an entry that had not yet been fully linked in by the top half.

Synchronization among multiple processes starting I/O requests is also serialized through the

mutex associated with the queue.

Interrupt Handling

Interrupts are generated by devices to signal that an operation has completed or that a change in

status has occurred. On receiving a device interrupt, the system schedules the appropriate

device-driver interrupt-service routine with one or more parameters that uniquely identify the

device that requires service. These parameters are needed because device drivers typically

support multiple devices of the same type. If the interrupting device’s identity were not supplied

with each interrupt, the driver would be forced to poll all the potential devices to identify the

device that interrupted.

The system arranges for the unit-number parameter to be passed to the interrupt-service

routine for each device by installing the address of an auxiliary glue routine in the

interrupt-vector table. This glue routine, rather than the actual interrupt service routine, is

invoked to service the interrupt; it takes the following actions:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3

435

1. Collects the relevant hardware parameters and places them in the space reserved for them by

the device

2. Updates statistics on device interrupts

3. Schedules the interrupt service thread for the device

4. Clears the interrupt-pending flag in the hardware

5. Returns from the interrupt

Because a glue routine is interposed between the interrupt-vector table and the interrupt-service

routine, special-purpose instructions, which cannot be generated from C, and which are needed

by the hardware to support interrupts, can be kept out of the device driver. This interposition of

a glue routine permits device drivers to be written without assembly language.

8.3 Character Devices

Almost all peripherals on the system, except network interfaces, have a character-device

interface. A character device usually maps the hardware interface into a byte stream, similar to

that of the filesystem. Character devices of this type include terminals (e.g., /dev/ttyu0), line

printers (e.g, /dev/lp0), an interface to physical main memory (/dev/mem), and a bottomless

sink for data and an endless source of end-of-file markers (/dev/null). Some of these character

devices, such as terminal devices, may display special behavior on line boundaries but, in

general, are still treated as byte streams.

Devices such as high-speed graphics interfaces may have their own buffers or may always do I/O

directly into the address space of the user; they, too, are classed as character devices. Some of

these drivers may recognize special types of records and thus be further from the plain

byte-stream model.

The character interface for disks is also called the raw-device interface; it provides an

unstructured interface to the device. Its primary task is to arrange for direct I/O to and from the

device. The disk driver handles the asynchronous nature of I/O by maintaining and ordering an

active queue of pending transfers. Each entry in the queue specifies whether it is for reading or

writing, the main-memory address for the transfer, the device address for the transfer (usually a

disk sector number), and the transfer size (in bytes).

All other restrictions of the underlying hardware are passed through the character interface to

its clients, making character-device interfaces the furthest from the byte-stream model. Thus,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_311

436

the user process must abide by the sectoring restrictions imposed by the underlying hardware.

For magnetic disks, the file offset and transfer size must be a multiple of the sector size. The

character interface does not copy the user data into a kernel buffer before putting them on an

I/O queue. Instead, it arranges to have the I/O done directly to or from the address space of the

process. The size and alignment of the transfer is limited by the physical device. However, the

transfer size is not restricted by the maximum size of the internal buffers of the system because

these buffers are not used.

The character interface is typically used by only those system-utility programs that have an

intimate knowledge of the data structures on the disk. The character interface also allows

user-level prototyping; for example, the 4.2BSD filesystem implementation was written and

largely tested as a user process that used a raw disk interface before the code was moved into the

kernel.

Character devices are described by entries in the cdevsw structure. The entry points in this

structure (see Table 8.1) are used to support raw access to block-oriented devices such as disks,

as well as normal access to character-oriented devices through the terminal driver. Raw devices

support a subset of the entry points that correspond to those entry points found in

block-oriented devices. The base set of entry points for all device drivers is described in this

section; the additional set of entry points for block-oriented devices is given in Section 8.4.

Table 8.1 Entry points for character and raw device drivers.

Raw Devices and Physical I/O

Most raw devices differ from filesystems only in the way that they do I/O. Whereas filesystems

read and write data to and from kernel buffers, raw devices transfer data to and from user

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec4

437

buffers. Bypassing kernel buffers eliminates the memory-to-memory copy that must be done by

filesystems but also denies applications the benefits of data caching. In addition, for devices that

support both raw and filesystem access, applications must take care to preserve consistency

between data in the kernel buffers and data written directly to the device. The raw device should

be used only when the filesystem is unmounted or mounted read-only. Raw-device access is

used by many filesystem utilities such as the filesystem check program, fsck, and by programs

that read and write backup media such as dump.

Because raw devices bypass kernel buffers, they are responsible for managing their own buffer

structures. Most devices borrow swap buffers to describe their I/O. The read and write routines

use the physio() routine to start a raw I/O operation (see Figure 8.3). The strategy parameter

identifies a block-device strategy routine that starts I/O operations on the device. The buffer is

used by physio() in constructing the request(s) made to the strategy routine. The device,

read–write flag, and uio parameters completely specify the I/O operation that should be done.

The maximum transfer size for the device is checked by physio() to adjust the size of each I/O

transfer before the latter is passed to the strategy routine. This check allows the transfer to be

done in sections according to the maximum transfer size supported by the device.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig03

438

Figure 8.3 Algorithm for physical I/O.

Raw-device I/O operations request the hardware device to transfer data directly to or from the

data buffer in the user program’s address space described by the uio parameter. Thus, unlike

I/O operations that perform direct memory access (DMA) from buffers in the kernel address

space, raw I/O operations must check that the user’s buffer is accessible by the device and must

lock it into memory for the duration of the transfer.

Character-Oriented Devices

Character-oriented I/O devices are typified by terminal ports, although they also include

printers and other character- or line-oriented devices. These devices are usually accessed

through the terminal driver, described in Section 8.6. The close tie to the terminal driver has

heavily influenced the structure of character device drivers. For example, several entry points in

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec6

439

the cdevsw structure exist for communication between the generic terminal handler and the

terminal-multiplexer hardware drivers.

Entry Points for Character Device Drivers

A device driver for a character device is defined by its entries in a cdevsw structure:

open

Opens the device in preparation for I/O operations. A device’s open entry point will be called for

each open system call on a special-device file or, internally, when a device is prepared for

mounting a filesystem with the mount system call. The open() routine will commonly verify the

integrity of the associated medium. For example, it will verify that the device was identified

during the autoconfiguration phase and, for disk drives, that a medium is present and ready to

accept commands.

close

Closes a device. The close() routine is called after the final client interested in using the device

terminates. These semantics are defined by the higher-level I/O facilities. Disk devices have

nothing to do when a device is closed and thus use a null close() routine. Devices that support

access to only a single client must mark the device as available once again.

read

Reads data from a device. For raw devices, this entry point normally just calls the physio()

routine with device-specific parameters. For terminal-oriented devices, a read request is passed

immediately to the terminal driver. For other devices, a read request requires that the specified

data be copied into the kernel’s address space, typically with the uiomove() routine (see the end

of Section 7.1), and then be passed to the device.

write

Writes data to a device. This entry point is a direct parallel of the read entry point: raw devices

use physio(), terminal-oriented devices call the terminal driver to do this operation, and other

devices handle the request internally.

ioctl

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1

440

Performs an operation other than a read or write. This entry point originally provided a

mechanism to get and set device parameters for terminal devices; its use has expanded to other

types of devices as well. Historically, ioctl operations have varied widely from device to device.

poll

Checks the device to see whether data are available for reading or space is available for writing

data. The poll entry point is used by the select and poll system calls in checking file descriptors

associated with device special files. For raw devices, a poll operation is meaningless since data

are not buffered. Here, the entry point is set to seltrue(), a routine that returns true for any poll

request.

mmap

Maps a device offset into a memory address. This entry point is called by the virtual-memory

system to convert a logical mapping to a physical address. For example, it converts an offset in

/dev/mem to a kernel address.

kqfilter

Adds the device to the kernel event list for the calling thread. Kernel events are described in

Section 7.1.

8.4 Disk Devices

Disk devices fill a central role in the UNIX kernel and thus have additional features and

capabilities beyond those of the typical character device driver. Historically, UNIX provided two

interfaces to disks. The first was a character-device interface that provided direct access to the

disk in its raw form. This interface is still available in FreeBSD and is described in Section 8.3.

The second was a block-device interface that converted from the user abstraction of a disk as an

array of bytes to the structure imposed by the underlying physical medium. Block devices were

accessible directly through appropriate device special files. Block devices were eliminated in

FreeBSD 5 because they were not needed by any common applications and added considerable

complexity to the kernel.

Entry Points for Disk Device Drivers

Device drivers for disk devices contain all the usual character device entry points described in

Section 8.3. In addition to those entry points there are two entry points that are used only for

disk devices:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec3

441

strategy

Starts a read or write operation, and return immediately. I/O requests to or from filesystems

located on a device are translated by the system into calls to the block I/O routines bread() and

bwrite(). These block I/O routines in turn call the device’s strategy routine to read or write data

not in the memory cache. Each call to the strategy routine specifies a pointer to a buf structure

containing the parameters for an I/O request. If the request is synchronous, the caller must

sleep (on the address of the buf structure) until I/O completes.

dump

If performing a dump has been configured during system startup, writes all physical memory to

the configured device. Typically, the dump entry point saves the contents of physical memory on

secondary storage into an area used for swapping. To speed the dump and to save space, the

system can be configured to perform a mini-dump that writes only the physical memory in use

by the kernel. The system automatically performs a dump when it detects an unrecoverable

error and is about to crash. The dump is used in postmortem analysis to help find the problem

that caused the system to crash. The dump routine is invoked with context switching and

interrupts disabled; thus, the device driver must poll for device status rather than wait for

interrupts. At least one disk device is expected to support this entry point.

Sorting of Disk I/O Requests

The kernel provides a generic disksort() routine that can be used by all the disk device drivers to

sort I/O requests into a drive’s request queue using an elevator sorting algorithm. This

algorithm sorts requests in a cyclic, ascending, block order, so that requests can be serviced with

minimal one-way scans over the drive. This ordering was originally designed to support the

normal read-ahead requested by the filesystem and also to counteract the filesystem’s random

placement of data on a drive. With the improved placement algorithms in the current filesystem,

the effect of the disksort() routine is less noticeable; disksort() produces the largest effect when

there are multiple simultaneous users of a drive.

The disksort() algorithm is shown in Figure 8.4. A drive’s request queue is made up of two lists

of requests ordered by block number. The first is the active list; the second is the next-pass list.

The request at the front of the active list shows the current position of the drive. If the next-pass

list is not empty, it is made up of requests that lie before the current position. Each new request

is sorted into either the active or the next-pass list, according to the request’s location. When the

heads reach the end of the active list, the next-pass list becomes the active list, an empty

next-pass list is created, and the drive begins servicing the new active list.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_103
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig04

442

Figure 8.4 Algorithm for disksort().

Disk sorting can also be important on machines that have a fast processor and do not sort

requests within the device driver. Here, if a write of several Mbyte is honored in order of

queueing, it can block other processes from accessing the disk while it completes. Sorting

requests provides some scheduling, which more fairly distributes accesses to the disk controller.

Most modern disk controllers accept several concurrent I/O requests. The controller then sorts

these requests to minimize the time needed to service them. If the controller could always

manage all outstanding I/O requests, then there would be no need to have the kernel do any

sorting. However, most controllers can handle only about 15 outstanding requests. Since a busy

system can easily generate bursts of activity that exceed the number that the disk controller can

manage simultaneously, disk sorting by the kernel is still necessary.

Disk Labels

A disk may be broken up into several partitions, each of which may be used for a separate

filesystem or swap area. A disk label contains information about the partition layout and usage

including type of filesystem, swap partition, or unused. For the fast filesystem, the partition

usage contains enough additional information to enable the filesystem check program (fsck) to

locate the alternate superblocks for the filesystem. The disk label also contains any other

driver-specific information.

Having labels on each disk means that partition information can be different for each disk and

that it carries over when the disk is moved from one system to another. It also means that, when

443

previously unknown types of disks are connected to the system, the system administrator can

use them without changing the disk driver, recompiling, and rebooting the system.

The label is located near the beginning of each drive—usually, in block zero. It must be located

near the beginning of the disk to enable it to be used in the first-level bootstrap. Most

architectures have hardware (or first-level) bootstrap code stored in read-only memory (ROM).

When the machine is powered up or the reset button is pressed, the CPU executes the hardware

bootstrap code from the ROM. The hardware bootstrap code typically reads the first few sectors

on the disk into the main memory, then branches to the address of the first location that it read.

The program stored in these first few sectors is the second-level bootstrap. Having the disk label

stored in the part of the disk read as part of the hardware bootstrap allows the second-level

bootstrap to have the disk-label information. This information gives it the ability to find the root

filesystem and hence the files, such as the kernel, needed to bring up FreeBSD. The size and

location of the second-level bootstrap are dependent on the requirements of the hardware

bootstrap code. Since there is no standard for disk-label formats and the hardware bootstrap

code usually understands only the vendor label, it is usually necessary to support both the

vendor and the FreeBSD disk labels. Here, the vendor label must be placed where the hardware

bootstrap ROM code expects it; the FreeBSD label must be placed out of the way of the vendor

label but within the area that is read in by the hardware bootstrap code so that it will be

available to the second-level bootstrap.

For example, on the PC architecture, the BIOS expects sector 0 of the disk to contain boot code,

a slice table commonly referred to as the Master Boot Record (MBR), and a magic number.

MBR slices can be used to break the disk up into several pieces. The BIOS brings in sector 0 and

verifies the magic number. The sector 0 boot code then searches the MBR table to determine

which slice is marked active. This boot code then brings in the operating-system-specific

bootstrap from the active slice and, if marked bootable, runs it. This operating-system specific

bootstrap includes the disk label described above and the code to interpret it.

The MBR is limited to 32-bit block numbers providing access to only the first 2 Tbyte of the disk,

thus leaving the remainder hidden from the MBR and tricky to use. The MBR is also limited to a

maximum of four partitions on the disk. The replacement for the MBR for the PC architecture is

the globally unique identifier partition table (GPT) label that has 64-bit block numbers

providing access to 8 zettabyte. It also permits up to 128 partitions on the disk.

Booting a disk with a GPT label requires an Extended Firmware Interface (EFI) BIOS. To allow

use of GPT labels on legacy systems without the EFI BIOS, FreeBSD supports a hybrid mode

that contains a compatibility MBR at sector 0 of the disk, and a GPT label at sector 1. This

configuration allows a legacy BIOS to boot the disk via the MBR label. The MBR label references

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_208

444

a boot-loader program that understands the GPT label and can continue the boot process using

the GPT information. Even if the disk is larger than 2 Tbyte, the boot chain is contained at the

front of the disk and is safe from the limits of the MBR. Another advantage of the GPT label is

that its expanded support for partitions makes the BSD disk label redundant. Thus, FreeBSD

systems partitioned with GPT will typically not have a BSD disk label.

8.5 Network Devices

All the networking protocols and facilities of FreeBSD ultimately rest atop some form of

networking device driver. A networking device driver is responsible for taking network data as

packets and transmitting or receiving them on some underlying physical media. The most

common type of network driver in the FreeBSD kernel works with Ethernet hardware [Xerox,

1980]. Unlike most other devices in the kernel, network devices are completely asynchronous.

They receive data whenever it happens to arrive and send data without waiting for any type of

acknowledgment. It is the responsibility of the socket API described in Chapter 12, and the

network protocols described in Chapters 13 and 14 to present a more easily understood model.

The socket API presents applications with a sequenced byte stream and looks more like reading

or writing a local file.

Entry Points for Network Drivers

All network devices are described by a data structure called an ifnet that encapsulates the

running state of the device and exposes most of the functions that the kernel uses to interact

with the underlying hardware. The functions defined for a network device driver are shown in

Table 8.2. Two functions that are not included in the ifnet structure that are essential to the

proper functioning of a network device are the driver’s attach and detach routines. Whether a

network device is discovered at system boot time or dynamically during run time, the first

function that must be called is the driver’s attach routine. The attach routine is responsible for

talking directly to the hardware to set up hardware registers and allocate resources for use by

the driver. The attach routine also fills in the methods of the ifnet structure with the correct

functions for working with the device and thereby hooks the device into the rest of the

networking subsystems so that network protocols and facilities can use the hardware. The

driver’s detach routine is called when a device is turned off or otherwise removed from the

system and is responsible for freeing the resources and destroying the associations created by

the attach routine.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab02

445

Table 8.2 Functions defined for network drivers.

Configuration and Control

All network device drivers expose a single routine to the kernel that configures and controls the

underlying device. A generic I/O control routine or ioctl is stored in the driver’s ifnet structure

when the device driver is first loaded into the kernel. The driver’s ioctl routine is responsible for

enabling, disabling, and resetting the device. It also turns special device-specific features on and

off at runtime. Each message that can be sent to the device driver is encoded as a macro and is

checked via a switch statement in the driver’s ioctl routine. Table 8.3 lists the most commonly

implemented control messages. Each message is encoded as a socket ioctl and most have both a

set and a get form. The set form, shown here, has an S in the message name, as in

SIOCSIFFLAGS. The get form replaces the S with a G so that SIOCGIFFLAGS retrieves the

current set of flags from the device. User programs and networking subsystems call the driver’s

ioctl routine using a generic function provided for this purpose. Only the kernel calls the

driver-specific ioctl routine directly. The messages that handle multicast addresses, which are

maintained in a device-specific data structure, use ADD and DEL instead of get and set.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab03

446

Table 8.3 Network driver control messages.

The details of many of the features controlled by the driver’s ioctl routine are device specific, but

their meaning to the kernel is generic enough for us to describe them in general. Each

networking device in the system can be in one of two states, either UP or DOWN. The state of

the device does not reflect whether it is turned on or initialized, but whether it will receive or

transmit packets. A device may be fully initialized and yet not be up. The up and down state of a

device is an administrative control that can be set any time during the life of the kernel, so long

as the device’s hardware has been properly initialized. The SIOCIFFLAGS message is

responsible for setting the device’s administrative state as well as a few other features. These

features include promiscuous mode, where a device can receive all the packets that pass by it on

the network, rather than just the packets that it knows are bound for it. Each device knows

which packets are meant for it because the device’s network layer address is set via the

SIOCSIFADDR message. Many network devices can support different native sizes of packets

called the maximum transmission unit (MTU). For Ethernet, the standard is still 1500

bytes but often can be increased to 9000, 16,384, or 64 Kbyte. The device’s native packet size is

controlled via the SIOCSIFMTU message. The last two messages in the table control different

device-specific features. Earlier network devices could only communicate at a single speed and

over a single low-level medium such as coaxial cable. Modern devices can often operate at

various speeds from 10 Mbit per second up through one or 10 Gbit. Most devices will

automatically set themselves up to communicate at their top speed, but it is possible to change

the speed of the device by using the SIOCSIFMEDIA ioctl. Features unrelated to the medium on

which the network is built, such as support for Virtual LANs (VLANs) and various types of

hardware offloading, where the device takes over part of the work normally done by the kernel’s

networking software, are called capabilities and are controlled through the SIOCSIFCAP ioctl.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38

447

Packet Reception

Network data can appear at any time on a network device; there is no need for an application to

have made any sort of request. The data arriving on the device might be a request for a service

that the system is providing, such as a Web or domain name server. When data arrive at a

network device, they are held in memory buffers within the network device until the kernel

transfers them into its own buffers. The device’s memory buffers are often maintained as a ring

as shown in Figure 8.5. The underlying hardware places data in the ring via DMA and the kernel

empties the ring in response to some form of interrupt. Using a ring as the shared data structure

between the kernel and the device provides a buffer between the lower-level hardware and the

kernel executing on the CPU. The ring makes it easier to do work in batches, decreasing the

overhead incurred by the kernel when it retrieves data from the device. Whenever data is

received by the network device, it interrupts the kernel, asking it to retrieve the data that has

been received. Storing the data in a ring allows the device to continue to receive data while the

kernel is simultaneously retrieving data from the ring. If there is more than one packet present

in the receive ring when the kernel services the device interrupt, it can retrieve the data in

batches, reducing the number of expensive interrupts that need to be processed.

Figure 8.5 Packet ring. Owner key: D—owned by the device; K—owned by the kernel.

A receive ring is made up of receive descriptors, each of which contains a pointer to some

memory where the received data resides as well as an ownership bit that describes its validity. In

Figure 8.5, “D” marks buffers owned by the device and “K” marks buffers owned by the kernel.

Specifically, a “K” ownership bit tells the kernel it can read the data out of the memory

associated with the receive descriptor. When the device receives data, it places it into the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig05

448

memory of the next descriptor that it owns. When the data has all been moved, the device

changes the setting of the ownership bit to “K” to show that the data is now owned by the kernel.

The device can continue to place data in the ring without the aid of the kernel until the ring is

full, that is, all descriptors are owned by the kernel. When data is delivered into the receive ring,

the device will trigger some form of interrupt, signalling the kernel to retrieve the data. The

kernel will then read as many packets as are available in the ring up to some pre-set maximum.

It will pass them into the networking subsystems through whatever function pointer the driver’s

attach routine placed into the if_input entry in the driver’s ifnet structure. Often, the if_input

routine is associated with the type of hardware that the device is supporting such as Ethernet or

Wireless. The kernel returns the descriptors to the device by setting the ownership bit back to

“D” once it has copied the data into its own buffers.

The ring structure is used to buffer the packets between the device and the kernel. A kernel

running on a processor that is faster than the underlying network hardware will be able to keep

the ring nearly empty as it should be able to keep up with the underlying hardware. On a system

with high-speed networking hardware, such as a 10-Gbit Ethernet (Nm 10GbE), the adapter ring

makes it possible for the underlying device to absorb periodic bursts of packets and then have

the kernel read each burst of packets in a single batch.

Packet Transmission

Every ifnet structure contains a queue of data to be transmitted called the interface queue.

Whenever some part of the kernel wants to transmit data on a network device, it enqueues the

data on the device’s interface queue and then calls the if_start() routine stored in the device’s

ifnet structure. The pointer to the if_start() routine was placed in the driver’s ifnet structure by

the attach() routine when the device was first initialized.

Packet transmission is similar to packet reception in that the kernel and the device again share a

ring data structure called the transmit ring. The transmit ring acts as a buffer between the kernel

and the device into which the kernel writes data and from which the device reads it and

transmits it on the underlying hardware. A transmit ring is made up of transmit descriptors that

are nearly identical to receive descriptors. They contain a pointer to memory and an ownership

bit. The only differences between receive and transmit descriptors pertain to statistics and

special device features such as packet timestamping and checksum offloading. During

transmission, the roles of the kernel and the device are reversed, with the kernel writing data

into the transmit ring, changing the state of the ownership bit, and then telling the device that

there is data in the ring to be sent. The driver’s if_start() routine removes the data from the

interface queue and places it into the transmit ring.

449

8.6 Terminal Handling

Before the advent of bitmapped displays and Web browsers, most users of UNIX systems

interacted with the computer through some type of terminal. Terminals were either

line-oriented teletypes, which meant that the user could only make changes to a single line of

text before submitting it to the system, or they were screen based, with the most commonly

available terminals providing a screen 80 characters wide by 24 lines high. The plethora of

different terminals that could be hooked to a UNIX system meant that the parts of the kernel

that handled interactions with terminals eventually grew to be complex. Users of modern UNIX

systems interact with terminals less than their predecessors but programmers and systems

administrators continue to use some form of terminal-based command-line interface to have

effective and direct control over the system. Terminals also provide the most efficient and

low-overhead method of controlling a system. Bitmapped displays and Web servers require far

more resources from the system than does a simple terminal. In common FreeBSD-embedded

and purpose-built systems such as routers, switches, and storage systems, the ability to interact

with the system via a terminal is a requirement, whereas a Web interface communicating to a

Web server is considered a luxury.

The terminal handling facilities in FreeBSD incorporate three separate subsystems: the tty

driver, serial-device drivers, and the pseudo-terminal driver. The most common type of user

session in FreeBSD uses a pseudo-terminal, provided by the pts driver. The pseudo-terminal

driver provides support for a device pair, termed the master and slave devices. The slave device

provides a process with an interface identical to the one described for terminals in this section.

Anything written on the master device is provided to the slave device as input, and anything

written on the slave device is presented to the master device as input. The driver for the master

device emulates all hardware-support details described in the rest of this section.

Pseudo-terminals are used by xterm, as well as the remote-login program ssh. In a typical use,

xterm opens the master side of a pseudo-terminal and directs the keystrokes from the window

manager to its input while taking its output and drawing the characters in its window. It forks a

process that opens the slave side of the pseudo-terminal and then runs the user’s preferred shell

with the slave set up as the standard input, output, and error. As each keystroke is typed by the

user, it is written into the master side of the pseudo-terminal, where it is processed by the line

discipline and eventually emerges as input to the user’s shell. Output from the shell is written

into the slave side of the pseudo-terminal, where it is processed by the line discipline and

eventually emerges from the master side and is displayed in the xterm window. Each

pseudo-terminal opened by the system appears in the /dev/pts directory of the DEVFS

filesystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_194

450

The pseudo-terminal driver commonly processes data one character at a time using the

character-device interface described in the user-interface subsection later in this section. As

each character is typed at the keyboard or arrives from a user over the network, it is presented

as input to the master side of the pseudo-terminal. The input of characters is independent of

process requests to read user input from the slave side of the pseudo-terminal. Characters are

processed when they are received and are stored until a process requests them, thus allowing

type-ahead. When a pseudo-terminal supports user interaction with the system, terminal

input represents the keystrokes of the user, and terminal output is displayed on the user’s screen.

When we use the term terminal, we are describing a concept that applies to both

pseudo-terminals and hardwired terminal devices.

Terminal-Processing Modes

FreeBSD supports several modes of terminal processing. Much of the time, keyboard input is in

canonical mode (also commonly referred to as cooked mode or line mode), in which input

characters are echoed by the operating system as they are typed by the user but are buffered

internally until a newline character is received. Only after the receipt of a newline character is

the entire line made available to the shell or other process reading from the keyboard. If the

process attempts to read from the keyboard before a complete line is ready, the process will

sleep until a newline character is received, regardless of a partial line already having been

received. The common case where a carriage return behaves like a newline character and causes

the line to be made available to the waiting process is implemented by the operating system and

is configurable by the user or process. In canonical mode, the user may correct typing errors,

deleting the most recently typed character with the erase character, deleting the most recent

word with the word-erase character, or deleting the entire current line with the kill

character. Other special characters generate signals sent to processes associated with the

keyboard; these signals may abort processing or may suspend it. Additional characters start and

stop output, flush output, or prevent special interpretation of the succeeding character. The user

can type several lines of input, up to an implementation-defined limit, without waiting for input

to be read and removed from the input queue. The user can specify the special processing

characters or can selectively disable them.

Editors and programs that communicate with other computers generally run in noncanonical

mode (also commonly referred to as raw mode or character-at-a-time mode). In this

mode, the system makes each typed character available to be read as input as soon as that

character is received. All special-character input processing is disabled, no erase or other

line-editing processing is done, and all characters are passed to the program reading from the

keyboard.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_312
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_43

451

In addition to processing input characters, the terminal interface must do certain processing on

output. Most of the time, this processing is simple: newline characters are converted to a

carriage return plus a line feed. In addition to performing character processing, the terminal

output routines must manage flow control, both with the user (using stop and start characters)

and with the process. Because users absorb output slowly in comparison with computer

peripherals, a program writing to a terminal may produce output much faster than that output

can be handled by the user. When a process has filled the terminal output queue, it will be put to

sleep and will be restarted when enough output has drained.

Most of the character processing done for terminal interfaces is independent of whether it is

associated with a pseudo-terminal or a real hardware device. Therefore, most of this processing

is done by common routines in the tty driver, or terminal handler. A hardware interface is

supported by a specific device driver, which is responsible for receiving and transmitting

characters and for handling some of the synchronization with the process doing output. The

hardware driver is called by the tty driver to do output; in turn, it calls the tty driver with input

characters as they are received. The pseudo-terminal interface acts as a software emulation of an

asynchronous serial interface, making it indistinguishable from real hardware to the rest of the

kernel.

Earlier versions of FreeBSD implemented a flexible abstraction for the handling of terminal

lines, called a line discipline. The line discipline was implemented as a set of routines that were

called through a structure of function pointers, allowing the line discipline to be specialized for

different types of devices. After hardware-based terminals became obsolete, there was no longer

a need to have a flexible line-discipline system, since the only terminals that remain are virtual

(i.e., xterm) and they all share a common control language. The integration of the new terminal

layer in FreeBSD 8 removed all but the original terminal line discipline that handles interactive

character processing. To maintain internal-interface compatibility, the line discipline routines

remain and are called from within the tty driver and the various serial device drivers that are a

part of FreeBSD.

The terminal line-discipline routines translate between the lower-layer hardware devices and

the abstract implementation of the terminal. The main functions provided by the line discipline

are listed in Table 8.4. Like all device drivers, a terminal driver is divided into the top half,

which runs synchronously when called to process a system call, and the bottom half, which runs

asynchronously when characters are presented to it from a pseudo-terminal or hardware device.

The line discipline provides routines that perform common terminal processing for both the top

and bottom halves of a terminal driver.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab04

452

Table 8.4 Entry points for the TTY line discipline.

All the devices that can be placed beneath the tty device support the normal set of character

device-driver entry points specified by the character-device switch. When a new serial device is

attached to the system, it calls the tty_alloc() routine to hook a new ttydevsw structure into the

system. Several of the system calls (read, write, and ioctl) immediately transfer control to the

line discipline when called. The standard terminal-polling routine ttypoll() usually is used as the

device driver poll entry in the character-device switch. The open and close routines are similar;

the line-discipline open entry is called when a line first enters a discipline. Similarly, the

discipline close() routine is called to exit from a discipline. All these routines are called from

above in response to a corresponding system call.

The remaining line-discipline entries are called by the bottom half of the device driver to report

input or status changes detected at interrupt time. The ttydisc_rint (receiver interrupt) entry is

called with each character received on a line. The corresponding entry for outputting characters

is the ttydisc_getc routine, which is called by the output routine to fetch characters from the line

discipline to output. Transitions in modem-control lines may be detected by the hardware driver.

Here, the ttydisc_modem routine is called passing the new state.

User Interface

The terminal line discipline is derived from a discipline that was present in System V, as

modified by the POSIX standard, and then was modified further to provide reasonable

compatibility with previous 4.2BSD line disciplines. The base structure used to describe

terminal state in System V was the termio structure. The base structure used by POSIX and by

FreeBSD is the termios structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_438

453

The standard programmatic interface for control of the terminal line discipline is the ioctl

system call. This call sets and gets values for special processing characters and modes, sets and

gets hardware serial line parameters, and performs other control operations. Most ioctl

operations require one argument in addition to a file descriptor and the command; the

argument is the address of an integer or structure from which the system gets parameters or

into which information is placed. Because the POSIX Working Group thought that the ioctl

system call was difficult and undesirable to specify—because of its use of arguments that varied

in size, in type, and in whether they were being read or written—the group members chose to

introduce new interfaces for each of the ioctl calls that they believed were necessary for

application portability. Each of these calls is named with a tc prefix. In the FreeBSD system,

each of these calls is translated (possibly after preprocessing) into an ioctl call.

The following set of ioctl commands apply specifically to the standard terminal line discipline.

This list is not exhaustive, although it presents all the commands that are used commonly.

TIOCGETA

TIOCSETA

Gets (sets) the termios parameters for this line, including line speed, behavioral parameters, and

special characters such as erase and kill characters.

TIOCSETAW

Sets the termios parameters for this line after waiting for the output buffer to drain (but without

discarding any characters from the input buffer).

TIOCSETAF

Sets the termios parameters for this line after waiting for the output buffer to drain and

discarding any characters from the input buffer.

TIOCFLUSH

Discards all characters from the input and output buffers.

TIOCDRAIN

Waits for the output buffer to drain.

TIOCEXCL

TIOCNXCL

454

Gets (releases) exclusive use of the line.

TIOCCBRK

TIOCSBRK

Clears (sets) the terminal hardware BREAK condition for the line.

TIOCGPGRP

TIOCSPGRP

Gets (sets) the process group associated with this terminal (see the next subsection).

TIOCOUTQ

Returns the number of characters in the terminal’s output buffer.

TIOCSTI

Enters characters into the terminal’s input buffer as though they were typed by the user.

TIOCNOTTY

Disassociates the current controlling terminal from the process (see the next subsection).

TIOCSCTTY

Makes the terminal the controlling terminal for the process (see the next subsection).

TIOCSTART

TIOCSTOP

Starts (stops) output on the terminal.

TIOCGWINSZ

TIOCSWINSZ

Gets (sets) the terminal or window size for the terminal line; the window size includes width and

height in characters and (optionally, on graphical displays) in pixels.

455

Process Groups, Sessions, and Terminal Control

The process-control (job-control) facilities, described in Section 4.8, depend on the terminal I/O

system to control access to the terminal. Each job (a process group that is manipulated as a

single entity) is known by a process-group ID.

Each terminal structure contains a pointer to an associated session. When a process creates a

new session, that session has no associated terminal. To acquire an associated terminal, the

session leader must make an ioctl system call using a file descriptor associated with the terminal

and specifying the TIOCSCTTY flag. When the ioctl succeeds, the session leader is known as the

controlling process. In addition, each terminal structure contains the process group ID of

the foreground process group. When a session leader acquires an associated terminal, the

terminal process group is set to the process group of the session leader. The terminal process

group may be changed by making an ioctl system call using a file descriptor associated with the

terminal and specifying the TIOCSPGRP flag. Any process group in the session is permitted to

become the foreground process group for the terminal.

Signals that are generated by characters typed at the terminal are sent to all the processes in the

terminal’s foreground process group. By default, some of those signals cause the process group

to stop. The shell creates jobs as process groups, setting the process group ID to be the PID of

the first process in the process group. Each time it places a new job in the foreground, the shell

sets the terminal process group to the new process group. Thus, the terminal process group is

the identifier for the process group that is currently in control of the terminal—that is, for the

process group running in the foreground. Other process groups may run in the background. If a

background process attempts to read from the terminal, its process group is sent another signal,

which stops the process group. Optionally, background processes that attempt terminal output

may be stopped as well. These rules for control of input and output operations apply to only

those operations on the controlling terminal.

When a user disconnects from a terminal—for example, when a network connection is lost—the

session leader of the session associated with the terminal is sent a SIGHUP signal. If the session

leader exits, the controlling terminal is revoked, and that invalidates any open file descriptors in

the system for the terminal. This revocation ensures that processes holding file descriptors for a

terminal cannot access the terminal after the terminal is acquired by another user. The

revocation operates at the vnode layer. It is possible for a process to have a read or write

sleeping for some reason—for example, it was in a background process group. Since such a

process would have already resolved the file descriptor through the vnode layer, a single read or

write by the sleeping process could complete after the revoke system call. To avoid this security

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_59

456

problem, the system checks a terminal generation number when a process wakes up from

sleeping on a terminal and, if the number has changed, restarts the read or write system call.

Terminal Operations

We now examine the operation of the pseudo-terminal device driver. Each time that the master

side of a previously unused pseudo-terminal device is opened, by using the sys_posix_openpt()

routine, the pseudo-terminal driver’s alloc routine is called. The alloc routine initializes the tty

structure, associating the set of function pointers that are part of the pts driver’s ttydevsw

structure with the underlying terminal device. Once the pseudo-terminal has been allocated, all

other operations proceed through the device filesystem, where the terminal device driver’s

routines are called. The ttydev_open() routine is called to open the device that backs the

pseudo-terminal, and it is the open routine that sets up the line discipline by calling the

ttydisc_open() routine. The tty driver is sufficiently abstract that it can handle devices that are

implemented in hardware as well as the pseudo-terminal, which is implemented purely in

software.

Terminal Output (Upper Half)

After a terminal has been opened, a write on the resulting file descriptor produces output to be

transmitted. Writes to the pseudo-terminal result in calls to the ptsdev_write() routine with a

file pointer, a uio structure describing the data to be written, and a flag specifying whether the

I/O is nonblocking. The tty structure is contained in the file structure passed into the write

routine. The line discipline routines are called directly from the ptsdev_write() routine to send

the data.

The main routine that handles the output of characters is the ttydev_write() routine. It is

responsible for copying data into the kernel from the user process and for placing the translated

data onto the pseudo-terminal’s output queue. The ttydev_write() routine first checks whether

the current process is allowed to write to the terminal at this time. The user may set a tty option

to allow only the foreground process to do output. If this option is set, and if the terminal line is

the controlling terminal for the process, then the process should do output immediately only if it

is in the foreground process group (i.e., if the process groups of the process and of the terminal

are the same). If the process is not in the foreground process group, and a SIGTTOU signal

would cause the process to be suspended, a SIGTTOU signal is sent to the process group of the

process. Here, the write will be attempted again when the user moves the process group to the

foreground. If the process is in the foreground process group, or a SIGTTOU signal would not

suspend the process, the write proceeds as usual.

457

When ttydev_write() has confirmed that the write is permitted, it enters a loop that copies the

data to be written into the kernel, checks for any output translation that is required, and places

the data on the output queue for the terminal. It prevents the queue from becoming overfull by

blocking if the queue fills before all characters have been processed. The limit on the queue size,

the high watermark, is dependent on the output line speed; for pseudo-terminals, the line

speed is set to the maximum baud rate so that they will get the maximum high watermark of

several thousand characters. The low watermark is set to about half of the high watermark.

When forced to wait for output to drain before proceeding, ttydisc_write() sets a flag in the tty

structure state, TF_HIWAT_OUT, to request that it be awakened when the queue drops below

the low watermark.

Once errors, permissions, and flow control have been checked, ttydisc_getc() copies the user’s

data into a local buffer in chunks of 256 characters at most, using uiomove(). (A value of 256 is

used because the buffer is stored on the stack and so it cannot be large.) When the terminal

driver is configured in noncanonical mode, no per-character translations are done, and the

entire buffer is processed at once. In canonical mode, the terminal driver locates groups of

characters requiring no translation by scanning through the output string, looking up each

character in turn in a table that marks characters that might need translation (e.g., newline), or

characters that need expansion (e.g., tabs). Each group of characters that requires no special

processing is placed into the output queue using memcpy(). Trailing special characters are

output with ttydisc_reprint().

The ttydisc_write() routine handles the translation of special characters by first searching the

output for characters that might need post processing. Regular characters are then output and

the special characters are handled through a postprocessing routine. The following translations

may be done, depending on the terminal mode:

• Tabs may be expanded to spaces.

• Newlines may be replaced with a carriage return plus a line feed.

As soon as data are placed on the output queue of a terminal, its device driver is awakened to let

it know that it can start output. Unless output is already in progress or has been suspended by

receipt of a stop character, a wakeup will be sent to the thread associated with the device. For a

pseudo-terminal, the wakeup is sent to a thread sleeping on the master side and, if not already

running, awakens it so that it can consume the data. For a hardware terminal, the wakeup is

sent to the thread associated with the device that begins sending the characters out of the serial

line. Once all the data have been processed and have been placed into the output queue,

ttydisc_write() returns an indication that the write completed successfully.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_204

458

Terminal Output (Lower Half)

Characters are removed from the output queue either by the thread running on the master side

of the pseudo-terminal or by the hardware device driver. Whenever the number of characters on

the output queue drops below the low watermark, the output routine checks to see if the

TS_SO_OLOWAT flag is set to show that a thread is waiting for space in the output queue and

should be awakened. In addition, selwakeup() is called, and if a thread is recorded in t_wsel as

selecting for output, that thread is notified. The output continues until the output queue is

empty.

Terminal Input

Unlike output, terminal input is not started by a system call but instead arrives asynchronously

when the terminal line receives characters from a remote login session or locally from the

keyboard. Thus, the input processing in the terminal system occurs mostly at interrupt time.

When a character arrives over the network from a remote login session, the locally running

remote-login daemon writes it into the master side of the pseudo-terminal. The master side of

the pseudo-terminal will pass the character as input to the terminal line discipline for the

receiving terminal through the latter’s ttydisc_rint entry. For locally attached hardware such as

a keyboard, the input character will be passed by the device driver directly to the receiving tty

device driver input entry. In either case, the input character is passed as an integer. The bottom

8 bits of the integer are the actual character. Characters received from locally connected

hardware may have hardware-detected parity errors, break characters, or framing errors. Such

errors are shown by setting flags in the upper bits of the integer.

The interpretation of terminal input is done in the ttydisc_rint routine. When a break condition

is detected (a longer-than-normal character with only 0 bits), it is ignored, or an interrupt

character or a null is passed to the process, depending on the terminal mode. Input characters

are echoed if desired. In noncanonical mode, characters are placed into the raw input queue

without interpretation. Otherwise, most of the work done by the ttydisc_rint() routine is to

check for characters with special meanings and to take the requested actions. Other characters

are placed into the raw queue. In canonical mode, if the received character is a carriage return or

another character that causes the current line to be made available to the program reading the

terminal, the contents of the raw queue are added to the canonicalized queue and any processes

waiting for input or selecting for input on the device are awakened. In noncanonical mode, any

process selecting for input on the device or sleeping on the raw queue awaiting input for a read

459

are awakened. If the terminal has been set for signal-driven I/O using fcntl and the FASYNC flag,

a SIGIO signal is sent to the process group controlling the terminal.

Eventually, a read call is made on the file descriptor for the terminal device. Like all calls to read

from a character-special device, this one results in a call to the device driver’s read routine with

a device pointer, a uio structure describing the data to be read, and a flag specifying whether the

I/O is nonblocking. Terminal device drivers use the device pointer to locate the tty structure for

the device and then call the line discipline ttydisc_read entry to process the system call.

The ttydisc_read routine first checks to see whether the process is part of the session and the

process group currently associated with the terminal. If the process is a member of the session

currently associated with the terminal, if any, and is a member of the current process group, the

read proceeds. Otherwise, if a SIGTTIN would suspend the process, a SIGTTIN is sent to that

process group. Here, the read will be attempted again when the user moves the process group to

the foreground. Otherwise, an error is returned. Finally, ttydisc_read() checks for data in the

appropriate queue (the canonical queue in canonical mode, the raw queue in noncanonical

mode). If no data are present, ttydisc_read() returns the error EAGAIN if the terminal is using

nonblocking I/O; otherwise, it sleeps on the address of the raw queue. When ttydisc_read() is

awakened, it restarts processing from the beginning because the terminal state or process group

might have changed while it was asleep.

When characters are present in the queue for which ttydisc_read() is waiting, they are removed

from the queue one at a time with ttydisc_getc() and are copied out to the user’s buffer. In

canonical mode, certain characters receive special processing as they are removed from the

queue: The delayed-suspension character causes the current process group to be stopped with

signal SIGTSTP, and the end-of-file character terminates the read without being passed back to

the user program. If there was no previous character, the end-of-file character results in the read

returning zero characters, and that is interpreted by user programs as indicating end-of-file.

However, most special processing of input characters is done when the character is entered into

the queue. For example, translating carriage returns to newlines based on the ICRNL flag must

be done when the character is first received because the newline character wakes up waiting

processes in canonical mode. In noncanonical mode, the characters are not examined as they

are processed.

Characters are processed and returned to the user until the character count in the uio structure

reaches zero, the queue is exhausted, or, if in canonical mode, a line terminator is reached.

When the read call returns, the returned character count will be the amount by which the

requested count was decremented as characters were processed.

460

After the read completes, if terminal output was blocked by a stop character being sent because

the queue was filling up, and the queue is now less than 20 percent full, a start character

(normally XON, control-Q) is sent.

Closing of Terminal Devices

When the final reference to a terminal device is closed, or the revoke system call is made on the

device, the device close() routine is called. The kernel checks to make sure that there are no open

references to the terminal before calling the line discipline’s close() routine and then cleaning up

all the state associated with the terminal. The line-discipline close entry, ttydisc_close(), flushes

any pending output. Finally, the device close routine frees the queues that were associated with

the device, clears any knotes associated with the terminal, and wakes up any processes that were

waiting on the terminal.

8.7 The GEOM Layer

The GEOM layer provides a modular transformation framework for disk-I/O requests. This

framework supports an infrastructure in which classes can do nearly arbitrary transformations

on disk-I/O requests on their path from the upper kernel to the device drivers and back. GEOM

can support both automatic data-directed configuration and manual, or script-directed,

configuration.

Transformations in GEOM include the following:

• Simple base and bounds calculations needed for disk partitioning

• Aggregation of disks to provide a RAID, mirrored, or stripped logical volume

• A cryptographically protected logical volume

• Collection of I/O statistics

• I/O optimization such as disk sorting

• Journaled I/O transactions

Unlike many of its predecessors, GEOM is both extensible and topologically agnostic.

461

Terminology and Topology Rules

GEOM is object oriented and consequently borrows much context and semantics from the

object-oriented terminology. A transformation is the concept of a particular way to modify I/O

requests. Examples include partitioning a disk, mirroring two or more disks, and operating

several disks together in a RAID.

A class implements one particular transformation. Examples of classes are a master boot record

(MBR) disk partition, a BSD disk label, a RAID array, a transaction journal, or encryption.

An instance of a class is called a geom. In a typical FreeBSD system, there will be one geom of

class MBR for each disk. The MBR subdivides a disk into as many as four pieces. There will also

be one geom of class BSD for each slice with a BSD disk label.

A provider is the front gate at which a geom offers service. A typical provider is a logical disk, for

example, /dev/da0s1. All providers have three main properties: name, media size, and sector

size.

A consumer is the back end through which a geom connects to another geom provider and

through which I/O requests are sent. For example, an MBR label will typically be a consumer of

a disk and a provider of disk slices.

The topological relationship between these entities are as follows:

• A class has zero or more geom instances.

• A geom is derived from exactly one class.

• A geom has zero or more consumers.

• A geom has zero or more providers.

• A consumer can be attached to only one provider.

• A provider can have multiple consumers attached.

• The GEOM structure may not have loops; it must be an acyclic directed graph. From an

object-oriented perspective GEOM implements a system of single inheritance because a

consumer can only be attached to one provider.

462

All geoms have a rank number assigned that detects and prevents loops in the acyclic directed

graph. This rank number is assigned as follows:

• A geom with no attached consumers has a rank of one.

• A geom with attached consumers has a rank one higher than the highest rank of the geoms of

the providers to which its consumers are attached.

Figure 8.6 shows a sample GEOM configuration. At the bottom is a geom that communicates

with the CAM layer and produces the da0 disk. It has two consumers. On the right is the DEVFS

filesystem that exports the complete disk image as /dev/da0. On the left is stacked an MBR

geom that interprets the MBR label found in the first sector of the disk to produce the two slices

da0s1 and da0s2. Both of these slices have DEVFS consumers that export them as /dev/da0s1

and /dev/da0s2. The first of these two slices has a second consumer, a BSD label geom, that

interprets the BSD label found near the beginning of the slice. The BSD label subdivides the slice

into as many as eight (possibly overlapping) partitions, da0s1a through da0s1h. All the defined

partitions have DEVFS consumers that export them as /dev/da0s1a through /dev/da0s1h.

When one of these partitions is mounted, the filesystem that has mounted it also becomes a

consumer of that partition.

Figure 8.6 A sample GEOM configuration.

Changing Topology

The basic operations are attach, which attaches a consumer to a provider, and detach, which

breaks the bond. Several more complex operations are available to simplify automatic

configuration.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06

463

Tasting is a process that happens whenever a new class or new provider is created. It provides

the class a chance to automatically configure an instance on providers that it recognizes as its

own. A typical example is the MBR disk-partition class that will look for the MBR label in the

first sector and, if found and valid, will instantiate a geom to multiplex according to the contents

of the MBR.

Exactly what a class does to recognize if it should accept the offered provider is not defined by

GEOM, but the sensible set of options are:

• Examine specific data structures on the disk.

• Examine properties like sector size or media size for the provider.

• Examine the rank number of the provider’s geom.

• Examine the method name of the provider’s geom.

A new class will be offered to all existing providers and a new provider will be offered to all

classes.

Configure is the process where the administrator issues instructions for a particular class to

instantiate itself. For example, a BSD label module can be specified with a level of override

forcing a BSD disk-label geom to attach to a provider that was not found palatable during the

taste operation. A configure operation is typically needed when first labelling a disk.

Orphaning is the process by which a provider is removed while it potentially is still being used.

When a geom orphans a provider, all future I/O requests will bounce on the provider with an

error code set by the geom. All consumers attached to the provider will receive notification

about the orphaning and are expected to act appropriately. A geom that came into existence as a

result of a normal taste operation should self-destruct unless it has a way to keep functioning

without the orphaned provider. Single-point-of-operation geoms, like those interpreting a disk

label, should self-destruct. Geoms with redundant points of operation, such as those supporting

a RAID or a mirror, will be able to continue as long as they do not lose quorum.

An orphaned provider may not result in an immediate change in the topology. Any attached

consumers are still attached. Any opened paths are still open. Any outstanding I/O requests are

still outstanding. A typical scenario is:

• A device driver detects a disk has departed and orphans the provider for it.

464

• The geoms on top of the disk receive the orphaning event and orphan all their providers.

Providers that are not in use will typically self-destruct immediately. This process continues in a

recursive fashion until all relevant pieces of the tree have responded to the event.

• Eventually the traversal stops when it reaches the device geom at the top of the tree. The geom

will refuse to accept any new requests by returning an error. It will sleep until all outstanding

I/O requests have been returned (usually as errors). It will then explicitly close, detach, and

destroy its geom.

• When all the geoms above the provider have disappeared, the provider will detach and destroy

its geom. This process percolates all the way down through the tree until the cleanup is

complete.

While this approach seems byzantine, it does provide the maximum flexibility and robustness in

handling disappearing devices. Ensuring that the tree does not unravel until all the outstanding

I/O requests have returned guarantees that no applications will be left hanging because a piece

of hardware has disappeared.

Spoiling is a special case of orphaning used to protect against stale metadata. It is probably

easiest to understand spoiling by going through an example. Consider the configuration shown

in Figure 8.6 that has disk da0 above which is an MBR geom that provides da0s1 and da0s2. On

top of da0s1, a BSD geom provides da0s1a through da0s1h. Both the MBR and BSD geoms have

autoconfigured based on data structures on the disk media. Now consider the case where da0 is

opened for writing and the MBR is modified or overwritten. The MBR geom now would be

operating on stale metadata unless some notification system can inform it otherwise. To avoid

stale metadata, the opening of da0 for writing causes all attached consumers to be notified,

resulting in the eventual self-destruction of the MBR and BSD geoms. When da0 is closed, it will

be offered for tasting again, and if the data structures for MBR and BSD are still there, new

geoms will instantiate themselves.

To avoid the havoc of changing a disk label for an active filesystem, changing the size of open

geoms can be done only with their cooperation. If any of the paths through the MBR or BSD

geoms were open (for example, as a mounted filesystem), they would have propagated an

exclusive-open flag downward, rendering it impossible to open da0 for writing. Conversely, the

exclusive-open flag requested when opening da0 to rewrite the MBR would render it impossible

to open a path through the MBR geom until da0 is closed. Spoiling only happens when the write

count goes from zero to nonzero, and the tasting only happens when the write count goes from

nonzero to zero.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06

465

Insert is an operation that allows a new geom to be instantiated between an existing consumer

and provider. Delete is an operation that allows a geom to be removed from between an existing

consumer and provider. These capabilities can be used to move an active filesystem. For

example, as shown in Figure 8.7, we could insert a mirror module into the GEOM stack pictured

in Figure 8.6. The mirror operates on da0s1 and da1s1 between the BSD label consumer and its

MBR label provider da0s1. The mirror is initially configured with da0s1 as its only copy and

consequently is transparent to the I/O requests on the path. Next, we ask it to mirror da0s1 to

da1s1. When the mirror copy is complete, we drop the mirror copy on da0s1. Finally, we delete

the mirror geom from the path instructing the BSD label consumer to consume from da1s1. The

result is that we moved a mounted filesystem from one disk to another while it was being used.

Figure 8.7 Using a mirror module to copy an active filesystem.

Operation

The GEOM system needs to be able to operate in a multiprocessor kernel. The usual method for

ensuring proper operation is to use mutex locks on all the data structures. Because of the large

size and complexity of the code and data structures implementing the GEOM classes, prior to

FreeBSD 10 GEOM used a single-threading approach rather than traditional mutex locking to

ensure data structure consistency. This mode of operation continues to be available using two

threads to operate its stack: a g_down thread to process requests moving from the consumers at

the top to the providers at the bottom, and a g_up thread to process requests moving from the

providers at the bottom to the consumers at the top. Requests entering the GEOM layer at the

top are queued awaiting the g_down thread. The g_down thread pops each request from the

queue, moves it down through the stack, and out through the provider. Similarly, results coming

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06

466

back from the providers are queued awaiting the g_up thread. The g_up thread pops each

request from the queue, moves it up through the stack, and sends it back out to the consumer.

Because there is only ever a single thread running up and down in the stack, the only locking

that is needed is on the few data structures that coordinate between the upward and downward

paths. There are two rules required to make this single-thread method work effectively:

1. A geom can never sleep. If a geom ever puts the g_up or g_down thread to sleep, the entire

I/O system would grind to a halt until the geom reawakens. The GEOM framework checks that

its worker threads never sleep, panicking if they attempt to do so.

2. No geom can compute excessively. If a geom computes excessively, pending requests or

results will be unacceptably delayed. There are some geoms, such as the one that provides

cryptographic protection for filesystems, that are compute intensive. These compute-intensive

geoms have to provide their own threads. When the g_up or g_down thread enters a

compute-intensive geom, it will simply enqueue the request, schedule the geom’s own worker

thread, and proceeded on to process the next request in its queue. When scheduled, the

compute-intensive geom’s thread will do the needed work and then enqueue the result for the

g_up or g_down thread to finish pushing the request through the stack.

While a queued model of processing is flexible, it does give up performance to provide that

flexibility. Each enqueue and dequeue operation requires processor resources, and the queues

themselves need to be protected by locks so that two threads cannot update the queue data

structure at the same time. To mitigate the bottleneck of a single thread in the I/O path, and to

reduce the context switch overhead of switching to and from the g_up and g_down threads,

FreeBSD 10 added a direct dispatch mode to GEOM. Each GEOM class has two flags that it can

set, G_DIRECT_UP and G_DIRECT_DOWN, to indicate that I/O can pass through the class via

direct dispatch in the indicated direction. To accept direct-dispatch, a module must add locking

to protect its data structures so that the module can run concurrent threads. When direct

dispatch is used, the thread making the request calls directly into the module rather than

queueing its request to be run by the g_down or g_up thread. All I/O requests into the GEOM

layer are checked to see if they can be delivered directly to the underlying class. Direct calls are

made to any module that is marked as accepting direct dispatch in the direction of the I/O.

Direct calls are also made for any I/O that is of zero effective length, meaning that it has no data

but there is some command to the underlying class. An I/O request that does not meet these

requirements is queued for the class to process later, using the g_down and g_up threads.

The set of commands that may be passed through the GEOM stack are read, write, and delete.

The read and write commands have the expected semantics. Delete specifies that a certain range

of data is no longer used and that it can be erased or freed. Technologies like flash-adaptation

467

layers can arrange to erase the relevant blocks so that they are ready to be reassigned, and

cryptographic devices may fill random bits into the range to reduce the amount of data available

for attack. A delete request has no assurance that the data really will be erased or made

unavailable unless guaranteed by specific geoms in the graph. If a secure-delete semantic is

required, a geom that converts a delete request into a sequence of write requests should be

pushed.

Topological Flexibility

GEOM is both extensible and topologically agnostic. The extensibility of GEOM makes it easy to

write a new class of transformation. In the last few years several new classes have been written,

including:

• gcache that provides a kernel-memory cache of backing storage such as a disk.

• geli that encrypts data sent to a backing store and decrypts data retrieved from a backing store.

For example, providing an encrypted filesystem is simply a matter of stacking a geli class on top

of a disk class.

• gjournal that does block-level journaling of data sent to a backing store. All writes get logged

and are later replayed if the system crashes before they are made to the backing store. Thus, it

can provide journaling for any filesystem without needing to know anything about the

filesystem’s structure.

• gsched that provides alternate scheduling policies for a backing store.

• gvirstor that sets up a virtual storage device of an arbitrarily large size. The gvirstor class

allows users to overcommit on storage (free filesystem space). The concept is also known as

“thin provisioning” in virtualization environments. The gvirstor class is implemented on the

level of physical storage devices.

In a departure from many previous volume managers, GEOM is topologically agnostic. Most

volume-management implementations have strict notions of how classes can fit together, but

often only a single fixed hierarchy is provided. Figure 8.8 shows a typical hierarchy. It requires

that the disks first be divided into partitions, and then the partitions can be grouped into

mirrors, which are exported as volumes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig08

468

Figure 8.8 Fixed class hierarchy.

With fixed hierarchies, it is impossible to express intent efficiently. In the fixed hierarchy of

Figure 8.8, it is impossible to mirror two physical disks and then partition the mirror into slices

as is done in Figure 8.9. Instead, one is forced to make slices on the physical volumes and then

create mirrors for each of the corresponding slices, resulting in a more complex configuration.

Being topologically agnostic means that different orderings of classes are treated no differently

than existing orderings. GEOM does not care in which order things are done. The only

restriction is that cycles in the graph are not allowed.

Figure 8.9 Flexible class hierarchy.

8.8 The CAM Layer

To reduce the complexity of the individual disk drivers, much of the complexity of handling a

modern controller has been abstracted into a set of routines that provide a Common Access

Method (CAM) layer that sits between the GEOM and the device-driver layers. The CAM layer

handles the device-independent tasks of resource allocation and command routing. These tasks

include the tracking of requests and notifications between the controller and its clients. They

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig09

469

also include the routing of requests across the many I/O busses to get the request to the correct

controller.

The CAM layer leaves to the device driver the device-specific operations such as the setup and

teardown of the DMA maps needed to do the I/O. CAM also allows device drivers to manage I/O

timeouts and initial bus error-recovery measures. Some device drivers can become complex. For

example, the Fibre Channel device driver has much code to handle operations, such as

asynchronous topology changes as drives are removed and attached. A driver responds to a CAM

request by converting the virtual address to store the data to the appropriate physical address. It

then marshals the device-independent parameters like I/O request, physical address to store the

data, and transfer length into a firmware-specific format, and then executes the command.

When the I/O completes, the driver returns the results to the CAM layer.

In addition to disks, the CAM layer manages any other storage device that might be connected to

the system such as tape and removable flash memory drives. For other character devices such as

keyboard and mice, CAM will not be involved.

The CAM subsystem provides a uniform and modular system for the implementation of drivers

to control various devices and to use different host adapters through host-adapter drivers. The

CAM system is made up of three layers:

1. The CAM peripheral layer that provides open, close, strategy, attach, and detach operations

for the supported devices. CAM-supported devices include: direct access (da) SCSI disk drives,

ATA and SATA (sa) disk drives, cdrom (cd) CD-ROM drives, sequential access (sa) tape drives,

and changer (ch) juke-boxes. Each peripheral driver builds an I/O command specific to the

protocol for its devices, and then passes that command to the transport layer for execution. The

driver also interprets the results of the I/O commands and takes corrective actions for errors.

CAM starts by building a protocol-specific I/O command using a CAM control block (CCB)

tailored either to SCSI or ATA devices.

The CCB contains a command descriptor block containing the command to be sent to the device.

For example, the SCSI command “READ_10, block_offset, count” gets back a status of success

or various error codes. If there is an error, the drive may also include sense data to give more

information about the cause of the error.

2. The CAM Transport (XPT) layer schedules and dispatches I/O commands, acting as a switch

between the myriad of peripheral device instances and the host bus adapters to which they

belong. It also assists the device drivers with error recovery by allowing I/O to be frozen and and

unfrozen at a device or subsystem level. For example, a disk device might be able to handle 64

commands, and the controller it is attached to might be able to handle 256 commands, but when

470

more than 4 disks are attached to the controller, scheduling and arbitration needs to be done in

the transport layer.

3. The CAM software interface module or host bus adapter interface layer provides bus routing

to devices. Its job is to allocate a path to the requested device, send a CCB action request to the

device, and then collect notification of the I/O completion from the device. It is also responsible

for identifying errors that have happened at the protocol and bus layers, and notifying the

transport and peripheral layers that it is done with error recovery actions.

The operation of the CAM layer is most easily understood by tracing an I/O request through it.

The Path of a SCSI I/O Request Through the CAM Subsystem

The path of a SCSI request through the CAM I/O subsystem is shown in Figure 8.10. In the

FreeBSD framework, the filesystem sees a single contiguous disk. I/O requests are based on

block numbers within this idealized disk. In Figure 8.10, the filesystem determines a set of

blocks on which it wants to perform I/O, and it passes this request down to the GEOM layer by

calling the strategy() routine.

Figure 8.10 The path of a SCSI I/O request through the CAM subsystem.

The GEOM layer takes the request and determines the disk to which the request should be sent.

In this example, the request is on a da SCSI disk. When a request spans several disks, the GEOM

layer breaks up the original request into a set of separate I/O requests for each of the disks on

which the original request resides. Each of the new requests is passed down to the CAM layer by

calling the appropriate strategy() routine for the associated disk (the dastrategy() routine in

Figure 8.10).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig10

471

The CAM dastrategy() routine gets the request and calls bioq_disksort(), which puts the

request on the disk queue of the specified SCSI disk. The dastrategy() routine finishes by calling

the xpt_schedule() function.

The xpt_schedule() function allocates and constructs a CCB to describe the operation that needs

to be done. If the disk supports tagged queueing, an unused tag is allocated, if it is available. If

tagged queueing is not supported or a tag is not available, the request is left on the queue of

requests pending for the disk. If the disk is ready to accept a new command, the xpt_schedule()

routine calls the drive start routine set up for it (dastart() in this example).

The dastart() routine takes the first request off the disk’s queue and begins to service it using

the CCB that was constructed by dastrategy(). Because the command is destined for a SCSI disk,

dastart() needs to build a SCSI READ_10 command based on the information in the CCB. The

resulting SCSI command that includes a READ_10 header, a pointer to the virtual address that

references the data to be transferred, and a transfer length is placed in the CCB and given the

type XPT_SCSI_IO. The dastart() routine then calls the xpt_action() routine to determine the

bus and controller (adapter) to which the command should be sent.

The xpt_action() routine returns a pointer to a cam_path structure that describes the controller

to be used and has a pointer to the controller’s action routine. In this example, we are using the

Adaptec SCSI controller whose action routine is mpssas_action(). The xpt_action() routine

queues the CCB with its cam_path and schedules it to be processed.

The request is processed by calling the controller-specific action routine, mpssas_action(). The

mpssas_action() routine gets the CCB and converts its generic SCSI command into a

hardware-specific SCSI control block (SCB) to handle the command. The SCB is filled out from

information in the CCB. It is also filled out with any hardware-specific information and a DMA

request descriptor is set up. The SCB is then passed to the driver firmware to be executed.

Having completed its task, the CAM layer returns to the caller of dastrategy().

The controller fulfills the request and uses DMAs to transfer the data to or from the location

given in the SCB. When done, a completion interrupt arrives from the controller. The interrupt

causes the mps_complete_command() routine to be run. The mps_complete_command()

routine updates the CCB associated with the completed SCB from information in the SCB

(command completion status or sense information if there was an error). It then frees the

previously allocated DMA resources and the completed SCB, and passes the completed CCB

back to the CAM layer by calling xpt_done().

The xpt_done() routine inserts the associated CCB into the completion notification queue and

posts a software interrupt request for camisr(), the CAM interrupt service routine. When

472

camisr() runs, camisr_runqueue() removes the CCB from the completion notification queue

and calls the specified completion function, which maps to dadone() in this example.

The dadone() routine will call the biodone() routine, which notifies the GEOM layer that one of

its I/O requests has finished. The GEOM layer aggregates all the separate disk I/O requests

together. When the last I/O operation finishes, it updates the original I/O request passed to it by

the filesystem to reflect the result (either successful completion or details on any errors that

occurred). The filesystem is then notified of the final result by calling the biowait() routine.

ATA Disks

Like SCSI disks, support for SATA and ATA drives has been abstracted into a module that is part

of the CAM layer referred to as the ATA module. The ATA module handles the

device-independent tasks of the tracking requests and notifications between the controller and

its clients.

The handling of ATA I/O requests by the CAM layer is similar to that described for SCSI disks.

Device-specific operations are left to the device driver. The device driver responds to a request

for an ATA disk by marshaling the device-independent parameters in the CCB. It converts the

type of the I/O request, the virtual address to store the data, and the transfer length into a

firmware-specific format, and then executes the command. When the I/O completes, the driver

places the results back in the CCB similar to the way it is done by the SCSI driver.

The ATA driver start routine handles TRIM commands that improve the efficiency of solid-state

disks (SSDs). While SSDs use the same hardware interconnect as spinning magnetic disks, the

way they operate internally is different. One difference is that an SSD must erase a block before

it can be rewritten. It also must carefully manage the erasing and rewriting of its flash memory

blocks so that the blocks are used evenly. The TRIM command is a part of the ATA specification

that allow a filesystem to inform an SSD that a block or set of blocks are no longer in use and

may be erased. The ATA driver maintains a separate queue of requests to trim data from a

device, and these requests are executed at the beginning of its adastart() routine so that space is

freed before the process of writing new data begins. TRIM is also available to SAS solid state

disks via the da driver.

8.9 Device Configuration

Autoconfiguration is the procedure carried out by the system to recognize and enable the

hardware devices present in a system. Autoconfiguration works by systematically probing the

possible I/O busses on the machine. For each I/O bus that is found, each type of device attached

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_18

473

to it is interpreted and, depending on this type, the necessary actions are taken to initialize and

configure the device.

The first FreeBSD implementation of autoconfiguration was derived from the original 4.2BSD

code with the addition of many special-case hacks. The 4.4BSD release introduced a new, more

machine-independent configuration system that was considered for FreeBSD but was ultimately

rejected in favor of the newbus scheme, which first appeared in FreeBSD 3.0 to support the

Alpha architecture. It was brought over to the PC platform for FreeBSD 4.0. Newbus included

machine-independent routines and data structures for use by machine-dependent layers, and

provided a framework for dynamic allocation of data structures for each device.

A key design goal of the newbus system was to expose a stable application binary interface (ABI)

to driver writers. A stable ABI is especially important for externally or vendor-maintained

loadable kernel modules because their source code is often not available to recompile if the

interface is changed.

To help achieve ABI stability, the device and devclass structures are hidden from the rest of the

kernel with a simple function-call-based API to access their contents. If the structures were

passed to the device driver directly, any change to the structure would require that all the

drivers to which it is passed be recompiled. Changes to these data structures do not require a

recompilation of all the drivers. Only the access functions to the data structures need to be

recompiled.

Some hardware devices, such as the interface to the console terminal, are required for system

operation. Other devices, however, may not be needed and their inclusion in the system may

needlessly waste system resources. Devices that might be present in different numbers, at

different addresses, or in different combinations are difficult to configure in advance. However,

the system must support them if they are present and must fail gracefully if they are not present.

To address these problems, FreeBSD supports two configuration procedures. The first is a static

configuration procedure that is performed when a bootable system image is created. The second

is a dynamic loading capability that allows kernel drivers and modules to be added to a running

system as needed. Thus, the statically configured kernel can be small with just enough capability

to get the system up and running. Once running, additional functionality can be added as

needed.

Allowing code to be loaded dynamically into the kernel raises many security problems. Code

running outside the kernel is limited in the damage that it can do because it does not run in

privileged mode and cannot directly access the hardware. The kernel runs with full privilege and

access to the hardware. If the kernel loads a module containing malicious code, it can inflict

wide-ranging damage within the system. Kernels can be loaded across the network from a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_238

474

central server. If the kernel allows dynamic loading of modules, they could also come across the

network, so there are numerous added points for malfeasance.

An important consideration in deciding whether to enable dynamic loading of kernel modules is

to develop a scheme to verify the source of and lack of corruption in any code before that code is

permitted to be loaded and used. A group of vendors have formed the Trusted Computing Group

(TCG) to specify a hardware module called a Trusted Platform Module (TPM) that keeps a

running SHA-1 hash of the software installed on the system to detect the loading of bad

programs or modules. It is implemented as a microcontroller-based device similar to a smart

card that is attached to the motherboard [TCG, 2003]. Other groups are doing work to limit the

potential harm of kernel modules by running them with page protections that limit their access

to the rest of the kernel [Chiueh et al., 2004]. The drawback to disabling dynamic loading is that

any hardware that is not included in the kernel configuration file will be unavailable for use.

The initial kernel configuration is done by the /usr/sbin/config program. A configuration file

is created by the system administrator that contains a list of drivers and kernel options.

Historically, the configuration file defined both the set of hardware devices that might be

present on a machine and the location where each device might be found. Since FreeBSD 10,

hardware devices have been discovered dynamically as the various bus drivers probe and attach.

The location of legacy devices for non-plug-and-play (non-self-identifying) busses are given in a

/boot/device.hints file that is loaded with the kernel. The other use for hints is to hardwire a

unit number to a location. Currently only CAM can hardwire unit numbers, although hard

wiring could be implemented for any bus. The configuration procedure generates many files that

define the initial kernel configuration. These files control the kernel compilation.

The autoconfiguration phase is done first during system initialization to identify the set of

devices that are present on a machine. In general, autoconfiguration recurses through a tree of

device interconnections, such as busses and controllers to which other devices attach. For

example, a system might be configured with two SCSI host adapters (controllers) and four disk

drives that are connected in any of the configurations shown in Figure 8.11. Autoconfiguration

works in one of two ways at each level in the tree:

1. Identifying each possible location at which a device might be present and checking to see

what type of device (if any) is there

2. Probing for devices at each of the possible locations where the device might be attached

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig11

475

Figure 8.11 Alternative drive configurations.

The first approach of identifying predefined locations for devices is needed for older busses like

ISA that were not designed to support autoconfiguration and are still present in some embedded

systems boards such as those built around the ARM, MIPS, and PPC architectures. The second

mechanism of probing for devices can be used only when a fixed set of locations is possible and

when devices at those locations are self-identifying, such as devices connected to a SATA, SCSI,

or PCI bus. Devices that can be probed dynamically implement a probe routine that is called

during the first phase of the autoconfiguration process.

Devices that are recognized during the probing phase of the autoconfiguration process are

attached and made available for use. The attach function for a device initializes and allocates

resources for the device. The attach function for a bus or controller must probe for devices that

might be attached at that location. If the attach function fails, the hardware was found but is

nonfunctional, which results in a console message being printed. Devices that are present but

not recognized may be configured once the system is running and has loaded other kernel

modules. The attach function for busses is allowed to reserve resources for devices that are

detected on the bus but for which no device driver is currently loaded in the system.

This scheme permits device drivers to allocate system resources for only those devices that are

present in a running system. It allows the physical device topology to be changed without

requiring the system load image to be regenerated. It also prevents crashes resulting from

attempts to access a nonexistent device. In the remainder of this section, we consider the

476

autoconfiguration facilities from the perspective of the device-driver writer. We examine the

device-driver support required to identify hardware devices that are present on a machine and

the steps needed to attach a device once its presence has been noted.

Device Identification

To participate in autoconfiguration, a device driver must register the set of functions shown in

Table 8.5. Devices are an abstract concept in FreeBSD. In addition to the traditional disks, tapes,

network interfaces, keyboards, terminal lines, and so on, FreeBSD will have devices that operate

all the pieces that make up the I/O infrastructure such as the SCSI bus controller, the bridge

controller to the PCI bus, and the bridge controller to the ISA bus. The top-level device is the

root of the I/O system and is referred to as the root. On a uniprocessor system, the root logically

resides at the I/O pins of the CPU. On a multiprocessor system, the root is logically connected to

the I/O pins of each of the CPUs. The root0 device is handcrafted at boot time for each

architecture supported by FreeBSD.

Table 8.5 Functions defined for autoconfiguration.

Autoconfiguration begins with a request to the root0 bus to configure all its children. When a

bus is asked to configure its children, it calls the device_identify() routine of each of its possible

device drivers. The result is a set of children that have been added to the bus either by the bus

itself or by the device_identify() routines of one of its drivers. Next, the device_probe() routine

of each of the children is called. The device_probe() routine that bids the highest for the device

will then have its device_attach() routine called. The result is a set of devices corresponding to

each of the busses that are directly accessible to root0. Each of these new devices is then given

the opportunity to probe for or identify devices below them. The identification process continues

until the topology of the I/O system has been determined.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab05

477

Modern busses can directly identify the things that are connected to them. Older busses such as

ISA use the device_identify() routine to bring in devices that are found only because of hints.

As an example of the device hierarchy, the device controlling the PCI bus may probe for a disk

controller, which in turn will probe for possible targets that might be attached, such as disk

drives. The autoconfiguration mechanism provides much flexibility, allowing a controller to

determine the appropriate way in which to probe for additional devices attached to the

controller.

As autoconfiguration proceeds, a device-driver device_probe() routine is called for each device

that is found. The system passes to the device_probe() routine a description of the device’s

location and possibly other details such as I/O register location, memory location, and interrupt

vectors. The device_probe() routine usually just checks to see if it recognizes the hardware.

It is possible that there is more than one driver that can operate a device. Each matching driver

returns a priority that shows how well it matches the hardware. Success codes, shown in Table

8.6, are values less than or equal to zero, with the highest (least negative) value representing the

best match. Failure codes are represented by positive values using the usual kernel error codes.

Table 8.6 Return codes for device_probe routine.

If a driver returns a success code that is less than zero, it must not assume that it will be the

same driver whose device_attach() routine will be called. In particular, it must not assume that

any values stored in the device local-storage area will be available for its device_attach() routine.

Any resources allocated during the probe must be released and reallocated if its device_attach()

routine is called. By returning a success code of zero, a driver can assume that it will be the one

attached. However, well-written drivers will not have their device_attach() routine use the

device local-storage area because they may, one day, have their return value downgraded to a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab06

478

value less than zero. Typically, the resources used by a device are identified by the bus (parent

device), and it is the bus that prints them out when the devices are probing.

Once the device_probe() routine has had the opportunity to identify the device and select the

most appropriate driver to operate it, the selected driver’s device_attach() routine is called.

Attaching a device is separated from probing so that drivers can bid for devices. Probe and

attach are also separate so that drivers can separate out the identification part of the

configuration from the attaching part. Most device drivers use the device_attach() routine to

initialize the hardware device and any software state. The device_attach() routine is also

responsible for either creating the dev_t entries (for disks and character devices) or for network

devices, registering the device with the networking system.

Devices that represent pieces of hardware such as a SATA controller will respond to verify that

the device is present and to set or at least identify the device’s interrupt vector. For disk devices,

the device_attach() routine may make the drive available to higher levels of the kernel such as

GEOM. GEOM will let its classes taste the disk drive to identify its geometry and possibly

initialize the partition table that defines the placement of filesystems on the drive.

Autoconfiguration Data Structures

The autoconfiguration system in FreeBSD includes machine-independent data structures and

support routines. The data structures allow machine- and bus-dependent information to be

stored in a general way and allow the autoconfiguration process to be driven by the

configuration data, rather than by compiled-in rules. The /usr/sbin/config program

constructs many of the tables from information in the kernel-configuration file and from a

machine-description file. The /usr/sbin/config program is thus data-driven as well and

contains no machine-dependent code.

Figure 8.12 shows the data structures used by autoconfiguration. The basic building block is the

device structure. Each piece of the I/O hierarchy will have its own device structure. The name

and description fields identify the piece of hardware represented by the device structure. In

Figure 8.12, the name of the device is pci1. Device names are globally unique. There can be only

one pci1 device in the system. Knowing its name is enough to find it, unlike filesystems where

there can be many files with the same name in different paths. This namespace is related by

convention to the namespace that /dev entries have, but such a relationship is not required.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12

479

Figure 8.12 Autoconfiguration data structures for pci1.

Each device is a member of a device class represented by a devclass structure that has two

important roles. The first role of the devclass structure is to keep track of a list of drivers for

devices in that class. Devices referenced from a dev-class do not have to use the same driver.

Each device structure references its best matching driver from the list available for the devclass.

The list of candidate drivers is traversed, allowing every driver to probe each device that is

identified as a member of the class. The best matching driver will be attached to the device. For

example, the pci devclass contains a list of drivers suitable for probing against devices that may

be plugged into a PCI bus. In Figure 8.12, there are drivers to match pcm (sound cards) and

atapci (PCI-based ATA-disk controllers).

The second role of the devclass structure is to manage the mapping from a user-friendly device

name such as pci1 to its device structure. The name field in the devclass structure contains the

root of a family of names—in this example, pci. The number following the root of the name—1 in

this example—indexes into the array of pointers to device structures contained in the devclass.

The name in the referenced device structure is the full name, pci1.

When a device structure first comes into existence, it will follow these steps:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12

480

1. The parent device typically determines the existence of a new child device by doing a bus scan.

The new device is created as a child of the parent. In Figure 8.12, the autoconfiguration code

would begin a scan of pci1 and discover an ATA disk controller.

2. The parent device starts a probe-and-attach sequence for the new child device. The probe

iterates through drivers in the parent device’s devclass until a driver is found that claims the

device (i.e., the probe succeeds). The device structure sets its driver field to point at the selected

driver structure and increments the reference count in the selected driver. In Figure 8.12, the

atapci driver matches the ATA disk controller, atadisk.

3. Once a usable driver is found, the new device is registered with the devclass of the same name

as the driver. The registration is done by allocating the next available unit number and setting a

pointer from the corresponding entry in the devclass’s array of device-structure pointers back to

the device. In Figure 8.12, the atapci driver was matched, so the device would be bound to the

atapci devclass. The resulting device configuration is shown in Figure 8.13. The key observation

is that two different devclasses are involved in this three-step process.

Figure 8.13 Autoconfiguration data structures for atapci0.

The hierarchy of device structures is shown in Figure 8.14. Each device structure has a parent

pointer and a list of children. In Figure 8.14, the pci device that manages the PCI bus is shown at

the top and has as its only child the atapci device that operates ATA disks on the PCI bus. The

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig14

481

atapci device has the pci device as its parent and has two children, one for each of the ATA disks

that are attached. The devices representing the two drives have the atapci device as their parent.

Because they are leaf nodes, they have no children.

Figure 8.14 Sample hierarchy of device structures.

To get a better idea of the I/O hierarchy, an annotated copy of the output of the

/usr/sbin/devinfo program from the first author’s test machine is shown in Figure 8.15. The

output has been trimmed down from its original 250 lines to show just the branch from the root

of the tree to the system’s two ATA disks. The tree starts at root0, representing the I/O pins on

the CPU. That leads to the high-speed bus that connects to the memory and the root0 (for

example, northbridge) interconnect to the I/O bus. One of these busses is the pcib0 (for example,

south-bridge) connection to the PCI bus. The PCI bus is managed by the pci0 device, which as

you can see from the figure, has many drivers available for the myriad of devices that may be

connected to it. In this example, the one device that we show is the atapci0 device representing

the PCI-based ATA disk controller. The final two devices shown in Figure 8.15 are atadisk0 and

atadisk1 that manage the operation of the drives themselves.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig15

482

483

Figure 8.15 Sample configuration output.

Resource Management

As part of configuring and operating devices, the autoconfiguration code needs to manage

hardware resources such as interrupt-request lines, I/O ports, and device memory. To aid

device-driver writers in this task, FreeBSD provides a framework for managing these resources.

To participate in bus-resource management, a bus device driver must register the set of

functions shown in Table 8.7. Low-level devices such as those that operate individual disk drives

do not have the global knowledge of resource utilization needed to allocate scarce systemwide

resources such as interrupt-request lines. They may register a generic bypass routine for

resources that they do not have the needed information to allocate. When called, the bypass

routine simply calls the corresponding routine registered by their parent. The result is that the

request will work its way up the device tree until it reaches a high-enough level that it can be

resolved.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab07

484

Table 8.7 Functions defined for device resource allocation.

Often a high-level node in the tree will not have enough information to know how much of a

resource to allocate. Thus, it will reserve a range of resources, leaving it to the lower-level nodes

to allocate and activate the specific resources that they need from the reservation made by the

higher-level node.

The actual management of the allocated resources is handled by the kernel resource manager

that was described in Section 6.3. The usual allocate and free routines have been expanded to

allow different levels in the tree to manage different parts of these two functions. Thus,

allocation breaks into three steps:

1. Setting the range for the resource

2. Initial allocation of the resource

3. Activating the resource

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3

485

Similarly, resource freeing is done in three steps:

1. Deactivating the resource

2. Releasing ownership of the resource to the parent bus

3. Freeing it

It is common for a high-level part of the tree to allocate a resource and then have a low-level

driver activate and use the resource that it allocated. Some busses reserve space for their

children that do not have drivers associated with them. Having the allocation and freeing broken

up into three steps gives maximum flexibility in partitioning the allocation and freeing

processes.

The bus_driver_added(), bus_add_child(), and bus_child_detached() functions allow the

device to be aware of changes in the I/O hardware so that it can respond appropriately. The

bus_driver_added() function is called by the system when a new driver is loaded. The driver is

added to some devclass, and then all current devices in that devclass have bus_driver_added()

called to allow them to possibly match any unclaimed devices using the new driver. The

bus_add_child() function is used during the identify phase of configuring some busses. It allows

a bus device to create and initialize a new child device (for example, setting values for instance

variables). The bus_child_detached() function is called by a driver when it decides that its

hardware is no longer present (for example, a cardbus card is removed). It calls

bus_child_detached() on its parent to allow it to do a detach of the child.

The bus_probe_nomatch() routine gives the device a last-ditch possibility to take some action

after autoconfiguration has failed. It may try to find a generic driver that can run the device in a

degraded mode, or it may simply turn the device off. If it is unable to find a driver that can run

the device, it notifies the devd daemon, a user-level process started when the system is booted.

The devd daemon uses a table to locate and load the proper driver. The loading of kernel

modules is described in Section 15.4.

The bus_read_ivar() and bus_write_ivar() routines manage a bus-specific set of instance

variables of a child device. The intention is that each different type of bus defines a set of

appropriate instance variables such as ports and interrupt-request lines for the ISA bus.

8.10 Device Virtualization

Most virtualization systems support full virtualization in which guest operating systems use

conventional bare-metal interfaces directly, including CPU, virtual memory, and timers, as well

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4

486

as drivers for off-the-shelf network-interface cards (NICs) and storage devices. Full

virtualization allows guests to operate entirely unaware of the virtualized environment: a

substantial simplification.

Full virtualization incurs performance overhead because of the costs of intercepting and

emulating processor and I/O operations not permitted outside the CPU’s supervisor ring.

Bare-metal device drivers necessarily make assumptions about memory use that, while suitable

for DMA-enabled devices on the PCI bus, make it difficult for virtualization systems to use

OS-like virtual-memory optimizations such as moving memory pages between virtual machines

to avoid data copying (page flipping). Finally, lack of virtualization awareness limits the

opportunity for multiple virtual machines operating on the same physical hardware to exploit

that locality for performance gain—for example, by forcing communication to take place using

TCP/IP over emulated network interfaces rather than using shared memory.

In contrast, paravirtualization makes guest operating systems explicitly aware of virtualization,

improving performance and integration at the cost of requiring software adaptation. For

example, the bhyve hypervisor integrated with the FreeBSD kernel supports paravirtualized

network and storage devices via the Virtio interface. Virtio is used with full-machine emulators

such as Qemu. FreeBSD supports not only paravirtualized devices on the stand-alone Xen

hypervisor, but also paravirtualized CPU features such as interprocessor interrupts and

inter-virtual-machine communication.

With paravirtualization, host and guest environments (or for Xen, pairs of guest domains)

implement a split device-driver model in which device-driver back ends implement device

simulations for host-OSo physical devices that serve paravirtualization-aware device-driver

front ends in the guest operating system. The back and front ends communicate via well-defined

protocols reminiscent of communications between conventional device drivers and real physical

devices, but with design choices more suited to virtualized environments.

Interaction with the Hypervisor

Explicit awareness of virtualization offers both performance and functionality benefits. Just as

user processes make system calls to invoke operating-system kernel services, kernels themselves

invoke hypercalls to request services from the hypervisor or virtualization framework. Using

hypervisor features directly provides immediate benefits to the guest OS: support for hardware

without native virtualization features (e.g., earlier X86 CPUs); performance improvements

through batching of operations such as page-table updates; general system-performance

improvements through scheduling features such as a yield hypercall; and avoidance of expensive

487

emulation of peripheral devices such as NICs and storage devices where more appropriate

performance optimizations can be made for virtualized environments.

Some hypervisors, such as FreeBSD’s bhyve, are embedded within existing operating-system

kernels. Here, paravirtualization support is primarily focused on improving device-driver

performance. Stand-alone hypervisors, such as Xen, offer richer inter-virtual-machine

communications interfaces reminiscent of operating-system IPC primitives. This approach

explicitly allows virtual machines both to provide services to, and to consume services offered by,

other virtual machines; paravirtualized device drivers are just one such service.

Hypercalls provide basic synchronous communication between a virtual machine and a

hypervisor. However, the bulk of paravirtualized device-driver communication occurs via shared

memory rings either between guest and host (e.g., in bhyve), or between multiple guests (e.g.,

under Xen). As with shared-memory interprocess communication on conventional OS kernels,

avoiding copies via the hypervisor leads to big performance gains for bulk data transfer. Shared

memory is configured using hypercalls, which are also used for event notification on the ring. In

principle, entering the hypervisor can be entirely avoided in the steady state if a pair of

communicating virtual machines, or host and guest, are running concurrently on different CPUs;

they can likewise avoid (or suppress) signalling and rely on independently occurring context

switches. In practice, communication protocols between device-driver front and back ends in

Xen utilize dynamic page mappings that require hypercalls, and Virtio communication between

front and back ends is often synchronous within a kernel-scheduled thread, even if requested

operations can be processed asynchronously.

Paravirtualization models vary in the semantics that they offer. For example, Virtio has been

designed assuming direct access to guest memory from the host, more reminiscent of kernel

access to user processes. As a result, communication rings can reference buffers that do not have

strong page alignment. In contrast, Xen’s paravirtualized interfaces are designed to support

back-end drivers operating in another domain. Thus, shared memory pages referenced by

communication rings must be explicitly configured by pairs of guests using hypercalls.

Virtio

Virtio provides a simple, hypervisor-neutral, and performant interface for paravirtualized device

drivers [Russell, 2008]. First introduced in Linux for use with both guest- and kernel-based

virtual machines (KVMs), Virtio is now used across a range of virtualization systems, including

FreeBSD’s bhyve hypervisor. Virtio defines several interfaces and mechanisms: a virtual-ring

primitive used for bulk communication and a PCI-based model for device enumeration and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref09

488

feature negotiation. It also defines conventions for paravirtualized terminal access, memory

ballooning, entropy provision, network interfaces, block storage, and the SCSI HBA driver.

Virtio is designed for virtualization systems in which back-end device implementations are able

to read and write guest operating-system memory directly. Direct memory access is possible

when a hypervisor implements virtualized devices itself, or when the host shares an address

space (typically a UNIX process) with the virtual-machine guest. For example, bhyve combines

an in-kernel hypervisor with a userspace process implementing configuration, memory

management, and device emulation. The bhyve user process donates memory pages to the guest

while retaining direct memory access to them. This assumption of address-space sharing

facilitates copy avoidance: shared communication rings between the front and back ends can

refer to memory allocated and managed “as normal” in the guest kernel. As a result, bhyve’s user

process can do scatter-gather I/O directly from guest buffer-cache and socket-buffer memory

when emulating a device. Less tight address-space integration, as with Xen, incurs overhead as

it requires either more data copying or dynamic mapping of pages containing buffers.

The host exposes access to devices via a virtual PCI bus in the guest. The lowest-level front-end

driver in the guest, vtpci, implements a bus to which other paravirtualized front-end drivers

attach. Virtio devices are discovered via PCI enumeration, with each device offered to potential

drivers to probe and attach. Table 8.8 lists the vtpci bus implemented interfaces described in

virtio_bus_if.m. Front-end device drivers can use these interfaces to probe for matching

back-end instances, negotiate supported feature sets with the back-end, configure

communication queues to the back end, and subscribe to event notification to be delivered via

emulated interrupts. Table 8.9 lists the optional interfaces described in virtio_if.m. Device

drivers can optionally implement these interfaces to receive callbacks on successful

device-driver attach and to be notified of back-end configuration changes (e.g., changes in

virtual block-device size originating in the back end).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab09

489

Table 8.8 Virtio bus services exported to Virtio device drivers.

Table 8.9 Interfaces exposed by Virtio device drivers to the Virtio bus.

Virtio’s core communications primitive is the virtual queue, or virtqueue, that allows front- and

back-end implementations to exchange chained buffers via a shared-memory communications

ring. Each ring is described by a vring structure that points to an array of descriptor entries and

two indexed control rings used to transfer ownership of buffers between endpoints. The key data

structures for virtqueues are illustrated in Figure 8.16.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig16

490

Figure 8.16 Virtio virtqueue data structures. The ring[] elements in the vring_avail are

descriptor-chain indices, whereas ring[] elements in vring_used are arrays of vring_used_elem

structures.

Descriptor entries describe scatter-gather buffers in guest memory, that will typically carry

requests and either data the front end would like to write/transmit, or space in which the back

end should store read/received data. The descriptor array consists of a set of vring_desc entries,

each of which contains a guest-physical address, length, flags indicating read/write status, and

the next field that points to the optional next entry in a scatter-gather list; chains are terminated

by a descriptor without the VRING_DESC_F_NEXT flag set. A typical chain’s first entry points

to a command header, with later entries pointing to buffered data or buffer space.

The available ring, described by vring_avail, allows the front end to pass chained buffers to the

back end (e.g., to request that a filled buffer be written to disk, or request that a buffer be filled

with a read from disk). The used ring, described by vring_used, allows the back end to return

ownership of chains to the front end once it has been used (e.g., to acknowledge that the disk

write is complete, or filled with data from a disk read). The vring_used_elem structure contains

a length reporting the size of data copied from the back end, whereas the lengths in the

descriptor array describe the space that is available. Notice that if supported by the device type,

back-end drivers are able to return used buffer chains in a different order from that in which

491

they were made available. Reordering is appropriate for the block-storage back end, for example,

where reordering I/O operations using elevator sorting can improve performance without

harming semantics.

The idx fields in both rings are incremented each time a new chained buffer has been

successfully made available or used. The guest and host may be executing on different CPUs.

Careful use of memory barriers following updates to the descriptor-ring and used-element

entries is required to ensure that changes to these entries are visible to all CPUs before the

changes to the idx fields become visible [Harris & Fraser, 2007]. Once an update has taken place,

the host or guest can optionally notify the other party, either via a virtual PCI write in the

paravirtualized driver, or via an interrupt to the guest kernel, that will propagate the interrupt to

the device driver. Batching of requests is a key performance optimization. During steady-state

processing, front and back-end implementations can avoid overhead by switching from

per-packet notifications to polled operation.

Table 8.10 lists the Virtio device drivers implemented by FreeBSD, which include virtual

network and block devices, an entropy source (that is injected into the guest kernel’s

random-number generator), the SCSI HBA driver front end, and the balloon driver. The balloon

driver allows the host to request that the guest identify memory pages that are no longer in use

and can be “returned” to the hypervisor to assist with memory pressure elsewhere in the system.

In the event that these pages are required by the guest again in the future, touching the pages

will restore them—albeit in a re-zeroed state. The balloon driver helps the host avoid swapping

guest pages, which can lead to poor performance as competing host and guest virtual memory

systems identify unused pages and swap them causing thrashing.

Table 8.10 Virtio device IDs and drivers.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab10

492

Individual paravirtualized device drivers closely resemble traditional device drivers,

implementing kernel interfaces such as disks (see Section 8.4) and ifnet (see Section 8.5).

Device communications occur via virtqueues rather than programmed I/O or DMA descriptor

rings. The Virtio block-storage front end utilizes a single ring to push storage requests to the

back end; in contrast, the network front end uses pairs of rings, one for receive and the other for

transmit, for each virtual NIC queue. Virtio’s feature negotiation support has proven especially

important for network device drivers. Feature negotiation allows Virtio to determine the

availability of features such as checksum offload, TCP-segmentation offload (TSO), large-receive

offload (LRO), and multiqueue.

On the other side of virtual queues, back-end implementations are responsible for mapping

virtual devices into underlying OS services. Virtual block devices are often mapped into

filesystem images embedded on ordinary files; sometimes, however, they are passed through to

underlying OS-exposed block devices such as partitions on SCSI disks. Read and write requests

are submitted to the host kernel via normal I/O system calls—often using the preadv and

pwritev variants that can accept scatter-gather arguments drawn from the host memory

mappings of chained buffers, avoiding additional copying in the back end.

Network devices require more complexity. They are most frequently handled by associating a

virtual interface in the host (e.g., an if_tun or if_tap interface) with back-end driver instances.

Providing access to link-layer bridging, IP-layer routing, and optionally, network-address

translation via the host network stack allows the host’s network interfaces to be shared. Virtual

network interfaces often allow communication between guests running on the same host. Where

low-level network access is not available to the back-end implementation (e.g., for security

reasons), it may be desirable to proxy network-layer traffic from the guest via sockets in the host

network stack, requiring substantially more implementation complexity.

Xen

The Xen hypervisor takes a fundamentally different perspective on virtualization than do

OS-centered approaches such as bhyve. The hypervisor is a stand-alone piece of software akin to

a microkernel rather than a module integrated with a conventional kernel, with implications for

the guest-OS device drivers [Barham et al., 2003; Chisnall, 2007]. Whereas Virtio focused on

providing efficient paravirtualized device support optimized for shared memory access between

host and guest, Xen implements an overt service model between a set of virtual machines,

known as domains, running over a common hypervisor.

The first domain running over Xen, domain 0, bootstraps the system, creates and manages user

domains, and provides services to those domains. The hypervisor has direct support for only a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08ref06

493

few CPU-oriented hardware devices (such as local APICs). Device drivers for storage controllers,

network interface cards, and other more complex devices run in domain 0, which is granted

direct hardware access. Domain 0 can then forward requests received from front-end device

drivers to their physical counterparts. It can also support greater resource sharing in back-end

drivers by mapping virtual disks into images stored in a filesystem on a physical device or by

bridging a virtual network interface into a virtual switch connected to both other user domains

and physical devices.

Although placing back-end drivers in domain 0 is common, the model is flexible: any guest can

provide back-end services to another. This flexibility allows what is known as domain 0

disaggregation, the decomposition of a single privileged domain 0 into several driver domains to

reduce both privileges and attack surfaces available to less trustworthy guests—not dissimilar to

the reasons given for compartmentalization using Capsicum in Chapter 5. This decomposition is

facilitated by the increasing prevalence of I/O Memory Management Units (IOMMUs),

described later in this section, that allow safe delegation, or pass-through, of physical devices

(such as PCI-connected storage controllers or network interfaces) to guests. Although FreeBSD

10 is not able to operate as the boot-time domain 0, it can implement device-driver back ends,

including exporting ZFS-backed storage, allowing it to act as a driver domain and as a simple

consumer guest. Future releases are slated to include support for operating as domain 0, made

easier by the advent of hardware-assisted virtualization combined with increasingly mature

paravirtualization support.

Among the services offered to user domains by domain 0 is XenStore, a rendezvous service for

inter-guest communication, and a set of back-end drivers for network interfaces and block

storage. Guests use XenStore to enumerate back-and front-end device configurations during

boot, and to offer and look up grant table references, which instantiate shared memory between

domains, and event channels, which deliver inter-domain signalling. Together, these facilities

discover virtual devices and configure and implement communication rings between front-and

back-end drivers, similar to Virtio’s virtqueues.

Different combinations of processors and operating systems require different levels of guest-OS

adaptation for Xen. At one extreme, earlier Intel and AMD processors do not have fully

virtualizable instruction sets, requiring guest operating systems to use Xen in fully

paravirtualized (PV) mode. In effect, the FreeBSD PV kernel is its own X86-like platform target

with a customized virtual memory subsystem and other substantial kernel changes. The guest

kernel runs in ring 1 rather than 0 (which is occupied by Xen itself), and hypercalls are

substituted for unvirtualizable privileged instructions. A PV kernel must use explicit hypercalls

to do operations such as:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05

494

• Access a low-level console;

• Implement lazy floating-point unit (FPU) context switching;

• Implement unvirtualizable descriptor-update instructions;

• Request page-table changes and trigger TLB flushes;

• Receive interrupt-like event notifications from timers and I/O devices; and

• Send Inter-Processor Interrupts (IPIs) required for multi-processor operation.

At the other extreme, pure Hardware Virtual Machine (HVM) mode relies on more recently

introduced Intel Virtualization Technology (VT) and AMD Virtualization (AMD-V) CPU features

such as nested page tables that allow kernels to execute a range of privileged operations despite

running under a hypervisor. Combined with emulations of conventional hardware devices

borrowed from Qemu, HVM mode allows entirely unmodified guest operating systems to run

over Xen.

In practice, however, the preferred configuration for FreeBSD over Xen combines aspects of

both approaches: the kernel uses hardware-supported extended page tables to avoid a modified

virtual-memory subsystem, while also using paravirtualized device drivers and other hypervisor

features to improve performance. Table 8.11 shows a subset of Xen hypercalls, some used only in

PV mode, others used in both PV and HVM modes. Hypercalls continue to be used for the

following types of operations even in HVM mode:

• Scheduler and timer operations, such as the set_singleshot_timer virtual CPU (VCPU)

hypercall, which schedules an upcall after a suitable interval;

• Mapping page grants delegating memory from other domains; and

• Loading binaries into new virtual machines.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab11

495

Table 8.11 Xen hypercalls used in PV and HVM modes.

For the remainder of this section, we will be concerned primarily with how FreeBSD uses

paravirtualized features when operating over Xen HVM. Xen discovery and initialization begins

early in the X86 boot in xen_hvm_init():

1. The cpuid instruction detects whether Xen is present. If so, the kernel will be configured to

use paravirtualized features.

2. The hypercall region, a memory page holding code that invokes hypercalls, is allocated from

kernel memory and initialized with the help of the hypervisor using emulated

write-model-specific-register (wrmsr) instructions. Xen will select the hypercall implementation

most suitable for the current CPU architecture; Intel VT will use vmcall, and AMD-V will use

vmmcall.

3. The xen_version hypercall queries available Xen features; used for PV mode, and by

paravirtualized drivers that may run on PV or HVM systems, to determine whether the

distinction between guest physical page numbers and machine page numbers is visible to the

guest. On HVM, nested page tables mask this distinction.

4. The cpu_ops operation vector is updated so that Xen versions of CPU initialization, CPU

resume, and IPI support are used rather than the default X86 versions.

496

5. The memory_op hypercall is invoked to set up the Xen shared_info page, a read-write page

shared with the hypervisor itself. The page holds event-channel masks, per-CPU information,

and time-keeping information such as skew and rate adjustment information to convert a

timestamp-counter (TSC) value to wall-clock time.

6. The hvm_op hypercall is invoked to set up an explicit event-channel callback, used to notify

the guest of events on communication rings in a way similar to normal interrupt delivery.

7. An emulated I/O instruction triggers Xen to disable emulations of conventional devices used

with full-machine virtualization. Only paravirtualized drivers will attach, improving

performance and preventing confusion caused by duplicate attachments of the same block or

network devices.

8. Finally, each virtual CPU invokes the vcpu_op hypercall to register its per-CPU vcpu_info

structure, which contains the CPU’s event-channel, architectural, and time state.

These initialization steps may be re-run following virtual-machine suspend/resume or

migration, as the guest may find changes in CPU and Xen features and configuration. For

example, communication rings to device-driver back ends must be reestablished, as they will

now be hosted by different domains, requiring shared memory and event channels to be

rediscovered.

Whereas Virtio provided an emulated PCI bus that regular bus drivers could enumerate, Xen

provides guest configuration data explicitly via XenStore, a filesystem-like hierarchical

key-value database holding system configuration information published by domain 0. XenStore

contains named subtrees for each live domain including configuration information such as its

UUID, target physical memory usage used by the balloon, an enumeration of front-end and

back-end devices to configure (along with grant-table and event-channel state required to

communicate with corresponding drivers in other domains), and per-device configuration

information (e.g., whether an instance of the netfront driver supports TCP Segmentation

Offload (TSO)). XenStore is implemented by the xenstore front-end device driver, whose back

end is accessed via shared-memory rings and event channels that, of necessity, cannot be

bootstrapped using XenStore. Instead, XenStore resources are configured using the shared_info

page initialized by the hypervisor during early boot.

XenStore information on device topology and configuration, sometimes referred to as XenBus,

populates two synthetic-Newbus busses in the guest: xenbus_back and xenbus_front, that

respectively attach back-end and front-end device drivers within the guest. XenBus provides

several abstractions to paravirtualized drivers, such as convenient wrappers that can be used by

front-end drivers to delegate access to shared-memory rings to back-end drivers in other

497

domains. These busses are rooted in the xenpci driver in FreeBSD 10. The driver is named

xenpci because it is visible in PCI-bus enumeration in the guest, and is able to own and handle

PCI-like interrupts and own memory resources. Use of Xen’s event-channel mechanism is

preferred over the use of emulated interrupts, so in FreeBSD 11 this driver is replaced by a new

root for Xen-provided paravirtualized devices, xenpv. This change eliminates the last remnants

of PCI-emulation reliance in HVM configurations.

A full list of paravirtualized device drivers can be found in Table 8.12. Where device drivers are

configured using XenBus, their back ends declare an explicit “type” allowing driver front ends to

discover it. Three low-level paravirtualized drivers are configured without help from XenBus

and are attached unconditionally to nexus or xenpci:

1. The console device driver supports low-level I/O via a virtual console (used only for PV

guests).

2. The control driver services management messages from domain 0, such as requests to

shutdown or reboot.

3. The timer driver implements FreeBSD’s internal event timer mechanism using Xen’s timer

and event-channel primitives instead of using an emulated local APIC.

Table 8.12 Xen paravirtualized device drivers.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab12

498

As with Virtio, communication between device-driver front and back ends is done using a

common ring-buffer implementation. In Xen, however, these ring buffers represent

communication between guests rather than the hierarchical host-guest relationship found with

in-OS hypervisors such as bhyve. Ring buffers are layered over two hypervisor primitives:

shared memory configured using grant tables that authorize access to selected memory pages in

one domain by another, and event channels that provide an interrupt-like wakeup mechanism.

Rings pass requests and responses that may themselves contain further grants referencing pages

to be mapped into the remote domain. Alternatively, data will be copied into the rings, or copied

by the hypervisor, to avoid the overhead of page-table manipulation and TLB flushes.

Xen grant tables are the mechanism by which memory pages may be shared with, transferred to,

or received from a second domain. Each domain has its own grant table stored as an array of

grant-table entries in memory shared with the hypervisor, as shown in Figure 8.17. Each entry

describes one “grant”: authorization to share or transfer a page owned by the domain, or a

request to receive a page from another domain. The table is allocated by the guest kernel,

initialized, and then shared with the hypervisor via the memory_op hypercall during boot.

Figure 8.17 Xen grant-table entries control and track memory sharing between domains.

Each grant-table entry describes a single grant operation. Entries sharing or transferring a page

to another domain specify the physical page number in the source domain, and the remote

domain identifier to which the page will be sent. Entries authorizing receipt of a page will

identify the remote domain, a local page which will be replaced with the transferred page and a

grant-table reference. Grant-table references are simply integer indexes into a source domain’s

grant table, and may be sent to other domains as data via requests and responses in

communication rings. Grant-table entries also contain a flags field that the domain uses to

select the operation to perform and whether the grant or mapping should be read-only.

Grant-table entry flags also allow the hypervisor to export status bits indicating whether the

page is currently mapped in a remote domain (here its grant status cannot be changed, as Xen

does not support revocation while the page is in use), and to confirm that a page has been

accepted for transfer by the remote domain. Table 8.13 shows the possible flag values.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08tab13

499

Table 8.13 Xen grant-table entry operations, domain flags, and hypervisor flags.

Domains must use an explicit hypercall, grant_table_op, to notify the hyper-visor of one or

more grant-table entries authorizing receipt of grants from a remote domain. In contrast,

sharing a page with or transferring a page to a remote domain does not use an explicit call as the

hypervisor can look up the grant-table entry in the sender’s memory using the grant reference

when a mapping request occurs in the recipient. Xen does not support revocation of shared

pages while they are mapped by the remote domain; instead, the sender must wait for the

GTF_reading and GTF_writing flags to be cleared by the hypervisor, at which time

GTF_permit_access can be cleared. Atomic operations and memory barriers safely expose

writes to the grant table between guest and hypervisor.

Device-driver front ends allocate and share memory with back ends, rather than vice versa. This

approach minimizes modification to front-end memory allocation which is helpful for less

virtualization-aware guest operating systems, and also helps avoid data copies. Front-end

drivers will rely on XenBus’s xenbus_grant_ring () function to share locally allocated rings with

back-end drivers that will communicate references to the back end via XenStore. Grant

references embedded in requests and responses sent via these rings share and transfer pages

containing buffers (e.g., network packets and disk blocks). These grants and references will be

managed directly using interfaces defined in gnttab.c, such as

gnttab_grant_foreign_access_ref(), which grants a remote domain shared access to a page,

gnttab_end_foreign_access_ref(), which cancels a grant of a shared page with a remote

domain, and gnttab_grant_foreign_transfer_ref(), which accepts transfer of a page from a

remote domain.

Grant tables, with the help of XenStore, allow shared memory to be configured between

device-driver front and back ends. Event management is required to construct higher-level

communication primitives, such as blocking rings for requests and responses. In Xen, event

management is done via event channels that allow interrupt-like callbacks to be triggered within

500

a domain by the hypervisor (for physical- and virtual-device interrupts) and other domains (for

split device drivers and other interdomain communication). This mechanism implements

Inter-Processor Interrupts (IPIs) between VCPUs within a single domain, used by FreeBSD for

interprocessor synchronization.

Domains enumerate event channels using event ports, integers associated with bits in a

per-guest global bitmask stored in the domain’s shared_info structure. The size of the bitmask

limits the number of unique event sources from which a domain can receive notifications; for

32-bit domains, the mask is 1024-bit; for 64-bit guests, 4096 bits. These limits can be avoided

through use of the new FIFO event channel facility in more recent Xen versions, but this is not

yet supported by FreeBSD. When an event channel fires, the bit corresponding to its event port

in the bitmask will be set to 1; if the bit transitions from 0 to 1, then an upcall will be delivered,

subject to a per-VCPU flag in the vcpu_info structure allowing interrupts to be disabled for that

virtual CPU.

The upcall is delivered in the style of a traditional software interrupt; FreeBSD handles this code

in xen_intr.c that routes interrupts via intr_execute_handlers(). After the event-channel bit

has been set, further upcall invocation is suppressed until the bit has been cleared by the guest.

Event ports are allocated and bound to particular event sources using event_channel_op

hypercall operations:

• bind_pirq returns an event port allowing domain 0 to receive interrupts from underlying

physical devices.

• bind_virq returns an event port for per-domain virtual devices, such as timers.

• bind_ipi returns an event port allowing a domain to deliver an IPI to another VCPU in the

same domain.

• alloc_unbound and bind_interdomain allow a pair of cooperating domains to allocate and

bind a pair of event ports, establishing a two-way interdomain event channel for a variety of

purposes including ring buffer events.

Domains can deliver events on interdomain event channels using the send operation, and close

no-longer-required event ports using the close operation. Domains can also bind an event port

to a particular VCPU using the bind_vcpu operation. These functions are configurable enough

to expose them up the xen_intr stack as though event channels were a Programmable

Interrupt Controller (PIC), thus allowing the device-driver stack to remain oblivious to the

implementation details. As with grant-table references, event-port numbers can be shared

501

between domains as integers embedded in messages, and distributed using XenStore to

configure virtual interrupts linking both halves of split device drivers.

Using grant-table entries and event channels, domains are able to implement ring buffers

suitable for carrying requests and responses between device driver front ends and back ends. As

with Virtio rings, Xen communication rings consist of a ring buffer allowing one party to send

requests to, and receive responses from, another party. Unlike Virtio rings, request and

response messages are embedded in the ring directly, with the option of referring to shared

pages or event channels via grant-table references and event-port numbers. An event channel

associated with each ring allows a recipient to receive an upcall when the ring transitions from

empty to non-empty, and a sender to receive an upcall when the ring transitions from full to

non-full. Macros defined in ring.h differentiate domain-private versions of request and

response head and tail indices from versions in shared memory, allowing multiple requests or

responses to be inserted before an event is delivered to amortize event-delivery costs.

As with Virtio’s virtual block device, Xen’s blkback and blkfront use a single ring to carry

requests and responses between the device-driver front and back ends. The front end

temporarily delegates read-only pages to the back end to provide data to write to the virtual

device, and writable pages into which data can be read from the virtual device. The block-device

back end in FreeBSD is able to direct I/O to any underlying block device in the driver domain,

including raw-disk devices and ZFS volumes.

Also similar to Virtio’s virtual network-interface device, Xen’s netback and netfront use a pair

of rings to implement transmit and receive rings for virtual network interfaces. The back end

exposes the other end of the virtual interface as a if_xnb device in the driver domain, which can

then be bridged to conventional Ethernet using the FreeBSD if_bridge driver. Techniques

originally developed for physical-network-interface performance optimization such as checksum

offloading, TCP Segmentation Offload, and Large Receive Offload apply equally well to virtual

network interfaces, and are typically utilized to mitigate domain-switching costs.

Device Pass-Through

Another increasingly common approach is delegation of physical device access to virtual

machines, rather than virtualizing devices. This approach requires hardware support,

implemented using IOMMUs that virtualize the address space seen by DMA engines on

peripherals in the same manner that the CPU’s memory-management unit (MMU) virtualizes

memory access for the processor. This approach safely delegates access to I/O ports and DMA

descriptor rings to guest virtual machines. For example, for suitably virtualization-aware

502

network interface cards, this approach delegates specific descriptor rings to the guest allowing

direct Ethernet access with few performance overheads.

Device delegation offers different configuration and performance tradeoffs: for example, it is

unsuitable if the host operating system instance wishes to impose fine-grained policies on

network access, use virtual disks rather than physical ones, or if communication is to be between

virtual machines rather than to remote systems. When a device must be shared by multiple

virtual machines, the IOMMU alone is insufficient: the device itself must be aware of multiple

virtual machines and be able to impose OS-originated policy on their interactions. For example,

a virtualization-aware NIC would allow the host or domain 0 operating system instance an

opportunity to control NIC-side rules for distributing packets to specific receive rings, and

limiting packets that can be sent on specific transmit rings; individual guest virtual machines

will then be able to interact directly with the NIC using those rings without trapping to the

hypervisor or host operating system.

Exercises

8.1 Describe the differences between the PCI and USB busses.

8.2 Why was the /dev filesystem added to FreeBSD 5?

8.3 Give an example of a network interface that is useful without an underlying hardware

device.

8.4 Give two reasons why the addresses of a network interface are not in the network-interface

data structure.

8.5 Describe two tasks performed by a network-interface output routine.

8.6 Why is the identity of the network interface on which each message is received passed

upward with the message?

8.7 Name the two devices that make up a pseudo-terminal. Explain the role of each of these

pieces.

8.8 What are the two modes of terminal input? Which mode is most commonly in use when

users converse with an interactive screen editor?

8.9 Explain why there are two character queues for dealing with terminal input. Describe the

use of each.

503

8.10 What signal is sent to what process associated with a terminal if a network connection

breaks in the middle of a session?

8.11 Name the three layers between the filesystem and the disk. Briefly describe the purpose of

each layer.

8.12 Give an example of a GEOM provider and a GEOM consumer.

8.13 What happens if two GEOM consumers try to operate at the same time?

8.14 Draw a sequence of pictures showing what happens to the GEOM configuration in Figure

8.6 when the disk becomes unavailable.

8.15 Name the three layers within CAM. Briefly describe the service that each of these layers

provides.

8.16 Can the CAM layer handle the setup and tear down of the DMA maps for one of its device

drivers? Why or why not?

8.17 What is the purpose of the /usr/sbin/config program?

8.18 Give two reasons why it is unsafe to allow a kernel to load code dynamically.

8.19 Why are device probing and attaching done as two separate steps?

8.20 Describe the purpose of the device structure.

8.21 Run the /usr/sbin/devinfo program on a FreeBSD machine and identify the hardware

associated with each of the leaf nodes.

8.22 Name the three steps used for resource allocation and freeing. Why are these functions

broken into three separate steps?

**8.23 All devices are currently attached once in a depth-first search. But some devices may

offer services needed by devices higher up the tree. Describe devices that fall into this class and

give a plan to build a multipass-attach approach into newbus to handle them.

References

ACPI, 2013.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08fig06

504

ACPI, Advanced Configuration and Power Interface Specification, available from

http://www.acpi.info/, November 2013.

ANSI, 2002.

ANSI, “Common Access Method draft standard,” X3T10, available from http://www.t10.org,

January 2002.

ANSI, 2003.

ANSI, “Fibre Channel draft standard,” T11, available from http://www.t11.org, January 2003.

Arch, 2014.

Arch, PC Architecture, available from

http://www.intel.com/design/chipsets/865PE/pix/865PE_schematic.gif, and

http://www.just2good.co.uk/chipset.php, March 2014.

Barham et al., 2003.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, & A.

Warfield, “Xen and the Art of Virtualization,” Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles, pp. 164–177, October 2003.

Chisnall, 2007.

D. Chisnall, The Definitive Guide to the Xen Hypervisor, Prentice Hall Press, Upper Saddle

River, NJ, 2007.

Chiueh et al., 2004.

T. Chiueh, P. Pardhan, & G. Venkitachalam, Intra-Address Space Protection Using

Segmentation Hardware, available from http://www.ecsl.cs.sunysb.edu/palladium.html,

March 2004.

Harris & Fraser, 2007.

T. Harris & K. Fraser, “Concurrent Programming Without Locks,” ACM Transactions on

Computer Systems, vol. 25, no. 2, Association for Computing Machinery, May 2007.

Russell, 2008.

http://www.acpi.info/
http://www.t10.org/
http://www.t11.org/
http://www.intel.com/design/chipsets/865PE/pix/865PE_schematic.gif
http://www.just2good.co.uk/chipset.php
http://www.ecsl.cs.sunysb.edu/palladium.html

505

R. Russell, “Virtio: Towards a De-facto Standard for Virtual I/O Devices,” ACM SIGOPS

Operating Systems Review, vol. 42, no. 5, pp. 95–103, September 2008.

TCG, 2003.

TCG, Trusted Computing Group TPM Specification Version 1.2, available from

http://www.trustedcomputinggroup.org/, October 2003.

Xerox, 1980.

Xerox, “The Ethernet, a Local Area Network: Data Link Layer and Physical Layer Specification,”

X3T51/80-50, Xerox Corporation, Stamford, CT, October 1980.

http://www.trustedcomputinggroup.org/

506

Chapter 9. The Fast Filesystem

9.1 Hierarchical Filesystem Management

The operations defined for local filesystems are divided into two parts. Common to all local

filesystems are hierarchical naming, locking, quotas, attribute management, and protection.

These features, which are independent of how data are stored, are provided by the UFS code

described in the first seven sections of this chapter. The other part of the local filesystem, the

filestore, is concerned with the organization and management of the data on the storage media.

Storage is managed by the datastore filesystem operations that are provided by the FFS code

described in the final two sections of this chapter. We use the acronym UFS when referring to

the fast filesystem in this book.

The vnode operations defined for performing hierarchical filesystem operations are shown in

Table 9.1. The most complex of these operations is that for performing a lookup. The

filesystem-independent part of the lookup is described in Section 7.4. The algorithm used to

lookup a pathname component in a directory is described in Section 9.3.

Table 9.1 Hierarchical filesystem operations.

There are five operators for creating names. The operator used depends on the type of object

being created. The create operator creates regular files and also is used by the networking code

to create AF_LOCAL domain sockets. The link operator creates additional names for existing

objects. The symlink operator creates a symbolic link (see Section 9.3 for a discussion of

symbolic links). The mknod operator creates character special devices (for compatibility with

other UNIX systems that still use them); it is also used to create fifos. The mkdir operator

creates directories.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3

507

There are three operators for changing or deleting existing names. The rename operator deletes

a name for an object in one location and creates a new name for the object in another location.

The implementation of this operator is complex when the kernel is dealing with the movement

of a directory from one part of the filesystem tree to another. The remove operator removes a

name. If the removed name is the final reference to the object, the space associated with the

underlying object is reclaimed. The remove operator operates on all object types except

directories; they are removed using the rmdir operator.

Three operators are supplied for object attributes. The kernel retrieves attributes from an object

using the getattr operator and stores them using the setattr operator. Access checks for a given

user are provided by the access operator.

Five operators are provided for interpreting objects. The open and close operators have only

peripheral use for regular files, but when they are used on special devices, they notify the

appropriate device driver of device activation or shutdown. The readdir operator converts the

filesystem-specific format of a directory to the standard list of directory entries expected by an

application. Note that the interpretation of the contents of a directory is provided by the

hierarchical filesystem-management layer; the filestore code considers a directory as just

another object holding data. The readlink operator returns the contents of a symbolic link. As

with directories, the filestore code considers a symbolic link as just another object holding data.

The mmap operator prepares an object to be mapped into the address space of a process.

Three operators are provided to allow process control over objects. The poll operator allows a

process to find out whether an object is ready to be read or written. The ioctl operator passes

control requests to a special device. The advlock operator allows a process to acquire or release

an advisory lock on an object. None of these operators modifies the object in the filestore. They

are simply using the object for naming or directing the desired operation.

There are four operations for management of the objects. The inactive and reclaim operators

were described in Section 7.3. The lock and unlock operators allow the callers of the vnode

interface to provide hints to the code that implements operations on the underlying objects.

Stateless filesystems such as NFS ignore these hints. Stateful filesystems, however, can use hints

to avoid doing extra work. For example, an open system call requesting that a new file be created

requires two steps. First, a lookup call is done to see if the file already exists. Before the lookup is

started, a lock request is made on the directory being searched. While scanning through the

directory checking for the name, the lookup code also identifies a location within the directory

that contains enough space to hold the new name. If the lookup returns successfully (meaning

that the name does not already exist), the open code verifies that the user has permission to

create the file. If the caller is not eligible to create the new file, then they are expected to call

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec3

508

unlock to release the lock that they acquired during the lookup. Otherwise, the create operation

is called. If the filesystem is stateful and has been able to lock the directory, then it can simply

create the name in the previously identified space because it knows that no other processes will

have had access to the directory. Once the name is created, an unlock request is made on the

directory. If the filesystem is stateless, then it cannot lock the directory, so the create operator

must rescan the directory to find space and to verify that the name has not been created since

the lookup.

9.2 Structure of an Inode

To allow files to be allocated concurrently and to provide random access within files, FreeBSD

uses the concept of an index node, or inode. The inode contains information about the contents

of the file, as shown in Figure 9.1. This information includes the following:

• The type and access mode for the file

• The file’s owner and group-access identifiers

• The time that the file was created, when it was most recently read and written, and when its

inode was most recently updated by the system

• The size of the file in bytes

• The number of physical blocks used by the file (including blocks used to hold indirect pointers

and extended attributes)

• The number of directory entries that reference the file

• The kernel and user-setable flags that describe characteristics of the file

• The generation number of the file (a randomly selected number assigned to the inode each

time that the latter is allocated to a new file; the generation number is used by NFS to detect

references to deleted files)

• The block size of the data blocks referenced by the inode (typically the same as, but sometimes

larger than, the filesystem block size)

• The size of the extended attribute information

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_22

509

Figure 9.1 The structure of an inode.

Notably missing in the inode is the filename. Filenames are maintained in directories rather

than in inodes because a file may have many names, or links, and the name of a file can be large

(up to 255 bytes in length). Directories are described in Section 9.3.

To create a new name for a file, the system increments the count of the number of names

referring to that inode. Then the new name is entered in a directory, along with the number of

the inode. Conversely, when a name is deleted, the entry is deleted from a directory, and the

name count for the inode is then decremented. When the name count reaches zero, the system

deallocates the inode by putting all the inode’s blocks back on a list of free blocks.

The inode also contains an array of pointers to the blocks in the file. The system can convert

from a logical block number to a physical sector number by indexing into the array using the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3

510

logical block number. A null array entry shows that no block has been allocated and will cause a

block of zeros to be returned on a read. On a write of such an entry, a new block is allocated, the

array entry is updated with the new block number, and the data are written to the disk.

Inodes are fixed in size, and most files are small, so the array of pointers must be small for

efficient use of space. The first 12 array entries are allocated in the inode itself. For typical

filesystems, this implementation allows the first 384 Kbyte of data to be located directly via a

simple indexed lookup.

For somewhat larger files, Figure 9.1 shows that the inode contains a single indirect pointer that

points to a single indirect block of pointers to data blocks. To find the 100th logical block of

a file, the system first fetches the block identified by the indirect pointer and then indexes into

the 88th block (100 minus 12 direct pointers) and fetches that data block.

For files that are bigger than a few Mbyte, the single indirect block is eventually exhausted;

these files must resort to using a double indirect block, which is a pointer to a block of

pointers to pointers to data blocks. For files of multiple Tbyte, the system uses a triple

indirect block, which contains three levels of pointers before reaching the data block.

Although indirect blocks appear to increase the number of disk accesses required to get a block

of data, the overhead of the transfer is typically much lower. In Section 7.4, we discuss the

management of the cache that holds recently used disk blocks. The first time that a block of

indirect pointers is needed, it is brought into the cache. Further accesses to the indirect pointers

find the block already resident in memory; thus, they require only a single disk access to get the

data.

Changes to the Inode Format

Traditionally, the FreeBSD fast filesystem (which we shall refer to in this book as UFS1)

[McKusick et al., 1984] and its derivatives have used 32-bit pointers to reference the blocks used

by a file on the disk. The UFS1 filesystem was designed in the early 1980s when the largest disks

were 330 Mbyte. There was debate at the time whether it was worth squandering 32 bits per

block pointer rather than using the 24-bit block pointers of the filesystem that it replaced.

Luckily, the futurist view prevailed, and the design used 32-bit block pointers. Over the 20 years

since it has been deployed, storage systems have grown to hold over a Pbyte of data. Depending

on the block size configuration, the 32-bit block pointers of UFS1 run out of space in the 1 to 4

Tbyte range. While some stopgap measures can be used to extend the maximum-size storage

systems supported by UFS1, by 2002 it became clear the only long-term solution was to use

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref16

511

64-bit block pointers. Thus, we decided to build a new filesystem, UFS2, that would use 64-bit

block pointers.

We considered the alternatives between trying to make incremental changes to the existing

UFS1 filesystem versus importing another existing filesystem such as XFS [Sweeney et al., 1996],

or ReiserFS [Reiser, 2001]. We also considered writing a new filesystem from scratch so that we

could take advantage of recent filesystem research and experience. We chose to extend the UFS1

filesystem because this approach allowed us to reuse most of the existing UFS1 code base. The

benefits of this decision were that UFS2 was developed and deployed quickly, it became stable

and reliable rapidly, and the same code base could be used to support both UFS1 and UFS2

filesystem formats. Over 90 percent of the code base is shared, so bug fixes and feature or

performance enhancements usually apply to both filesystem formats.

The on-disk inodes used by UFS1 are 128 bytes in size and have only two unused 32-bit fields. It

would not be possible to convert to 64-bit block pointers without reducing the number of direct

block pointers from 12 to 5. Doing so would dramatically increase the amount of wasted space,

since only direct block pointers can reference fragments, so the only alternative is to increase the

size of the on-disk inode to 256 bytes.

Once one is committed to changing to a new on-disk format for the inodes, it is possible to

include other inode-related changes that were not possible within the constraints of the old

inodes. While it was tempting to throw in everything that has ever been suggested over the last

20 years, we felt that it was best to limit the addition of new capabilities to those that were likely

to have a clear benefit. Every new addition adds complexity that has a cost both in

maintainability and performance. Obscure or little-used features may add conditional checks in

frequently executed code paths such as read and write, slowing down the overall performance of

the filesystem even if they are not used.

Extended Attributes

A major addition in UFS2 is support for extended attributes. Extended attributes are a piece of

auxiliary data storage associated with an inode that can be used to store auxiliary data that is

separate from the contents of the file. The idea is similar to the concept of data forks used in the

Apple filesystem [Apple, 2003]. By integrating the extended attributes into the inode, it is

possible to provide the same integrity guarantees as are made for the contents of the file.

Specifically, the successful completion of an fsync system call ensures that the file data, the

extended attributes, and all names and paths leading to the names of the file are in stable store.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref01

512

The current implementation has space in the inode to store up to two blocks of extended

attributes. The new UFS2 inode format had room for up to five additional 64-bit pointers. Thus,

the number of extended attribute blocks could have been between one to five blocks. We chose

to allocate two blocks to the extended attributes and to leave the other three as spares for future

use. By having two, all the code had to be prepared to deal with an array of pointers, so if the

number is expanded into the remaining spares in the future, the existing implementation will

work without changes to the source code. By saving three spares, we provided a reasonable

amount of space for future needs. And if the decision to allow only two blocks proves to be too

little space, one or more of the spares can be used to expand the size of the extended attributes

in the future. If vastly more extended attribute space is needed, a spare could be used as an

indirect pointer to extended attribute data blocks.

Figure 9.2 shows the format used for the extended attributes. The first field of the header of each

attribute is its length. Applications that do not understand the namespace or name can simply

skip over the unknown attribute by adding the length to their current position to get to the next

attribute. Thus, many different applications can share the usage of the extended attribute space,

even if they do not understand each other’s data types.

Figure 9.2 Format of extended attributes. The header of each attribute has a 4-byte length,

1-byte namespace class, 1-byte content pad length, 1-byte name length, and name. The name is

padded so that the contents start on an 8-byte boundary. The contents are padded to the size

shown by the “content pad length” field. The size of the contents can be calculated by

subtracting from the length the size of the header (including the name) and the content pad

length.

The first of two initial uses for extended attributes is to support an access control list,

generally referred to as an ACL. An ACL replaces the group permissions for a file with a more

specific list of the users that are permitted to access the files. The ACL also includes a list of the

permissions that each user is granted. These permissions include the traditional read, write, and

execute permissions along with other properties such as the right to rename or delete the file

[Rhodes, 2014].

Earlier implementations of ACLs were done with a single auxiliary file per filesystem that was

indexed by the inode number and had a small fixed-size area to store the ACL permissions. The

small size was intended to keep the size of the auxiliary file reasonable, since it had to have

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref26

513

space for every possible inode in the filesystem. There were two problems with this

implementation. The fixed size of the space per inode to store the ACL information meant that it

was not possible to give access to long lists of users. The second problem was that it was difficult

to commit changes atomically to the ACL list for a file, since an update required that both the

file inode and the ACL file be written to have the update take effect [Watson, 2000].

Both problems with the auxiliary file implementation of ACLs are fixed by storing the ACL

information directly in the extended-attribute data area of the inode. Because of the large size of

the extended attribute data area (a minimum of 8 Kbyte and typically 64 Kbyte), long lists of

ACL information can be easily stored. Space used to store extended attribute information is

proportional to the number of inodes with extended attributes and the size of the ACL lists that

they use. Atomic update of the information is much easier, since writing the inode will update

the inode attributes and the set of data that the inode references including the extended

attributes in one disk operation. While it would be possible to update the old auxiliary file on

every fsync system call done on the filesystem, the cost of doing so would be prohibitive. Here,

the kernel knows if the extended attribute data block for an inode is dirty and can write just that

data block during an fsync call on the inode.

The second use for extended attributes is for data labeling. Data labels provide permissions for a

mandatory access control (MAC) framework enforced by the kernel. As described in

Section 5.10, the kernel’s MAC framework permits dynamically introduced system-security

modules to modify system security functionality. This framework can be used to support a

variety of new security services, including traditional labelled mandatory access control models.

The framework provides a series of entry points that are called by code supporting various

kernel services, especially with respect to access control points and object creation. The

framework then calls out to security modules to offer them the opportunity to modify security

behavior at those MAC entry points. Thus, the filesystem does not codify how the labels are used

or enforced. It simply stores the labels associated with the inode and produces them when a

security module needs to query them to do a permission check [Watson, 2001; Watson et al.,

2003].

We considered storing symbolic links in the extended attribute area but chose not to do so for

four reasons:

1. Most symbolic links fit within the 120 bytes normally used to store the direct and indirect

pointers, and thus do not need a disk block to be allocated to hold them.

2. If the symbolic link is large enough to require storage in a disk block, the time to access an

extended storage block is the same as the time to access a regular data block.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref38

514

3. Since symbolic links rarely have any extended attributes, there would be no savings in storage,

since a filesystem fragment would be needed whether it was stored in a regular data block or in

an extended storage block.

4. If the symbolic link were stored in an extended storage block, it would take more time to

traverse down the attribute list to find it.

New Filesystem Capabilities

Several other improvements were made when the enlarged inode format was created. We

decided to get an early jump on the year 2038 problem when the 32-bit time fields overflow

(specifically, Tue Jan 19 03:14:08 2038 GMT, which could be a really ugly way to usher in the

first author’s 84th birthday). We expanded the time fields (which hold seconds-since-1970) for

access, modification, and inodemodification times from 32 bits to 64 bits. At plus or minus 136

billion years, this expansion should carry us from well before the universe was created until long

after our sun has burned itself out. We left the nanoseconds fields for these times at 32 bits

because we did not feel that added resolution was going to be useful in the foreseeable future.

We considered expanding the time to only 48 bits. We chose to go to 64 bits, since 64 bits is a

native size that can be easily manipulated with existing and likely future architectures. Using 48

bits would have required an extra unpacking or packing step each time the field was read or

written. Also, going to 64 bits ensures enough bits for all likely measured time so it will not have

to be enlarged.

We also added a new time field (also 64 bits) to hold the birth time (also commonly called the

creation time) of the file. The birth time is set when the inode is first allocated and is not

changed thereafter. It has been added to the structure returned by the stat system call so that

applications can determine its value and so that archiving programs such as dump, tar, and

pax can save this value along with the other file times. The birth time was added to a previously

spare field in the stat system-call structure so that the size of the structure did not change. Thus,

old versions of programs that use the stat call continue to work.

To date, only the dump program has been changed to save the birth-time value. This new

version of dump, which can dump both UFS1 and UFS2 filesystems, creates a new dump format

that is not readable by older versions of restore. The updated version of restore can identify

and restore from both old and new dump formats. The birth times are only available and setable

from the new dump format.

The utimes system call sets the access and modification times of a file to a specified set of values.

It is used primarily by archive retrieval programs to set a newly extracted file’s times back to

515

those associated with the file’s times in the archive. With the addition of birth time, we added a

new system call that allows the setting of access, modification, and birth times. However, we

realized that many existing applications will not be changed to use the new utimes system call.

The result will be that the files that they retrieved from archives will have a newer birth time

than access or modification times.

To provide a sensible birth time for applications that are unaware of the birth-time attribute, we

changed the semantics of the utimes system call so that if the birth time was newer than the

value of the modification time that it was setting, it would set the birth time to the same time as

the modification time. An application that is aware of the birth-time attribute can set both the

birth time and the modification time by doing two calls to utimes. First, it calls utimes with a

modification time equal to the saved birth time, and then it calls utimes a second time with a

modification time equal to the (presumably newer) saved modification time. For filesystems that

do not store birth times, the second call will overwrite the first call resulting in the same values

for access and modification times as they would have previously received. For filesystems that

support birth time, it will be properly set. Most happily for the application writers, they will not

have to compile the name of utimes conditionally for BSD and non-BSD systems. They just write

their applications to call the standard interface twice knowing that all supported times will be

set correctly on all systems and filesystems. Applications that value speed of execution over

portability can use the new version of the utimes system call that allows all time values to be set

with one call.

File Flags

FreeBSD has two system calls, chflags and fchflags, that set the 32-bit user-flags word in the

inode. The flags are included in the stat structure so that they can be inspected.

The owner of the file or the superuser can set the low 16 bits. Currently, there are flags defined

to mark a file as append-only, immutable, and not needing to be dumped. An immutable file

may not be changed, moved, or deleted. An append-only file is immutable, except data may be

appended to it. The user append-only and immutable flags may be changed by the owner of the

file or the superuser.

Only the superuser can set the high 16 bits. Currently, there are flags defined to mark a file as

append-only and immutable. Once set, the append-only and immutable flags in the top 16 bits

cannot be cleared when the system is secure.

516

The kernel runs with four different levels of security. Any superuser process can raise the

security level, but only the init process can lower that level (the init program is described in

Section 15.4). Security levels are defined as follows:

–1. Permanently insecure mode: Always run system in level 0 mode (must be compiled into the

kernel).

0. Insecure mode: Immutable and append-only flags may be turned off. All devices can be read

or written, subject to their permissions.

1. Secure mode: The superuser-settable immutable and append-only flags cannot be cleared;

disks for mounted filesystems and kernel memory (/dev/mem and /dev/kmem) are

read-only.

2. Highly secure mode: This mode is the same as secure mode, except that disks are always

read-only whether mounted or not. This level precludes even a superuser process from

tampering with filesystems by unmounting them, but it also inhibits formatting of new

filesystems.

Normally, the system runs with level 0 security while in single-user mode, and with level 1

security while in multiuser mode. If level 2 security is desired while the system is running in

multiuser mode, it should be set in the /etc/rc startup script (the /etc/rc script is described in

Section 15.4).

Files marked immutable by the superuser cannot be changed except by someone with physical

access to either the machine or the system console. Files marked immutable include those that

are frequently the subject of attack by intruders (e.g., login and su). The append-only flag is

typically used for critical system logs. If an intruder breaks in, he will be unable to cover his

tracks. Although simple in concept, these two features improve the security of a system

dramatically. However, there are some serious limitations to this security model:

• Immutable files can only be updated when system is single-user.

• Append-only files can only be rotated when system is single-user.

• Direct hardware access is restricted.

The biggest limitation is that all startup activities must be protected. The reason for this

limitation is that a kernel always has some bug that can be exploited to cause it to crash and

reboot. During the reboot process, it is running in insecure mode; thus, if an exploit script can

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec4

517

be injected anywhere during the time that the system is starting up, the system can be

compromised. The set of startup activities includes:

• Startup scripts and their containing directories

• All binaries executed during startup

• All libraries used during startup

• Many configuration files used during startup

Finding and locking down all these files and directories is very difficult and if even one is missed,

it is possible to break into the system.

One change in the UFS2 inode format was to split the flags field into two separate 32-bit fields:

one for flags that can be set by applications (as in UFS1) and a new field for flags maintained

strictly by the kernel. An example of a kernel flag is the SNAPSHOT flag used to label a file as

being a snapshot. Another kernel-only flag is OPAQUE, which is used by the union filesystem to

mark a directory that should not make the layers below it visible. By moving these kernel flags

from the high 16 bits of the user-flags field into a separate kernel-flags field, they will not be

accidentally set or cleared by a naive or malicious application.

Dynamic Inodes

A common complaint about the UFS1 filesystem is that it preallocates all its inodes at the time

that the filesystem is created. For filesystems with millions of files, the initialization of the

filesystem can take several hours. Additionally, the filesystem creation program, newfs, had to

assume that every filesystem would be filled with many small files and allocate a lot more inodes

than were likely to ever be used. If a UFS1 filesystem uses up all its inodes, the only way to get

more is to dump, rebuild, and restore the filesystem. The UFS2 filesystem resolves these

problems by dynamically allocating its inodes. The usual implementation of dynamically

allocated inodes requires a separate filesystem data structure (typically referred to as the inode

file) that tracks the current set of inodes. The management and maintenance of this extra data

structure adds overhead and complexity and often degrades performance.

To avoid these costs, UFS2 preallocates a range of inode numbers and a set of blocks for each

cylinder group (cylinder groups are described in Section 9.10). Initially, each cylinder group has

two blocks of inodes allocated (a typical block holds 128 inodes). When the blocks fill up, the

next block of inodes in the set is allocated and initialized. The set of blocks that may be allocated

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec10

518

to inodes is held as part of the free-space reserve until all other space in the filesystem is

allocated. Only then can it be used for file data.

In theory, a filesystem could fill, using up all the blocks set aside for inodes. Later, after large

files have been removed and many small files created to replace them, the filesystem might find

itself unable to allocate the needed inodes because all the space set aside for inodes was still in

use. Here, it would be necessary to reallocate existing files to move them to new locations

outside the inode area. Such code has not been written as we do not expect that this condition

will arise in practice, since the free-space reserve used on most filesystems (8 percent) exceeds

the amount of space needed for inodes (typically less than 6 percent). On these systems, only a

process running with root privileges would ever be able to allocate the inode blocks. Should the

code prove necessary in real use, it can be written at that time. Until it is written, filesystems

hitting this condition will return an “out of inodes” error on attempts to create new files.

A side benefit of dynamically allocating inodes is that the time it takes to create a new filesystem

in UFS2 is about 1 percent of the time that it takes in UFS1. A filesystem that would take one

hour to build in a UFS1 format can be built in under a minute in the UFS2 format. While

filesystem creations are not a common operation, having them build quickly does matter to the

system administrators that have to do such tasks with some regularity.

The cost of dynamically allocating inodes is one extra disk write for every 128 new inodes that

are created. Although this cost is low compared to the other costs of creating 128 new files, some

systems administrators might want to preallocate more than the minimal number of inodes. If

such a demand arises, it would be trivial to add a flag to the newfs program to preallocate

additional inodes at the time that the filesystem is created.

Inode Management

Most of the activity in the local filesystem revolves around inodes. As described in Section 7.4,

the kernel keeps a list of active and recently accessed vnodes. The decisions regarding how many

and which files should be cached are made by the vnode layer based on information about

activity across all filesystems. Each local filesystem will have a subset of the system vnodes to

manage. Each uses an inode supplemented with some additional information to identify and

locate the set of files for which it is responsible. Figure 9.3 shows the location of the inodes

within the system.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig03

519

Figure 9.3 Layout of kernel tables.

Reviewing the material in Section 7.1, each process has a process open-file table that has

slots for up to a system-imposed limit of file descriptors; this table is maintained as part of the

process state. When a user process opens a file (or socket), an unused slot is located in the

process’s open-file table; the small integer file descriptor that is returned on a successful open is

an index value into this table.

The per-process file-table entry points to a system open-file entry, which contains information

about the underlying file or socket represented by the descriptor. For files, the file table points to

the vnode representing the open file. For the local filesystem, the vnode references an inode. It is

the inode that identifies the file itself.

The first step in opening a file is to find the file’s associated inode. The lookup request is given to

the filesystem associated with the directory currently being searched. When the local filesystem

finds the name in the directory, it gets the inode number of the associated file. First, the

filesystem searches its collection of inodes to see whether the requested inode is already in

memory. To avoid performing a linear scan of all its entries, the system keeps a set of hash

chains with each entry keyed by inode number and filesystem identifier; see Figure 9.4. If the

inode is not in the table, such as the first time a file is opened, the filesystem must request a new

vnode. When a new vnode is allocated to the local filesystem, a new structure to hold the inode

is allocated.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig04

520

Figure 9.4 Structure of the inode table.

The next step is to locate the disk block containing the inode and to read that block into a buffer

in system memory. When the disk I/O completes, the inode is copied from the disk buffer into

the newly allocated inode entry. In addition to the information contained in the disk portion of

the inode, the inode table itself maintains supplemental information while the inode is in

memory. This information includes the hash chains described previously, as well as flags

showing the inode’s status, reference counts on its use, and information to manage locks. The

information also contains pointers to other kernel data structures of frequent interest, such as

the superblock for the filesystem containing the inode.

When the last reference to a file is closed, the local filesystem is notified that the file has become

inactive. When it is inactivated, the inode times will be updated, and the inode may be written to

disk. However, it remains on the hash list so that it can be found if it is reopened. After being

inactive for a period determined by the vnode layer, based on demand for vnodes in all the

filesystems, the vnode will be reclaimed. When a vnode for a local file is reclaimed, the inode is

removed from the previous filesystem’s hash chain and, if the inode is dirty, its contents are

written back to disk. The space for the inode is then deallocated, so that the vnode will be ready

for use by a new filesystem client.

521

9.3 Naming

Filesystems contain files, most of which contain ordinary data. Certain files are distinguished as

directories and contain pointers to files that may themselves be directories. This hierarchy of

directories and files is organized into a tree structure; Figure 9.5 shows a small filesystem tree.

Each of the circles in the figure represents an inode with its corresponding inode number inside.

Each of the arrows represents a name in a directory. For example, inode 4 is the /usr directory

with entry ., that points to itself, and entry .., that points to its parent, inode 2, the root of the

filesystem. It also contains the name bin, which references directory inode 7, and the name foo,

which references file inode 6.

Figure 9.5 A small filesystem tree.

Directories

Directories are allocated in units called chunks; Figure 9.6 shows a typical directory chunk. The

size of a chunk is chosen such that each allocation can be transferred to disk in a single

operation. The ability to change a directory in a single operation makes directory updates atomic.

Chunks are broken up into variable-length directory entries to allow filenames to be of nearly

arbitrary length. No directory entry can span multiple chunks. The first four fields of a directory

entry are of fixed length and contain the following:

1. The inode number, an index into a table of on-disk inode structures; the selected entry

describes the file (inodes were described in Section 9.2)

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec2

522

2. The size of the entry in bytes

3. The type of the entry

4. The length of the filename contained in the entry in bytes

Figure 9.6 Format of directory chunks.

The remainder of an entry is of variable length and contains a null-terminated filename padded

to a 4-byte boundary. The maximum length of a filename in a directory is 255 characters.

The filesystem records free space in a directory by having entries accumulate the free space in

their size fields. Thus, some directory entries are larger than required to hold the entry name

plus fixed-length fields. Space allocated to a directory should always be accounted for

completely by the total of the sizes of the directory’s entries. When an entry is deleted from a

directory, the system coalesces the entry’s space into the previous entry in the same directory

chunk by increasing the size of the previous entry by the size of the deleted entry. If the first

entry of a directory chunk is free, then the pointer to the entry’s inode is set to zero to show that

the entry is unallocated.

When creating a new directory entry, the kernel must scan the entire directory to ensure that the

name does not already exist. While doing this scan, it also checks each directory block to see if it

has enough space in which to put the new entry. The space need not be contiguous. The kernel

will compact the valid entries within a directory block to coalesce several small unused spaces

into a single space that is big enough to hold the new entry. The first block that has enough

space is used. The kernel will neither compact space across directory blocks nor create an entry

that spans two directory blocks as it always wants to be able to do directory updates by writing a

single directory block. If no space is found when scanning the directory, a new block is allocated

at the end of the directory.

523

Applications obtain chunks of directories from the kernel by using the getdirentries system call.

For the local filesystem, the on-disk format of directories is identical to that expected by the

application, so the chunks are returned uninterpreted. When directories are read over the

network or from non-BSD filesystems, such as Apple’s HFS, the getdirentries system call has to

convert the on-disk representation of the directory to that described.

Normally, programs want to read directories one entry at a time. This interface is provided by

the directory-access routines. The opendir() function returns a structure pointer that is used by

readdir() to get chunks of directories using getdirentries; readdir() returns the next entry from

the chunk on each call. The closedir() function deallocates space allocated by opendir() and

closes the directory. In addition, there is the rewinddir() function to reset the read position to

the beginning, the telldir() function that returns a structure describing the current directory

position, and the seekdir() function that returns to a position previously obtained with telldir().

The UFS1 filesystem uses 32-bit inode numbers. While it is tempting to increase these inode

numbers to 64 bits in UFS2, doing so would require that the directory format be changed. There

is much code that works directly on directory entries. Changing directory formats would entail

creating many more filesystemspecific functions that would increase the complexity and

maintainability issues with the code. Furthermore, the current APIs for referencing directory

entries use 32-bit inode numbers. As a result, even if the underlying filesystem supported 64-bit

inode numbers, they could not currently be made visible to user applications. In the short term,

applications are not running into the 4-billion-files-perfilesystem limit that 32-bit inode

numbers impose. If we assume that the growth rate in the number of files per filesystem over

the last 20 years will continue at the same rate, we estimate that the 32-bit inode number should

be enough for another 10 to 20 years. However, the limit will be reached before the 64-bit block

limit of UFS2 is reached, so the UFS2 filesystem has reserved a flag in the superblock to show

that it is a filesystem with 64-bit inode numbers. When the time comes to begin using 64-bit

inode numbers, the flag can be turned on and the new directory format can be used. Kernels that

predate the introduction of 64-bit inode numbers check this flag and will know that they cannot

mount such filesystems.

Finding of Names in Directories

A common request to the filesystem is to look up a specific name in a directory. The kernel

usually does the lookup by starting at the beginning of the directory and going through it,

comparing each entry in turn. First, the length of the sought-after name is compared with the

length of the name being checked. If the lengths are identical, a string comparison of the name

being sought and the directory entry is made. If they match, the search is complete; if they fail,

either in the length or in the string comparison, the search continues with the next entry.

524

Whenever a name is found, its name and containing directory are entered into the systemwide

name cache described in Section 7.4. Whenever a search is unsuccessful, an entry is made in the

cache showing that the name does not exist in the particular directory. Before starting a

directory scan, the kernel looks for the name in the cache. If either a positive or negative entry is

found, the directory scan can be avoided.

Another common operation is to look up all the entries in a directory. For example, many

programs do a stat system call on each name in a directory in the order that the names appear in

the directory. To improve performance for these programs, the kernel maintains the directory

offset of the last successful lookup for each directory. Each time that a lookup is done in that

directory, the search is started from the offset at which the previous name was found (instead of

from the beginning of the directory). For programs that step sequentially through a directory

with n files, search time decreases from Order(n2) to Order(n).

One quick benchmark that demonstrates the maximum effectiveness of the cache is running the

ls –l command on a directory containing 600 files. On a system that retains the most recent

directory offset, the amount of system time for this test is reduced by 85 percent. Unfortunately,

the maximum effectiveness is much greater than the average effectiveness. Although the cache is

90 percent effective when hit, it is applicable to only about 25 percent of the names being looked

up. Despite the amount of time spent in the lookup routine itself decreasing substantially, the

improvement is diminished because more time is spent in the routines that that routine calls.

Each cache miss causes a directory to be accessed twice—once to search from the middle to the

end and once to search from the beginning to the middle.

These caches provide good directory lookup performance but are ineffective for large directories

that have a high rate of entry creation and deletion. Each time a new directory entry is created,

the kernel must scan the entire directory to ensure that the entry does not already exist. When

an existing entry is deleted, the kernel must scan the directory to find the entry to be removed.

For directories with many entries, these linear scans are time consuming.

The approach to solving this problem is to introduce dynamic directory hashing that retrofits a

directory indexing system to UFS [Dowse & Malone, 2002]. To avoid repeated linear searches of

large directories, the dynamic directory hashing builds a hash table of directory entries on the

fly when the directory is first accessed. This table avoids directory scans on later lookups,

creates, and deletes. Unlike filesystems originally designed with large directories in mind, these

indices are not saved on disk and so the system is backward compatible. The drawback is that

the indices need to be built the first time that a large directory is encountered after each system

reboot. The effect of the dynamic directory hashing is that large directories in UFS cause

minimal performance problems.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref06

525

When we built UFS2, we contemplated solving the large directory update problem by changing

to a more complex directory structure such as one that uses B-trees. This technique is used in

many modern filesystems such as XFS [Sweeney et al., 1996], JFS [Best, 2000], ReiserFS

[Reiser, 2001], and in later versions of Ext2 [Phillips, 2001]. We decided not to make the change

at the time that UFS2 was first implemented for two reasons. First, we had limited time and

resources, and we wanted to get something working and stable that could be used in the time

frame of FreeBSD 5. By keeping the same directory format, we were able to reuse all the

directory code from UFS1, did not have to change numerous filesystem utilities to understand

and maintain a new directory format, and were able to produce a stable and reliable filesystem

in the time frame available to us. Second, we felt that we could retain the existing directory

structure because of the dynamic directory hashing that was added to FreeBSD.

Borrowing the technique used by the Ext2 filesystem, a flag was also added to show that an

on-disk indexing structure is supported for directories [Phillips, 2001]. This flag is

unconditionally turned off by the existing implementation of UFS. In the future, if an

implementation of an on-disk directory-indexing structure is added, the implementations that

support it will not turn the flag off. Index-supporting kernels will maintain the indices and leave

the flag on. If an old non-index-supporting kernel is run, it will turn off the flag so that when the

filesystem is once again run under a new kernel, the new kernel will discover that the indexing

flag has been turned off and will know that the indices may be out of date and have to be rebuilt

before being used. The only constraint on an implementation of the indices is that they have to

be an auxiliary data structure that references the old linear directory format.

Pathname Translation

We are now ready to describe how the filesystem looks up a pathname. The small filesystem

introduced in Figure 9.5 is expanded to show its internal structure in Figure 9.7. Each of the files

in Figure 9.5 is shown expanded into its constituent inode and data blocks. As an example of

how these data structures work, consider how the system finds the file /usr/bin/vi. It must

first search the root directory of the filesystem to find the directory usr. It first finds the inode

that describes the root directory. By convention, inode 2 is always reserved for the root directory

of a filesystem; therefore, the system finds and brings inode 2 into memory. This inode shows

where the data blocks are for the root directory. These data blocks must also be brought into

memory so that they can be searched for the entry for usr. Having found the entry for usr, the

system knows that the contents of usr are described by inode 4. Returning once again to the

disk, the system fetches inode 4 to find where the data blocks for usr are located. Searching

these blocks, it finds the entry for bin. The bin entry points to inode 7. Next, the system brings

in inode 7 and its associated data blocks from the disk to search for the entry for vi. Having

found that vi is described by inode 9, the system can fetch this inode and the blocks that contain

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig05

526

the vi binary. The first time after booting that this lookup is done, many I/O operations will be

done. Thereafter, the various filesystem caches will ensure that these I/O operations will not

need to be repeated.

527

Figure 9.7 Internal structure of a small filesystem.

Links

As shown in Figure 9.8, each file has a single inode, but multiple directory entries in the same

filesystem may reference that inode (i.e., the inode may have multiple names). Each directory

entry creates a hard link of a filename to the inode that describes the file’s contents. The link

concept is fundamental; inodes do not reside in directories but exist separately and are

referenced by links. When all the links to an inode are removed, the inode is deallocated. If one

link to a file is removed and the filename is recreated with new contents, the other links will

continue to point to the old inode. Figure 9.8 shows two different directory entries, foo and bar,

that reference the same file; thus, the inode for the file shows a reference count of 2.

Figure 9.8 Hard links to a file.

The system also supports a symbolic link, or soft link. A symbolic link is implemented as a

file that contains a pathname. When the system encounters a symbolic link while looking up a

component of a pathname, the contents of the symbolic link are prepended to the rest of the

pathname; the lookup continues with the resulting pathname. If a symbolic link contains an

absolute pathname, that absolute pathname is used. Otherwise, the contents of the symbolic link

are evaluated relative to the location of the link in the file hierarchy (not relative to the current

working directory of the calling process).

A symbolic link is illustrated in Figure 9.9. Here, there is a hard link, foo, that points to the file.

The other reference, bar, points to a different inode whose contents are a pathname of the

referenced file. When a process opens bar, the system interprets the contents of the symbolic

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig09

528

link as a pathname to find the file the link references. Symbolic links are treated like data files by

the system, rather than as part of the filesystem structure; thus, they can point at directories or

files on other filesystems. If a filename is removed and replaced, any symbolic links that point to

it will access the new file. Finally, if the filename is not replaced, the symbolic link will point at

nothing, and any attempt to access it will return an error.

Figure 9.9 Symbolic link to a file.

When open is applied to a symbolic link, it returns a file descriptor for the file pointed to, not for

the link itself. Otherwise, it would be necessary to use indirection to access the file pointed

to—and that file, rather than the link, is what is usually wanted. For the same reason, most other

system calls that take pathname arguments also follow symbolic links. Sometimes, it is useful to

be able to detect a symbolic link when traversing a filesystem or when making an archive tape.

In this situation, the lstat system call is available to get the status of a symbolic link, instead of

the object at which that link points.

A symbolic link has several advantages over a hard link. Since a symbolic link is maintained as a

pathname, it can refer to a directory or to a file on a different filesystem. So that loops in the

filesystem hierarchy are prevented, unprivileged users are not permitted to create hard links

(other than . and ..) that refer to a directory. The design of hard links prevents them from

referring to files on a different filesystem.

There are several interesting implications of symbolic links. Consider a process that has

/usr/keith as its current working directory and does cd src, where src is a symbolic link to

529

directory /usr/src. If the process then does a cd .., the current working directory for the

process will be in /usr instead of in /usr/keith, as it would have been if src were a normal

directory instead of a symbolic link. The kernel could be changed to keep track of the symbolic

links that a process has traversed and to interpret .. differently if the directory has been reached

through a symbolic link. There are two problems with this implementation. First, the kernel

would have to maintain a potentially unbounded amount of information. Second, no program

could depend on being able to use .., since it could not be sure how the name would be

interpreted.

Many shells keep track of symbolic-link traversals. When users change directory through .. from

a directory that was entered through a symbolic link, the shell returns them to the directory

from which they came. Although the shell might have to maintain an unbounded amount of

information, the worst that will happen is that the shell will run out of memory. Having the shell

fail will affect only the user silly enough to traverse endlessly through symbolic links. Tracking

of symbolic links affects only change-directory commands in the shell; programs can continue to

depend on .. to reference its true parent. Thus, tracking symbolic links outside the kernel in a

shell is reasonable.

Since symbolic links may cause loops in the filesystem, the kernel prevents looping by allowing

at most eight symbolic link traversals in a single pathname translation. If the limit is reached,

the kernel produces an error (ELOOP).

9.4 Quotas

Resource sharing always has been a design goal for the BSD system. By default, any single user

can allocate all the available space in the filesystem. In certain environments, uncontrolled use

of disk space is unacceptable. Consequently, FreeBSD includes a quota mechanism to restrict

the amount of filesystem resources that a user or members of a group can obtain. The quota

mechanism sets limits on both the number of files and the number of disk blocks that a user or

members of a group may allocate. Quotas can be set separately for each user and group on each

filesystem.

Quotas support both hard and soft limits. When a process exceeds its soft limit, a warning is

printed on the user’s terminal; the offending process is not prevented from allocating space

unless it exceeds its hard limit. The idea is that users should stay below their soft limit between

login sessions but may use more resources while they are active. If a user fails to correct the

problem for longer than a grace period, the soft limit starts to be enforced as the hard limit. The

grace period is set by the system administrator and is 7 days by default. These quotas are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_396

530

derived from a larger resource-limit package that was developed at the University of Melbourne

in Australia by Robert Elz [Elz, 1984].

Quotas connect into the system primarily as an adjunct to the allocation routines. When a new

block is requested from the allocation routines, the request is first validated by the quota system

with the following steps:

1. If there is a user quota associated with the file, the quota system consults the quota associated

with the owner of the file. If the owner has reached or exceeded their limit, the request is denied.

2. If there is a group quota associated with the file, the quota system consults the quota

associated with the group of the file. If the group has reached or exceeded its limit, the request is

denied.

3. If the quota tests pass, the request is permitted and is added to the usage statistics for the file.

When either a user or group quota would be exceeded, the allocator returns a failure as though

the filesystem were full. The kernel propagates this error up to the process doing the write

system call.

Quotas are assigned to a filesystem after it has been mounted. A system call associates a file

containing the quotas with the mounted filesystem. By convention, the file with user quotas is

named quota.user, and the file with group quotas is named quota.group. These files typically

reside either in the root of the mounted filesystem or in the /var/quotas directory. For each

quota to be imposed, the system opens the appropriate quota file and holds a reference to it in

the mount-table entry associated with the mounted filesystem. Figure 9.10 shows the

mount-table reference. Here, the root filesystem has a quota on users but has none on groups.

The /usr filesystem has quotas imposed on both users and groups. As quotas for different users

or groups are needed, they are taken from the appropriate quota file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig10

531

Figure 9.10 References to quota files.

Quota files are maintained as an array of quota records indexed by user or group identifiers;

Figure 9.11 shows a typical record in a user quota file. To find the quota for user identifier i, the

system seeks to the offset i × sizeof(quota structure) in the quota file and reads the quota

structure at that offset. Each quota structure contains the limits imposed on the user for the

associated filesystem. These limits include the hard and soft limits on the number of blocks and

inodes that the user may have, the number of blocks and inodes that the user currently has

allocated, and the time that the soft limit should start being enforced as the hard limit. The

group quota file works in the same way, except that it is indexed by group identifier.

Figure 9.11 Contents of a quota record.

Active quotas are held in system memory in a data structure known as a dquot entry; Figure 9.12

shows two typical entries. In addition to the quota limits and usage extracted from the quota file,

the dquot entry maintains information about the quota while the quota is in use. This

information includes fields to allow fast access and identification. Quotas are checked by the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig12

532

chkdq() routine. Since quotas may have to be updated on every write to a file, chkdq() must be

able to find and manipulate them quickly. Thus, the task of finding the dquot structure

associated with a file is done when the file is first opened for writing. When an access check is

done to check for writing, the system checks to see whether there is either a user or a group

quota associated with the file. If one or more quotas exist, the inode is set up to hold a reference

to the appropriate dquot structures for as long as the inode is resident. The chkdq() routine can

determine that a file has a quota simply by checking whether the dquot pointer is nonnull; if it is,

all the necessary information can be accessed directly. If a user or a group has multiple files

open on the same filesystem, all inodes describing those files point to the same dquot entry.

Thus, the number of blocks allocated to a particular user or a group can always be known easily

and consistently.

Figure 9.12 Dquot entries.

The number of dquot entries in the system can grow large. To avoid performing a linear scan of

all the dquot entries, the system keeps a set of hash chains keyed on the filesystem and on the

user or group identifier. Even with hundreds of dquot entries, the kernel needs to inspect only

about five entries to determine whether a requested dquot entry is memory resident. If the

dquot entry is not resident, such as the first time a file is opened for writing, the system must

reallocate a dquot entry and read in the quota from disk. The dquot entry is reallocated from the

least recently used dquot entry. So that it can find the oldest dquot entry quickly, the system

533

keeps unused dquot entries linked together in an LRU chain. When the reference count on a

dquot structure drops to zero, the system puts that dquot onto the end of the LRU chain. The

dquot structure is not removed from its hash chain, so if the structure is needed again soon, it

can still be located. Only when a dquot structure is recycled with a new quota record is it

removed and relinked into the hash chain. The dquot entry on the front of the LRU chain yields

the least recently used dquot entry. Frequently used dquot entries are reclaimed from the

middle of the LRU chain and are relinked at the end after use.

The hashing structure allows dquot structures to be found quickly. However, it does not solve

the problem of how to discover that a user has no quota on a particular filesystem. If a user has

no quota, a lookup for the quota will fail. The cost of going to disk and reading the quota file to

discover that the user has no quota imposed would be prohibitive. To avoid doing this work each

time that a new file is accessed for writing, the system maintains nonquota dquot entries. When

an inode owned by a user or group that does not already have a dquot entry is first accessed, a

dummy dquot entry is created that has infinite values filled in for the quota limits. When the

chkdq() routine encounters such an entry, it will update the usage fields but will not impose any

limits. When the user later writes other files, the same dquot entry will be found, thus avoiding

additional access to the on-disk quota file. Ensuring that a file will always have a dquot entry

improves the performance of writing data, since chkdq() can assume that the dquot pointer is

always valid, rather than having to check the pointer before every use.

Quotas are written back to the disk when they fall out of the cache, whenever the filesystem does

a sync, or when the filesystem is unmounted. If the system crashes, leaving the quotas in an

inconsistent state, the system administrator must run the quotacheck program to rebuild the

usage information in the quota files.

9.5 File Locking

Locks may be placed on any arbitrary range of bytes within a file. These semantics are supported

in FreeBSD by a list of locks, each of which describes a lock of a specified byte range. An

example of a file containing several range locks is shown in Figure 9.13. The list of currently held

or active locks appears across the top of the figure, headed by the i_lockf field in the inode, and

linked together through the lf_next field of the lock structures. Each lock structure identifies the

type of the lock (exclusive or shared), the byte range over which the lock applies, and the

identity of the lock holder. A lock may be identified either by a pointer to a process entry or by a

pointer to a file entry. A process pointer is used for POSIX-style range locks; a file-entry pointer

is used for BSD-style whole file locks. The examples in this section show the identity as a pointer

to a process entry. In this example, there are three active locks: an exclusive lock held by process

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13

534

1 on bytes 1 to 3, a shared lock held by process 2 on bytes 7 to 12, and a shared lock held by

process 3 on bytes 7 to 14.

Figure 9.13 A set of range locks on a file.

In addition to the active locks, there are other processes that are sleeping, waiting to get a lock

applied. Pending locks are headed by the lf_block field of the active lock that prevents them

from being applied. If there are multiple pending locks, they are linked through their lf_block

fields. New lock requests are placed at the end of the list; thus, processes tend to be granted

locks in the order that they requested the locks. Each pending lock uses its lf_next field to

identify the active lock that currently blocks it. In the example in Figure 9.13, the first active lock

has two other locks pending. There is also a pending request for the range 9 to 12 that is

currently linked onto the second active entry. It could equally well have been linked onto the

third active entry, since the third entry also blocks it. When an active lock is released, all

pending entries for that lock are awakened, so they can retry their request. If the second active

lock were released, the result would be that its currently pending request would move over to

the blocked list for the last active entry.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13

535

A problem that must be handled by the locking implementation is the detection of potential

deadlocks. To see how deadlock is detected, consider the addition of the lock request by process

2 outlined in the dashed box in Figure 9.13. Since the request is blocked by an active lock,

process 2 must sleep, waiting for the active lock on range 1 to 3 to clear. We follow the lf_next

pointer from the requesting lock (the one in the dashed box), to identify the active lock for the

1-to-3 range as being held by process 1. The wait channel for process 1 shows that process 1 is

sleeping, waiting for a lock to clear, and identifies the pending lock structure as the pending lock

(range 9 to 12) hanging off the lf_block field of the second active lock (range 7 to 12). We follow

the lf_next field of this pending lock structure (range 9 to 12) to the second active lock (range 7

to 12) that is held by the lock requester, process 2. Thus, the lock request is denied, as it would

lead to a deadlock between processes 1 and 2. This algorithm works on cycles of locks and

processes of arbitrary size. Performance is reasonable provided there are fewer than 50

processes contending for locks within the same range of a file.

As we note, the pending request for the range 9 to 12 could equally well have been hung off the

third active lock for the range 7 to 14. Had it been, the request for adding the lock in the dashed

box would have succeeded, since the third active lock is held by process 3 rather than by process

2. If the next lock request on this file were to release the third active lock, then deadlock

detection would occur when process 1’s pending lock got shifted to the second active lock (range

7 to 12). The difference is that process 1, instead of process 2, would get the deadlock error.

When a new lock request is made, it must first be checked to see whether it is blocked by

existing locks held by other processes. If it is not blocked by other processes, it must then be

checked to see whether it overlaps any existing locks already held by the process making the

request. There are five possible overlap cases that must be considered; these possibilities are

shown in Figure 9.14. The assumption in the figure is that the new request is of a type different

from that of the existing lock (i.e., an exclusive request against a shared lock, or vice versa). If

the existing lock and the request are of the same type, the analysis is a bit simpler. The five cases

are as follows:

1. The new request exactly overlaps the existing lock. The new request replaces the existing lock.

If the new request downgrades from exclusive to shared, all requests pending on the old lock are

awakened.

2. The new request is a subset of the existing lock. The existing lock is broken into three pieces

(two if the new lock begins at the beginning or ends at the end of the existing lock). If the type of

the new request differs from that of the existing lock, all requests pending on the old lock are

awakened, so they can be reassigned to the correct new piece, blocked on a lock held by some

other process, or granted.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig14

536

3. The new request is a superset of an existing lock. The new request replaces the existing lock.

If the new request downgrades from exclusive to shared, all requests pending on the old lock are

awakened.

4. The new request extends past the end of an existing lock. The existing lock is shortened, and

its overlapped piece is replaced by the new request. All requests pending on the existing lock are

awakened, so they can be reassigned to the correct new piece, blocked on a lock held by some

other process, or granted.

5. The new request extends into the beginning of an existing lock. The existing lock is shortened,

and its overlapped piece is replaced by the new request. All requests pending on the existing lock

are awakened, so they can be reassigned to the correct new piece, blocked on a lock held by

some other process, or granted.

Figure 9.14 Five types of overlap considered by the kernel when a range lock is added.

In addition to the five basic types of overlap outlined, a request may span several existing locks.

Specifically, a new request may be composed of zero or one of type 4, zero or more of type 3, and

zero or one of type 5.

To understand how the overlap is handled, we can consider the example shown in Figure 9.15.

This figure shows a file that has all its active range locks held by process 1, plus a pending lock

for process 2.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig15

537

Figure 9.15 Locks before addition of exclusive-lock request by process 1 on range 3..13.

Now consider a request by process 1 for an exclusive lock on the range 3 to 13. This request does

not conflict with any active locks (because all the active locks are already held by process 1). The

request does overlap all three active locks, so the three active locks represent a type 4, type 3,

and type 5 overlap, respectively. The result of processing the lock request is shown in Figure 9.16.

The first and third active locks are trimmed back to the edge of the new request, and the second

lock is replaced entirely. The request that had been held pending on the first lock is awakened. It

is no longer blocked by the first lock but is blocked by the newly installed lock, so it now hangs

off the blocked list for the second lock. The first and second locks could have been merged

because they are of the same type and are held by the same process. However, the current

implementation makes no effort to do such merges because range locks are normally released

over the same range that they were created. If the merge were done, it would probably have to

be split again when the release was requested.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig16

538

Figure 9.16 Locks after addition of exclusive-lock request by process 1 on range 3..13.

Lock-removal requests are simpler than addition requests; they need only to consider existing

locks held by the requesting process. Figure 9.17 shows the five possible ways that a removal

request can overlap the locks of the requesting process. They include:

1. The unlock request exactly overlaps an existing lock. The existing lock is deleted, and any lock

requests that were pending on that lock are awakened.

2. The unlock request is a subset of an existing lock. The existing lock is broken into two pieces

(one if the unlock request begins at the beginning or ends at the end of the existing lock). Any

locks that were pending on that lock are awakened so that they can be reassigned to the correct

new piece, blocked on a lock held by some other process, or granted.

3. The unlock request is a superset of an existing lock. The existing lock is deleted, and any locks

that were pending on that lock are awakened.

4. The unlock request extends past the end of an existing lock. The end of the existing lock is

shortened. Any locks that were pending on that lock are awakened so that they can be

reassigned to the shorter lock, blocked on a lock held by some other process, or granted.

5. The unlock request extends into the beginning of an existing lock. The beginning of the

existing lock is shortened. Any locks that were pending on that lock are awakened so that they

can be reassigned to the shorter lock, blocked on a lock held by some other process, or granted.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig17

539

Figure 9.17 Five types of overlap considered by the kernel when a range lock is deleted.

In addition to the five basic types of overlap outlined, an unlock request may span several

existing locks. Specifically, a new request may be composed of zero or one of type 4, zero or

more of type 3, and zero or one of type 5.

9.6 Soft Updates

In filesystems, metadata (e.g., directories, inodes, and free block maps) gives structure to raw

storage capacity. Metadata provides pointers and descriptions for linking multiple disk sectors

into files and identifying those files. To be useful for persistent storage, a filesystem must

maintain the integrity of its metadata in the face of unpredictable system crashes, such as power

interruptions and operating system failures. Because such crashes usually result in the loss of all

information in volatile main memory, the information in nonvolatile storage (i.e., disk) must

always be consistent enough to reconstruct deterministically a coherent filesystem state.

Specifically, the on-disk image of the filesystem must have no dangling pointers to uninitialized

space, no ambiguous resource ownership caused by multiple pointers, and no unreferenced live

resources. Maintaining these invariants generally requires sequencing (or atomic grouping) of

updates to small on-disk metadata objects.

Traditionally, the UFS filesystem used synchronous writes to properly sequence stable storage

changes. For example, creating a file involves first allocating and initializing a new inode and

then filling in a new directory entry to point to it. With the synchronous write approach, the

filesystem forces an application that creates a file to wait for the disk write that initializes the

on-disk inode. As a result, filesystem operations like file creation and deletion proceed at disk

speeds rather than processor/memory speeds [McVoy & Kleiman, 1991; Ousterhout, 1990;

Seltzer et al., 1993]. Since disk access times are long compared to the speeds of other computer

components, synchronous writes reduce system performance.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref29

540

The metadata update problem can also be addressed with other mechanisms. For example, one

can eliminate the need to keep the on-disk state consistent by using NVRAM technologies, such

as an uninterruptible power supply or Flash RAM [Moran et al., 1990; Wu & Zwaenepoel, 1994].

Filesystem operations can proceed as soon as the block to be written is copied into the stable

store, and updates can propagate to disk in any order and whenever it is convenient. If the

system fails, unfinished disk operations can be completed from the stable store when the system

is rebooted.

Another approach is to group each set of dependent updates as an atomic operation with some

form of write-ahead logging [Chutani et al., 1992; Hagmann, 1987] or shadow-paging

[Chamberlin & Astrahan, 1981; Rosenblum & Ousterhout, 1992; Stonebraker, 1987]. These

approaches augment the on-disk state with a log of filesystem updates on a separate disk or in

stable store. Filesystem operations can then proceed as soon as the operation to be done is

written into the log. If the system fails, unfinished filesystem operations can be completed from

the log when the system is rebooted. Many modern filesystems successfully use write-ahead

logging to improve performance compared to the synchronous write approach.

In Ganger & Patt [1994], an alternative approach called soft updates was proposed and

evaluated in the context of a research prototype. Following a successful evaluation, a production

version of soft updates was written for FreeBSD. With soft updates, the filesystem uses delayed

writes (i.e., write-back caching) for meta-data changes, tracks dependencies between updates,

and enforces these dependencies at write-back time. Because most metadata blocks contain

many pointers, cyclic dependencies occur frequently when dependencies are recorded only at

the block level. Therefore, soft updates track dependencies on a per-pointer basis, which allows

blocks to be written in any order. Any still-dependent updates in a metadata block are rolled

back before the block is written and rolled forward afterwards. Thus, dependency cycles are

eliminated as an issue. With soft updates, applications always see the most current copies of

metadata blocks, and the disk always sees copies that are consistent with its other contents.

Update Dependencies in the Filesystem

Several important filesystem operations consist of a series of related modifications to separate

metadata structures. To ensure recoverability in the presence of unpredictable failures, the

modifications often must be propagated to stable storage in a specific order. For example, when

creating a new file, the filesystem allocates an inode, initializes it, and constructs a directory

entry that points to it. If the system goes down after the new directory entry has been written to

disk but before the initialized inode is written, consistency may be compromised since the

contents of the on-disk inode are unknown. To ensure metadata consistency, the initialized

inode must reach stable storage before the new directory entry. We refer to this requirement as

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_398

541

an update dependency because safely writing the directory entry depends on first writing the

inode. The ordering constraints map onto three simple rules:

1. Never point to a structure before it has been initialized (e.g., an inode must be initialized

before a directory entry references it).

2. Never reuse a resource before nullifying all previous pointers to it (e.g., an inode’s pointer to a

data block must be nullified before that disk block may be reallocated for a new inode).

3. Never reset the old pointer to a live resource before the new pointer has been set (e.g., when

renaming a file, do not remove the old name for an inode until after the new name has been

written).

There are eight filesystem activities that require update ordering to ensure postcrash

recoverability: file creation, file removal, directory creation, directory removal, file/directory

rename, block allocation, indirect block manipulation, and free map management.

The two main resources managed by the filesystem are inodes and data blocks. Two bitmaps are

used to maintain allocation information about these resources. For each inode in the filesystem,

the inode bitmap has a bit that is set if the inode is in use and cleared if it is free. For each block

in the filesystem, the data block bitmap has a bit that is set if the block is free and cleared if it is

in use. Each filesystem is broken down into fixed-size pieces called cylinder groups (described

more fully in Section 9.10). Each cylinder group has a cylinder-group block that contains the

bitmaps for the inodes and data blocks residing within that cylinder group. For a large

filesystem, this organization allows just those subpieces of the filesystem bitmap that are

actively being used to be brought into the kernel memory. Each of these active cylinder-group

blocks is stored in a separate I/O buffer and can be written to disk independently of the other

cylinder-group blocks.

When a file is created, three metadata structures located in separate blocks are modified. The

first is a new inode, which is initialized with its type field set to the new file type, its link count

set to one to show that it is live (i.e., referenced by some directory entry), its permission fields

set as specified, and all other fields set to default values. The second is the inode bitmap, which

is modified to show that the inode has been allocated. The third is a new directory entry, which

is filled in with the new name and a pointer to the new inode. To ensure that the bitmaps always

reflect all allocated resources, the bitmap must be written to disk before the inode or directory

entry. Because the inode is in an unknown state until after it has been initialized on the disk,

rule #1 specifies that there is an update dependency requiring that the relevant inode be written

before the relevant directory entry. Although not strictly necessary, most BSD fast filesystem

implementations also immediately write the directory block before the system call creating the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_471
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec10

542

file returns. This second synchronous write ensures that the filename is on stable storage if the

application later does an fsync system call. If the second synchronous write were not done, then

the fsync call would have to be able to find all the unwritten directory blocks containing a name

for the file and write them to disk. A similar update dependency between an inode and a new

directory entry exists when the new directory entry adds a second name for the inode (a.k.a. a

hard link), since the addition of the second name requires the filesystem to increment the link

count in the inode and write the inode to disk before the entry may appear in the directory.

When a file is deleted, a directory block, an inode block, and one or more cylinder group

bitmaps are modified. In the directory block, the relevant directory entry is “removed” by

reclaiming its space or by nullifying the inode pointer. In the inode block, the relevant inode’s

type field, link count, and block pointers are zeroed out. The deleted file’s blocks and inode are

then added to the appropriate free block/inode maps. Rule #2 specifies that there are update

dependencies between the directory entry and the inode and between the inode and any

modified free map bits. To keep the link count conservatively high (and reduce complexity in

practice), the update dependency between a directory entry and inode also exists when

removing one of multiple names (hard links) for a file.

Creation and removal of directories is largely as just described for regular files. However, the ..

entry is a link from the child directory to the parent, which adds additional update dependencies.

Specifically, during creation, the parent’s link count must be incremented on disk before the

new directory’s .. pointer is written. Likewise, during removal, the parent’s link count must be

decremented after the removed directory’s .. pointer is nullified. (Note that this nullification is

implicit in deleting the child directory’s pointer to the corresponding directory block.)

When a new block is allocated, its bitmap location is updated to reflect that it is in use and the

block’s contents are initialized with newly written data or zeros. In addition, a pointer to the new

block is added to an inode or indirect block. To ensure that the on-disk bitmap always reflects

allocated resources, the bitmap must be written to disk before the pointer. Also, because the

contents of the newly allocated disk location are unknown, rule #1 specifies an update

dependency between the new block and the pointer to it. Because enforcing this update

dependency with synchronous writes can reduce data creation throughput by a factor of two

[Ganger & Patt, 1994], many implementations ignore it for regular data blocks. This

implementation decision reduces integrity and security, since newly allocated blocks generally

contain previously deleted file data. Soft updates allow all block allocations to be protected in

this way with near-zero performance reduction.

Manipulation of indirect blocks does not introduce fundamentally different update

dependencies, but they do merit separate discussion. Allocation, both of indirect blocks and of

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref09

543

blocks pointed to by indirect blocks, is as just discussed. File deletion, and specifically

deallocation, is more interesting for indirect blocks. Because the inode reference is the only way

to identify indirect blocks and blocks connected to them (directly or indirectly), nullifying the

inode’s pointer to an indirect block is enough to eliminate all recoverable pointers to said blocks.

Once the pointer is nullified on disk, all its blocks can be freed. The exception to this rule is

when a file is partially truncated. Here, the pointer from the inode to the indirect block remains.

Some of the indirect block pointers will be zeroed and and their corresponding blocks freed

while the rest of the pointers are left intact.

When a file is being renamed, two directory entries are affected. A new entry (with the new

name) is created and set to point to the relevant inode, and the old entry is removed. Rule #3

states that the new entry should be written to disk before the old entry is removed to avoid

having the file unreferenced on reboot. If link counts are being kept conservatively, rename

involves at least four disk updates in sequence: one to increment the inode’s link count, one to

add the new directory entry, one to remove the old directory entry, and one to decrement the

link count. If the new name already existed, then the addition of the new directory entry also

acts as the first step of file removal as discussed above. Interestingly, rename is the one POSIX

file operation that should have an atomic update to multiple user-visible metadata structures to

provide ideal semantics. POSIX does not require said semantics and most implementations,

including FreeBSD, cannot provide it.

On an active filesystem, the bitmaps change constantly. Thus, the copy of the bitmaps in the

kernel memory often differs from the copy that is stored on the disk. If the system halts without

writing out the incore state of the bitmaps, some of the recently allocated inodes and data blocks

may not be reflected in the out-of-date copies of the bitmaps on the disk. As a result, the

filesystem check program, fsck, must be run over all the inodes in the filesystem to ascertain

which inodes and blocks are in use and bring the bitmaps up to date [McKusick & Kowalski,

1994]. An added benefit of soft updates is that they track the writing of the bitmaps to disk and

use this information to ensure that no newly allocated inodes or pointers to newly allocated data

blocks will be written to disk until after the bitmap that references them has been written to disk.

This guarantee ensures that there will never be an allocated inode or data block that is not

marked in the on-disk bitmap. This guarantee, together with the other guarantees made by the

soft update code, means that it is no longer necessary to run fsck after a system crash.

The next 12 subsections describe the soft-updates data structures and their use in enforcing the

update dependencies just described. The structures and algorithms described eliminate all

synchronous write operations from the filesystem except for the partial truncation of a file and

the fsync system call, which explicitly requires that all the state of a file be committed to disk

before the system call returns.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref17

544

The key attribute of soft updates is dependency tracking at the level of individual changes within

cached blocks. Thus, for a block containing 128 inodes, the system can maintain up to 128

dependency structures with one for each inode in the buffer. Similarly, for a buffer containing a

directory block containing 50 names, the system can maintain up to 50 dependency structures

with one for each name in the directory. With this level of detailed dependency information,

circular dependencies between blocks are not problematic. For example, when the system

wishes to write a buffer containing inodes, those inodes that can be safely written can go to the

disk. Any inodes that cannot yet be safely written are temporarily rolled back to their safe values

while the disk write proceeds. After the disk write completes, such inodes are rolled forward to

their current values. Because the buffer is locked throughout the time that the contents are

rolled back, the disk write is being done, and the contents are rolled forward, any processes

wishing to use the buffer will be blocked from accessing it until it has been returned to its

correct state.

Dependency Structures

The soft-updates implementation uses a variety of data structures to track pending update

dependencies among filesystem structures. Table 9.2 lists the dependency structures used in the

BSD soft-updates implementation, their main functions, and the types of blocks with which they

can be associated. These dependency structures are allocated and associated with blocks as

various file operations are completed. They are connected to the incore blocks with which they

are associated by a pointer in the corresponding buffer header. Two common aspects of all listed

dependency structures are the worklist structure and the states used to track the progress of a

dependency.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab02

545

546

Table 9.2 Soft updates and dependency tracking.

The worklist structure is really just a common header included as the first item in each

dependency structure. It contains a set of linkage pointers and a type field to show the type of

structure in which it is embedded. The worklist structure allows several different types of

dependency structures to be linked together into a single list. The soft-updates code can traverse

one of these heterogeneous lists, using the type field to determine which kind of dependency

structure it has encountered, and take the appropriate action with each.

The typical use for the worklist structure is to link together a set of dependencies associated

with a buffer. Each buffer in the system has a pointer to a worklist added to it. Any

dependencies associated with that buffer are linked onto its worklist. After the buffer has been

locked and just before the buffer is to be written, the I/O system passes the buffer to the

soft-updates code to let it know that a disk write is about to be started. The soft-updates code

then traverses the list of dependencies associated with the buffer and does any needed rollback

operations. After the disk write completes but before the buffer is unlocked, the I/O system calls

the soft-updates code to let it know that a write has completed. The soft-updates code then

traverses the list of dependencies associated with the buffer, does any needed roll-forward

operations, and deallocates any dependencies that are fulfilled by the data in the buffer having

been written to disk.

Another important list maintained by the soft-updates code is the tasklist that contains

background tasks for the work daemon. Dependency structures are generally added to the

tasklist during the disk-write completion routine, describing tasks that have become safe given

the disk update but which may need to block for locks or I/O and therefore cannot be completed

547

during the interrupt handler. Once per second, the syncer daemon (in its dual role as the

soft-updates work daemon) wakes up and calls into the soft-updates code to process any items

on the tasklist. The work done for a dependency structure on this list is type-dependent. For

example, for a freeblks structure, the listed blocks are marked free in the block bitmaps. For a

dirrem structure, the associated inode’s link count is decremented, possibly triggering file

deletion.

Most dependency structures have a set of flags that describe the state of completion of the

corresponding dependency. Dirty cache blocks can be written to the disk at any time. When the

I/O system hands the buffer to the soft-updates code (before and after a disk write), the states of

the associated dependency structures determine what actions are taken. Although the specific

meanings vary from structure to structure, the three main flags and their general meanings are:

ATTACHED

The ATTACHED flag shows that the buffer with which the dependency structure is associated is

not currently being written. When a disk write is started for a buffer with a dependency that

must be rolled back, the ATTACHED flag is cleared in the dependency structure to show that it

has been rolled back in the buffer. When the disk write completes, updates described by

dependency structures that have the ATTACHED flag cleared are rolled forward, and the

ATTACHED flag is set. Thus, a dependency structure can never be deleted while its ATTACHED

flag is cleared, since the information needed to do the roll-forward operation would then be lost.

DEPCOMPLETE

The DEPCOMPLETE flag shows that all associated dependencies have been completed. When a

disk write is started, the update described by a dependency structure is rolled back if the

DEPCOMPLETE flag is clear. For example, in a dependency structure that is associated with

newly allocated inodes or data blocks, the DEPCOMPLETE flag is set when the corresponding

bitmap has been written to disk.

COMPLETE

The COMPLETE flag shows that the update being tracked has been committed to the disk. For

some dependencies, updates will be rolled back during disk writes when the COMPLETE flag is

clear. For example, for a newly allocated data block, the COMPLETE flag is set when the

contents of the block have been written to disk.

In general, the flags are set as disk writes complete, and a dependency structure can be

deallocated only when its ATTACHED, DEPCOMPLETE, and COMPLETE flags are all set.

Consider the example of a newly allocated data block that will be tracked by an allocdirect

548

structure. The ATTACHED flag will initially be set when the allocation occurs. The

DEPCOMPLETE flag will be set after the bitmap allocating that new block is written. The

COMPLETE flag will be set after the contents of the new block are written. If the inode claiming

the newly allocated block is written before both the DEPCOMPLETE and COMPLETE flags are

set, the ATTACHED flag will be cleared while the block pointer in the inode is rolled back to zero,

the inode is written, and the block pointer in the inode is rolled forward to the new block

number. Where different, the specific meanings of these flags in the various dependency

structures are described in the subsections that follow.

Bitmap Dependency Tracking

Bitmap updates are tracked by the bmsafemap structure shown in Figure 9.18. Each buffer

containing a cylinder-group block will have its own bmsafemap structure. As with every

dependency structure, the first entry in the bmsafemap structure is a worklist structure. Each

time an inode, direct block, or indirect block is allocated from the cylinder group, a dependency

structure is created for that resource and linked onto the appropriate bmsafemap list. Each

newly allocated inode will be represented by an inodedep structure linked to the bmsafemap

inodedep head list. Each newly allocated block directly referenced by an inode will be

represented by an allocdirect structure linked to the bmsafemap allocdirect head list. Each

newly allocated block referenced by an indirect block will be represented by an allocindir

structure linked to the bmsafemap allocindir head list. Because of the code’s organization, there

is a small window between the time a block is first allocated and the time at which its use is

known. During this period of time, it is described by a newblk structure linked to the

bmsafemap new blk head list. After the kernel chooses to write the cylinder-group block, the

soft-updates code will be notified when the write has completed. At that time, the code traverses

the inode, direct block, indirect block, and new block lists, setting the DEPCOMPLETE flag in

each dependency structure and removing said dependency structure from its dependency list.

Having cleared all its dependency lists, the bmsafemap structure can be deallocated. There are

multiple lists as it is slightly faster and more type-safe to have lists of specific types.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig18

549

Figure 9.18 Bitmap update dependencies.

Inode Dependency Tracking

Inode updates are tracked by the inodedep structure shown in Figure 9.19. The worklist and

state fields are as described for dependency structures in general. The filesystem ptr and inode

number fields identify the inode in question. When an inode is newly allocated, its inodedep is

attached to the inodedep head list of a bmsafemap structure. Here, deps list chains additional

new inodedep structures and dep bp points to the cylinder-group block that contains the

corresponding bitmap. Other inodedep fields are explained in later subsections.

Figure 9.19 Inode update dependencies.

Before detailing the rest of the dependencies associated with an inode, we need to discuss the

steps involved in updating an inode on disk as pictured in Figure 9.20.

1. The kernel calls the vnode operation, VOP_UPDATE, which requests that the disk-resident

part of an inode (referred to as a dinode) be copied from its in-memory vnode structure to the

appropriate disk buffer. This disk buffer holds the contents of an entire disk block, which is

usually big enough to include 128 dinodes. Some dependencies are fulfilled only when the inode

has been written to disk. These dependencies need dependency structures to track the progress

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig20

550

of the writing of the inode. Therefore, during step 1, a soft update routine,

softdep_update_inodeblock(), is called to move allocdirect structures from the incore update

list to the buffer update list and to move freefile, freeblks, freefrag, diradd, and mkdir

structures (described below) from the inode wait list to the buffer wait list.

2. The kernel calls the vnode operation, VOP_STRATEGY, that prepares to write the buffer

containing the dinode, pointed to by bp in Figure 9.20. A soft-updates routine,

softdep_disk_io_initiation(), identifies inodedep dependencies and calls

initiate_write_inodeblock() to do rollbacks as necessary.

3. Output completes on the buffer referred to by bp and the I/O system calls a routine,

biodone(), to notify any waiting processes that the write has finished. The biodone() routine

then calls a soft-updates routine, softdep_disk_write_complete(), that identifies inodedep

dependencies and calls handle_written_inodeblock() to revert rollbacks and clear any

dependencies on the buffer wait and buffer update lists.

Figure 9.20 Inode update steps.

Direct-Block Dependency Tracking

Figure 9.21 illustrates the dependency structures involved in allocation of direct blocks. Recall

that the key dependencies are that, before the on-disk inode points to a newly allocated block,

both the corresponding bitmap block and the new block itself must be written to the disk. The

order in which the two dependencies complete is not important. The figure introduces the

allocdirect structure that tracks blocks directly referenced by the inode. The three recently

allocated logical blocks (1, 2, and 3) shown are each in a different state. For logical block 1, the

bitmap block dependency is complete (as shown by the DEPCOMPLETE flag being set), but the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig21

551

block itself has not yet been written (as shown by the COMPLETE flag being cleared). For logical

block 2, both dependencies are complete. For logical block 3, neither dependency is complete, so

the corresponding allocdirect structure is attached to a bmsafemap allocdirect head list (recall

that this list is traversed to set DEPCOMPLETE flags after bitmap blocks are written). The

COMPLETE flag for logical blocks 1 and 3 will be set when their initialized data blocks are

written to disk. The figure also shows that logical block 1 existed at a time that VOP_UPDATE

was called, which is why its allocdirect structure resides on the inodedep buffer update list.

Logical blocks 2 and 3 were created after the most recent call to VOP_UPDATE and thus their

structures reside on the inodedep incore update list.

Figure 9.21 Direct block allocation dependencies.

For files that grow in small steps, a direct block pointer may first point to a fragment that is later

promoted to a larger fragment and eventually to a full-size block. When a fragment is replaced

552

by a larger fragment or a full-size block, it must be released back to the filesystem. However, it

cannot be released until the new fragment or block has had its bitmap entry and contents

written and the inode claiming the new fragment or block has been written to the disk. The

fragment to be released is described by a freefrag structure (not shown). The freefrag structure

is held on the freefrag list of the allocdirect for the block that will replace it until the new block

has had its bitmap entry and contents written. The freefrag structure is then moved to the inode

wait list of the inodedep associated with its allocdirect structure, where it migrates to the buffer

wait list when VOP_UPDATE is called. The freefrag structure eventually is added to the tasklist

after the buffer holding the inode block has been written to disk. When the tasklist is serviced,

the fragment listed in the freefrag structure is returned to the free-block bitmap.

Indirect-Block Dependency Tracking

Figure 9.22 shows the dependency structures involved in allocation of indirect blocks that

includes the same dependencies as with direct blocks. This figure introduces two new

dependency structures. A separate allocindir structure tracks each individual block pointer in an

indirect block. The indirdep structure manages all the allocindir dependencies associated with

an indirect block. The figure shows a file that recently allocated logical blocks 14 and 15 (the

third and fourth entries, at offsets 16 and 24, in the first indirect block). The allocation bitmaps

have been written for logical block 14 (as shown by its DEPCOMPLETE flag being set), but not

for block 15. Thus, the bmsafemap structure tracks the allocindir structure for logical block 15.

The contents of logical block 15 have been written to disk (as shown by its COMPLETE flag

being set), but not those of block 14. The COMPLETE flag will be set in 14’s allocindir structure

once the block is written. The list of allocindir structures tracked by an indirdep structure can

be long (e.g., up to 4096 entries for 32-Kbyte indirect blocks). To avoid traversing lengthy

dependency structure lists in the I/O routines, an indirdep structure maintains a second version

of the indirect block: the saved data ptr always points to the buffer’s up-to-date copy and the

safe copy ptr points to a version that includes only the subset of pointers that can be safely

written to disk (and NULL for the others). The up-to-date copy is used for all filesystem

operations and the copy with the subset of pointers that can be safely written to disk is used for

disk writes. When the allocindir head list becomes empty, the saved data ptr and safe copy ptr

point to identical blocks and the indirdep structure (and the safe copy) can be deallocated.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig22

553

Figure 9.22 Indirect block allocation dependencies.

Dependency Tracking for New Indirect Blocks

Figure 9.23 shows the structures associated with a file that recently expanded into its

single-level indirect block. Specifically, this expansion involves inodedep and indirdep

structures to manage dependency structures for the inode and indirect block, an allocdirect

structure to track the dependencies associated with the indirect block’s allocation, and an

allocindir structure to track the dependencies associated with a newly allocated block pointed to

by the indirect block. These structures are used as described in the previous three subsections.

Neither the indirect block nor the data block that it references have had their bitmaps set, so

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig23

554

they do not have their DEPCOMPLETE flag set and are tracked by a bmsafemap structure. The

bitmap entry for the inode has been written, so the inodedep structure has its DEPCOMPLETE

flag set. The use of the buffer update head list by the inodedep structure shows that the incore

inode has been copied into its buffer by a call to VOP_UPDATE. Neither of the dependent

pointers (from the inode to the indirect block and from the indirect block to the data block) can

be safely included in disk writes yet, since the corresponding COMPLETE and DEPCOMPLETE

flags are not set. Only after the bitmaps and the contents have been written will all the flags be

set and the dependencies complete.

Figure 9.23 Dependencies for a file expanding into an indirect block.

555

New Directory-Entry Dependency Tracking

Figure 9.24 shows the dependency structures for a directory that has two new entries, foo and

bar. This figure introduces two new dependency structures. A separate diradd structure tracks

each individual directory entry in a directory block. The pagedep structure manages all the

diradd dependencies associated with a directory block. For each new file, there is an inodedep

structure and a diradd structure. Both files’ inodes have had their bitmaps written to disk, as

shown by the DEPCOMPLETE flags being set in their inodedep structures. The inode for foo

has been updated with VOP_UPDATE but has not yet been written to disk, as shown by the

COMPLETE flag on its inodedep structure not being set and by its diradd structure still being

linked onto its buffer wait list. Until the inode is written to disk with its increased link count,

the directory entry may not appear on disk. If the directory page is written, the soft-updates

code will roll back the creation of the new directory entry for foo by setting its inode number to

zero. After the disk write completes, the rollback is reversed by restoring the correct inode

number for foo.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig24

556

Figure 9.24 Dependencies associated with adding new directory entries.

The inode for bar has been written to disk, as shown by the COMPLETE flag being set in its

inodedep and diradd structures. When the inode write completed, the diradd structure for bar

was moved from the inodedep buffer wait list to the inodedep pending ops list. The diradd also

moved from the pagedep diradd list to the pagedep pending ops list. Since the inode has been

written, it is safe to allow the directory entry to be written to disk. The diradd entries remain on

the inodedep and pagedep pending ops list until the new directory entry is written to disk.

When the entry is written, the diradd structure is freed. One reason to maintain the pending ops

list is so that when an fsync system call is done on a file, the kernel is able to ensure that both

the file’s contents and directory reference(s) are written to disk. The kernel ensures that the

reference(s) are written by performing a lookup to see if there is an inodedep for the inode that

is the target of the fsync. If it finds an inodedep, it checks to see if it has any diradd

dependencies on either its pending ops or buffer wait lists. If it finds any diradd structures, it

557

follows the pointers to their associated pagedep structures and flushes out the directory inode

associated with that pagedep. This backtracking recurses on the directory inodedep.

New Directory Dependency Tracking

Figure 9.25 shows the two additional dependency structures involved with creating a new

directory. For a regular file, the directory entry can be committed as soon as the newly

referenced inode has been written to disk with its increased link count. When a new directory is

created, there are two additional dependencies: writing the directory data block containing the .

and .. entries (MKDIR_BODY) and writing the parent inode with the increased link count for ..

(MKDIR_PARENT). These additional dependencies are tracked by two mkdir structures linked

to the associated diradd structure. The soft-updates design dictates that any given dependency

will correspond to a single buffer at any given point in time. Thus, two structures are used to

track the action of the two different buffers. When each completes, it clears its associated flag in

the diradd structure. The MKDIR_PARENT is linked to the inodedep structure for the parent

directory. When that directory inode is written, the link count will be updated on disk. The

MKDIR_BODY is linked to the buffer that contains the initial contents of the new directory.

When that buffer is written, the entries for . and .. will be on disk. The last mkdir to complete

sets the DEPCOMPLETE flag in the diradd structure so that the diradd structure knows that

these extra dependencies have been completed. Once these extra dependencies have been

completed, the handling of the directory diradd proceeds exactly as it would for a regular file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig25

558

Figure 9.25 Dependencies associated with adding a new directory.

All mkdir structures in the system are linked together on a list. This list is needed so that a

diradd can find its associated mkdir structures and deallocate them if it is prematurely freed

(e.g., if a mkdir system call is immediately followed by a rmdir system call of the same

directory). Here, the deallocation of a diradd structure must traverse the list to find the

associated mkdir structures that reference it. The deletion would be faster if the diradd

structure were simply augmented to have two pointers that referenced the associated mkdir

structures. However, these extra pointers would double the size of the diradd structure to speed

an infrequent operation.

559

Directory-Entry Removal-Dependency Tracking

Figure 9.26 shows the dependency structures involved with the removal of a directory entry.

This figure introduces one new dependency structure, the dirrem structure, and a new use for

the pagedep structure. A separate dirrem structure tracks each individual directory entry to be

removed in a directory block. In addition to previously described uses, pagedep structures

associated with a directory block manage all dirrem structures associated with the block. After

the directory block is written to disk, the dirrem request is added to the work daemon’s tasklist

list. For file deletions, the work daemon will decrement the inode’s link count by one. For

directory deletions, the work daemon will decrement the inode’s link count by two, truncate its

size to zero, and decrement the parent directory’s link count by one. If the inode’s link count

drops to zero, the resource reclamation activities described in the “file and directory inode

reclamation” section are started.

Figure 9.26 Dependencies associated with removing a directory entry.

File Truncation

When a file is truncated to zero length without soft updates enabled, the block pointers in its

inode are saved in a temporary list, the pointers in the inode are zeroed, and the inode is

synchronously written to disk. When the inode write completes, the list of its formerly claimed

blocks is added to the free-block bitmap. With soft updates, the block pointers in the inode

being truncated are copied into a freeblks structure, the pointers in the inode are zeroed, and

the inode is marked dirty. The freeblks structure is added to the inode wait list, and it migrates

to the buffer wait list when VOP_UPDATE is called. The freeblks structure is eventually added

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig26

560

to the tasklist after the buffer holding the inode block has been written to disk. When the

tasklist is serviced, the blocks listed in the freeblks structure are returned to the free-block

bitmap.

File and Directory Inode Reclamation

When the link count on a file or directory drops to zero, its inode is zeroed to show that it is no

longer in use. When running without soft updates, the zeroed inode is synchronously written to

disk, and the inode is marked as free in the bitmap. With soft updates, information about the

inode to be freed is saved in a freefile structure. The freefile structure is added to the inode wait

list, and it migrates to the buffer wait list when VOP_UPDATE is called. The freefile structure

eventually is added to the tasklist after the buffer holding the inode block has been written to

disk. When the tasklist is serviced, the inode listed in the freefile structure is returned to the free

inode map.

Directory-Entry Renaming Dependency Tracking

Figure 9.27 shows the structures involved in renaming a file. The dependencies follow the same

series of steps as those for adding a new file entry, with two variations. First, when a rollback of

an entry is needed because its inode has not yet been written to disk, the entry must be set back

to the previous inode number rather than to zero. The previous inode number is stored in a

dirrem structure. The DIRCHG flag is set in the diradd structure so that the rollback code

knows to use the old inode number stored in the dirrem structure. The second variation is that,

after the modified directory entry is written to disk, the dirrem structure is added to the work

daemon’s tasklist list so that the link count of the old inode will be decremented as described in

the earlier section on “Directory-Entry Removal-Dependency Tracking.”

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev2sec20

561

Figure 9.27 Dependencies associated with renaming a directory entry.

Fsync Requirements for Soft Updates

The fsync system call requests that the specified file be written to stable storage and that the

system call not return until all its associated writes have completed. The task of completing an

fsync requires more than simply writing all the file’s dirty data blocks to disk. It also requires

that any unwritten directory entries that reference the file also be written, as well as any

unwritten directories between the file and the root of the filesystem. Simply getting the data

blocks to disk can be a major task. First, the system must check to see if the bitmap for the inode

has been written, finding the bitmap and writing it if necessary. It must then check for, find, and

write the bitmaps for any new blocks in the file. Next, any unwritten data blocks must go to disk.

Following the data blocks, any first-level indirect blocks that have newly allocated blocks in

them are written, followed by any double indirect blocks, then triple indirect blocks. Finally, the

562

inode can be written that will ensure that the contents of the file are on stable store. Ensuring

that all names for the file are also on stable store requires data structures that can determine

whether there are any uncommitted names and, if so, in which directories they occur. For each

directory containing an uncommitted name, the soft-updates code must go through the same set

of flush operations that it has just done on the file itself.

The addition of extended attribute data to the inode required that the soft-updates code be

extended so that it could ensure the integrity of these new data blocks. As with the file data

blocks, soft updates ensure that the extended data blocks and the bitmaps, which show that they

are in use, are written to disk before they are claimed by the inode. Soft updates also ensure that

any updated extended attribute data are committed to disk as part of an fsync of the file.

Although the fsync system call must ultimately be done synchronously, this requirement does

not mean that the flushing operations must each be done synchronously. Instead, whole sets of

bitmaps or data blocks are pushed into the disk queue, and the soft-updates code then waits for

all the writes to complete. This approach is more efficient because it allows the disk subsystem

to sort all the write requests into the most efficient order for writing. Still, the fsync part of the

soft-updates code generates most of the remaining synchronous writes in the filesystem.

Another issue related to fsync is unmounting of filesystems. Doing an unmount requires

finding and flushing all the dirty files that are associated with the filesystem. Flushing the files

may lead to the generation of background activity, such as removing files whose reference count

drops to zero as a result of their nullified directory entries being written. Thus, the system must

be able to find all background activity requests and process them. Even on a quiescent filesystem,

several iterations of file flushes followed by background activity may be required. FreeBSD

allows for the forcible unmount of a filesystem, which may take place while the filesystem is

actively in use. The ability to suspend operations cleanly on an active filesystem is described in

Section 9.7.

File-Removal Requirements for Soft Updates

For correct operation, a directory’s .. entry should not be removed until after the directory is

persistently unlinked. Correcting this dependency ordering in the soft-updates code introduced

a delay of up to 2 minutes between the time a directory is unlinked and the time that it is really

deallocated (when the .. entry is removed). Until the directory’s .. entry is really removed, the

link count on its parent will not be decremented. Thus, when a user removes one or more

directories, the link count of their former parent still reflects that they are present for several

minutes. This delayed link count decrement not only causes some questions from users, but also

causes some applications to break. For example, the rmdir system call will not remove a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7

563

directory that has a link count over two. This restriction means that a directory that recently had

directories removed from it cannot be removed until its former directories have been fully

deleted.

To fix these link-count problems, the soft-updates implementation augments the inode nlink

field with a new field called effnlink. The nlink field is still stored as part of the on-disk metadata

and reflects the true link count of the inode. The effnlink field is maintained only in kernel

memory and reflects the final value that the nlink field will reach once all its outstanding

operations are completed. All interactions with user applications report the value of the effnlink

field, which results in the illusion that everything has happened immediately.

When a file is removed on a filesystem running with soft updates, the removal appears to

happen quickly, but the process of removing the file and returning its blocks to the free list may

take up to several minutes. Before UFS2, the space held by the file did not show up in the

filesystem statistics until the removal of the file had been completed. Thus, applications that

clean up disk space such as the news expiration program would often vastly overshoot their goal.

They work by removing files and then checking to see if enough free space has showed up.

Because of the time lag in having the free space recorded, they would remove far too many files.

To resolve problems of this sort, the soft-updates code now maintains a counter that keeps track

of the amount of space that is held by the files that the soft-updates code is in the process of

removing. This counter of pending space is added to the actual amount of free space as reported

by the kernel (and thus by utilities like df). The result of this change is that free space appears

immediately after the unlink system call returns or the rm utility finishes.

The second and related change to soft updates has to do with avoiding false out-of-space errors.

When running with soft updates on a nearly full filesystem with high turnover rate (for example,

when installing a whole new set of binaries on a root partition), the filesystem can return a

filesystem full error even though it reports that it has plenty of free space. The filesystem full

message happens because soft updates have not managed to free the space from the old binaries

in time for it to be available for the new binaries.

The initial attempt to correct this problem was to have the process that wished to allocate space

simply wait for the free space to show up. The problem with this approach is that it often had to

wait for up to a minute. In addition to making the application seem intolerably slow, it usually

held a locked vnode that could cause other applications to get blocked waiting for it to become

available (often referred to as a lock race to the root of the filesystem). Although the condition

would clear in a minute or two, users often assumed that their system had hung and would

reboot.

564

To remedy this problem, the solution devised for UFS2 is to co-opt the process that would

otherwise be blocked and put it to work helping soft updates process the files to be freed. The

more processes trying to allocate space, the more help that is available to soft updates and the

faster free blocks begin to appear. Usually, enough space shows up in under 1 second that the

processes can return to their original task and complete. The effect of this change is that soft

updates can now be used on small, nearly full filesystems with high turnover.

Although the common case for deallocation is for all data in a file to be deleted, the truncate

system call allows applications to delete only part of a file. This semantic creates slightly more

complicated update dependencies, including the need to have deallocation dependencies for

indirect blocks and the need to consider partially deleted data blocks. Because it is so

uncommon, the soft-updates implementation does not optimize this case; the conventional

synchronous write approach is used instead.

One concern with soft updates is the amount of memory consumed by the dependency

structures. In daily operation, we have found that the additional dynamic memory load placed

on the kernel memory allocation area is about equal to the amount of memory used by vnodes

plus inodes. For each 1000 vnodes in the system, the additional peak memory load from soft

updates is about 300 Kbyte. The one exception to this guideline occurs when large directory

trees are removed. Here, the filesystem code can get arbitrarily far ahead of the on-disk state,

causing the amount of memory dedicated to dependency structures to grow without bound. The

soft-update code was modified to monitor the memory load for this case and not allow it to grow

past a tunable upper bound. When the bound is reached, new dependency structures can only be

created at the rate at which old ones are retired. The effect of this limit is to slow down the rate

of removal to the rate at which the disk updates can be done. While this restriction slows the

rate at which soft updates can normally remove files, it is still considerably faster than the

traditional synchronous-write filesystem. In steady-state, the soft-update remove algorithm

requires about one disk write for each 10 files removed, whereas the traditional filesystem

requires at least two writes for every file removed.

Soft-Updates Requirements for fsck

As with the dual tracking of the true and effective link count, the changes needed to fsck

became evident through operational experience. In a non-soft-updates filesystem

implementation, file removal happens within a few milliseconds. Thus, there is a short period of

time between the directory entry being removed and the inode being deallocated. If the system

crashes during a bulk tree removal operation, there are usually no inodes lacking references

from directory entries, though in rare instances there may be one or two. By contrast, in a

system running with soft updates, many seconds may elapse between the time when the

565

directory entry is deleted and the inode is deallocated. If the system crashes during a bulk tree

removal operation, there are usually tens to hundreds of inodes lacking references from

directory entries. Historically, fsck placed any unreferenced inodes into the lost+found

directory. This action is reasonable if the filesystem has been damaged because of disk failure

that results in the loss of one or more directories. However, it results in the incorrect action of

stuffing the lost+found directory full of partially deleted files when running with soft updates.

Thus, the fsck program was modified to check that a filesystem is running with soft updates and

clear out, rather than save, unreferenced inodes (unless fsck has determined that unexpected

damage has occurred to the filesystem, in which case the files are saved in lost+found).

A peripheral benefit of soft updates is that fsck can trust the allocation information in the

bitmaps. Thus, it only needs to check the subset of inodes in the filesystem that the bitmaps

show are in use. Although some of the inodes marked “in use” may be free, none of those

marked “free” will ever be in use.

9.7 Filesystem Snapshots

A filesystem snapshot is a frozen image of a filesystem at a given instant in time. Snapshots

support several important features: the ability to provide backups of the filesystem at several

times during the day, the ability to do reliable dumps of live filesystems, and (most important

for soft updates) the ability to run a filesystem check program on an active system to reclaim lost

blocks and inodes.

Creating a Filesystem Snapshot

Implementing snapshots has proven to be straightforward. Taking a snapshot entails the

following steps:

1. A snapshot file is created to track later changes to the filesystem; a snapshot file is shown in

Figure 9.28. This snapshot file is initialized to the size of the filesystem’s partition, and its file

block pointers are marked as zero, which means “not copied.” A few strategic blocks are

allocated, such as those holding copies of the superblock and cylinder-group maps.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig28

566

Figure 9.28 Structure of a snapshot file.

2. A preliminary pass is made over each of the cylinder groups to copy it to its preallocated

backing block. Additionally, the block bitmap in each cylinder group is scanned to determine

which blocks are free. For each free block that is found, the corresponding location in the

snapshot file is marked with a distinguished block number (1) to show that the block is “not

used.” There is no need to copy those unused blocks if they are later allocated and written.

3. The filesystem is marked as “wanting to suspend.” In this state, processes that wish to invoke

system calls that will modify the filesystem are blocked from running, while processes that are

already in progress on such system calls are permitted to finish them. These actions are enforced

by inserting a gate at the top of every system call that can write to a filesystem. The set of gated

system calls includes write, open (when creating or truncating), fhopen (when creating or

truncating), mknod, mkfifo, link, symlink, unlink, chflags, fchflags, chmod, lchmod, fchmod,

chown, lchown, fchown, utimes, lutimes, futimes, truncate, ftruncate, rename, mkdir, rmdir,

fsync, sync, unmount, undelete, quotactl, revoke, and extattrctl. In addition, gates must be

added to pageout, ktrace, local-domain socket creation, and core dump creation. The gate tracks

activity within a system call for each mounted filesystem. A gate has two purposes. The first is to

suspend processes that want to enter the gated system call during periods when the filesystem

that the process wants to modify is suspended. The second is to keep track of the number of

processes that are running inside the gated system call for each mounted filesystem. When a

process enters a gated system call, a counter in the mount structure for the filesystem that it

wants to modify is incremented. When the process exits a gated system call, the counter is

decremented.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_254

567

4. The filesystem’s status is changed from “wanting to suspend” to “fully suspended.” This status

change is done by allowing all system calls currently writing to the filesystem being suspended

to finish. The transition to “fully suspended” is complete when the count of processes within

gated system calls drops to zero.

5. The filesystem is synchronized to disk as if it were about to be unmounted.

6. Any cylinder groups that were modified after they were copied in step 2 are recopied to their

preallocated backing block. Additionally, the block bitmap in each recopied cylinder group is

rescanned to determine which blocks were changed. Newly allocated blocks are marked as “not

copied,” and newly freed blocks are marked as “not used.” The details on how these modified

cylinder groups are identified is described at the end of this subsection. The amount of space

initially claimed by a snapshot is small, usually less than a tenth of one percent.

7. With the snapshot file in place, activity on the filesystem resumes. Any processes that were

blocked at a gate are awakened and allowed to proceed with their system call.

8. Blocks claimed by any snapshots that existed at the time that the current snapshot was taken

are expunged from the new snapshot for reasons described in the next subsection.

During steps 3 through 6, all write activity on the filesystem is suspended. Steps 3 and 4

complete in at most a few milliseconds. The time for step 5 is a function of the number of dirty

pages in the kernel. It is bounded by the amount of memory that is dedicated to storing file

pages. It is typically less than a second and is independent of the size of the filesystem. Typically,

step 6 needs to recopy only a few cylinder groups, so it also completes in less than a second.

The splitting of the bitmap copies between steps 2 and 6 is the way that we avoid having the

suspend time be a function of the size of the filesystem. By making the primary copy pass while

the filesystem is still active, and then having only a few cylinder groups in need of recopying

after it has been suspended, we keep the suspend time down to a small and usually

filesystem-size-independent time.

The details of the two-pass algorithm are as follows. Before starting the copy and scan of all the

cylinder groups, the snapshot code allocates a “progress” bitmap whose size is equal to the

number of cylinder groups in the filesystem. The purpose of the “progress” bitmap is to keep

track of which cylinder groups have been scanned. Initially, all the bits in the “progress” map are

cleared. The first pass is completed in step 2 before the filesystem is suspended. In this first pass,

all the cylinder groups are scanned. When the cylinder group is read, its corresponding bit is set

in the “progress” bitmap. The cylinder group is then copied, and its block map is consulted to

update the snapshot file as described in step 2. Since the filesystem is still active, filesystem

568

blocks may be allocated and freed while the cylinder groups are being scanned. Each time a

cylinder group is updated because of a block being allocated or freed, its corresponding bit in the

“progress” bitmap is cleared. Once this first pass over the cylinder groups is completed, the

filesystem is “suspended.”

Step 6 now becomes the second pass of the algorithm. The second pass need only identify and

update the snapshot for any cylinder groups that were modified after it handled them in the first

pass. The changed cylinder groups are identified by scanning the “progress” bitmap and

rescanning any cylinder groups whose bits are zero. Although every bitmap would have to be

reprocessed in the worst case, in practice only a few bitmaps need to be recopied and checked.

Maintaining a Filesystem Snapshot

Each time an existing block in the filesystem is modified, the filesystem checks whether that

block was in use at the time that the snapshot was taken (i.e., it is not marked “not used”). If so,

and if it has not already been copied (i.e., it is still marked “not copied”), a new block is allocated

from among the “not used” blocks and placed in the snapshot file to replace the “not copied”

entry. The previous contents of the block are copied to the newly allocated snapshot file block,

and the write to the original is then allowed to proceed. Whenever a file is removed, the

snapshot code inspects each of the blocks being freed and claims any that were in use at the time

of the snapshot. Those blocks marked “not used” are returned to the free list.

When a snapshot file is read, reads of blocks marked “not copied” return the contents of the

corresponding block in the filesystem. Reads of blocks that have been copied return the contents

in the copied block (e.g., the contents that were stored at that location in the filesystem at the

time that the snapshot was taken). Writes to snapshot files are not permitted. When a snapshot

file is no longer needed, it can be removed in the same way as any other file; its blocks are

simply returned to the free list, and its inode is zeroed and returned to the free inode list.

Snapshots may live across reboots. When a snapshot file is created, the inode number of the

snapshot file is recorded in the superblock. When a filesystem is mounted, the snapshot list is

traversed and all the listed snapshots are activated. The only limit on the number of snapshots

that may exist in a filesystem is the size of the array in the superblock that holds the list of

snapshots. Currently, this array can hold up to 20 snapshots.

Multiple snapshot files can exist concurrently. As just described, earlier snapshot files would

appear in later snapshots. If an earlier snapshot is removed, a later snapshot would claim its

blocks rather than allowing them to be returned to the free list. This semantic means that it

would be impossible to free any space on the filesystem except by removing the newest snapshot.

569

To avoid this problem, the snapshot code goes through and expunges all earlier snapshots by

changing its view of them to being zero-length files. With this technique, the freeing of an earlier

snapshot releases the space held by that snapshot.

When a block is overwritten, all snapshots are given an opportunity to copy the block. A copy of

the block is made for each snapshot in which the block resides. Overwrites typically occur only

for inode and directory blocks. File data usually are not overwritten. Instead, a file will be

truncated and then reallocated as it is rewritten. Thus, the slow and I/O intensive block copying

is infrequent.

Deleted blocks are handled differently. The list of snapshots is consulted. When a snapshot is

found in which the block is active (“not copied”), the deleted block is claimed by that snapshot.

The traversal of the snapshot list is then terminated. Other snapshots for which the block is

active are left with an entry of “not copied” for that block. The result is that when they access

that location, they will still reference the deleted block. Since snapshots may not be modified,

the block will not change. Since the block is claimed by a snapshot, it will not be allocated to

another use. If the snapshot claiming the deleted block is deleted, the remaining snapshots will

be given the opportunity to claim the block. Only when none of the remaining snapshots wants

to claim the block (i.e., it is marked “not used” in all of them) will it be returned to the freelist.

Large Filesystem Snapshots

Creating and using a snapshot requires random access to the snapshot file. The creation of a

snapshot requires the inspection and copying of all the cylinder-group maps. Once in operation,

every write operation to the filesystem must check whether the block being written needs to be

copied. The information on whether a blocks needs to be copied is contained in the snapshot file

metadata (its indirect blocks). Ideally, this metadata would be resident in the kernel memory

throughout the lifetime of the snapshot. In FreeBSD, the entire physical memory on the

machine can be used to cache file data pages if the memory is not needed for other purposes.

Unfortunately, data pages associated with disks can only be cached in pages mapped into the

kernel’s physical memory. On a 32-bit architecture, only about 10 Mbyte of kernel memory is

dedicated to such purposes. Even on 64-bit architectures, only about 100 Mbyte of kernel

memory is dedicated to such purposes. If we allow up to half of this space to be used for any

single snapshot, the largest snapshot whose metadata that we can hold in memory is 11 Gbyte or

110 Gbyte. Without help, such a tiny cache would be hopeless in trying to support a

multiterabyte snapshot.

In an effort to support multiterabyte snapshots with the tiny metadata cache available, it is

necessary to observe the access patterns on typical filesystems. The snapshot is only consulted

570

for files that are being written. The filesystem is organized around cylinder groups that map

small contiguous areas of the disk (see Section 9.9). Within a directory, the filesystem tries to

allocate all the inodes and files in the same cylinder group. When moving between directories,

different cylinder groups are usually inspected. Thus, the widely random behavior occurs from

movement between cylinder groups. Once file-writing activity settles down into a cylinder group,

only a small amount of snapshot metadata needs to be consulted. That metadata will easily fit in

even the tiny kernel metadata cache, so the need is to find a way to avoid thrashing the cache

when moving between cylinder groups.

The technique used to avoid thrashing when moving between cylinder groups is to build a

look-aside table of all the blocks that were copied while the snapshot was made. This table lists

the blocks associated with all the snapshot metadata blocks, the cylinder-group maps, the

superblock, and blocks that contain active inodes. When a copy-on-write fault occurs for a block,

the first step is to consult this table. If the block is found in the table, then no further searching

needs to be done in any of the snapshots. If the block is not found, then the metadata of each

active snapshot on the filesystem must be consulted to see if a copy is needed. This table lookup

saves time because it not only avoids faulting in metadata for widely scattered blocks, but it also

avoids the need to consult potentially many snapshots.

Another problem with snapshots on large filesystems is that they aggravate existing deadlock

problems. When there are multiple snapshots associated with a filesystem, they are kept in a list

ordered from oldest to youngest. When a copy-on-write fault occurs, the list is traversed, letting

each snapshot decide if it needs to copy the block that is about to be written. Originally, each

snapshot inode had its own lock. A deadlock could occur between two processes, each trying to

do a write. Consider the example in Figure 9.29. It shows a filesystem with two snapshots: snap1

and snap2. Process A holds snapshot 1 locked, and process B holds snapshot 2 locked. Both

snap1 and snap2 have decided that they need to allocate a new block in which to hold a copy of

the block being written by the process that holds them locked. The writing of the new block in

snapshot 1 will cause the kernel running in the context of process A to scan the list of snapshots

that will get blocked at snapshot 2 because it is held locked by process B. Meanwhile, the writing

of the new block in snapshot 2 will cause the kernel running in the context of process B to scan

the list of snapshots that will get blocked at snapshot 1 because it is held locked by process A.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig29

571

Figure 9.29 Snapshot deadlock scenario.

The resolution to the deadlock problem is to allocate a single lock that is used for all the

snapshots on a filesystem. When a new snapshot is created, the kernel checks whether there are

any other snapshots on the filesystem. If there are, the per-file lock associated with the new

snapshot inode is released and replaced with the lock used for the other snapshots. With only a

single lock, the access to the snapshots as a whole is serialized. Thus, in Figure 9.29, process B

will hold the lock for all the snapshots and will be able to make the necessary checks and

updates while process A will be held waiting. Once process B completes its scan, process A will

be able to get access to all the snapshots and will be able to run successfully to completion.

Because of the added serialization of the snapshot lookups, the look-aside table described earlier

is important to ensure reasonable performance of snapshots. In gathering statistics on our

running systems, we found that the look-aside table resolves nearly half of the snapshot

copy-on-write lookups. Thus, we found that the look-aside table keeps the contention for the

snapshot lock to a reasonable level.

Background fsck

Traditionally, after an unclean system shutdown, the filesystem check program, fsck, has had to

be run over all the inodes in a filesystem to ascertain which inodes and blocks are in use and to

correct the bitmaps. This check is a painfully slow process that can delay the restart of a big

server for an hour or more. The current implementation of soft updates guarantees the

consistency of all filesystem resources, including the inode and block bitmaps. With soft updates,

the only inconsistency that can arise in the filesystem (barring software bugs and media failures)

is that some unreferenced blocks may not appear in the bitmaps and some inodes may have to

have overly high link counts reduced. Thus, it is completely safe to begin using the filesystem

after a crash without first running fsck. However, some filesystem space may be lost after each

crash. Thus, there is value in having a version of fsck that can run in the background on an

active filesystem to find and recover any lost blocks and adjust inodes with overly high link

counts. A special case of the overly high link count is one that should be zero. Such an inode will

be freed as part of reducing its link count to zero. This garbage collection task is less difficult

than it might at first appear, since this version of fsck only needs to identify resources that are

not in use and cannot be allocated or accessed by the running system.

With the addition of snapshots, the task becomes simple, requiring only minor modifications to

the standard fsck. When run in background cleanup mode, fsck starts by taking a snapshot of

the filesystem to be checked. Fsck then runs over the snapshot filesystem image doing its usual

calculations just as in its normal operation. The only other change comes at the end of its run,

when it wants to write out the updated versions of the bitmaps. Here, the modified fsck takes

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig29

572

the set of blocks that it finds were in use at the time of the snapshot and removes this set from

the set marked as in use at the time of the snapshot—the difference is the set of lost blocks. It

also constructs the list of inodes whose counts need to be adjusted. Fsck then calls a new system

call to notify the filesystem of the identified lost blocks so that it can replace them in its bitmaps.

It also gives the set of inodes whose link counts need to be adjusted; those inodes whose link

count is reduced to zero are truncated to zero length and freed. When fsck completes, it releases

its snapshot. The complete details of how background fsck is implemented can be found in

McKusick [2002; 2003].

User-Visible Snapshots

Snapshots may be taken at any time. When taken every few hours during the day, they allow

users to retrieve a file that they wrote several hours earlier and later deleted or overwrote by

mistake. Snapshots are much more convenient to use than dump tapes and can be created much

more frequently.

The snapshot described above creates a frozen image of a filesystem partition. To make that

snapshot accessible to users through a traditional filesystem interface, the system administrator

uses the vnode driver, vnd. The vnd driver takes a file as input and produces a character-device

interface to access it. The vnd character device can then be used as the input device for a

standard mount command, allowing the snapshot to appear as a replica of the frozen filesystem

at whatever location in the namespace that the system administrator chooses to mount it.

Live Dumps

Once filesystem snapshots are available, it becomes possible to dump live filesystems safely.

When dump notices that it is being asked to dump a mounted filesystem, it can simply take a

snapshot of the filesystem and dump the snapshot instead of dumping the live filesystem. When

dump completes, it releases the snapshot.

9.8 Journaled Soft Updates

This section describes the work to add “journaling lite” to soft updates and its incorporation into

the FreeBSD fast filesystem. Because soft updates prevent most inconsistencies, the journal

need only track those inconsistencies that soft updates fail to address. Specifically, the journal

contains the information needed to recover the block and inode resources that have been freed

but whose freed status failed to make it to disk before a system failure. After a crash, a variant of

the venerable fsck program runs through the journal to identify and free the lost resources.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref15

573

Only if an inconsistency between the log and filesystem is detected is it necessary to run the

whole-filesystem fsck. The journal is tiny, 16 Mbyte is usually enough, independent of

filesystem size. Although journal processing needs to be done before restarting, the processing

time is typically just a few seconds and, in the worst case, a minute. It is not necessary to build a

new filesystem to use soft-updates journaling. The addition or deletion of soft-updates

journaling to existing FreeBSD fast filesystems is done using the tunefs program.

Background and Introduction

The soft-updates dependency-tracking system was adopted by FreeBSD in 1998 as an

alternative to the popular journaled-filesystem technique and is described in Section 9.6. While

the runtime performance and consistency guarantees of soft updates are comparable to

journaled filesystems [Seltzer et al., 2000], it relies on an expensive and time-consuming

background filesystem recovery operation after a crash as is described in Section 9.7. This

section outlines a method for eliminating an expensive background or foreground

whole-filesystem check operation by using a small journal that logs the only two inconsistencies

possible in soft updates. The first is allocated but unreferenced blocks; the second is incorrectly

high link counts. Incorrectly high link counts include unreferenced inodes that were being

deleted and files that were unlinked but open [Ganger et al., 2000]. This journal allows a

journal-analysis program to complete recovery in just a few seconds independent of filesystem

size.

Compatibility with Other Implementations

Journaling is enabled via tunefs and only requires a few spare superblock fields and 16 Mbyte

of free blocks for the journal. These minimal requirements make it easily enabled on existing

FreeBSD filesystems. The journal’s filesystem blocks are placed in an inode named .sujournal

in the root of the filesystem and filesystem flags are set such that older nonjournaling kernels

will trigger a full filesystem check when mounting a previously journaled volume. When

mounting a journaled filesystem, older kernels clear a flag that shows that journaling is being

done so that when the filesystem is next encountered by a kernel that does journaling, it will

know that that the journal is invalid and will ensure that the filesystem is consistent and clear

the journal before resuming use of the filesystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref08

574

Journal Format

The journal is kept as a circular log of segments containing records that describe metadata

operations. If the journal fills, the filesystem must complete enough operations to expire journal

entries before allowing new operations. In practice, the journal almost never fills.

Each journal segment contains a unique sequence number and a timestamp that identifies the

filesystem mount instance so old segments can be discarded during journal processing. Journal

entries are aggregated into segments to minimize the number of writes to the journal. Each

segment contains the last valid sequence number at the time it was written to allow fsck to

recover the head and tail by scanning the entire journal. Segments are variably sized as some

multiple of the disk block size and are written atomically to avoid read/modify/write cycles in

running filesystems.

The journal analysis has been incorporated into the fsck program. This incorporation into the

existing fsck program has several benefits. The existing startup scripts already call fsck to see if

it needs to be run in the foreground or background. For filesystems running with journaled soft

updates, fsck can request to run in the foreground and do the needed journaled operations

before the filesystem is brought online. If the journal fails for some reason, it can instead report

that a full fsck needs to be run as the traditional fallback. Thus, this new functionality can be

introduced without any change to the way that system administrators start up their systems.

Finally, the invoking of fsck means that after the journal has been processed, it is possible for

debugging purposes to fall through and run a complete check of the filesystem to ensure that the

journal is working properly.

The journal entry size is 32 bytes, providing a dense representation allowing for 128 entries per

4-Kbyte sector. The journal is created in a single area of the filesystem in as contiguous an

allocation as is available. We considered spreading it out across cylinder groups to optimize

locality for writes but it ended up being so small that this approach was not practical and would

make scanning the entire journal during cleanup too slow.

The journal blocks are claimed by a named immutable inode. This approach allows user-level

access to the journal for debugging and statistics-gathering purposes as well as providing

backwards compatibility with older kernels that do not support journaling. We have found that a

journal size of 16 Mbyte is enough in even the most tortuous and worst-case benchmarks. A

16-Mbyte journal can cover over 500,000 namespace operations or 16 Gbyte of outstanding

allocations (assuming a standard 32-Kbyte block size).

575

Modifications That Require Journaling

This subsection describes the operations that must be journaled so that the information needed

to clean up the filesystem is available to fsck.

Increased Link Count

A link count may be increased through a hard link or file creation. The link count is temporarily

increased during a rename. Here, the operation is the same. The inode number, parent inode

number, directory offset, and initial link count are all recorded in the journal. Soft updates

guarantee that the inode link count will be increased and stable on disk before any directory

write. The journal write must occur before the inode write that updates the link count and

before the bitmap write that allocates the inode if it is newly allocated.

Decreased Link Count

The inode link count is decreased through unlink or rename. The inode number, parent inode,

directory offset, and initial link count are all recorded in the journal. The deleted directory entry

is guaranteed to be written before the link is adjusted down. As with increasing the link count,

the journal write must happen before all other writes.

Unlink While Referenced

Unlinked yet referenced files pose a problem for journaled filesystems. In UNIX, an inode’s

storage is not reclaimed until after the final name is removed and the last reference is closed.

Simply leaving the journal entry valid while waiting for applications to close their dangling

references is untenable as it will easily exhaust journal space. A solution that scales to the total

number of inodes in the filesystem is required. At least two approaches are possible: a

replication of the inode allocation bitmap, or a linked list of inodes to be freed. We have chosen

to use the linked-list approach.

In the linked-list case, which is employed by several filesystems (xfs, ext4, etc.), the superblock

contains the inode number that serves as the head of a singly linked list of inodes to be freed,

with each inode storing a pointer to the next inode on the list. The advantage of this approach is

that at recovery time, fsck need only examine a single pointer in the superblock that will already

be in memory. The disadvantage is that the kernel must keep an in-memory doubly linked list so

that it can rapidly remove an inode once it is unreferenced. This approach ingrains a

filesystem-wide lock in the design and incurs nonlocal writes when maintaining the list. In

practice, we have found that unreferenced inodes occur rarely enough that this approach is not a

bottleneck.

576

Removal from the list may be done lazily but must be completed before any re-use of the inode.

Additions to the list must be stable before reclaiming journal space for the final unlink but

otherwise may be delayed long enough to avoid needing the write at all if the file is quickly

closed. Addition and removal involve only a single write to update the preceding pointer to the

following inode.

Change of Directory Offset

Any time a directory compaction moves an entry, a journal entry must be created that describes

the old and new locations of the entry. The kernel does not know at the time of the move

whether a remove will follow it, so currently all offset changes are journaled. Without this

information, fsck would be unable to disambiguate multiple revisions of the same directory

block.

Block Allocation and Free

When performing either block allocation or free, whether it is a fragment, indirect block,

directory block, direct block, or extended attributes, the record is the same. The inode number

of the file and the offset of the block within the file are recorded using negative offsets for

indirect blocks and extents. Additionally, the disk block address and number of fragments are

included in the journal record. The journal entry must be written to disk before any allocation or

free.

When freeing an indirect block, only the root of the indirect block tree is logged. Thus, for

truncation we need a maximum of 15 journal entries, 12 for direct blocks and 3 for indirect

blocks. These 15 journal entries allow us to free a large amount of space with a minimum of

journaling overhead. During recovery, fsck will follow indirect blocks and free any descendants

including other indirect blocks. For this algorithm to work, the contents of the indirect block

must remain valid until the journal record is free so that user data is not confused with indirect

block pointers.

Additional Requirements of Journaling

Some operations that had not previously required tracking under soft updates need to be

tracked when journaling is introduced. This subsection describes these new requirements.

Cylinder-Group Rollbacks

Soft updates previously did not require any rollbacks of cylinder groups as they were always the

first or last write in a group of changes. When a block or inode has been allocated but its journal

577

record has not yet been written to disk, it is not safe to write the updated bitmaps and associated

allocation information. The routines that write blocks with bmsafemap dependencies now

rollback any allocations with unwritten journal operations.

Inode Rollbacks

The inode link count must be rolled back to the link count as it existed before any unwritten

journal entries. Allowing it to grow beyond this count would not cause filesystem corruption but

it would prohibit the journal recovery from adjusting the link count properly. Soft updates

already prevent the link count from decreasing before the directory entry is removed as a

premature decrement could cause filesystem corruption.

When an unlinked file has been closed, its inode cannot be returned to the inode freelist until its

zeroed-out block pointers have been written to disk so that its blocks can be freed and it has

been removed from the on-disk list of unlinked files. The unlinked-file inode is not completely

removed from the list of unlinked files until the next pointer of the inode that precedes it on the

list has been updated on disk to point to the inode that follows it on the list. If the unlinked-file

inode is the first inode on the list of unlinked files, then it is not completely removed from the

list of unlinked files until the head-of-unlinked-files pointer in the superblock has been updated

on disk to point to the inode that follows it on the list.

Reclaiming Journal Space

To reclaim journal space from previously written records, the kernel must know that the

operation the journal record describes is stable on disk. This requirement means that when a

new file is created, the journal record cannot be freed until writes are completed for a cylinder

group bitmap, an inode, a directory block, a directory inode, and possibly some number of

indirect blocks. When a new block is allocated, the journal record cannot be freed until writes

are completed for the new block pointer in the inode or indirect block, the cylinder group

bitmap, and the block itself. Block pointers within indirect blocks are not stable until all parent

indirect blocks are fully reachable on disk via the inode indirect block pointers. To simplify

fulfillment of these requirements, the dependencies that describe these operations carry

pointers to the oldest segment structure in the journal containing journal entries that describe

outstanding operations.

Some operations may be described by multiple entries. For example, when making a new

directory, its addition creates three new names. Each of these names is associated with a

reference count on the inode to which the name refers. When one of these dependencies is

satisfied, it may pass its journal entry reference to another dependency if another operation on

which the journal entry depends is not yet complete. If the operation is complete, the final

578

reference on the journal record is released. When all references to journal records in a journal

segment are released, its space is reclaimed and the oldest valid segment sequence number is

adjusted. We can only release the oldest free journal segment, since the journal is treated as a

circular queue.

Handling a Full Journal

If the journal ever becomes full, we must prevent any new journal entries from being created

until more space becomes available from the retirement of the oldest valid entries. An effective

way to stop the creation of new journal records is to suspend the filesystem using the

mechanism in place for taking snapshots. Once suspended, existing operations on the filesystem

are permitted to complete, but new operations that wish to modify the filesystem are put to

sleep until the suspension is lifted.

We do a check for journal space before each operation that will change a link count or allocate a

block. If we find that the journal is approaching a full condition, we suspend the filesystem and

expedite the progress on the soft-updates work-list processing to speed the rate at which journal

entries are retired. As the operation that did the check has already started, it is permitted to

finish, but future operations are blocked. Thus, operations must be suspended while there is still

enough journal space to complete operations already in progress. When enough journal entries

have been freed, the filesystem suspension is lifted and normal operations resume.

In practice, we had to create a minimal-size journal (4 Mbyte) and run scripts designed to create

huge numbers of link-count changes, block allocations, and block frees to trigger the journal-full

condition. Even under these tests, the filesystem suspensions were infrequent and brief, lasting

under a second.

The Recovery Process

This subsection describes the use of the journal by fsck to clean up the filesystem after a crash.

Scanning the Journal

To perform recovery, the fsck program must first scan the journal from start to end to discover

the oldest valid sequence number. We contemplated keeping journal head and tail pointers,

however, that would require extra writes to the superblock area. Because the journal is small,

the extra time spent scanning it to identify the head and tail of the valid journal seemed a

reasonable tradeoff to reduce the run-time cost of maintaining the journal head and tail pointers.

As a result, the fsck program must discover the first segment containing a still-valid sequence

number and work from there. Journal records are then resolved in order. Journal records are

579

marked with a timestamp that must match the filesystem mount time as well as a CRC to protect

the validity of the contents.

Adjusting Link Counts

For each journal record recording a link increase, fsck needs to examine the directory at the

offset provided and see whether the directory entry for the recorded inode number exists on disk.

If it does not exist, but the inode link count was increased, then the recorded link count needs to

be decremented.

For each journal record recording a link decrease, fsck needs to examine the directory at the

offset provided and see whether the directory entry for the recorded inode number exists on disk.

If it has been deleted on disk, but the inode link count has not been decremented, then the

recorded link count needs to be decremented.

Compaction of directory offsets for entries that are being tracked complicates the link

adjustment scheme presented above. Since directory blocks are not written synchronously, fsck

must look up each directory entry in all its possible locations.

When an inode is added and removed from a directory multiple times, fsck is not able to assess

the link count correctly given the algorithm presented above. The chosen solution is to

preprocess the journal and link all entries related to the same inode together. In this way, all

operations not known to be committed to the disk can be examined concurrently to determine

how many links should exist relative to the known stable count that existed before the first

journal entry. Duplicate records that occur when an inode is added and deleted multiple times at

the same offset are discarded, resulting in a coherent count.

Updating the Allocated Inode Map

Once the link counts have been adjusted, fsck must free any inodes whose link count has fallen

to zero. In addition, fsck must free any inodes that were unlinked but still in use at the time that

the system crashed. The head of the list of unreferenced inode is in the superblock as described

earlier in this section. The fsck program must traverse this list of unlinked inodes and free

them.

The first step in freeing an inode is to add all its blocks to the list of blocks that need to be freed.

Next, the inode needs to be zeroed to show that it is not in use. Finally, the inode bitmap in its

cylinder group must be updated to reflect that the inode is available and all the appropriate

filesystem statistics updated to reflect the inode’s availability.

Updating the Allocated Block Map

580

Once the journal has been scanned, it provides a list of blocks that were intended to be freed.

The journal entry lists the inode from which the block was to be freed. For recovery, fsck

processes each free record by checking to see if the block is still claimed by its associated inode.

If it finds that the block is no longer claimed, it is freed.

For each block that is freed, either by the deallocation of an inode or through the identification

process described above, the block bitmap in its cylinder group must be updated to reflect that it

is available and all the appropriate filesystem statistics updated to reflect its availability. When a

fragment is freed, the fragment availability statistics must also be updated.

Performance

Journaling adds extra running time and memory allocations to the traditional soft-updates

requirements as well as additional I/O operations to write the journal. The overhead of the extra

running time and memory allocations was immeasurable in the benchmarks that we ran. The

extra I/O was mostly evident in the increased delay for individual operations to complete.

Operation completion time is usually only evident to an application when it does an fsync

system call that causes it to wait for the file to reach the disk. Otherwise, the extra I/O to the

journal only becomes evident in benchmarks that are limited by the filesystem’s I/O bandwidth

before journaling is enabled. In summary, a system running with journaled soft updates will

never run faster than one running soft updates without journaling. So, systems with small

filesystems such as an embedded system will usually want to run soft updates without

journaling and take the time to run fsck after system crashes.

The primary purpose of the journaling project was to eliminate long filesystem check times. A

40 Tbyte volume may take an entire day and a considerable amount of memory to check. We

have run several scenarios to understand and validate the recovery time.

A typical operation for developers is to run a parallel buildworld. Crash recovery from this case

demonstrates time to recover from moderate write workload. A 250 Gbyte disk was filled to 80

percent with copies of the FreeBSD source tree. One copy was selected at random and an 8-way

buildworld proceeded for 10 minutes before the box was reset. Recovery from the journal took

0.9 seconds. An additional run with traditional fsck was used to verify the safe recovery of the

filesystem. The fsck took about 27 minutes, or 1800 times as long.

A testing volunteer with a 92-percent full 11 Tbyte volume spanning 14 drives on a 3ware RAID

controller generated hundreds of megabytes of dirty data by writing random length files in

parallel before resetting the machine. The resulting recovery operation took less than one

minute to complete. A normal fsck run takes about 10 hours on this filesystem.

581

Future Work

This subsection describes some areas we have not yet explored that may give further

performance improvements to our implementation.

Rollback of Directory Deletions

Doing a rollback of a directory addition is easy. The new directory entry has its inode number set

to zero to show that it is not really allocated. However, rollback of directory deletions is much

more difficult as the space may have been claimed by a new allocation. There are times when

being able to roll back a directory deletion would be convenient. For example, when a file is

renamed, a directory rollback could be used to prevent the removal of an old name before a new

name reaches the disk. Here, we have considered using a distinguished inode number that the

filesystem would recognize internally as being in use, but which would not be returned to the

user application. However, at present we cannot rollback deletes, which requires any delete

journaling to be written to disk before the writing of affected directory blocks.

Truncate and Weaker Guarantees

As a potential optimization, the truncate system call instead may choose to record the intended

file size and operate more lazily, relying on the log to recover any partially completed operations

correctly. This approach also allows us to perform partial truncations asynchronously. Further,

the journal allows for the weakening of other soft dependency guarantees although we have not

yet fully explored these reduced guarantees and do not know if they provide any real benefit.

Tracking File-Removal Dependencies

This subsection gives a short example describing the dependencies that track the removal of a

file when using journaled soft updates. These five ordering constraints must be maintained:

1. The journal must record the location in the directory that has the name to be deleted and the

inode number associated with the name.

2. The filename in the on-disk copy of the directory must be deleted.

3. The journal must record the blocks to be deleted. The inode describing the file must be

deallocated by zeroing out its on-disk dinode. The writing of the journal entry must precede the

writing of the zeroed-out on-disk inode.

582

4. The blocks formerly referenced by the inode for the file must be released to the free-space

bitmap, and the inode must be released to the free-inode bitmap.

5. The journal must record the successful completion of the removal.

These five constraints are maintained by soft updates as follows:

1. The buffer containing the journal entry with the name and inode number to be deleted adds a

dependency structure to start the file deletion.

2. Some time in the next 30 seconds after step 1, the kernel will decide to write the journal

buffer. When notified that the journal entry has been written, the block of the directory

containing the name to be deleted is read into a kernel buffer. The entry is deleted by changing

the entry that precedes it to point to the entry that follows it (see Section 9.3). Before releasing

the buffer, a set of dependencies must be constructed, as shown in Figure 9.26. If this deletion is

the first dependency for the directory block, it needs to have a pagedep structure allocated that

is linked onto the dependency list for the buffer. Next, a dirrem structure is allocated that

records the inode number of the entry being deleted. The dirrem structure is linked onto the

dirrem list of the pagedep structure for the directory block. The buffer is then marked dirty and

it is unlocked and released.

3. Some time in the next 30 seconds after step 2, the kernel will decide to write the dirty

directory buffer. When the write completes, the pagedep associated with the buffer is passed to

soft updates for processing. One processing step is to handle each of the dirrem entries. Each

dirrem entry causes the inode formerly referenced by the directory to have its reference count

decremented by one. If the reference count drops to zero (meaning that the last name for the file

was removed), then the inode must be deallocated and freed. Before zeroing out the contents of

the on-disk dinode, its list of allocated blocks must be saved in a freeblks structure and

information needed to free the inode must be saved in a freefile structure. A journal entry

containing the freeblks and freefile information must be added to the journal buffer. The block

of the filesystem containing the dinode to be freed is read into a kernel buffer, as shown in

Figure 9.20. The part of the buffer containing the dinode is zeroed out. If the deallocation is the

first dependency for the dinode, it must have an inodedep structure allocated that is linked onto

the dependency list for the buffer. The freeblks and freefile structures are linked onto the buffer

wait list of the inodedep structure. A reference to the journal entry is also added to the inodedep.

The buffer is then marked dirty and it is unlocked and released. The dirrem structure is freed as

is the pagedep structure if it is no longer tracking any dependencies.

4. Some time in the next 30 seconds after step 3, the kernel will decide to write the buffer

containing the zeroed-out dinode. If the buffer containing the journal dependency has not yet

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig20

583

been written, the zeroed-out dinode is replaced with its original contents and the write is

allowed to proceed. When the write completes, the zeroed-out dinode is put back into the buffer

and the buffer marked as still dirty (needing to be written). When a write on the buffer finds that

the journal entry has been written, the write of the zeroed-out dinode is allowed to proceed.

When the write completes, the inodedep associated with the buffer is passed to soft updates for

processing. One processing step is to handle each of the buffer wait entries. The handling of the

freeblks entry causes all its listed blocks to be marked free in the appropriate cylinder-group

bitmaps. The handling of the freefile entry causes the deleted inode to be marked free in the

appropriate cylinder-group bitmap. The freeblks and freefile structures are freed as is the

inodedep structure if it is no longer tracking any dependencies. A journal dependency is added

to the buffer containing the bitmaps.

5. Some time in the next 30 seconds, the kernel will decide to write the buffer containing the

bitmaps. When the write completes, the journal dependency is processed that writes an entry to

the journal to show that the block and inode release has been completed.

The file has now been completely removed and ceases to be tracked by soft updates.

9.9 The Local Filestore

The next two sections of this chapter describe the organization and management of data on

storage media. Historically, FreeBSD provided three different filestore managers: the traditional

Berkeley Fast Filesystem (FFS), the Log-Structured Filesystem, and the Memory-Based

Filesystem. These storage managers shared the same code for all the filesystem naming

semantics and differed only in the management of their data on storage media. The

Log-Structured Filesystem file-store manager has been replaced by ZFS described in Chapter 10.

The Memory-Based Filesystem filestore manager has been replaced by an implementation

optimized for operating in virtual memory.

Overview of the Filestore

The FFS filestore was designed at a time when file caches were small and thus files needed to be

read from the disk often. It is willing to do extra disk seeks while writing to place files likely to

be accessed together in the same general location on the disk. This approach minimizes disk

seeks needed to read these files. By contrast, ZFS was designed at a time when file caches were

large and thus most file reads would not need to access the disk. Hence, ZFS optimizes its write

speed by grouping blocks in the order in which they are written. ZFS is willing to accept more

disk seeks to read files on the rare occasions when they are not in the cache.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10

584

The operations defined for doing the datastore filesystem operations are shown in Table 9.3.

These operators are fewer and semantically simpler than are those used for managing the

namespace.

Table 9.3 Datastore filesystem operations.

There are two operators for allocating and freeing objects. The valloc operator creates a new

object. The identity of the object is a number returned by the operator. The mapping of this

number to a name is the responsibility of the name-space code. An object is freed by the vfree

operator. The object to be freed is identified by only its number.

The attributes of an object are changed by the update operator. This layer performs no

interpretation of these attributes; they are simply fixed-size auxiliary data stored outside the

main data area of the object. They are typically file attributes, such as the owner, group,

permissions, and so on. Note that the extended attribute space is updated using the read and

write interface as that interface is already prepared to read and write arbitrary length data to

and from user-level processes.

There are five operators for manipulating existing objects. The vget operator retrieves an

existing object from the filestore. The object is identified by its number and must have been

created previously by valloc. The read operator copies data from an object to a location

described by a uio structure. The blkatoff operator is similar to the read operator, except that

the blkatoff operator simply returns a pointer to a kernel memory buffer with the requested data

instead of copying the data. This operator is designed to increase the efficiency of operations

where the namespace code interprets the contents of an object (i.e., directories) instead of just

returning the contents to a user process. The write operator copies data to an object from a

location described by a uio structure. The fsync operator requests that all data associated with

the object be moved to stable storage (usually by writing them all to disk). There is no need for

an analog of blkatoff for writing, as the kernel can simply modify a buffer that it received from

blkatoff, mark that buffer as dirty, and then perform an fsync operation to have the buffer

written back.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab03

585

The final datastore operation is truncate. This operation changes the amount of space

associated with an object. Historically, it could be used only to decrease the size of an object. In

FreeBSD, it can be used both to increase and decrease the size of an object. When the size of a

file is increased, a hole in the file is created. Usually, no additional disk space is allocated; the

only change is to update the inode to reflect the larger file size. When read, holes are treated by

the system as zero-valued bytes.

Each disk drive has one or more subdivisions, or partitions. Each such partition can contain

only one filestore, and a filestore never spans multiple partitions. While a filesystem may use

multiple disk partitions to perform striping or RAID, the aggregation and management of the

parts that make up the filesystem are managed by a lower-level driver in the kernel. The

filesystem code always has the view of operating on a single contiguous partition.

The filestore is responsible for the management of the space within its disk partition. Within

that space, its responsibility is the creation, storage, retrieval, and removal of files. It operates in

a flat namespace. When asked to create a new file, it allocates an inode for that file and returns

the assigned number. The naming, access control, locking, and attribute manipulation for the

file are all handled by the hierarchical filesystem-management layer above the filestore.

The filestore also handles the allocation of new blocks to files as the latter grow. Simple

filesystem implementations, such as those used by early microcomputer systems, allocate files

contiguously, one after the next, until the files reach the end of the disk. As files are removed,

holes occur. To reuse the freed space, the system must compact the disk to move all the free

space to the end. Files can be created only one at a time; for the size of a file other than the final

one on the disk to be increased, the file must be copied to the end and then expanded.

As we saw in Section 9.2, each file in a filestore is described by an inode; the locations of its data

blocks are given by the block pointers in its inode. Although the filestore may cluster the blocks

of a file to improve I/O performance, the inode can reference blocks scattered anywhere

throughout the partition. Thus, multiple files can be written simultaneously and all the disk

space can be used without the need for compaction.

The filestore implementation converts from the user abstraction of a file as an array of bytes to

the structure imposed by the underlying physical medium. Consider a typical medium of a

magnetic disk with fixed-size sectoring. Although the user may wish to write a single byte to a

file, the disk supports reading and writing only in multiples of sectors. Here, the system must

read in the sector containing the byte to be modified, replace the affected byte, and write the

sector back to the disk. This operation—converting random access to an array of bytes to reads

and writes of disk sectors—is called block I/O.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec2

586

First, the system breaks the user’s request into a set of operations to be done on logical blocks

of the file. Logical blocks describe block-size pieces of a file. The system calculates the logical

blocks by dividing the array of bytes into filestore-size pieces. Thus, if a filestore’s block size is

32,768 bytes, then logical block 0 would contain bytes 0 to 32,767, logical block 1 would contain

bytes 32,768 to 65,535, and so on.

The data in each logical block are stored in a physical block on the disk. A physical block is

the location on the disk to which the system maps a logical block. A physical disk block is

constructed from one or more contiguous sectors. For a disk with 4096-byte sectors, a

32,768-byte filestore block would be built up from 8 contiguous sectors. Although the contents

of a logical block are contiguous on disk, the logical blocks of the file do not need to be laid out

contiguously. The data structure used by the system to convert from logical blocks to physical

blocks is described in Section 9.2.

User I/O to a File

Although the user may wish to write a single byte to a file, the disk hardware can read and write

only in multiples of sectors. Hence, the system must arrange to read in the sector containing the

byte to be modified, to replace the affected byte, and to write back the sector to the disk.

Processes may read data in sizes smaller than a disk block. The first time that a small read is

required from a particular disk block, the block will be transferred from the disk into a kernel

buffer. Later reads of parts of the same block then require only copying from the kernel buffer to

the memory of the user process. Multiple small writes are treated similarly. A buffer is allocated

from the cache when the first write to a disk block is made, and later writes to part of the same

block are then likely to require only copying into the kernel buffer and no disk I/O.

In addition to providing the abstraction of arbitrary alignment of reads and writes, the block

buffer cache reduces the number of disk I/O transfers required by filesystem accesses. Because

system-parameter files, commands, and directories are read repeatedly, their data blocks are

usually in the buffer cache when they are needed. Thus, the kernel does not need to read them

from the disk every time that they are requested.

Figure 9.30 shows the flow of information and work required to access a file on the disk. The

abstraction shown to the user is an array of bytes. These bytes are collectively described by a file

descriptor that refers to some location in the array. The user can request a write operation on

the file by presenting the system with a pointer to a buffer and with a request for some number

of bytes to be written. As Figure 9.30 shows, the requested data do not need to be aligned with

the beginning or end of a logical block. Further, the size of the request is not constrained to a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_202
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig30

587

single logical block. In the example shown, the user has requested data to be written to parts of

logical blocks 1 and 2. Since the disk can transfer data only in multiples of sectors, the filestore

must first arrange to read in the data for any part of the block that is to be left unchanged. The

system must arrange an intermediate staging area for the transfer. This staging is done through

one or more system buffers, described in Section 7.4.

Figure 9.30 The block I/O system.

In our example, the user wishes to modify data in logical blocks 1 and 2. The operation iterates

over five steps:

1. Allocate a buffer.

2. Determine the location of the corresponding physical block on the disk.

3. Request the disk controller to read the contents of the physical block into the system buffer

and wait for the transfer to complete.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec4

588

4. Do a memory-to-memory copy from the beginning of the user’s I/O buffer to the appropriate

portion of the system buffer.

5. Write the block to the disk and continue without waiting for the transfer to complete.

If the user’s request is incomplete, the process is repeated with the next logical block of the file.

In our example, the system fetches logical block 2 of the file and is able to complete the user’s

request. Had an entire block been written, the system could have skipped step 3 and have simply

written the data to the disk without first reading in the old contents. This incremental filling of

the write request is transparent to the user’s process because that process is blocked from

running during the entire procedure. The filling is transparent to other processes; because the

inode is locked during the process, any attempted access by any other process will be blocked

until the write has completed.

If the system crashes while data for a particular block are in the cache but have not yet been

written to disk, the filesystem on the disk will be incorrect and those data will be lost. The

consistency of critical filesystem data is maintained using the techniques described in Section

9.6, but it is still possible to lose recently written application data. So that lost data are

minimized, writes for dirty buffer blocks are forced, at most, 30 seconds after they are written.

There is also a system call, fsync, that a process can use to force all dirty blocks of a single file to

be written to disk immediately; this synchronization is useful for ensuring database consistency

or before removing an editor backup file.

9.10 The Berkeley Fast Filesystem

A traditional UNIX filesystem is described by its superblock, which contains the basic

parameters of the filesystem. These parameters include the number of data blocks in the

filesystem, a count of the maximum number of files, and a pointer to the free list, which is a list

of all the free blocks in the filesystem.

A 150-Mbyte traditional UNIX filesystem consists of 4 Mbyte of inodes followed by 146 Mbyte of

data. That organization segregates the inode information from the data; thus, accessing a file

normally incurs a long seek from the file’s inode to its data. Files in a single directory typically

are not allocated consecutive slots in the 4 Mbyte of inodes, causing many nonconsecutive disk

blocks to be read when many inodes in a single directory are accessed.

The allocation of data blocks to files also is suboptimal. The traditional filesystem

implementation uses a 512-byte physical block size. However, the next sequential data block

often is not on the same cylinder, so seeks between 512-byte data transfers are required

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_130

589

frequently. This combination of small block size and scattered placement severely limits

filesystem throughput.

The first work on the UNIX filesystem at Berkeley attempted to improve both the reliability and

the throughput of the filesystem. The developers improved reliability by staging modifications to

critical filesystem information so that the modifications could be either completed or repaired

cleanly by a program after a crash [McKusick & Kowalski, 1994]. Doubling the block size of the

filesystem improved the performance of the 4.0BSD filesystem by a factor of more than two

when compared with the 3BSD filesystem. This doubling caused each disk transfer to access

twice as many data blocks and eliminated the need for indirect blocks for many files. In the

remainder of this section, we shall refer to the filesystem with these changes as the 3BSD

filesystem.

The performance improvement in the 3BSD filesystem gave a strong indication that increasing

the block size was a good method for improving throughput. Although the throughput had

doubled, the 3BSD filesystem was still using only about 4 percent of the maximum disk

throughput. The main problem was that the order of blocks on the free list quickly became

scrambled as files were created and removed. Eventually, the free-list order became entirely

random, causing files to have their blocks allocated randomly over the disk. This randomness

forced a seek before every block access. Although the 3BSD filesystem provided transfer rates of

up to 175 Kbyte per second when it was first created, the scrambling of the free list caused this

rate to deteriorate to an average of 30 Kbyte per second after a few weeks of moderate use.

There was no way of restoring the performance of a 3BSD filesystem except to recreate the

system.

Organization of the Berkeley Fast Filesystem

The first version of the current BSD filesystem appeared in 4.2BSD [McKusick et al., 1984]. This

version is still in use today as UFS1. In the FreeBSD filesystem organization (as in the 3BSD

filesystem organization), each disk drive contains one or more filesystems. A FreeBSD filesystem

is described by its superblock, located at the beginning of the filesystem’s disk partition. Because

the superblock contains critical data, it is replicated to protect against catastrophic loss. This

replication is done when the filesystem is created. Since most of the superblock data do not

change, the copies do not need to be referenced unless a disk failure causes the default

superblock to be corrupted. The data in the superblock that does change include a few flags and

some summary information that can easily be recreated if an alternative superblock has to be

used.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref16

590

To allow support for filesystem fragments as small as a single 512-byte disk sector, the minimum

size of a filesystem block is 4096 bytes. The block size can be any power of 2 greater than or

equal to 4096. The block size is recorded in the filesystem’s superblock, so it is possible for

filesystems with different block sizes to be accessed simultaneously on the same system. The

block size must be selected at the time that the filesystem is created; it cannot be changed

subsequently without the filesystem being rebuilt.

The BSD filesystem organization divides a disk partition into one or more areas, each of which is

called a cylinder group. Historically, a cylinder group comprised one or more consecutive

cylinders on a disk. Although FreeBSD still uses the same data structure to describe cylinder

groups, the practical definition of them has changed. When the filesystem was first designed, it

could get an accurate view of the disk geometry including the cylinder and track boundaries and

could accurately compute the rotational location of every sector. Modern disks hide this

information, providing fictitious numbers of blocks per track, tracks per cylinder, and cylinders

per disk. Indeed, in modern RAID arrays, the “disk” that is presented to the filesystem may

really be composed from a collection of disks in the RAID array. While some research has been

done to figure out the true geometry of a disk [Griffin et al., 2002; Lumb et al., 2002; Schindler

et al., 2002], the complexity of using such information effectively is high. Modern disks have

greater numbers of sectors per track on the outer part of the disk than the inner part, which

makes calculating the rotational position of any given sector complex. So when the design for

UFS2 was drawn up, we decided to get rid of all the rotational layout code found in UFS1 and

simply assume that laying out files with numerically close block numbers (sequential being

viewed as optimal) would give the best performance. Thus, the cylinder-group structure is

retained in UFS2, but it is used only as a convenient way to manage logically close groups of

blocks. The rotational layout code had been disabled in UFS1 since the late 1980s, so as part of

the code base cleanup it was removed entirely.

Each cylinder group must fit into a single filesystem block. When creating a new filesystem, the

newfs utility calculates the maximum number of blocks that can be packed into a

cylinder-group map based on the filesystem block size. It then allocates the minimum number of

cylinder groups needed to describe the filesystem. A filesystem with 32-Kbyte blocks typically

has 1.4 cylinder groups per Gbyte.

Each cylinder group contains bookkeeping information that includes a redundant copy of the

superblock, space for inodes, a bitmap describing available blocks in the cylinder group, and

summary information describing the usage of data blocks within the cylinder group. The bitmap

of available blocks in the cylinder group replaces the traditional filesystem’s free list. For each

cylinder group in UFS1, a static number of inodes is allocated at filesystem-creation time. The

default policy is to allocate one inode per four filesystem fragments, with the expectation that

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref28

591

this amount will be far more than will ever be needed. For each cylinder group in UFS2, the

default is to reserve bitmap space to describe one inode per two filesystem fragments. In either

type of filesystem, the default may be changed only at the time that the filesystem is created.

The rationale for using cylinder groups is to create clusters of inodes that are spread over the

disk close to the blocks that they reference, instead of them all being located at the beginning of

the disk. The filesystem attempts to allocate file blocks close to the inodes that describe them to

avoid long seeks between getting the inode and getting its associated data. Also, when the inodes

are spread out, there is less chance of losing all of them in a single disk failure.

Although we decided to come up with a new on-disk inode format for UFS2, we chose not to

change the format of the superblock, the cylinder group maps, or the directories. Additional

information needed for the UFS2 superblock and cylinder groups is stored in spare fields of the

UFS1 superblock and cylinder groups. Maintaining the same format for these data structures

allows a single code base to be used for both UFS1 and UFS2. Because the only difference

between the two filesystems is in the format of their inodes, code can dereference pointers to

superblocks, cylinder groups, and directory entries without need to check what type of

filesystem is being accessed. To minimize conditional checking of code that references inodes,

the on-disk inode is converted to a common incore format when the inode is first read in from

the disk and converted back to its on-disk format when it is written back. The effect of this

decision is that there are only nine out of several hundred routines that are specific to UFS1

versus UFS2. The benefit of having a single code base for both filesystems is that it dramatically

reduces the maintenance cost. Outside the nine filesystem format-specific functions, fixing a bug

in the code fixes it for both filesystem types. A common code base also meant that as the

multiprocessing support was added, it only needed to be done once for the UFS family of

filesystems.

Boot Blocks

The UFS1 filesystem reserved an 8-Kbyte space at the beginning of the filesystem in which to

put a boot block. While this space seemed huge compared to the 1-Kbyte boot block that it

replaced, over time it has become increasingly difficult to cram the needed boot code into this

space. Consequently, we decided to revisit the boot-block size in UFS2.

The boot code has a list of locations to check for boot blocks. A boot block can be defined to start

at any 8-Kbyte boundary. We set up an initial list with four possible boot-block sizes: none, 8

Kbyte, 64 Kbyte, and 256 Kbyte. Each of these locations was selected for a particular purpose.

Filesystems other than the root filesystem do not need to be bootable, so they can use a

boot-block size of zero. Also, filesystems on tiny media that need every block that they can get,

592

such as flash-based disks, can use a zero-size boot block. For architectures with simple boot

blocks, the traditional UFS1 8-Kbyte boot block can be used. More typically, the 64-Kbyte boot

block is used (for example, on the PC architecture with its need to support booting from a

myriad of busses and disk drivers).

We added the 256-Kbyte boot block in case some future architecture or application needs to set

aside a particularly large boot area. This space reservation is not strictly necessary, since new

sizes can be added to the list at any time, but it can take a long time before the updated list is

propagated to all the boot programs and loaders out on the existing systems. By adding the

option for a huge boot area now, we can ensure it will be readily available should it be needed on

short notice in the future.

An unexpected side effect of using a 64-Kbyte boot block for UFS2 is that if the partition had

previously had a UFS1 filesystem on it, the superblock for the former UFS1 filesystem may not

be overwritten. If an old version of fsck that does not first look for a UFS2 filesystem is run and

finds the UFS1 superblock, it can incorrectly try to rebuild the UFS1 filesystem, destroying the

UFS2 filesystem in the process. So when building UFS2 filesystems, the newfs utility looks for

old UFS1 superblocks and zeros them out.

Optimization of Storage Utilization

Data are laid out such that large blocks can be transferred in a single disk operation, greatly

increasing filesystem throughput. A file in the new filesystem might be composed of 32,768-byte

data blocks, as compared to the 1024-byte blocks of the 3BSD filesystem; disk accesses would

thus transfer up to 32 times as much information per disk transaction. In large files, several

blocks can be allocated consecutively, so even larger data transfers are possible before a seek is

required.

The main problem with larger blocks is that most BSD filesystems contain primarily small files.

A uniformly large block size will waste space. For large blocks to be used without significant

waste, small files must be stored more efficiently. To increase space efficiency, the filesystem

allows the division of a single filesystem block into one or more fragments. The fragment size

is specified at the time that the filesystem is created; each filesystem block optionally can be

broken into two, four, or eight fragments, each of which is addressable. The lower bound on the

fragment size is constrained by the disk-sector size, which is typically 4096 byte. The block map

associated with each cylinder group records the space available in a cylinder group in fragments;

to determine whether a block is available, the system examines aligned fragments. Figure 9.31

shows a piece of a block map from a filesystem with 16,384-byte blocks and 4096-byte

fragments, hereinafter referred to as a 16,384/4096 filesystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig31

593

Figure 9.31 Example of the layout of blocks and fragments in a 16,384/4096 filesystem. Each

bit in the map records the status of a fragment; a “-” means that the fragment is in use, whereas

a “1” means that the fragment is available for allocation. In this example, fragments 0 through 5,

10, and 11 are in use, whereas fragments 6 through 9 and 12 through 15 are free. Fragments of

adjacent blocks cannot be used as a full block, even if they are large enough. In this example,

fragments 6 through 9 cannot be allocated as a full block; only fragments 12 through 15 can be

coalesced into a full block.

On a 16,384/4096 filesystem, a file is represented by zero or more 16,384-byte blocks of data,

possibly including a single fragmented block. If the system must fragment a block to obtain

space for a few data, it makes the remaining fragments of the block available for allocation to

other files. As an example, consider a 44,000-byte file stored on a 16,384/4096 filesystem. This

file would use two full-size blocks and one three-fragment portion of another block. If no block

with three aligned fragments were available at the time that the file was created, a full-size block

would be split, yielding the necessary fragments and a single unused fragment. This remaining

fragment could be allocated to another file as needed.

Reading and Writing to a File

Having opened a file, a process can do reads or writes on it. The procedural path through the

kernel is shown in Figure 9.32. If a read is requested, it is channeled through the ffs_read()

routine. The ffs_read() routine is responsible for converting the read into one or more reads of

logical file blocks. A logical block request is then handed off to ufs_bmap(). The ufs_bmap()

routine is responsible for converting a logical block number to a physical block number by

interpreting the direct and indirect block pointers in an inode. The ffs_read() routine requests

the block I/O system to return a buffer filled with the contents of the disk block. If two or more

logically sequential blocks are read from a file, the process is assumed to be reading the file

sequentially. Here, ufs_bmap() returns two values: first, the disk address of the requested block

and then the number of contiguous blocks that follow that block on disk. The requested block

and the number of contiguous blocks that follow it are passed to the cluster() routine. If the file

is being accessed sequentially, the cluster() routine will do a single large I/O on the entire range

of sequential blocks. If the file is not being accessed sequentially (as determined by a seek to a

different part of the file preceding the read), only the requested block or a subset of the cluster

will be read. If the file has had a long series of sequential reads, or if the number of contiguous

blocks is small, the system will issue one or more requests for read-ahead blocks in anticipation

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig32

594

that the process will soon want those blocks. The details of block clustering are described at the

end of this section.

Figure 9.32 Procedural interface to reading and writing.

Each time that a process does a write system call, the system checks to see whether the size of

the file has increased. A process may overwrite data in the middle of an existing file—in which

case space would usually have been allocated already (unless the file contains a hole in that

location). If the file must be extended, the request is rounded up to the next fragment size, and

only that much space is allocated (see “Allocation Mechanisms” later in this section for the

details of space allocation). The write system call is channeled through the ffs_write() routine.

The ffs_write() routine is responsible for converting the write into one or more writes of logical

file blocks. A logical block request is then handed off to ffs_balloc(). The ffs_balloc() routine is

responsible for interpreting the direct and indirect block pointers in an inode to find the location

for the associated physical block pointer. If a disk block does not already exist, the ffs_alloc()

routine is called to request a new block of the appropriate size. After calling chkdq() to ensure

that the user has not exceeded his quota, the block is allocated, and the address of the new block

is stored in the inode or indirect block. The address of the new or already-existing block is

returned, and ffs_write() allocates a buffer to hold the contents of the block. The user’s data are

copied into the returned buffer, and the buffer is marked as dirty. If the buffer has been filled

completely, it is passed to the cluster() routine. When a maximum-size cluster has been

accumulated, a noncontiguous block is allocated, or a seek is done to another part of the file, and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev2sec49

595

the accumulated blocks are grouped together into a single I/O operation that is queued to be

written to the disk. If the buffer has not been filled completely, it is not considered immediately

for writing. Instead, the buffer is held in the expectation that the process will soon want to add

more data to it. It is not released until it is needed for some other block—that is, until it has

reached the head of the free list or until a user process does an fsync system call. When a file

acquires its first dirty block, it is placed on a 30-second timer queue. If it still has dirty blocks

when the timer expires, all its dirty buffers are written. If it subsequently is written again, it will

be returned to the 30-second timer queue.

Repeated small write requests may expand the file one fragment at a time. The problem with

expanding a file one fragment at a time is that data may be copied many times as a fragmented

block expands to a full block. Fragment reallocation can be minimized if the user process writes

a full block at a time, except for a partial block at the end of the file. Since filesystems with

different block sizes may reside on the same system, the filesystem interface provides

application programs with the optimal size for a read or write. This facility is used by the

standard I/O library that many application programs use and by certain system utilities, such as

archivers and loaders, that do their own I/O management. To avoid excessive copying for slowly

growing files, the filesystem allows only direct blocks of files to refer to fragments.

If the layout policies (described at the end of this section) are to be effective, a filesystem cannot

be kept completely full. A parameter, termed the free-space reserve, gives the minimum

percentage of filesystem blocks that should be kept free. If the number of free blocks drops

below this level, only the superuser is allowed to allocate blocks. This parameter can be changed

any time that the filesystem is unmounted. When the number of free blocks approaches zero,

the filesystem throughput tends to be cut in half because the filesystem is unable to localize

blocks in a file. If a filesystem’s throughput drops because of overfilling, it can be restored by

removal of files until the amount of free space once again reaches the minimum acceptable level.

Users can restore locality to get faster access rates for files created during periods of little free

space by copying the file to a new one and removing the original one when enough space is

available.

Layout Policies

Each filesystem is parameterized so that it can be adapted to the characteristics of the

application environment in which it is being used. These parameters are summarized in Table

9.4. In most situations, the default parameters work well, but in an environment with only a few

large files or an environment with just a few huge directories, the performance can be enhanced

by adjusting the layout parameters accordingly.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_131
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09tab04

596

Table 9.4 Important parameters maintained by the filesystem.

The filesystem layout policies are divided into two distinct parts. At the top level are global

policies that use summary information to make decisions regarding the placement of new inodes

and data blocks. These routines are responsible for deciding the placement of new directories

and files. They also build contiguous block layouts and decide when to force a long seek to a new

cylinder group because there is insufficient space left in the current cylinder group to do

reasonable layouts.

Below the global-policy routines are the local-allocation routines. These routines use a locally

optimal scheme to lay out data blocks. The local-allocation routines are responsible for

managing the allocation bitmaps and ensuring that resources are not double allocated. Thus, the

policy layer does not have to worry about requesting an already allocated block. If the

implementation layer finds that a requested block is already allocated, it simply scans through

the map to find the closest available free block. The result of this separation is that once the

implementation layer is working properly, filesystem designers are free to try out whatever

hair-brained policy ideas that they want without fear of corrupting the filesystem. The

implementation layer for FFS was written and debugged in 1982 and has not been changed since.

Further refinements to the filesystem have been done at the policy layer. Separating policy from

implementation is an important design principle when designing software systems, especially

when they are mission-critical systems. The policy layer allows new ideas to be implemented

and tested quickly. Once validated, those ideas can be deployed without danger of

compromising the integrity of the system.

Two methods for improving filesystem performance are to increase the locality of reference to

minimize seek latency [Trivedi, 1980] and to improve the layout of data to make larger transfers

possible [Nevalainen & Vesterinen, 1977]. The global layout policies try to improve performance

by clustering related information. They cannot attempt to localize all data references but must

instead try to spread unrelated data among different cylinder groups. If too much localization is

attempted, the local cylinder group may run out of space, forcing further related data to be

scattered to nonlocal cylinder groups. Taken to an extreme, total localization can result in a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref20

597

single huge cluster of data resembling the 3BSD filesystem. The global policies try to balance the

two conflicting goals of localizing data that are concurrently accessed while spreading out

unrelated data.

One allocatable resource is inodes. Inodes of files in the same directory frequently are accessed

together. For example, the list-directory command, ls, may access the inode for each file in a

directory. The inode layout policy tries to place all the inodes of files in a directory in the same

cylinder group. To ensure that files are distributed throughout the filesystem, the system uses a

different policy to allocate directory inodes. When a directory is being created in the root of the

filesystem, it is placed in a cylinder group with a greater-than-average number of free blocks and

inodes, and with the smallest number of directories. The intent of this policy is to allow inode

clustering to succeed most of the time. When a directory is created lower in the tree, it is placed

in a cylinder group with a greater-than-average number of free blocks and inodes near its parent

directory. The intent of this policy is to reduce the distance tree-walking applications must seek

as they move from directory to directory in a depth-first search while still allowing inode

clustering to succeed most of the time.

The filesystem allocates inodes within a cylinder group using a first-free strategy. Although this

method allocates the inodes randomly within a cylinder group, it keeps the allocation down to

the smallest number of inode blocks possible. Even when all the possible inodes in a cylinder

group are allocated, they can be accessed with 10 to 20 disk transfers. This allocation strategy

puts a small and constant upper bound on the number of disk transfers required to access the

inodes for all the files in a directory. In contrast, the 3BSD filesystem typically requires one disk

transfer to fetch the inode for each file in a directory.

The other major resource is the data blocks. Data blocks for a file typically are accessed together.

The policy routines try to place data blocks for a file in the same cylinder group, preferably laid

out contiguously. The problem with allocating all the data blocks in the same cylinder group is

that large files quickly use up the available space, forcing a spillover to other areas. Further,

using all the space also causes future allocations for any file in the cylinder group to spill to

other areas. Ideally, none of the cylinder groups should ever become completely full. The

heuristic chosen is to redirect block allocation to a different cylinder group after every few

Mbyte of allocation. The spillover points are intended to force block allocation to be redirected

when any file has used about 25 percent of the data blocks in a cylinder group. In day-to-day use,

the heuristics appear to work well in minimizing the number of completely filled cylinder groups.

Although this heuristic appears to benefit small files at the expense of larger files, it really aids

both file sizes. The small files are helped because there are nearly always blocks available in the

cylinder group for them to use. The large files benefit because they are able to use the

contiguous space available in the cylinder group and then to move on, leaving behind the blocks

598

scattered around the cylinder group. Although these scattered blocks are fine for small files that

need only a block or two, they slow down big files that are best stored on a single, large group of

blocks that can be read in a few disk revolutions.

The newly chosen cylinder group for block allocation is the next cylinder group that has a

greater-than-average number of free blocks left. Although big files tend to be spread out over the

disk, several Mbyte of data typically are accessible before a seek to a new cylinder group is

necessary. Thus, the time to do one long seek is small compared to the time spent in the new

cylinder group doing the I/O.

In an effort to speed random access to files and to speed the checking of metadata by fsck, the

filesystem holds the first 4 percent of the data blocks in each cylinder group for the use of

metadata. The policy routines preferentially place metadata in the metadata area and everything

else in the blocks that follow the metadata area. The size of the metadata area does not need to

be precisely calculated as it is used just as a hint of where to place the metadata by the policy

routines. If the metadata area fills up, then the metadata can be placed in the regular-blocks

area, and if the regular-blocks area fills up, then the regular blocks can be placed in the

metadata area. This decision happens on a cylinder group by cylinder group basis, so some

cylinder groups can overflow their metadata area while others do not overflow it. The policy is to

place all metadata in the same cylinder group as their inode. Spreading the metadata across

cylinder groups generally results in reduced filesystem performance.

The one exception to the metadata placement policy is for the first indirect block of the file. The

policy is to place the first (single) indirect block inline with the file data (e.g., it tries to lay out

the first 12 direct blocks contiguously, followed immediately by the indirect block, followed

immediately by the data blocks referenced from the indirect block). Putting the first indirect

block inline with the data rather than in the metadata area is to avoid two extra seeks when

reading it. These two extra seeks would noticeably slow down access to a file that uses only the

first few blocks referenced from its indirect block.

Only the second and third level indirects, along with the indirects that they reference, are

allocated in the metadata area. The nearly contiguous allocation of this metadata close to the

inode that references them noticeably improves the random access time to the file as well as

speeding up the running time of fsck. Also, the disk track cache is often filled with much of a

file’s metadata when the second-level indirect block is read, thus often speeding up even the

sequential reading time for the file.

In addition to putting indirect blocks in the metadata area, it is also helpful to put the blocks

holding the contents of directories there, too. Putting the contents of directories in the metadata

area gives a speedup to directory tree traversal since the data is a short seek away from where

599

the directory inode was read and may already be in the disk’s track cache from other directory

reads done in its cylinder group.

Allocation Mechanisms

The global-policy routines call local-allocation routines with requests for specific blocks. The

local-allocation routines will always allocate the requested block if it is free; otherwise, they will

allocate a free block of the requested size that is closest to the requested block. If the global

layout policies had complete information, they could always request unused blocks and the

allocation routines would be reduced to simple bookkeeping. However, maintaining complete

information is costly; thus, the global layout policy uses heuristics based on the partial

information that is available.

If a requested block is not available, the local allocator uses a three-level allocation strategy:

1. Use the next available block closest to the requested block in the same cylinder group.

2. If the cylinder group is full, quadratically hash the cylinder-group number to choose another

cylinder group in which to look for a free block. Quadratic hash is used because of its speed in

finding unused slots in nearly full hash tables [Knuth, 1975]. Filesystems that are parameterized

to maintain at least 8 percent free space rarely need to use this strategy. Filesystems used

without free space typically have so few free blocks available that almost any allocation is

random; the most important characteristic of the strategy used under such conditions is that it

be fast.

3. Apply an exhaustive search to all cylinder groups. This search is necessary because the

quadratic rehash may not check all cylinder groups.

The task of managing block and fragment allocation is done by ffs_balloc(). If the file is being

written and a block pointer is zero or points to a fragment that is too small to hold the additional

data, ffs_balloc() calls the allocation routines to obtain a new block. If the file needs to be

extended, one of two conditions exists:

1. The file contains no fragmented blocks (and the final block in the file contains insufficient

space to hold the new data). If space exists in a block already allocated, the space is filled with

new data. If the remainder of the new data consists of more than a full block, a full block is

allocated and the first full block of new data are written there. This process is repeated until less

than a full block of new data remains. If the remaining new data to be written will fit in less than

a full block, a block with the necessary number of fragments is located; otherwise, a full block is

located. The remaining new data are written into the located space. However, to avoid excessive

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref12

600

copying for slowly growing files, the filesystem allows only direct blocks of files to refer to

fragments.

2. The file contains one or more fragments (and the fragments contain insufficient space to hold

the new data). If the size of the new data plus the size of the data already in the fragments

exceeds the size of a full block, a new block is allocated. The contents of the fragments are copied

to the beginning of the block and the remainder of the block is filled with new data. The process

then continues as in step 1. Otherwise, a set of fragments big enough to hold the data is located;

if enough of the rest of the current block is free, the filesystem can avoid a copy by using that

block. The contents of the existing fragments, appended with the new data, are written into the

allocated space.

The ffs_balloc() routine is also responsible for allocating blocks to hold indirect pointers. It

must also deal with the special case in which a process seeks past the end of a file and begins

writing. Because of the constraint that only the final block of a file may be a fragment,

ffs_balloc() must first ensure that any previous fragment has been upgraded to a full-size block.

On completing a successful allocation, the allocation routines return the block or fragment

number to be used; ffs_balloc() then updates the appropriate block pointer in the inode. Having

allocated a block, the system is ready to allocate a buffer to hold the block’s contents so that the

block can be written to disk.

The procedural description of the allocation process is shown in Figure 9.33. Ffs_balloc() is the

routine responsible for determining when a new block must be allocated. It first calls the

layout-policy routine ffs_blkpref() to select the most desirable block based on the preference

from the global-policy routines that were described earlier in this section. If a fragment has

already been allocated and needs to be extended, ffs_balloc() calls ffs_realloccg(). If nothing

has been allocated yet, ffs_balloc() calls ffs_alloc().

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig33

601

Figure 9.33 Procedural interface to block allocation.

Ffs_realloccg() first tries to extend the current fragment in place. Consider the sample block of

an allocation map with two fragments allocated from it, shown in Figure 9.34. The first fragment

can be extended from a size 2 fragment to a size 3 or a size 4 fragment, since the two adjacent

fragments are unused. The second fragment cannot be extended, as it occupies the end of the

block, and fragments are not allowed to span blocks. If ffs_realloccg() is able to expand the

current fragment in place, the map is updated appropriately and it returns. If the fragment

cannot be extended, ffs_realloccg() calls the ffs_alloc() routine to get a new fragment. The old

fragment is copied to the beginning of the new fragment, and the old fragment is freed.

Figure 9.34 Sample block with two allocated fragments.

The bookkeeping tasks of allocation are handled by ffs_alloc(). It first verifies that a block is

available in the desired cylinder group by checking the filesystem summary information. If the

summary information shows that the cylinder group is full, ffs_alloc() quadratically rehashes

through the summary information looking for a cylinder group with free space. Having found a

cylinder group with space, ffs_alloc() calls either the fragment-allocation routine or the

block-allocation routine to acquire a fragment or block.

The block-allocation routine is given a preferred block. If that block is available, it is returned. If

the block is unavailable, the allocation routine tries to find another block in the same cylinder

group that is close to the requested block. It looks for an available block by scanning forward

through the free-block map, starting from the requested location until it finds an available block.

The fragment-allocation routine is given a preferred fragment. If that fragment is available, it is

returned. If the requested fragment is not available, and the filesystem is configured to optimize

for space utilization, the filesystem uses a best-fit strategy for fragment allocation. The

fragment-allocation routine checks the cylinder-group summary information, starting with the

entry for the desired size, and scanning larger sizes until an available fragment is found. If there

are no fragments of the appropriate size or larger, then a full-size block is allocated and is

broken up.

If a fragment of an appropriate size is listed in the fragment summary, then the allocation

routine expects to find it in the allocation map. To speed up the process of scanning the

potentially large allocation map, the filesystem uses a table-driven algorithm. Each byte in the

map is treated as an index into a fragment-descriptor table. Each entry in the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_129

602

fragment-descriptor table describes the fragments that are free for that corresponding map

entry. Thus, by doing a logical AND with the bit corresponding to the desired fragment size, the

allocator can determine quickly whether the desired fragment is contained within a given

allocation-map entry. As an example, consider the entry from an allocation map for the

32,768/4096 filesystem shown in Figure 9.35. The map entry shown has already been

fragmented, with a single fragment allocated at the beginning and a size 2 fragment allocated in

the middle. Remaining unused is another size 2 fragment and a size 3 fragment. Thus, if we look

up entry 115 in the fragment table, we find the entry shown in Figure 9.36. If we were looking for

a size 3 fragment, we would inspect the third bit and find that we had been successful; if we were

looking for a size 4 fragment, we would inspect the fourth bit and find that we needed to

continue. The C code that implements this algorithm is as follows:

Click here to view code image

for (i = 0; i < MAPSIZE; i++)

 if (fragtbl[allocmap[i]] & (1 << (size - 1)))

 break;

Figure 9.35 Map entry for a 32,768/4096 filesystem.

Figure 9.36 Fragment-table entry for entry 115.

Using a best-fit policy has the benefit of minimizing disk fragmentation; however, it has the

undesirable property of maximizing the number of fragment-to-fragment copies that must be

made when a process writes a file in many small pieces. To avoid this behavior, the system can

configure filesystems to optimize for time rather than for space. The first time that a process

does a small write on a filesystem configured for time optimization, it is allocated a best-fit

fragment. On the second small write, however, a full-size block is allocated, with the unused

portion being freed. Later small writes are able to extend the fragment in place, rather than

requiring additional copy operations. Under certain circumstances, this policy can cause the

disk to become heavily fragmented. The system tracks this condition and automatically reverts

to optimizing for space if the percentage of fragmentation reaches one-half of the minimum

free-space limit.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09_images.html#p513pro01

603

Block Clustering

Most machines running FreeBSD do not have separate I/O processors. The main CPU must take

an interrupt after each disk I/O operation; if there is more disk I/O to be done, it must select the

next buffer to be transferred and must start the operation on that buffer. Before the advent of

track-caching controllers, the filesystem obtained its highest throughput by leaving a gap after

each block to allow time for the next I/O operation to be scheduled. If the blocks were laid out

without a gap, the throughput would suffer because the disk would have to rotate nearly an

entire revolution to pick up the start of the next block.

Track-caching controllers have a large buffer in the controller that continues to accumulate the

data coming in from the disk even after the requested data have been received. If the next

request is for the immediately following block, the controller will already have most of the block

in its buffer, so it will not have to wait a revolution to pick up the block. Thus, for the purposes

of reading, it is possible to nearly double the throughput of the filesystem by laying out the files

contiguously rather than leaving gaps after each block.

Unfortunately, the track cache is less useful for writing. Because the kernel does not provide the

next data block until the previous one completes, there is still a delay during which the

controller does not have the data to write, and it ends up waiting a revolution to get back to the

beginning of the next block. One solution to this problem is to have the controller give its

completion interrupt after it has copied the data into its cache, but before it has finished writing

them. This early interrupt gives the CPU time to request the next I/O before the previous one

completes, thus providing a continuous stream of data to write to the disk.

This approach has one seriously negative side effect. When the I/O completion interrupt is

delivered, the kernel expects the data to be on stable store. Filesystem integrity and user

applications using the fsync system call depend on these semantics. These semantics will be

violated if the power fails after the I/O completion interrupt but before the data are written to

disk. Some vendors eliminate this problem by using nonvolatile memory for the controller cache

and providing microcode restart after power fail to determine which operations need to be

completed. Because this option is expensive, few controllers provide this functionality.

Newer disks resolve this problem with a technique called tag queueing. With tag queueing,

each request passed to the disk driver is assigned a unique numeric tag. Most disk controllers

supporting tag queueing will accept at least 16 pending I/O requests. After each request is

finished, the tag of the completed request is returned as part of the completion interrupt. If

several contiguous blocks are presented to the disk controller, it can begin work on the next one

while the tag for the previous one is being returned. Thus, tag queueing allows applications to be

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_434

604

accurately notified when their data has reached stable store without incurring the penalty of lost

disk revolutions when writing contiguous blocks.

One approach to dealing with disks that report completion before the data are on stable store is

the Coerced Cache Eviction Project in which the disk cache is forcibly flushed at each ordering

point to maintain consistency in its journaling filesystem [Rajimwale et al., 2011]. Another

approach is the No-Order File System in which the filesystem is redesigned to provide crash

consistency without ordering writes by employing a technique called backpointer-based

consistency [Chidambaram et al., 2012].

To maximize throughput on systems without tag queueing or nonvolatile controller memory, the

FreeBSD system implements I/O clustering. Clustering helps improve performance on all

systems by reducing the number of I/O requests through the aggregation of many small requests

into a smaller number of big ones. Clustering was first done by Santa Cruz Operations [Peacock,

1988] and Sun Microsystems [McVoy & Kleiman, 1991]; the idea was later adapted to 4.4BSD

and thus to FreeBSD [Seltzer et al., 1993]. As a file is being written, the allocation routines try to

allocate up to maxcontig (typically 256 Kbyte) of data in contiguous disk blocks. Instead of the

buffers holding these blocks being written as they are filled, their output is delayed. The cluster

is completed when the limit of maxcontig of data is reached, the file is closed, or the cluster

cannot grow because the next sequential block on the disk is already in use by another file. If the

cluster size is limited by a previous allocation to another file, the filesystem is notified and is

given the opportunity to find a larger set of contiguous blocks into which the cluster may be

placed. If the reallocation is successful, the cluster continues to grow. When the cluster is

complete, the buffers making up the cluster of blocks are aggregated and passed to the disk

controller as a single I/O request. The data can then be streamed out to the disk in a single

uninterrupted transfer.

A similar scheme is used for reading. If the ffs_read() discovers that a file is being read

sequentially, it inspects the number of contiguous blocks returned by ufs_bmap() to look for

clusters of contiguously allocated blocks. It then allocates a set of buffers big enough to hold the

contiguous set of blocks and passes them to the disk controller as a single I/O request. The I/O

can then be done in one operation. Although read clustering is not needed when track-caching

controllers are available, it reduces the interrupt load from systems that have them, and it

speeds low-cost systems that do not have them.

For clustering to be effective, the filesystem must be able to allocate large clusters of contiguous

blocks to files. If the filesystem always tried to begin allocation for a file at the beginning of a

large set of contiguous blocks, it would soon use up its contiguous space. Instead, it uses an

algorithm similar to that used for the management of fragments. Initially, file blocks are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref29

605

allocated via the standard algorithm described in the previous two subsections. Reallocation is

invoked when the standard algorithm does not result in a contiguous allocation. The

reallocation code searches a cluster map that summarizes the available clusters of blocks in the

cylinder group. It allocates the first free cluster that is large enough to hold the file and then

moves the file to this contiguous space. This process continues until the current allocation has

grown to a size equal to the maximum permissible I/O operation (maxcontig). At that point, the

I/O is done and the process of allocating space begins again.

Unlike fragment reallocation, block reallocation to different clusters of blocks does not require

extra I/O or memory-to-memory copying. The data to be written are held in delayed write

buffers. Within that buffer is the disk location to which the data are to be written. When the

block cluster is relocated, it takes little time to walk the list of buffers in the cluster and to

change the disk addresses to which they are to be written. When the I/O occurs, the final

destination has been selected and will not change.

To speed the operation of finding clusters of blocks, the filesystem maintains a cluster map with

1 bit per block (in addition to the map with 1 bit per fragment). It also has summary information

showing how many sets of blocks there are for each possible cluster size. The summary

information allows it to avoid looking for cluster sizes that do not exist. The cluster map is used

because it is faster to scan than is the much larger fragment bitmap. The size of the map is

important because the map must be scanned bit by bit. Unlike fragments, clusters of blocks are

not constrained to be aligned within the map. Thus, the table-lookup optimization done for

fragments cannot be used for lookup of clusters.

The filesystem relies on the allocation of contiguous blocks to achieve high levels of performance.

The fragmentation of free space may increase with time or with filesystem utilization. This

fragmentation can degrade performance as the filesystem ages. The effects of utilization and

aging were measured on over 50 filesystems at Harvard University. The measured filesystems

ranged in age, since initial creation, from one to three years. The fragmentation of free space on

most of the measured filesystems caused performance to degrade no more than 10 percent from

that of a newly created empty filesystem. The most severe degradation measured was 30 percent

on a highly active filesystem that had many small files and was used to spool USENET news

[Seltzer et al., 1995].

Extent-Based Allocation

With the addition of dynamic block reallocation in the early 1990s [Seltzer & Smith, 1996], the

UFS1 filesystem has had the ability to allocate most files contiguously on the disk. The metadata

describing a large file consist of indirect blocks with long runs of sequential block numbers, as

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09ref31

606

shown in Figure 9.37(a). For quick access while a file is active, the kernel tries to keep all a file’s

metadata in memory. With UFS2, the space required to hold the metadata for a file is doubled as

every block pointer grows from 32 bits to 64 bits. To provide a more compact representation,

many filesystems use an extent-based representation. A typical extent-based representation uses

pairs of block numbers and lengths. Figure 9.37(b) represents the same set of block numbers as

Figure 9.37(a) in an extent-based format. If the file can be laid out nearly contiguously, this

representation provides a compact description. However, randomly or slowly written files can

end up with many noncontiguous block allocations, which will produce a representation that

requires more space than the one used by UFS1. This representation also has the drawback that

it can require much computation to perform random-access to the file, since the block number

needs to be computed by adding up the sizes starting from the beginning of the file until the

desired seek offset is reached.

Figure 9.37 Alternative file metadata representations.

To gain most of the efficiencies of extents without the random access inefficiencies, UFS2 has

added a field to the inode that will allow that inode to use a larger block size. Small, slowly

growing, or sparse files set this value to the regular filesystem block size and represent their data

in the traditional way shown in Figure 9.37(a). However, when the filesystem detects a large,

dense file, it can set this inode-block-size field to a value 2 to 16 times the filesystem block size.

Figure 9.37(c) represents the same set of block numbers as Figure 9.37(a), with the

inode-block-size field set to 4 times the filesystem block size. Each block pointer references a

piece of disk storage that is four times larger, which reduces the metadata storage requirement

by 75 percent. Since every block pointer other than possibly the last one references an equal-size

block, computation of random access offsets is just as fast as in the traditional metadata

representation. Unlike the traditional extent-based representation that can double the metadata

space requirement for certain datasets, this representation will always result in less space

dedicated to metadata.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig37

607

The drawback to this approach is that once a file has committed to using a larger block size, it

can only use blocks of that size. If the filesystem runs out of big blocks, then the file can no

longer grow, and either the application will get an “out-of-space” error or the filesystem has to

recreate the metadata with the standard filesystem block size. The current plan is to write the

code to recreate the metadata. While recreating the metadata usually will cause a long pause, we

expect that condition to be rare and not a noticeable problem in real use.

Exercises

9.1 What are the seven classes of operations handled by the hierarchical file-system?

9.2 What is the purpose of the inode data structure?

9.3 How does the system select an inode for replacement when a new inode must be brought in

from disk?

9.4 Why are directory entries not allowed to span chunks?

9.5 Describe the steps involved in looking up a pathname component.

9.6 Why are hard links not permitted to span filesystems?

9.7 Describe how the interpretation of a symbolic link containing an absolute pathname is

different from that of a symbolic link containing a relative pathname.

9.8 Explain why unprivileged users are not permitted to make hard links to directories but are

permitted to make symbolic links to directories.

9.9 How can hard links be used to gain access to files that could not be accessed if a symbolic

link were used instead?

9.10 How does the system recognize loops caused by symbolic links? Suggest an alternative

scheme for doing loop detection.

9.11 How do quotas differ from the file-size resource limits described in Section 5.12?

9.12 How does the kernel determine whether a file has an associated quota?

9.13 Draw a picture showing the effect of processing an exclusive-lock request by process 1 on

bytes 7 to 10 to the lock list shown in Figure 9.15. Which of the overlap cases of Figure 9.14 apply

to this example?

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09fig14

608

9.14 In the absence of soft updates, which three FFS operations must be done synchronously to

ensure that the filesystem can always be recovered deterministically after a crash (barring

unrecoverable hardware errors)?

9.15 What are the guarantees made by the fsync system call?

9.16 Name the five ordering constraints that must be maintained when a file is removed.

Describe how soft updates maintains this ordering.

9.17 Give three uses for a filesystem snapshot.

9.18 Describe the eight steps needed to take a filesystem snapshot.

9.19 What are the three states that a block may have in a snapshot? Describe the actions taken

by a snapshot for each of these states when a write occurs. Describe the actions taken by a

snapshot for each of these states when a block is released.

9.20 What are the four classes of operations handled by the datastore filesystem?

9.21 Under what circumstances can a write request avoid reading a block from the disk?

9.22 What is the difference between a logical block and a physical block? Why is this distinction

important?

9.23 Give two reasons why increasing the basic block size in the old filesystem from 512 bytes to

1024 bytes more than doubled the system’s throughput.

9.24 How many blocks and fragments are allocated to a 31,200-byte file on a FFS with

4096-byte blocks and 1024-byte fragments? How many blocks and fragments are allocated to

this file on a FFS with 4096-byte blocks and 512-byte fragments? Also, answer these two

questions assuming that an inode has only 6 direct block pointers instead of 12.

9.25 Explain why the FFS maintains a 5 to 10 percent reserve of free space. What problems

would arise if the free-space reserve were set to zero?

9.26 What is a quadratic hash? Describe for what it is used in the FFS, and why it is used for

that purpose.

9.27 Why are the allocation policies for inodes different from those for data blocks?

9.28 Under what circumstances does block clustering provide benefits that cannot be obtained

with a disk-track cache?

609

*9.29 Give an example where the file-locking implementation is unable to detect a potential

deadlock.

*9.30 What problems would arise if files had to be allocated in a single contiguous piece of the

disk? Consider the problems created by multiple processes, random access, and files with holes.

**9.31 Design a system that allows the security level of the system to be lowered while the

system is still running in multiuser mode.

**9.32 Inodes could be allocated dynamically as part of a directory entry. Instead, the inode

allocation region is reserved when the filesystem is created. Why is the latter approach used?

References

Apple, 2003.

Apple, Mac OS X Essentials, Chapter 9 Filesystem, Section 12 Resource Forks, available from

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/FileSystem/chapter

_9_section_12.html, 2003.

Best, 2000.

S. Best, JFS overview, available from

http://www-128.ibm.com/developerworks/library/l-jfs.html, January 2000.

Chamberlin & Astrahan, 1981.

D. Chamberlin & M. Astrahan, “A History and Evaluation of System R,” Communications of the

ACM, vol. 24, no. 10, pp. 632–646, October 1981.

Chidambaram et al., 2012.

V. Chidambaram, T. Sharma, A. Arpaci-Dusseau, & R. Arpaci-Dusseau, “Consistency Without

Ordering,” Proceedings of the Tenth USENIX Conference on File and Storage Technologies,

available from http://pages.cs.wisc.edu/~vijayc/nofs.htm, February 2012.

Chutani et al., 1992.

S. Chutani, O. Anderson, M. Kazar, W. Mason, & R. Sidebotham, “The Episode File System,”

USENIX Association Conference Proceedings, pp. 43–59, January 1992.

Dowse & Malone, 2002.

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/FileSystem/chapter_9_section_12.html
http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview/FileSystem/chapter_9_section_12.html
http://www-128.ibm.com/developerworks/library/l-jfs.html
http://pages.cs.wisc.edu/~vijayc/nofs.htm

610

I. Dowse & D. Malone, “Recent Filesystem Optimizations on FreeBSD,” Proceedings of the

Freenix Track at the 2002 USENIX Annual Technical Conference, pp. 245–258, June 2002.

Elz, 1984.

K. R. Elz, “Resource Controls, Privileges, and Other MUSH,” USENIX Association Conference

Proceedings, pp. 183–191, June 1984.

Ganger et al., 2000.

G. Ganger, M. K. McKusick, C. Soules, & Y. Patt, “Soft Updates: A Solution to the Metadata

Update Problem in File Systems,” ACM Transactions on Computer Systems, vol. 18, no. 2, pp.

127–153, May 2000.

Ganger & Patt, 1994.

G. Ganger & Y. Patt, “Metadata Update Performance in File Systems,” USENIX Symposium on

Operating Systems Design and Implementation, pp. 49–60, November 1994.

Griffin et al., 2002.

J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy, & G. R. Ganger, “Timing-Accurate Storage

Emulation,” Proceedings of the USENIX Conference on File and Storage Technologies, pp.

75–88, January 2002.

Hagmann, 1987.

R. Hagmann, “Reimplementing the Cedar File System Using Logging and Group Commit,” ACM

Symposium on Operating Systems Principles, pp. 155–162, November 1987.

Knuth, 1975.

D. Knuth, The Art of Computer Programming, Volume 3—Sorting and Searching, pp. 506–549,

Addison-Wesley, Reading, MA, 1975.

Lumb et al., 2002.

C. R. Lumb, J. Schindler, & G. R. Ganger, “Freeblock Scheduling Outside of Disk Firmware,”

Proceedings of the USENIX Conference on File and Storage Technologies, pp. 275–288,

January 2002.

McKusick, 2002.

611

M. K. McKusick, “Running fsck in the Background,” Proceedings of the BSDCon 2002

Conference, pp. 55–64, February 2002.

McKusick, 2003.

M. K. McKusick, “Enhancements to the Fast Filesystem to Support Multi-terabyte Storage

Systems,” Proceedings of the BSDCon 2003 Conference, pp. 79–90, September 2003.

McKusick et al., 1984.

M. K. McKusick, W. N. Joy, S. J. Leffler, & R. S. Fabry, “A Fast File System for UNIX,” ACM

Transactions on Computer Systems, vol. 2, no. 3, pp. 181–197, Association for Computing

Machinery, August 1984.

McKusick & Kowalski, 1994.

M. K. McKusick & T. J. Kowalski, “fsck: The UNIX File System Check Program,” in 4.4BSD

System Manager’s Manual, pp. 3:1–21, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

McVoy & Kleiman, 1991.

L. McVoy & S. Kleiman, “Extent-Like Performance from a UNIX File System,” USENIX

Association Conference Proceedings, pp. 33–44, January 1991.

Moran et al., 1990.

J. Moran, R. Sandberg, D. Coleman, J. Kepecs, & B. Lyon, “Breaking Through the NFS

Performance Barrier,” Proceedings of the Spring 1990 European UNIX Users Group

Conference, pp. 199–206, April 1990.

Nevalainen & Vesterinen, 1977.

O. Nevalainen & M. Vesterinen, “Determining Blocking Factors for Sequential Files by Heuristic

Methods,” The Computer Journal, vol. 20, no. 3, pp. 245–247, August 1977.

Ousterhout, 1990.

J. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast as Hardware?,” Summer

USENIX Conference, pp. 247–256, June 1990.

Peacock, 1988.

612

J. Peacock, “The Counterpoint Fast File System,” USENIX Association Conference Proceedings,

pp. 243–249, January 1988.

Phillips, 2001.

D. Phillips, “A Directory Index for Ext2,” Proceedings of the USENIX Fifth Annual Linux

Showcase and Conference, November 2001.

Rajimwale et al., 2011.

A. Rajimwale, V. Chidambaram, D. Ramamurthi, A. Arpaci-Dusseau, & R. Arpaci-Dusseau,

“Coerced Cache Eviction and Discreet-Mode Journaling: Dealing with Misbehaving Disks,”

Proceedings of 41st Annual International Conference on Dependable Systems and Networks,

available from http://pages.cs.wisc.edu/~vijayc/cce.htm, June 2011.

Reiser, 2001.

H. Reiser, The Reiser File System, available from http://www.namesys.com/res_whol.shtml,

January 2001.

Rhodes, 2014.

T. Rhodes, FreeBSD Handbook, Chapter 3, Section 3.3 File System Access Control Lists,

available from http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/fs-acl.html,

March 2014.

Rosenblum & Ousterhout, 1992.

M. Rosenblum & J. Ousterhout, “The Design and Implementation of a Log-Structured File

System,” ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 26–52, Association for

Computing Machinery, February 1992.

Schindler et al., 2002.

J. Schindler, J. L. Griffin, C. R. Lumb, & G. R. Ganger, “Track-Aligned Extents: Matching Access

Patterns to Disk Drive Characteristics,” Proceedings of the USENIX Conference on File and

Storage Technologies, pp. 259–274, January 2002.

Seltzer et al., 1993.

M. Seltzer, K. Bostic, M. K. McKusick, & C. Staelin, “An Implementation of a Log-Structured File

System for UNIX,” USENIX Association Conference Proceedings, pp. 307–326, January 1993.

http://pages.cs.wisc.edu/~vijayc/cce.htm
http://www.namesys.com/res_whol.shtml
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/fs-acl.html

613

Seltzer et al., 2000.

M. Seltzer, G. Ganger, M. K. McKusick, K. Smith, C. Soules, & C. Stein, “Journaling versus Soft

Updates: Asynchronous Meta-data Protection in File Systems,” Proceedings of the San Diego

USENIX Conference, pp. 71–84, June 2000.

Seltzer & Smith, 1996.

M. Seltzer & K. Smith, “A Comparison of FFS Disk Allocation Algorithms,” Winter USENIX

Conference, pp. 15–25, January 1996.

Seltzer et al., 1995.

M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains, & V. Padmanabhan, “File System

Logging Versus Clustering: A Performance Comparison,” USENIX Association Conference

Proceedings, pp. 249–264, January 1995.

Stonebraker, 1987.

M. Stonebraker, “The Design of the POSTGRES Storage System,” Very Large DataBase

Conference, pp. 289–300, September 1987.

Sweeney et al., 1996.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, & G. Peck, “Scalability in the XFS

File System,” USENIX Association Conference Proceedings, pp. 1–14, January 1996.

Trivedi, 1980.

K. Trivedi, “Optimal Selection of CPU Speed, Device Capabilities, and File Assignments,”

Journal of the ACM, vol. 27, no. 3, pp. 457–473, July 1980.

Watson, 2000.

R. Watson, “Introducing Supporting Infrastructure for Trusted Operating System Support in

FreeBSD,” Proceedings of the BSDCon 2000 Conference, September 2000.

Watson, 2001.

R. Watson, “TrustedBSD: Adding Trusted Operating-System Features to FreeBSD,” Proceedings

of the Freenix Track at the 2001 USENIX Annual Technical Conference, pp. 15–28, June 2001.

Watson et al., 2003.

614

R. Watson, W. Morrison, C. Vance, & B. Feldman, “The TrustedBSD MAC Framework:

Extensible Kernel Access Control for FreeBSD 5.0,” Proceedings of the Freenix Track at the

2003 USENIX Annual Technical Conference, pp. 285–296, June 2003.

Wu & Zwaenepoel, 1994.

M. Wu & W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory Storage System,” International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp. 86–97, October 1994.

615

Chapter 10. The Zettabyte Filesystem

10.1 Introduction

The Zettabyte filesystem is generally referred to as simply ZFS [Bonwick et al., 2003]. It is in a

class of filesystems that never overwrite existing data. A benefit of never overwriting is that

snapshots (read-only) and clones (writable) are easy and cheap. Many of them can be created

with no performance hit.

ZFS has the property that the on-disk filesystem state is never inconsistent. Filesystem changes

are accumulated in memory. Periodically, all the changes are gathered up and written to disk.

When all the changes are on stable storage, ZFS makes a checkpoint of the new filesystem state.

The checkpoint is made by doing a single write to update the uberblock to reference the new

filesystem state (the uberblock is analogous to the superblock of a UFS filesystem). Thus, a ZFS

filesystem moves from one consistent state to the next without ever passing through an

inconsistent state.

ZFS takes advantage of the abundant processor power available with current multi-core CPUs.

Because they are much faster than storage, ZFS can afford to checksum everything. The

checksums are used to detect:

• Bit rot on disks

• Phantom writes

• Misdirected reads and writes

• DMA parity errors

• Bugs in disk drivers and disk firmware

• Accidental overwrite of disk data

• Verification of reconstructed data (e.g., if you have a 3-way mirror, and one disk dies,

nonchecksumming systems would just choose a “good” disk at random from which to read the

data). ZFS reads the data and then verifies the checksum, so if a “good” disk has a few bad

blocks, it can read from the other good disk instead. Data verification can also be used with

RAIDZ when it has multiple levels of redundancy.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_467

616

ZFS allows the use of inexpensive mechanical disks. Because of the redundancy available with

RAIDZ and the error detection provided by checksums, ZFS can quickly and easily recover from

disk failure.

Unlike the rest of FreeBSD, which is broken into many layers, ZFS is written as one big

monolithic piece. The modules that make up ZFS along with the piece of FreeBSD that they

most closely resemble is shown in Table 10.1. Figure 10.1 compares the layers of UFS and ZFS.

The traditional FreeBSD layering is:

• Filesystem namespace management: UFS layer

• Cache management: virtual memory page-cache layer

• Filesystem storage organization: FFS layer

• Volume management: GEOM layer

Figure 10.1 Comparison of UFS and ZFS layering.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig01

617

Table 10.1 ZFS modules.

ZFS subsumes all these layers:

• Filesystem namespace management: the ZFS POSIX Layer (ZPL) and ZFS Attribute Processor

(ZAP) have a role similar to the UFS layer.

• Filesystem storage management: the Data Management Unit (DMU) and ZFS Intent Log (ZIL)

have a role like the FFS layer. The Dataset and Snapshot Layer (DSL) manages snapshots as

does the FFS layer. However, these two modules of ZFS provide much additional functionality

that has no analog in the other FreeBSD filesystems. As described in the next section, these

modules operate in the Meta-Object Set (MOS) layer that is separate from the filesystem layers

rather than being a part of the filesystem.

• Volume management: The Storage Pool Allocator (SPA) module manages block placement.

The ZFS I/O (ZIO) module orchestrates I/O. The Virtual Device (VDEV) module aggregates

disks into RAIDZ groups. ZFS also provides ZFS volumes (ZVOLs) that appear as traditional

fixed-size disk partitions, much like the role of the GEOM layer.

• Cache management: The Adaptive Replacement Cache (ARC) has a role similar to that of the

virtual memory page cache. The Level 2 Adaptive Replacement Cache (L2ARC) has a role

similar to that of the virtual memory swap area and acts as a slower-access backing store for the

memory-based ARC cache.

The result of this monolithic design is that ZFS has many features that include:

618

• Massive scale supporting petabyte-size storage pools with data structures that allow scalability

to zettabytes.

• POSIX filesystems with features similar to UFS that include support for NFSv4 and Server

Message Block (SMB) remote filesystem functionality such as selectable case insensitivity,

unicode normalization, ACLs, and special flags needed for anti-virus support.

• ZVOLs that can be shared over iSCSI.

• Support for millions of snapshots and clones.

• Selective data compression and deduplication.

• Data integrity from checksums and data redundancy.

• A variable block size.

• Architecture-independent on-disk format.

• Pooled storage shared among filesystems.

• Disk-level redundancy through mirroring and single, double, and triple parity RAID.

• Support for a hybrid storage pool by using fast devices such as solid-state disks (SSDs) to cache

reads and nonvolatile memory (NVRAM) to accelerate synchronous writes.

• Intelligent prefetch with multiple streams per file and autodetected stride patterns.

• Space management that includes several types of quotas and reservations.

• A simple administrative model that has the filesystem as the administrative control point with

delegated administration and integration between mountpoints and NFS shares.

• Fast remote replication and backups.

• Availability on many platforms including FreeBSD, Linux, Mac OS/X, and Illumos.

• Stability derived from its use in production by the world’s biggest companies since 2006.

10.2 ZFS Organization

Figure 10.2 shows the relationship of the ZFS modules. The remainder of this chapter explains

the interactions of these modules.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig02

619

Figure 10.2 ZFS module layering. See Table 10.1 for acronyms.

Traditional filesystems like UFS each manage their own set of disk blocks that are stored at a

range of offsets on a single device. Each filesystem is given a fixed-size set of blocks when it is

first created and the size of that set does not change. When a filesystem runs out of blocks, it

cannot borrow blocks from another filesystem. If a filesystem has an excess of blocks, it cannot

make them available to another filesystem.

ZFS removes the space-management role from the traditional filesystem model. It creates a pool

of space that is then handed out as needed to the set of filesystems using the pool. The DSL and

SPA modules implementing the Meta-Object Set (MOS) layer shown in Table 10.1 and Figure

10.3 manage the pool of space and make it available to the filesystem modules of the object-set

layer. Thus, space in the pool can move between filesystems as needed. The arrows in Figure

10.3 represent a single block pointer, while the triangles represent indirect blocks mapping a

potentially large set of blocks.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig03

620

Figure 10.3 ZFS organization.

At the top is the uberblock that points to a data structure that describes an array of meta-objects.

These meta-objects include filesystems, snapshots, clones, ZVOLs, and the space map describing

the allocated and free blocks in the pool. Creating a new snapshot or filesystem requires

allocating a new metadata object, a task that is about as difficult as creating a new file in a

filesystem. When a filesystem needs to allocate space, its request is handled by the SPA module

that finds an available block of the requested size in the space map. When the filesystem (and all

its clones and snapshots) no longer need the block, it is returned to the pool. In general, the

blocks of the pool are shared among all the filesystems that the pool contains. For

administrative reasons, it is possible both to limit the maximum amount of space that a

filesystem can use and to ensure that some minimum amount of space is reserved for a

filesystem to use.

Each object set in the MOS, such as a filesystem, references a data structure that describes its

array of objects. These objects include the usual things found in a filesystem such as directories,

files, symbolic links, etc. Each of these filesystem objects then references an array of blocks that

contain the object’s data.

The allocation, expansion, and eventual freeing of the contents of all these objects is managed by

the DMU module. The tree-structured POSIX-semantic directory structure is managed by the

ZPL module. The ZAP module stores a keyto-value hashtable in an on-disk object. Its original

use was for directory entries (each directory is implemented as a ZAP object). Its use later was

expanded to store object attributes and many other types of metadata in other parts of ZFS.

Finally, the ZIL module ensures that changes are not lost between filesystem checkpoints.

621

ZFS Dnode

ZFS stores the metadata for a file in a dnode that is analogous to the inode of UFS. Like that

inode used in UFS, a dnode describes an object that may change in size from tiny to huge. The

dnode is managed by the DMU. One use for dnodes is to describe filesystem objects such as files,

directories, etc. When used for this purpose, the dnode is embedded with a znode that is

managed by the ZPL and contains the metadata required to support POSIX semantics. Unlike

the inode, dnodes also describe objects in the MOS layer such as the objects that represent

filesystems, snapshots, clones, ZVOLs, space maps, property lists, and dead-block lists (referred

to as deadlists).

Just as with inodes, the ability to describe objects of greatly different sizes is done by using

indirect blocks. Unlike inodes, each dnode uses a fixed number of levels of indirect blocks. For

objects smaller than 128 Kbyte, the dnode uses a single, direct-block pointer that references a

block of the appropriate size. Thus, a 12-Kbyte object would be referenced by a single pointer to

a 12-Kbyte block. When the object grows to a size bigger than 128 Kbyte, the direct-block pointer

is replaced by a pointer to a 16-Kbyte single indirect block. The indirect block then has pointers

to the data blocks that hold the object.

As described later in this subsection, the size of ZFS block pointers are 128 bytes. Thus, each

16-Kbyte indirect block can hold 128 pointers. By default, each indirect-block pointer references

a 128-Kbyte block, though a filesystem may be configured to reference smaller blocks if that is

sensible for the application running on that filesystem. For example, if the primary application

running on the filesystem is a database that reads and writes widely separated 4-Kbyte records,

the filesystem can be configured to allocate 4-Kbyte blocks to reduce the need to copy an entire

128-Kbyte block when only 4 Kbyte of it has been modified.

When the object grows beyond the size that can be described by a single-level indirect block, its

dnode is promoted to use two levels of indirect blocks. The dnode’s block pointer references a

16-Kbyte second-level block. The single-level block that it previously referenced is moved to be

referenced from the first pointer in the new second-level indirect block. As the object continues

to grow, additional first-level indirect blocks are allocated and referenced from the second-level

indirect block.

If the object outgrows the size that can be described by a two-level set of indirect blocks, the

dnode grows to support a three-level hierarchy, similarly to the way it was expanded to support

a two-level hierarchy.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_495

622

One important use of dnodes is to reference ZAP objects. A ZAP object stores a key-to-value

hashtable. They were first used for directories that map from names to object numbers. An

object number is an index into an objset dnode array that maps the object number to the

location of the object on the disk. Directories require fast entry lookup, new entry insertion, old

entry deletion, and full-directory scanning. All these properties are provided by ZAP objects.

Because the ZAP module is flexibly written and these directory-like properties are needed in

many other contexts, ZAP objects are used to store attribute and property lists along with many

other types of metadata in the DSL and the SPA.

ZFS Block Pointers

Figure 10.4 shows a ZFS block-pointer structure. Unlike the traditional UFS 8-byte block

pointer that references a block number within a disk partition, the ZFS block pointer is a

128-byte structure that can contain pointers to as many as three copies of a block, each on a

different disk along with the block’s size and its checksum. By keeping the checksum separate

from the data, errors such as misdirected reads and writes can be detected. If the checksum

were stored in the data block itself, a misdirected read or write would appear to be correct since

both the data and the checksum would have been misdirected.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig04

623

Figure 10.4 Description of a block pointer. Key: vdev—virtual device identifier; grid—RAIDZ

layout information (reserved for future use); asize—allocated size (including RAIDZ parity and

gang-block headers); G—gang-block flag; offset—offset into virtual device; B—byteorder

(endianness) flag; D—deduplication flag; X—unused flag; lvl—number of levels of indirection for

data described by this block pointer; type—DMU object type; cksum—checksum function

identifier; comp—compression function identifier; psize—physical size (after compression);

lsize—logical size; physical birth time—transaction group in which the block was physically

allocated, zero if same as logical birth time; logical birth time—transaction group in which the

block was logically allocated; fill count—number of nonzero blocks under this block pointer;

checksum[]—256-bit checksum of the data described by this block pointer.

By default, ZFS checksums every block that it is managing. With multiple-core processors being

common, the CPU cost of performing the checksum is insignificant in comparison to the cost of

performing an I/O operation.

For systems with multiple disks, the first line of defense against data corruption or loss is RAID.

If a disk block or even an entire disk is lost, the RAID disk structure can recover the data. For

systems with only a single disk such as a laptop, and as a secondary backup for systems with

multiple disks running with RAID, ZFS by default provides double redundancy for all metadata.

Thus, all ZFS block pointers that reference metadata will have two of the three block-pointer

fields in use. Filesystems can be configured to have all data replicated. Here, all block-pointers

that reference user data will have two of the three block-pointer fields in use. When running in

this mode, ZFS uses triple redundancy for all metadata. Thus, metadata block pointers will have

all three block-pointer fields in use.

Each block has an associated birth time. Birth time is measured as the number of checkpoints

that have been taken since the ZFS pool was created. When the pool is first created, the

transaction group (TXG) is set to zero. Each time that a checkpoint is done, the transaction

group is incremented. The problem with using seconds since the epoch for the birth time is that

seconds since the epoch can fail to be monotonically increasing if the battery maintaining the

hardware clock fails or if a time daemon sets incorrect time information. Self-consistency is

ensured by using transaction groups rather than seconds since the epoch. It also ensures that if

two checkpoints are taken less than 1 second apart, the birth times of blocks from the two

checkpoints can be distinguished. As described in the next section, the birth time is needed to

determine when a block has no references so that it can be freed.

The dedup flag identifies a block that is in the deduplication table. The flag is used when trying

to free a block. If the deduplication flag is set, ZFS must find the corresponding entry in the

deduplication table and decrement its reference count as the block can only be freed when the

624

reference count reaches zero. The deduplication table is huge so it typically does not fit in

memory. Pieces of it are brought in when needed. Thus, checking for a block in the

deduplication table is expensive, especially if the required block of the deduplication table is not

in memory. If the deduplication flag is not set, ZFS can avoid the cost of looking it up in the

deduplication table.

Most blocks have only a logical birth time that is equal to the TXG in which they were created.

Only deduplication blocks need a physical birth time. The first time a block is written, it gets just

a logical birth time. When the same contents are written again, the deduplication module

creates a new block pointer to the original copy. The new block pointer has a logical birth time of

the current TXG but a physical birth time of the TXG of the original block’s logical birth time.

The reason that the physical birth time is needed is so that when the filesystem is traversed after

a disk failure to reconstruct the RAIDZ, the kernel knows the actual times that blocks were

created and hence knows which ones need to be reconstructed.

Normally, when the SPA needs to allocate a block of a given size, it is able to do so. However,

when the pool of unused blocks becomes small, there may not be a single block of space large

enough to fulfill the request. Here, the SPA must allocate two or more smaller pieces to make up

the bigger block. These smaller pieces are described by an array of pointers in a structure called

a gang-block header. The gang-block flag is set when the reference in the block pointer is to one

of these gang-block headers so that header can be interpreted by the I/O system to gather

together the pieces that make up the block.

Each block pointer has three sizes associated with it:

1. lsize – the logical size of the block

2. psize – the physical size of the block, which may be smaller than the logical size if it has been

compressed.

3. asize – the allocated size on the disk including RAIDZ parity and gang-block headers.

For blocks that reference indirect blocks, the level of the referenced block is also maintained.

Since any given dnode uses a fixed number of indirection levels as described earlier in this

subsection, maintaining the level count in the block pointer is used purely as a consistency check

and is not needed for normal operation. Similarly, the type field is known, so it is used only as a

consistency check.

625

ZFS objset Structure

The objset structure describes a set of objects. An objset structure is used to describe the set of

objects in a filesystem, a snapshot, a clone, or a ZVOL. When used in this role, their closest

analogy to UFS is that of the superblock, which is the data structure that describes all the objects

in a filesystem. Another important use of the objset structure is to describe the collection of

objects that make up the MOS. The objects in the MOS include the descriptors for all the

filesystems, clones, snapshots, and ZVOLs in the pool along with their relationships to each

other. The MOS also includes a master node that includes properties that apply to the pool and

space-map objects that identify the used and available blocks in the pool.

10.3 ZFS Structure

Having described the most important ZFS data structures, it is now possible to describe the

layout of a ZFS pool in more detail. Figure 10.5 shows a typical ZFS pool that is anchored at its

top by an uberblock.

Figure 10.5 ZFS Structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05

626

Two 256-Kbyte blocks of space are reserved for volume labels at the beginning and end of every

device in the ZFS pool. Half of each of these four volume labels are used to store redundant

copies of information specific to the device. The other half of each of these four labels holds an

array of 128 uberblocks. The final step to complete a checkpoint is to write out the uberblock.

When the pool is created, the initial uberblock is written to the zeroth entry in each of the

uberblock arrays on all the devices. The uberblock for the first checkpoint (TXG number one) is

written to the first entry in all the uberblock arrays of up to three of the devices that are selected

at random. After all 128 entries in an uberblock array have been used, the checkpoint location of

the uberblock update reverts to the zeroth entry in that uberblock array.

The MOS Layer

A single block pointer contained in the uberblock references an objset structure that describes

the set of objects making up the MOS layer. The MOS contains the data structures managed by

the DSL that tracks datasets, which include chains of snapshots, trees of clones, the active

filesystems, and ZFS volumes (ZVOLs) that appear like traditional fixed-size disk partitions. The

DSL is also responsible for tracking filesystem properties and the deadlists. The MOS also

contains data structures managed by the Storage Pool Allocator (SPA) that tracks allocated

versus freed blocks. The SPA module is also responsible for handling compression and

deduplication as well as I/O queueing and scheduling. Thus, the MOS manages filesystems

while the volume manager found in traditional filesystem layering manages blocks.

Each of the objects in the MOS is described by a dnode. One important object in the MOS is the

first dnode, often referred to as the master node. The master node contains pool-wide

information including pool-wide property lists and configurations, recent error logs, and

operational statistics. Another important object in the MOS layer is the dnode that contains the

space map. The space map identifies the allocation of blocks within the pool.

Most of the dnodes in the MOS are used to describe a filesystem, clone, snapshot, or ZVOL.

Each of these dnodes has a dsl_dataset structure embedded within it. This structure serves two

main purposes:

1. It keeps a set of pointers to track the relationship of snapshots and clones to their associated

filesystem.

2. It contains the object number of the deadlist that tracks when blocks are no longer referenced

and can be freed.

The management of relationships and the operation of deadlists is described in the next section.

627

The dsl_dataset structure within all these dnodes, except those for snapshots, points to a second

dnode object in the MOS that contains an embedded dsl_dir structure. The dsl_dir structure

contains:

• The object number of the MOS object for its parent’s dsl_dir.

• The object number of the ZAP object listing its children’s dsl_dirs.

• The object number of the ZAP object listing its properties. Its properties include typical

filesystem properties such as whether to honor the set-user-identifier flag on executables,

whether to maintain access time on files and directories, etc. The ZAP object also records the use

of compression and, if enabled, the compression algorithm being used.

• The object number of the ZAP object that lists all its clones.

• Block accounting for all filesystems and clones mounted below it.

• Its quota and reservation byte counts.

• For clones, the object number of the MOS object for the snapshot from which they were

created.

The relationships between a filesystem and its clones and snapshots is shown in Figure 10.6.

ZFS can take snapshots and make clones of both filesystems and ZVOLs, so everything

described below in the context of filesystems applies equally to ZVOLs. Clones cannot be taken

of a filesystem or another clone; they can only be taken from a snapshot. It is possible to create

multiple clones from the same snapshot. When a clone is promoted to being a filesystem, the

previous filesystem is demoted to being a clone. Clone promotion does not change the datasets’

names, mountpoints, or contents. Renaming operations must be done separately.

Figure 10.6 Filesystem, clone, and snapshot relationships.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig06

628

The Object-Set Layer

Each of the dsl_dataset structures in the MOS layer has a block pointer that points to an objset

structure in the object-set layer. The bottom half of Figure 10.5 shows three distinct

organizations of the objset. From left to right in the object-set layer, they are:

1. A snapshot of a filesystem or a clone (see number 3). The organization of the snapshot is the

same as that of a filesystem or clone except that since it cannot be changed, it does not need to

track user or group quotas. A snapshot does keep a copy of the user and group quotas as they

existed at the time that the snapshot was made so that they are available for use after a rollback

is done or a clone is made. They are stored in the objset as is done for a filesystem, but are not

shown in Figure 10.5.

2. ZVOLs have a single dnode in their objset that references an array of two dnodes. The first

dnode references an array of block pointers that is the size of the device partition with one

pointer per 4-Kbyte block. The other dnode describes the master node. It is a ZAP object that

records ZVOL-specific information.

3. Filesystems have three dnodes in their objset. Two are ZAP objects that record the user and

group space usage for a filesystem. The third references the filesystem’s array of the files and

directories. The first dnode of the array is its master node, described later in this section. Clones

of filesystems have the same objset organization as a filesystem, while clones of ZVOLs have the

same objset organization as a ZVOL.

The filesystem master node is a ZAP object that contains the following information:

• It records the object number of the root inode.

• It records the objects numbers for the user and group quota files.

• It records the ZAP object number that tracks the set of files that have been unlinked but cannot

be reclaimed because they are still referenced by an open file descriptor. The ZAP object simply

records a list of the unlinked object numbers. Objects are added when they become unlinked

and removed when their final reference is closed. Use of the ZAP object ensures that these

operations can be done in constant time. After a reboot, the list is traversed to remove the

unlinked and now unreferenced files.

The layout of a snapshot mirrors that of the object set that it snapshots. The snapshot of a

filesystem in Figure 10.6 shows how its structure mirrors that of a filesystem. A snapshot of a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig06

629

ZVOL has a structure that mirrors that of a ZVOL. Similarly, the layout of a clone of a filesystem

or ZVOL snapshot is the same as that of the object that it is cloning.

Each of the objsets that describe a filesystem, clone, or ZVOL has a zil_header structure

embedded within it that points to a linked list of blocks containing the ZIL intent log. The ZIL

records all the changes since the last checkpoint for recovery after a crash.

10.4 ZFS Operation

Unlike overwriting filesystems like UFS that continuously update their on-disk state, ZFS

collects all filesystem updates in memory. Periodically, it writes all the changes to an unused

disk area to create a checkpoint. None of the changes to the on-disk state are visible until the

final write of the checkpoint is made, which is to update the root of the ZFS pool, the uberblock.

Thus, a ZFS filesystem is always consistent; that is, it transitions from one consistent state to a

new consistent state.

Each checkpoint is taken across the entire pool and affects every filesystem, snapshot, clone, and

ZVOL in the pool at the same time. ZFS calls these checkpoints transaction groups, abbreviated

to TXGs. Snapshots taken across several filesystems that all fall within the same checkpoint will

all be consistent at the same instant in time. Thus, two different snapshots within the same pool

with the same TXG will be precisely synchronized with each other in time. Conversely, it is

difficult to get consistent snapshots across two different pools because it would require the

precise coordination when they take a checkpoint.

Many operations in ZFS, such as the way that writes to files appear atomic to different processes

doing write system calls to the same file, are handled similarly to those of traditional

overwriting filesystems like UFS. This section will not describe functionality that is similar to the

UFS functionality described in Chapter 9. This section details the operations performed by the

ZFS filesystem that differ significantly from the way they are performed in UFS.

Writing New Data to Disk

All updates to the filesystems, clones, and ZVOLs within a pool are accumulated in memory

until a specified time has passed (default is 5 seconds), 64 Mbyte of dirty data have been

accumulated, or an administrative action is taken that requires a checkpoint such as a snapshot

request. To flush the new data to disk, ZFS must take a checkpoint of the pool.

Taking a checkpoint requires that all modifications to the filesystem, made since the previous

checkpoint, be saved to disk. The first step is to get a consistent state for the filesystem, which

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09

630

requires that all system calls modifying filesystem data must be complete. ZFS uses a technique

similar to the one described in Section 9.7 as step 3 of taking a snapshot in UFS. Specifically,

processes that are already in progress on such system calls are permitted to finish those system

calls. The checkpoint proceeds once all the in-progress system calls have finished.

It may take several seconds to write out all the disk blocks making up the checkpoint. Allowing

no modifications during that entire period would cause an unacceptable delay to applications

running on the system. To avoid this delay, all the dirty blocks that will be written to make the

checkpoint are tagged with their transaction group (TXG). New modifications to the filesystems,

clones, and ZVOLs are tagged with a new transaction group. If a modification finds that the

block it needs to modify is marked as being part of a checkpoint in progress, ZFS makes a copy

of that block in memory and the modification is made to the copy. The copied blocks become

part of the next checkpoint. As I/O completes on the blocks that are part of the current

checkpoint, ZFS must decide how to handle the in-memory buffers. If they were not copied, they

can be marked as available for current use. If they were copied, then their contents are now out

of date so the memory holding the out-of-date copy is freed.

Figure 10.7 shows the nine steps that must be taken to flush the changes for a file to which data

has been added since the last checkpoint:

1. All the blocks of new data must be written. If the write has been done over existing data, the

modified data block must be written to a new location as ZFS never overwrites any existing data.

2. Typically, the update requires an update of a block pointer in one of the file’s indirect blocks.

Since the indirect block has been modified, it will need to be written to a new location, which

means the indirect block that references it will need to be modified. These modifications

continue up the indirect tree until they reach the dnode for the file.

3. Update the dnode for the file to reference the new block location for the top of its indirect

pointers. Since ZFS cannot overwrite the existing dnode when it has changed, it must write a

copy of the block containing the dnode with the updated size and new block pointer.

In UFS, reading in an inode requires allocating a piece of memory that is the size of an inode

including the space needed to store the on-disk dinode, reading in the disk block that contains

the inode, copying the dinode from the disk block to the newly allocated memory, and then

releasing the disk buffer. Writing an inode back to disk requires reading in the disk block that

contains the inode, copying the modified inode into the appropriate part of the buffer, and then

writing the updated buffer back to the disk.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig07

631

In ZFS, reading in a dnode begins by allocating a piece of memory that is the size of the

in-memory dnode. The in-memory dnode does not contain the on-disk dnode; it includes only a

pointer to the on-disk part. ZFS reads in and locks in memory the disk block that contains the

on-disk dnode. It then sets the pointer in the dnode to point to its on-disk part in the disk buffer.

Writing the dnode back to the disk requires only that the disk buffer containing the modified

dnode be written to its new location.

The benefit of the ZFS approach is less memory-to-memory copies and fewer I/O operations at

the expense of using more memory. For a system with 100,000 cached nodes, UFS will use 50

Mbyte of memory while ZFS typically uses 200 Mbyte and can use up to 1.6 Gbyte of memory.

The original log-structured filesystem (LFS) collected all the modified inodes together in sets of

64 that could then be packed into a 16-Kbyte block. The drawback to this approach is that it

required another metadata file that mapped from inode number to disk location. ZFS simply

writes all the in-memory disk blocks that contain modified dnodes. By updating the block

pointers in its objset dnode that have changed, there is no requirement for a separate metadata

file to track their location as they can be found using a simple look up at their known offset in

the objset dnode. Though this approach requires more I/O than the LFS approach, it simplifies

and speeds later lookup of the dnodes.

4. Once all the filesystem dnodes have been updated, the changed block pointers referencing

them are propagated up through the indirect blocks of the filesystem objset in the same way that

they were in step 2 for the file.

5. Update the filesystem objset dnode object to reference the new block location for the top of

the objset dnode’s indirect pointers.

6. Update the block pointer in the MOS dsl_dataset to reference the new copy of the filesystem

objset to which it points.

7. Once all the dsl_dataset pointers have been updated to point to their new objset objects, the

changed block pointers referencing them are propagated up through the indirect blocks of the

MOS objset in the same way that they were in steps 2 and 4 for the file and filesystem objsets.

8. Update the MOS objset dnode object to reference the new block location for the top of its

indirect pointers.

9. Once all these updates have been written to their disk locations, the last step in checkpoint

creation is to update the block pointer in the uberblock to point at the new MOS objset and

update its TXG transaction group to reflect the new checkpoint. The updated uberblock is then

written to its new locations as is described in Section 10.3.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10lev1sec3

632

Figure 10.7 Nine steps to create a checkpoint.

Logging

ZFS keeps all ZPL-level changes logged in memory. The log is handled by the ZFS Intent Log

(ZIL). Examples of log entries are:

• Write these 700 bytes of data to this offset of this file,

• Change the permissions of this file to this mode, or

• Create a new symbolic link in this directory with this name that points to this path.

Unlike logs associated with traditional overwriting filesystems that are needed to bring the

filesystem back into a consistent state, ZFS is always consistent so its only requirement for its

log is to retain any changes between checkpoints that need to be persistent. An example of the

need for persistence is the fsync system call that needs to ensure the associated file is stable

before returning. Because of the time and I/O operations required to do a ZFS checkpoint, fsync

is implemented by forcing a log write, not by doing a checkpoint.

Traditional filesystems often log only filesystem metadata changes as meta-data tends to be

much smaller than the data updates and returning to a consistent state requires only that the

metadata be recovered. When performing an fsync on a file, a traditional filesystem can commit

modified data by overwriting the same disk blocks that held the previous value of the data. The

traditional filesystem can also overwrite a file’s inode to reflect any newly allocated blocks. ZFS

has to log both data and metadata because it does not have the option of just flushing the data

and inode to disk to synchronize them. ZFS reduces the overhead of writing file data to both the

633

log and the disk by allocating a disk block, writing the data to it, and then placing a pointer to

that data in the log. When the next checkpoint is made, ZFS can reference the already-written

block. By default, ZFS only allocates and writes blocks of size 32 Kbyte and larger, but the

logbias property allows the setting of a lower threshold.

The high volume of data being written to the ZFS log can often be a throughput-performance

bottleneck. The logging bottleneck can be alleviated by using a solid-state disk (SSD) to store the

log. The log often does not need all the space available on the SSD. ZFS can use the remaining

space on the SSD to extend its in-memory ARC cache by pushing less actively read items to the

SSD. ZFS refers to this SSD cache as its L2ARC.

Recovery of a ZFS pool starts from the last checkpoint. When the pool is first opened, the kernel

must read in an uberblock array from every device and scan through them to find the uberblock

with the highest TXG value as that will represent the most current checkpointed state of the ZFS

pool. If an uberblock array on a device is unreadable or corrupted, the kernel reads an

alternative copy of the uberblock array from that device.

Once the uberblock has been found, ZFS has to find and claim all the log blocks. The blocks are

claimed by updating the MOS space map to show that all the log blocks are allocated. This

reclaim must happen when the pool is first opened and before any other modifications are made

to it to ensure that the log blocks are not overwritten by later writes. The log blocks are

identified by looking up the objset for all the filesystems, ZVOLs, and clones listed in the MOS.

Each of these objsets contains an intent-log header that points to its linked list of log blocks. The

pool then starts processing a new transaction group (TXG).

The processing of filesystems, ZVOLs, and clones is completely analogous. In the rest of this

section filesystems are described, but the description applies equally to ZVOLs and clones.

Recovery for each filesystem then proceeds as follows:

1. The filesystem is mounted.

2. ZFS plays forward through its intent log whose list head is contained in its objset structure.

Each of the operations contained in the log is made to the filesystem.

3. The blocks from the fully replayed log are freed.

4. The filesystem begins accepting new requests.

In the normal course of events, the transaction completes with a new uberblock being written. If

the system crashes before the new uberblock has been written, then all the recovery work is lost

and must be done again when the system is restarted. No data will be lost as any writes that

634

were done before the crash will be to parts of the disk that were previously unallocated, so none

of the existing filesystem data will have been corrupted. Any modifications accepted for the

filesystems that had completed step 4 above will have been added to their intent log. Thus, these

changes will be included in the filesystem when the system successfully completes its recovery

process.

RAIDZ

Traditional layered design separates the filesystem implementation from the disk-storage

implementation. Thus, the storage layer has no knowledge of the data being stored on it. RAID

is typically used in modern storage systems. Since the size and organization of the data is

unknown to the storage layer, each stripe in the RAID array is a fixed-size. For example,

consider a traditional RAID running with four data disks plus a single parity disk. If the disks

have a 4-Kbyte sector size, the stripe size is 16 Kbyte using one sector on each of the four data

drives plus a 4-Kbyte sector on the parity drive. If an application writes a 24-Kbyte block, this

RAID will write one full-size stripe and then have to read in a 16-Kbyte stripe, replace the first 8

Kbyte of the 16-Kbyte stripe, recalculate the parity, and write out the new 8 Kbyte of data and

the updated 4-Kbyte parity sector. If a disk fails, the RAID reconstructs by reading every stripe,

rebuilds the bad 4-Kbyte block, and writes the rebuilt block back to the replacement disk. The

rebuild time can be reduced by using dirty-region logging to keep track of the stripes that are in

use, but it comes at a cost of increased complexity and reduced performance.

Because ZFS integrates its RAIDZ disk-storage implementation with its filesystem

implementation, it can support a variable-size stripe. Instead of writing fixed-size stripes, each

block that it writes fills in the amount of space that it requires. Each block that is written is

referenced by a block pointer that contains the size of the block so the disk-storage

implementation can determine the size of the stripe to use. Figure 10.8 shows the layout of

blocks on a RAIDZ-1 pool constructed from five disks with a single parity per stripe. Each block

requires a parity sector for each four blocks of data sectors. A block that is not a multiple of four

sectors requires a parity block for its residual set of sectors. To get double redundancy

(RAIDZ-2), each block would require two parity sectors for each three blocks of data sectors.

The smallest possible allocation on RAIDZ-N is N + 1 sectors constructed from N parity sectors

plus one data sector.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08

635

Figure 10.8 Layout of blocks in a RAIDZ disk pool. The blocks have been written sequentially

and are shown alternating between light and dark backgrounds.

In Figure 10.8, the first block has two parity and eight data sectors. The second and third blocks

have one parity sector and three data sectors. The fourth block exhibits the worst overhead with

one parity and one data sector. The fifth block has fourteen data and four parity sectors. The

sixth block contains one parity sector, four data sectors, and an unused sector. To avoid the

creation of unallocatable segments, ZFS requires all allocations be a multiple of N + 1 sectors. In

Figure 10.8, N is equal to one, so allocations must be a multiple of two. Since the sixth block

uses five sectors, its allocation must be rounded up to six sectors thus charging the odd-size

block for the wasted space. If the sixth block is freed and the space is later reallocated to a block

with one parity and three data sectors, the two-sector residual space will still be usable for a

block containing one parity and one data sector. Had the allocation for the sixth block not been

rounded up, the residual space would have been a single sector that could not be used. The

seventh data block containing a single parity and two data sectors also needs to allocate an

unused sector. The eighth and final block contains three parity and nine data sectors. The parity

sectors for a given block are all on the same disk. The disk holding the parity for a block is the

one on which the block begins. Thus, parity blocks are distributed among the disks.

If a disk fails, the RAIDZ reconstructs it by traversing the pool’s filesystems and rebuilding each

block that it encounters using the block’s size to determine its stripe size. An added benefit of

this approach is that reconstruction time is often lowered since ZFS need only rebuild the part of

the disk holding allocated data. Despite the slowdown from random reads to the data to be

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig08

636

rebuilt, the need to rebuild just the allocated data is faster than rebuilding the whole disk when

the allocated data use less than about half of the disk. However, in worst-case scenarios of pools

configured to use 4-Kbyte blocks, such as those supporting databases or virtual-disk images

with totally random block placement and most of the disk space allocated, ZFS reconstruction

may take 10 times longer to complete.

Snapshots

Taking a snapshot in ZFS is quick and easy, and for reasons explained later in this section, there

are no limits on the number of snapshots that can be taken. The steps involved in taking a

snapshot are:

• Take a checkpoint.

• Allocate a new dnode in the MOS to contain the new dsl_dataset that will represent the

snapshot.

• Copy the block pointer from the dsl_dataset of the filesystem being snapshotted to the

dsl_dataset in the newly allocated snapshot dnode. Until at least the next checkpoint is taken,

the block pointers of both the snapshot and the filesystem will reference the same objset block.

The next checkpoint made after any change in the filesystem will create a new copy of the

filesystem objset. The block pointer in the snapshot will continue to reference the old objset,

while the block pointer in the filesystem will reference the new objset.

• Link the new dnode into the head of the filesystem’s snapshot list (as it is the youngest

snapshot).

• Add the new snapshot’s name and object number into the snapshot name list for the

filesystem.

• Move the filesystem’s deadlist to the snapshot. Since the filesystem’s deadlist contains blocks

that it no longer references, they will not be referenced by the snapshot. The freeing of deadlists

is described in a later subsection.

At this point, the new snapshot is complete and is ready to be accessed.

ZFS Block Allocation

Space allocation is handled by the SPA module. It manages all the space in the pool and makes it

available to filesystems, clones, and ZVOLs as it is needed. The SPA uses the space map in the

637

MOS to identify the allocation of blocks within the pool. Rather than having a single map to

describe the entire pool, the blocks are broken up into fixed-size groups analogous to the way

that UFS breaks a filesystem up into cylinder groups, each with a fixed-size block map. Unlike

cylinder-group maps, ZFS maps are described using base-length pairs similar to those used to

describe space in an extent-based filesystem. A disk will typically be described by about 200 of

these fixed-size maps. The next subsection describes how blocks are freed back to the pool.

A ZFS allocation proceeds as follows:

1. Select a disk from which to do the allocation. The preference is to choose the disk with the

most free space.

2. From among the fixed-size space maps describing the space on the disk, select the one that is

least fragmented.

3. Allocate a chunk of space with the needed size that is closest to the previous allocation.

In addition to managing the space map, the SPA also handles related operations such as

compression and deduplication, and it determines block layout into a RAIDZ stripe as well as

the stripe’s parity calculation. Finally, the SPA manages the scheduling, queueing, and

completion handling of the block I/O operations.

Freeing Blocks

The first implementations of nonoverwriting filesystems were described as log-structured

filesystems [Rosenblum & Ousterhout, 1992]. A production version of a log-structured

filesystem, LFS, was released as part of 4.4BSD [McKusick et al., 1996; Seltzer et al., 1993]. New

data were appended to the filesystem partition until they reached the end of the partition. A

garbage collection process was run over the filesystem partition to find the blocks that were no

longer being referenced. The filesystem operations then resumed until these blocks had been

used at which point another garbage collection pass was done. While this technique for

managing free space worked, and much research was done on ways to minimize its effect, it still

produced awkward pauses that made production use difficult [Blackwell et al., 1995].

In the 1990’s, two commercial implementations of nonoverwriting filesystems were started, ZFS

by Sun Microsystems and the Write Anywhere File Layout (WAFL) filesystem by Network

Appliance (NetApp) [Hutchinson et al., 1999]. Both of these implementations chose to track the

used and available blocks continuously as is done in traditional filesystems but used different

techniques.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref06

638

WAFL keeps and updates a complete block list. In WAFL, each block has a 256-bit word

associated with it. Bit 0 in the word is set to show that the block is in use in the active filesystem.

Bit 1 is set to show that the block is in use in snapshot 1, bit 2 is set to show that the block is in

use in snapshot 2, etc. When all bits in the word are 0, the block is free and available for use.

When a new snapshot is made, WAFL allocates an available bit number for it and then makes a

pass over the entire bitmap, copying all the set bits in bit 0 to the new snapshot’s bit column.

Freeing a snapshot makes a pass over the entire bitmap, clearing the bit in the snapshot’s bit

location. Thus, the cost to create or delete a WAFL snapshot is proportional to the size of the

filesystem and the number of snapshots is limited to the width of the block-map word. ZFS does

not have these limitations.

ZFS tracks its used and available blocks using space maps, birth time, and deadlists. The benefit

of the ZFS approach is that it never has to traverse its space map when creating or freeing a

snapshot, clone, or ZVOL. When a filesystem needs a new block, it requests one from the SPA

that allocates it from the pool’s space map. The current transaction group (TXG) is recorded in

the block’s pointer. The block then becomes part of an object in the filesystem. Over time, the

filesystem or clone may be snapshotted, which will also reference the block.

When an object in a filesystem is overwritten, truncated, or deleted, its blocks will be released.

For each block freed from an object, the kernel must determine whether to free it. The kernel

checks the block pointer’s birth time and, if it was born after the most recent (youngest)

snapshot, it is not referenced by any snapshots so the block can be freed (i.e., the SPA can return

the block to the pool’s space map). Otherwise, the block must be remembered for later freeing

by adding it to the filesystem’s deadlist. Each dsl_dataset contains the object number of its

deadlist. The deadlist of a given dataset (filesystem, ZVOL, clone, or snapshot) is the list of

blocks referenced by the previous snapshot and possibly some older snapshots, but not

referenced by the dataset.

When a snapshot is freed, the kernel needs to free any blocks referenced only by that snapshot

[Ahrens, 2005]. Figure 10.9 shows the four lifetimes of blocks that need to be considered when

freeing “this snap.” The kernel must determine the blocks to be freed and those that need to

remain on a deadlist. It iterates over the blocks in the “next snap” deadlist (blocks A and B in

Figure 10.9). Each block is removed from the list and the block’s birth time is compared to the

birth time of “prev snap.” If the block was born before “prev snap” (block A), then the kernel

cannot free it, so it adds the block to the deadlist of “this snap.” Otherwise, the block was born

after “prev snap” (block B), so the kernel must free it. Having emptied the deadlist of “next

snap,” the kernel sets the deadlist of “next snap” to the deadlist of “this snap.” Finally, the kernel

removes “this snap” from the linked list of snapshots and from the directory of snapshot names.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig09

639

Figure 10.9 Four lifetimes of blocks considered by the kernel when a snapshot is deleted.

While the implementation is simple, the algorithm is subtle. The blocks that the kernel must free

are those that are referenced by only the snapshot the kernel is deleting (block B). The blocks to

be deleted must meet four constraints:

1. They were born after “prev snap,”

2. They were born before “this snap,”

3. They died after “this snap,” and

4. They died before the “next snap.”

The blocks on the “next snap” deadlist are those that meet constraints 2, 3, and 4. They are live

in “this snap,” but dead in the “next snap.” Thus, to find the blocks that meet all constraints, the

kernel examines all the blocks on the deadlist of “next snap” and finds those that meet

constraint 1 (i.e., if the block’s birth time is after the “prev snap”). Note that the argument

applies if “next snap” is the live filesystem.

To confirm that the kernel left the correct blocks on the deadlist of “next snap,” observe that the

deadlist of “this snap” contains the blocks that were live in “prev snap” and dead in “this snap”

(block D). If “this snap” did not exist, then the blocks would be live in “prev snap” and dead in

“next snap,” and therefore should be on the deadlist of “next snap.” Additionally, the blocks that

were live for both “prev snap” and “this snap” but dead in “next snap” (block A) should be on the

deadlist of “next snap.”

Originally, the deadlist contained the object number of an object that contained an array of all

the dead-block pointers associated with the filesystem, ZVOL, snapshot, or clone. Since every

block on the list has to be considered for deletion, snapshot deletion time is proportional to the

size of its deadlist. As the number of deleted or changed blocks grows, the size of the deadlists

also grows. Because the only blocks that could be deleted are those in the transaction group that

covers the snapshot or clone being deleted, the deadlist was reorganized.

640

To decouple the removal time of a snapshot from the size of the deadlist, the deadlist has now

been split into separate lists organized by the ranges of transaction groups between each of the

snapshots that existed at the time the snapshot was created. The new deadlist contains the

object number of a ZAP object that maps the first transaction group of a specific range of birth

times to an object that contains an array of all the dead block pointers for just that range of birth

times. Typically, only one of these lists needs to be scanned when the snapshot is deleted, which

improves snapshot deletion time as it only needs to consider the subset of blocks that it will

need to free. If several snapshots have been deleted between the snapshot being deleted and the

one that currently precedes it, then several lists will need to be traversed, but all the blocks on

the traversed lists will need to be freed. Thus, with this new organization, the time required at

snapshot removal time is a function of the number of blocks that the snapshot will free

independent of the number of other blocks that remain.

The elegance of this design is that it places no limit on the number of snapshots that can be

created and it never needs to traverse the entire block-allocation map, so snapshot creation and

removal times are not affected by the size of the disk space being managed.

Deduplication

ZFS provides deduplication on a pool-wide basis [Bonwick, 2009]. Deduplication is

implemented in the SPA module. Logically, when a new block is created, the pool is checked to

see if a block with identical contents already exists. If an identical block does exist, the existing

block is referenced rather than creating a duplicate copy of it. Deduplication is most useful when

there are many duplicate blocks, such as when many instances of the same virtual-machine

image are being stored among the filesystems in the pool.

To speed the check for an existing block with a given value, ZFS computes a hash of each unique

block and stores it in the MOS in a ZAP table that maps from hash to block location. Rather than

computing both a hash and a checksum for each block, the checksum is used as the hash. The

hash must use a function such as SHA-256 that uniquely identifies data with very high

probability. Thus, when using deduplication, the fletcher4 checksumming function, which is

faster to compute but more likely to have collisions, is replaced with SHA-256.

When a block is to be written, ZFS computes its hash and then checks the table to see if a block

with that hash already exists. If it does, a pointer to the existing block is created and the

reference count associated with the block is incremented. Otherwise, the hash, the new block’s

location, and a reference count of 1 are inserted into the table and the block is written to disk.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10ref03

641

Not all users of the pool need to participate in deduplication. Only filesystems and ZVOLs that

administratively elect to participate have their blocks deduplicated. The size of the

hash-to-block mapping table is proportional to the number of blocks allocated to the

participating filesystems and ZVOLs. When the table grows too large to be kept entirely in

memory, write throughput to the participating filesystems and ZVOLs slows dramatically as new

allocations have to wait for the needed part of the table to be read into memory to check whether

they are a duplicate. Because of the cost of deduplication, most administrators only enable

deduplication on filesystems and ZVOLs on which there are likely to be many duplicate blocks.

The administrators further limit the number of filesystems participating in deduplication to a

level that provides enough memory to keep the entire table resident.

Note that redundant copies of blocks that have been made for reliability are not deduplicated. As

described in Section 10.2, ZFS supports up to three copies of a block referenced from its block

pointer. When the first instance of the block is created, all the requested copies will be made.

Later instances of the block will have block pointers that also reference all the copies of the data.

Remote Replication

As with all filesystems, ZFS must be able to provide a mechanism for performing backup both

locally and remotely. Backup is handled by the DMU layer that understands how to traverse the

data structures of any type of objset to create a data stream much like the UFS dump creates a

data stream from a filesystem image using its knowledge of the filesystem’s on-disk data

structures. ZFS refers to creating this data stream as a send operation.

The stream of data can be directed locally or over a network to a remote backup site where it can

be stored as a blob of data on a tape or disk, or it can be interpreted by the DMU layer to create

another copy of the contents. ZFS refers to accepting a data stream as a receive operation. This

functionality is similar to a UFS dump stream that can be stored as a blob of data on a tape or

disk or immediately reconstructed into a filesystem using the restore program.

Much like the UFS dump program, ZFS is able to send either the complete contents of a

snapshot (equivalent to a full dump) or just the differences between two snapshots (equivalent

to an incremental dump).

10.5 ZFS Design Tradeoffs

This section compares the design tradeoffs between a traditional overwriting filesystem versus

ZFS’s nonoverwriting architecture. The biggest difference between the two architectures is the

tradeoff between reading and writing. Writes in a traditional filesystem architecture are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10lev1sec2

642

scattered across the disk as data for different files being written at the same time may be

scattered far apart on the disk. Additionally, the metadata for those files will typically be stored

separately from the file data. The payoff for the scattered writes is that when the file is later read,

its data will all be clustered together even if they were written over a long period of time (as

would be the case for a log file). The nonoverwriting filesystem does all its writes sequentially.

All the modified file data along with any metadata changes are collected and written together.

The result of the sequential writing is that a file can end up requiring many random accesses

when it is later read. ZFS mitigates the reading cost by dedicating enough memory to the ARC to

be able to keep all actively accessed files resident. ZFS also attempts to prefetch data when files

are being read.

The areas in which ZFS’s architecture works well are as follows:

• When disk pools are less than half full, RAIDZ can reconstruct a failed disk faster than

fixed-size RAID since it only needs to copy the blocks that are in use.

• Traditional filesystems using RAID have to handle a condition known as the RAID write hole.

Each update to a RAID stripe requires writing to several disks which cannot be done atomically.

Thus, unprotected RAID stripes can become damaged during a crash or power outage. For

example, if two of five disks are written and the power fails, the data and parity for that stripe

are inconsistent. Therefore, if a disk fails, the RAID reconstruction process generates garbage

the next time any data is read from that stripe. The write-hole problem can be avoided by using

nonvolatile memory to hold data until all the disks in a stripe have been written. However,

nonvolatile memory is expensive and when full, the system must pause and wait for enough I/O

to complete to release some of it. Because ZFS never overwrites existing data, it can avoid the

write-hole problem by waiting for all disk I/O to complete before creating a new checkpoint.

• Moving allocation and freeing of storage out of the filesystems, and managing it as part of the

pool optimizes the utilization of the space since individual filesystems do not need to be

over-provisioned for their highest expected usage scenarios.

• The tight integration of ZFS’s architecture means that all the features work well together. For

example, snapshots work the same when taken on filesystems, clones, and ZVOLs.

• Administration is easier because the pool is aware of the relationships between all the

filesystems, clones, and snapshots. Thus, it keeps track of how everything should be mounted

(subsuming the need to maintain /etc/fstab), allows properties to be inherited down the tree

rather than needing to be set individually, and organizes NFS exports (subsuming the need to

maintain /etc/exports).

643

The areas in which ZFS’s architecture works less well than UFS are as follows:

• As implemented, ZFS’s block cache must fit in the kernel’s address space. Thus, it works well

only on 64-bit systems.

• Like all nonoverwriting filesystems, ZFS operates best when at least a quarter of its disk pool is

free. Write throughput becomes poor when the pool gets too full. By contrast, UFS can run well

to 95 percent full and acceptably to 99 percent full.

• Traditional RAID implementations have a fixed overhead for the parity. For example, with five

drives, one-fifth of the space will be dedicated to parity. With a RAIDZ pool filled with

sector-size blocks, half of the space will be dedicated to parity, effectively reducing it to the

density of a mirror. This scenario arises when using disks with 4-Kbyte sectors to build pools

configured to use 4-Kbyte blocks such as those supporting databases or ZVOLs.

• ZFS caches its data in its ARC that is not part of the unified-memory cache managed by the

virtual memory. The result is that when mmap is used on a ZFS file, read faults are first read

into the ARC and then copied to a page in the unified-memory cache. When dirty

unified-memory pages are flushed, they must be copied to an ARC buffer and then written by

ZFS. To ensure coherency whenever mmap has been used on a ZFS file, reads and writes to that

file need to check whether, for each page in the transfer, the requested page is present in the

unified-memory cache and, if present, use that page to do the I/O. If the page is not present in

the unified-memory cache, then the I/O can proceed normally from the ARC. This approach

provides coherency between memory-mapped and I/O access at the expense of wasted memory

due to having two copies of the file in memory and extra overhead caused by the need to copy

the contents between the two copies.

Similarly, when using sendfile on a file in ZFS, it must be copied from the ARC to the

unified-memory cache thereby losing the benefits of the no-copy semantics of sendfile. The

primary use of sendfile is by Web-server applications like Apache.

Integrating ZFS’s ARC into the unified-memory cache would require massive changes. The

problem is easily seen in Figure 10.1. The unified-memory cache operates at the vnode interface

level and the ARC operates at the physical block level. The pages in the ARC are identified by

their block number on a device. The ARC representation is efficient because access to an

unmodified file in a filesystem and access to the same file in a snapshot will reference the same

entry in the ARC. By contrast, the unified-memory cache identifies pages by their vnode and

logical block number. In the unified-memory cache, access to an unmodified file in a filesystem

and access to the same file in a snapshot will reference different pages even though their

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10fig01

644

contents are identical. The benefit of this approach is that modification of the file’s copy of a

block will not affect the snapshot’s copy of that block.

ZFS was designed to manage and operate enormous filesystems easily, which it does well. Its

design assumed that it would have many fast 64-bit CPUs with large amounts of memory to

support these enormous filesystems. When these resources are available, it works extremely well.

However, it is not designed for or well suited to run on resource-constrained systems using

32-bit CPUs with less than 8 Gbyte of memory and one small, nearly-full disk, which is typical of

many embedded systems.

Exercises

10.1 What is the purpose of the dnode data structure?

10.2 List five problems that ZFS’s checksums can detect.

10.3 What is the role of ZFS’s Meta-Object Set?

10.4 What is the role of ZFS’s Object Set?

10.5 Why does the ZFS block pointer contain three disk addresses?

10.6 Why is the ZFS checksum stored in its block pointer?

10.7 Given that ZFS’s on-disk state is always consistent, why does it need a log?

10.8 Why does ZFS checksum using SHA-256 instead of fletcher4 when doing deduplication?

*10.9 Much of the time required to rebuild a RAIDZ disk pool after replacing a disk arises from

all the random reads it requires. Describe an algorithm that would reduce the time to perform

these random reads.

**10.10 Describe a design for integrating the unified-memory cache into ZFS.

References

Ahrens, 2005.

M. Ahrens, “It Is Magic,” Unpublished Blog entry, available from

http://www.mckusick.com/bookrefs/is_it_magic.html, November 2005.

http://www.mckusick.com/bookrefs/is_it_magic.html

645

Blackwell et al., 1995.

T. Blackwell, J. Harris, & M. Seltzer, “Heuristic Cleaning Algorithms in Log-Structured File

Systems,” USENIX Association Conference Proceedings, pp. 277–288, January 1995.

Bonwick, 2009.

J. Bonwick, “ZFS Deduplication,” Unpublished Blog entry, available from

http://www.mckusick.com/bookrefs/zfs_dedup.html, November 2009.

Bonwick et al., 2003.

J. Bonwick, M. Ahrens, V. Henson, M. Maybee, & M. Shellenbaum, “The Zettabyte File System,”

Unpublished Paper, available from http://www.mckusick.com/bookrefs/zfs_overview.pdf,

November 2003.

Hutchinson et al., 1999.

N. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz, S. Kleiman, & S. O’Malley,

“Logical vs. Physical File System Backup,” USENIX 3rd Symposium on Operating Systems

Design and Implementation, pp. 239–250, available from

https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchins

on/hutchinson_html/hutchinson.html, February 1999.

McKusick et al., 1996.

M. McKusick, K. Bostic, M. Karels, & J. Quarterman, The Design and Implementation of the

4.4BSD Operating System, Addison-Wesley, Reading, MA, 1996.

Rosenblum & Ousterhout, 1992.

M. Rosenblum & J. Ousterhout, “The Design and Implementation of a Log-Structured File

System,” ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 26–52, Association for

Computing Machinery, February 1992.

Seltzer et al., 1993.

M. Seltzer, K. Bostic, M. K. McKusick, & C. Staelin, “An Implementation of a Log-Structured File

System for UNIX,” USENIX Association Conference Proceedings, pp. 307–326, January 1993.

http://www.mckusick.com/bookrefs/zfs_dedup.html
http://www.mckusick.com/bookrefs/zfs_overview.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/hutchinson.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/hutchinson.html

646

Chapter 11. The Network Filesystem

A commonly provided user-level service in any collection of UNIX systems is the network

filesystem (NFS) that allows a set of computers connected to a network to share files. NFS

provides client computers with a namespace and a set of file access semantics similar to the

capabilities of a local filesystem. Providing local-filesystem semantics in a distributed system is a

challenging problem. Sections 11.1 and 11.2 cover the development of NFSv2 and NFSv3. Section

11.3 describes NFSv4 which attempts to address the problems discovered in the first 25 years of

deploying NFS. NFSv3 is the most widely used version in 2014, but NFSv4 is rapidly overtaking

it in popularity. FreeBSD supports all three versions of NFS.

11.1 Overview

The most commercially successful and widely available remote-filesystem protocol on UNIX

systems is NFS, originally designed and implemented by Sun Microsystems [Sandberg et al.,

1985; Walsh et al., 1985]. There are two important components to the success of NFS. First, Sun

placed the protocol specification for NFS in the public domain. Second, Sun sold that

implementation to anyone who wanted it, for less than the cost the company would have

incurred to implement it. Thus, most vendors chose to buy the Sun implementation. They were

willing to buy from Sun because they knew that they could always legally write their own

implementation. The 4.4BSD implementation was written from the protocol specification rather

than being incorporated from Sun because of the developers’ desire to be able to redistribute it

freely in source form.

The first widely released implementation of NFS was version 2 by Sun in 1984. Although version

3 was expected to be released within a year or two of version 2, it suffered several iterations of

hugely complicated proposals before an incremental improvement on version 2 was finally

released in 1992. The final release of 4.4BSD included an implementation of NFS that supported

both versions 2 and 3. FreeBSD’s NFS implementation is a direct descendant of the code

released in 4.4BSD.

Although versions 2 and 3 of NFS were designed entirely within Sun, the growing set of

companies providing NFS-based products put increasing pressure on Sun to bring others into

the design of NFS version 4. After much political maneuvering, Sun agreed to pass the

responsibility for defining the specification of NFS version 4 to the Internet Engineering Task

Force (IETF). Version 4 greatly expands the functionality of the earlier versions of NFS.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref23

647

Sun’s NFS is not the only remote filesystem protocol currently in use. Research at

Carnegie-Mellon lead to the Andrew filesystem (AFS) [Howard, 1988]. AFS was commercialized

by Transarc and eventually became part of the Distributed Computing Environment

promulgated by the Open Software Foundation and was supported by many vendors. It was

designed to handle widely distributed servers and clients, and also to work well with mobile

computers that operate while detached from the network for long periods. AFS did not see wide

commercial use.

In the Microsoft family of operating systems, remote filesystem access is provided by the

Common Internet File System (CIFS), which runs on top of the Server Message Block (SMB)

protocol [SNIA, 2002]. In FreeBSD, support for SMB and CIFS client and server is provided by

Samba, which resides in /usr/ports/net/samba. Since this book deals with the kernel, and

Samba runs mostly external to the kernel, we will not discuss it further.

NFS was designed as a client-server application. Its implementation is divided into a client part

that imports filesystems from other machines and a server part that exports local filesystems to

other machines. The general model is shown in Figure 11.1. In FreeBSD, the kernel can be

configured to support just the client, just the server, or both client and server. Many goals went

into the NFS design:

• The protocol is designed to be stateless. Because there is no state to maintain or recover, NFS

can continue to operate even during periods of client or server failures. Thus, it was thought to

be much more robust than a system that operates with state.

• NFS is designed to support UNIX filesystem semantics. However, its design also allows it to

support the possibly less-rich semantics of other filesystem types, such as the MS-DOS

filesystem.

• The protection and access controls follow the UNIX semantics of having the process present a

UID and set of groups that are checked against the file’s owner, group, and other access modes.

The security check is done by filesystem-dependent code that can do more or fewer checks based

on the capabilities of the filesystem that it is supporting. For example, the MS-DOS filesystem

cannot implement the full UNIX security validation, and it makes access decisions solely based

on the UID.

• The protocol design is transport independent. Although it was originally built using the UDP

datagram protocol in version 2, it was easily moved to the TCP stream protocol in version 3. It

has also been ported to run over numerous other non-IP-based protocols.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig01

648

Figure 11.1 The division of NFS between client and server.

Some of the design decisions limit the set of applications for which NFS is appropriate:

• The design envisions clients and servers being connected on a local, fast network. The NFS

protocol does not work well over slow links. When using an unreliable protocol, such as UDP as

the transport, it does not work well between clients and servers with intervening gateways. It

also works poorly in mobile computing environments that have extended periods of

disconnected operation.

• The caching model assumes that most files will not be shared. Performance suffers when files

are heavily shared.

• The stateless protocol requires some loss of traditional UNIX semantics. Filesystem locking

(flock) has to be implemented by a separate stateful daemon. Deferral of the release of space in

an unlinked file until the final process has closed the file is approximated with a heuristic that

sometimes fails.

Despite these limitations, NFS proliferated because it makes a reasonable tradeoff between

semantics and performance; its low cost of adoption has now made it ubiquitous.

11.2 Structure and Operation

NFS operates as a typical client–server application. The server receives remote procedure

call (RPC) requests from its various clients. An RPC operates much like a local procedure call:

the client makes a procedure call and then waits for the result while the procedure executes. For

a remote procedure call, the parameters must be marshalled together into a message.

Marshalling includes replacing pointers by the data to which they point and converting data

into network byte order. The message is then sent to the server, where it is unmarshalled

(separated out into its original pieces) and processed as a local filesystem operation. The result

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_328
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_328
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_214

649

must be similarly marshalled and sent back to the client. The client unmarshalls the result and

returns that value to the calling process as though the result were being returned from a local

procedure call [Birrell & Nelson, 1984]. NFS uses Sun’s RPC and external data-representation

(XDR) protocols [Reid, 1987]. Although the kernel implementation is done by hand to get

maximum performance, the user-level daemons described later in this section use the RPC and

XDR libraries.

The NFS protocol can run over any available stream- or datagram-oriented protocol but the

most common choice is TCP because it provides better service over a wide range of network

types from local to wide area. Each NFS RPC message may need to be broken into multiple

packets to be sent across the network. A motivating factor to move away from running NFS over

a datagram protocol, such as UDP, is that any single RPC may be broken into up to six packets;

if any of these packets are lost, the entire RPC is lost and needs to be resent. When running over

a stream protocol, such as TCP, the RPC will still be broken into several packets; however,

individual lost packets, rather than the entire message, will be retransmitted by TCP. The

problems with running NFS over an unreliable datagram protocol are exacerbated on

high-bandwidth local-area networks. NFS messages will always fit into a single UDP datagram

but the underlying network usually requires the messages to be split, a process called IP

fragmentation. Each IP packet contains an identifier that allows large packets, that were broken

up, to be reassembled when they are received by the server. The IP identifier field is only 16 bits,

which means that once a concurrent and highly fragmented workload is present, the birthday

paradox kicks in where different streams have a high probability of selecting overlapping

IP-identifier sequences. The server’s network stack will now reassemble the UDP datagrams

incorrectly, leading to datagrams with failed checksums that require retransmission. The

ensuing poor performance is the main reason use of NFS over UDP is heavily discouraged even

for local-area networks. In FreeBSD, NFS over UDP is retained primarily for use in network

booting. For a more complete discussion of IP fragmentation see Section 13.1.

The set of RPC requests that a client can send to a server, under version 3 of the protocol, is

shown in Table 11.1. After the server handles each request, it responds with the appropriate data

or with an error code explaining why the request could not be completed. As noted in the table,

many operations are idempotent. An idempotent operation is one that can be repeated several

times without the final result being changed or an error being caused. For example, writing the

same data to the same offset in a file is idempotent because it will yield the same result whether

it is done once or many times. However, trying to remove the same file more than once is

nonidempotent because the file will no longer exist after the first try. Idempotency is an issue

when the server is slow or when an RPC acknowledgment is lost and the client retransmits the

RPC request. The retransmitted RPC will cause the server to attempt the same operation again.

For a nonidempotent request, such as a request to remove a file, the retransmitted RPC, if

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_150

650

undetected by the server recent-request cache [Juszczak, 1989], will cause a “no such file” error

to be returned, because the file will have been removed already by the first RPC. Users may be

confused by the error because they believe that they are attempting to remove an existing file.

Table 11.1 NFS, Version 3, RPC requests.

Each file on the server is identified by a unique file handle. A file handle is the token by which

clients refer to files on a server. The handles are passed in operations, such as read and write,

that reference a file. A file handle is created by the server when a pathname-translation request

(lookup) is sent from a client to the server. The server must find the requested file or directory

and ensure that the requesting user has access permission. If permission is granted, the server

returns a file handle for the requested file to the client. The file handle identifies the file in

future access requests by the client. A file handle is meant to be opaque to the client. The client

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_116

651

is not allowed to peek into or infer any information from the file handle but only to present it to

the server as part of routine file operations. Servers are free to build file handles from whatever

information they find convenient.

In the FreeBSD NFS implementation, each filesystem can decide what data goes into a file

handle. In ZFS, the file handle is created from the underlying file ID. ZFS is covered in Chapter

10.

In UFS, covered in Chapter 9, the file handle is built from a filesystem identifier, an inode

number, and a generation number. The server creates a unique filesystem identifier for each

of its locally mounted filesystems. A generation number is assigned to an inode each time that

the latter is allocated to represent a new file. The generation number is selected by using the

kernel’s random-number generator. The kernel ensures that the same generation value is never

used for two consecutive allocations of the same underlying inode or file ID.

The purpose of the file handle is to provide the server with enough information to find the file in

future requests. The generation number verifies that the file handle still references the same file

that it referenced when the file was first accessed. Using a generation number allows the server

to detect when a file has been deleted, and a new file is later created using the same inode or file

ID. Although the new file has the same filesystem identifier and inode number, it is a completely

different file from the one that the previous file handle referenced. Since the generation number

is included in the file handle, a previously used generation number for an inode will not match

the new generation number in the same inode. When a file handle representing a previous

version of the file is presented to the server by a client, the server refuses to accept it and instead

returns the “stale file handle” error message.

The use of the generation number ensures that the file handle is time stable. Distributed systems

define a time-stable identifier as one that refers uniquely to some entity both while that

entity exists and for a long time after it is deleted. A time-stable identifier allows a system to

remember an identity across transient failures and allows the system to detect and report errors

for attempts to access deleted entities.

Versions 2 and 3 of the NFS protocol are stateless. Being stateless means that the server does

not need to maintain any information about which clients it is serving or about the files that they

currently have open. Every RPC request that is received by the server is completely

self-contained. The server does not need any additional information beyond that contained in

the RPC to fulfill the request. For example, a read request will include the credential of the user

doing the request, the file handle on which the read is to be done, the offset in the file to begin

the read, and the number of bytes to be read. This information allows the server to open the file,

verify that the user has permission to read it, seek to the appropriate point, read the desired

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_414

652

contents, and close the file. In practice, the server caches recently accessed file data. However, if

there is enough activity to push the file out of the cache, the file handle provides the server with

enough information to reopen the file.

The benefit of a stateless protocol is that there is no need to do state recovery after a client or

server has crashed and rebooted or after the network has been partitioned and reconnected.

Because each RPC is self-contained, the server can simply begin servicing requests as soon as it

begins running; it does not need to know which files its clients have open. Indeed, it does not

even need to know which clients are currently using it as a server.

There are drawbacks to a stateless protocol. First, the semantics of the local filesystem imply

state. When files are unlinked, they continue to be accessible until the last reference to them is

closed. Because NFS knows neither which files are open on clients nor when those files are

closed, it cannot properly know when to free file space. As a result, it always frees the space at

the time of the unlink of the last link to the file. Clients that want to preserve the

freeing-on-last-close semantics convert unlinks of open files to renames to obscure names on

the server. The names are in the form .nfs.tttttttt.xxxx4.4, where the tttttttt is the number of

CPU ticks since the system booted and xxxx is replaced with the hexadecimal value of the

process identifier. The ticks are successively incremented until an unused name is found. When

the last close is done on the client, the client sends an unlink of the obscure filename to the

server. This heuristic works for file access on only a single client; if one client has the file open

and another client removes the file, the file will still disappear from the first client at the time of

the remove. Other stateful semantics include the advisory locking described in Section 9.5. The

locking semantics cannot be handled by the NFS protocol. Under versions 2 and 3 of the NFS

protocol, they are handled by a separate lock manager; the FreeBSD version of NFS implements

them using the user-level rpc.lockd daemon. Locking is handled differently under version 4 of

the protocol (see Section 11.3).

The second drawback of a stateless protocol is related to performance. Under version 2 of the

NFS protocol, all operations that modify the filesystem must be committed to stable storage

before the RPC can be acknowledged. Most servers do not have battery-backed memory; the

stable-store requirement means that all written data must be on the disk before they can reply to

the RPC. For a growing file, an update may require up to three synchronous disk writes: one for

the inode to update its size, one for the indirect block to add a new data pointer, and one for the

new data. At a minimum, a single write to a filesystem log is required. Each synchronous write

takes several milliseconds; this delay severely restricts the write throughput for any given client

file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3

653

Version 3 of the NFS protocol eliminated some of the synchronous writes by adding a new

asynchronous write RPC request. When such a request is received by the server, it is permitted

to acknowledge the RPC without writing the new data to stable storage. Typically, a client will do

a series of asynchronous write requests followed by a commit RPC request when it reaches the

end of the file or it runs out of buffer space to store the file. The commit RPC request causes the

server to write any unwritten parts of the file to stable store before acknowledging the commit

RPC. The server benefits by having to write the inode and indirect blocks for the file only once

per batch of asynchronous writes, instead of on every write RPC request. The client benefits

from having higher throughput for file writes. The client does have the added overhead of

having to save copies of all asynchronously written buffers until a commit RPC is done because

the server may crash before having written one or more of the asynchronous buffers to stable

store. Each time the client does an asynchronous write RPC, the server returns a cookie, which

acts as a verification token. When the client sends the commit RPC, the acknowledgment to that

RPC also includes a cookie. The client uses the cookie to determine whether the server has

rebooted between a call to write data and a later call to commit it. The cookie is guaranteed to be

the same throughout a single boot session of the server and to be different each time the server

reboots where uncommitted data may be lost. If the cookie changes, the client knows that it

must retransmit all asynchronous write RPCs done since the last commit RPC that were verified

with the old cookie value.

The NFS protocol does not specify the granularity of the buffering that should be used when files

are written. Most implementations of NFS utilize 8-Kbyte buffers when working on file blocks in

system memory. If an application writes 10 bytes in the middle of a block, the client reads the

entire block from the server, modifies the requested 10 bytes, and then writes the entire block

back to the server. The FreeBSD implementation also uses 8-Kbyte buffers, but it keeps

additional information that describes which bytes in the buffer are modified. If an application

writes 10 bytes in the middle of a block, the client reads the entire block from the server,

modifies the requested 10 bytes, but then writes back only the 10 modified bytes to the server.

The block read is necessary to ensure that, if the application later reads back other unmodified

parts of the block, it will get valid data. Writing back only the modified data has two benefits:

1. Fewer bytes are sent over the network, reducing contention for a scarce resource.

2. Nonoverlapping modifications to a file are not lost. If two different clients simultaneously

modify different parts of the same file block, both modifications will show up in the file since

only the modified parts are sent to the server. When clients send back entire blocks to the server,

changes made by the first client will be overwritten by data read before the first modification

was made and then will be written back by the second client.

654

Another performance problem that comes from the stateless nature of the NFS protocol is that

the server must check permissions for each I/O operation that a client requests. The server does

not support, nor understand, the concept of an open file; it only handles I/O operations based

on the paths that are sent by the clients. Checking the permissions on each request requires

extra filesystem accesses on the server, resulting in higher overhead per operation.

The FreeBSD NFS Implementation

The NFS implementation that appears in FreeBSD was written by Rick Macklem at the

University of Guelph, using the specifications of the Version 2 protocol published by Sun

Microsystems [Macklem, 1994a; Sun Microsystems, 1989]. He later extended it to support the

protocol extensions found in version 3 [Callaghan et al., 1995; Pawlowski et al., 1994], and has

most recently added support for version 4 of the protocol [Haynes & Noveck, 2014]. Table 11.1

lists the functionality in the version 3 protocol. Version 3 of the protocol provides the following:

• Sixty-four-bit file offsets and sizes

• An access RPC that provides server permission checking on file open, rather than having the

client guess whether the server will allow access

• An append option on the write RPC

• A defined way to make special device nodes and fifos

• Optimization of bulk directory access

• The ability to batch writes into several asynchronous RPCs followed by a commit RPC to

ensure that the data are on stable storage

• Additional information about the capabilities of the underlying filesystem

In addition to the version 2 and version 3 support, Rick Macklem made several other extensions

to the BSD NFS implementation; the extended version became known as the Not Quite NFS

(NQNFS) protocol [Macklem, 1994b]. The NQNFS extensions added support for extended file

attributes to support FreeBSD filesystem functionality more fully and a variant of short-term

leases with delayed-write client caching that provided distributed cache consistency and

improved performance [Gray & Cheriton, 1989]. Although the NQNFS extensions were never

widely adopted in version 3 implementations, they were instrumental in proving the value of

using leases in NFS. The leasing technology was adopted for use in the NFS version 4 protocol,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref05

655

not only for cache consistency and improved performance, but also as a mechanism to bound

the recovery time for locks.

The NFS implementation distributed in FreeBSD supports clients and servers running any of

versions 2, 3, or 4 of the NFS protocol. The code that implemented the experimental NQNFS

protocol was removed during the development of FreeBSD 5.

The FreeBSD client and server implementations of NFS are kernel resident. NFS interfaces to

the network with sockets via the kernel RPC layer. The kernel RPC layer contains calls to the

in-kernel versions of the socket routines sosend() and soreceive() (see Chapter 12 for a

discussion of the socket interface) and frees the NFS daemons from having to handle socket

communication on their own.

The less time-critical operations, such as the mounting and unmounting of remote filesystems,

as well as determination of which filesystems may be exported and to what set of clients they

may be exported are managed by user-level system daemons. For the server side to function, the

portmap, mountd, and nfsd daemons must be running. For full NFS functionality, the

rpc.lockd and rpc.statd daemons must also be running.

The portmap acts as a clearing house for the services provided by the machine on which it is

running. Whenever any RPC daemon is started, it tells the portmap daemon to what port

number it is listening and what RPC services it is prepared to serve. When a client wishes to

make an RPC call to a given service, it will first contact the portmap daemon on the server

machine to determine whether a service is available and, if it is available, the port number to

which RPC messages should be sent.

The interactions between the client and server daemons when a remote filesystem is mounted

are shown in Figure 11.2. The mountd daemon handles two important functions:

1. On startup and after a hangup signal, mountd reads the /etc/exports file and creates a list

of hosts and networks to which each local filesystem may be exported. It passes this list into the

kernel using the mount system call; the kernel links the list to the associated local filesystem

mount structure so that the list is readily available for consultation when an NFS request is

received.

2. Client mount requests are directed to the mountd daemon. After verifying that the client has

permission to mount the requested filesystem, mountd returns a file handle for the requested

mount point. This file handle is used by the client for later traversal into the filesystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig02

656

Figure 11.2 Daemon interaction when a remote filesystem is mounted. Step 1: The client’s

mount process sends a message to the well-known port of the server’s portmap daemon,

requesting the port address of the server’s mountd daemon. Step 2: The server’s portmap

daemon returns the port address of its server’s mountd daemon. Step 3: The client’s mount

process sends a request to the server’s mountd daemon with the pathname of the filesystem

that it wants to mount. Step 4: The server’s mountd daemon requests a file handle for the

desired mount point from its kernel. If the request is successful, the file handle is returned to the

client’s mount process. Otherwise, the error from the file-handle request is returned. If the

request is successful, the client’s mount process does a mount system call, passing in the file

handle that it received from the server’s mountd daemon.

The NFS server is implemented as a set of kernel libraries that are invoked by a pool of service

threads that remain perpetually resident in the kernel. The user level nfsd daemon creates, and

fills in, a structure that it passes to the nfssvc system call that tells the kernel how many NFS

daemon threads to run. Typical servers run four to six nfsd kernel threads but more may be

used to increase throughput if the underlying hardware has sufficient resources. Other than

starting the kernel nfsd master thread, the user level NFS daemon does very little work. The

nfsd kernel threads rely on the kernel RPC and service libraries.

Any kernel thread that wishes to provide an RPC creates a transport object and then registers it

with the service layer. To create a datagram-based transport service the thread uses the

svc_dg_create() routine while creating a connection-oriented service is accomplished with the

svc_vc_create() routine. After the transport is created, it must be registered with the service, in

order to start receiving RPCs, via the svc_reg() routine. All versions of NFS for both datagram

and connection oriented protocols register the nfssvc_program() entry point, which

demultiplexes incoming requests into the correct parts of the protocol libraries. Once the

demultiplexing is complete, the nfsd kernel thread verifies the sender and then passes the

request to the appropriate local filesystem for processing. When the result comes back from the

filesystem, it is returned to the requesting client. Each individual request results in a kernel

thread invoking nfssvc_program(), which returns once its work is complete. The maximum

657

degree of concurrency on the server is determined by the number of nfsd kernel threads that

are running.

For connection-oriented transport protocols, such as TCP, there is one connection for each

client-to-server mount point. For datagram-oriented protocols, such as UDP, the server creates

a fixed number of incoming RPC sockets when it starts its nfsd daemons; clients create one

socket for each imported mount point. The socket for a mount point is created in the kernel in

response to the mount command on the client calling the nmount() system call. The client side

uses it to communicate with the mountd daemon on the server. Once the client-to-server

connection is established, the daemon processes on a connection-oriented protocol may perform

additional verification, such as authentication. If the connection breaks while the mount point is

still active, the client will attempt a reconnect with a new socket.

For version 2 and version 3 of the NFS protocol, the rpc.lockd daemon manages locking

requests for remote files. Client locking requests are exported from the kernel through a fifo,

/var/run/lock. The rpc.lockd daemon reads the locking request from the fifo and sends the

lock request across the network to the rpc.lockd daemon on the server that holds the file. The

daemon running on the server opens the file to be locked and uses the flock system call to

acquire the requested lock. Once the lock has been acquired, the server daemon sends a message

back to the client daemon. The client daemon writes the lock status into the fifo, which is then

read by the kernel and passed up to the user application. The release of the lock is handled

similarly. If the rpc.lockd daemon is not run, then lock requests on NFS files will fail with an

“operation not supported” error.

The rpc.statd daemon cooperates with rpc.statd daemons on other hosts to provide a

status-monitoring service. The daemon accepts requests from programs running on the local

host (typically rpc.lockd) to monitor the status of specified hosts. If a monitored host crashes

and restarts, the daemon on the crashed host will notify the other daemons that it crashed when

it is restarted. When notified of a crash, or when a daemon determines that a remote host has

crashed because of its lack of response, it will notify the local program(s) that requested the

monitoring service. If the rpc.statd daemon is not run, then locks held by clients on a host that

crashed may be held indefinitely. By using the rpc.statd service, crashes will be discovered and

the locks held by a crashed host will be released.

The client side can operate without any daemons running, but the system administrator can

improve performance by running several nfsiod daemons. As with the server, for full

functionality the client must run the rpc.lockd and rpc.statd daemons.

The purpose of the nfsiod daemons is to perform asynchronous read-ahead and write-behind.

The daemons are typically started when the kernel begins running multiuser, and are started via

658

the nfsiod_setup() routine. They are completely kernel resident, providing a process context for

the NFS RPC client side. In their absence, each read or write of an NFS file that cannot be

serviced from the local client cache must be done in the context of the requesting process. The

process sleeps while the RPC is sent to the server, the RPC is handled by the server, and a reply

is sent back. No read-ahead is done and write operations proceed at the disk-write speed of the

server. When present, the nfsiod daemons provide a separate context in which to issue RPC

requests to a server. When a file is written, the data are copied into the buffer cache on the client.

The buffer is then passed to a waiting nfsiod that does the RPC to the server and awaits the

reply. When the reply arrives, nfsiod updates the local buffer to mark that buffer as written.

Meanwhile, the process that did the write can continue running. The NFS protocol flushes all

the blocks of a file to the server when that file is closed. If all the dirty blocks have been written

to the server when a process closes a file that it has been writing, it will not have to wait for them

to be flushed.

When reading a file, the client first hands a read-ahead request to the nfsiod that does the RPC

to the server. It then looks up the buffer that it has been requested to read. If the sought-after

buffer is already in the cache because of a previous read-ahead request, then it can proceed

without waiting. Otherwise, it must do an RPC to the server and wait for the reply. The

interactions between the client and server daemons when I/O is done are shown in Figure 11.3.

Figure 11.3 Daemon interaction when I/O is done. Step 1: The client’s process does a write

system call. Step 2: The data to be written are copied into a kernel buffer on the client, and the

write system call returns. Step 3: An nfsiod daemon awakens inside the client’s kernel, picks up

the dirty buffer, and sends the buffer to the server. Step 4: The incoming write request is

delivered to the next available nfsd daemon running inside the kernel on the server. The

server’s nfsd daemon writes the data to the appropriate local disk and waits for the disk I/O to

complete. Step 5: After the I/O has completed, the server’s nfsd daemon sends back an

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig03

659

acknowledgment of the I/O to the waiting nfsiod daemon on the client. On receipt of the

acknowledgment, the client’s nfsiod daemon marks its local buffer as clean.

Client–Server Interactions

A local filesystem is unaffected by network service disruptions. It is always available to the users

on the machine unless there is a catastrophic event, such as a disk or power failure. Since the

entire machine hangs or crashes, the kernel does not need to concern itself with how to handle

the processes that were accessing the filesystem. By contrast, the client end of a network

filesystem must have ways to handle processes that are accessing remote files when the client is

still running but the server becomes unreachable or crashes. Each NFS mount point is provided

with three alternatives for dealing with server unavailability:

1. The default is a hard mount that will continue to try to contact the server indefinitely to

complete the filesystem access. This type of mount is appropriate when processes on the client

that access files in the filesystem do not tolerate I/O system calls that return transient errors. A

hard mount is used for processes for which access to the filesystem is critical for normal system

operation. It is also useful if the client has a long-running program that simply wants to wait for

the server to resume operation (e.g., after the server is taken down for maintenance).

2. The other extreme is a soft mount that retries an RPC a specified number of times, and then

the corresponding system call returns with a transient error. For a connection-oriented protocol,

the actual RPC request is not retransmitted; instead, NFS depends on the protocol

retransmission to do the retries. If a response is not returned within the specified time, the

corresponding system call returns with a transient error. The problem with this type of mount is

that most applications do not expect a transient error return from I/O system calls (since they

never occur on a local filesystem). Often, they will mistakenly interpret the transient error as a

permanent error and will exit prematurely. An additional problem is deciding how long to set

the timeout period. If it is set too low, error returns will start occurring whenever the NFS server

is slow because of heavy load or when the network is heavily loaded. Alternately, a large retry

limit can result in a process being hung for a long time because of a crashed server or network

partitioning.

3. Most system administrators take a middle ground by using an interruptible mount that will

wait forever like a hard mount but checks to see whether a termination signal is pending for any

process that is waiting for a server response. If a signal (such as an interrupt) is sent to a process

waiting for an NFS server, the corresponding I/O system call returns with a transient error.

Normally, the process is terminated by the signal. If the process chooses to catch the signal, then

it can decide how to handle the transient failure. This mount option allows interactive programs

660

to be aborted when a server fails, while allowing long-running processes to await the server’s

return.

Security Issues

NFS versions 2 and 3 are not secure because the protocol was not designed with security in

mind. Despite several attempts to fix security problems in these versions, NFS security is still

limited. In particular, the security work only addresses authentication; file data are sent over the

network in clear text. Even if someone is unable to get your server to send him or her a sensitive

file, he or she can just wait until a legitimate user accesses it, and then can pick it up as it goes by

on the net. Much of the work that went into version 4 addressed both authentication and data

security. As version 4 moves into general use, NFS filesystems will be able to be run more

securely than previously.

NFS export control is at the granularity of local filesystems. Associated with each local

filesystem mount point is a list of the hosts to which that filesystem may be exported. A local

filesystem may be exported to a specific host, to all hosts that match a subnet mask, or to all

other hosts (the world). For each host or group of hosts, the filesystem can be exported

read-only or read–write. In addition, a server may specify a set of subdirectories within the

filesystem that may be mounted. However, this list of mount points is enforced by only the

mountd daemon. If a malicious client wishes to do so, it can access any part of a filesystem that

is exported to it.

The final determination of exportability is made by the list maintained in the kernel. As a result,

even if a rogue client manages to snoop the net and to steal a file handle for the mount point of a

valid client, the kernel will refuse to accept the file handle unless the client presenting that

handle is on the kernel’s export list. When NFS is running with TCP, the check is done once

when the connection is established. When NFS is running with UDP, the check must be done for

every RPC request.

The NFS server also permits limited remapping of user credentials. Typically, the credential for

the superuser is not trusted and is remapped to the low-privilege user “nobody.” The credentials

of all other users can be accepted as given or also mapped to a default user (typically “nobody”).

Use of the client UID and GID list unchanged on the server implies that the UID and GID space

are common between the client and server (i.e., UID N on the client must refer to the same user

on the server). One of the main problems in the deployment of NFS in large, heterogeneous

environments is the need for a unified UID and GID space. The system administrator can

support more complex UID and GID mappings by using the umapfs filesystem described in

Section 7.5.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec5

661

NFSv3 can use Kerberos to authenticate users of the system. A fuller discussion of the use of

Kerberos within NFS is presented in Section 11.3.

Techniques for Improving Performance

Remote filesystems face a challenging performance problem: providing both a coherent

network-wide view of the data and delivering that data quickly are often conflicting goals. The

server can maintain coherency easily by keeping a single repository for the data and sending

them out to each client when the clients need them; this approach tends to be slow because

every data access requires the client to wait for an RPC round-trip time. The delay is further

aggravated by the huge load that it puts on a server that must service every I/O request from its

clients. To increase performance and to reduce server load, remote filesystem protocols attempt

to cache frequently used data on the clients themselves. If the cache is designed properly, the

client will be able to satisfy many of its own I/O requests directly from the cache. Performing

these accesses is faster than communicating with the server, reducing latency on the client and

load on the server and network. The hard part of client caching is keeping the caches

coherent—that is, ensuring that each client quickly replaces any cached data that are modified

by writes done on other clients. If one client writes a file that is later read by a second client, the

second client wants to see the data written by the first client, rather than the stale data that were

in the file previously. There are two main ways that the stale data may be read accidentally:

1. If the second client has stale data sitting in its cache, the client may use those data because it

does not know that newer data are available.

2. The first client may have new data sitting in its cache but may not yet have written those data

back to the server. Here, even if the second client asks the server for up-to-date data, the server

may return the stale data because it does not know that one of its clients has a newer version of

the file in that client’s cache.

The second of these problems is related to the way that client writing is done. Synchronous

writing requires that all writes be pushed through to the server during the write system call.

This approach is the most consistent because the server always has the most recently written

data. It also permits any write errors, such as “filesystem out of space,” to be propagated back to

the client process via the write system-call return. With an NFS filesystem using synchronous

writing, error returns most closely parallel those from a local filesystem. Unfortunately, this

approach restricts the client to only one write per RPC round-trip time.

An alternative to synchronous writing is delayed writing, where the write system call returns as

soon as the data are cached on the client; the data are written to the server sometime later. This

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec3

662

approach permits client writing to occur at the rate of local storage access up to the size of the

local cache. Also, for cases where file truncation or deletion occurs shortly after writing, the

write to the server may be avoided entirely because the data have already been deleted. Avoiding

the data push saves the client time and reduces load on the server.

There are some drawbacks to delayed writing. To provide full consistency, the server must notify

the client when another client wants to read or write the file so that the delayed writes can be

written back to the server. There are also problems with the propagation of errors back to the

client process that issued the write system call. For example, a semantic change is introduced by

delayed-write caching when the file server is full. Here, delayed-write RPC requests can fail with

an “out of space” error. If the data are sent back to the server when the file is closed, the error

can be detected only if the application checks the return value from the close system call. For

delayed writes, written data may not be sent back to the server until after the process that did

the write has exited—long after it can be notified of any errors. The only solution is to modify

programs writing an important file to do an fsync system call and to check for an error return

from that call instead of depending on getting errors from write or close. Finally, there is a risk

of the loss of recently written data if the client crashes before the data are written back to the

server.

A compromise between synchronous writing and delayed writing is asynchronous writing. The

write to the server is started during the write system call, but the write system call returns

before the write completes. This approach reduces the risk of data loss because of a client crash

but negates the possibility of reducing server write load by discarding writes when a file is

truncated or deleted.

Since NFS has no way of knowing when write sharing might occur, it tries to bound the period of

inconsistency by writing the data back when a file is closed. Files that are open for long periods

are written back when their oldest dirty data becomes 30 seconds old. Thus, the NFS

implementation does a mix of asynchronous and delayed writing, but it always pushes all writes

to the server on close. Pushing the delayed writes on close negates much of the performance

advantage of delayed writing because the delays that were avoided in the write system calls are

observed in the close system call. With this approach, the server is always aware of all changes

made by its clients with a maximum delay of 30 seconds and usually sooner, because most files

are open only briefly for writing.

The server maintains read consistency by always having a client verify the contents of its cache

before using that cache. When a client reads data, it first checks for the data in its cache. Each

cache entry is stamped with an attribute that shows the most recent time that the server says

that the data were modified. If the data are found in the cache, the client sends a timestamp RPC

663

request to its server to find out when the data were last modified. If the modification time

returned by the server matches that associated with the cache, the client uses the data in its

cache; otherwise, it arranges to replace the data in its cache with the new data.

The problem with checking with the server on every cache access is that the client still

experiences an RPC round-trip delay for each file access, and the server is still inundated with

RPC requests, although they are considerably quicker to handle than are full I/O operations. To

reduce this client latency and server load, most NFS implementations track how recently the

server has been asked about each cache block. The client then uses a tunable parameter that is

typically set at a few seconds to delay asking the server about a cache block. If an I/O request

finds a cache block and the server has been asked about the validity of that block within the

delay period, the client does not ask the server again, but just uses the block. Because certain

blocks are used many times in succession, the server will be asked about them only once, rather

than on every access. For example, the directory block for the /usr/include directory will be

accessed once for each #include in a source file that is being compiled. The drawback to this

approach is that changes made by other clients may not be noticed for up to the delay number of

seconds.

A more consistent approach used by some network filesystems is to use a callback mechanism

where the server keeps track of all the files that each of its clients has cached. When a cached file

is modified, the server notifies the clients holding that file so that they can purge it from their

cache. This algorithm dramatically reduces the number of queries from the client to the server,

with the effect of decreasing client I/O latency and server load [Howard et al., 1988]. The

drawback is that this approach introduces state into the server because the server must

remember the clients that it is serving and the set of files that they have cached. If the server

crashes, it must rebuild this state before it can begin running again. Rebuilding the server state

is a significant problem when everything is running properly; it gets even more complicated and

time-consuming when it is aggravated by network partitions that prevent the server from

communicating with some of its clients [Mogul, 1993].

The FreeBSD NFS implementation uses asynchronous writes while a file is open but

synchronously waits for all data to be written when the file is closed. This approach gains the

speed benefit of writing asynchronously, yet ensures that any delayed errors will be reported no

later than the point at which the file is closed. The implementation will query the server about

the attributes of a file at most once every 3 seconds. This 3-second period reduces network

traffic for files accessed frequently, yet ensures that any changes to a file are detected with no

more than a 3-second delay. Although these heuristics provide tolerable semantics, they are

noticeably imperfect.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref15

664

11.3 NFS Evolution

Over its 25-year history, the NFS protocol has had to evolve to meet changing technology and

user requirements. Many of the features that were considered experimental extensions to

version 3 of NFS, as well as the work done in NQNFS, have been codified and included as fully

fledged features in the latest versions of the protocol, NFS version 4.0 and 4.1. NFS version 3, in

particular, depended on external daemons for certain operations, such as locking, that have now

been subsumed into the base protocol in version 4, obviating the need for supplementary

daemons. The scale of the work undertaken to update NFS for version 4 was monumental, with

the initial update to version 4.0 spanning over 250 pages of description [Shepler et al., 2003].

Version 4.1, an update to version 4.0, is described in an even larger, 600-page-plus document,

although much of the length of the update can be attributed to the more extensive description of

each of the possible NFS operations [Shepler et al., 2010]. FreeBSD contains an implementation

of both a client and server that supports the NFS protocol up through version 4.1. This section

describes the design and implementation of both of the protocols as if they were one. The

differences between the major version and the revision will be noted only when absolutely

necessary. The NFSv4.0 RFC lists four goals for the latest version of the protocol:

• Improved access and good performance on the Internet. The protocol should not only do well

in a high-bandwidth/low-latency network such as a LAN, but also over a

low-bandwidth/high-latency network such as a WAN. The earlier versions of the protocol

operate poorly over WANs.

• Strong security with negotiation built into the protocol. When NFS was first designed,

computers that were powerful enough to run a UNIX-like operating system were generally used

in medium to large installations and were not carried around by individuals who might connect

them to an insecure network and then expect to get full access to their files on a server. The

advent of mobile computing and pervasive, high-speed, wireless networking has made it so that

all network protocols must address security concerns, and NFS is no different. Version 4 of the

protocol had security mechanisms designed into it from the beginning.

• Good cross-platform interoperability. NFS was designed so that computers running UNIX-like

operating systems, with similar directory structures and file operations, could share a

centralized store of files. The adaptation of NFS to non-UNIX environments required rethinking

the protocol so that more types of clients could interoperate with NFS servers.

• Designed for protocol extensions. A shortcoming of both version 2 and version 3 of the NFS

protocol was that it was virtually impossible to extend once it had been deployed. An inability to

evolve the protocol has meant that necessary changes took a long time to get into the field.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref21

665

Revision 4.1 of the NFS protocol adds a few new goals:

• Correct significant structural weaknesses and oversights discovered in version 4.0 of the

protocol

• Add clarity and specificity to areas left unaddressed or not addressed in enough detail in

version 4.0 of the protocol

• Add specific features based on experience with the existing protocol and recent industry

developments

• Provide protocol support for clustered-server deployments including providing scalable

parallel access to files distributed across multiple servers

NFSv4 is a significantly different protocol from its predecessors. A fundamental change in

NFSv4 is the move to a stateful protocol. Many of the new features in version 4, such as caching,

delegation, and locking, require that the server maintain state. Another significant change

comes at the lowest level of the protocol where the 20 standard RPCs present in version 3 of the

protocol have been replaced with two regular procedures, NULL and COMPOUND, and two

callback procedures, CB_NULL and CB_COMPOUND. The operations that were previously

encoded as their own RPCs in NFS versions 2 and 3 (see Section 11.2) are now encoded as

operations within the COMPOUND or CB_COMPOUND RPCs. The COMPOUND procedure

encapsulates, in a single RPC call, several NFS operations that are to be carried out by the server.

When a server receives a COMPOUND RPC, it attempts to perform the operations encapsulated

therein, in the order in which they are encoded into the message. If an error occurs in processing

any of the operations received in the COMPOUND RPC, processing immediately stops and an

error is returned. Encapsulating multiple operations into a single message can help to improve

the performance of NFS by reducing the number of round trips that each operation requires. In

practice, it has not been possible to group operations within the COMPOUND RPCs because too

often one operation is dependent on the successful completion of a previous operation. Although

the current implementation of NFSv4 in FreeBSD groups between 3 and 5 operations, the

number of messages needed to do an operation in NFSv4 is the same as NFSv3.

Comparing the set of operations available in NFSv4, shown in Table 11.2 with the RPCs that

were given in Table 11.1 shows that there are more than twice as many available in NFSv4. The

new operations exist to support new features available in NFSv4 including locking, which was

handled by a separate protocol under previous versions of NFS, delegations, which allow for

local open and lock operations to be carried out on the client; and more aggressive caching of

file data and attributes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab01

666

667

Table 11.2 NFS Version 4 operations.

A significant change between previous versions of NFS, and NFSv4 is the addition of explicit

OPEN and CLOSE operations. Integrating support for features that require state, such as

locking and caching, lead to the addition of OPEN and CLOSE, which bring the filesystem

semantics present in NFSv4 closer to those of a stateful local filesystem such as UFS. In previous

versions of NFS, all the client needed to manipulate a file on the server was the file’s handle.

NFSv4 requires clients to open a file and obtain a file handle specific to that file before it can

perform operations such as reading and writing data.

668

The original version of NFS targeted UNIX and UNIX-like operating systems in which there was

always a single unique filesystem root. Systems such as Windows have a root for each filesystem

that appears as the drive letter, C:, D: etc. Version 4 of the protocol tries to address the

multiple-root problem by having the server maintain a pseudo-filesystem hierarchy that

brings back the concept of a single root to the filesystem tree. The motivation for providing a

single namespace comes from the way that many users access their files. They progressively

browse the directory and file hierarchy through a graphical chooser or via tab completion on the

command line.

A way to reduce the load on the server and to improve the user’s experience on the client is to

allow the client to cache as much file and metadata as possible. Removing round trips between

the client and server by keeping copies of data at the client is a well-known technique for

improving performance in a distributed system. Caching data at the client introduces the

problem discussed in Section 11.2, maintaining the coherence of data over many systems which

must be handled carefully to avoid cases where data are mangled or lost by conflicting changes

submitted by different clients. If two clients have opened and modified the same file, and those

modifications occur on copies of the data that are locally cached at the client, then the server has

no way of knowing which modification is correct and which should be thrown away. To avoid

cache-coherency problems, NFSv4 only allows a client to cache information if either it is the

only one writing data to the file or if all clients are only reading from the file. When a server

allows a client to cache data, it is said to be delegating responsibility for that data to the client.

To properly support delegation, the protocol must also have a way to regain control over the

data it delegated, for example, if a second client requests to open a file for writing. To regain

control over a delegated piece of data, the server uses a callback mechanism to contact the client

to which it has delegated the data and tell the client that the data can no longer be cached. In the

absence of delegations, NFSv4 reverts to caching data, similarly to the way it was cached in

NFSv3, by having the client periodically check for file change with the server.

Namespace

A problem users encounter when browsing a server’s filesystem under version 2 or 3 of NFS is

reaching a dead end in the directory hierarchy caused by having to cross a mount point. On a

simple server, all the underlying filesystems might be exported to all clients, but exporting to all

clients would be an unusual case. More commonly, a subset of the filesystems are exported, such

as those in Table 11.3, where there are two exported filesystems, / and /usr/ports bracketing

one that is not exported. In previous versions of NFS, users that had changed their directory to

the root would not be able to see /usr/ports from the root directory because the /usr volume

was not exported, leaving a hole in the directory hierarchy. NFSv4 servers maintain a complete

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab03

669

hierarchy of their exported filesystems filling in any holes with pseudo-filesystems that appear

to the client as read-only exports.

Table 11.3 Unified namespace.

Representing a unified namespace to the client requires the server to handle four operations

differently from all others. The LOOKUP, GETATTR, GETFH, and SECINFO operations are the

only client requests that are allowed to cross mount-points on the server. The function

nfsrvd_compound(), which handles all COMPOUND RPCs for the server, checks to see if the

operation is one of the four listed above and returns an error to the client if any other operation

attempts to cross a mount point. It is by allowing these four operations to cross mount points

that the client and server can present a unified filesystem hierarchy to the user.

Attributes

Version 3 of the NFS protocol contained limited support for file attributes. Attributes are

metadata that are associated with a file, such as its size, and the times at which it was created,

modified, and accessed. The original 13 file attributes that were available in NFSv3 proved to be

insufficient for more modern filesystems that store more metadata. Information such as

whether the file has been recently archived or the maximum supported file size, only some of

which may be supported by a filesystem, are handled as attributes within NFSv4.

Clients have the ability to request attributes on an operation-by-operation basis, which means

that the client can be highly specific about what it wants to know about the server or any object

stored on it. The attributes that the server supports are themselves communicated as an

attribute between the server and the client. The OPEN operation only asks for 2 attributes, the

most recent modification time of the file and a server-generated change value that is used by the

client to determine if the file or any of its associated metadata have been changed. The attribute

is generated by the server, stored by the client, and used periodically after a successful OPEN

call to make sure that the file has not changed on the server. A file can change when it is opened

by multiple writers or when a user local to the server modifies the file directly. The ACCESS

operation, which determines if the user can access an object, asks for 16 different attributes,

670

including the file’s owner and group, the file’s mode, and the largest read request that the server

will support. Unlike previous versions of NFS, the owner and group for a filesystem object are

not a numeric user id and group id. Rather, they are strings that encode the user and domain

name of the system, for example, gnn@FreeBSD.org.

The RFC defines three groups of attributes for version 4 of NFS. Required attributes are those

pieces of metadata that every server must provide and every client must be able to handle.

Examples of required attributes are file size, file type, and whether the server supports links.

Recommended attributes are those that the authors of the RFC felt would be best for servers to

support but are not strictly necessary. An example of a recommended attribute is an

access-control list. The next subsection discusses recommended attributes such as whether a file

should be considered as hidden by the Windows operating system, the maximum size of files,

links and names supported by the server, and many others. The NFSv4 RFC includes 43

recommended attributes.

A goal for the NFSv4 protocol is extensibility, which includes being able to extend the set of

attributes that can be associated with a filesystem object. Named attributes make extensibility of

the attribute system in the field possible. A named attribute can be thought of as a key/value

pair, where both the key and value are uninterpreted strings that can be associated with any

filesystem object. The implementation of named attributes is dependent on the server, but the

most common implementation creates a directory of named attributes. This attribute directory

is sometimes referred to as a fork file. Each attribute appears as a file in this attribute directory.

Each attribute file can be opened, read, and written to modify the named attribute. Named

attributes are not supported by the FreeBSD 10 NFSv4 server.

Clients request attributes by using the GETATTR operation that is encoded into a COMPOUND

RPC, with other operations such as ACCESS and OPEN. Unlike previous versions of NFS,

attributes are not sent in a fixed-size structure. They are requested when the client sets specific

bits in a bit array. The implementation of NFSv4 in FreeBSD uses a set of macros to simplify

handling the bits in the attribute array. The server replies to each GETATTR query from the

client using the same 64-bit-wide array to indicate to the client which of the requested attributes

are present. A single routine, nfsv4_fillattr(), does all the work of encoding attributes on the

server. Centralizing the handling of attributes makes the code easier to manage and update.

Clients can also set attributes on filesystem objects on the server by using the SETATTR

operation. An example of setting an attribute is changing the access control list on an object, as

discussed in the next subsection.

mailto:gnn@FreeBSD.org
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_125

671

Access Control Lists

Although it is possible to use UNIX-style users, groups, and mode bits to control access to a set

of files, such a system is limited in several ways. The first limitation is that there are clients such

as Windows that do not understand UNIX user and group IDs, or UNIX mode bits. The second,

and more important, limitation is that users and groups do not scale well in a heterogeneous

environment. If two different departments both allocate user and group numbers independently,

there is a high likelihood of a collision should these users and groups ever attempt to share a

single filesystem. Forcing one set of users to change their user and group IDs can be a daunting

task if there are many files that need to have their user and group IDs changed. Finally, the

traditional UNIX model is often too coarse grained for large organizations that have multiple

layers of security. For these reasons NFSv4 has added support for Access Control Lists

(ACLs) to the protocol.

An ACL can express a specific set of permissions on any object in the filesystem, including files,

directories, and links. Several filesystems present in FreeBSD including UFS and ZFS have

built-in support for ACLs. For information on how ACLs are represented in a filesystem, see

Section 5.7. ACLs in NFSv4 are a way of communicating the ACLs present in the filesystem over

the network. The structures for ACLs are shared between NFSv4 and the on-disk filesystems

ZFS and UFS. ACLs are contained in attributes, which is why setting or retrieving an ACL is

done with the SETATTR and GETATTR operations rather than with a dedicated set of

operations just for ACLs. Several operations can handle ACLs including: OPEN, CREATE,

SETATTR, and GETATTR.

Caching, Delegation, and Callbacks

One way to improve the performance of a distributed system is to cache as much data and do as

many operations at the client as possible. There are three caching scenarios in a distributed

filesystem:

1. A file is being read by one or more clients. The file can be cached at all the clients at the same

time as long as there are no updates to the file’s data, and only minor changes to its metadata,

such as changes to its time of last access.

2. A file is being written by a single client. The client that is writing the file may cache writes

locally so that updates to the file are batched before being sent to the server, thereby improving

write performance.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec7

672

3. A file is being both read and written simultaneously on several clients and, therefore, cannot

be cached at any of the clients but must be updated and accessed only on the server.

To properly handle all three of these scenarios and the inevitable transitions between them,

NFSv4 provides clients with the ability to work with files locally through a mechanism called

delegation. NFSv4 maintains control over delegated files via a series of callbacks from the

server to the client. Caching and delegation are intimately related with normal file operations.

This section illustrates these mechanisms by describing how the client and server establish

communication and how they work together during the typical operation where clients are

opening, closing, reading, and writing files.

Before a client can open a file, it must first mount the filesystem exported by the server, at which

time several key structures are created. An NFSv4 client begins the mounting process by testing

to see if the server exists using a CB_NULL message. If the client receives a correct reply, it then

establishes a session with the server. Mounting an NFSv4 filesystem requires the creation of two

persistent pieces of information shared by the client and the server. A client ID is created to

identify the client and a session ID identifies all operations between the client and the server.

The client ID is a unique 64-bit value that identifies each client from the server’s perspective.

The client establishes its identity with the server by using an EXCHANGE_ID operation. The

EXCHANGE_ID operation is the first of a twopart operation that establishes the identity of the

client on the server. The exchange_id() service executing in the server’s kernel allocates an

nfsclient structure that tracks all the client’s interactions with the server. The nfsclient structure

is retained until either the client unmounts all the filesystems that it has mounted from the

server or the server or client crash. The process of mounting a filesystem is shown in Figure 11.4.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig04

673

Figure 11.4 Mounting an NFSv4 Filesystem. Step 1: Client looks for the server with a

CB_NULL RPC. Step 2: The Server replies to the CB_NULL. Step 3: Client requests a client ID

from the server with an EXCHANGE_ID call. Step 4: The Server replies with a valid client ID

constructed from their server’s boot time and an incrementing boot count. Step 5: Client

establishes a session with a CREATE_SESSION RPC. Step 6: The Server returns a set of

communication parameters to the client establishing the session. Step 7: The Server checks to

see whether the client is running the nfscbd daemon with its own CB_NULL call. Step 8: The

client’s nfscbd daemon replies to the CB_NULL RPC.

Structures in the FreeBSD NFS implementation are named such that they can be easily

identified as belonging either to the client or the server code. All structures that are part of the

client software have the letters “cl” embedded between “nfs” and the structure’s descriptive

name. Thus, the structure that encapsulates the client’s state in the client code is named

nfsclclient, while the server structure that encapsulates the client’s state is named nfsclient.

Table 11.4 lists several of the client and server structures.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab04

674

Table 11.4 Client and server data structures.

When the server is contacted by a client with an EXCHANGE_ID call, it searches its client hash

list for a pre-existing instance of the client and if no preexisting client is found, initializes a new

nfsclient structure. Each client is assigned a unique client ID based on the boot time of the

server and an incrementing counter. The combination of the boot time and the counter make

client IDs unique across server reboots. This information is used by the client to detect when it

must recover state from a crashed server. The boot time increases whenever the server is

rebooted; a client that sends a request with an out-of-date client ID will receive an error from

the server.

The second part of establishing initial communication between a client and server is the creation

of a session. The next operation after the EXCHANGE_ID must be a CREATE_SESSION as no

other operations can take place until a session has been created. All operations in NFSv4, other

than the establishment of the client ID, occur as part of a session.

The session concept was added during the update to NFSv4.1 and does not exist in version 4.0.

One reason sessions were added was to provide exactly once semantics. On the server side,

each session has associated with it a set of available slots. Operations posted to a slot will always

be serialized; they will never be run in parallel. If a client wants to serialize a set of calls, for

example, a series of locking operations, it will use the same slot on the server for all the locking

calls so that the RPC calls are serialized on that single slot. Operations that do not require

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_109

675

serialization, such as reads, can be spread across the slots to increase parallelism and receive the

fastest level of service from the server.

A session describes all the state necessary for the client and server to communicate, including

several parameters that influence resource allocation and performance. The parameters

negotiated as part of setting up a session include the maximum number of concurrent requests

the session can carry at any one time, the maximum number of operations per request, and the

maximum number of replies that the server can cache. Fine-grained performance tuning can be

implemented using the session parameters, as they allow the server to express what it can

handle in terms of parallelism and the amount of state it is willing to maintain on behalf of each

client. To create a session, the client sends its client ID to the server along with its set of

requested communications parameters. The server responds with a session ID and a possibly

modified set of communications parameters. If the parameters are unacceptable to either the

client or the server, then an error is returned and the session is not created. Once the client and

server have created a session, the structures shown in Figure 11.5 are in place. The session

structure on both the client and the server contain the negotiated communication parameters

for use by the kernel when filesystem operations are executed. To complete the mounting

process the server sends a CB_NULL RPC to the client and waits for a reply. If the server

receives a reply to its CB_NULL call, it can then allow the client to cache data through the

delegation process. If there is no reply to the CB_NULL RPC then the server will never grant a

delegation to the client but will allow the client to receive file services. The callback mechanism

is not used to test the network path between the client and server, as the client and server have

already demonstrated their ability to properly communicate over the network. The server sends

the call back to the client to ensure that the client is running the call back service, which is what

allows the server to recall a delegation.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig05

676

Figure 11.5 Session and client structure (server side).

The need to handle callbacks in the NFSv4 protocol has led to the creation of a new daemon that

must run on the client and whose job it is to receive and respond to the callbacks. The nfscbd

program is an optional daemon that must be run if the client is to receive delegations. It is

nfscbd that responds to the CB_NULL RPCs sent by the server, and to which all

CB_COMPOUND RPCs will be sent. The full complement of callback operations is given in

Table 11.5. The daemon itself is simple; like the NFS daemons described in Section 11.2, it is

implemented by a set of kernel libraries that register a callback, nfscb_program(), with the

kernel RPC service. The nfscb_program() interprets the CB_COMPOUND or CB_NULL RPC

that it receives and takes the appropriate action. While it would be possible to add the callback

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11lev1sec2

677

functionality directly into the nfsd program, it is cleaner and simpler to place it in its own

daemon.

Table 11.5 NFS Version 4.1 callback operations from server to client.

Once the client and state IDs and client and session structures are set up, the client can ask for

services from the server.

NFSv4 uses delegations combined with a system of callbacks to provide clients the ability to

cache both data and metadata. Figure 11.6 shows a typical delegation and recall scenario. A

delegation is a recallable right granted by the server to the client that allows the client to

perform operations locally for a fixed but extendable period of time without consulting the

server. Delegations are always under the control of the server and may be revoked at any time.

There are two important problems that NFSv4 has to handle with respect to delegations. The

first is that the server must be able to revoke a delegation. Revoking a delegation requires the

server to contact the client, which reverses the normal client-server relationship seen in

previous versions of NFS. The second problem is that the client or server may crash or they may

be unable to communicate for some period of time because of a network partition. If the server

is unable to retrieve a delegation from a client, then it cannot allow other clients to proceed with

operations on the same file. To prevent files from being caught in this deadlock situation, the

server only allows the client to use a delegation for a fixed period of time, which is called a lease.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig06

678

Figure 11.6 Delegating and recalling delegations. Step 1: Client A opens file foo.txt and wishes

to cache it locally. Step 2: The server replies to the OPEN and includes an

OPEN_DELEGATE_WRITE delegation type. Step 3: Client B asks the server for foo.txt, the

same file that client A asked for in Step 1. Step 4: The server informs client A, via a

CB_COMPOUND callback, that it must return the delegation for foo.txt. Step 5: Client A

flushes any of its pending changes to foo.txt and returns the delegation by sending a

DELEG_RETURN message to the server. Step 6: The server finishes the open and grants a file

handle for foo.txt to client B with a delegation type of DELEGATE_NONE.

A lease is a piece of data that acts as a contract between the client and server, permitting an

activity that is valid until some expiration time. As long as a client holds a valid lease, it knows

that the server will not violate the terms of the contract, for example, by handing out a

conflicting lock to another client. The server maintains a single lease for each client and the

lease covers all the state including delegations and locks that are granted to the client. When the

client first contacts the server and establishes a session, it will ask for the lease time via a

GETATTR request and the server will return the lease time, which by default is 120 seconds. The

client must renew the lease before the lease period ends. A lease is only considered stale by the

server if it is older than five times the lease duration. If the client fails to renew the lease, it must

return all the delegations and locks that were previously granted by the server. Several common

operations, including opening or locking files, will cause the lease time to be extended. The

679

server will respond with an error of NFS4ERR_EXPIRED to any operation from a client whose

client ID has expired. The client must contact the server before the lease has expired if it wants

to continue to hold the lock.

Leases are issued using time intervals rather than absolute times to avoid the requirement of

time-of-day clock synchronization. If NFSv4 used absolute times for its leases, then the server

and all its clients would need to have their clocks synchronized, via an external time protocol

such as NTP or PTP, so that they would all share the same concept of the current time [Mills,

1992; IEEE, 2008]. By using an interval time, the server and clients can all have completely

unsynchronized clocks and still execute the lease protocol correctly because each system has the

ability to know when a certain amount of time has passed. A small amount of slop is allowed

into the lease calculation to account for differing clock speeds between the clients and the

server.

The server attempts to maintain client state as long as possible and will not forcibly remove a

client that has delegations or active opens so long as it has enough resources to maintain the

state. Each server has a maximum number of active clients that it is willing to service, 1000 by

default, and so long as this number is not exceeded, a client’s state ID, and therefore its implied

lease, can remain active on the server for up to a week.

Each session has only one lease expiration time associated with it and all operations that must

operate under a lease, including locking and delegations, are constrained by the same timeout.

Although there is a specific operation to renew a lease it is rarely used because any operation

initiated by the client that contains a valid client ID extends the lease time. Operations that

extend the lease include OPEN, CLOSE, READ, WRITE, LOCK, and several others. When a lease

has almost expired, and no other operation has taken place that might extend it, the client will

attempt to extend the lease using the RENEW operation. If the request to renew the lease is

granted, then operations can continue as before, with the new lease expiration being another

120 seconds into the future. When the server denies the request, the client loses all its locks and

share reservations that it had in place up to the point when it received the denial from the

server.

Clients that open a file exclusively for reading where no client is attempting to write, may cache

data from the opened file and may also repeatedly open the same file without contacting the

server. If a server has delegated control of a file to a client and then another client attempts to

open the file for writing, the server must invalidate the original delegation and the first client

must return the delegation to the server before the second client can be given access to the file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref09

680

Locking

Previous versions of NFS did not include support for file or record locking as part of the protocol.

Limited support for locking was provided in NFSv3 by an out-of-band protocol and an external

daemon, the Network Lock Manager. NFSv4 distinguishes between two cases when dealing with

locks: a byte-range lock and a lock on an entire file, which is referred to in the protocol as a

share reservation. Whole-file locking is handled through the OPEN RPC. When a client opens a

file it specifies the type of access that it wishes to have: read, write, or both. It also specifies the

level of control it wishes to maintain over the entire file in the form of a set of share deny bits, as

shown in Table 11.6. During on open file operation, the client can indicate that it needs exclusive

control over read, write, or both operations. A client that does not need to lock a file in any way

specifies a share deny of none.

Table 11.6 Open share types.

The server maintains a global structure that is a hashed list of all locks relating to files.

Whenever a file is opened, a new nfslockfile structure is allocated and added to the nfslockhash

table whether the client is asking the server to lock the file or a byte range within it. An

nfslockfile structure exists for all open files so that there is one common place to which the

server can refer to check on or allocate locking state in the future.

Byte-range locks are acquired and released via a separate set of RPC calls: LOCK, LOCKU, and

LOCKT, which respectively lock, unlock, and test for byte-range locks. A single, large, routine,

nfsrv_lockctrl() is at the center of all byte-range-locking operations and is called by the server’s

nfsrvd_lock(), nfsrvd_locku(), and nfsrvd_lockt() routines, which map to the RPC operations

listed above. File locking is handled via the nfsrv_open() routine as described earlier in this

section. Prior to locking a byte range, the nfsrv_lockctrl() routine must first check to make sure

that there are no conflicting delegations or conflicting locks. A conflicting delegation would exist

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab06

681

only if another client had been granted a write delegation in the past. The write delegation must

be recalled by the callback mechanism before the lock can be granted. Read delegations do not

conflict with locks because the lock does not deny a client the ability to read data. The server

locks a range of bytes within a file by adding an nfslock structure to the nfslockfile structure

associated with the underlying file. When the client requests a byte-range lock, the server looks

up the nfslockfile structure for the underlying file and searches the lf_lock list for any conflicting

locks. If no conflicting lock is found, then a new nfslock structure is allocated and added to the

list of locks for the file. The list of locks is kept in increasing order of byte range so that only a

single pass over the list is necessary to find potential conflicts as well as the proper location to

add or coalesce entries. All the actual changes to the file’s locking state are handled by the

nfsrv_updatelock() routine, which is responsible for adding and removing lock structures from

the file’s lf_lock list. Figure 11.7 shows an example containing two files, one of which has two

byte-range locks. Acquiring a lock is considered a heavyweight operation in which much state

may be passed between the client and the server. Reading and writing data, which should be the

majority of the work of the protocol, should not be burdened with the state needed to maintain

control of a lock.

Figure 11.7 NFSv4 locking data structures.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11fig07

682

Both share reservations and byte-range locks are acquired under the same lease that is used for

delegations. The lease limits the time that the client can maintain a lock on a file or piece of a file

without a renewal.

Security

Versions 2 and 3 of NFS had little support for security features. Since the original goal of the

NFS protocol was to enable the sharing of files within a single work-group, and certainly within

a single organizational domain, it did not seem necessary to have heavyweight mechanisms for

authenticating, encrypting, or validating data. Network filesystems are now deployed widely

within companies and across more hostile environments, such as the Internet, so NFSv4 has

integrated support for various levels of security directly into the protocol. There are three

components that interact to provide security within NFSv4: an authentication system, a library

that secures data within the RPC layer, and NFSv4 itself.

A system that wishes to provide a secure communication environment must have a way to

authenticate participants such as users and hosts. Authentication is the process by which a

participant, such as a user, proves to some other participant, such as a remote file server, that

the participant is who it claims to be. NFSv4 relies on version 5 of the Kerberos Network

Authentication Service to provide authentication between participants of the system [Neuman et

al., 2005]. The Kerberos systems acts as a trusted third party that is used by both clients and

servers to verify the truthfulness of various assertions that are made by participants in the

system. A client wishing to communicate with a server using Kerberos must first contact a

Kerberos authentication server to acquire the proper credentials, referred to in Kerberos as a

ticket. A ticket has a limited lifetime to protect against a malicious entity gaining permanent

access to the system. Using the ticket, the client can authenticate itself to the server and perform

various cryptographic operations that allow the client and server to encrypt their data and

communicate privately. Kerberos is a relatively complex network security protocol and will not

be covered in further detail here. Interested readers are recommended to the RFC cited above

for further information on the Kerberos protocol. For the purposes of our discussion within

NFSv4 Kerberos should be thought of as the system that hands out, to both clients and servers,

the keys to lock and unlock data transported over the network.

An authentication system is a necessary requirement to implement a secure network-based

filesystem, but it does not really have any ability to secure or verify the data that is exchanged in

the system. Securing data in NFSv4 is done using the RPCSEC_GSS protocol that depends on

the Generic Security Service Application Program Interface (GSSAPI) [Eisler et al., 1997; Linn,

2000]. Three parameters describe the mechanism, service, and quality of protection that

secures data between the client and the server. When taken together, these three parameters are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11ref11

683

referred to as the security-triple and each unique security triple is referred to as a flavor. There

are three possible services that can be provided by the GSSAPI. The authentication service

guarantees that a user or other entity wishing to gain access to a piece of data is the user or

entity that they claim to be. NFSv4 uses Kerberos to authenticate users and systems, and so does

not use the authentication service in GSS. The integrity service guarantees that the data has not

been tampered with in transit but does not prevent an attacker from reading the data from the

network while they are in transit between the client and server. The privacy service encrypts the

data between the client and server so that an attacker cannot read the data while they are in

transit. The actual encryption and decryption of data is done by the RPC libraries in the kernel

and not by NFS directly, which has little or no direct knowledge of how data is secured.

The only situation in which NFSv4 deals directly with security, rather than relying on other

protocols or libraries, is when a client needs to know the choice of security protocols that it can

use with a server. An NFS client starts by assuming that there is only minimal security

implemented on the server. At some point, perhaps as early as when a filesystem is mounted by

the client, the server can respond with an NFS4ERR_WRONGSEC error, forcing the client to

negotiate security parameters with the server. The client sends a SECINFO operation in

response to the NFS4ERR_WRONGSEC message and receives back from the server a security

flavor. If the security flavor is RPCSEC_GSS, then the reply to the SECINFO operation also

contains a security triple, indicating the type of security and quality of security service that the

server supports. Servers may return a list of security triples and the client picks the first one that

it can support.

Data security in NFSv4 is available on a filesystem by filesystem basis, meaning that many

different operations may fail with an NFS4ERR_WRONGSEC reply and necessitate the

negotiation of security parameters.

Crash Recovery

A distributed system such as NFS must gracefully handle several common error conditions such

that applications using the service can treat it as they would a local filesystem. Maintaining this

illusion of consistency requires the protocol to have mechanisms that prevent recoverable or

transient errors from permanently interrupting the service. While it should not be a common

occurrence, the client or the server may crash, leading to an inconsistent state among the

communicating systems. A more common problem is a network partition, where a client and

server that were once able to communicate can no longer reach each other for some period of

time. Network partitions may be brief, but if the state on the client and server get out of sync

during the period when the client and server cannot communicate, then they must have a way to

agree on a consistent state once the partition is repaired. From the point of view of both the

684

client and server, it is impossible, without some help from the protocol, to determine whether a

system has crashed or whether a temporary network partition has occurred. The NFSv4 protocol

has mechanisms that handle regaining consistent state after a network partition or the failure of

either the client or server system.

A client that has crashed and restarted would like to return to a correct running state as quickly

as possible. Even though a client has crashed and restarted, the server continues to hold state

for the client. Each client has an associated client ID. All state for the client is maintained at the

server until the server restarts or the client dismounts all its mounted filesystems and destroys

its session and client ID with explicit DESTROY_SESSION and DESTROY_CLIENTID RPC

calls. Even if the client restarts within the lease period, it will still have to create a new client ID

with the server via the EXCHANGE_ID mechanism described earlier in this section.

Establishing a new client ID lets the server know that the client has restarted, at which point the

server can invalidate and free all state associated with the previous incarnation of the client.

After establishing a new client ID, the client can again use the NFS service.

Recovering from a server crash is a more complicated process than that required when a client

restarts. When a server experiences a restart, it must take care to restore any locking state that

existed prior to the system restarting. A client that attempts an operation with a server that has

restarted will find that both its session and client IDs are invalid, and will have to establish new

values for both before it can again use the service. A client that had locking state stored on the

server must then go through a reclamation process to reacquire the locks that it previously held.

When a server restarts, it takes several steps to make sure that it is in a consistent state before it

continues serving files to its clients. All NFSv4 servers record the time at which they were

booted, in seconds since the epoch, and place that time into all client and state IDs. When a

server is restarted, its boot time will have changed and any requests that contain a client or state

ID from a previous incarnation of the server will receive an NFS4ERR_BAD_SESSION error,

informing the client that it must reestablish itself with the server. During normal operation, the

NFSv4 server makes a record of certain operations in a local file that recovers state after a server

crash. The local state file includes a list of all the previous boot times of the server to guard

against a collision in boot times. The server’s boot time is used to construct client and state IDs

and a collision could allow stale client or state IDs to go unnoticed, resulting in file corruption.

Following the list of previous boot times is a set of variable-size entries containing client IDs and

flags. The flags indicate whether the client has active state associated with it or whether the state

has been revoked.

When the server starts up, it sets a grace period of 15 seconds before it will grant new locks.

During the grace period, clients are expected to reestablish any claims to state on the server,

685

such as locks, via a reclamation process. The OPEN RPC contains a claim argument that shows

whether the client is trying to reclaim state on the server. In normal operation, the claim

argument is set to NULL, but when a client is forced to reestablish state with the server, its

OPEN RPCs will contain a claim outlined in Table 11.7.

Table 11.7 Open claims.

The client must also reclaim any locks that it had when the server restarted. A lock can be

reclaimed by sending a LOCK RPC with the reclaim bit set. Once the client has completed the

process of reclaiming all its state, it sends a RECLAIM_COMPLETE message to the server, at

which point the server can discard the client’s previous state records from its state file.

The local state file is created when the server is started via a call to the nfsrv_setupstable()

routine. Any time the state file is written to by the server, it is also backed up via a call to

nfsrv_backupstable() as an extra, paranoid measure to protect against the corruption of the

state file during a system crash.

Exercises

11.1 Describe the functions done by an NFS client.

11.2 Describe the functions done by an NFS server.

11.3 Describe three benefits that NFSv3 derives from being stateless.

11.4 Name two new features added to version 4 of the NFS protocol.

11.5 Give two reasons why TCP is a better protocol to use than UDP for handling the NFS RPC

protocol.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11tab07

686

11.6 Describe the contents of a file handle in FreeBSD. How is a file handle used?

11.7 When is a new generation number assigned to a file? What purpose does the generation

number serve?

11.8 Describe the three ways that an NFS client can handle filesystem-access attempts when its

server crashes or otherwise becomes unreachable.

11.9 Give two reasons why leases are given a limited lifetime.

11.10 What is a callback? When is it used? Which daemon sends callbacks? Which daemon

receives them?

11.11 What are the two types of locking that are supported in NFSv4?

11.12 Describe how an NFSv4 server recovers after a crash.

*11.13 Give a network time diagram that shows the process of a client acquiring a record lock

within a file, writing data to the record, and releasing the lock.

**11.14 Assume that leases have an unlimited lifetime. Design a system for recovering the lease

state after a client or server crash.

References

SNIA, 2002.

Storage Networking Industry Association SNIA, Common Internet File System (CIFS) Technical

Reference, available from www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf,

March 2002.

Birrell & Nelson, 1984.

A. D. Birrell & B. J. Nelson, “Implementing Remote Procedure Calls,” ACM Transactions on

Computer Systems, vol. 2, no. 1, pp. 39–59, Association for Computing Machinery, February

1984.

Callaghan et al., 1995.

B. Callaghan, B. Pawlowski, & P. Staubach, “NFS: Network File System Version 3 Protocol

Specification,” RFC 1813, available from http://www.faqs.org/rfcs/rfc1813.html, June 1995.

http://www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf
http://www.faqs.org/rfcs/rfc1813.html

687

Eisler et al., 1997.

M. Eisler, A. Chiu, & L. Ling, “RPCSEC_GSS Protocol Specification,” RFC 2203, available from

http://www.faqs.org/rfcs/rfc2203.html, September 1997.

Gray & Cheriton, 1989.

C. Gray & D. Cheriton, “Leases: An Efficient Fault-Tolerant Mechanism for Distributed File

Cache Consistency,” Proceedings of the Twelfth Symposium on Operating Systems Principles,

pp. 202–210, December 1989.

Haynes & Noveck, 2014.

T. Haynes & D. Noveck, NFS Version 4 Protocol (rfc3530bis Draft 33), available from

https://datatracker.ietf.org/doc/draft-ietf-nfsv4-rfc3530bis/, April 2014.

Howard, 1988.

J. Howard, “An Overview of the Andrew File System,” USENIX Association Conference

Proceedings, pp. 23–26, January 1988.

Howard et al., 1988.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, & M. West,

“Scale and Performance in a Distributed File System,” ACM Transactions on Computer Systems,

vol. 6, no. 1, pp. 51–81, Association for Computing Machinery, February 1988.

IEEE, 2008.

IEEE, 1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems, July 2008.

Juszczak, 1989.

C. Juszczak, “Improving the Performance and Correctness of an NFS Server,” USENIX

Association Conference Proceedings, pp. 53–63, January 1989.

Linn, 2000.

J. Linn, “Generic Security Service Application Program Interface Version 2, Update 1,” RFC

2743, available from http://www.faqs.org/rfcs/rfc2743.html, January 2000.

Macklem, 1994a.

http://www.faqs.org/rfcs/rfc2203.html
https://datatracker.ietf.org/doc/draft-ietf-nfsv4-rfc3530bis/
http://www.faqs.org/rfcs/rfc2743.html

688

R. Macklem, “The 4.4BSD NFS Implementation,” in 4.4BSD System Manager’s Manual, pp.

6:1–14, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

Macklem, 1994b.

R. Macklem, “Not Quite NFS, Soft Cache Consistency for NFS,” USENIX Association

Conference Proceedings, pp. 261–278, January 1994.

Mills, 1992.

D. L. Mills, “The NTP Time Synchronization Protocol,” RFC 1305, available from

http://www.faqs.org/rfcs/rfc1305.html, March 1992.

Mogul, 1993.

J. Mogul, “Recovery in Spritely NFS,” Research Report 93/2, Digital Equipment Corporation

Western Research Laboratory, Palo Alto, CA, June 1993.

Neuman et al., 2005.

C. Neuman, T. Yu, S. Hartman, & K. Raeburn, “The Kerberos Network Authentication Service

(V5),” RFC 4120, available from http://www.faqs.org/rfcs/rfc4120.html, July 2005.

Pawlowski et al., 1994.

B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, & D. Hitz, “NFS Version 3: Design

and Implementation,” USENIX Association Conference Proceedings, pp. 137–151, June 1994.

Reid, 1987.

Irving Reid, “RPCC: A Stub Compiler for Sun RPC,” USENIX Association Conference

Proceedings, pp. 357–366, June 1987.

Sandberg et al., 1985.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, & B. Lyon, “Design and Implementation of the

Sun Network Filesystem,” USENIX Association Conference Proceedings, pp. 119–130, June

1985.

Shepler et al., 2003.

http://www.faqs.org/rfcs/rfc1305.html
http://www.faqs.org/rfcs/rfc4120.html

689

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, & D. Noveck, “Network

File System (NFS) version 4 Protocol,” RFC 3530, available from

http://www.faqs.org/rfcs/rfc3530.html, April 2003.

Shepler et al., 2010.

S. Shepler, M. Eisler, & D. Noveck, Network File System (NFS) Version 4 Minor Version 1

Protocol, available from http://www.ietf.org/rfc/rfc5661.txt, January 2010.

Sun Microsystems, 1989.

Sun Microsystems, “NFS: Network File System Protocol Specification,” RFC 1094, available

from http://www.faqs.org/rfcs/rfc1094.html, March 1989.

Walsh et al., 1985.

D. Walsh, B. Lyon, G. Sager, J. Chang, D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg, & P.

Weiss, “Overview of the Sun Network File System,” USENIX Association Conference

Proceedings, pp. 117–124, January 1985.

http://www.faqs.org/rfcs/rfc3530.html
http://www.ietf.org/rfc/rfc5661.txt
http://www.faqs.org/rfcs/rfc1094.html

690

Part IV: Interprocess Communication

Chapter 12. Interprocess Communication

FreeBSD provides a rich set of interprocess-communication facilities intended to support the

construction of distributed programs built on top of communications primitives. Support

for these facilities is described in this chapter.

No one mechanism can provide for all types of interprocess communication. The subsystems

that provide IPC in FreeBSD 10 can be broken down into two areas. The first provides for IPC on

a single system and includes support for semaphores, message queues, and shared

memory. These subsystems were described in Section 7.2. The second is the socket interface,

which provides a uniform communication API for network communication.

The socket API is deeply entwined with the network subsystem. The overall architecture of the

network system is described in this chapter and is then referenced and refined in Chapters 13

and 14, which describe the implementation of network layer and transport layer protocols

respectively. You will find it easiest to understand the material in the following two chapters if

you read this chapter first.

12.1 Interprocess-Communication Model

There were several goals in the design of the interprocess-communication enhancements to

UNIX. The most immediate need was to provide access to communication networks such as the

Internet [Cerf, 1978]. Previous work in providing network access had focused on the

implementation of the network protocols, exporting the transport facilities to applications via

special-purpose—and often awkward—interfaces [Cohen, 1977; Gurwitz, 1981]. As a result, each

new network implementation resulted in a different application interface, requiring most

existing programs to be altered significantly or rewritten completely. For 4.2BSD, the

interprocess-communication facilities were intended to provide a sufficiently general interface

to allow network-based applications to be constructed independently of the underlying

communication facilities.

The second goal was to allow multiprocess programs, such as distributed databases, to be

implemented. The UNIX pipe requires all communicating processes to be derived from a

common parent process. The use of pipes forced systems to be designed with a somewhat

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_272

691

contorted structure. New communication facilities were needed to support communication

between unrelated processes residing locally on a single host computer and residing remotely on

multiple host machines.

Finally, it became important to provide new communication facilities to allow construction of

local-area network services, such as file servers. The intent was to provide facilities that could be

used easily in supporting resource sharing in a distributed environment and not to build a

distributed UNIX system.

The interprocess-communication facilities were designed to support the following:

• Transparency: Communication between processes should not depend on whether the

processes are on the same machine.

• Efficiency: The applicability of any interprocess-communication facility is limited by the

performance of the facility. A naive implementation of interprocess communication often results

in a modular but inefficient implementation because most interprocess communication facilities,

especially those related to networks, are broken down into many layers. At each layer boundary,

the software must do some work, either adding information to a message or removing it.

FreeBSD only introduces layers where they are absolutely necessary for the proper functioning

of the system and does not introduce arbitrary and unnecessary layers.

• Compatibility: Existing naive processes should be usable in a distributed environment without

change. A naive process is characterized as a process that does its work by reading from the

standard input file and writing to the standard output file. A sophisticated process uses

knowledge about the richer set of interfaces provided by the kernel to do its work. A major

reason UNIX has been successful is the operating system’s support for modularity by naive

processes that act as byte-stream filters. Although sophisticated applications such as web

servers and screen editors exist, they are far outnumbered by the collection of naive application

programs.

While designing the interprocess-communication facilities, the developers identified the

following requirements to support these goals, and they developed a unifying concept for each:

• The system must support communication networks that use different sets of protocols,

different naming conventions, different hardware, and so on. The notion of a communication

domain was defined for these reasons. A communication domain embodies the standard

semantics of communication and naming. Different networks have different standards for

naming communication endpoints, which may also vary in their properties. In one network, a

name may be a fixed address for a communication endpoint, whereas in another it may be used

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_51

692

to locate a process that can move between locations. The semantics of communication can

include the cost associated with the reliable transport of data, the support for multicast

transmissions, the ability to pass access rights or capabilities, and so on.

• A unified abstraction for an endpoint of communication that can be manipulated with a file

descriptor is needed. The socket is the abstract object from which messages are sent and

received. Sockets are created within a communication domain, just as files are created within a

filesystem. Unlike files, however, sockets exist only as long as they are referenced. Once the file

descriptor that represents a socket is closed, and its reference count drops to zero, the socket is

freed.

• The semantic aspects of communication must be made available to applications in a controlled

and uniform way. Applications must be able to request different styles of communication, such

as reliable byte stream or unreliable datagram, and these styles must be provided consistently

across all communication domains. All sockets are typed according to their communication

semantics. Types are defined by the semantic properties that a socket supports. These properties

are:

1. In-order delivery of data

2. Unduplicated delivery of data

3. Reliable delivery of data

4. Connection-oriented communication

5. Preservation of message boundaries

6. Support for out-of-band messages

Pipes have the first four properties, but not the fifth or sixth. An out-of-band message is one that

is delivered to the receiver outside the normal stream of incoming, in-band data and is usually

associated with an urgent or exceptional condition. A connection is a mechanism that protocols

use to avoid having to transmit the identity of the sending socket with each packet of data.

Instead, the identity of each endpoint of communication is exchanged before transmission of

any data and is maintained at each end so that it can be presented at any time. On the other

hand, connectionless communications require a source and destination address associated with

each transmission. A datagram socket provides unreliable, connectionless packet

communication; a stream socket provides a reliable, connection-oriented byte stream that

may support out-of-band data transmission; and a sequenced-packet socket provides a

sequenced, reliable, unduplicated connection-based communication that preserves message

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_394
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_416
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_369

693

boundaries. The socket API is extensible and other types of sockets can be and have been added

to the system.

Processes must be able to locate endpoints of communication so that they can rendezvous

without prior knowledge, so sockets can be named. A socket’s name is meaningfully interpreted

only within the context of the communication domain in which the socket is created. The names

used by most applications are human-readable strings. However, the name for a socket that is

used within a communication domain is usually a low-level address. Rather than placing

name-to-address translation functions in the kernel, FreeBSD provides a userspace library for

application programs to use in translating names to addresses.

Use of Sockets

Since the creation of the sockets API, several excellent books have been written about socket

programming from the user’s perspective [Stevens et al., 2003]. This section includes a brief

description of a client and server program communicating over a reliable byte stream in the

IPv4 communication domain. The client is described first and the server second. For more

detailed information on writing network applications, please see the cited references.

A program that wants to use a socket creates it with the socket system call:

Click here to view code image

int sock = socket(AF_INET, SOCK_STREAM, 0);

The type of socket is selected according to the characteristic properties required by the

application. In this example, reliable communication is required, so a stream socket (type =

SOCK_STREAM) is selected. The domain parameter specifies the communication domain (or

address family; see Section 12.4) in which the socket should be created, here the IPv4 Internet

(domain = AF_INET). The final parameter, the protocol, can give a specific communication

protocol for use in supporting the socket’s operation. Protocols are specified by well-known

(standard) constants specific to each communication domain. When zero is used, the system

picks an appropriate protocol. The socket system call returns a file descriptor (a small integer;

see Section 7.1) that is then used in all later socket operations.

After a socket has been created, the next step depends on the type of socket being used. Since

this example is connection oriented, the sockets require a connection before being used.

Creating a connection between two sockets usually requires that each socket have an address

bound to it, which is simply a way of identifying each endpoint of the communication.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p596pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1

694

Applications may explicitly specify a socket’s address or may permit the system to assign one.

The address to be used with a socket must be given in a socket address structure. The

format of addresses can vary among domains; to permit a wide variety of different formats, the

system treats addresses as variable-length byte arrays, which are prefixed with a length and a

tag that identifies their format. Each domain has its own addressing format, which can always

be mapped into the most generic one.

A connection is initiated with a connect system call:

Click here to view code image

int error, sock;

struct sockaddr_in rmtaddr;

int rmtaddrlen = sizeof(struct sockaddr_in);

error =

 connect(sock, (struct sockaddr *)&rmtaddr, rmtaddrlen);

When the connect call completes, the client has a fully functioning communication endpoint on

which it can send and receive data.

A server follows a different path once it has created a socket. It must bind itself to an address

and then accept incoming connections from clients. The call to bind an address to a socket is as

follows:

Click here to view code image

int error, sock, addrlen = sizeof(struct sockaddr_in);

struct sockaddr_in addr;

error =

 bind(sock, (struct sockaddr*)&localaddr, localaddrlen);

where sock is the descriptor created by a previous call to socket.

For several reasons, binding a name to a socket was separated from creating a socket. First,

sockets are potentially useful without names. If all sockets had to be named, users would be

forced to devise meaningless names without reason. Second, in some communication domains,

it may be necessary to supply additional information to the system before binding a name to a

socket—for example, the “type of service” required when a socket is used. If a socket’s name had

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_395
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p597pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p597pro02

695

to be specified at the time that the socket was created, supplying this information would not be

possible without further complicating the interface.

In the server process, the socket must be marked to specify that incoming connections are to be

accepted on it by using the listen system call:

Click here to view code image

int error, sock, backlog = 5;

error = listen(sock, backlog);

The backlog parameter used in the listen call specifies an upper bound on the number of

pending connections that should be queued for acceptance. Having an upper bound on the listen

queue is one way to prevent resource exhaustion in the kernel.

Connections are then received, one at a time, with the accept call:

Click here to view code image

int newsock, sock;

struct sockaddr_in clientaddr;

int clientaddrlen = sizeof(struct sockaddr_in);

newsock = accept(sock, (struct sockaddr *)&clientaddr,

 clientaddrlen);

The accept call returns a new connected socket, as well as the address of the client, by specifying

the clientaddr and clientaddrlen parameters. The new socket is the one through which

communication can take place. The original socket, sock, is used solely for managing the queue

of connection requests in the server.

A variety of calls are available for sending and receiving data; these calls are summarized in

Table 12.1. The richest of these interfaces are the sendmsg and recvmsg calls that can handle

scatter-gather operations, specify an address on transmission and reception, supply optional

flags, and handle specially interpreted ancillary data or control information. The message

header structure that is used by sendmsg and recvmsg is shown in Figure 12.1. Ancillary data

may include protocol-specific data, such as addressing or options, and also specially interpreted

data, called access rights. Further details of the usage of the message header structure are given

in Section 12.6.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p597pro03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p597pro04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec6

696

Table 12.1 Sending and receiving data on a socket.

Figure 12.1 Data structures for the sendmsg and recvmsg system calls.

In addition to these system calls, several other calls are provided to access miscellaneous

services. The getsockname call returns the locally bound address of a socket, whereas the

getpeername call returns the address of the socket at the remote end of a connection. The

shutdown call terminates data transmission or reception at a socket, and two ioctl-style

calls—setsockopt and getsockopt—can be used to set and retrieve various parameters that

control the operation of a socket or of the underlying network protocols. Sockets are discarded

with the normal close system call.

The interface to the interprocess-communication facilities was purposely designed to be

orthogonal to the existing standard system interfaces—that is, to the open, read, and write

697

system calls. This decision was made to avoid overloading the familiar interface with undue

complexity. In addition, the developers thought that using an interface that was completely

independent of the filesystem would improve the portability of software because, for example,

pathnames would not be involved. Backward compatibility, for the sake of naive processes, was

still deemed important. Thus, the familiar read–write interface was augmented to permit access

to the new communication facilities wherever that made sense (e.g., when connected stream

sockets were used).

12.2 Implementation Structure and Overview

The interprocess-communication facilities are layered on top of the networking facilities, as

shown in Figure 12.2. Data flows from the application through the socket layer to the

networking layer and vice versa. State required by the socket layer is fully encapsulated within it,

whereas any protocol-related state is maintained in data structures that are specific to the

supporting protocols. Responsibility for storage associated with transmitted data is passed from

the socket layer to the network layer. Consistent adherence to this rule assists in simplifying

details of storage management. Within the socket layer, the socket data structure is the focus of

all activity. The system-call interface routines manage the actions related to a system call,

collecting the system-call parameters (see Section 3.2) and converting user data into the format

expected by the socket-layer routines. Most of the socket abstraction is implemented within the

socket-layer routines. All socket-layer routines have names with a so prefix, and they directly

manipulate socket data structures and manage the synchronization between asynchronous

activities; these routines are listed in Table 12.2.

Figure 12.2 Interprocess-communication implementation layering. The boxes on the left name

the standard layers; the boxes on the right name specific examples of the layers that might be

used by an individual socket.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab02

698

Table 12.2 Socket-layer support routines.

The remainder of this chapter focuses on the implementation of the socket layer. Section 12.3

discusses how memory is managed at the socket layer and below in the networking subsystem;

Section 12.4 covers the socket and related data structures; Section 12.5 presents the algorithms

for connection setup; Section 12.6 discusses data transfer; and Section 12.7 describes connection

shutdown. Throughout these sections, references to the supporting facilities provided by the

network-communication protocols are made with little elaboration. Section 12.8 describes the

internal structure of the network-communication protocols. Section 12.9 describes the

socket-to-protocol interface. Section 12.10 describes the protocol-to-protocol interface. Section

12.11 describes the protocol-to-network interface. Section 12.12 describes network buffering and

flow control. Section 12.13 concludes the chapter with a discussion of network virtualization.

12.3 Memory Management

The requirements placed on a memory-management scheme by interprocess-communication

and network protocols tend to be substantially different from those of other parts of the

operating system. Although all require the efficient allocation and reclamation of memory,

communication protocols in particular need memory in widely varying sizes. Memory is needed

for variable-size structures such as communication protocol packets. Protocol implementations

must frequently prepend headers or remove headers from packetized data. As packets are sent

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec13

699

and received, buffered data may need to be divided into packets, and received packets may be

combined into a single record. In addition, packets and other data objects must be queued when

awaiting transmission or reception. A special-purpose memory-management facility exists for

use by the interprocess-communication and networking systems to address these needs.

Mbufs

The memory-management facilities revolve around a data structure called an mbuf (see Figure

12.3). Mbufs, or memory buffers, vary in size depending on what they contain. All mbufs contain

a fixed m_hdr structure that keeps track of various bits of bookkeeping about the mbuf. An

mbuf that contains only data has space for 224 bytes (256 bytes total for the mbuf minus 32

bytes for the mbuf header). All structure sizes are calculated for 64-bit processors.

Figure 12.3 Memory-buffer (mbuf) data structure.

For large messages, the system can associate larger sections of data with an mbuf by referencing

an external mbuf cluster from a private virtual memory area. The size of an mbuf cluster may

vary by architecture, as specified by the macro MCLBYTES, and is 2 Kbyte on the X86.

Data are stored either in the internal data area or in an external cluster, but never in both. To

access data in either location, a data pointer within the mbuf is used. In addition to the

data-pointer field, a length field is also maintained. The length field shows the number of bytes

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_218
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig03

700

of valid data to be found at the data-pointer location. The data and length fields allow routines

to trim data efficiently at the start or end of an mbuf. In deletion of data at the start of an mbuf,

the pointer is incremented and the length is decremented. To delete data from the end of an

mbuf, the length is decremented, but the data pointer is left unchanged. When space is available

within an mbuf, data can be added at either end. This flexibility to add and delete space without

copying is particularly useful in communication-protocol implementation. Protocols routinely

strip protocol information off the front or back of a message before the message’s contents are

handed to a higher-layer processing module, or they add protocol information as a message is

passed to lower layers.

Multiple mbufs can be linked together to hold an arbitrary quantity of data. This linkage is done

with the m_next field of the mbuf. By convention, a chain of mbufs linked through the m_next

field is treated as a single object. For example, the communication protocols build packets from

chains of mbufs. A second field, m_nextpkt, links objects built from chains of mbufs into lists of

objects. Throughout our discussions, a collection of mbufs linked together with the m_next field

will be called a chain; chains of mbufs linked together with the m_nextpkt field will be called a

queue.

Each mbuf is typed according to its use. This type serves two purposes. The only operational use

of the type is to distinguish optional components of a message in an mbuf chain that is queued

for reception on a socket data queue. Otherwise, the type information is used in maintaining

statistics about storage use and, if there are problems, as an aid in tracking mbufs.

The mbuf flags are logically divided into two sets: flags that describe the usage of an individual

mbuf and those that describe an object stored in an mbuf chain. The flags describing an mbuf

specify whether the mbuf references external storage (M_EXT), whether the mbuf contains a set

of packet header fields (M_PKTHDR), and whether the mbuf completes a record (M_EOR). A

packet normally would be stored in an mbuf chain (of one or more mbufs) with the M_PKTHDR

flag set on the first mbuf of the chain. The mbuf flags describing the packet would be set in the

first mbuf and could include either the broadcast flag (M_BCAST) or the multicast flag

(M_MCAST). The latter flags specify that a transmitted packet should be sent as a broadcast or

multicast, respectively, or that a received packet was sent in that manner.

If the M_PKTHDR flag is set on an mbuf, the mbuf has a second set of header fields

immediately following the standard header. This addition causes the mbuf data area to shrink

from 224 bytes to 168 bytes. The packet header shown in Table 12.3 is only used on the first

mbuf of a chain. It includes several fields: a pointer to the interface on which the packet was

received, the total length of the packet, a field relating to packet checksum calculation, and a

pointer to a list of arbitrary tags.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab03

701

Table 12.3 Important fields in (mbuf) data structure with M_PKTHDR.

An mbuf that uses external storage is marked with the M_EXT flag. Here, a different header

area overlays the internal data area of an mbuf. The fields in this header, which is shown in

Figure 12.4, describe the external storage, including the start of the buffer and its size. One field

is designated to point to a routine to free the buffer, in theory allowing various types of buffers

to be mapped by mbufs. In the current implementation, the free function is not used and the

external storage is assumed to be a standard mbuf cluster. An mbuf may be both a packet header

and have external storage. Here, the standard mbuf header is followed by the packet header and

then the external storage header.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig04

702

Figure 12.4 Memory-buffer (mbuf) data structure with external storage.

The ability to refer to mbuf clusters from an mbuf permits data to be referenced by different

entities within the network code without a memory-to-memory copy operation. When multiple

copies of a block of data are required, the same mbuf cluster is referenced from multiple mbufs.

Since the mbuf headers are transient, the reference count for the clusters cannot be stored in the

m_ext structure. Instead, the reference counts for clusters are managed as a separate array

referenced from the mbufs that are sharing mbuf clusters. The array is large enough for every

mbuf cluster that could be allocated by the system. The memory dedicated to mbufs and clusters

is set based on the kernel parameter maxusers, which is itself based on the amount of physical

memory in the system. Basing the amount of memory dedicated to the networking subsystem on

the amount of physical memory gives a good default value but can be increased when a system is

dedicated to networking tasks such as a Web server, firewall, or router.

Mbufs have fixed-size, rather than variable-size, data areas for several reasons. First, the fixed

size minimizes memory fragmentation. Second, communication protocols are frequently

required to prepend or append headers to existing data areas, to split data areas, or to trim data

from the beginning or end of a data area. The mbuf facilities are designed to handle such

changes without reallocation or copying whenever possible.

Since the mbuf is the central object of all the networking subsystems, it has undergone changes

with each large change in the code. It now contains a flags field and two optional sets of header

fields. The data pointer replaces a field used as an offset in the initial version of the mbuf. The

703

use of an offset was not portable when the data referenced could be in an mbuf cluster. The

addition of a flags field allowed the use of a flag indicating external storage. Earlier versions

tested the magnitude of the offset to see whether the data were in the internal mbuf data area.

The addition of the broadcast flag allowed network-level protocols to know whether packets

were received as link-level broadcasts, as was required for standards conformance. Several other

flags have been added for use by specific protocols and to handle fragment processing.

The optional header fields have undergone the largest changes since 4.4BSD. The two headers

were originally designed to avoid redundant calculations of the size of an object, to make it

easier to identify the incoming network interface of a received packet, and to generalize the use

of external storage by an mbuf. Since FreeBSD 5, the packet header has been expanded to

include information on checksum calculation (a traditionally expensive operation that can now

be done in hardware) as well as on the management of flows of packets, quality of service

parameters, a receive-side scaling hash to steer packets to particular hardware queues, and an

arbitrary set of tags.

Tags are fixed-size structures that can point to arbitrary pieces of memory and are used to store

information relevant to different modules within the networking subsystem. Each tag has a link

to the next tag in the list, a 16-bit ID, a 16-bit length, and a 32-bit cookie and a module-defined

type. The cookie identifies the module that owns the tag. The type is a piece of data that is

private to the module that describes to the module the type of tag it is handling. Tags carry the

information about a packet that should not be placed into the packet itself and they are often

used as an extension mechanism for the networking subsystem. Instead of modifying the mbuf

structures, and thereby losing binary compatibility between versions of FreeBSD, new

networking modules can define their own tags as a way of communicating arbitrary out-of-band

information between different components of the network stack. Examples of these tags are

given in Section 13.7.

Storage-Management Algorithms

Providing the system with a network stack capable of multiprocessing required a complete

rework of the memory-allocation algorithms underlying the mbuf code. Whereas previous

versions of BSD allocated memory with the system allocator and then carved it up for mbufs and

clusters, such a simple technique does not work when using multiple CPUs.

As is described in detail in Section 6.3, FreeBSD allocates virtual memory among a series of lists

for use by the network memory allocation code. Each CPU has its own private container of

mbufs and clusters. There is also a single, general pool of mbufs and clusters from which

allocations are attempted when a per-CPU list is empty or to which memory is freed when a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3

704

per-CPU list is full. A uniprocessor system acts as if it is a multiprocessor system with one CPU,

which means that it has one per-CPU list as well as the general one.

Mbuf-allocation requests specify either that they must be fulfilled immediately or that they can

wait for available resources. If a request is marked as “can wait” and the requested resources are

unavailable, the process is put to sleep to await available resources. A nonblocking request will

fail if no resources are available. Although a nonblocking allocation request is no longer

necessary for code that executes at interrupt level, the networking code still operates assuming

nonblocking is required. If mbuf allocation has reached its limit or memory is unavailable, the

mbuf-allocation routines ask the network-protocol modules to give back any available resources

that they can spare.

An mbuf-allocation request is made through a call to m_get(), m_gethdr(), or through an

equivalent macro. An mbuf is retrieved from the currently running CPU’s per-CPU list by the

mb_alloc() function and is initialized. For m_gethdr(), the mbuf is initialized with the optional

packet header. The MCLGET macro adds an mbuf cluster to an mbuf.

Release of mbuf resources is straightforward: m_free() frees a single mbuf and m_freem() frees

a chain of mbufs. When an mbuf that references an mbuf cluster is freed, the reference count for

the cluster is decremented. Mbuf clusters are placed onto the currently running CPU’s per-CPU

list when their reference counts reach zero.

Mbuf Utility Routines

Many useful utility routines exist for manipulating mbufs within the kernel networking

subsystem. The m_copym() routine makes a copy of an mbuf chain starting at a logical offset, in

bytes, from the start of the data. This routine may be used to copy all or only part of a chain of

mbufs. If an mbuf is associated with an mbuf cluster, the copy will reference the same data by

incrementing the reference count on the cluster. The m_copydata() function is similar, but it

copies data from an mbuf chain into a caller-provided buffer. This buffer is not an mbuf, or

chain, but an area of memory such as an I/O buffer elsewhere in the kernel.

The m_adj() routine adjusts the data in an mbuf chain by a specified number of bytes, removing

data from either the front or back. No data are ever copied; m_adj() operates purely by

manipulating the offset and length fields in the mbuf structures. The mtod() macro takes a

pointer to an mbuf header and a data type, and returns a pointer to the data in the buffer, cast to

the given type.

The m_pullup() routine rearranges an mbuf chain such that a specified number of bytes reside

in a contiguous data area within the mbuf (not in external storage). This operation is used so

705

that objects such as protocol headers are contiguous and can be treated as normal data

structures. If there is room, m_pullup() will increase the size of the contiguous region up to the

maximum size of a protocol header in an attempt to avoid being called in the future.

The M_PREPEND() macro adjusts an mbuf chain to prepend a specified number of bytes of

data. If possible, space is made in place, but an additional mbuf may have to be allocated at the

beginning of the chain. It is currently impossible to prepend data within an mbuf cluster

because different mbufs might refer to data in different portions of the cluster.

12.4 IPC Data Structures

Sockets are the objects used by processes communicating over a network. A socket’s type defines

the basic set of communication semantics, whereas the communication domain defines auxiliary

properties important to the use of the socket and may refine the set of available communication

semantics. Table 12.4 shows the four types of sockets currently supported by the system. To

create a new socket, applications must specify its type and the communication domain. The

request may also indicate a specific network protocol to be used by the socket. If no protocol is

specified, the system selects an appropriate protocol from the set of protocols supported by the

communication domain. If the communication domain is unable to support the type of socket

requested (i.e., no suitable protocol is available), the request will fail.

Table 12.4 Socket types supported by the system.

Sockets are described by a socket data structure that is dynamically created at the time of a

socket system call. Communication domains are described by a domain data structure that is

statically defined within the system based on the system’s configuration (see Section 15.3).

Communication protocols within a domain are described by a protosw structure that is also

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec3

706

statically defined within the system for each protocol implementation configured. Having these

structures defined statically reduces communication startup time and reduces the complexity of

the implementation because there is no need to support the dynamic addition and deletion of

protocols or domains at run time.

When a request is made to create a socket, the system uses the value of the communication

domain to search linearly the list of configured domains. If the domain is found, the domain’s

table of supported protocols is consulted for a protocol appropriate for the type of socket being

created or for the specific protocol requested. A wildcard entry may exist for a raw socket.

Should multiple protocol entries satisfy the request, the first is selected. This section describes

the domain structure. The protosw structure that lists a domain’s supported protocols is

discussed in Section 12.8.

The domain structure is shown in Figure 12.5. The dom_name field is the string that names

the communication domain. The dom_family field identifies the address family used by the

domain; some possible address-family values are shown in Table 12.5. Address families refer to

the addressing structure of a domain. An address family generally has an associated protocol

family. Protocol families refer to the suite of communication protocols of a domain used to

support the communication semantics of a socket. The dom_protosw field points to the table of

functions that implement the protocols supported by the communication domain, and the

dom_protoswNPROTOSW pointer marks the end of the table. The remaining entries contain

pointers to domain-specific routines used in the management and transfer of access rights and

fields relating to routing and network interface initialization for the domain.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_302

707

Figure 12.5 Communication-domain data structure.

Table 12.5 Address families.

708

The socket data structure is shown in Figure 12.6. Storage for the socket structure is allocated by

the zone allocator (described in Section 6.3). Sockets contain information about their type, the

supporting protocol in use, and their state. States are shown in Table 12.6. Data being

transmitted or received are queued at the socket as a list of mbuf chains. Various fields are

present for managing queues of sockets created during connection establishment. Each socket

structure also holds a process-group identifier. The process-group identifier is used in delivering

the SIGURG and SIGIO signals. SIGURG is sent when an urgent condition exists for a socket,

and SIGIO is used by the asynchronous I/O facility (see Section 7.1). The socket contains an

error field, which is needed for storing asynchronous errors to be reported to the owner of the

socket.

Figure 12.6 Socket data structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1

709

Table 12.6 Socket states.

Sockets are located using a process’s file descriptor via a file entry. When a socket is created, the

f_data field of the file structure is set to point at the socket structure, and the f_ops field is set to

point to the set of routines defining socket-specific file operations. Here, the socket structure is a

direct parallel of the vnode structure used by the filesystems.

The socket structure acts as a queueing point for data being transmitted and received. As data

enter the system as a result of system calls, such as write or send, the socket layer passes the

data to the networking subsystem as a chain of mbufs for transmission. If the supporting

protocol module decides to postpone transmission of the data, or if a copy of the data are to be

maintained until an acknowledgment is received, the data are queued in the socket’s send queue.

When the network has consumed the data, it discards them from the outgoing queue. On

reception, the network passes data up to the socket layer, also in mbuf chains, where they are

then queued until the application makes a system call to request them. The socket layer can also

make a callback to an internal kernel client of the network when data arrive, allowing the data to

be processed without a context switch. Callbacks are used by the NFS server (see Chapter 11).

To avoid resource exhaustion, sockets impose upper bounds on the number of bytes of data that

can be queued in a socket data buffer as well as on the amount of storage space that can be used

for data. This high watermark is initially set by the protocol, although an application can

change the value up to a system maximum. The network protocols can examine the high

watermark and use the value in flow-control policies. A low watermark also is present in

each socket data buffer. The low watermark allows applications to control data flow by

specifying a minimum number of bytes required to satisfy a reception request, with a default of 1

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#ch11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_204

710

byte and a maximum of the high watermark. For output, the low watermark sets the minimum

amount of space available before transmission can be attempted; the default is the size of an

mbuf cluster. These values also control the operation of the select system call when it is used to

test for ability to read or write the socket.

When connection indications are received at the communication-protocol level, the connection

may require further processing to complete. Depending on the protocol, that processing may be

done before the connection is returned to the listening process, or the listening process may be

allowed to confirm or reject the connection request. Sockets used to accept incoming connection

requests maintain two associated queues of sockets. The list of sockets headed by the so_incomp

field represents a queue of connections that must be completed at the protocol level before being

returned. The so_comp field heads a list of sockets that are ready to be returned to the listening

process. Like the data queues, the queues of connections also have an application-controllable

limit. The limit applies to both queues. Because the limit may include sockets that cannot yet be

accepted, the system enforces a limit 50 percent larger than the nominal limit.

Although a connection may be established by the network protocol, the application may choose

not to accept the established connection or may close down the connection immediately after

discovering the identity of the client. A network protocol may delay completion of a connection

until after the application has obtained control with the accept system call. The application

might then accept or reject the connection explicitly with a protocol-specific mechanism.

Otherwise, if the application does a data transfer, the connection is confirmed; if the application

closes the socket immediately, the connection is rejected.

Socket Addresses

Sockets may be labelled so that peers can connect to them. The socket layer treats an address as

an opaque object. Applications supply and receive addresses as tagged, variable-length arrays of

bytes. Addresses are placed in mbufs within the socket layer. A structure called a sockaddr,

shown in Figure 12.7, is used as a template for referring to the identifying tag and length of each

address. Most protocol layers support a single address type as identified by the tag, known as

the address family.

Figure 12.7 Socket-address template structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig07

711

It is common for addresses passed in by an application to reside in mbufs only long enough for

the socket layer to pass them to the supporting protocol for transfer into a fixed-size address

structure—for example, when a protocol records an address in a protocol control block. The

sockaddr structure is the common means by which the socket layer and network-support

facilities exchange addresses. The size of the generic data array was chosen to be large enough to

hold many types of addresses directly, although generic code cannot depend on having sufficient

space in a sockaddr structure for an arbitrary address. For example, the local communication

domain (formerly known as the UNIX domain) stores filesystem pathnames in mbufs and

allows socket names as large as 104 bytes, as shown in Figure 12.8. Both IPv4 and IPv6 use a

fixed-size structure that combines a network address and a port number. The difference is in the

size of the address (4 bytes for IPv4 and 16 bytes for IPv6) and in the fact that IPv6 address

structures carry other information including the scope and flow information. Both Internet

protocols reserve space for addresses in a protocol-specific control-block data structure and free

up mbufs that contain addresses after copying the addresses.

Figure 12.8 Local-domain, IPv4, and IPv6 address structures.

Locks

Section 4.3 discussed the need for locking structures in a multiprocessing kernel. The

networking subsystem uses these locks internally to protect its data structures.

When multiprocessing features were first introduced, the entire networking subsystem was

placed, with the rest of the kernel, under the giant lock. During the development of FreeBSD 5,

several pieces of networking code were modified to run without the giant lock. As of FreeBSD 10,

all parts of the networking system are locked using fine-grained locks and never resort to using

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3

712

the giant lock. Specific instances of networking-subsystem locks are discussed in the section in

which they are most relevant.

12.5 Connection Setup

For two processes to pass information between them, an association must be established. The

steps involved in creating an association (socket, connect, listen, accept, etc.) were described in

Section 12.1. This section describes the operation of the socket layer in establishing associations.

Since the state associated with a connectionless transfer of data is fully encapsulated in each

message that is sent, our discussion will focus on connection-oriented associations established

with the connect, listen, and accept system calls.

Connection establishment in the client–server model is asymmetric. A client actively initiates a

connection to obtain service, whereas a server passively accepts connections to provide service.

Figure 12.9 shows the state-transition diagram used by a socket to initiate or accept connections.

State transitions are initiated either by user actions (i.e., system calls) or by protocol actions that

result from receiving network messages or servicing timers that expire.

Figure 12.9 Socket state transitions during process rendezvous.

Sockets are normally used to send and receive data. When they are used in establishing a

connection, they are treated somewhat differently. If a socket is to be used to accept a

connection, the listen system call must be used. The listen call invokes solisten(), which notifies

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig09

713

the supporting protocol that the socket will be receiving connections, establishes an empty list of

pending connections at the socket (through the so_comp field), and then marks the socket as

accepting connections, SO_ACCEPTCON. At the time a listen is done, a backlog parameter is

specified by the application. This parameter sets a limit on the number of incoming connections

that the system will queue awaiting acceptance by the application. The system enforces a

maximum on this limit to prevent resource exhaustion. Once a socket is set up to receive

connections, the remainder of the work in creating connections is managed by the protocol

layers. For each connection established at the server side, a new socket is created with the

sonewconn() routine. These new sockets may be placed on the socket’s queue of partially

established connections (see Figure 12.10) while the connections are being completed, or they

may be placed directly into the queue of connections ready to be passed to the application via

the accept call. The new sockets might be ready to be passed to the application either because no

further protocol action is necessary to establish the connection or because the protocol allows

the listening process to confirm or reject the connection request. In the latter case, the socket is

marked as confirming (state bit SS_CONFIRMING) so that the pending connection request will

be confirmed or rejected as needed. Once sockets on the queue of partly established connections

are ready, they are moved to the queue of connections completed and pending acceptance by an

application. When an accept system call is made to obtain a connection, the system verifies that

a connection is present on the socket’s queue of ready connections. If no connection is ready to

be returned, the system puts the process to sleep until one arrives (unless nonblocking I/O is

being used with the socket, in which case an EAGAIN error is returned). When a connection is

available, the associated socket is removed from the queue, a new file descriptor is allocated to

reference the socket, and the result is returned to the caller. If the accept call indicates that the

peer’s identity is to be returned, the peer’s address is obtained from the protocol layer and is

copied into the supplied buffer.

Figure 12.10 Connections queued at a socket awaiting an accept call.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig10

714

On the client side, an application requests a connection with the connect system call, supplying

the address of the peer socket to which to connect. The system verifies that a connection attempt

is not already in progress for that socket and then invokes soconnect() to initiate the connection.

The soconnect() routine first checks the socket to see whether the latter is already connected. If

the socket is already connected, and supports a connection-oriented protocol, the connection is

first dropped and then an EINVAL error is returned to the caller. With the socket in an

unconnected state, soconnect() makes a request to the protocol layer to initiate the new

connection. Once the connection request has been passed to the protocol layer, if the connection

request is incomplete, the system puts the process to sleep to await notification by the protocol

layer that a completed connection exists. A nonblocking connect may return at this point, but a

process awaiting a completed connection will awaken only when the connection request has

been completed—either successfully or with an error condition. If the socket supports a

datagram protocol, soconnect() sets a destination network address for the socket so that the

program can use the write system call to send data, rather than the commonly used send or

sendmsg calls.

A socket’s state during connection establishment is managed jointly by the socket layer and the

supporting protocol layer. The socket’s state value is never altered directly by a protocol; to

promote modularity, all modifications are performed by surrogate socket-layer routines, such as

soisconnected(). These routines modify the socket state as indicated and notify any waiting

processes. The supporting protocol layers never use synchronization or signalling facilities to

directly modify the socket structure. Errors that are detected asynchronously are communicated

to a socket in its so_error field. The socket layer always inspects the value of so_error on return

from a call to sleep(); this field reports errors detected asynchronously by the protocol layers.

For example, if a connection request fails because the protocol layer detects that the requested

service is unavailable, the so_error field is set to ECONNREFUSED before the requesting

process is awakened.

12.6 Data Transfer

Most of the work done by the socket layer lies in sending and receiving data. Note that the

socket layer itself explicitly refrains from imposing any structure on data transmitted or received

via sockets other than optional record boundaries. Within the overall

interprocess-communication model, any data interpretation or structuring is logically isolated

in the implementation of the communication domain. An example of this logical isolation is the

ability to pass file descriptors between processes using local-domain sockets.

Sending and receiving data can be done with any one of several system calls. The system calls

vary according to the amount of information to be transmitted and received, and according to

715

the state of the socket doing the operation. For example, the write system call may be used with

a socket that is in a connected state, since the destination of the data is known to the socket. The

sendto or sendmsg system calls, however, allow the process to specify the destination for a

message explicitly. Likewise, when data are received, the read system call allows a process to

receive data on a connected socket without receiving the sender’s address; the recvfrom and

recvmsg system calls allow the process to retrieve the incoming message and the sender’s

address. The differences between these calls were summarized in Section 12.1. The recvmsg and

sendmsg system calls allow scatter-gather I/O with multiple user-provided buffers. In addition,

recvmsg reports additional information about a received message, such as whether it was

expedited (out of band), whether it completes a record, or whether it was truncated because a

buffer was too small. The decision to provide many different system calls rather than only a

single general interface is debatable. It would have been possible to implement a single

system-call interface and to provide simplified interfaces to applications via user-level library

routines. However, the single system call would have to be the most general call, which has

somewhat higher overhead. Internally, all transmission and reception requests are converted to

a uniform format and are passed to the socket-layer sendit() and recvit() routines, respectively.

Transmitting Data

The sendit() routine is responsible for gathering all the system-call parameters from the

application into the kernel’s address space (except for the actual data) and for invoking the

sosend() routine to do the transmission. The parameters may include the following components,

illustrated in Figure 12.1:

• An address to which data will be sent, if the socket has not been connected

• Optional ancillary data (control data) associated with the message; ancillary data can include

protocol-specific data associated with a message, protocol option information, or access rights

• Normal data, specified as an array of buffers (see Section 7.1)

• Optional flags, including out-of-band and end-of-record flags

The sosend() routine handles most of the socket-level data-transmission options, including

requests for transmission of out-of-band data and for transmission without network routing.

This routine is also responsible for checking socket state—for example, seeing whether a

required connection has been made, whether transmission is still possible on the socket, and

whether a pending error should be reported rather than transmission attempted. In addition,

sosend() is responsible for putting processes to sleep when their data transmissions exceed the

space available in the socket’s send buffer. The actual transmission of data is done by the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#ch07lev1sec1

716

supporting communication protocol; sosend() copies data from the user’s address space into

mbufs in the kernel’s address space and then makes calls to the protocol to transfer the data.

Most of the work done by sosend() lies in checking the socket state, handling flow control,

checking for termination conditions, and breaking up an application’s transmission request into

one or more protocol transmission requests. The request must be broken up only when the size

of the user’s request plus the number of data queued in the socket’s send data buffer exceeds the

socket’s high watermark. It is not permissible to break up a request if the protocol is atomic,

because each request made by the socket layer to the protocol modules implicitly indicates a

boundary in the data stream. Most datagram protocols are of this type. Honoring each socket’s

high watermark ensures that no process or group of processes can monopolize system resources.

For sockets that guarantee reliable data delivery, a protocol will normally maintain a copy of all

transmitted data in the socket’s send queue until receipt is acknowledged by the receiver.

Protocols that provide no assurance of delivery normally accept data from sosend() and directly

transmit the data to the destination without keeping a copy, but sosend() itself does not

distinguish between reliable and unreliable delivery.

If a socket has insufficient space in its send buffer to hold all the data to be transmitted, sosend()

uses the following strategy: If the protocol is atomic, sosend() verifies that the message is no

larger than the send buffer size; if the message is larger, it returns an EMSGSIZE error. If the

available space in the send queue is less than the send low watermark, the transmission is

deferred. If the process is not using nonblocking I/O, the process is put to sleep until more space

is available in the send buffer; otherwise, an EAGAIN error is returned. When space is available,

a protocol transmit request is formulated according to the available space in the send buffer.

The sosend() routine copies data from the user’s address space into mbuf clusters whenever the

data are larger than the minimum cluster size (specified by MINCLSIZE). If a transmission

request for a nonatomic protocol is large, each protocol transmit request will normally contain a

full mbuf cluster. Although additional data could be appended to the mbuf chain before delivery

to the protocol, it is preferable to pass the data to lower levels immediately, which allows better

pipelining because data reach the bottom of the protocol stack earlier and can begin physical

transmission sooner. This procedure is repeated until no space remains; it resumes each time

additional space becomes available. This strategy tends to preserve the application-specified

message size and helps to avoid fragmentation at the network level. The latter benefit is

important because system performance is significantly improved when data-transmission units

are large—for example, the size of an mbuf cluster.

When the receiver or network is slower than the transmitter, the underlying connection-based

transmission protocols usually apply some form of flow control to delay the sender’s

717

transmission. Here, the amount of data that the receiver will allow the sender to transmit can

decrease to a size that the sender’s natural transmission size drops below its optimal value. To

retard this effect, sosend() delays transmission rather than breaking up the data to be

transmitted in the hope that the receiver will reopen its flow-control window and allow the

sender to perform optimally. The effect of this scheme is subtle and is also related to the

networking subsystem’s optimized handling of incoming data packets that are a multiple of the

machine’s page size.

Receiving Data

The soreceive() routine receives data queued at a socket. As the counterpart to sosend(),

soreceive() appears at the same level in the internal software structure and does similar tasks.

Three types of data may be queued for reception at a socket: in-band data, out-of-band data, and

ancillary data, such as access rights. In-band data may also be tagged with the sender’s address.

Handling of out-of-band data varies by protocol. They may be placed at the beginning of the

receive buffer or at the end of the buffer to appear in order with other data, or they may be

managed in the protocol layer separately from the socket’s receive buffer. In the first two cases,

they are returned by normal receive operations. In the final case, they are retrieved through a

special interface when requested by the user. These options allow varying styles of urgent data

transmission.

The soreceive() routine checks the socket’s state, including the receive data buffer, for incoming

data, errors, or state transitions, and processes queued data according to their type and the

actions specified by the caller. A system-call request may specify that only out-of-band data

should be retrieved (MSG_OOB) or that data should be returned but not removed from the data

buffer (by specifying the MSG_PEEK flag). Receive calls normally return as soon as the low

watermark is reached. Because the default is one byte, the call returns when any data are

present. The MSG_WAITALL flag specifies that the call should block until it can return all the

requested data, if possible. Alternatively, the MSG_DONTWAIT flag causes the call to act as

though the socket was in nonblocking mode, returning EAGAIN rather than blocking.

Data present in the receive data buffer are organized in one of several ways, depending on

whether message boundaries are preserved. There are three common cases for stream, datagram,

and sequenced-packet sockets. In the general case, the receive data buffer is organized as a list

of messages (see Figure 12.11). Each message can include a sender’s address (for datagram

protocols), ancillary data, and normal data. Depending on the protocol, it is also possible for

expedited or out-of-band data to be placed into the normal receive buffer. Each mbuf chain on a

list represents a single message or, for the final chain, a possibly incomplete record. Protocols

that supply the sender’s address with each message place a single mbuf containing the address

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig11

718

at the front of message. Immediately following any address is an optional mbuf containing any

ancillary data. Regular data mbufs follow the ancillary data. Names and ancillary data are

distinguished by the type field in an mbuf; addresses are marked as MT_SONAME, whereas

ancillary data are tagged as MT_CONTROL. Each message other than the final one is

considered to be terminated. The final message is terminated implicitly when an atomic protocol

is used, such as most datagram protocols. Sequenced-packet protocols could treat each message

as an atomic record, or they could support records that could be arbitrarily long, as is done in

SCTP, which is described in Section 14.7. In the latter case, the final record in the buffer might

or might not be complete, and a flag on the final mbuf, M_EOR, marks the termination of a

record. Record boundaries (if any) are generally ignored by a stream protocol. However,

transition from out-of-band data to normal data in the buffer, or presence of ancillary data,

causes logical boundaries. A single receive operation never returns data that cross a logical

boundary. Note that the storage scheme used by sockets allows them to compact data of the

same type into the minimal number of mbufs required to hold those data.

Figure 12.11 Data queueing for datagram socket.

On entry to soreceive(), a check is made to see whether out-of-band data are being requested.

Whenever out-of-band data are available from the protocol layer, they are returned to the caller

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec7

719

immediately on request. Otherwise, data from the normal queue have been requested. The

soreceive() function first checks whether the socket is in confirming state, with the peer

awaiting confirmation of a connection request. If it is, no data can arrive until the connection is

confirmed, and the protocol layer is notified that the connection should be completed. The

soreceive() routine then checks the receive data buffer character count to see whether data are

available. If they are, the call returns with at least the data currently available. If no data are

present, soreceive() consults the socket’s state to find out whether data might be forthcoming.

Data may no longer be received because the socket is disconnected (and a connection is required

to receive data) or because the reception of data has been terminated with a shutdown by the

socket’s peer. In addition, if an error from a previous operation was detected asynchronously,

the error needs to be returned to the user; soreceive() checks the so_error field after checking

for data. If no data or error exists, data might still arrive, and if the socket is not marked for

nonblocking I/O, soreceive() puts the process to sleep to await the arrival of new data.

When data arrive for a socket, the supporting protocol notifies the socket layer by calling

sorwakeup(). Soreceive() can then process the contents of the receive buffer, observing the

data-structuring rules described previously. Soreceive() first removes any address that must be

present, then optional ancillary data, and finally normal data. If the application has provided a

buffer for the receipt of ancillary data, they are passed to the application in that buffer;

otherwise, they are discarded. The removal of data is slightly complicated by the interaction

between in-band and out-of-band data managed by the protocol. The location of the next

out-of-band datum can be marked in the in-band data stream and used as a record boundary

during in-band data processing. That is, when out-of-band data are received by a protocol that

holds out-of-band data separately from the normal buffer, the corresponding point in the

in-band data stream is marked. Then, when a request is made to receive in-band data, only data

up to the mark will be returned. This mark allows applications to synchronize the in-band and

out-of-band data streams so that, for example, received data can be flushed up to the point at

which out-of-band data are received. Each socket has a field, so_oobmark, that contains the

character offset from the front of the receive data buffer to the point in the data stream at which

the last out-of-band message was received. When in-band data are removed from the receive

buffer, the offset is updated so that data past the mark will not be mixed with data preceding the

mark. The SS_RCVATMARK bit in a socket’s state field is set when so_oobmark reaches zero to

show that the out-of-band data mark is at the beginning of the socket receive buffer. An

application can test the state of this bit with the SIOCATMARK ioctl call to find out whether all

in-band data have been read up to the point of the mark.

Once data have been removed from a socket’s receive buffer, soreceive() updates the state of the

socket and notifies the protocol layer that data have been received by the user. The protocol

layer can use this information to release internal resources, to trigger end-to-end

720

acknowledgment of data reception, to update flow-control information, or to start a new data

transfer. Finally, if any access rights were received as ancillary data, soreceive() passes them to a

communication-domain-specific routine to convert them from their internal representation to

the external representation.

The soreceive() function returns a set of flags that are supplied to the caller of the recvmsg

system call via the msg_flags field of the msghdr structure (see Figure 12.1). The possible flags

include MSG_EOR to specify that the received data complete a record for a nonatomic

sequenced-packet protocol, MSG_OOB to specify that expedited (out-of-band) data were

received from the normal socket receive buffer, MSG_TRUNC to specify that an atomic record

was truncated because the supplied buffer was too small, and MSG_CTRUNC to specify that

ancillary data were truncated because the control buffer was too small.

12.7 Socket Shutdown

Although closing a socket and reclaiming its resources appears at first glance to be a

straightforward operation, it can be complicated. The complexity arises because of the implicit

semantics of the close system call. In certain situations (e.g., when a process exits), a close call is

never expected to fail. However, when a socket promising reliable delivery of data is closed with

data still queued for transmission or awaiting acknowledgment of reception, the socket must

attempt to transmit the data, perhaps indefinitely, for the close call to maintain the socket’s

advertised semantics. If the socket discards the queued data to allow the close to complete

successfully, it violates its promise to deliver data reliably. Discarding data can cause naive

processes, which depend on the implicit semantics of close, to work unreliably in a network

environment. However, if sockets block until all data have been transmitted successfully, then,

in some communication domains, a close may never complete!

In an effort to address this problem, the socket layer compromises yet maintains the semantics

of the close system call. Figure 12.12 shows the possible state transitions for a socket from a

connected to a closed state. In normal operation, closing a socket causes any queued but

unaccepted connections to be discarded. If the socket is in a connected state, a disconnect is

initiated. The socket is marked to indicate that a file descriptor is no longer referencing it, and

the close operation returns successfully. When the disconnect request completes, the network

support notifies the socket layer, and the socket resources are reclaimed. The network layer may

attempt to transmit any data queued in the socket’s send buffer, although there is no guarantee

that it will. However, commonly used connection-oriented protocols generally attempt to

transmit any queued data asynchronously after the close call returns, preserving the normal

semantics of close on a file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig12

721

Figure 12.12 Socket-state transitions during shutdown.

Alternatively, a socket may be marked explicitly to force the application process to linger when

closing until pending data have drained and the connection has shut down. This option is

marked in the socket data structure using the setsockopt system call with the SO_LINGER

option. When an application indicates that a socket is to linger, it also specifies a duration for

the lingering period. The application can then block for as long as the specified duration while

waiting for pending data to drain. If the lingering period expires before the disconnect is

completed, the socket layer then notifies the network that it is closing, possibly discarding any

data still pending. Some protocols handle the linger option differently. In particular, if the linger

option is set with a duration of zero, the protocol may discard pending data rather than attempt

to deliver them asynchronously.

12.8 Network-Communication Protocol Internal Structure

The network subsystem is logically divided into three layers as shown in Figure 12.13. These

three layers manage the following tasks:

1. Interprocess data transport

2. Internetwork addressing and message routing

3. Data-link layer

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig13

722

Figure 12.13 Network subsystem layering. The boxes on the left name the standard layers; the

boxes on the right name specific examples of protocols used at those layers.

The first two layers are made up of modules that implement communication protocols. The

software in the third layer handles protocols, such as Ethernet and WiFi, that are responsible for

encapsulating and decapsulating packets over physical or wireless links.

The topmost layer in the network subsystem is termed the transport layer. The transport

layer must provide an addressing structure that permits communication between sockets and

any protocol mechanisms necessary for socket semantics, such as reliable data delivery. The

second layer, the network layer, is responsible for the delivery of data destined for remote

transport or for network-layer protocols. In providing internetwork delivery, the network layer

must manage a private routing database or use the systemwide facility for routing messages to

their destination host. Beneath the network layer is the datalink layer, which handles the

differences between various hardware standards for networking, such as Ethernet and WiFi. The

link layer is responsible for transporting messages between hosts connected to a common

transmission medium. The link layer is mainly concerned with driving the network devices

involved and performing any necessary link-level protocol encapsulation and

decapsulation. The transport, network, and link layers of the network subsystem correspond

to the transport, network, and link layers of the ISO Open Systems Interconnection Reference

Model [ISO, 1984], respectively.

The internal structure of the networking software is not directly visible to users. Instead, all

networking facilities are accessed through the socket layer. Each communication protocol that

permits access to its facilities exports a set of user request routines to the socket layer. These

routines are used by the socket layer in providing access to network services.

The layering described here is a logical layering, meaning that the software that implements

network services may use more or fewer communication protocols according to the design of the

network architecture being supported. For example, raw sockets often use a null

implementation at one or more layers. At the opposite extreme, tunneling of one protocol

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_457
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_236
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref07

723

through another uses one network protocol to encapsulate and deliver packets for another

protocol and involves multiple instances of some layers.

Data Flow

Early versions of BSD were used as end systems in a network. They were either the source or

destination of communication. Although many installations used a workstation as an office

router, dedicated hardware did the more complex tasks of bridging and routing. At the time of

the original design and implementation of the networking subsystem, the possibility of securing

data by encrypting packets was still far too computationally slow. Since that initial design, many

different uses have been made of the code. Bridges and routers can be built out of stock parts

and the advent of specialized cryptographic accelerators has made packet encryption practical in

almost any environment. These facts conspire to make discussion of data flow within the

network subsystem more complex than it was in earlier systems.

There are four paths through a network node:

Inbound

Destined for this node and possibly a user-level application

Outbound

Originating on this node and destined, via a network, for another

Forward

Whether bridged or routed, the packets are not for this node but to be sent on to another

network or host

Error

A packet has arrived that requires the network subsystem to send a response without the

involvement of a user-level application.

Inbound data received at a network interface flow upward through communication protocols

until they are placed in the receive queue of the destination socket. Outbound data flow down to

the network subsystem from the socket layer through calls to the transport-layer modules that

support the socket abstraction. The downward flow of data typically is started by system calls.

The data flowing in the outbound direction are handled by a transport protocol (see Chapter 14),

which then hands the data over to the network layer protocols (see Chapter 13) and thence on to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13

724

the data link protocols, and are finally transmitted by a network device driver (see Chapter 8).

Data flowing upward are received asynchronously and are passed from the link layer to the

appropriate communication protocol through direct dispatch via the netisr subsystem, as shown

in Figure 12.14. The system handles inbound network traffic by dispatching it directly from the

device driver (see Section 12.8), through the link, network, and transport layers, until it is finally

deposited in a socket buffer. When possible, FreeBSD processes all packets to completion.

Figure 12.14 Example of inbound flow of a data packet in the network subsystem. Key:

Ethernet—Ethernet header; IPv4—Internet Version 4 Protocol header; TCP—Transmission

Control Protocol header.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8

725

Communication Protocols

A network protocol is defined by a set of conventions including packet formats, states, and state

transitions. A communication-protocol module implements a protocol and is made up of a

collection of procedures and private data structures. Protocol modules are described by a

protocol-switch structure that contains the set of externally visible entry points and certain

attributes shown in Figure 12.15. The socket layer interacts with a communication protocol

solely through the latter’s protocol-switch structure, recording the address of the structure in

the socket’s so_proto field. This isolation of the socket layer from the networking subsystem is

important in ensuring that the socket layer provides users with a consistent interface to all the

protocols supported by a system. When a socket is created, the socket layer looks up the domain

for the protocol family to find the array of protocol-switch structures for the family (see Section

12.4). A protocol is selected from the array based on the type of socket supported (the type field)

and, optionally, a specific protocol number (the protocol field). The protocol switch has a back

pointer to the domain (the domain field). Within a protocol family, every protocol capable of

supporting a socket directly (for example, most transport protocols) must provide a

protocol-switch structure describing the protocol. Lower-level protocols such as network-layer

protocols may also have protocol-switch entries, although whether they do can depend on

conventions within the protocol family.

Figure 12.15 Protocol-switch structure.

Before a protocol is first used, the protocol’s initialization routine is invoked. Thereafter, the

protocol will be invoked for timer-based actions every 200 milliseconds if the fast timeout entry

is present, and every 500 milliseconds if the slow timeout entry point is present. In general,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4

726

protocols use the slower timer for most timer processing; the major use of the fast timeout is for

delayed-acknowledgment processing in reliable transport protocols. The drain entry is provided

so that the system can notify the protocol if the system is low on memory and would like any

noncritical data to be discarded.

Protocols may pass data between their layers in chains of mbufs (see Section 12.3) using the data

input and data output routines. The data input routine passes data up toward the user, whereas

the data output routine passes data down toward the network. Similarly, control information

passes up and down via the control-input and control-output routines. The table of

user-request routines is the interface between a protocol and the socket level; they are

described in detail in Section 12.9.

In general, a protocol is responsible for storage space occupied by any of the arguments passed

downward via these procedures and must either pass the space onward or dispose of it. On

output, the lowest level reached must free space passed as arguments; on input, the highest level

is responsible for freeing space passed up to it. Auxiliary storage needed by protocols is allocated

from the mbuf pool. This space is used temporarily to formulate messages or to hold variablesize

socket addresses. Mbufs allocated by a protocol for private use must be freed by that protocol

when they are no longer in use.

The flags field in a protocol’s protocol-switch structure describes the protocol’s capabilities and

certain aspects of its operation that are pertinent to the operation of the socket level; the flags

are listed in Table 12.7. Protocols that are connection based specify the PR_CONNREQUIRED

flag, so that socket routines will never attempt to send data before a connection has been

established. If the PR_WANTRCVD flag is set, the socket routines will notify the protocol when

the user has removed data from a socket’s receive queue. This notification allows a protocol to

implement acknowledgment on user receipt and also to update flow-control information based

on the amount of space available in the receive queue. The PR_ADDR field indicates that any

data placed in a socket’s receive queue by the protocol will be preceded by the address of the

sender. The PR_ATOMIC flag specifies that each user request to send data must be done in a

single protocol-send request; it is the protocol’s responsibility to maintain record boundaries on

data to be sent. This flag also implies that messages must be received and delivered to processes

atomically. The PR_RIGHTS flag indicates that the protocol supports the transfer of access

rights; this flag is currently used by only those protocols in the local communication domain.

Connection-oriented protocols that allow the user to set up, send data, and tear down a

connection all in a single sendto call have the PR_IMPLOPCL flag set. The PR_LASTHDR flag is

used by secure protocols, such as IPSec, where several headers must be processed to get the

actual data.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_477
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab07

727

Table 12.7 Protocol flags.

12.9 Socket-to-Protocol Interface

The interface from the socket routines to the communication protocols is through the table of

user-request routines and the control-output routine defined in the protocol-switch structure for

each protocol. When the socket layer requires services of a supporting protocol, it makes a call

to a function in Table 12.8. The control-output routine implements the getsockopt and

setsockopt system calls; the user-request routines are used for all other operations. Calls to the

control-output routine specify SOPT_GET to get the current value of an option, or SOPT_SET

to set the value of an option.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab08

728

Table 12.8 User-request routines.

Protocol User-Request Routines

Calls to the user-request routines have a routine-specific signature, but the first argument is

always a pointer to a socket structure that specifies the socket for which the operation is

intended. An mbuf data chain is supplied for output operations and for certain other operations

where a result is to be returned. A pointer to a sockaddr structure is supplied for

address-oriented requests, such as pru_bind(), pru_connect(), and pru_send() (when an

address is specified—e.g., the sendto call). Where it is used, the control parameter is a pointer to

729

an optional mbuf chain containing protocol-specific control information passed via the sendmsg

call. Each protocol is responsible for disposal of the data mbuf chains on output operations. A

nonzero return value from a user-request routine indicates an error number that should be

passed to higher-level software. A description of each of the possible requests follows:

• pru_attach(): attach protocol to socket. When a protocol is first bound to a socket (with the

socket system call), the protocol module’s pru_attach() routine is called. It is the responsibility

of the protocol module to allocate any resources necessary. The attach routine will always

precede any of the other operations and will occur only once per socket.

• pru_detach(): detach protocol from socket. This operation is the inverse of the attach routine

and is used at the time that a socket is deleted. The protocol module may deallocate any

resources that it allocated for the socket in a previous pru_attach() call.

• pru_bind(): bind address to socket. When a socket is initially created, it has no address bound

to it. This routine binds an address to an existing socket. The protocol module must verify that

the requested address is valid and is available for use.

• pru_listen(): listen for incoming connections. A listen request indicates that the user wishes

to listen for incoming connection requests on the associated socket. The protocol module should

make any state changes needed to meet this request (if possible). A call to the listen routine

always precedes any request to accept a connection.

• pru_connect(): connect socket to peer. The connect request routine indicates that the user

wants to establish an association. The addr parameter describes the peer to which a connection

is desired. The effect of a connect request may vary depending on the protocol. Stream protocols

use this request to initiate establishment of a network connection. Datagram protocols simply

record the peer’s address in a private data structure, where they use it as the destination address

of all outgoing packets and as a source filter for incoming packets. There are no restrictions on

how many times a connect routine may be used after an attach, although most stream protocols

allow only one connect call.

• pru_accept(): accept pending connection. Following a successful listen request and the arrival

of one or more connections, this routine is called to indicate that the user is about to accept a

socket from the queue of sockets ready to be returned. The socket supplied as a parameter is the

socket that is being accepted; the protocol module is expected to fill in the supplied buffer with

the address of the peer connected to the socket.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_55

730

• pru_disconnect(): disconnect connected socket. This routine eliminates an association created

with the connect routine. It is used with datagram sockets before a new association is created; it

is used with stream protocols only when the socket is closed.

• pru_shutdown(): shut down socket data transmission. This call indicates that no more data

will be sent. The protocol may, at its discretion, deallocate any data structures related to the

shutdown or the protocol may leave all that work for its pru_detach() routine. The module may

also notify a connected peer of the shutdown at this time.

• pru_rcvd(): data were received by user. This routine is called only if the protocol entry in the

protocol-switch table includes the PR_WANTRCVD flag. When the socket layer removes data

from the receive queue and passes them to the user, this routine will be called in the protocol

module. This routine may be used by the protocol to trigger acknowledgments, refresh

windowing information, initiate data transfer, and so on. This routine is also called when an

application attempts to receive data on a socket that is in the confirming state, indicating that

the protocol must accept the connection request before data can be received (see Section 12.5).

• pru_send(): send user data. Each user request to send data is translated into one or more calls

to the protocol module’s pru_send() routine. A protocol may indicate that a single user send

request must be translated into a single call to the pru_send() routine by specifying the

PR_ATOMIC flag in its protocol description. The data to be sent are presented to the protocol as

a chain of mbufs, and an optional address is supplied in the addr parameter. The protocol is

responsible for preserving the data in the socket’s send queue if it is not able to send them

immediately or if it may need them at some later time (e.g., for retransmission). The protocol

must eventually pass the data to a lower level or free the mbufs.

• pru_abort(): abnormally terminate service. This routine effects an abnormal termination of

service. The protocol should delete any existing associations.

• pru_control(): perform control operation. The control request routine is called when a user

does an ioctl system call on a socket and the ioctl is not intercepted by the socket routines. This

routine allows protocol-specific operations to be provided outside the scope of the common

socket interface. The cmd parameter contains the actual ioctl request code. The data parameter

contains any data relevant to the command being issued and the ifp parameter contains a

pointer to a network-interface structure if the ioctl operation pertains to a particular network

interface.

• pru_sense(): sense socket status. The sense request routine is called when the user makes an

fstat system call on a socket; it requests the status of the associated socket. This call returns a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_368

731

standard stat structure that typically contains only the optimal transfer size for the connection

(based on buffer size, windowing information, and maximum packet size).

• pru_rcvoob(): receive out-of-band data. This routine requests that any out-of-band data now

available are to be returned. An mbuf is passed to the protocol module, and the protocol should

either place data in the mbuf or attach new mbufs to the one supplied if there is insufficient

space in the single mbuf. An error may be returned if out-of-band data are not (yet) available or

have already been consumed. The flags parameter contains any options, such as MSG_PEEK,

that should be observed while this request is carried out.

• pru_sosend(): a generic routine, usable by system calls, as well as the kernel, to send data

using a protocol.

• pru_soreceive(): routine that implements the kernel’s part of the recv and recvmsg system

calls.

• pru_sopoll(): check a socket to see if it has any available data. Used by both the select and poll

system calls.

• pru_sockaddr(): retrieve local socket address. This routine returns the local address of the

socket if one has been bound to the socket. The address is returned in the nam parameter, which

is a pointer to a sockaddr structure.

• pru_peeraddr(): retrieve peer socket address. This routine returns the address of the peer to

which the socket is connected. The socket must be in a connected state for this request to

succeed. The address is returned in the nam parameter, which is a pointer to a sockaddr

structure.

• pru_connect2(): connect two sockets without binding addresses. In this routine, the protocol

module is supplied two sockets and is asked to establish a connection between the two without

binding any addresses, if possible. The system uses this call in implementing the socketpair

system call.

• pru_sosetlabel(): Set a MAC label on a socket.

• pru_bindat(): PF_LOCAL specific bind routine for use with Capsicum and capabilities.

• pru_connectat(): PF_LOCAL specific connect routine for use with Capsicum and capabilities.

• pru_flush(): used only by SCTP to flush input or output data.

• pru_close(): close down the connection associated with a socket.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_249

732

Protocol Control-Output Routine

A call to the control-output routine is of the form

Click here to view code image

int (*pr->pr_ctloutput)(

 struct socket *so,

 struct sockopt *sopt);

where so is the socket to be modified and sopt is a socket option structure.

Click here to view code image

enum sopt_dir { SOPT_GET, SOPT_SET };

struct sockopt {

 enum sopt_dir sopt_dir;

 int sopt_level;

 int sopt_name;

 void *sopt_val;

 size_t sopt_valsize;

 struct thread *sopt_td;

};

The direction is either SOPT_SET to set an option or SOPT_GET to retrieve it. The sopt_level

member indicates the layer of software that should interpret the option request. A sopt_level of

SOL_SOCKET is specified to control an option at the socket layer. When the option is to be

processed by a protocol module below the socket layer, level is set to the appropriate protocol

number (the same number used in the socket system call). Each level has its own set of option

names; this name is interpreted only by the targeted layer of software. The rest of the structure

contains a pointer to the value being passed into or out of the module, the size of the pointed-to

data, and a pointer to a thread structure. If the operation takes place wholly inside the kernel,

then the pointer to the thread structure is null.

In supporting the getsockopt and setsockopt system calls, the socket layer always invokes the

control-output routine of the protocol attached to the socket. To access lower-level protocols,

each control-output routine must pass control-output requests that it does not intend to

perform downward to the next protocol in the protocol hierarchy. Chapter 14 describes some of

the options provided by the protocols in the Internet-communication domain.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p630pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p631pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14

733

12.10 Protocol-to-Protocol Interface

The interface between protocol modules uses the pr_usrreqs() routines as well as the

pr_ctloutput() routine. The pr_usrreqs() and pr_ctloutput() routines are used by the socket

layer to communicate with protocols.

Although imposing a standard calling convention for all a protocol’s entry points might

theoretically permit an arbitrary interconnection of protocol modules, it would be difficult in

practice. Crossing a protocol-family boundary—for example, between IPv4 and IPX—would

require a network address to be converted from the format of the caller’s domain to the format

of the receiver’s domain. Consequently, connection of protocols in different communication

domains is not generally supported, and calling conventions for the routines listed in the

preceding paragraph are typically standardized on a per-domain basis. (However, the system

does support encapsulation of packets from one protocol into packets of a protocol in another

family to tunnel one protocol through another.)

In this section, we briefly examine the general framework and calling conventions of protocols.

In Chapter 14, we examine specific protocols to see how they fit into this framework.

pr_output

Each protocol has a different calling convention for its output routine. This lack of

standardization is a reason that protocol modules cannot be freely interchanged with each other

in arbitrary stacks, such as is done in the STREAMS system [Ritchie, 1984]. Thus far, interface

standardization has not been considered necessary because each protocol stack tends to stand

on its own without ever borrowing from others. An arbitrary stacking of protocol modules would

also complicate the interpretation of network addresses in each module, since each module

would have to check to make sure that the address made some sense to them in their domain.

The simplest example of a protocol output routine often uses a calling convention designed to

send a single message on a connection; for example,

int (*pr_output)(

 register struct inpcb *inp,

 struct mbuf *msg,

 struct sockaddr *addr

 struct mbuf *control,

 struct thread *td);

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref09

734

would send a message contained in msg on a socket described by protocol control block inp.

Special address and control information are passed in addr and control, respectively.

pr_input

Upper-level protocol input routines are usually called by the network software-interrupt task

once the network-level protocol has located the protocol identifier. They have stricter

conventions than do output routines because they are called via the protocol switch. Depending

on the protocol family, they may receive a pointer to a control block identifying the connection,

or they may have to locate the control block from information in the received packet. A typical

calling convention is

void (*pr_input)(

 struct mbuf *msg,

 int hlen);

In this example, the incoming packet is passed to a transport protocol in an mbuf msg with the

network protocol header still in place for the transport protocol to use, as well as the length of

the header, hlen, so that the header can be removed. The protocol does the endpoint-level

demultiplexing based on information in the network and transport headers.

pr_ctlinput

This routine passes control information (i.e., information that might be passed to the user but

does not consist of data) upward from one protocol module to another. The common calling

convention for this routine is

void (*pr_ctlinput)(

 int cmd,

 struct sockaddr *addr,

 void* opaque);

The cmd parameter is a value shown in Table 12.9. The addr parameter is the remote address to

which the condition applies. Many of the requests have been derived from the Internet Control

Message Protocol (ICMP) [Postel, 1981] and from error messages defined in the 1822 host

(Internet Message Processor) convention [BBN, 1978]. Some protocols may pass additional

parameters internally, such as local addresses or more specific information.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref01

735

Table 12.9 Control-input routine requests.

12.11 Protocol-to-Network Interface

The lowest layer in the set of protocols that constitutes a protocol family must interact with one

or more network interfaces to transmit and receive packets. It is assumed that any routing

decisions have been made before a packet is sent to a network interface; a routing decision is

necessary to locate any interface at all. Although there are four paths through any network stack,

there are only two cases concerning protocols and network interfaces that we should consider:

transmission of a packet and receipt of a packet. We shall consider each separately. The

interactions between the kernel device-driver software and network interface hardware was

described in Section 8.5.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5

736

Network Interfaces and Link-Layer Protocols

Each network interface configured in a system defines a link-layer path through which messages

can be sent and received. A link-layer path is a path that allows a message to be sent via a single

transmission to its destination, without network-level forwarding. Normally, a hardware device

is associated with this interface, although there are software-based interfaces such as the

loopback interface. In addition to manipulating the hardware device, a network-interface

module is responsible for encapsulation and decapsulation of any link-layer protocol header

required to deliver a message to its destination. For common interface types, the link-layer

protocol is implemented in a separate sublayer that is shared by various hardware drivers. The

selection of the interface to use in sending a packet is a routing decision carried out at the

network-protocol layer. An interface may have addresses in one or more address families. Each

address is set when the device is brought into a running state using an ioctl system call on a

socket in the appropriate domain. This operation is implemented by the protocol family after

the network interface verifies the operation. The network-interface abstraction provides

protocols with a consistent interface to all hardware devices that may be present on a machine.

An interface and its addresses are defined by the structures shown in Figure 12.16. As interfaces

are found at startup time, the ifnet structures are initialized and are placed on a linked list. The

network-interface module generally maintains the ifnet interface data structure as part of a

larger structure that also contains information used in operating the underlying hardware

device. Similarly, the ifaddr interface-address structure is often part of a larger structure

containing additional protocol information about the interface or its address. Because network

socket addresses are variable in size, each protocol is responsible for allocating the space

referenced by the address, mask, and broadcast or destination address pointers in the ifaddr

structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig16

737

Figure 12.16 Network-interface data structures. The fields marked in bold are broken out and

described more fully in figures shown later in this section.

Each network interface is identified in two ways: a character string identifying the driver plus a

unit number for the driver (e.g. cxgbe0), and a binary systemwide index number. The index is

used as a shorthand identifier—for example, when a route that refers to the interface is

established. As each interface is initialized, the system creates an array of pointers to the ifnet

structures for the interfaces. It can thus locate an interface quickly given an index number,

whereas the lookup using a string name is less efficient. Some operations, such as interface

address assignment, name the interface with a string for the user’s convenience because

performance is not critical. Other operations, such as route establishment, pass a newer style of

identifier that can use either a string or an index. The new identifier uses a sockaddr structure in

a new address family, AF_LINK, indicating a link-layer address. The family-specific version of

the structure is a sockaddr_dl structure, shown in Figure 12.17, which may contain up to three

identifiers. It includes an interface name as a string plus a length, with a length of zero denoting

the absence of a name. It also includes an interface index as an integer, with a value of zero

indicating that the index is not set. Finally, it may include a binary link-level address, such as an

Ethernet address, and the length of the address. An address of this form is created for each

network interface as the interface is configured by the system and is returned in the list of local

addresses for the system along with network protocol addresses (see later in this subsection).

Figure 12.17 shows a structure describing an Ethernet interface that is the first interface on the

system; the structure contains the interface name, the index, and the link-layer (Ethernet)

address.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig17

738

Figure 12.17 Link-layer address structure. The box on the left names the elements of the

sockaddr_dl structure. The box on the right shows sample values for these elements for an

Ethernet interface. The sdl_data array may contain a name (if sdl_nlen is nonzero), a link-layer

address (if sdl_alen is nonzero), and an address selector (if sdl_slen is nonzero). For an

Ethernet, sdl_data contains a name followed by a unit number, cxgbe0, followed by a 6-byte

Ethernet address.

The interface data structure includes an if_data structure, broken out in Table 12.10, which

contains the externally visible description of the interface. It includes the link-layer type of the

interface, the maximum network-protocol packet size that is supported, and the sizes of the

link-layer header and address. It also contains numerous statistics, such as packets and bytes

sent and received, input and output errors, and other data required by the netstat program and

network-management protocols. The statistics are a subset of the statistics maintained by the

network card. They are copied periodically from registers on the network interface into the

if_data structure. Most network interfaces expose a much larger set of statistics via the sysctl

subsystem.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab10

739

Table 12.10 Per ifnet meta-data and statistics. Fields marked in bold and italic record statistics

at run time for use by other tools such as netstat.

The state of an interface and certain externally visible characteristics are stored in the if_flags

field described in Table 12.11. The first set of flags characterizes an interface. If an interface is

connected to a network that supports transmission of broadcast messages, the

IFF_BROADCAST flag will be set, and the interface’s address list will contain a broadcast

address to be used in sending and receiving such messages. If an interface is associated with a

point-to-point hardware link (e.g., a leased line circuit), the IFF_POINTOPOINT flag will be set,

and the interface’s address list will contain the address of the host on the other side of the

connection. Note that the broadcast and point-to-point attributes are mutually exclusive. These

addresses and the local address of an interface are used by network-layer protocols in filtering

incoming packets. The IFF_MULTICAST flag is set by interfaces that support multicast packets

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_28

740

in addition to IFF_BROADCAST. A multicast address is used to send a packet to a group of

hosts rather than a single host on the network. A network has many multicast addresses

available. A group that wishes to receive packets selects an available address and then every

member of the group signs up to receive packets sent to that multicast address. Packets sent to

the group’s selected multicast address are received by all members of the group that have

requested to receive it.

Table 12.11 Network interface flags.

Additional interface flags describe the operational state of an interface. An interface sets the

IFF_RUNNING flag after it has allocated system resources and has posted an initial read on the

device that it manages. This state bit avoids multiple-allocation requests when an interface’s

741

address is changed. The IFF_UP flag is set when the interface is configured and is ready to

transmit messages. The IFF_PROMISC flag is set by network-monitoring programs to enable

promiscuous reception when they wish to receive packets for all destinations rather than only

those destined for the local system. Packets addressed to other systems are passed to the

monitoring packet filter but are not delivered to network protocols. The IFF_ALLMULTI flag is

similar, but it only applies to multicast packets and is used by multicast-forwarding agents. The

IFF_SIMPLEX flag is set by Ethernet drivers whose hardware cannot receive packets that they

send. Here, the output function simulates reception of broadcast and (depending on the

protocol) multicast packets that have been sent. Finally, the IFF_DEBUG flag can be set to

enable any optional driver-level diagnostic tests or messages. Three flags are defined for use by

individual link-layer drivers (IFF_LINK0, IFF_LINK1, and IFF_LINK2). They can be used to

select link-layer options, such as Ethernet medium type.

Interface addresses and flags are set with ioctl requests. The requests specific to a network

interface pass the name of the interface as a string in the input data structure, with the string

containing the name for the interface type plus the unit number. Either the SIOCSIFADDR or

the SIOCAIFADDR request is used initially to define each interface’s addresses. The former sets

a single address for the protocol on this interface. The latter adds an address, with an associated

address mask and broadcast address. It allows an interface to support multiple addresses for the

same protocol. In either case, the protocol allocates an ifaddr structure and sufficient space for

the addresses and any private data, and appends the structure onto the list of addresses for the

network interface. In addition, most protocols keep a list of addresses for the protocol. The

result appears like a two-dimensional linked list, as shown in Figure 12.18. An address can be

deleted with the SIOCDIFADDR request.

Figure 12.18 Network-interface and protocol data structures. The linked list of ifnet structures

appears on the left side of the figure. The ifaddr structures storing the addresses for each

interface are on a linked list headed in the ifnet structure and shown as a horizontal list. The

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig18

742

ifaddr structures for most protocols are linked together as well, shown in the vertical lists

headed by pf1_addr and pf2_addr.

The SIOCSIFFLAGS request can be used to change an interface’s state and to do site-specific

configuration. The destination address of a point-to-point link is set with the

SIOCSIFDSTADDR request. Corresponding operations exist to read each value. Protocol

families also can support operations to set and read the broadcast address. Finally, the

SIOCGIFCONF request can be used to retrieve a list of interface names and protocol addresses

for all interfaces and protocols configured in a running system. Similar information is returned

by a newer mechanism based on the sysctl system call with a request in the routing protocol

family (see Sections 12.4 and 13.5). These requests permit developers to construct network

processes, such as a routing daemon, without detailed knowledge of the system’s internal data

structures.

The ifnet contains a table of function pointers that is filled in by the device driver when the

device is initialized. The routines, shown in Table 12.12, define the kernel-programming

interface (KPI) for working with network devices. The if_input() and if_output() routines are

described in the following subsections.

Table 12.12 The ifnet routine table.

The if_ioctl() routine is responsible for controlling the underlying device. The state of the device,

the hardware features that are enabled, the flags that are set, and whether it is able to receive or

send packets, are all controlled by a set of commands that are sent via the if_ioctl() routine.

One of the more complex operations carried out by the if_ioctl() routine is maintenance of the

interface’s multicast filters. Network-interface devices that operate over broadcast media, such

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12tab12

743

as Ethernet and WiFi, all have the ability to receive packets destined for a multicast address that

is meant to reach any interested listener on the local network. To receive packets with a

multicast address as its destination, the network card implements a hardware filter. The filter

accepts just the packets in the filtered multicast group so that the card does not need to see

every packet on the network to know whether one of them has the selected multicast address set.

Each network card manufacturer has its own scheme for filtering multicast packets and there

has never been a unified way for the kernel to map this feature of the card into a single data

structure. The kernel keeps a list of multicast addresses that user programs have asked it to

listen for in a list pointed to by the if_multiaddrs field of the ifnet structure. Whenever a

program joins or leaves a multicast group, a command is issued to the if_ioctl() routine of the

driver telling the driver that the multicast-address list has now changed. It is the responsibility

of the driver to reprogram the network-device hardware so that the device’s filtering hardware

matches what is expected by the kernel. The current implementation is somewhat lacking in

terms of performance in the face of large multicast lists. Each update to the list often requires

reprogramming the network-device hardware, because most network-device hardware does not

provide fine-grained access to the underlying hardware tables. Whenever an entry is added to or

removed from the if_multiaddrs list, the driver clears the hardware tables and then adds the

updated list, entry by entry, until hardware has an updated view of the multicast address list. If

hardware designers provided a proper API that allowed driver writers to add or remove single

addresses directly from the hardware list, it would ease doing such operations.

The if_resolvemulti() routine exists to map a network-layer address to a hardware-layer

multicast address. Each type of network device has a different way of mapping network-layer

multicast addresses to link-layer multicast addresses and therefore must have a device-specific

function to perform the mapping. The mapping is commonly handled by a link-layer protocol

module such as Ethernet.

Packet Transmission

Once a network-layer protocol has chosen an interface, the protocol transmits a fully formatted

network-level packet with the following call (where ifp is a pointer to the selected

network-interface structure):

int (*if_output)(

 struct ifnet *ifp,

 struct mbuf *msg,

 struct sockaddr *dst,

 struct rtentry *rt);

744

Between network-layer protocols and the hardware devices is a layer of software responsible for

resolving next-hop hardware addresses and adding link-layer information such as Ethernet

hardware addresses to the packet. The output routine for the link-layer protocol modifies the

packet header (msg) based on the destination address (dst) and route entry (rtentry)

information. Once the fully formed packet reaches hardware, it may be transmitted immediately

or held in the device for later transmission. In reality, transmission may not be immediate or

successful. Typically, the device’s transmit routine copies the packet into the device’s transmit

buffers or queues the packet. For unreliable media, such as Ethernet or wireless LANs,

successful transmission means only that the packet has been placed on the wire or transmitted

by radio without a collision. In contrast, a reliable point-to-point network such as X.25 can

guarantee proper delivery of a packet or give an error indication for each packet that was not

successfully transmitted. The model employed in the networking system attaches no promise of

delivery to the packets presented to a network interface and thus corresponds most closely to

the Ethernet. Errors returned by the output routine are only those that can be detected

immediately and are normally trivial in nature (network down, no buffer space, address format

not handled, etc.). If errors are detected after the call has returned, the protocol is not notified.

When messages are transmitted in a broadcast network such as Ethernet, each network

interface must formulate a link-layer address for each outgoing packet. The network layer for

each protocol family selects a destination address for each message and then uses that address

to select the appropriate network interface to use. This destination address is passed to the link

layer’s output routine as a sockaddr structure. The link layer is responsible for mapping the

destination network-layer address into an address for the link-layer protocol associated with the

transmission medium that the interface supports. This mapping may be a simple algorithm, it

may require a table lookup, or it may require more involved techniques such as use of the

address-resolution protocol described in Section 13.1.

Packet Reception

Network interfaces receive packets and dispatch packets to the appropriate network-layer

protocol according to information encoded in the link-layer protocol header. Each protocol

family must have one or more protocols that constitute the network layer described in Section

12.8. Prior to FreeBSD 5, network packets were processed by a kernel thread running a

network-interrupt service routine (netisr). Though still referred to as the netisr subsystem, the

FreeBSD kernel now processes received network packets using a run-to-completion model of

data processing also referred to as direct dispatch. Each packet is carried up through as many

layers of the networking code as possible. Packets that are not destined for a user process, such

as those that are being forwarded to other nodes in the network, are processed until they are

transmitted on to the next hop in the path to their ultimate destination. Earlier versions of

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_347

745

FreeBSD had many points in the networking code, including between devices and protocols,

where packets might be placed on a queue to be picked up and processed later. Using queues

allows for a clean separation between various modules in the network stack, but it also

introduces a performance penalty because of the cost of context switching between kernel

threads and thrashing in the CPU’s cache. The direct-dispatch model allows the system to carry

out as much work as possible with a single thread whose data relevant to the current processing

operation is still in the CPU’s cache. Kernel threads that handle packet reception may be pinned

to a particular CPU so that the maximum amount of cache coherency can be maintained

throughout the packet reception process. Only when the kernel can no longer make progress

processing a received packet does it place the packet on a queue for handling by another thread

to execute later.

Protocols register protocol-handling functions with the netisr subsystem by calling

netisr_register(). On receiving a packet, a device driver places the received data into an mbuf,

records the interface on which the packet was received in the mbuf’s packet header structure,

and passes the packet to the lower part of the link-layer protocol via a call to netisr_dispatch().

The netisr_dispatch() routine makes the decision about whether to use direct dispatch and

where an inbound packet should be processed. When using direct dispatch, the netisr_dispatch()

can choose to pin the thread that is handling an inbound packet to a particular CPU. The system

administrator can request that the old approach of queueing the packet and using a separate

kernel thread to process all incoming packets be used. Queueing works best when many

uniformly spaced packets arrive in periodic bursts. Here, the queue can hold the burst of packets

that can then be processed during the slack period before the next burst. With direct dispatch, if

packets arrive faster than they can be processed, all the CPUs will be busy handling earlier

packets and the excess unclaimed packets will be lost by the network hardware when new

packets arrive and overwrite older unclaimed ones.

The netisr module is used twice in the case of Ethernet packets. From the ether_input() routine,

a packet is first sent through the netisr system so that the kernel can decide whether to process

the packet on the current CPU, another CPU based on a tunable dispatching policy, or queued

for later processing by a different kernel thread. Systems that expect to receive many packets

typically process packets via direct dispatch, allowing the packet processing to run to

completion.

Once a decision has been made on where to process the packet, it is passed into the netisr

system again via the ether_demux() routine that handles passing the packet into the

network-layer protocol. The ether_demux() routine uses the packet’s ether type, a 16-bit value

that indicates the network-layer protocol, to dispatch the packet via the netisr subsystem into

the appropriate network-layer protocol. Each network-layer protocol accepts only an mbuf chain

746

as an argument. By the time the packet reaches the network-layer protocol, the mbuf chain

already has all the information necessary to complete processing of the packet for both network

and transport-layer protocols.

12.12 Buffering and Flow Control

A major factor affecting the performance of a protocol is the buffering policy. Lack of a proper

buffering policy can force packets to be dropped, cause false windowing information to be

emitted by protocols, fragment memory, and degrade system performance. Because of these

problems, most systems allocate a fixed pool of memory to the networking system and impose a

policy optimized for normal network operation.

At boot time, a fixed amount of memory is allocated by the networking system for mbufs and

mbuf clusters. More system memory may be requested for mbuf clusters as the need arises, up

to a preconfigured limit. Although the kernel memory allocator can reclaim unused memory

from zones, it has been configured never to reclaim memory from the zones used for mbufs and

mbuf clusters. Because of the wide and frequent swings in network buffer needs, the network

developers have found it more efficient to let the mbuf memory pool stay at its high-watermark

usage level.

Protocol Buffering Policies

When a socket is created, the protocol reserves a protocol-selected amount of buffer space for

send and receive queues. These amounts define the high water-marks used by the socket

routines in deciding when to block and unblock a process.

Protocols that provide connection-level flow control, such as TCP and SCTP, select a space

reservation based on the expected bandwidth and round-trip time for the connection. In

operation, windows sent to peers are calculated based on the amount of free space in the

socket’s receive queue, and utilization of the send window received from a peer is dependent on

the space available in the send queue.

Queue Limiting

Incoming packets from the network are always received unless memory allocation fails or the

kernel fails to collect them from the network interface before the arrival of another packet. The

default operation of the FreeBSD networking system is to use direct dispatch that carries every

packet it receives through to its destination, whether that is a socket for an application on the

host or transmitting it through another network interface. When the netisr subsystem has been

747

set up to queue packets as they are received instead of running them to completion, each

received packet is queued for later processing. Each queue has an upper bound on its length and

any packets exceeding that bound are discarded. As explained in Section 12.11, direct dispatch is

implicitly input limited when the system is too busy to collect packets from the network

interface.

It is possible for a host to be overwhelmed by excessive network traffic if it is forwarding packets

from a high-bandwidth network to a low-bandwidth network. As a defense mechanism, the

output-queue limits can be adjusted to control network-traffic load on the system. Dropping

packets is likely to increase the load on the network as applications and protocols retransmit the

dropped packets. However, excessive buffering leads to large network delays and slows the

feedback to TCP, which should tell TCP to slow down. The queue limit should be sufficiently

high that transient overload can be handled by buffering, but not high enough to cause buffer

bloat in routers [Gettys & Nichols, 2011].

The queuing in the netisr system is a single coarse knob that is tuned for the whole system.

Network applications such as routers require a more complex set of queueing mechanisms. The

ALTQ and Dummynet subsystems provide finer-grained control over selecting when packets are

dropped. The Dummynet subsystem is discussed in Section 13.8.

12.13 Network Virtualization

With the increasing power of computer systems, it is now possible to have services running

simultaneously that once would have required several separate machines. There are two basic

ways in which the increased power of computing has been harnessed. One way is to virtualize

the underlying hardware, introducing a layer of software on which several complete and isolated

systems can execute at the same time. Hardware virtualization is not a new idea, but systems are

now inexpensive and powerful enough that the use of virtualization software is common in the

industry [Creasy, 1981]. Another way to harness the power of modern computing systems for

multiple disparate purposes is to virtualize the services themselves. Virtualization is what an

operating system does with the underlying hardware, making it appear to multiple programs

that each of them has exclusive use of the machine. One type of software virtualization discussed

in Section 5.9 are jails, which are containers for entire sets of programs running on top of

FreeBSD.

The networking and interprocess-communication subsystems in FreeBSD have been virtualized

so that many copies of the network subsystem can run in parallel. The framework that

virtualizes the network subsystems is referred to as VIMAGE. Each virtual network stack is a

world unto itself, with its own set of sockets and network interfaces. The implementation of the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec9

748

FreeBSD network stack relies on a collection of kernel global variables that maintain the data

structures for all the network services. With the introduction of VIMAGE, each data structure

had to be virtualized, meaning that if there are N instances of the network stack there are also N

instances of each global variable. The global variables defined by the stack are collected in a

special linker set, which is a collection of global variables that are encapsulated by the linker

when a program, such as the kernel, is built. The kernel uses the linker set, set_vnet, to create

new instances of the network stack’s global state whenever a new vnet instance is created. To

reduce the overhead of finding a global variable in a particular instance, a simple offset is used

from the base of the memory containing the virtualized global variables. A memory offset is the

fastest way to effect a lookup of the proper variable but it requires that the memory blocks

containing the global variables be exactly the same size and laid out the same way in memory. If

kernel developers had to do all this work themselves, it would be both tedious and error prone.

A small set of macros are used to declare variables that are global to the network stack. The

VNET_DEFINE macro is used throughout the kernel to set up global variables to be used by

VIMAGE. When modules need to refer to externally defined variables, they use the

VNET_DECLARE macro. Each virtualized global variable name is preceded by the characters

V_, which is a convention used in the kernel to denote virtualized global variables. A complete

set of each virtual stack’s global state is kept in a vnet structure, shown in Figure 12.19. All vnets

are kept on a singly-linked list and contain a count of the number of interfaces and sockets that

are currently in use by the virtual network instance. The global variables are accessed via the

vnet_data_mem pointer. Programmers do not access the global data members directly but

instead use the macros discussed above to indicate the global variable that they are trying to

access. When VIMAGE is not compiled into a kernel, all the macros that handle the indirection

and variable lookup are null and empty, meaning there is no performance penalty for variable

access when only a single network stack is in use.

Figure 12.19 The vnet structure.

Virtualized network stacks in FreeBSD 10 are inextricably tied to jails. A vnet is created via a call

to vnet_alloc() that is called from the jail_set system call. Each jail may contain only one vnet.

All the network stack’s global state is initialized using the same kernel routines in the virtualized

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12fig19

749

and nonvirtualized cases, with the VNET_ macros handling the proper indexing and offsets at

run time.

Mapping IPC-related system calls to vnet instances is handled in the kernel using the credential

structure associated with a thread. If a jail has been created with a vnet instance then every

process in the jail has a valid pointer to a vnet instance in its prison structure. The system call

then executes using the global variables ultimately pointed to from the prison structure. User

applications and system-management programs, such as netstat do not expose vnet IDs to

users of the system, but instead they, too, are a part of the jail and cannot see any data

structures not already encapsulated in the jail. When a user outside the jail, such as a system

administrator, wishes to look at the vnet instance inside a jail, he or she uses the jexec command,

which executes the requested program from within the jail, thereby removing the need for

anyone using the system to know the VNET ID of a vnet instance.

Exercises

12.1 What limitation in the use of pipes inspired the developers to design alternative

interprocess-communication facilities?

12.2 Why are the FreeBSD interprocess-communication facilities designed to be independent of

the filesystem for naming sockets?

12.3 Why is interprocess communication layered on top of networking in FreeBSD, rather than

the other way around?

12.4 Would a screen editor be considered a naive or a sophisticated program, according to the

definitions given in this chapter? Explain your answer.

12.5 What are out-of-band data? What types of sockets support the communication of

out-of-band data? Describe one use for out-of-band data.

12.6 Give two requirements that interprocess communication places on a memory-management

facility.

12.7 How many mbufs and mbuf clusters would be needed to hold a 3024-byte message? Draw

a picture of the necessary mbuf chain and any associated mbuf clusters.

12.8 Why does an mbuf have two link pointers? For what is each pointer used?

12.9 Each socket’s send and receive data buffers have high and low watermarks. For what are

these watermarks used?

750

12.10 Consider a socket with a network connection that is queued at the socket awaiting an

accept system call. Is this socket on the queue headed by the so_comp or by the so_incomp field

in the socket structure? What is the use of the queue that does not contain the socket?

12.11 Describe two types of protocols that would immediately place incoming connection

requests into the queue headed by the so_comp field in the socket structure.

12.12 How does the protocol layer communicate an asynchronous error to the socket layer?

12.13 Sockets explicitly refrain from interpreting the data that they send and receive. Do you

believe that this approach is correct? Explain your answer.

12.14 Why does the sosend() routine ensure there is enough space in a socket’s send buffer

before making a call to the protocol layer to transmit data?

12.15 How is the type information in each mbuf used in the queueing of data at a datagram

socket? How is this information used in the queueing of data at a stream socket?

12.16 Why does the soreceive() routine optionally notify the protocol layer when data are

removed from a socket’s receive buffer?

12.17 What might cause a connection to linger forever when closing?

12.18 Describe a deadlock between two processes, A and B, that are sharing two semaphores, S1

and S2.

12.19 How can a message queue implement a priority queue? How can it be used to allow full

duplex communication?

12.20 Why doesn’t the shmdt system call free the underlying shared memory?

*12.21 What effect might storage compaction have on the performance of

network-communication protocols?

**12.22 Why is releasing mbuf-cluster storage back to the system complicated? Explain why it

might be desirable.

**12.23 In the original design of the interprocess-communication facilities, a reference to a

communication domain was obtained with a domain system call,

int d; d = domain("inet");

751

(where d is a descriptor, much like a file descriptor), and sockets then were created with

Click here to view code image

s = socket(type, d, protocol);

int s, type, protocol;

What advantages and disadvantages does this scheme have compared to the one that is used in

FreeBSD? What effect does the introduction of a domain descriptor type have on the

management and use of descriptors within the kernel?

**12.24 Design and implement a simple replacement for local IPC semaphores that operates on

a single semaphore instead of an array. The new system should adhere to the original API to the

extent that it should implement a semget, semctl, and semop routine.

References

BBN, 1978.

BBN, “Specification for the Interconnection of Host and IMP,” Technical Report 1822, Bolt,

Beranek, and Newman, Cambridge, MA, May 1978.

Cerf, 1978.

V. Cerf, “The Catenet Model for Internetworking,” Technical Report IEN 48, SRI Network

Information Center, Menlo Park, CA, July 1978.

Cohen, 1977.

D. Cohen, “Network Control Protocol (NCP) Software,” University of Illinois Software

Distribution, University of Illinois, Champaign-Urbana, IL, 1977.

Creasy, 1981.

R. J. Creasy, “The origin of the VM/370 time-sharing system,” IBM J. Res. Dev., pp. 483–490,

September 1981.

Gettys & Nichols, 2011.

J. Gettys & K. Nichols, “Bufferbloat: Dark Buffers in the Internet,” ACM Queue, available from

http://queue.acm.org/detail.cfm?id=2071893, November 2011.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12_images.html#p647pro01
http://queue.acm.org/detail.cfm?id=2071893

752

Gurwitz, 1981.

R. F. Gurwitz, “VAX-UNIX Networking Support Project—Implementation Description,”

Technical Report IEN 168, SRI Network Information Center, Menlo Park, CA, January 1981.

ISO, 1984.

ISO, “Open Systems Interconnection: Basic Reference Model,” ISO 7498, International

Organization for Standardization, available from the American National Standards Institute,

1430 Broadway, New York, NY 10018, 1984.

Postel, 1981.

J. Postel, “Internet Control Message Protocol,” RFC 792, available from

http://www.faqs.org/rfcs/rfc792.html, September 1981.

Ritchie, 1984.

D. Ritchie, “A Stream Input-Output System,” AT&T Bell Laboratories Technical Journal, vol. 63,

no. 8-2, pp. 1897–1910, October 1984.

Stevens et al., 2003.

R. Stevens, B. Fenner, & A. M. Rudoff, UNIX Network Programming Volume 1: The Sockets

Networking API, Third Edition, Addison-Wesley, Reading, MA, 2003.

http://www.faqs.org/rfcs/rfc792.html

753

Chapter 13. Network-Layer Protocols

Chapter 12 presented the network-communications architecture of FreeBSD. This chapter

examines the network protocols implemented within this framework. The FreeBSD system

supports several major communication domains including IPv4, IPv6, Xerox Network Systems

(NS), ISO/OSI, and the local domain (formerly known as the UNIX domain). The local domain

does not include network protocols because it operates entirely within a single system. This

chapter studies the portions of the TCP/IP protocols that implement the network-layer software.

The protocols that make up the network layer of the TCP/IP software are responsible for moving

packets between intermediate hosts in the Internet. Because the TCP/IP protocols implement a

packet-switched network, there is a logical split between the components that handle,

hop-by-hop, packets that reside in the network layer, and the components that present those

packets as streams or datagrams to user programs, that reside in the transport layer. The

transport layer protocols, including UDP, TCP, and SCTP, are discussed in Chapter 14.

Currently, there are two sets of defined protocols for the network layer of the Internet. IPv4 is

the network-layer protocol that most programmers are familiar with and that has been

developed and defined over a period of three decades. IPv6 is the next generation of the IP

protocol and is now being deployed as an eventual replacement for IPv4. Both IPv4 and IPv6,

and their attendant control and error protocols, are presented in this chapter, which describes

the overall architecture of the IPv4 protocols and examines their operation according to the

structure defined in Chapter 12. It then discusses changes the developers made in the system

that were motivated by aspects of the IPv6 protocols and their implementation. Following the

examination of the IPv4 and IPv6 network protocols is a discussion of the routing system that is

integral to the network-layer protocols and the security protocols that are also implemented at

the network layer. The chapter finishes with a discussion of the various packet-processing

frameworks that exist within FreeBSD and which are also deeply enmeshed in the network layer.

13.1 Internet Protocol Version 4

The TCP/IP suite was developed under the sponsorship of DARPA for use on the ARPANET

[DARPA, 1983; McQuillan & Walden, 1977]. The protocols are commonly known as TCP/IP,

although TCP and IP are only two of the many protocols in the suite. These protocols do not

assume a reliable subnetwork that ensures delivery of data. Instead, IPv4 was devised for a

model in which hosts were connected to networks with varying characteristics and the networks

were interconnected by routers. The Internet Protocols are responsible for host-to-host

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_164

754

addressing and routing, packet forwarding, and packet fragmentation and reassembly. Unlike

the transport protocols, they do not always operate for a socket on the local host, but may

forward packets, receive packets for which there is no local socket, or generate error packets in

response to these situations. The Internet protocols were designed for packet-switching

networks using datagrams sent over links such as Ethernet that provide no indication of

delivery.

The internetworking model leads to the use of at least two protocol layers. One layer operates

end to end between two hosts involved in a conversation. It is based on a lower-level protocol

that operates on a hop-by-hop basis, forwarding each message through intermediate routers to

the destination host. In general, there exists at least one protocol layer above the other two: the

application layer, which uses the transport protocols to implement a service or system. The

three layers correspond roughly to levels 3 (network), 4 (transport), and 7 (application) in the

ISO Open Systems Interconnection reference model [ISO, 1984].

The protocols that support this model have the layering illustrated in Figure 13.1. The Internet

Protocol (IP) implements the network-layer protocol in the ISO model. In a packet-switched

network, datagrams move hop by hop from the originating host to the destination via

intermediate routers. IP provides the network-level services of host addressing, routing, and, if

necessary, packet fragmentation and reassembly if intervening networks cannot send an entire

packet in one piece. The transport protocols use the services of IP. The User Datagram Protocol

(UDP), Transmission Control Protocol (TCP) and Stream Control Transmission Protocol (SCTP)

are transport-level protocols that provide additional facilities to applications that use IP. At the

network layer, IP uses host addresses to identify endpoints in the network, while each protocol

specifies a port identifier so that local and remote sockets can be identified. TCP provides

connection-oriented, reliable, unduplicated, and flow-controlled transmission of data; it

supports the stream socket type in the Internet domain. UDP provides a data checksum for

checking integrity in addition to a port identifier, but otherwise adds little to the services

provided by IP. UDP is the protocol used by datagram sockets in the Internet domain. The

Internet Control Message Protocol (ICMP) is used for error reporting and for other simple

network-management tasks; it is logically a part of IP but, like the transport protocols, is layered

above IP. It usually is not accessed by users. Raw access to the IP and ICMP protocols is possible

through raw sockets (see Section 13.6 for information on this facility).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_313
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec6

755

Key: TCP—Transmission Control Protocol; UDP—User Datagram Protocol; IP—Internet

Protocol; ICMP—Internet Control Message Protocol.

Figure 13.1 TCP/IP protocol layering.

All fields in the Internet protocols that are larger than a byte are expressed in network byte

order, with the most-significant byte first. When the IP protocols were first designed, hardware

manufacturers disagreed on the order in which bytes ought to be stored in memory. Some

manufacturers stored data in bigendian format, which is the same as network byte order, while

others, including Intel, stored data in little-endian format. The FreeBSD network

implementation uses a set of routines or macros to convert 16-bit and 32-bit integer fields

between host and network byte order on hosts (such as X86 systems) that have a different native

ordering. While X86 systems continue to use little-endian format, many embedded processors,

particularly those used for building network routers and switches, use big-endian format.

Converting between big- and little-endian byte formats introduces overhead that router and

switch vendors do not want to incur, and so their systems are built with processors whose native

memory format matches network byte order. On big-endian systems, the conversion macros are

empty and are optimized out by the compiler.

The functions IP performs are illustrated by the contents of its packet header, shown in Figure

13.2. The header identifies source and destination hosts and the destination protocol, and it

contains header and packet lengths. The identification and fragment fields are used when a

packet or fragment must be broken into smaller sections for transmission on its next hop and to

reassemble the fragments when they arrive at the destination. The fragmentation flags are Don’t

Fragment and More Fragments; the latter flag plus the offset are enough information to

assemble the fragments of the original packet at the destination.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig02

756

Figure 13.2 IPv4 header. IHL is the Internet header length specified in units of 4 bytes.

Options are delimited by IHL. All field lengths are given in bits.

IP options are present in an IP packet if the header length field has a value larger than the

20-byte minimum. The no-operation option and the end-of-option-list option are each one byte

in length. All other options are self-encoding, with a type and length preceding any additional

data. Hosts and routers are able to skip over options that they do not implement. Examples of

existing options are the timestamp and record-route options, which are updated by each router

that forwards a packet, and the source-route options, which supply a complete or partial route to

the destination. These options are used rarely and most network operators silently drop packets

with the source-route option because it makes it difficult to manage traffic on the network.

IPv4 Addresses

An IPv4 address is a 32-bit number that identifies the network on which a host resides and

uniquely identifies a network interface on that host. It follows that a host with network

interfaces attached to multiple networks has multiple addresses. Network addresses are

assigned in blocks by Regional Internet Registries (RIRs) to Internet Service Providers (ISPs),

which then allocate addresses to companies or individual users. If address assignment were not

done in this centralized way, conflicting addresses could arise in the network and it would be

impossible to route packets correctly.

Historically, IPv4 addresses were rigidly divided into three classes (A, B, and C) to address the

needs of large, medium, and small networks [Postel, 1981a]. Three classes proved to be too

restrictive and also too wasteful of address space. The current IPv4 addressing scheme is called

Classless Inter-Domain Routing (CIDR) [Fuller et al., 1993]. In the CIDR scheme, each

organization is given a contiguous group of addresses described by a single value and a

netmask. Using CIDR a site administrator can create multiple subnetworks each with its own

netmask, without having to ask for a new address allocation from their ISP. The netmask

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_233

757

determines to which subnetwork an address belongs. For example, a network might have a

group of addresses defined by a 16-bit netmask, which means that the network is defined by the

first 16 bits. The remaining 16 bits can potentially be used to identify hosts in the network, or be

used to create a series of subnetworks, each of which have their own more narrowly scoped

netmask. Figure 13.3 shows a network with a 16-bit netmask and two subnetworks, each with a

24-bit netmask. With this scheme the allocated network is broken up into 256 subnetworks and

each subnetwork may have up to 253 hosts. The host part of each subnetwork address is 8 bits.

Each subnetwork can only have 253 hosts because two addresses are held back for use in

broadcasting packets and one is held back for the router. Networks need not be allocated on byte

boundaries, but they must be a contiguous set of bits at the high end of the address. Because of

this constraint, bit masks are described by a single number specifying the number of bits that

represent the network part of the address. For example:

Figure 13.3 Allocating subnetworks.

128.32.96.0/20

represents an address with a netmask of

0xfffff000.

Each Internet address assigned to a network interface is maintained in an in_ifaddr structure

that contains a protocol-independent interface-address structure as well as additional

information for use in the Internet domain (see Figure 13.4). When an interface’s network mask

is specified, it is recorded in the ia_subnetmask field of the address structure. The only time

that a class-based address is used is when an interface’s address is set without specifying a

netmask. The system interprets local Internet addresses using the ia_subnetmask value. An

address is considered to be local to the subnet if the field under the subnetwork mask matches

the subnetwork field of an interface address.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig04

758

Figure 13.4 Internet interface-address structure (in_ifaddr).

Broadcast Addresses

On networks capable of supporting broadcast datagrams, 4.2BSD used the address with a host

part of zero for broadcasts. After 4.2BSD was released, the Internet broadcast address was

defined as the address with a host part of all 1s [Mogul, 1984]. This change and the introduction

of subnets complicated the recognition of broadcast addresses. Hosts may use a host part of 0s

or 1s to signify broadcast, and some may understand the presence of subnets, whereas others

may not. For these reasons, 4.3BSD and later BSD systems set the broadcast address for each

interface to be the host value of all 1s but allow the alternate address to be set for backward

compatibility. If the network is subnetted, the subnet field of the broadcast address contains the

normal subnet number. The logical broadcast address for the network is calculated when the

address is set; this address would be the standard broadcast address if subnets were not in use.

This address is needed by the IP input routine to filter input packets. On input, FreeBSD

recognizes and accepts subnet and network broadcast addresses with host parts of all 0s or all 1s,

as well as the address with 32 bits of 1 (“broadcast on this physical link”). Routers always drop

packets where the destination address is set to the broadcast address, which prevents broadcast

packets from leaving the local subnet and causing a broadcast storm.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_29

759

Internet Multicast

Many link-layer network technologies, such as Ethernet, have the ability to send a single packet

to a group of hosts. Being able to multicast data to a group of interested listeners is an efficient

way to implement certain types of protocols, such as automatic configuration of local network

parameters. IP provides a similar facility at the network-protocol level, using link-layer

multicast where available [Deering, 1989]. IP multicasts are sent using destination addresses

with high-order bits set to 1110. Unlike host addresses, multicast addresses do not contain

network and host portions; instead, the entire address names a group, such as a group of hosts

using a particular service. These groups are created dynamically and the members of the group

change over time. IP multicast addresses map directly to physical multicast addresses on

networks such as the Ethernet, using the low 24 bits of the IP address along with a constant

24-bit prefix to form a 48-bit link-layer address.

For a socket to use multicast, it must join a multicast group using the setsockopt system call.

This call informs the link layer that it should receive multicasts for the corresponding link-layer

address, and it also sends a multicast membership report using the Internet Group Management

Protocol (IGMP) [Cain et al., 2002]. Routers and switches receive all multicast packets from

directly attached networks and forward multicast datagrams as needed to group members on

other networks. This function is similar to the role of routers that forward normal (unicast)

packets, but the criteria for packet forwarding are different, and a packet can be forwarded to

multiple neighboring networks. The purpose of IGMP is to allow switches and routers to track

which hosts are interested in receiving data for a group or set of groups. Without a protocol such

as IGMP, a network switch that received a multicast packet on one of its ports would not know

to which other ports to forward that packet: and as a result, the packet would either be flooded

to all ports or dropped. Flooding a packet to all ports is an inefficient use of network resources.

Routers and switches are configured to drop packets that arrive for a group for which no

connected host or network has asked for IGMP.

Link-Layer Address Resolution

Before a host can communicate with the broader Internet, it must first be able to talk to its

neighbors. Hosts communicating with the IPv4 network protocol use the address-resolution

protocol (ARP) to locate and communicate with their neighbors on the network. ARP is a

link-level protocol that provides a dynamic address-translation mechanism for networks that

support broadcast or multicast communication [Plummer, 1982]. ARP maps 32-bit IPv4

addresses to 48-bit media-access-control (MAC) addresses, such as those used by Ethernet and

the wireless 802.11 link-layer protocols. Although ARP is not specific either to IPv4 protocol

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref28

760

addresses or to Ethernet, the FreeBSD network subsystem supports only that combination,

although it makes provision for additional combinations to be added. ARP is incorporated into

the network-interface layer, although it logically sits between the network and link layers.

ARP maintains a set of translations from network addresses to link-layer addresses. When an

address-translation request is made to the ARP service by a network-layer protocol, and the

requested address is not in ARP’s set of known translations, an ARP message is created that

specifies the requested network address for the unknown link-layer address. This message is

then broadcast by the interface with the expectation that a host attached to the network will

know the translation—usually because the host is the intended target of the original message. If

a response is received promptly, the ARP service uses the response to update its translation

tables and to resolve the pending request, and the requesting network interface is then called to

transmit the original message.

This algorithm is complicated by the need to avoid stale translation data, to minimize

broadcasts when a target host is down, and to deal with failed translation requests. In addition,

it is necessary to deal with packets for which transmission is attempted before the translation is

completed. The ARP translation tables are implemented using a link-layer table (lltable) made

up of link-layer entry structures (llentry). Both the lltable and llentry data structures are generic

enough to handle different types of network to link-layer translation protocols such as the IPv6

neighbor-discovery protocol described in Section 13.3. Each lltable structure contains pointers

to three functions, one to look up a translation, a second to free an entry, and a third to dump

the table in some convenient format for display to a user. Every link-layer translation protocol

creates its own table and populates the function pointer elements such that the kernel can call

the relevant functions when necessary.

Every entry in the ARP table is contained in an llentry structure, shown in Table 13.1. Two of the

challenges to implementing ARP are the need to time out entries so they do not get stale, and to

hold packets from being transmitted until a proper reply to an ARP request is received. The

llentry structure has elements to address both of these challenges specifically. Each entry has an

lle_timer element that is used to set and reset a call-out timer for each entry in the table. When

the timeout fires, the arptimer() routine is called and it cleans up and removes the stale entry.

Entries have a limited lifetime to prevent a mapping from an IPv4 address to a link-layer

address from remaining in the system, possibly after a host has had its IPv4 address change,

either through the action of an administrator or because the host has been assigned a new IPv4

address via a protocol such as the dynamic host-configuration protocol (DHCP). A stale entry in

the ARP table would prevent one host from reaching another host until the stale entry was

cleared by an administrator. The default timeout for ARP entries is 20 minutes. The timeout

attempts to strike a balance between having a stale entry in the table and generating excessive

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab01

761

ARP requests on the network. If hosts do not change their IPv4 addresses often, then having a

longer timeout makes sense because ARP requests are overhead from the point of view of the

network’s user, as the ARP packets carry no user data.

Table 13.1 Link-layer entry.

Unlike many other network-layer protocols, ARP is not a transport protocol, yet it must hold

packets for later transmission. When an IPv4 packet is ready to be transmitted by the system,

the ARP table is checked by the arpresolve() routine to see if the kernel has a mapping for the

destination’s hardware address. If no such mapping exists, the arpresolve() routine must first

prepare and transmit a request for the proper mapping. The arpresolve() routine cannot block

the entire system while waiting for a reply, but it also cannot drop the IPv4 packet that it has

been given for translation. IPv4 packets that arrive for transmission before an ARP entry has

been resolved are placed on the la_hold queue until a proper ARP reply has been received or a

timeout occurs. The la_hold queue is limited in size so that a malicious process cannot exhaust

the kernel’s store of mbufs by transmitting at a high rate to a destination that will not reply to an

ARP request.

762

13.2 Internet Control Message Protocols (ICMP)

The Internet Control Message Protocols (ICMP) are the control- and error-message

protocols for IPv4 [Postel, 1981b] and IPv6 [Conta et al., 2006]. Although they are layered above

IP for input and output operations, they are really an integral part of IP. Most ICMP messages

are received and implemented by the kernel. ICMP messages may also be sent and received via a

raw IP socket (see Section 13.6).

ICMP messages fall into three general classes. One class includes various errors that may occur

somewhere in the network and that may be reported back to the originator of the packet

provoking the error. Such errors include routing failures (network or host unreachable),

expiration of the time-to-live field in a packet, or a report by the destination host that the target

protocol or port number is not available. Error packets include the IP header plus at least 8

additional bytes of the packet that encountered the error. The second message class may be

considered as router-to-host control messages. Instances of such messages include the routing

redirect message that informs a host that a better route is available for a host or network, and

router advertisements that provide a simple way for a host to discover its next-hop router. The

final message class includes network management, testing, and measurement packets. These

packets include a network-address request and reply, a network-mask request and reply, an

echo request and reply, a timestamp request and reply, and a generic information request and

reply.

All the actions and replies required by an incoming ICMP message are done by the relevant

ICMP module. ICMPv4 and ICMPv6 packets follow a similar trajectory through the network

code, the only difference being the use of the number 6 in the routines relating to IPv6. The

discussion that follows describes the path of ICMPv4 packets through the network stack, but the

reader is encouraged to seek out and review the ICMPv6 related functions to see how closely

they resemble their IPv4 counterparts. ICMP packets are received from IP via the normal

protocol-input entry point because ICMP has its own protocol number (1). The ICMP input

routines handle three major cases. If the packet is an error, such as port unreachable, then the

message is processed and delivered to any higher-level protocol that might need to know it, such

as the one that initiated the communication. Messages that require a response—for example, an

echo—are processed and then sent back to their source with the icmp_reflect() routine. Finally,

if there are any sockets listening for ICMP messages, they are given a copy of the message by a

call to rip_input() at the end of the icmp_input() routine.

When error indications are received, a generic address is constructed in a sockaddr structure.

The address and error code are reported to each network protocol’s control-input entry,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_147

763

pr_ctlinput(), by the icmp_input() routine. For example, an ICMP port unreachable message

causes errors for only those connections with the specified remote port and protocol.

Routing changes suggested by redirect messages are processed by the rtredirect() routine, which

verifies that the router from which the message was received was the next-hop gateway in use

for the destination, and checks that the new gateway is on a directly attached network. If these

tests succeed, the kernel routing tables are modified accordingly.

Once an incoming ICMP message has been processed by the kernel, it is passed to rip_input()

for reception by any ICMP raw sockets. The raw sockets can also be used to send ICMP

messages. The network test program ping works by sending ICMP echo requests on a raw

socket and listening for corresponding replies.

ICMP is also used by other Internet network protocols to generate error messages. Many

different errors may be detected by IP, especially on systems used as IP routers. The

icmp_error() function constructs an error message of a specified type in response to an IP

packet. Most error messages include a portion of the original packet that caused the error, as

well as the type and code for the error. The source address for the error packet is selected

according to the context. If the original packet was sent to a local system address, that address is

used as the source. Otherwise, an address is used that is associated with the interface on which

the packet was received, as when forwarding is done; the source address of the error message

can then be set to the address of the router on the network closest to (or shared with) the

originating host. Also, when IP forwards a packet via the same network interface on which that

packet was received, it may send a redirect message to the originating host if that host is on the

same network. The icmp_error() routine accepts an additional parameter for redirect messages:

the address of the new router to be used by the host.

ICMPv6 has one responsibility that is not shared by ICMPv4, which is to handle various

neighbor-discovery messages. Neighbor discovery is the protocol that allows IPv6 hosts to

autoconfigure their network parameters. Unlike ARP, the neighbor-discovery protocols do not

sit directly on top of the link-layer protocols, such as Ethernet and 802.11, but instead sit atop

the ICMPv6 protocol. All the neighbor-discovery messages, including router and neighbor

solicitation, neighbor advertisements, and router redirects, first pass through the ICMPv6

module before reaching the neighbor-discovery software.

13.3 Internet Protocol Version 6

After many successful years of deploying and using IPv4, several issues arose that caused the

Internet community to start working on new versions of the Internet protocols. The motivation

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_232

764

for the new versions was that the original Internet was running out of addresses [Gross &

Almquist, 1992]. Several solutions had been proposed and implemented within the IPv4

protocols to handle this problem, including subnetting, and Classless Inter-Domain Routing

(CIDR) [Fuller et al., 1993; Mogul & Postel, 1985] but neither of them proved sufficient. Several

different proposals were made to replace the IPv4 protocols completely, and it took several years

to make a final decision. Work on the new generation of the Internet protocols has been

proceeding since the early 1990s, but it was not until 2003 that the protocol was rolled out by

any large vendors. To date, the adoption of the new protocols has been limited because of the

huge installed base of IPv4 hosts that must be converted.

FreeBSD includes an IPv6 networking domain that contains an implementation of the IPv6

protocols. The domain supports the entire suite of protocols from the network through the

transport layers. The protocols are described in a large set of RFCs starting with Deering &

Hinden [1998]. During the development of IPv6, several open-source implementations were

written. Each implementation supported a different subset of the full features of IPv6 according

to the needs of its authors. The one that eventually had the most complete set was developed by

the KAME project [KAME, 2003] and is the implementation that was adopted by FreeBSD. A

complete discussion of IPv6 is beyond the scope of this book. This section discusses the areas of

IPv6 that make it different from IPv4 and the changes that had to be made to FreeBSD to

accommodate those differences.

There are several major differences between IPv4 and IPv6 including:

• 128-bit addresses at the network layer

• Packet fragmentation discouraged

• Emphasis on automatic configuration

• Native support for security protocols

The biggest factor driving the move to a new protocol was the need for more addresses. The first

change to be made between IPv4 and IPv6 was to enlarge the size of an address. An IPv4

address is 32 bits, which is theoretically large enough to address over 4 billion interfaces. There

are two primary reasons why that theoretical maximum has never been reached. First is the

need to control the size of the routing tables in the core Internet routers. Internet routing is

most efficient when many addresses can be communicated by a single address, the address of

the router to that network. If each address required its own route, there would be over 4 billion

addresses in every routing table in the Internet, which would not be possible given the current

state of network hardware and software. Thus, addresses are aggregated into blocks, and these

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref15

765

blocks are assigned to ISPs, which then carve them up into smaller blocks for their customers.

The customers then take these blocks and break them down further, through subnetting, and

finally assign individual addresses to particular computers. At each level of this hierarchy, some

addresses are kept aside for future use, which leads to the second source of IP address waste,

overallocation. Because it is expensive and difficult to renumber a large installation of machines,

customers request more addresses than they need in an attempt to prevent ever having to

renumber their networks. This overallocation has lead to several calls for companies and ISPs to

return unused addresses [Nesser, 1996]. For these reasons, the size of the IP address space was

extended to 128 bits. The number of addresses available in IPv6 has been compared to

numbering all the atoms in the universe or giving every person on the earth over a billion IP

addresses.

As the Internet has been embraced by people who are not computer scientists and engineers, a

major stumbling block has been the difficulty of setting up and maintaining an

Internet-connected host. Companies have teams of professionals who do this work, but for a

small company the task can be daunting. These difficulties led the designers of IPv6 to include

several types of autoconfiguration into the protocol. Ideally, anyone using IPv6 can turn on a

computer, connect a network cable to it, and be on the Internet in a matter of minutes. This goal

has not been fully achieved, but it does explain many of the design decisions in the IPv6

protocols.

Even before the Internet was a commercial success, network researchers and operators

understood that the original protocols did not provide any security to users of the network. The

lack of security had two causes: the first was the initial emphasis of Internet development on

sharing information; the second was that until the end of the 1990s the United States

government prohibited the export of any security-related software. IPv6 includes a set of

security protocols (IPSec) that are defined for IPv4 as well. IPSec is a standard part of IPv6 and

is covered in Section 13.7.

IPv6 Addresses

IPv6 defines several types of addresses:

Unicast

Just like a unicast address in IPv4, the IPv6 unicast address is a 128-bit quantity that uniquely

identifies an interface on a host.

Multicast

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec7

766

An address that identifies a set of interfaces participating in some form of group communication.

A packet sent to a multicast address is delivered to all interfaces in the network that are bound

to that address.

Anycast

Anycast addresses are used to identify common services. The network will route a packet sent to

an anycast address to the nearest interface bound to that address. Nearest is measured by the

number of hops the packet would have to make between the source and destination.

Note that unlike IPv4, IPv6 does not have the concept of a broadcast address that is received by

all interfaces on a particular link. The role of broadcast addresses in IPv4 is to provide a way for

hosts to discover services even when they do not yet have their own IP address. Broadcast

packets are wasteful in that they are delivered to every host on a link, even if that host does not

provide the relevant service. Rather than using broadcast addresses as a way for a host to find a

service, IPv6 uses a well-known multicast address for each service being offered. Hosts that are

prepared to provide a service register to listen on the well-known multicast address assigned to

that service.

The 128-bit addresses in IPv6 necessitated creating new structures to hold them and new

interfaces to handle them. While it is reasonably easy to work with the traditional dotted-quad

notation of IPv4 (i.e., 192.168.1.1), writing out an IPv6 address textually requires a bit more

work, which is why the addressing architecture of IPv6 received its own RFC [Deering & Hinden,

2006]. When an IPv6 address is written, it is represented as a set of colon-separated hex bytes.

The value between each set of colons represents a 16-bit value. For example, the string

fd69:0:0:8:0:0:200C:417A

represents a local unicast address in the IPv6 network, similar to the IPv4 addresses defined in

RFC 1918. When written out as text, a portion of the address that contains zeros may be

abbreviated with a double colon:

fd69::8:0:0:200C:417A

The first set of two zeros was eliminated in this address. When an address is abbreviated, only

one set of zeros may be removed. For the run of zeros being eliminated, either all zeros must be

removed or none. The following are examples of improper abbreviations of the preceding

address:

fd69::0:8:0:0:200C:417A

fd69::8::200C:417A

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref06

767

The first example does not subsume the entire first set of zeros. The second example is

ambiguous because you cannot tell how to divide the four zeros between the two areas marked

with double colons.

Unicast and multicast addresses are differentiated by the bits set at the beginning of the address.

All globally routable unicast addresses begin with the bits 001, while multicast addresses start

with 1111 1111. Examples of the most common addresses are shown in Table 13.2. The

unspecified address is used by a host that has not yet been assigned an address when it is in the

process of bringing up its network interface. The solicited-node address is used during neighbor

discovery, which is covered later in this section.

Table 13.2 Well-known IPv6 addresses.

A piece of baggage that was not carried over from IPv4 to IPv6 was the concept of network

classes in addresses. IPv6 always uses the CIDR style of marking the boundary between the

network prefix (hereafter referred to simply as the prefix) and the interface identifier, which is

what identifies an interface on a particular host. The following examples all define the same

fictitious network that has a 60-bit prefix:

Click here to view code image

fd69:0000:0000:1230:0000:0000:0000:0000/60

fd69::1230:0:0:0:0/60

fd69:0:0:1230::/60

IPv6 Packet Formats

When IPv6 was being designed, one goal was to reduce the amount of work necessary for a

router to forward a packet. This reduction was addressed as follows:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p662pro01

768

• Simplification of the packet header. Comparing the IPv6 packet header in Figure 13.5 to the

IPv4 header shown in Figure 13.2, we see that there are four fewer fields in the IPv6 header and

that only one of them needs to be modified while the packet is in transit: the hop limit. The

hop limit is decremented every time the packet is forwarded by a router until the hop limit

reaches 0, at which point the packet is dropped.

Figure 13.5 IPv6 packet header.

• The packet header is a fixed size. The IPv6 header never carries any options or padding within

it. Options processing in IPv4 is an expensive operation that must be carried out whenever an

IPv4 packet is sent, forwarded, or received.

• IPv6 removed fragmentation at the network layer. Avoiding packet fragmentation simplifies

packet forwarding as well as processing by hosts, since hosts are where the reassembly of

fragmented packets takes place.

• The IPv6 header does not contain a checksum. Checksums are expensive to calculate and the

IPv4 checksum only protected the IPv4 header. Since all modern transport protocols include a

checksum over their data, a checksum at the IPv6 layer was deemed redundant.

All these simplifications make processing IPv6 packets less compute intensive than processing

those of IPv4. Completely removing features that were inconvenient, such as options or

fragmentation, would have decreased the acceptance of IPv6. Instead, the designers came up

with a way to add these features, and several others, without polluting the base packet header.

Extra features and upper-layer protocols in IPv6 are handled by extension headers. An

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_146
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_110

769

example packet is shown in Figure 13.6. All extension headers begin with a next-header field as

well as an 8-bit length field that shows the length of the extension in units of 8 bytes. All packets

are aligned to an 8-byte (64-bit) boundary. The IPv6 header and the extension headers form a

chain linked together by the next-header field, present in each of them. The next-header field

identifies the type of data immediately following the header that is currently being processed

and is a direct descendant of the protocol field in IPv4 packets. TCP packets are indicated by the

same number in both protocols (6). Routers do not look at any of the extension headers when

forwarding packets except for the hop-by-hop options header, which is meant for use by routers.

Each of the extension headers also encodes its length in some way. TCP packets are unaware of

being carried over IPv6 and use their original packet-header format, which means they carry

neither a next-header field nor a length. The length for TCP packets is computed as it is in IPv4.

Figure 13.6 Extension headers. Key: AH—authentication header (type 51);

ESP—encapsulating-security payload (type 50).

Hosts are required to encode and decode extension headers in a particular order so that it is

unnecessary to ever backtrack through a packet. The order in which headers should appear is

shown in Figure 13.6. The hop-by-hop header (type 0) must immediately follow the IP header so

that routers can find it easily. The authentication header (AH) and encapsulating-security

payload (ESP) headers are used by security protocols that are discussed in Section 13.7 and must

come before the TCP header and data, since the information in the security headers must be

retrieved before they can be used to authenticate and decrypt the TCP header and data.

Changes to the Socket API

It has always been the policy of the Internet Engineering Task Force (IETF) to specify protocols

and not implementations. For IPv6, this rule was bent so that application developers would have

an API to which they could code and speed the migration of applications to IPv6. The designers

took the original sockets interface, as it was then implemented in BSD, and specified extensions

[Gilligan et al., 1999] that are included in FreeBSD. There were several goals in extending the

sockets API:

• The changes should not break existing applications. The kernel should provide backward

compatibility for both source and binary.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref09

770

• Minimize the number of changes needed to get IPv6 applications up and running.

• Ensure interoperability between IPv6 and IPv4 hosts.

• Addresses carried in data structures should be 64-bit aligned to obtain optimum performance

on 64-bit architectures.

Adding a new address type was easy because all the routines that handle addresses, such as bind,

accept, connect, sendto, and recvfrom, already work with addresses as opaque entities. A new

data structure, sockaddr_in6, was defined to hold information about IPv6 endpoints as shown

in Figure 13.7. The sockaddr_in6 structure is similar to the sockaddr_in shown in Section 12.4.

It contains the length of the structure, the family (which is always AF_INET6), a 16-bit port that

identifies the transport-layer endpoint, a flow identifier, network-layer address, and a scope

identifier. Many proposals have been put forth for the use of the flow information and scope

identifier, but these fields are currently unused. The flow information is intended as a way of

requesting special handling for packets within the network. For example, a real-time audio

stream might have a particular flow label so that it would be given priority over less time-critical

traffic. Although the idea is simple to explain, its implementation in a network where no one

entity controls all the equipment is problematic. At present, there is no way to coordinate what a

flow label means when it leaves one network and enters another. Until this conundrum is solved,

the flow label will be used only in private network deployments and research labs.

Figure 13.7 IPv6–domain socket-address structure.

IPv6 defines several scopes in which an address can be used. In IPv4, all addresses are global in

scope, meaning that they are valid no matter where they are found on the Internet. The defined

scopes in IPv6 are link local, site local, organization local, and global. An address in a lesser

scope may not be passed out to a broader scope. For example, a link-local address will not be

forwarded to another link by a router.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec4

771

Working with 128-bit addresses by hand is clumsy and error prone. Applications are expected to

deal almost exclusively with named entities for IPv6 by using the domain name system (DNS)

[Thomson & Huitema, 1995]. The original API for looking up an address from a hostname,

gethostbyname(), was specific to the IPv4 protocol, so a new API was added to lookup any type

of address given a name. When a client wishes to find a server, it uses the getaddrinfo() routine:

Click here to view code image

int getaddrinfo(

 char *name,

 const char *servname,

 const struct addrinfo *hints,

 struct addrinfo **res);

The getaddrinfo() routine can work with any address family because the third argument is a

structure that specifies the address family and the last argument is a similar structure that

contains the address type being returned along with the properly formatted address. Services

are looked up using the structure shown in Table 13.3, which includes fields for the address

family, socket type, and protocol being sought, as well as the string name of the host.

Table 13.3 Fields of the addrinfo structure.

Autoconfiguration

A goal of IPv6 is to make adding a computer to the network a simpler process, one that requires

less human intervention. The mechanisms and protocols that are used to reach this goal are

called autoconfiguration. For a host to be automatically configured it has to be able to discover

several pieces of information from the network without any prior knowledge. The host must be

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p665pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab03

772

able to automatically figure out its own address, the address of its next-hop router, and the

network prefix of the link to which it is attached. To communicate with other hosts on its link

and with its next-hop router, a host needs the link-level addresses for those other systems.

These questions are answered by the neighbor-discovery protocol that is a part of IPv6 and is

defined in Narten et al. [2007]. Neighbor discovery either enhances or replaces disparate

protocols that were a part of IPv4 and unifies them in a set of ICMPv6 messages [Conta et al.,

2006]. Neighbor discovery uses ICMPv6 and is available on any system running IPv6. The first

step of the neighbor-discovery protocol is router discovery used to find its next-hop router. The

second step is the neighbor discovery, which is used to get the addresses of its neighbors.

A host finds its next-hop router in two different ways. IPv6 routers periodically send

router-advertisement messages to the all-nodes multicast address. The format of a

router-advertisement message is shown in Figure 13.8. The code field is currently always zero

and the flags are unused. They are intended to allow for future extensions to the protocol. All

hosts configured to pick up these multicast packets will see the router advertisement and

process it. Although router advertisements are sent often enough to make sure that all hosts on a

link know the location of their router and know when it has failed, this mechanism is insufficient

for bringing a new host up on the link. When a host first connects to the network, it sends a

router-solicitation message to the all-routers multicast address. A router that receives a

valid solicitation must immediately send a router advertisement in response. The advertisement

will be sent to the multicast address of all nodes unless the router knows that it can successfully

send a unicast response to the host that sent the solicitation. Router advertisements include a

retransmit timer value that tells the receiving host how many milliseconds to wait between

sending its neighbor solicitations. The retransmit timer controls the number of

neighbor-solicitation messages any one host can send and keeps the overhead of such traffic

from overwhelming the network. A router may send an option with the advertisement that

includes the link-layer address of the router. If the link-layer address option is included, the

receiving hosts will not need to perform neighbor discovery before sending packets to the router.

Figure 13.8 Router advertisement. Key: M—managed flag; O—other flag.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_340

773

Each host maintains a linked list of its router entries. A single router entry is shown in Figure

13.9. Whenever a router advertisement is received, it is passed to the defrtrlist_update() routine

that checks the message to see if it represents a new router and, if so, places a new entry at the

head of the default router list. Each router advertisement message contains a lifetime field. This

lifetime controls how long an entry may stay in the default router list. Whenever

defrtrlist_update() receives a router advertisement for a router that is already present in the

default router list, that router’s expiration time is extended.

Figure 13.9 Router entry.

For a host to determine if the next hop to which a packet should be sent is on the same link as

itself, it must know the prefix for the link. Historically, the prefix was manually configured on

each interface in the system, but now it is handled as part of router discovery.

Prefix information is sent as an option within a router advertisement. The format of the prefix

option is shown in Figure 13.10. Each prefix option carries a 128-bit address. The number of

valid bits in this address is given by the prefix-length field of the option. For example, the prefix

given in the preceding example would be sent in a prefix option with

Click here to view code image

fd69:0000:0000:1230:0000:0000:0000:0000

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p668pro01

774

Figure 13.10 Prefix option. Key: O—onlink flag; A—auto flag.

encoded into the prefix field and 60 stored in the prefix-length field. Each prefix is only valid for

the period shown by the valid lifetime. Later router advertisements that contain prefix options

will have valid lifetimes that move into the future. The preferred lifetime controls the period of

time that the prefix should be used by the host and may be shorter than the valid lifetime. A

prefix that has passed the valid lifetime cannot be used. A prefix that has passed the preferred

lifetime may be used but will trigger a new solicitation. The response to the solicitation will be

either the same prefix or a new prefix with a new valid lifetime. When a host discovers that it has

a prefix whose lifetime has expired, the prefix is removed from the interface with which it is

associated, and the expired prefix no longer determines whether a destination address is on the

local link. One way to support a backup router would be to send out its advertisement with an

expired preferred lifetime, but a long valid lifetime. If the primary router with a valid preferred

lifetime is available, it will be used, but if it goes down or times out, the backup router can be

found and used.

All options encoded into neighbor- and router-discovery messages are appended immediately

after the message being sent. For example, the prefix option follows the router-advertisement

message to which it relates. All options start with a nonzero type and a length that specifies the

number of bytes present in the option. Router- and neighbor-discovery packets are contained

within ICMPv6 packets that are themselves contained in IPv6 packets. The IPv6 packet length

contains the size of the IPv6 header, the ICMPv6 header, ICMPv6 options, and any message.

When unpacking a router or neighbor advertisement, the IPv6 packet length is used to ensure

that the packet is valid. If the kernel finds that the length given in the packet is too short to

encompass any options, then the packet is discarded.

When a host has a packet for another host on its link, including its next-hop router, it must find

the link-layer address of the host to which it wishes to send the packet. In IPv4, this process was

775

handled by the address-resolution protocol (ARP); see Section 13.1. A problem with ARP is that

it is Ethernet specific and has encoded in it assumptions about link-layer addresses that makes

it difficult to adapt to other link types.

A host learns the link-layer addresses of its neighbors using a pair of messages: the neighbor

solicitation and the neighbor advertisement. When the kernel wants to send an IPv6 packet to

another host, the packet eventually passes through the ip6_output() routine, which does various

checks on the packet to make sure that it is suitable for transmission. All properly formed

packets are then passed down to the neighbor-discovery module via the nd6_output() routine.

In earlier versions of FreeBSD, the nd6_output() routine handled mapping the IPv6 address to

the link-layer address through a lookup in the routing table. After the link-layer address tables

were removed from the routing table, a new routine, nd6_output_lle() was introduced to handle

the mapping process. The nd6_output_lle() routine is now called by all the other IPv6 routines

to pass packets down toward the interface layer. The nd6_output() routine is maintained for

backwards compatibility but is now a simple wrapper around nd6_output_lle(). Once the packet

has a correct link-layer destination address, it is passed to a network-interface driver via the

driver’s if_output() routine. The relationships between the various protocol modules are shown

in Figure 13.11. The neighbor-discovery module does not have an nd_input() routine because it

receives messages via the ICMPv6 module. This inversion of the protocol layering allows the

neighbor-discovery protocol to be independent of the link layer. In IPv4, the ARP module is

hooked into the network interface so that it can send and receive messages. The connection

between ARP and the underlying link-layer interfaces means that the ARP code must

understand every link type that the system supports.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig11

776

Figure 13.11 IPv6-module relationships. nd6_ra_input()—router-advertisement input routine;

nd6_na_input()—neighbor-advertisement input routine.

Link-layer addresses are stored in their own link-layer table, and that is where nd6_output_lle()

attempts to look up the link-layer address for the packets that are passed to it. When the host

does not yet know the link-layer address for the destination, the outgoing packet must be held

until neighbor discovery completes. The outgoing packet is added to the end of the list of packets

pointed to by the ln_hold field of the llentry structure. The nd6_output_lle() routine does not

wait for the neighbor advertisement but returns. When a response is received as a neighbor

advertisement, it is processed by the IPv6 and ICMPv6 modules and is finally passed into the

neighbor-discovery module by a call to the nd6_na_input() routine, as shown in Figure 13.11.

The nd6_na_input() routine records the link-layer address and checks to see if any packets

were being held for transmission to that destination. If there are packets awaiting transmission,

the nd6_output_lle() routine is invoked to send them. A link-layer address for the saved

packet’s destination is now in the system, so nd6_output_lle() will copy the link-layer address

into the mbuf chain and invoke the network interface’s if_output() routine to transmit the

packet.

Once per second, the nd6_timer() routine walks the neighbor-discovery link-layer address list

as well as the default-router and interface lists and removes the entries that have passed their

expiration time. Removing stale entries prevents the system from trying to send data to a host

that has failed or become unreachable.

13.4 Internet Protocols Code Structure

The interface between the transport- and network-layer protocols in FreeBSD is defined by a

small set of routines, which either take packets from the transport layers and encapsulate them

for transmission, or take network-layer packets that have arrived on one interface and forward

them out via another interface. The routines that implement the IPv4 and IPv6 protocols are

similar in structure and will be described in this section.

Output

The calling convention for IPv4’s output routine is

Click here to view code image

int ip_output(

 struct mbuf *msg,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p671pro01

777

 struct mbuf *opt,

 struct route *ro,

 int flags,

 struct ip_moptions *imo,

 struct inpcb *inp);

The parameter msg is an mbuf chain containing the packet to be sent, including a skeletal IP

header; opt is an optional mbuf containing IP options to be inserted into the header. If the route

ro is given, it contains a reference to a routing entry (rtentry structure) that specifies a route to

the destination from a previous call and in which any new route will be left for future use.

Cached routes were moved from the network layer into the transport-layer protocols in FreeBSD

5.2 (see the TCP host-cache metrics described in Section 14.4). The cached route should appear

as a TCP host-cache metric, but as of FreeBSD 10 it has not been added, so the ro entry is never

specified. Unless a cached route is passed down through the ro parameter, a route lookup must

be performed for each packet. The flags may allow the use of broadcast or may indicate that the

routing tables should be bypassed. If present, imo includes options for multicast transmissions.

The protocol control block, inp, is used by the IPSec subsystem (see Section 13.7) to hold data

about security associations for the packet.

Click here to view code image

int ip6_output(

 struct mbuf *m0,

 struct ip6_pktopts *opt,

 struct route_in6 *ro,

 int flags,

 struct ip6_moptions *im6o,

 struct ifnet **ifpp,

 struct inpcb *inp)

The IPv6 output routine takes nearly the same arguments as the IPv4 output routine. The only

additional parameter is a pointer ifpp where the IPv6 module can let the transport layer know

something about the physical interface on which the packet was output. The returned interface

pointer is currently used only in recording statistics about how many packets were transmitted

on an interface.

The outline of the work performed by ip_output() is as follows:

• Insert any IP options.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p671pro02

778

• Fill in the remaining header fields (IP version, zero offset, header length, and a new packet

identification) if the packet contains an IP pseudo-header.

• Determine the route (i.e., outgoing interface and next-hop address).

• Check whether the destination is a multicast address. If it is, determine the outgoing interface

and hop count.

• Check whether the destination is a broadcast address; if it is, check whether broadcast is

permitted.

• Do any IPSec manipulations that are necessary on the packet such as encryption.

• See if there are any filtering rules that would modify the packet or prevent the system from

sending it.

• If the packet size is no larger than the maximum packet size for the outgoing interface,

compute the checksum and call the interface output routine.

• If the packet size is larger than the maximum packet size for the outgoing interface, break the

packet into fragments and send each in turn.

If no route reference is passed as a parameter, an internal routing-reference structure is used

temporarily. A route structure that is passed from the caller is checked to see that it is a route to

the same destination and that it is still valid. If either test fails, the old route is freed. After these

checks, if there is no route, in_rtalloc_ign() is called to allocate a route. The route returned

includes a pointer to the outgoing interface. The interface information includes the maximum

packet size, flags including broadcast and multicast capability, and the output routine. If the

route is marked with the RTF_GATEWAY flag, the network-layer address of the next-hop router

is given by the route; otherwise, the packet’s destination is the next-hop destination. If routing is

to be bypassed because of a MSG_DONTROUTE option or a SO_DONTROUTE option, a

directly attached network shared with the destination is sought. If there is no directly attached

network, an error is returned. Once the outgoing interface and next-hop destination are found,

enough information is available to send the packet.

As described in Section 12.11, the interface output routine normally validates the destination

address and places the packet on its output queue, returning errors only if the interface is down,

the output queue is full, or the destination address is not understood.

The ip6_output() routine follows the same pattern as the one presented for ip_output() but

adds a few IPv6-specific steps. Unlike the IPv4 protocol, in which the header is a single entity,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11

779

an IPv6 packet is made up of a chain of smaller headers, all of which must be processed before

the packet can be transmitted. Many of the differences between the IPv6 and IPv4 output

routines exist to handle extension-header processing. A packet that does not contain extension

headers, such as hop-by-hop options, is simpler to construct than a similar IPv4 packet. One

other difference between the IPv4 and IPv6 output routines is the need to handle the scoping

rules for the packet. Section 13.2 describes how IPv6 packets all have a scope: link local, site

local, organization local, and global. Deciding what scope a packet belongs to is handled in the

ip6_output() routine and is based on the source address attached to the interface on which the

packet will be transmitted. Because the scope is based on the interface that the packet will be

transmitted on, it must be calculated after the packet’s route is selected, as well as having been

passed through any packet filters, including IPSec. One core concept in IPv6 was to prevent

packets from being fragmented as they had been in IPv4. Fragmentation complicates the

packet-processing code, not only in hosts but also in the intermediate routers, as well as in

firewalls and other systems internal to a network. Unfortunately, practical concerns required the

ability to fragment packets to be retrofitted into the IPv6 code. Retrofitting fragmentation into

the output routine has caused it to be even more complex than the similar code in IPv4, as can

be seen by reading the last section of ip6_output().

Input

In Section 12.11, we described the reception of a packet by a network interface. The netisr

subsystem then runs the packet through the various upper-layer protocols via direct dispatch.

The IPv4 and IPv6 input routines are invoked when network interfaces receive messages for one

of these protocols. The input routine, ip_input() or ip6_input(), is called with an mbuf that

contains the packet to be processed. A packet is processed in one of four ways: it is passed as

input to a higher-level protocol, it encounters an error that is reported back to the source, it is

dropped because of an error, or it is forwarded to the next hop on its path to its destination. In

outline form, the steps in the processing of a packet on input are as follows:

1. Verify that the packet is at least as long as an IPv4 or IPv6 header and ensure that the header

is contiguous.

2. For IPv4, checksum the header of the packet and discard the packet if there is an error.

3. Verify that the packet is at least as long as the header indicates and drop the packet if it is not.

Trim any padding from the end of the packet.

4. Do any filtering or security functions required by ipfw or IPSec.

5. Process any options associated with the header.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec11

780

6. Check whether the packet is for this host. If it is, continue processing the packet. If it is not,

and if the system is acting as a router, try to forward the packet; otherwise, drop it.

7. If the packet has been fragmented, keep it until all its fragments are received and reassembled,

or until it is too old to keep.

8. Pass the packet to the input routine of the next-higher-level protocol.

When the incoming packet is passed into the input routine, one field of the mbuf is a pointer to

the interface on which the packet was received. This information is passed to the next protocol,

to the forwarding function, or to the error-reporting function. If any error is detected and is

reported to the packet’s originator, the source address of the error message will be set according

to the incoming packet’s destination and the incoming interface.

The decision whether to accept a received packet for local processing by a higher-level protocol

is not simple. If a host has multiple addresses, the packet is accepted if its destination matches

any one of those addresses. If any of the attached networks support broadcast and the

destination is a broadcast address, the packet is also accepted.

The IPv4 input routine uses a simple and efficient scheme for locating the input routine for the

receiving protocol of an incoming packet. The protocol field in the packet is 8 bits long; thus,

there are 256 possible protocols. Fewer than 256 protocols are defined or implemented, and the

Internet protocol switch has far fewer than 256 entries. Therefore, ip_input() uses a

256-element mapping array to map from the protocol number to the protocol-switch entry of

the receiving protocol. Each entry in the array is initially set to the index of a raw IP entry in the

protocol switch. Then, for each protocol with a separate implementation in the system, the

corresponding map entry is set to the index of the protocol in the IP protocol switch. When a

packet is received, IP simply uses the protocol field to index into the mapping array and calls the

input routine of the appropriate protocol. Locating the next-layer protocol for IPv6 is different

from the IPv4 case because IPv6 packets are linked together by their next-header fields. Instead

of simply passing the packet up to the next layer directly via a single call through the inet6sw

array, the ip6_input() routine can call many input routines including udp6_input(),

tcp6_input(), sctp6_input(), or any other, high-level protocol-input routine until one of them

returns a value of IPPROTO_DONE. The loop that walks the chain of IPv6 headers can be seen

at the end of the ip6_input() routine.

Forwarding

Implementations of IP traditionally have been designed for use by either hosts or routers, rather

than by both. A system was either an endpoint for packets or a router. Routers forward packets

781

between hosts on different networks but only use upper-level protocols for maintenance

functions. Traditional host systems do not incorporate packet-forwarding functions; instead, if

they receive packets not addressed to them, they simply drop the packets. 4.2BSD was the first

common implementation that attempted to provide both host and router services in normal

operation. This approach meant that 4.2BSD hosts connected to multiple networks could serve

as routers and hosts, reducing the requirement for dedicated router hardware. Early routers

were expensive and not especially powerful. Alternatively, the existence of router-function

support in ordinary hosts made it more likely for misconfiguration errors to result in problems

on the attached networks. The most serious problem had to do with forwarding of a broadcast

packet because of a misunderstanding by either the sender or the receiver of the packet’s

destination. The packet-forwarding router functions are disabled by default in FreeBSD. They

may be enabled at run time, on a per-protocol basis, by setting either or both of the

net.inet.ip.forwarding or net.inet6.ip6.forwarding sysctl variables. Hosts not configured as

routers never attempt to forward packets or to return error messages in response to misdirected

packets. As a result, far fewer misconfiguration accidents occur.

The procedure for forwarding IP packets received at a router but destined for another host is the

following:

1. Check that forwarding is enabled. If it is not, drop the packet.

2. Check that the destination address is one that can be forwarded.

3. Save some important components of the received message in case an error message must be

generated in response.

4. Determine the route to be used in forwarding the packet.

5. If the outgoing route uses the same interface as that on which the packet was received, and if

the originating host is on that network, send a redirect message to the originating host.

6. Handle any IPSec updates that must be made to the packet header.

7. Call the appropriate output routine, either ip_output() for IPv4 or nd6_output() for IPv6, to

send the packet to its destination or to the next-hop gateway.

8. If an error is detected, send an ICMP error message to the source host.

Multicast transmissions are handled separately from other packets. Systems may be configured

as multicast routers independently from other routing functions. Multicast routers receive all

incoming multicast packets and forward those packets to local receivers and group members on

782

other networks according to group memberships and the remaining hop count of incoming

packets.

13.5 Routing

The networking system was designed for a heterogeneous network environment, in which a

collection of local-area networks are connected at one or more points through routers, as shown

in Figure 13.12. Routers are nodes with multiple network interfaces, one on each local- or

wide-area network. In such an environment, issues related to packet routing are important. For

others, the network system provides simple mechanisms on which more involved policies can be

implemented. These mechanisms ensure that, as these problems become better understood,

their solutions can be incorporated into the system. Note that at the time of the original design

of this part of the system, a network node that forwarded network-level packets was generally

known as a gateway. The current term is router. We use both terms interchangeably, in part

because the kernel data structures continue to use the name gateway.

Figure 13.12 Example of the topology for which routing facilities were designed.

The routing facilities were designed for use by singly connected and multiply connected hosts, as

well as by routers. There are several components involved in routing, illustrated in Figure 13.13.

The design of the routing system places some components within the kernel and others at user

level. Routing is an overbroad term. In a complex modern network, there are at least three

major components to a routing system. The gathering and maintenance of route information

(i.e., which interfaces are up, what the cost is to use each available link, etc.) as well as the

implementation of routing policies (which interfaces can be used to forward traffic) are handled

at user level by routing daemons. The actual forwarding of packets, which is the selection of the

interface on which a packet will be sent, is split between two tables stored in the kernel. Earlier

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig13

783

versions of FreeBSD maintained both routing and forwarding information in a single,

per-protocol routing table. A more modern design, which splits routing information and

forwarding information, was adopted as part of FreeBSD 8. Section 13.1 covers examples of the

forwarding information base (FIB) that describes ARP and neighbor discovery. Removing the

forwarding information from the routing table improved the performance of the system by

removing lock contention on the routing table. In the earlier design, routing updates and

forwarding lookups contended on the same set of locks to do their work, resulting in decreased

performance for some networking workloads. A second important advantage to a split design is

that the APIs for accessing each type of data are now cleaner and it is possible to easily replace

the FIB with hardware, as is done in modern routing and switching gear.

Figure 13.13 Routing design.

The routing mechanism is a simple lookup that provides a next-hop route (a specific

network interface) for each outbound packet, while the forwarding mechanism provides the

next-hop address to be used when transmitting the packet. The current design places enough

information in the kernel for packets to be sent on their way without external help; all other

components are outside the kernel. User-level routing daemons communicate with the kernel

via a routing socket to manipulate the kernel forwarding table and to listen for internal changes

such as interfaces being brought up or down. Each of these components is described in this

section.

Kernel Routing Tables

The kernel routing mechanism implements a routing table for looking up next-hop routes. It

includes two distinct portions: a data structure describing each specific route (a routing entry)

and a lookup algorithm to find the correct route for each possible destination. This subsection

describes the entries in the routing table, and the next subsection explains the lookup algorithm.

A destination is described by a sockaddr structure with an address family, a length, and a value.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec1
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342

784

Routes are classified as either host (direct) or network (indirect) routes. The host–network

distinction determines whether the route applies to a specific host or to a group of hosts with a

portion of their addresses in common, based on a prefix of the address. For host routes, the

destination address of a route must exactly match the desired destination; the address family,

length, and bit pattern of the destination must match those in the route. For network routes, the

destination address in the route is paired with a mask. The route matches any address that

contains the same bits as the destination in the positions indicated by bits set in the mask. A

host route is a special case of a network route, in which all the mask bits are set, and thus no bits

are ignored in the comparison. Another special case is a wildcard route—a network route

with an empty mask. Such a route matches every destination and serves as a default route for

unknown destinations. This fallback network route is usually pointed to a router that can then

make more informed routing decisions.

The other major distinction between types of routes is either direct or indirect. A direct route is

one that leads directly to the destination: The first hop of the path is the entire path, and the

destination is on a network shared with the source. Most routes are indirect: the route specifies

a router on a local network that is the firsthop destination for the packet. Much of the literature

(especially for Internet protocols) refers to a local–remote decision, where an implementation

checks first whether a destination is local to an attached network or is remote. In the first case, a

packet is sent locally (via the link layer) to the destination; in the latter case, it is sent to a router

that can forward it to the destination. In the FreeBSD implementation, the local–remote

decision is made as part of the routing lookup. If the best route is direct, then the destination is

local. Otherwise, the route is indirect, the destination is remote, and the route entry specifies the

router for the destination. In either case, the route specifies only the first-hop gateway—a

link-level interface to be used in sending packets—and the destination for the packets in this hop

if different from the final destination. This information allows a packet to be sent via a local

interface to a destination directly reachable via that interface—either the final destination or a

router on the path to the destination. This distinction is needed when the link-layer

encapsulation is done. If a packet is destined for a peer that is not directly connected to the

source, the packet header will contain the address of the eventual destination, whereas the

link-layer protocol header will address the intervening router.

The network system maintains a set of routing tables used by protocols to select a network

interface to use when delivering a packet to its destination. These tables are composed of rtentry

structures as shown in Table 13.4.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_489
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab04

785

Table 13.4 Elements of a routing-table entry (rtentry) structure.

An rtentry structure, contains a reference to the destination address and mask, unless the route

is to a host, in which case the mask is implicit. The destination address, address mask, and

gateway address are different sizes and thus are placed in separately allocated memory. Routing

entries also contain a reference to a network interface, a set of flags that characterize the route,

and optionally, a gateway address. The flags indicate a route’s type (host or network, direct or

indirect) and the other attributes shown in Table 13.5. If the route is a member of a virtual

networking instance, the route entry will reference the virtual network. The route entry also

contains a set of metrics and a mutex for locking the entry. The RTF_HOST flag in a

routing-table entry indicates that the route applies to a single host, using an implicit mask

containing all the bits of the address. The RTF_GATEWAY flag in a routing-table entry indicates

that the route is to a router and that the link-layer header should be filled in from the

rt_gateway field, instead of from the final destination address. The route entry contains a field

that can be used by the link layer to cache a reference to the direct route for the router. The

RTF_UP flag is set when a route is installed. When a route is removed, the RTF_UP flag is

cleared, but the route entry is not freed until all users of the route have noticed the failure and

have released their references. The route entry contains a reference count because it is allocated

dynamically and cannot be freed until all references have been released. Other flags

(RTF_REJECT and RTF_BLACKHOLE) mark the destination of the route as being unreachable,

causing either an error or a silent failure when an attempt is made to send to the destination.

Reject routes are useful when a router receives packets for a cluster of addresses from the

outside, but may not have routes for all hosts or networks in the cluster at all times. Packets with

unreachable destinations should not be sent outside the cluster via a default route because the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab05

786

default router would send back such packets for delivery within the cluster. Black-hole routes

are used during routing transients when a new route may become available shortly.

Table 13.5 Route-entry flags.

Many connection-oriented protocols wish to retain information about the characteristics of a

particular network path. Some of this information can be estimated dynamically for each

connection, such as the round-trip time or path MTU. It is useful to cache such information so

that the estimation does not need to begin anew for each connection [Mogul & Deering, 1990].

The routing entry contains a set of route metrics stored in a rt_metrics_lite structure that may

be set externally or may be determined dynamically by the protocols. These metrics include the

maximum packet size for the path, called the maximum transmission unit (MTU); the

lifetime for the route; and the number of packets that have been sent using this route.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217

787

Routing Lookup

Given a set of routing entries describing various destinations, from specific hosts to a wildcard

route, a routing lookup algorithm is required. The lookup algorithm in FreeBSD uses a variation

of the radix search trie [Sedgewick, 1990]. (The initial design was to use a PATRICIA search,

also described in Sedgewick [1990], which differs only in the details of storage management.)

The radix search algorithm provides a way to find a bit string, such as a network address, in a set

of known strings. Although the modified search was implemented for routing lookups, the radix

code is implemented in a more general way so that it can be used for other purposes. For

example, the filesystem code uses a radix tree to manage information about clients to which

filesystems can be exported. Each kernel route entry begins with the data structures for the

radix tree, including an internal radix node and a leaf node that refers to the destination address

and mask.

The radix search algorithm uses a binary tree of nodes beginning with a root node for each

address family. Figure 13.14 shows an example of a radix tree. A search begins at the root node

and descends through internal nodes until a leaf node is found. Each internal node requires a

test of a specific bit in the string, and the search descends in one of two directions depending on

the value of that bit. The internal nodes contain an index of the bit to be tested, as well as a

precomputed byte index and mask for use in the test. A leaf node is marked with a bit index of

–1, which terminates the search. For example, a search for the address 127.0.0.1 (the loopback

address) with the tree in Figure 13.14 would start at the head and would branch left when testing

bit 0, branch right at the node for bit 1, and branch right on testing bit 31. This search leads to

the leaf node containing a host route specific to that host; such a route does not contain a mask

but uses an implicit mask with all bits set.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig14

788

Figure 13.14 Example radix tree. This simplified example of a radix tree contains routes for the

IPv4 protocol family, which uses 32–bit addresses. The circles represent internal nodes,

beginning with the head of the tree at the top. The bit position to be tested is shown within the

circle. Leaf nodes are shown as rectangles containing a key (a destination address, listed as four

decimal bytes separated by dots) and the corresponding mask (in hexadecimal). Some interior

nodes are associated with masks found lower in the tree, as indicated by dashed arrows.

This lookup technique tests the minimum number of bits required to distinguish among a set of

bit strings. Once a leaf node is found, either it specifies the specific bit string in question or that

bit string is not present in the tree. This algorithm allows a minimal number of bits to be tested

in a string to look up an unknown, such as a host route; however, it does not provide for partial

matching as required by a routing lookup for a network route. Thus, the routing lookup uses a

modified radix search, in which each network route includes a mask, and nodes are inserted into

the tree such that longer masks are found earlier in the search [Sklower, 1991]. Interior nodes

for subtrees with a common prefix are marked with a mask for that prefix. Masks generally

select a prefix from an address, although the mask does not need to specify a contiguous portion

of the address. As the routing lookup proceeds, the internal nodes that are passed are associated

with masks that increase in specificity. If the route that is found at the leaf after the lookup is a

network route, the destination is masked before comparison with the key, thus matching any

destination on that network. If the leaf node does not match the destination, an interior node

visited during the route lookup should refer to the best match. After a lookup does not find a

match at the leaf node, the lookup procedure iterates backward through the tree, using a parent

pointer in each node. At each interior node that contains a mask, a search is made for the part of

the destination under that mask from that point. For example, a search for the address

128.32.33.7 in the tree in Figure 13.14 would test bits 0, 18, and 29 before arriving at the host

route on the right (128.32.33.5). Because this address is not a match, the search moves up one

level, where a mask is found. The mask is a 24-bit prefix, and it is associated with the route to

128.32.33.0, which is the best match. If the mask was not a prefix (in the code, a route with a

mask specifying a prefix is called a normal route), a search would have been required for the

value 128.32.33.7 starting from this point.

The first match found is the best match for the destination; that is, it has the longest mask for

any matching route. Matches are thus found by a combination of a radix search, testing 1 bit per

node on the way down the tree, plus a full comparison under a mask at the leaf node. If the leaf

node (either host or network) does not match, the search backtracks up the tree, checking each

parent with a mask until a match is found. This algorithm avoids a complete comparison at each

step when searching down the tree, which would eliminate the efficiency of the radix-search

algorithm. It is optimized for matches to routes with longer masks and performs least efficiently

when the best match is the default route (the route with the shortest mask).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig14

789

Another complication of using a radix search is that a radix tree does not allow duplicated keys.

There are two possible reasons for a key to be duplicated in the tree: either multiple routes exist

to the same destination or the same key is present with different masks. The latter case is not a

complete duplicate, but the two routes would occupy the same location in the tree. The routing

code supports duplicate routes in two different ways, depending on the features compiled into

the kernel. By default, the radix code supports multiple routes that differ in only the mask.

When the addition of a route causes a key to be duplicated, the affected routes are chained

together from a single leaf node. The routes are chained in order of mask significance, the most

specific mask first. If the masks are contiguous, longer masks are considered to be more specific

(with a host route considered to have the longest possible mask). If a routing lookup visits a

node with a duplicated key when doing a masked comparison (either at the leaf node or while

moving back up the tree), the comparison is repeated for each duplicate node on the chain, with

the first successful comparison producing the best match.

Duplicate routes to different gateways are referred to as equal-cost multi-path routes (ECMP)

and are supported by the RADIX_MPATH feature. ECMP routes can be used to balance traffic

load across multiple links as well as to provide the ability for a single link to fail without the total

loss of connectivity to the next hop in the network. When ECMP routes are used for failover, one

gateway may go over a valid but less-preferred route to the destination. A less-preferred route

might transit a slower or more expensive link. The use of multi-path routes allows the system to

failover gracefully when one link goes down. Enabling ECMP changes the routine used to look

up a route as well as the way in which multiple routes are stored in a radix trie’s leaf nodes.

Each radix trie has a single radix_node_head structure that contains both data about the trie,

and a set of pointers to functions to use when performing operations on it. The rnh_matchaddr()

field is filled in appropriately at the time that the table is initialized to point to the correct

routine to return a matching route. When ECMP routing is in use, the rtalloc_mpath_fib()

routine is ultimately used to look up a route rather than rtalloc_fib(). When ECMP routes are

used to load balance traffic across a set of links, the matching algorithm uses a Modulo-N hash

to choose the gateway to forward any single packet. The Modulo-N hash is calculated to

guarantee that packets with the same source and destination information always cross the same

link. If two packets from the same flow cross different links there is the chance that they will

arrive at their destination out of order, causing a drop in network performance, (see Section 14.5)

[Thaler & Hopps, 2000]. When ECMP routes are used to implement failover links, where one

link is unused until the failure of a primary link, each equal-cost route is given a weight that is

used as part of the gateway selection algorithm. The route with the greatest weight will be used

instead of any other equal-cost route. When a link goes down, the routing entry will remain in

the trie but it will not be used to route packets. The next hop gateway will be selected from the

remaining equal cost routes at the same leaf node in the tree.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref38

790

Routing Redirects

A routing redirect message is a control request from a protocol to the routing system to

modify an existing routing-table entry or to create a new routing-table entry. Protocols usually

generate such requests in response to redirect messages that they receive from routers. Routers

generate redirect messages when they recognize that a better route exists for a packet that they

have been asked to forward. For example, if two hosts, A and B, are on the same network, and

host A sends a packet to host B via a router C, then C will send a redirect message to A specifying

that A should send packets directly to B.

On hosts where exhaustive routing information is too expensive to maintain (e.g., SOHO routers,

cable modems, and other embedded systems), the combination of wildcard routing entries and

redirect messages can be used to provide a simple routing-management scheme without the use

of a higher-level policy process, such as a user-level routing daemon. Statistics are kept by the

routing-table routines on the use of routing-redirect messages and on the latter’s effect on the

routing tables. A redirect causes the gateway for a route to be changed if the redirect applies to

all destinations to which the route applies. A user-level routing daemon will normally clean up

stale host routes, but most hosts do not run routing daemons.

Routing-Table Interface

A protocol accesses the routing tables through three types of routines: one to allocate a route,

one to free a route, and one to process a routing-redirect control message. The routine rtalloc()

allocates a route. It is called with a pointer to a route structure that contains the desired

destination and a pointer that will be set to reference a rtentry structure that is the best match

for the destination. Figure 13.15 shows the resulting route allocation. The destination is recorded

so that later output operations can check whether the new destination is the same as the

previous one, allowing the same route to be used. With the addition of VIMAGE, it was

necessary to provide routines such as rtalloc_ign_fib() that allowed the caller to pass in an

index for the kernel to use to pick the appropriate routing table. All route allocation routines

eventually wind up calling rtalloc_ign_fib(), where the work of looking up a route takes place.

The route returned is assumed to be held by the caller until released with a call to the RTFREE

macro. All accesses to the routing table must be properly locked in FreeBSD and the RTFREE

macro handles the locking as well as decrementing the route’s reference count, freeing the route

entry when the reference count reaches zero. Since a route can only be present in a single

routing table, there is no need to have a specific rtfree_fib() routine. The rtalloc_ign_fib()

routine simply checks whether the route already contains a reference to a valid route. If no route

is referenced or the route is no longer valid, rtalloc_ign_fib() calls the rtalloc1_fib() routine to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig15

791

look up a routing entry for the destination, passing a flag indicating whether the route will be

used or is simply being checked.

Figure 13.15 Data structures used in route allocation.

The rtredirect_fib() routine is called to process a redirect control message. It is called with a

destination address and mask, the new gateway to the referenced destination, and the source of

the redirect. Redirects are accepted from only the current router for the destination. If a

nonwildcard route exists to the destination, the gateway entry in the route is modified to point

at the new gateway supplied; otherwise, a new host route is created. Routes to interfaces and

routes to gateways that are not directly accessible from the host are ignored.

User-Level Routing Policies

The kernel routing facilities deliberately refrain from making policy decisions. Instead, routing

policies are determined by user processes, which then add, delete, or change entries in the

kernel routing tables. The decision to place policy decisions in a user process implies that

routing-table updates may lag a bit behind the identification of new routes or the failure of

existing routes. This period of instability is normally short if the routing process is implemented

properly. Internet-specific advisory information, such as ICMP error messages, may also be read

from raw sockets (described in Section 13.6).

Several routing-policy processes have been implemented. The system standard routing

daemon, routed, uses the Routing Information Protocol (RIP) [Hedrick, 1988]. Many sites

that require the use of other routing protocols or more configuration options than are provided

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref12

792

by routed use either a commercial package or the open-source Quagga Routing Suite [Ishiguro,

2003].

User-Level Routing Interface: Routing Socket

User-level processes that implement routing policy and protocols require an interface to the

kernel routing table so that they can add, delete, and change kernel routes.

User level processes on FreeBSD use a socket to communicate with the kernel routing layer. A

privileged process creates a raw socket in the routing protocol family, AF_ROUTE, and then

passes messages to and from the kernel routing layer. A routing socket operates like a normal

datagram socket, including queueing of messages received at the socket, except that

communication takes place between a user process and the kernel. Messages include a header

with a message type identifying the action, as listed in Table 13.6. Messages to the kernel are

requests to add, modify, or delete a route, or are requests for information about the route to a

specific destination. The kernel sends a message in reply with the original request, an indication

that the message is a reply, and an error number for failures. Because routing sockets are raw

sockets, each open routing socket receives a copy of the reply and must filter for the messages it

wants. The message header includes a process ID and a sequence number so that each process

can determine whether this message is a reply to its own request and can match replies with

requests. The kernel also sends messages as indications of asynchronous events, such as

redirects and changes in local interface state. These messages allow a daemon to monitor

changes in the routing table made by other processes, events detected by the kernel, and

changes to the local interface addresses and state. The routing socket is also used to deliver

requests for external resolution of a link-layer route when the RTF_XRESOLVE flag is set on a

route entry.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab06

793

Table 13.6 Routing-message types.

Requests to add or change a route include all the information needed for the route. The header

has a field for the route flags listed in Table 13.5, and contains a rt_metrics structure of metrics

that may be set or locked. Metrics that can be set on a route include the MTU and expiration

time. The header also carries a bit vector that describes the set of addresses carried in the

message; the addresses follow the header as an array of variable-size sockaddr structures. A

destination address is required, as is a mask for network routes. A gateway address is generally

required as well. The system normally determines the interface to be used by the route from the

gateway address, using the interface shared with that gateway.

13.6 Raw Sockets

A raw socket allows privileged users direct access to a protocol other than those normally used

for transport of user data—for example, network-level protocols. Raw sockets are intended for

knowledgeable processes that wish to take advantage of some protocol feature not directly

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_313

794

accessible through the normal interface or for the development of protocols built atop existing

protocols. For example, the ping program is implemented using a raw ICMP socket (see Section

13.2). The raw IP socket interface attempts to provide an identical interface to the one a protocol

would have if it were resident in the kernel.

The raw-socket support is built around a generic raw-socket interface, possibly augmented by

protocol-specific processing routines. This section describes only the core of the raw-socket

interface; details specific to particular protocols are not discussed. Some protocol families

(including IPv4) use private versions of the routines and data structures described here.

Control Blocks

Every raw socket has a protocol control block of the form shown in Figure 13.16. Raw control

blocks are kept on a singly linked list for performing lookups during packet dispatch.

Associations may be recorded in fields referenced by the control block and may be used by the

output routine in preparing packets for transmission. The rcb_proto field contains the protocol

family and protocol number with which the raw socket is associated. The protocol, family, and

addresses are used to filter packets on input, as described in the next subsection.

Figure 13.16 Raw-socket control block.

A raw socket is datagram oriented: each send or receive on the socket requires a destination

address. Destination addresses are supplied by the user. If routing is necessary, it must be

performed by an underlying protocol.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec2
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig16

795

Input Processing

Input packets are assigned to raw sockets based on a simple pattern-matching scheme. Each

protocol (and potentially some network interfaces) gives unassigned packets to the raw input

routine with the call

Click here to view code image

void raw_input_ext(

 struct mbuf *msg,

 struct sockproto *proto,

 struct sockaddr *src)

Input packets are placed into the input queues of all raw sockets that match the header

according to the following rules:

1. The protocol family of the socket and header agree.

2. If the protocol number in the socket is nonzero, then it agrees with that found in the packet

header.

A basic assumption in the pattern-matching scheme is that protocol information in the control

block and packet header (as constructed by the network interface and any raw input-protocol

module) is in a canonical form that can be compared on a bit-for-bit basis. If multiple sockets

match the incoming packet, the packet is copied as needed.

Output Processing

On output, each send request results in a call to the raw socket’s raw_usend routine, which calls

an output routine specific to the protocol or protocol family. Any necessary processing is done

before the packet is delivered to the appropriate network interface.

13.7 Security

We mentioned in Section 13.3 that a suite of security protocols was developed as part of IPv6.

These protocols were written to be independent of any particular version of IP, so they have

been integrated into IPv4 and IPv6. At the network layer, security mechanisms have been added

to provide authentication so that one host can know with whom it is communicating. Encryption

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p687pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec3

796

has been added so that data can be hidden from untrusted entities as they cross a network. The

protocols that collectively provide security within the network layer are referred to as IPSec.

Placing the security protocols at the network layer within the protocol stack was not an arbitrary

decision. It is possible to place security at just about any layer within a communication system.

For example, transport-layer security (TLS) supports communication security at the application

layer and allows a client and a server to communicate securely over an arbitrary network. At the

opposite end of the spectrum are the various protocols that support security over wireless

networks working at the data-link layer. The decision to put security at the network layer was

made for several reasons:

• The IP protocols act as a uniform platform in which to place the security protocols. Differences

in underlying hardware, such as different types of network media, did not have to be taken into

account when designing and implementing IPSec because if a piece of hardware could send and

receive IP datagrams, then it could also support IPSec.

• Users need not do any work to use the security protocols. Because IPSec is implemented at the

network, instead of the application layer, users who run network programs are automatically

working securely as long as their administrators have properly configured the system.

• Key management can be handled in an automatic way by system daemons. The most difficult

challenge in deploying network security protocols is giving out and canceling the keys used to

secure the data. Since IPSec is handled in the kernel, and is not usually dealt with by users, it is

possible to write daemons to handle the management of keys.

Security within the context of IPSec means several things:

• The ability to trust that a host is who it claims to be (authentication)

• Protection against the replay of old data

• Confidentiality of data (encryption)

Providing a security architecture for the Internet protocols is a complex problem. The relevant

protocols are covered in several RFCs, and an overview is given in Kent & Atkinson [1998a].

IPSec Overview

The IPSec protocol suite provides a security framework for use by hosts and routers on the

Internet. Security services, such as authentication and encryption, are available between two

hosts, a host and a router, or two routers. When any two entities on the network (hosts or

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref16

797

routers) are using IPSec for secure communication, they are said to have a security

association (SA) between them. Each SA is unidirectional, which means that traffic is only

secured between two points in the direction in which the SA has been set up. For a completely

secure link two SAs are required, one in each direction.

SAs are uniquely identified by their destination address, the security protocol being used, and a

security-parameter index (SPI), which is a 32-bit value that distinguishes among multiple

SAs terminating at the same host or router. The SPI is the key used to look up relevant

information in the security-association database that is maintained by each system running

IPSec.

An SA can be used in two modes. In transport mode, a portion of the IP header is protected

as well as the IPSec header and the data. The IP header is only partially protected because it

must be inspected by intermediate routers along the path between two hosts, and it is neither

possible nor desirable, to require every possible router to run the IPSec protocols. One reason to

run security protocols end to end is so intermediate routers do not have to be trusted with the

data they are handling. Another reason is that security protocols are often computationally

expensive and intermediate routers often do not have the computational power to decrypt and

reencrypt every packet before it is forwarded.

Since only a part of the IP header is protected in transport mode, this type of SA only provides

protection to upper-layer protocols, those that are completely encapsulated within the data

section of the packet, such as UDP, TCP and SCTP. Figure 13.17 shows a transport-mode SA

between hosts Alice and Bob, as well as the packet that would result. Alice sets up a normal IP

packet with Bob as the destination. She then adds the IPSec header and data. Finally, she

applies whatever security protocol has been selected by the user and sends the packet, which

travels through routers in Tokyo and New York and finally to Bob. Bob decrypts the packet by

looking up the security protocol and keys in its security-association database.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_361
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_361
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_458
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig17

798

Figure 13.17 Security association in transport mode. Key: AH—authentication header;

ESP—encapsulating-security payload; SPI—security-parameter index.

The other mode is tunnel mode, shown in Figure 13.18, where the entire packet is placed

within an IP-over-IP tunnel [Simpson, 1995]. In tunneling, the entire packet, including all the

headers and data, are placed as data within another packet and sent between two locations.

Alice again wants to send a packet to Bob. When the packet reaches the Tokyo router, it is placed

in a secure tunnel between Tokyo and New York. The entire original packet is placed inside a

new packet and secured. The outer IP header identifies only the endpoints of the tunnel, the

routers in Tokyo and New York, and does not give away any of the original packet’s header

information. When the packet reaches the end of the tunnel in New York, it is decrypted and

then sent on to Bob, its original destination. In this example, neither Alice nor Bob knows that

the data have been encrypted nor do they have to be running the IPSec protocols to participate

in this secure communication.

Figure 13.18 Security association in tunnel mode. Key: AH—authentication header;

ESP—encapsulating-security payload; SPI—security-parameter index.

Tunnel mode is only used for host-to-router or router-to-router communications and is most

often seen in the implementation of virtual private networks that connect two private

networks or that connect users to a corporate LAN over the public Internet.

Security Protocols

There are two security protocols specified for use with IPSec: the authentication header (AH)

and the encapsulating-security payload (ESP), each of which provides different security services

[Kent & Atkinson, 1998b; Kent & Atkinson, 1998c]. Both protocols are used with IPv4 and IPv6

without changes to their headers. This dual usage is possible because the packet headers are

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_462
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_484
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref18

799

really IPv6 extension headers that properly encode information about the other protocols

following them in the packet.

The AH protocol provides a packet-based authentication service as well as protection against an

attacker attempting to replay old data. To understand how AH provides security, it is easiest to

look at its packet header, shown in Figure 13.19. The next-header field identifies the type of

packet that follows the current header. The next-header field uses the same value as the one that

appears in the protocol field of an IPv4 packet: 6 for TCP, 17 for UDP, and 1 for ICMP. The

payload length specifies the number of 32-bit words that are contained in the authentication

header minus 2. The fudge factor of removing 2 from this number comes from the specification

for IPv6 extension headers. The SPI is a 32-bit number that is used by each endpoint to look up

relevant information about the security association.

Figure 13.19 Authentication header.

Authentication is provided by computing an integrity-check value (ICV) over the packet. If

an AH is used in transport mode, then only parts of the IP header are protected because some of

the fields are modified by intermediate routers in transit and the changes are not predictable at

the sender. In tunnel mode, the whole header is protected because it is encapsulated in another

packet, and the ICV is computed over the original packet. The ICV is computed using the

algorithm specified by the SPI with the result stored in the authentication-data field of the

authentication header. The receiver uses the same algorithm, requested by the SPI to compute

the ICV on the packet it received, and compares this value with the one found in the packet’s

authentication-data field. If the values are the same, then the packet is accepted; otherwise, it is

discarded.

One possible attack on a communication channel is called a replay attack. An attacker attempts

to insert malicious packets that duplicate packets sent in the past as if they were coming from

the authentic source. To guard against a replay attack, the AH protocol uses a sequence-number

field to uniquely identify each packet that is transmitted across an SA. This sequence-number

field is distinct from the field of the same name in TCP. When an SA is established, both the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_149

800

sender and receiver set the sequence number field to zero. The sender increments the sequence

number before transmitting a packet. The receiver implements a fixed-size sliding window, with

its left edge being the lowest sequence number that it has seen and validated, and the right edge

being the highest. When a new packet is received, its sequence number is checked against the

window with three possible results:

1. The packet’s sequence number is less than the sequence number on the left edge of the

window and the packet is discarded.

2. The packet’s sequence number is within the window. The receiver keeps a bitmap that tracks

the packets that have been received within the window. The packet is checked to see if it is

already marked in the bitmap. If it is in the bitmap, it is a duplicate and is discarded. If the

packet is not a duplicate, it is inserted into the window and the bitmap is updated to show that

its sequence number has been received.

3. The packet’s sequence number is to the right of the current window. The ICV is verified and,

if correct, the window is moved to the right to encompass the new sequence number value. The

bitmap is updated to reflect that its sequence number has been received.

When the sequence number rolls over, after over 4 billion packets, the security association must

be torn down and restarted. This restart is only a slight inconvenience because at gigabit

Ethernet rates of 83,000 packets per second, it takes over 14 hours for the security sequence

number to roll over, and a user-level daemon can automatically tear down and reestablish the

link without human intervention.

All senders assume that a receiver is using the antireplay service and is always incrementing the

sequence number, but it is not required for the receiver to implement the antireplay service, and

it may be turned off at the discretion of the operator of the receiving system.

The ESP provides confidentiality using encryption. As with the AH, it is easiest to understand

the ESP by examining its packet header, shown in Figure 13.20. The ESP header contains all the

same fields as were found in the AH header, but it adds three more. The encrypted data sent

using an ESP is stored in the payload-data field of the packet. The padding field that follows the

payload data may be used for three purposes:

• The encryption algorithm might require that the data to be encrypted be some multiple

number of bytes. The padding data is added to the data to be encrypted so that the chunk of data

is of the correct size.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig20

801

• Padding might be required to properly align some part of the packet. For example, the

pad-length and next-header fields must be right-aligned in the packet, and the

authentication-data field must be aligned on a 4-byte boundary.

• The padding may also be used to obscure the original size of the payload in an attempt to

prevent an attacker from gaining information by watching the traffic flow.

Figure 13.20 Encapsulating security-protocol header.

Key Management

User-level applications cannot use IPSec in the same way that they use transport protocols like

UDP and TCP. For example, an application cannot open a secure socket to another endpoint

using IPSec. Instead, all SAs are kept in the kernel and managed using a new domain and

protocol family called PF_KEY_V2 [McDonald et al., 1998].

The automated distribution of keys for use in IPSec is handled by the Internet Key Exchange

(IKE) protocol [Harkins & Carrel, 1998]. User-level daemons that implement the IKE protocol,

such as Racoon, interact with the kernel using PF_KEY_V2 sockets [Sakane, 2001]. As these

daemons are not implemented in the kernel, they are beyond the scope of this book.

User-level applications interact with the security database by opening a socket of type PF_KEY.

There is no corresponding AF_KEY address family. Key sockets are based on the routing-socket

implementation and function much like a routing socket. Whereas the routing-socket API

manipulates the kernel routing table, the key-socket API manages security associations and

policies. Key sockets support a connectionless-datagram facility between user applications and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_153
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref34

802

the kernel. User-level applications send commands in packets to the kernel’s security database.

Applications can also receive messages from a key socket about changes to the security database

such as the expiration of security associations.

The messages that can be sent using a key socket are shown in Table 13.7. Two groups of

messages are defined for key sockets: a base set of messages that all start with a

security-association database (SADB) and a set of extension messages that all start with

SADB_X. The type of the message is the second part of the name. In FreeBSD, the extension

messages manipulate a security-policy database (SPDB) that is separate from the SADB.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab07

803

Table 13.7 PF_KEY messages.

Key-socket messages are made up of a base header, shown in Figure 13.21, and a set of extension

headers. The base header contains information that is common to all messages. The version

ensures that the application will work with the version of the key-socket module in the kernel.

The command being sent is encoded in the message-type field. Errors are sent to the calling

socket using the same set of headers that are used to send down commands. Applications cannot

depend on all errors being returned by a send or write system call made on the socket, and they

must check the error number of any returned message on the socket for proper error handling.

The errno field is set to an appropriate error number before the message is sent to the listening

socket. The type of security association that the application wants to manipulate is placed in the

SA-type field of the packet. The length of the entire message, including the base header, all

extension headers, and any padding that has been inserted, is stored in the length field. Each

message is uniquely identified by its sequence and PID fields that match responses to requests.

When the kernel sends a message to a listening process, the PID is set to 0.

Figure 13.21 PF_KEY-base header.

The security-association database and security-policy database cannot be changed using the

base header. To make changes, the application adds one or more extension headers to its

message. Each extension header begins with a length and a type so that the entire message can

be easily traversed by the kernel or an application. An association extension is shown in Figure

13.22. The association extension makes changes to a single security association, such as

specifying the authentication or encryption algorithm to be used.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig22

804

Figure 13.22 PF_KEY-association extension.

Whenever an association extension is used, an address extension must be present as well, since

each security association is identified by the network addresses of the communicating endpoints.

An address extension, shown in Figure 13.23. stores information on the IPv4 or IPv6 addresses

using sockaddr structures.

Figure 13.23 PF_KEY address extension.

One problem with the current PF_KEY implementation is that it is a datagram protocol and the

message size is limited to 64 Kbyte. A 64-Kbyte limit is not important to users with small

databases, but when a system using IPSec is deployed in a large enterprise, with hundreds and

possibly thousands of simultaneous security associations, the SADB will grow large and this size

limitation makes it more difficult to write user-level daemons to manage the kernel’s security

databases.

A security-association structure is shown in Figure 13.24. Like many other data structures in

FreeBSD, security-association structures are really objects implemented in C. Each

security-association structure contains all the data related to a specific security association as

well as the set of functions necessary to operate on packets associated with that association. The

security-association database is stored as a doubly linked list of security-association structures.

Each security association can be shared by more than one entity in the system, which is why it

contains a reference count.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig24

805

Figure 13.24 Security-association structure.

Security associations can be in four states: LARVAL, MATURE, DYING, and DEAD. When an

SA is first being created, it is put into the LARVAL state, which indicates that it is not yet usable.

Once an SA is usable, it moves to the MATURE state. An SA remains in the MATURE state until

some event, such as the SA exceeding its lifetime, moves it to the DYING state. SAs in the

DYING state can be revived if an application makes a request to use an SA with the same

parameters before it is marked as DEAD.

The security-association structure contains all the information on a particular SA including the

algorithms used, the SPI, and the key data. This information is used in processing packets for a

particular association. The lifetime fields limit the usage of a particular SA. Although an SA is

not required to have a lifetime, and so might not expire, recommended practice is to set a

lifetime. Lifetimes can be given a time limit using the addtime and usetime fields of the

sadb_lifetime structure, and can be given a data-processing limit using the bytes field. The three

lifetime structures pointed to by the security association encode the current usage for the

association and its hard and soft limits. When reached, the soft-lifetime value puts the SA into

the DYING state to show that its useful life is about to end. When reached, the hard-lifetime

value indicates that the SA is no longer usable. Once an SA passes the hard-lifetime limit, it is

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_34

806

set to the DEAD state and can be reclaimed. The current-lifetime structure contains the present

usage values for the SA—for example, how many bytes have been processed since the SA was

created.

Each security-association structure has several tables of functions that point to routines that do

the work on packets handled by that association. The tdb_xform table contains pointers to

functions that implement the initialization, input, and output functions for a particular security

protocol such as ESP or AH. The other three tables are specific to a protocol and contain

pointers to the appropriate cryptographic functions for handling the protocol being used by the

SA. The reason for having this plethora of tables is that the cryptographic subsystem ported

from OpenBSD used these tables to encapsulate the functions that do the real work of

cryptography. To simplify the maintenance of the code, this set of interfaces and tables was

retained during the port. A useful side effect of having these tables is that it makes adding new

protocols or cryptographic routines simple. The use of these tables is described later in this

section.

User-level daemons interact with the IPSec framework via key sockets. Key sockets are

implemented in the same way as other socket types. There is a domain structure, keydomain; a

protocol-switch structure, keysw; a set of user-request routines, key_usrreqs; and an output

routine, key_output(). Only those routines necessary for a connectionless-datagram type of

protocol are implemented in the key_usrreqs structure. Any attempt to use a key socket in a

connection-oriented way—for instance, calling connect on a key socket—will result in the kernel

returning EINVAL to the caller.

When an application writes to a key socket, the message is eventually transferred down into the

kernel and is handled by the key_output() routine. After some rudimentary error checking, the

message is passed to key_parse(), which does more error checks, and then is finally shuttled off

through a function-pointer switch called key_types. The functions pointed to by key_types are

those that do the manipulation of the security-association and security-policy databases.

If the kernel needs to send a message to listening applications because of changes in the security

databases, it uses the key_sendup_mbuf() routine to copy the message to one or more listening

sockets. Each socket receives its own copy of the message.

IPSec Implementation

The IPSec protocols affect all areas of packet handling in the IPv4 and IPv6 protocol stacks. In

some places, IPSec uses the existing networking framework, and in others, direct callouts are

807

made to do some part of the security processing. We will look at three of the possible paths

through the IPv4 stack: inbound, outbound, and forwarding.

One twist that IPSec adds to normal packet processing is the need to process some packets more

than once. An example is the arrival of an encrypted packet bound for the current system. The

packet will be processed once in its encrypted form and then a second time, by the same

routines, after it has been decrypted. This multipass processing is unlike regular TCP or UDP

processing where the IP header is stripped from the packet and the result is handed to the TCP

or UDP modules for processing and eventual delivery to a socket. This continuation style of

processing packets is one reason that the IPSec software makes extensive use of packet tags.

Another reason to use packet tags is that parts of IPSec, namely the cryptographic algorithms,

can be supported by special-purpose hardware accelerators. A hardware accelerator may do all

or part of the security processing, such as checking a packet’s authentication information or

decrypting the packet payload and then passing the resulting packet into the protocol stack for

final delivery to a waiting socket. The hardware needs some way to tell the protocol stack that it

has completed the necessary work. It is neither possible, nor desirable, to store this information

in the headers or data of the packet. Adding such information to a packet’s header is an obvious

security hole because a malicious sender could simply set the appropriate field and bypass the

security processing. It would have been possible to extend the mbuf structure to handle this

functionality, but packet tags are a more flexible way of adding metadata to packets without

modifying a key data structure in the network stack. The tags used by IPSec are described in

Table 13.8.

Table 13.8 IPSec packet tags.

As we saw in Section 13.4, when an IPv4 packet is received by the kernel, it is initially processed

by ip_input(). The ip_input() routine does two checks on packets that are related to IPSec. The

first is to see if the packet is really part of a tunnel. If a packet is being tunneled and it has been

processed by the IPSec software already, it can bypass any filtering by filter hooks or the kernel’s

firewall code. The second check is done when a packet is to be forwarded. Routers can

implement security policies on packets that are forwarded. Before a packet is passed to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec4

808

ip_forward(), it is checked by calling the ipsec_getpolicy() function to see if there is a policy

that is associated with the packet itself. The ipsec_getpolicybyaddr() function is called to check

if there is a policy associated with the address of the packet. If either function returns a pointer

to a policy routine, the packet is passed to that policy routine to be checked. If the packet is

rejected, it is silently dropped and no error is returned to the sender.

When ip_input() has determined that the packet is valid and is destined for the local machine,

the protocol-stack framework takes over. The packet is passed to the appropriate input routine

using the pr_input field of the inetsw structure. Although packets using different protocols have

different entry points, they eventually wind up being passed to a single routine,

ipsec_common_input(), for processing. The ipsec_common_input() routine attempts to find

the appropriate security-association structure for the packet based on its destination address,

the security protocol it is using, and the SPI. If an appropriate association is found, then control

is passed to the input routine contained in the SA’s xform-switch structure. The

security-protocol’s input routine extracts all the relevant data from the packet—for example, the

key being used—and creates a cryptography-operation descriptor. This descriptor is then passed

into the cryptographic routines. When the cryptographic routines have completed their work,

they call a protocol-specific callback routine, which modifies the mbufs associated with the

packet so that it may now be passed, unencrypted, back into the protocol stack via the ip_input()

routine.

Applications do not know that they are using IPSec to communicate with other hosts in the

Internet. For outbound packets, the use of IPSec is really controlled from within the ip_output()

routine. When an outbound packet reaches the ip_output() routine, a check is made to see if

there is a security policy that applies to the packet, either because of its destination address or

because of the socket that sent it. If a security policy is found, then the packet is passed into the

IPSec code via the ipsec4_process_packet() routine. If a security association has not been set up

for this particular destination, one is created for it in the security-association database. The

ipsec4_process_packet() uses the output() routine from the xform switch in the security

association to pass off the packet to the security protocol’s output routine. The security

protocol’s output routine uses the appropriate cryptographic routine to modify the packet for

transmission. Once the packet has been modified appropriately, it is passed again into

ip_output() but with the tag IPSEC_OUT_DONE attached to it. This tag marks the packet as

having completed IPSec processing, showing that it can now be transmitted like any other

packet.

Underlying all the security protocols provided by IPSec is a set of APIs and libraries that support

cryptography. The cryptographic subsystem in FreeBSD supports both symmetric and

asymmetric cryptography. Symmetric cryptography, used by IPSec, uses the same key to

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_427

809

encrypt data as it does to decrypt them. Asymmetric cryptography, which implements

public-key encryption, uses one key to encrypt data and another key to decrypt them. The

cryptographic APIs are covered in detail in Section 5.12. Readers interested in how data are

encrypted within the IPSec subsystem are encouraged to read the complete discussion found

there.

13.8 Packet-Processing Frameworks

Most of the packets that are processed by a host pass through network-protocol modules such as

TCP/IP. Some applications may need to get access to packets as they pass through the kernel

without using the more common mechanisms provided by sockets. Over the last 20 years

several different packet-processing frameworks have been developed in FreeBSD, from simple

packet filtering to more complex frameworks in which new protocols can be developed.

Packet-processing frameworks are used for debugging network problems, implementing

fire-walls, performing network address translation (NAT), and providing software for

network-research testbeds.

Berkeley Packet Filter

The Berkeley Packet Filter (BPF) [McCanne & Jacobson, 1993], FreeBSD’s packet sniffing

system, is arguably the simplest packet-processing framework provided by the operating system.

BPF provides a uniform user-level interface to all the operating system’s network interfaces,

allowing programs with root privilege to get access to raw packets as they pass by on the

network. Most users do not interact directly with BPF but instead run programs such as

tcpdump that use the packet-capture library, libpcap, to express easily understandable

filtering rules that govern which packets are to be captured. The tcpdump program directs the

BPF pseudo-device to read raw packets from a network device before any network protocols

access them. Being implemented as a pseudo-device means that userspace programs can

interact with BPF via the well-known open, close, read, write, and ioctl interfaces. The device

nodes exposed by BPF are bi-directional, meaning that applications can not only receive packets

but can also inject packets into the network from userspace.

BPF implements a simple high-speed packet-matching engine in software using a synthetic

domain-specific assembly language. Comprising less than 30 instructions, the BPF virtual

machine is general enough to do all the computational tasks of a CPU including fetching and

storing data, mathematical operations, and branching. The simplicity and generality of the BPF

instruction set make it possible to write complex filtering rules, have them compiled and

optimized in userspace, and deliver the final instruction stream into the kernel. Separating the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref20

810

compilation and execution of BPF programs makes creating extensions easier and minimizes the

amount of work that must be done on each packet during filtering, thereby reducing the

overhead of deciding which packets to capture. One feature that the split between compilation

and execution has made possible is just-in-time (JIT) compilation of filters to native machine

code, which allows the kernel to avoid the overhead of virtual-machine instruction execution

altogether.

For BPF to work when the system is transmitting packets, it must be hooked into each network

driver’s source code. A simple macro, BPF_MTAP, is provided for driver authors to use in their

source code. The purpose of the macro is to take packets, from as near the hardware layer as

possible, and feed them into BPF so that it can determine if the packets are of interest to a

listener in userspace. On packet reception, the BPF_MTAP macro is called from the link-layer

protocols, such as Ethernet. The BPF_MTAP macro is the only interface required by BPF to do

its work. Providing a single macro that is easy to remember and use has made it possible to

convince device-driver authors to include this code when writing software for new hardware.

Internally, the BPF_MTAP macro calls the bpf_mtap() function that contains the calls to the

filtering and copying routines. The heart of the filtering code is in bpf_filter(), that executes the

virtual assembly language to decide whether a packet matches a filter. When a packet matches a

filter, it is copied into a buffer. Aside from data copying, the catchpacket() routine does all the

tasks that are important to packet filtering: figuring out how much of the packet was captured,

determining the length of the packet header, and timestamping the captured packet. How the

packet is copied depends on the function that is passed as an argument to the catchpacket()

routine. Copying packet data is an expensive operation. One optimization uses zero-copy buffers

that combine virtual memory and a shared-memory protocol to share buffers directly between

the kernel and userspace rather than requiring explicit copying. The bpf_append_mbuf()

function contains a two-case switch statement that calls out to either

bpf_buffer_append_mbuf() or bpf_zerocopy_append_mbuf(). The zero-copy code does a

small bit of extra work to ensure that the buffers used to capture the packet data are reused as

the packet moves toward userspace, reducing the number of times that the packet’s data must

be copied. The bpf_buffer_append_mbuf() code is simpler because it just loops over the packet

data to copy it. However, the act of copying data between buffers is expensive and that is why

the zero-copy code is available. Zero copy is more complex to implement but much faster at run

time.

IP Firewalls

The job of a firewall is to inspect a packet and take an action based on the packet’s contents.

While BPF might copy the same packet to various listeners in userspace, it will neither modify

811

nor drop the packet along the way. A firewall exists solely to modify or drop packets in transit.

The kernel provides a generic set of hooks for use in implementing firewalls. All firewalls in

FreeBSD are built using pfil, which stands for “packet filter.” Firewalls register filtering

functions with the pfil system, and these functions are executed whenever a packet passes

through a pfil barrier point in the networking modules. The kernel has twenty one barrier points

in the networking code where these functions may be added or removed at run time. Barrier

points include the IPv6 and IPv4 input and output routines discussed in Section 13.4. Providing

a generic packet filtering system in the kernel has enabled various developers to write firewall

software without the need for them to modify the kernel on their own. When new network code

is written, new barrier points are added in the appropriate places such that the firewall authors

can extend their software further in a fully generic manner.

Firewalls register their hooks by calling the pfil_add_hook() routine, specifying the function to

call and whether it should be called for packets that are inbound, outbound, or traveling in

either direction. Once a hook is registered, it is called by pfil_run_hooks() whenever a packet

reaches the barrier. The functions called from the pfil_run_hooks() routine can modify the

mbuf that they are passed, for example, while performing network address translation. If a hook

function returns a nonzero value, then packet processing ends and no other hooks are called.

When a hook function decides to drop a packet, it is responsible for freeing the associated mbuf,

which presents new module authors with the potential for memory leaks. All the firewalls in

FreeBSD are built on top of this simple set of routines.

IPFW and Dummynet

The IP firewall (IPFW) system is both a firewall and generic packet-processing framework that

can be used to manipulate IPv6 and IPv4 packets as they enter and exit the system. A single pfil

hook, ipfw_check_hook(), is responsible for capturing packets from within the IPv6 and IPv4

input and output routines: ip6_input(), ip6_output(), ip6_forward(), ip_input(), ip_output(),

and ip_fastforward(). In each of these functions, a single call to pfil_run_hooks() decides

whether packet processing will continue.

IPFW contains a single central-dispatch function, ipfw_chk(), that decides the fate of all packets

that are passed to it. Packets can be passed through unchanged, copied, diverted, subjected to

network address translation, reassembled for further inspection, sent to dummynet, or dropped.

The action taken on any packet is determined by the return value from the ipfw_chk() routine.

The complete list of return values and their meanings is given in Table 13.9.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab09

812

Table 13.9 IPFW packet disposition based on ipfw_chk() return value.

The ipfw_chk() routine does its work in two phases. In the first phase, ipfw_chk() dissects the

packet gathering network addresses, the transport-protocol type, source, and destination ports,

and any associated flags into a set of internal variables. The work done by ipfw_chk() is similar

to that done in any of the IPv6 and IPv4 input routines. With the packet’s state properly

dissected, ipfw_chk moves on to phase two, where it decides what to do with the packet. A set of

rules that are controlled at a high level by the administrator of the system dictates what should

be done with the packet. The rules are stored in lists called chains. Each rule contains a set of

opcodes that control the action that should be taken at each position in the packet. A decision is

made about the disposition of the packet when an opcode is reached that terminates packet

processing. Table 13.10 shows the set of opcodes that result in an action being taken with the

packet. The opcodes in IPFW mirror those in BPF.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab10

813

Table 13.10 IPFW action opcodes.

Using a set of opcodes, rather than hard-coded individual functions, gives IPFW flexibility and

reduces its code size. A single 1200-line loop is responsible for any action that can be taken with

a packet. Having a centralized location for decisions about the disposition of a packet reduces

the complexity of the code and also increases the likelihood that any errant bugs can be found

quickly and repaired. Opcodes in IPFW can have data associated with them. For example, the IP

opcodes all carry an address and a mask that can be used to check whether the packet’s IP

address matches the one in the rule that is currently being executed. A subset of the IP opcodes

is given in Table 13.11.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab11

814

Table 13.11 IPFW IP opcodes.

Dummynet is a packet-processing framework that provides traffic shaping, packet delay

emulation, and packet scheduling. The original purpose of dummynet was to provide a way to

test network protocols such as TCP that have performance issues when their packet streams are

subjected to variable networking delays or drops. It has grown into being a generic

bandwidth-shaping tool used in various devices often at the edge of the network.

Dummynet passes all traffic through an object called a pipe. A pipe emulates a communication

link driven by a scheduler that arbitrates access for several independent queues. The features of

the pipe are programmable. Features include the pipe’s bandwidth and delay. They also include

the scheduling policy, the number and size of the queues, and the queues relative priorities. The

system permits the dynamic creation of many pipes and queues, and the algorithms used in

dummynet are designed to scale to tens of thousands of pipes and queues without introducing

excessive overhead.

The dummynet system assigns every packet that it touches to a flow. A flow is a set of packets

that match a pre-determined set of criteria, such as having the same destination address and

port number. All packets that are part of a flow are processed similarly. Traffic shaping is carried

out by dropping packets at the network layer as this approach forces protocols such as TCP to

scale back their transmissions and results in a lower offered bandwidth. Dummynet can also

delay packets by holding them in a pipe for a configurable amount of time. It is this delay

property that was originally used for testing TCP in a laboratory environment.

Queues are served by a packet scheduler through one of the available scheduling policies listed

in Table 13.12. The schedulers manage and shape packet flows as they traverse the system.

Schedulers differ in the service guarantees they provide and their packet-processing cost. Better

guarantees for minimum bandwidth or maximum delay require more effort, though

state-of-the-art algorithms such as quick fair queueing (QFQ) perform well [Checconi et al.,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref02

815

2013]. Dummynet provides three weight-based schedulers. Each scheduler incurs a different

amount of per-packet overhead when processing packets. The weighted round robin (WRR)

scheduler has a constant run time but poor service guarantees, while a variant of weighted fair

queueing (WFQ+) has optimal guarantees and a packet service time logarithmic in the number

of flows. Finally, QFQ, has nearly optimal guarantees and constant processing time per packet.

Other schedulers, including those based on priorities or other criteria, can be implemented as

loadable kernel modules.

Table 13.12 Dummynet schedulers.

Packets are first classified by IPFW or another firewall before being passed into dummynet. As

packets enter dummynet, an mbuf tag is attached to each mbuf via the tag_mbuf() routine. The

mbuf tag contains a reference to the pipe to be used, as well as other metadata that associates

the packet to a flow. The packet is then passed to the dummynet_io() routine that completes the

classification and stores the packet into the correct queue, dropping the packet if the queue is

full. When the link emulated by the pipe is ready to transmit a new packet, the scheduler selects

the queue to serve and extracts a packet from it. Once this work is complete, a timer is set to run

the scheduler again after a time equal to the packet length divided by the pipe’s bandwidth. The

resulting traffic exits the scheduler at exactly the programmed rate. Packets selected by the

scheduler are put into a delay line, a FIFO queue from which packets are removed after a time

equal to the delay associated with the pipe. The dummynet mbuf tag has an output_time field

that tracks the time at which the packet needs to be transmitted. When packets are removed

from the FIFO, they are reinserted into the network stack at the point from which they were

intercepted. Depending on the configuration of the classifier, they may be reclassified and sent

to another pipe.

Dummynet may have many queues and pipes that may need to be served. Thus, dummynet

implements its own timer queue using a priority queue and processes it through a function,

dummynet_task(), that is invoked on every timer tick. Managing its own timer queue provides

scalability at the price of some jitter in the output. The jitter seen in packets delayed by

dummynet is directly related to the clock-tick setting in the kernel. The default tick rate of 1000

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref02

816

(see Section 3.4) will give good results down to 1 millisecond. To achieve finer granularity would

require an increase in the kernel’s tick rate.

Packet Filter (PF)

Although packet filter (PF) provides similar functionality to IPFW, it has a different structure

and implementation. The PF system was originally developed under OpenBSD and then later

ported to FreeBSD, where it has remained popular for building firewalls and network address

translators. Like IPFW, PF uses pfil hooks to capture packets for examination. PF adds a hook in

each of the inbound and outbound directions for both IPv4 and IPv6. The pf_check_in(),

pf_check_out(), pf_check6_in(), and pf_check6_out() routines are the starting points for any

packet filtering carried out by PF.

The purpose of a firewall is to decide whether to drop a packet. PF has two enumerated values,

PF_PASS and PF_DROP, that control whether a packet will be allowed through a firewall. In

addition to the enumerated values that determine whether a packet is passed or dropped, PF

also uses a set of reason codes that explain the final disposition of the packet. The reason codes

are listed in Table 13.13.

Table 13.13 PF reason codes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab13

817

When a packet enters the system, it is subjected to a series of tests starting in the pf_test()

routine. Each of the test routines does some amount of work to dissect or reassemble the packet

before passing it along to a higher-layer protocol test. The process of validating a packet

proceeds in two phases. The first phase is called normalization and is where the contents are

compared against rules set by the administrator. The IPv4, IPv6, and TCP protocols each have

their own normalization routine: pf_normalize_ip(), pf_normalize_ip6(), and

pf_normalize_tcp() respectively. All the rules in PF are stored in pf_rule structures that are

linked together in a queue.

The second phase of packet processing happens after the packet has been normalized and

subjected to any matching rules. The pf_test() routine dissects the IP header of the packet into a

pf_desc descriptor structure. The pf_desc structure holds the state of the packet in a convenient

form for the rest of the test routines. IP packets are demultiplexed in the pf_test() routine in

much the same way that they are in ip_input(), except without the flexibility of the inetsw

protocol switch. Instead of a lookup table, packets are passed directly into predetermined test

functions based on their protocol type. Each transport-layer protocol, TCP, UDP, and ICMP is

handled by a matching pf_test() routine: pf_test_state_tcp(), pf_test_state_udp(), and

pf_test_state_icmp(). The test routines also handle all protocol specific state tracking.

Netgraph

The netgraph subsystem was designed to provide an easy way to develop new network protocols

in the FreeBSD kernel and was first released as part of FreeBSD 3. Since its addition to the

operating system, netgraph has been used to implement several protocols including the

point-to-point protocol (PPP), the asynchronous-transfer mode protocol (ATM), and Bluetooth.

The core idea behind netgraph is that network protocols can be built around a data-flow model.

In a data-flow model, packets flow between software modules, each of which does some small

amount of work on the packet before passing it on to the next module. In netgraph the modules

are referred to as nodes and the edges that connect the nodes are called hooks. The data flows

across the set of hooks between the nodes of the graph. Nodes can be connected somewhat

arbitrarily, although they may impose certain limitations on the number of connections they are

willing to accept. Encapsulating the processing of packets into sufficiently fine-grained nodes

can allow for greater software reuse than in a more monolithic design. A simple set of nodes can

more easily be built up into a complex protocol in an experimental plug-and-play scenario

similar to a set of childrens building blocks. A data-flow model also allows the possibility of

adding or removing processing elements at run time—for example, when a protocol needs to

attempt different types of encryption to establish a network connection with a peer. The

818

different types of encryption can be encapsulated as nodes and then added and removed from

the data path as needed at run time.

Nodes not only pass network packets across their hooks, but also respond to a set of control

messages defined by each node. A node is configured using control messages. It can also expose

counters and statistics to user-level programs via the control-message interface. Having a

well-defined set of APIs both for packet processing and configuration allows the programmer to

build a system that looks more like a traditional network router, with both a data plane and a

control plane. In netgraph, the data plane is where network packets pass along the hooks

between the nodes. The control plane is the set of messages that configures the nodes.

Netgraph, with its nodes and hooks, is an object-oriented design, where the nodes are objects

and the hooks are methods. The object-oriented approach used by netgraph has advantages

similar to other systems that create complex protocols out of smaller blocks, including

STREAMS [Ritchie, 1984] and The Click Modular Router framework [Kohler et al., 2000].

There are more than 50 netgraph nodes available as part of FreeBSD, ranging from the simple

ng_echo node that echos back every packet it receives, to those nodes that provide whole

protocols such as PPP, ATM, and Bluetooth.

To build anything with netgraph, a set of nodes must be selected that are useful to implementing

a protocol. The nodes are connected via their hooks into a graph. There are two main data

structures used by netgraph, the ng_node and ng_hook. Every node in the graph maintains

some basic information about itself, including a globally-unique name and details on how it is

connected to other nodes. Each node also has a type, reference count, a set of flags, and a private

data area in which the node can maintain statistics and internal state.

Nodes exist simultaneously on several lists in the system, including the global list of all nodes

and the list of nodes for which there is work to do. The global list of all nodes tracks down a

node when the user wants to send it a control message.

Each node exposes a set of functions via a function pointer table. Most nodes are written as

loadable kernel modules (see Section 15.3). The functions exposed by the node relate to the

different stages in a node’s existence. When a node is activated, it is loaded as a module,

initialized, and hooked to other nodes. While active, it receives and processes messages. When

deactivated, it is disconnected from the rest of the nodes in the system and shutdown.

When the node is initialized, its ng_constructor_t() function is called to do any housekeeping

chores required before the node can be used. When node A connects to a hook on node B, node

B’s ng_newhook_t() function is called. When a node is shut down, first the ng_close_t() and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec3

819

then the ng_shutdown_t() functions will be called. Control messages are received by the

ng_rcvmsg_t() function while data arrives via the ng_rcvdata_t() entry point.

Each node has a set of associated hooks that dictate how the nodes are connected. The way in

which nodes are connected defines how packets will be processed by the graph and represents

the protocol being implemented. Hooks, like nodes, have textual names. Each hook is a

first-class object in the system, and has its own type, flags, references, and private data. Hooks

commonly record statistics about the data that cross them in their private-data area.

A simple example helps to understand how netgraph works. The example shown in Figure 13.25

uses two node types to build a simple network bridge. One is an Ethernet node, ng_ether, one of

which is attached to each Ethernet interface in the system when the ng_ether module is loaded.

The other is a bridge node, ng_bridge, that connects multiple Ethernet interfaces.

Figure 13.25 A simple network bridge.

A bridge operates at a lower level than the Internet protocols, covered in Section 13.4, taking any

Ethernet packet that arrives on one interface and forwarding it to one or more other interfaces.

Network-layer protocols such as IPv4 and IPv6 are at a higher layer than Ethernet and do not

come into play here. Packets are forwarded independent of their IPv4 or IPv6 addresses.

Our example bridge contains only two interfaces, cxgbe0 and cxgbe1. Every packet received on

cxgbe0 is sent unchanged out of cxgbe1 and every packet received on cxgbe1 is sent out of

cxgbe0. The bridge shown in Figure 13.25 is made up of three nodes. Each network interface is

represented by its own ng_ether node, and the ng_bridge node ties them together. The

ng_ether node has two hooks, upper() and lower() to which other nodes connect. The lower()

hook is where all Ethernet packets received by the underlying interface appear for consumption

by other nodes. Packets sent to the upper() hook are passed up into the network stack. When an

ng_ether node is first initialized, its upper() and lower() hooks are connected so that packets

flow from the underlying interface into the network stack.

To create a bridge, we must connect to the ng_ether node’s lower() hook so that all the packets

received on the underlying interface are sent to our bridge node and not into the network stack.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig25

820

The ng_bridge node has a set of numbered link hooks that can be connected to the ng_ether

node’s lower() hooks.

Like all netgraph nodes, the ng_bridge node exposes a set of functions. The

ng_bridge_newhook() function is concerned with getting the name of the hook right. The code

that does the work of passing packets is implemented in the node’s ng_bridge_rcvdata()

function.

When the ng_bridge node receives a packet, it must make several checks before deciding what

to do with it. One of the more complex aspects of bridging a broadcast network like Ethernet is

detecting when a loop has occurred. Loops can happen for several reasons, such as

misconfiguration when adding new computers to the network or a piece of network equipment

being damaged. If the network develops a loop, then packets can wind up being forwarded

forever across a pair of interfaces, effectively destroying that segment of the network. To detect a

loop, the system must record the link being used by each host based on the host’s link-layer

(Ethernet) source address. The system detects a loop when it observes a host using more than

one link in a short period of time. When a loop is detected, the system outputs an error, drops

the packet, and briefly turns the link off.

The first time the ng_bridge node sees a packet from a host, the loop detection code inserts an

entry for the new host in the bridge’s host table. The host table is implemented as a hash table

indexed on the host’s link-layer source address. The host’s source address is stored as well as the

link on which it is first seen by the ng_bridge node. On each subsequent reception of a packet

from the same host, the packet will be found in the node’s host table. After a host is looked up in

the table, the code does the loop check. If the link on which this packet was received is not the

same as the one stored in the host table, the system checks the age of this host’s entry against

the allowed minimum stable age for a host (one second). If a host has moved links in less than a

second, the system considers the host to be in a loop condition. When a loop condition is

detected, the offending link is disabled and all the hosts on the link are dropped from the link’s

tables. Links do not remain in a loop state forever. They are returned to a normal state by a

timeout routine that is called once per second to do various house keeping duties for the

ng_bridge node.

Netgraph nodes not only pass packets along their hooks, but they also respond to a set of control

messages defined by the node. A small set of control messages are defined by the base class of

netgraph. The basic messages are required to have minimal control over the nodes and include

messages to instantiate, connect, control and shutdown the nodes. The set of base messages is

shown in Table 13.14.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13tab14

821

Table 13.14 Netgraph base messages.

The ng_bridge nodes receive control messages on their rcvmsg() function. The receive-message

function of a node looks much like an ioctl() routine in a network driver. The

ng_bridge_rcvmsg() function takes an item_p structure and converts it into a message using

the NGI_GET_MSG macro. The function knows nothing of the internals of the item_p structure,

because it only knows how to interpret messages. The receive-message function decodes the

message via a switch statement. Control messages in netgraph are encapsulated into a

ng_mesghdr structure:

Click here to view code image

struct ng_msghdr {

 u_char version; /* NGM_VERSION number */

 u_char spare; /* pad to 4 bytes */

 u_int16_t spare2;

 u_int32_t arglen; /* length of data */

 u_int32_t cmd; /* command identifier */

 u_int32_t flags; /* message status */

 u_int32_t token; /* match with reply */

 u_int32_t typecookie; /* node's type cookie */

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13_images.html#p711pro01

822

 u_char cmdstr[NG_CMDSTRSIZ]; /* cmd string + NULL */

} header;

All ng_mesghdr structures contain a generic header that describes the message being sent. Each

node must decode the message to take the action that the message is requesting. While the

header is standardized, the arbitrary node-specific data is contained in the data section

following the header.

Every netgraph message header contains two pieces of information needed for a node to decode

a message, the typecookie and the cmd. The typecookie is opaque data that identifies the type of

node to which the message is being sent. Each node has its own typecookie and this typecookie

is the first piece of data that is checked in processing an incoming control message. If the

typecookie does not match that of the node trying to decode the message, then the message is

invalid and an error is returned.

Once the ng_bridge_recvmsg() function has established that the message is for its consumption,

it decodes the command by looking at the cmd element of the ng_mesg structure. The choice of

messages is determined by the implementer of the node, but most nodes provide messages for

getting and setting the node configuration, retrieving and clearing statistics, and resetting the

node. Netgraph contains many convenience macros, such as NG_MKRESPONSE, to facilitate

building nodes without programmers needing to concern themselves with the internals of the

framework.

Netmap

The advent of networks and network interfaces that are capable of sustaining speeds of 1 and 10

gigabits per second has meant that the performance of some networking applications such as

routers, switches, firewalls, and intrusion detection systems is limited by the amount of data

that can be copied between the network interface and the user-level code that intends to operate

on the packets. Several approaches avoid the overhead of copying data into userspace by

running network applications in the kernel or bypassing the kernel completely and giving the

application direct access to the underlying network interface. Each of these approaches has its

drawbacks, including loss of generality, loss of virtual-memory protection, and higher

maintenance costs. The netmap framework [Rizzo, 2012] provides a uniform userspace API for

applications that require high-speed access to raw-packet data. Unlike a network protocol, the

netmap framework does not process the packets in any way other than to make them available

to userspace applications.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13ref33

823

Applications using the netmap framework gain direct access to a network interface’s packet

rings. Packet rings were first described in Section 8.5 where the network-interface data

structures are discussed. Each network device has one or more pairs of ring structures that point

to memory buffers for receiving or transmitting packets. The rings normally pass packets into

and out of the operating system’s networking protocols. When an application starts using a

network interface via netmap, the rings are mapped to a region of memory that is shared by

both the application and the network interface. Packets that are received on the network

interface continue to be placed by the device’s DMA engine into the receive ring. Packets that

the application wishes to transmit are placed into buffers referenced by the transmit ring.

Proper synchronization between the kernel and userspace is maintained via the system-call

interface with calls to request packet transmission and to be notified of packet reception. Data

structure consistency is maintained because the kernel only manipulates the application’s

buffers while the application is blocked in a system call.

When an application wishes to use the netmap framework, it calls open on a special device,

/dev/netmap. The file descriptor returned by the open call is used for all subsequent

communication with the framework. Applications using netmap associate themselves with a

particular interface by issuing an ioctl call with the NIOCREGIF command, passing in the

textual name of the interface as the last argument to the system call. When an application

registers for access to a network interface, the kernel disconnects the device’s rings from the

networking subsystems and makes them available to the application. Disconnecting the rings

from the networking subsystems has the effect of stopping all traffic into and out of the normal

networking protocols. The netmap framework has one pair of software-based packet rings that

remain connected to the operating system’s network stack and can be used by an application to

pass packets into, and receive packets from, the operating system. An application using netmap

can choose to process some packets but allow others to pass into the kernel’s general networking

framework. Packets pass into the kernel when the application receives packets from one of the

hardware rings and places them into the software rings that are connected to the kernel. The

application allows packets to flow out from the host network stack by taking packets from the

software ring connected to the kernel and transmitting them on one of the hardware rings.

Alternatively, an application can choose to process all the packets itself, thus preventing any

packets from passing into the kernel’s general networking framework. When a netmap

application is using the device, any other program accessing the same network device through

the socket API will no longer be able to receive or transmit packets on the interface, unless the

application using the netmap framework allows packets to flow back into the kernel’s general

network framework.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec5

824

An application using the netmap framework is responsible for updating and tracking the

changes it has made to the receive and transmit rings. Figure 13.26 shows three steps taken

when a netmap receive ring is updated by a userspace program:

1. The userspace program pointers shown after a netmap ring has been set up. The slots in the

ring between the “head” pointer and the “tail” pointer, minus a slot, contain packets received by

the device that have been passed to the userspace program. The userspace program processes

packets and advances the “head” pointer past the slots that it is ready to return to the kernel.

The “cur” pointer may be moved ahead of the “head” pointer if the program wants to wait for

more packets without returning all the previous slots to the kernel.

Figure 13.26 Netmap receive-ring processing. Key: *—slot with undefined contents; h—slot

held by the userspace program; R—packet ready for reception.

2. The program has read one packet from the ring and has updated the “head” and “cur”

pointers. The kernel does not yet know that the userspace program has read any packets, and so

its nr_hwcur pointer has not been updated. The device driver will update the nr_hwavail

counter as packets arrive in the ring.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig26

825

3. The userspace program has called the ioctl system call with the NIOCRXSYNC command to

notify the kernel of its new “head” pointer and to be notified by the kernel of the updated “tail”

pointer position. The NIOCRXSYNC command does not read the packets into the userspace

program but simply synchronizes the locations of the userspace program’s pointers.

Writing packets to the ring is the opposite of reading them. Figure 13.27 shows three steps of a

userspace program transmitting packets:

1. The slots between the “head” pointer and the “tail” pointer, minus one, that are available for

transmission.

2. The program has filled two slots and advanced the “head” and “cur” pointers past the slots

that are ready for transmission. The “cur” pointer may be moved further ahead if the program

needs more slots before further transmissions.

3. The transmit ring following a NIOCTXSYNC command, which both notified the kernel of the

data to send and updated the userspace program’s pointers. The slots up to the “head” pointer,

minus one, have been handed to the device for transmission, and the “tail” pointer has been

advanced because more slots have become available.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13fig27

826

Figure 13.27 Netmap transmit-ring processing. Key: *—slot with undefined contents;

a—available to place a packet; T—packet ready to transmit.

Netmap file descriptors support the same actions available via the ioctl system call using the

select, poll, and kevent system calls. These system calls rely on the polling framework or

interrupts to wake up the threads blocked on the system calls. The interrupt service routine does

not do any data processing. All accesses to the data occur in the context of the userspace

program. The netmap framework is not limited to accessing network interfaces. The same

functions can be used to access ports of the VALE virtual switch and dummynet pipes.

Exercises

13.1 Name two key data structures used in the networking subsystem that are important in

ensuring that the socket-layer software is kept independent of the networking implementation.

13.2 Which routines in the protocol switch are called by the socket layer? Explain why each of

these routines is called.

827

13.3 Assume that a reliably-delivered-message socket (SOCK_RDM) is a connectionless socket

that guarantees reliable delivery of data and that preserves message boundaries. Which flags

would a protocol that supported this type of socket have set in the pr_flags field of its

protocol-switch entry?

13.4 Why is the name or address of a socket kept at the network layer rather than at the socket

layer?

13.5 Why does FreeBSD not attempt to enforce a rigid protocol–protocol interface structure?

13.6 How does IPv4 identify the next-higher-level protocol that should process an incoming

message? How might this dispatching differ in other networking architectures?

13.7 How many hosts can exist in an IPv4 subnet with a mask of 255.255.255.0?

13.8 What is a broadcast message? How are broadcast messages identified in IPv4? How are

IPv6 broadcast messages identified?

13.9 Why does FreeBSD not forward broadcast messages?

13.10 Describe three ways in which IPv6 differs from IPv4.

13.11 In IPv6, what protocol replaces ARP for translating IP addresses to hardware addresses?

13.12 What does the networking code use the network mask, or prefix, of a link to determine?

13.13 What limitation of ARP does neighbor discovery overcome? How does it overcome this

limitation?

13.14 Which routing policies are implemented in the kernel?

13.15 Describe three types of routes that can be found in the routing table that differ by the type

of destination to which they apply.

13.16 What routing facility is designed mainly to support workstations?

13.17 What is a routing redirect? For what is it used?

13.18 Why are there separate protocols for authentication and encryption in IPSec?

13.19 Why is the cryptographic subsystem implemented using two queues and two kernel

threads?

828

13.20 How is the protection offered to packets by IPSec different in tunnel mode and transport

mode?

13.21 Name three different packet filtering systems included in FreeBSD. Which of the three

filtering systems you choose is at the lowest layer of the networking subsystem?

13.22 What effect does the kernel’s tick rate have on the packet-delay jitter in dummynet?

13.23 How are packets passed between nodes in the netgraph system?

13.24 Why are there no locks used between the kernel and userspace in the netmap system?

*13.25 Previous versions of FreeBSD stored ARP entries in the routing table. Give two reasons

why moving the ARP entries to their own table was an improvement over the previous

implementation.

*13.26 Why might a sender set the Don’t Fra gment flag in the header of an IP packet?

*13.27 What are three differences between how pf and ipfw filter packets?

*13.28 Explain why it is impossible to use the raw-socket interface to support parallel-protocol

implementations—some in the kernel and some in user mode. What modifications to the system

would be necessary to support this facility?

*13.29 Previous versions of the system used a hashed routing lookup for a destination as a host

or as a network. Name two ways in which the radix search algorithm in FreeBSD is more

capable.

*13.30 Compare the packet-processing overhead of BPF and netmap. Which is faster for

receiving packets and why?

**13.31 What are the trade-offs between frequent and infrequent transmission of router

advertisements in IPv6?

**13.32 Describe three paths that a packet can take through the networking code. How and

where is each path chosen?

**13.33 Since IPSec may call routines in the network stack recursively, what requirement does

this recursion place on the code?

**13.34 Support for multiple independent network stacks was added with the VIMAGE

subsystem. Without using the linker-set support used in the current implementation, describe

829

two other ways to provide similar support for independent stacks sharing a single kernel code

image. What are the tradeoffs made for each choice?

References

Cain et al., 2002.

B. Cain, S. Deering, I. Kouvelas, B. Fenner, & A. Thyagarajan, “Internet Group Management

Protocol, Version 3,” RFC 3376, available from http://www.faqs.org/rfcs/rfc3376.html, October

2002.

Checconi et al., 2013.

F. Checconi, L. Rizzo, & P. Valente, “QFQ: Efficient Packet Scheduling with Tight Guarantees,”

IEEE/ACM Transactions on Networking, vol. 21, no. 3, June 2013.

Conta et al., 2006.

A. Conta, S. Deering, & M. Gupta, “Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification,” RFC 4443, available from

http://www.faqs.org/rfcs/rfc4443.html, March 2006.

DARPA, 1983.

DARPA, “A History of the ARPANET: The First Decade,” Technical Report, Bolt, Beranek, and

Newman, Cambridge, MA, April 1983.

Deering, 1989.

S. Deering, “Host Extensions for IP Multicasting,” RFC 1112, available from

http://www.faqs.org/rfcs/rfc1112.html, August 1989.

Deering & Hinden, 1998.

S. Deering & R. Hinden, “Internet Protocol, Version 6 (IPv6),” RFC 2460, available from

http://www.faqs.org/rfcs/rfc2460.html, December 1998.

Deering & Hinden, 2006.

S. Deering & R. Hinden, “IP Version 6 Addressing Architecture,” RFC 4291, available from

http://www.faqs.org/rfcs/rfc4291.html, February 2006.

http://www.faqs.org/rfcs/rfc3376.html
http://www.faqs.org/rfcs/rfc4443.html
http://www.faqs.org/rfcs/rfc1112.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc4291.html

830

Fuller et al., 1993.

V. Fuller, T. Li, J. Yu, & K. Varadhan, “Classless Inter-Domain Routing (CIDR): An Address

Assignment and Aggregation Strategy,” RFC 1519, available from

http://www.faqs.org/rfcs/rfc1519.html, September 1993.

Gilligan et al., 1999.

G. Gilligan, S. Thomson, J. Bound, & W. Stevens, “Basic Socket Interface Extensions for IPv6,”

RFC 2553, available from http://www.faqs.org/rfcs/rfc2553.html, March 1999.

Gross & Almquist, 1992.

P. Gross & P. Almquist, “IESG Deliberations on Routing and Addressing,” RFC 1380, available

from http://www.faqs.org/rfcs/rfc1380.html, November 1992.

Harkins & Carrel, 1998.

D. Harkins & D. Carrel, “The Internet Key Exchange (IKE),” RFC 2409, available from

http://www.faqs.org/rfcs/rfc2409.html, November 1998.

Hedrick, 1988.

C. Hedrick, “Routing Information Protocol,” RFC 1058, available from

http://www.faqs.org/rfcs/rfc1058.html, June 1988.

Ishiguro, 2003.

K. Ishiguro, Quagga, available from www.quagga.net, August 2003.

ISO, 1984.

ISO, “Open Systems Interconnection: Basic Reference Model,” ISO 7498, International

Organization for Standardization, available from the American National Standards Institute,

1430 Broadway, New York, NY 10018, 1984.

KAME, 2003.

KAME, Overview of KAME Project, available from

http://www.kame.net/project-overview.html#overview, December 2003.

Kent & Atkinson, 1998a.

http://www.faqs.org/rfcs/rfc1519.html
http://www.faqs.org/rfcs/rfc2553.html
http://www.faqs.org/rfcs/rfc1380.html
http://www.faqs.org/rfcs/rfc2409.html
http://www.faqs.org/rfcs/rfc1058.html
http://www.quagga.net/
http://www.kame.net/project-overview.html#overview

831

S. Kent & R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401, available

from http://www.faqs.org/rfcs/rfc2401.html, November 1998.

Kent & Atkinson, 1998b.

S. Kent & R. Atkinson, “IP Authentication Header,” RFC 2402, available from

http://www.faqs.org/rfcs/rfc2402.html, November 1998.

Kent & Atkinson, 1998c.

S. Kent & R. Atkinson, “IP Encapsulating Security Payload (ESP),” RFC 2406, available from

http://www.faqs.org/rfcs/rfc2406.html, November 1998.

Kohler et al., 2000.

E. Kohler, R. Morris, B. Chen, J. Jannotti, & M. Kaashoek, “The click modular router,” ACM

Transactions on Computer Systems, vol. 18, no. 3, pp. 263–297, May 2000.

McCanne & Jacobson, 1993.

S. McCanne & V. Jacobson, “The BSD packet filter: A new architecture for user-level packet

capture,” Proceedings of the USENIX Winter 1993 Conference, pp. 259–269, January 1993.

McDonald et al., 1998.

D. McDonald, C. Metz, & B. Phan, “PF_KEY Key Management API, Version 2,” RFC 2367,

available from http://www.faqs.org/rfcs/rfc2367.html, July 1998.

McQuillan & Walden, 1977.

J. M. McQuillan & D. C. Walden, “The ARPA Network Design Decisions,” Computer Networks,

vol. 1, no. 5, pp. 243–289, August 1977.

Mogul, 1984.

J. Mogul, “Broadcasting Internet Datagrams,” RFC 919, available from

http://www.faqs.org/rfcs/rfc919.html, October 1984.

Mogul & Deering, 1990.

J. Mogul & S. Deering, “Path MTU Discovery,” RFC 1191, available from

http://www.faqs.org/rfcs/rfc1191.html, November 1990.

http://www.faqs.org/rfcs/rfc2401.html
http://www.faqs.org/rfcs/rfc2402.html
http://www.faqs.org/rfcs/rfc2406.html
http://www.faqs.org/rfcs/rfc2367.html
http://www.faqs.org/rfcs/rfc919.html
http://www.faqs.org/rfcs/rfc1191.html

832

Mogul & Postel, 1985.

J. Mogul & J. Postel, “Internet Standard Subnetting Procedure,” RFC 950, available from

http://www.faqs.org/rfcs/rfc950.html, August 1985.

Narten et al., 2007.

T. Narten, E. Nordmark, W. Simpson, & H. Soliman, “Neighbor Discovery for IP Version 6

(IPv6),” RFC 4861, available from http://www.faqs.org/rfcs/rfc4861.html, September 2007.

Nesser, 1996.

P. Nesser, “An Appeal to the Internet Community to Return Unused IP Networks (Prefixes) to

the IANA,” RFC 1917, available from http://www.faqs.org/rfcs/rfc1917.html, February 1996.

Plummer, 1982.

D. Plummer, “An Ethernet Address Resolution Protocol,” RFC 826, available from

http://www.faqs.org/rfcs/rfc826.html, November 1982.

Postel, 1980.

J. Postel, “User Datagram Protocol,” RFC 768, available from

http://www.faqs.org/rfcs/rfc768.html, August 1980.

Postel, 1981a.

J. Postel, “Internet Protocol,” RFC 791, available from http://www.faqs.org/rfcs/rfc791.html,

September 1981.

Postel, 1981b.

J. Postel, “Internet Control Message Protocol,” RFC 792, available from

http://www.faqs.org/rfcs/rfc792.html, September 1981.

Ritchie, 1984.

D. Ritchie, “A Stream Input-Output System,” AT&T Bell Laboratories Technical Journal, vol. 63,

no. 8-2, pp. 1897–1910, October 1984.

Rizzo, 2012.

http://www.faqs.org/rfcs/rfc950.html
http://www.faqs.org/rfcs/rfc4861.html
http://www.faqs.org/rfcs/rfc1917.html
http://www.faqs.org/rfcs/rfc826.html
http://www.faqs.org/rfcs/rfc768.html
http://www.faqs.org/rfcs/rfc791.html
http://www.faqs.org/rfcs/rfc792.html

833

L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” USENIX Annual Technical

Conference, pp. 101–112, June 2012.

Sakane, 2001.

S. Sakane, Simple Configuration Sample of IPsec/Racoon, available from

http://www.kame.net/newsletter/20001119, September 2001.

Sedgewick, 1990.

R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, MA, 1990.

Simpson, 1995.

W. Simpson, “IP in IP Tunneling,” RFC 1853, available from

http://www.faqs.org/rfcs/rfc1853.html, October 1995.

Sklower, 1991.

K. Sklower, “A Tree-Based Packet Routing Table for Berkeley UNIX,” USENIX Association

Conference Proceedings, pp. 93–99, January 1991.

Thaler & Hopps, 2000.

D. Thaler & C. Hopps, “Multipath Issues in Unicast and Multicast Next-Hop Selection,” RFC

2991, available from http://www.faqs.org/rfcs/rfc2991.html, November 2000.

Thomson & Huitema, 1995.

S. Thomson & C. Huitema, “DNS Extensions to Support IP Version 6,” RFC 1886, available from

http://www.faqs.org/rfcs/rfc1886.html, December 1995.

http://www.kame.net/newsletter/20001119
http://www.faqs.org/rfcs/rfc1853.html
http://www.faqs.org/rfcs/rfc2991.html
http://www.faqs.org/rfcs/rfc1886.html

834

Chapter 14. Transport-Layer Protocols

Chapter 13 covers network-layer protocols that are responsible for moving individual datagrams

across the Internet. This chapter moves up a layer in the network stack to discuss protocols that

handle end-to-end data movement. Unlike the network-layer protocols, IPv4 and IPv6,

transport-layer protocols have no knowledge of intermediate systems such as routers. They only

have knowledge of endpoints within the network, the senders and receivers of data.

The protocols at the network layer present data to applications as either individual messages or

streams of bytes. The UDP protocol handles data in discrete messages. The TCP protocol

handles data as streams of bytes. The SCTP protocol handles multiple streams of both data and

discrete messages.

14.1 Internet Ports and Associations

At the network layer, packets are addressed to a host rather than to a process or

communications port. As each packet arrives, its 8-bit protocol number identifies the

transport-layer protocol that should receive it. Thus, packets identified as IPv4 are passed to

ip_input(), while packets identified as IPv6 are passed to ip6_input().

Internet transport protocols use an additional identifier to designate the connection or

communications port on the host. Most protocols (including SCTP, TCP, and UDP) use a 16-bit

port number. Each transport protocol maintains its own mapping of port numbers to processes

or descriptors. Thus, an association, such as a connection, is fully specified by its transport

protocol and 4-tuple <source address, destination address, source port, destination port>.

When the local part of the address is set before the remote part, it is necessary to choose a

unique port number to prevent collisions when the remote part is specified. For example, two

applications on the same host might create a connection to the same service on a remote host,

such as a Web server. The port number used to contact the remote system is the well-known

web-port 80. For packets traveling from the server back to the applications to correctly reach

the right socket, they must have an unambiguous port number at the originating host. When a

connection is opened, FreeBSD picks an unused source port that is used for the duration of the

connection, which ensures that the 4-tuple of all connections is unique.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#ch13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_13

835

Protocol Control Blocks

For each TCP- or UDP-based socket, a protocol control block (PCB) stored in an inpcb structure

is created to hold network addresses, port numbers, routing information, and pointers to any

auxiliary data structures. TCP creates a TCP control block stored in a tcpcb structure to hold the

wealth of protocol state information necessary for its implementation. Internet control blocks

for use with TCP are maintained in a hash table of doubly linked lists private to the TCP protocol

module. Figure 14.1 shows the linkage between the socket data structure and these

protocol-specific data structures.

Figure 14.1 Internet-protocol data structures.

Internet control blocks for use with UDP are kept in a similar table private to the UDP protocol

module. Two separate tables are needed because each protocol in the Internet domain has a

distinct space of port identifiers. Common routines are used by the individual protocols to add

new control blocks to a table, record the local and remote parts of an association, locate a

control block by association, and delete control blocks. IP demultiplexes message traffic based

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig01

836

on the protocol identifier specified in the protocol header, and each higher-level protocol is then

responsible for checking its table of control blocks to direct a message to the appropriate socket.

14.2 User Datagram Protocol (UDP)

The user datagram protocol (UDP) [Postel, 1980] is a simple, unreliable datagram protocol

that provides both peer-to-peer and multicast addressing with optional data checksums. In

FreeBSD, checksums are enabled or disabled on a systemwide basis and cannot be enabled or

disabled on individual sockets. UDP protocol headers are extremely simple, containing only the

source and destination port numbers, the datagram length, and the data checksum. The host

addresses for a datagram are provided by the IP header.

Initialization

When a new datagram socket is created, the socket layer locates the protocol-switch entry for

UDP and calls the udp_attach() routine with the socket as a parameter. UDP uses in_pcballoc()

to create a new protocol control block in its table of current sockets. It also sets the default limits

for the socket send and receive buffers. Although datagrams are never placed in the send buffer,

the limit is set as an upper limit on datagram size; the UDP protocol-switch entry contains the

flag PR_ATOMIC, requiring that all data in a send operation be presented to the protocol at one

time.

If the application program wishes to bind a port number—for example, the well-known port for

some datagram service—it calls the bind system call. This request reaches UDP as a call to the

udp_bind() routine. The binding may also specify a specific host address, which must be an

address of an interface on this host. Otherwise, the address will be left unspecified, matching

any local address on input, and with an address chosen as appropriate on each output operation.

The binding is done by in_pcbbind(), which verifies that the chosen port number (or address

and port) is not in use and then records the local part of the association in the socket’s

associated PCB.

To send datagrams, the system must know the remote part of an association. A program can

specify this address and port with each send operation using sendto or sendmsg, or it can do the

specification ahead of time with the connect system call. In either case, UDP uses the

in_pcbconnect() function to record the destination address and port. If the local address was

not bound, and if a route for the destination is found, the address of the outgoing interface is

used as the local address. If no local port number was bound, one is chosen at the time of the

send.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref18

837

Output

A system call that sends data reaches UDP as a call to the udp_send() routine, which takes a

chain of mbufs containing the data for the datagram. If the call provided a destination address,

the address is passed as well; otherwise, the address from a prior connect call is used. The actual

output operation is done by udp_output():

static int udp_output(

 struct inpcb *inp,

 struct mbuf *msg,

 struct mbuf *addr,

 struct mbuf *control,

 struct thread *td);

In this interface, inp is an IPv4 protocol control block, msg is a chain of mbufs that contain the

data to be sent, and addr is an optional mbuf containing the destination address. The

destination address could have been prespecified with a connect call; otherwise, it must be

provided in the send call. The control argument is meant to contain ancillary data that can be

passed to the protocol. The only allowable ancillary data for a UDP packet is a network-layer

source address, which udp_output() passes to the lower layer as a sockaddr_in structure. The td

argument is a pointer to a thread structure. Thread structures are discussed in Section 4.2 and

are used within the network stack to identify the sender of a packet. UDP simply prepends its

own header, fills in the UDP header fields and those of a prototype IP header, and calculates a

checksum before passing the packet on to the IP module for output.

Input

All transport protocols that are layered directly on top of network-layer protocols such as IPv4

and IPv6 use the following calling convention when receiving packets from either protocol:

(void) (*pr_input)(

 struct mbuf *m,

 int off);

Each mbuf chain passed is a single complete packet to be processed by the protocol module. The

packet includes the IP header at the front of the packet. The off parameter identifies offset at

which the UDP packet begins, which is the length of the IP header. The UDP input routine

udp_input() is typical of protocol input routines in that it first verifies that the length of the

packet is at least as long as the IP plus UDP headers, and it uses m_pullup() to make the header

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec2

838

contiguous. The udp_input() routine then checks that the packet is the correct length and

calculates a checksum for the data in the packet. If any of these tests fail, the packet is discarded

and the UDP error count is incremented. Finally, the protocol control block for the socket that is

to receive the data is located by in_pcblookup() using the addresses and port numbers in the

packet. There might be multiple control blocks with the same local port number but different

local or remote addresses; if so, the control block with the best match is selected. An exact

association matches best, but if none exists, a socket with the correct local port number but

unspecified local address, remote port number, or remote address will match. A control block

with unspecified local or remote addresses thus acts as a wildcard that receives packets for its

port if no exact match is found. If a control block is located, the data and the address from which

the packet was received are placed in the receive buffer of the indicated socket with

udp_append(). If the destination address is a multicast address, copies of the packet are

delivered to each socket with a matching address. If no receiver is found and if the packet was

not addressed to a broadcast or multicast address, an ICMP port unreachable error message is

sent to the originator of the datagram. The port unreachable error message normally has no

effect, as the sender typically connects to this destination only temporarily, and the kernel

destroys the association before new input is processed. However, if the sender still has a fully

specified association, it may receive notification of the error.

Control Operations

UDP supports no control operations and passes calls to its pr_ctloutput() entry directly to IP. It

has a simple pr_ctlinput() routine that receives notification of any asynchronous errors. Errors

are passed to any datagram socket with the indicated destination; only sockets with a

destination fixed by a connect call may be notified of errors asynchronously. Such errors are

simply noted in the appropriate socket, and socket wakeups are issued if the process is selecting

or sleeping while waiting for input.

When a UDP datagram socket is closed, the udp_detach() routine is called. The protocol control

block and its contents are simply deleted with in_pcbdetach(); no other processing is required.

14.3 Transmission Control Protocol (TCP)

The most used protocol of the Internet protocol suite is the Transmission Control Protocol

(TCP) [Cerf & Kahn, 1974; Postel, 1981]. TCP is a reliable connection-oriented stream-transport

protocol on top of which many application protocols are layered. It includes several features not

found in the other transport and network protocols described so far:

• Explicit and acknowledged connection initiation and termination

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref19

839

• Reliable, in-order, unduplicated delivery of data

• Flow control

• Out-of-band indication of urgent data

• Congestion avoidance and control

These features result in the TCP implementation being significantly more complicated than

those for UDP and IP. These complications, along with the prevalence of the use of TCP, make

the details of TCP’s implementation more critical and more complex than the implementations

of the simpler protocols.

A TCP connection is a bidirectional, sequenced stream of data transferred between two peers.

The data may be transported in packets of varying sizes and at varying intervals—for example,

when they support a login session over the network. The stream initiation and termination are

explicit events at the start and end of the stream, and they occupy positions in the sequence

space of the stream so that they can be acknowledged in the same way as data are. Sequence

numbers are 32-bit numbers from a circular space; that is, comparisons are made modulo 232,

so zero is the next sequence number after 232 - 1. The sequence numbers for each direction start

with an arbitrary value, called the initial sequence number, sent in the initial packet for a

connection. Following Bellovin [1996], the TCP implementation selects the initial sequence

number by computing a function over the 4-tuple local port, foreign port, local address, and

foreign address that uniquely identifies the connection, and then adding a small offset based on

the current time. The Bellovin algorithm prevents the spoofing of TCP connections by an

attacker guessing the next initial sequence number for a connection, and the algorithm must be

carried out while also guaranteeing that an old duplicate packet will not match the sequence

space of a current connection.

Each packet of a TCP connection carries the sequence number of its first byte and (except during

connection establishment) an acknowledgment of all contiguous data received thus far. A TCP

packet is known as a segment because it begins at a specific location in the sequence space and

has a specific length. Acknowledgments are specified as the sequence number of the next byte

not yet received. Acknowledgments are cumulative and thus may acknowledge data received in

more than one (or part of one) segment. A packet may or may not contain data, but it always

contains the sequence number of the next datum to be sent.

Flow control in TCP is done with a sliding-window scheme. Each packet with an

acknowledgment contains a window advertisement, which is the number of bytes of data that

the receiver is prepared to accept, beginning with the sequence number in the acknowledgment.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_390

840

The window is a 16-bit field, limiting the window to 64 Kbyte by default; however, the use of a

larger window may be negotiated. Urgent data are handled similarly; if the flag indicating

urgent data is set, the urgent-data pointer is used as a positive offset from the sequence number

of the packet to indicate the extent of urgent data. Thus, TCP can send notification of urgent

data without sending all intervening data, even if the flow-control window would not allow the

intervening data to be sent.

The complete header for a TCP packet is shown in Figure 14.2. The flags include SYN and FIN,

denoting the initiation (synchronization) and completion of a connection. Each of these flags

occupies a sequence space of one. A complete connection thus consists of a SYN, zero or more

bytes of data, and a FIN sent from each peer and acknowledged by the other peer. Additional

flags indicate whether the acknowledgment field (ACK) and urgent fields (URG) are valid, a flag

to request that data be pushed (flushed) to the user (PSH), and include a connection-abort

signal (RST). Options are encoded in the same way as are IP options, either as a single byte or as

a type, length, and value. Only the no-operation and end-of-options options are single bytes. The

initial specification of TCP defined only one other option, which allows hosts to exchange the

maximum segment (packet) size that they are willing to accept and is used only during initial

connection establishment. Several other options have been defined and, to avoid confusion, the

protocol standard allows these options to be used in data packets only if both endpoints include

them during establishment of the connection.

Figure 14.2 TCP packet header.

TCP Connection States

The connection-establishment and connection-completion mechanisms of TCP are designed for

robustness. They serve to frame the data that are transferred during a connection so that not

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig02

841

only the data but also their extent are communicated reliably. In addition, the procedure is

designed to discover old connections that have not terminated correctly because of a crash of

one peer or loss of network connectivity. If such a half-open connection is discovered, it is

aborted. Hosts choose new initial sequence numbers for each connection to lessen the chances

that an old packet may be confused with a current connection.

The normal connection-establishment procedure is known as a three-way handshake. Each

peer sends a SYN to the other, and each in turn acknowledges the other’s SYN with an ACK. In

practice, a connection is normally initiated by a client attempting to connect to a server listening

on a well-known port. The client chooses a port number and initial sequence number, and uses

these selections in the initial packet with a SYN. The server creates a SYN cache entry for the

pending connection and sends a packet with its initial sequence number, a SYN, and an ACK of

the client’s SYN. The client responds with an ACK of the server’s SYN, completing connection

establishment. As the ACK of the first SYN is piggybacked on the second SYN, this procedure

requires three packets, leading to the term three-way handshake. The protocol still operates

correctly if both peers attempt to start a connection simultaneously, although the connection

setup would then require four packets.

FreeBSD includes up to four options along with the SYN when initiating a connection. One

contains the maximum segment size that the system is willing to accept [Jacobson et al., 1992].

The second of these options specifies a window-scaling value expressed as a binary shift value,

allowing the window to exceed 65535 bytes. If both peers include this option during the

three-way handshake, both scaling values take effect; otherwise, the window value remains in

bytes. The third option is a timestamp. If this option is sent in both directions during connection

establishment, it will also be sent in each packet during data transfer. The data field of the

timestamp option includes a timestamp associated with the current sequence number and also

echoes a timestamp associated with the current acknowledgment. Like the sequence space, the

timestamp uses a 32-bit field and modular arithmetic. The unit of the timestamp field is not

defined by the standard, although it must fall between 1 millisecond and 1 second. The value

sent by each system must increase monotonically during a connection. FreeBSD always uses a

value measured in milliseconds. These timestamps implement round-trip timing. They also

serve as an extension of the sequence space to prevent old duplicate packets from being

accepted; this extension is valuable when a large window or a fast path, such as an Ethernet, is

used. The fourth option indicates support for selective acknowledgments, which allow a receiver

to tell a sender if more than one packet has been lost in transit [Mathis et al., 1996].

After a connection is established, each peer includes an acknowledgment and window

information in each packet. Each may send data according to the window that it receives from

its peer. As data are sent by one end, the window becomes filled. As data are received by the peer,

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref15

842

acknowledgments may be sent so that the sender can discard the data from its send queue. If the

receiver is prepared to accept additional data, perhaps because the receiving process has

consumed the previous data, it will also advance the flow-control window. Data,

acknowledgments, and window updates may all be combined in a single message.

If a sender does not receive an acknowledgment within some reasonable time, it retransmits

data that it presumes were lost. Duplicate data are discarded by the receiver but are

acknowledged again if the retransmission was caused by loss of the acknowledgment. If the data

are received out of order, the receiver generally retains the out-of-order data for use when the

missing segment is received. Outof-order data cannot be acknowledged because

acknowledgments are cumulative.

Each peer may terminate data transmission at any time by sending a packet with the FIN bit. A

FIN represents the end of the data (like an end-of-file indication). The FIN is acknowledged,

advancing the sequence number by 1. The connection may continue to carry data in the other

direction until a FIN is sent in that direction. The acknowledgment of the FIN terminates the

connection. To guarantee synchronization at the conclusion of the connection, the peer sending

the last ACK of a FIN must retain state long enough that any retransmitted FIN packets will

have reached it or have been discarded; otherwise, if the ACK were lost and a retransmitted FIN

were received, the receiver would be unable to repeat the acknowledgment. The interval is

arbitrarily set to twice the expected maximum segment lifetime, and is known as 2MSL.

The default value for the maximum segment lifetime is 30 seconds, meaning that FreeBSD

expects packets to exit the network after 1 minute.

The TCP input-processing module and timer modules must maintain the state of a connection

throughout that connection’s lifetime, meaning that in addition to processing data received on

the connection, the input module must process SYN and FIN flags, as well as other state

transitions. The list of states for one end of a TCP connection is given in Table 14.1. Figure 14.3

shows the finite-state machine made up by these states, the events that cause transitions, and

the actions during the transitions.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig03

843

Table 14.1 TCP connection states. 2MSL—twice maximum segment lifetime.

844

Figure 14.3 TCP state diagram. Key: TCB—TCP control block; 2MSL—twice maximum

segment lifetime.

If a connection is lost because of a crash or timeout on one host, but is still considered

established by the other, then any data received by the host that still believes the connection to

be active will cause the half-open connection to be discovered. When a half-open connection is

detected, the receiving peer sends a packet with the RST flag and a sequence number derived

from the incoming packet to signify that the connection is no longer in existence.

Sequence Variables

Each TCP connection maintains a large set of variables in the TCP control block. The

information stored in the control block includes the connection state, timers, options and flags,

a queue that holds data received out of order, and several sequence-number variables. The

sequence-variables define the send and receive sequence space, including the current window

for each. The window is the range of data sequence numbers that are currently allowed to be

845

sent, from the first byte of data not yet acknowledged, up to the end of the range that has been

offered in the window advertisement. The variables defining the windows in FreeBSD are a

superset of those used in the protocol specification [Postel, 1981]. The send and receive windows

are shown in Figure 14.4. The meanings of the sequence variables are listed in Table 14.2.

Table 14.2 TCP sequence variables.

Figure 14.4 TCP sequence space.

The area between snd_una and snd_una + snd_wnd is known as the send window. Data for

the range snd_una to snd_max have been sent but not yet acknowledged and are kept in the

socket send buffer along with data not yet transmitted. The snd_nxt field indicates the next

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_367

846

sequence number to be sent and is incremented as data are transmitted. The area from snd_nxt

to snd_una + snd_wnd is the remaining usable portion of the window, and its size determines

whether additional data may be sent. The snd_nxt and snd_max values are normally

maintained together except when TCP is retransmitting. The area between rcv_nxt and rcv_nxt

+ rcv_wnd is known as the receive window. Whenever TCP updates the size of the receive

window, it stores the new advertised window in the rcv_adv variable.

These variables are used in the output module to decide whether data can be sent, and in the

input module to decide whether data that are received can be accepted. When the receiver

detects that a packet is not acceptable because the data are all to the left of the window, it drops

the packet but sends a copy of its most recent acknowledgment. If the packet contained old data,

the first acknowledgment may have been lost, and thus it must be repeated. The

acknowledgment also includes a window update, synchronizing the sender’s state with the

receiver’s state. As data are acknowledged by the receiver, the values contained in all the

variables increase, moving to the right in Figure 14.4.

If the TCP timestamp option is in use for the connection, the tests to see whether an incoming

packet is acceptable are augmented with checks on the timestamp. Each time that an incoming

packet is accepted as the next expected packet, its timestamp is recorded in the ts_recent field in

the TCP protocol control block. If an incoming packet includes a timestamp, the timestamp is

compared to the most recently received timestamp. If the timestamp is less than the previous

value, the packet is discarded as being an old duplicate and a current acknowledgment is sent in

response. Here, the timestamp serves as an extension to the sequence number, avoiding

accidental acceptance of an old duplicate when the window is large or sequence numbers can be

reused quickly. However, because of the granularity of the timestamp value, a timestamp

received more than 24 days ago cannot be compared to a new value, and this test is bypassed.

The current time is recorded when ts_recent is updated from an incoming timestamp to make

this test. Of course, connections are seldom idle for longer than 24 days.

14.4 TCP Algorithms

This section examines the implementation of the TCP protocol in FreeBSD. Several aspects of

the protocol implementation depend on the overall state of a connection. The state of a TCP

connection depends on external events and timers. TCP processing occurs in response to one of

three events:

1. A request from the user, such as sending data, removing data from the socket receive buffer,

or opening or closing a connection

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig04

847

2. The receipt of a packet for the connection

3. The expiration of a timer

These events are handled in the routines tcp_usr_send(), tcp_input(), and a set of timer

routines. Each routine processes the current event and makes any required changes in the

connection state. Then, for any transition that may require sending a packet, the tcp_output()

routine is called to do any output that is necessary.

The criteria for sending a packet with data or control information are complicated, making TCP

send policy the most interesting and important part of the protocol implementation. For

example, depending on the state- and flow-control parameters for a connection, any of the

following may allow data to be sent that could not be sent previously:

• A user send call that places new data in the send queue

• The receipt of a window update from the peer

• The expiration of the retransmission timer

• The expiration of the window-update (persist) timer

In addition, the tcp_output() routine may decide to send a packet with control information,

even if no data may be sent, for any of these reasons:

• A change in connection state (e.g., open request, close request)

• Receipt of data that must be acknowledged

• A change in the receive window because of removal of data from the receive queue

• A send request with urgent data

• A connection abort

The remainder of this section expands and explains these points.

Timers

Unlike a UDP socket, a TCP connection maintains significant state information and, because of

that state, some operations must be done asynchronously. For example, data might not be sent

immediately when a process presents them because of flow control. The requirement for reliable

848

delivery implies that data must be retained after they are first transmitted so that they can be

retransmitted if necessary. To prevent the protocol from hanging if packets are lost, each

connection maintains a set of timers used to recover from losses or failures of the peer. These

timers are stored in the protocol control block for a connection. The kernel provides a timer

service via a set of callout() routines. The TCP module can register up to five timeout routines

with the callout service, as shown in Table 14.3. Each routine has its own associated time at

which it will be called. In earlier versions of BSD, timeouts were handled by the tcp_slowtimo()

routine that was called every 500 milliseconds and would then perform timer processing when

necessary. Using the kernel’s timer service directly is more accurate since each timer can be

handled independently at the interval that works best for that timer.

Table 14.3 TCP timer routines.

Two timers are used for output processing. Whenever data are sent on a connection, the

retransmit timer (tcp_rexmt()) is started by a call to callout_reset(), unless it is already

running. When all outstanding data are acknowledged, the timer is stopped. If the timer expires,

the oldest unacknowledged data are resent (at most, one full-size packet), and the timer is

restarted with a longer value. The rate at which the timer value is increased (the timer backoff)

is determined by a table of multipliers that provides an exponential increase in timeout values

up to a ceiling of 64 seconds.

The other timer used for maintaining output flow is the persist timer (tcp_timer_persist()).

This timer protects against the other type of packet loss that could cause a connection to

constipate: the loss of a window update that would allow more data to be sent. Whenever data

are ready to be sent but the send window is too small to bother sending (zero, or less than a

reasonable amount), and no data are already outstanding (the retransmit timer is not set), the

persist timer is started. If no window update is received before the timer expires, the routine

sends as large a segment as the window allows. If that size is zero, it sends a window probe (a

single byte of data) and restarts the persist timer. If a window update was lost in the network, or

if the receiver neglected to send a window update, the acknowledgment will contain current

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_490

849

window information. On the other hand, if the receiver is still unable to accept additional data, it

should send an acknowledgment for previous data with a still-closed window. The closed

window might persist indefinitely; for example, the receiver might be a network-login client, and

the user might stop terminal output and leave for lunch (or vacation).

The third timer used by TCP is a keepalive timer (tcp_timer_keep()) The keepalive timer has

two different purposes at different phases of a connection. During connection establishment,

this timer limits the time for the three-way handshake to complete. If the timer expires during

connection setup, then the connection is closed. Once the connection completes, the keepalive

timer monitors idle connections that might no longer exist on the peer because of a network

partition or a crash. If a socket-level option, SO_KEEPALIVE, is set and the connection has

been idle since the most recent keepalive timeout, the timer routine will send a keepalive

packet designed to produce either an acknowledgment or a reset (RST) from the peer TCP. If a

reset is received, the connection will be closed; if no response is received after several attempts,

the connection will be dropped. This facility is designed so that network servers can avoid

languishing forever if the client disappears without closing the connection. Keepalive packets

are not an explicit feature of the TCP protocol. The packets used for this purpose by FreeBSD set

the sequence number to 1 less than snd_una, which should elicit an acknowledgment from the

peer if the connection still exists.

The fourth TCP timer is known as the 2MSL timer (“twice the maximum segment lifetime”).

TCP starts this timer when a connection is completed by sending an acknowledgment for a FIN

(from FIN_WAIT_2) or by receiving an ACK for a FIN (from CLOSING state, where the send

side is already closed). Under these circumstances, the sender does not know whether the

acknowledgment was received. If the FIN is retransmitted, it is desirable that enough state

remain that the acknowledgment can be repeated. Therefore, when a TCP connection enters the

TIME_WAIT state, the 2MSL timer is started; when the timer expires, the control block is

deleted. If a retransmitted FIN is received, another ACK is sent and the timer is restarted. To

prevent this delay from blocking a process closing the connection, any process close request is

returned successfully without the process waiting for the timer. Thus, a protocol control block

may continue its existence even after the socket descriptor has been closed. In addition,

FreeBSD starts the 2MSL timer when FIN_WAIT_2 state is entered after the user has closed; if

the connection is idle until the timer expires, it will be closed. Because the user has already

closed, new data cannot be accepted on such a connection in any case. This timer is set because

certain other TCP implementations (incorrectly) fail to send a FIN on a receive-only connection.

Connections to such hosts would remain in FIN_WAIT_2 state forever if the system did not

have a timeout. The final timer is the tcp_timer_delack(), which processes delayed

acknowledgments and is described in Section 14.6.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_465
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec6

850

Estimation of Round-Trip Time

When connections must traverse slow networks that lose packets, an important decision

determining connection throughput is the value used to set the retransmission timer. If this

value is too large, data flow will stop on the connection for an unnecessarily long time before the

dropped packet is resent. Another round-trip interval is required for the sender to receive an

acknowledgment of the resent segment and a window update, allowing it to send new data.

(With luck, only one segment will have been lost, and the acknowledgment will include the other

segments that had been sent.) If the timeout value is too small, however, packets will be

retransmitted needlessly. If the cause of the network slowness or packet loss is congestion, then

unnecessary retransmission only exacerbates the problem. The traditional solution to this

problem in TCP is for the sender to estimate the round-trip time (rtt) for the connection path by

measuring the time required to receive acknowledgments for individual segments. The system

maintains an estimate of the round-trip time as a smoothed moving average, srtt [Postel, 1981],

using

srtt = (α × srtt) + ((1 - α) × rtt).

In addition to a smoothed estimate of the round-trip time, TCP keeps a smoothed variance

(estimated as mean difference, to avoid square-root calculations in the kernel). It employs an α

value of 0.875 for the round-trip time and a corresponding smoothing factor of 0.75 for the

variance. These values were chosen in part so that the system could compute the smoothed

averages using shift operations on fixed-point values instead of floating-point values because on

many hardware architectures it is expensive to use floating-point arithmetic. The initial

retransmission timeout is then set to the current smoothed round-trip time plus four times the

smoothed variance. This algorithm is substantially more efficient on long-delay paths with little

variance in delay, such as transoceanic links, because it computes the BETA factor dynamically

[Jacobson, 1988].

For simplicity, the variables in the TCP protocol control block allow measurement of the

round-trip time for only one sequence value at a time. This restriction prevents accurate time

estimation when the window is large; only one packet per window can be timed. However, if the

TCP timestamp option is supported by both peers, a timestamp is sent with each data packet

and is returned with each acknowledgment. Here, estimates of round-trip time can be obtained

with each new acknowledgment; the quality of the smoothed average and variance is thus

improved, and the system can respond more quickly to changes in network conditions.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11

851

Connection Establishment

There are two ways in which a new TCP connection can be established. An active connection is

initiated by a connect call, whereas a passive connection is created when a listening socket

receives a connection request.

When a process creates a new TCP socket, the tcp_attach() routine is called. TCP creates an

inpcb protocol control block and then creates an additional control block (a tcpcb structure), as

shown in Figure 14.1. Some of the flow-control parameters in the tcpcb are initialized at this

time. If the process explicitly binds an address or port number to the connection, the actions are

identical to those for a UDP socket. Then, a tcp_connect() call initiates the actual connection.

The first step is to set up the association with in_pcbconnect(), again identically to this step in

UDP. A packet-header template is created for use in construction of each output packet. An

initial sequence number is chosen using an MD5 hashing algorithm and is then advanced by a

substantial amount. The purpose of the hash is to make it hard for an attacker to guess the

sequence space of a connection. If parties external to the connection can guess sequence

numbers, then they can disrupt communication between the two peers using the connection, for

example, by injecting a packet into the data stream. The socket is then marked as

soisconnecting(), the TCP connection state is set to TCPS_SYN_SENT, the keepalive timer is set

(to 75 seconds) to limit the duration of the connection attempt, and tcp_output() is called for

the first time.

The output-processing routine tcp_output() uses an array of packet control flags indexed by the

connection state to determine which control flags should be sent in each state. In the

TCPS_SYN_SENT state, the SYN flag is sent. Because it has a control flag to send, the system

immediately sends a packet using the prototype just constructed and includes the current

flow-control parameters. The packet normally contains three option fields: a

maximum-segment-size option, a window-scale option, and a timestamps option (see Section

14.3). The maximum-segmentsize option communicates the largest segment size that TCP is

willing to accept. To compute this value, the system locates a route to the destination. If the

route specifies a maximum transmission unit (MTU), the system uses that value after allowing

for packet headers. If the connection is to a destination on a local network, the maximum

transmission unit of the outgoing network interface is used, possibly rounding down to a

multiple of the mbuf cluster size for efficiency of buffering. If the destination is not local and

nothing is known about the intervening path, the default segment size (512 bytes) is used.

In earlier versions of FreeBSD, many of the important variables relating to TCP connections,

such as the MTU of the path between the two endpoints, and the data used to manage the

connection were contained in a set of route metrics within the route entry that described the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec3

852

connection. The TCP host cache was developed to centralize all this information in one

easy-to-find place so that information gathered on one connection could be reused when a new

connection was opened to the same endpoint. The data that is recorded on a connection is

shown in Table 14.4. All the variables stored in a host cache entry are described in various parts

of later sections of this chapter when they are relevant to the discussion of how TCP manages a

connection. Notably missing from the host cache is a route-cache entry. Earlier versions of

FreeBSD cached the route used for the connection. The caching of routing and forwarding

information is currently in the process of being moved into the inpcb structure using the inp_rt

and inp_lle fields, but code to exploit these fields is not written in FreeBSD 10. Hence, the route

is not currently cached so every packet sent requires a routing-table lookup.

Table 14.4 TCP host-cache metrics.

Whenever a new connection is opened, a call is made to tcp_hc_get() to find any information on

past connections. If an entry exists in the cache for the target endpoint, TCP uses the cached

information to make better-informed decisions about managing the connection. When a

connection is closed, the host cache is updated with all the relevant information that was

discovered during the connection between the two hosts. Each host-cache entry has a default

lifetime of 1 hour. Anytime that the entry is accessed or updated, its lifetime is reset to 1 hour.

Every 5 minutes, the tcp_hc_purge() routine is called to clean out any entries that have passed

their expiration time. Cleaning out old entries ensures that the host cache does not grow too

large and that it always has reasonably fresh data.

TCP uses path MTU discovery, a process whereby the system probes the network to

determine the maximum transfer unit on a particular route between two nodes [Mogul &

Deering, 1990]. The discovery is done by sending packets with the IP flag don’t fragment set on

each packet. If the packet encounters a link on the path to its destination on which it would have

to be fragmented, then it is dropped by the intervening router and an error is returned to the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_265
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref16

853

sender. The error message contains the maximum-size packet that the link will accept. This

information is recorded in the TCP host cache for the appropriate endpoint and transmission is

attempted with the smaller MTU. Once the connection is complete, because enough packets

have made it through the network to establish a TCP connection, the revised MTU recorded in

the host cache is confirmed. Packets will continue to be transmitted with the don’t fragment flag

set so that if the path to the node changes, and that path has an even smaller MTU, this new

smaller MTU will be recorded. FreeBSD currently has no way of upgrading the MTU to a larger

size when a route changes.

When a connection is first opened, the retransmit timer is set to the default value (3 seconds)

because no round-trip time information is available yet. With a bit of luck, a responding packet

will be received from the target of the connection before the retransmit timer expires. If not, the

packet is retransmitted and the retransmit timer is restarted with a greater value. If no response

is received before the keepalive timer expires, the connection attempt is aborted with a

“Connection timed out” error. If a response is received, however, it is checked for agreement

with the outgoing request. It should acknowledge the SYN that was sent and should include a

SYN. If it does both, the receive sequence variables are initialized and the connection state is

advanced to TCPS_ESTABLISHED. If a maximum-segment-size option is present in the

response, the maximum segment size for the connection is set to the minimum of the offered

size and the maximum transmission unit of the outgoing interface; if the option is not present,

the default size (512 data bytes) is recorded. The flag TF_ACKNOW is set in the TCP control

block before the output routine is called so that the SYN will be acknowledged immediately. The

connection is now ready to transfer data.

The events that occur when a connection is created by a passive open are different from those of

an active open. A socket is created and its address is bound as before. The socket is then marked

by the listen call as willing to accept connections. When a packet arrives for a TCP socket in

TCPS_LISTEN state, a new socket is created with sonewconn(), which calls the tcp_usr_attach()

routine to create the protocol control blocks for the new socket. The new socket is placed on the

queue of partial connections headed by the listening socket. If the packet contains a SYN and is

otherwise acceptable, the association of the new socket is bound, both the send and the receive

sequence numbers are initialized, and the connection state is advanced to

TCPS_SYN_RECEIVED. The keepalive timer is set as before, and the output routine is called

after TF_ACKNOW has been set to force the SYN to be acknowledged; an outgoing SYN is sent

as well. If this SYN is acknowledged properly, the new socket is moved from the queue of partial

connections to the queue of completed connections. If the owner of the listening socket is

sleeping in an accept call or does a select, the socket will indicate that a new connection is

available. Again, the socket is finally ready to send data. Up to one window of data may have

already been received and acknowledged by the time that the accept call completes.

854

SYN Cache

One problem in previous implementations of TCP was that it was possible for a malicious

program to flood a system with SYN packets, thereby preventing it from doing any useful work

or servicing any real connections. This type of denial-of-service attack became common

during the commercialization of the Internet in the late 1990s. To combat this attack, a

syn-cache was introduced to efficiently store, and possibly discard, SYN packets that do not lead

to real connections. The syn-cache handles the three-way handshake between a local server and

connecting peers.

When a SYN packet is received for a socket that is in the LISTEN state, the TCP module

attempts to add a new syn-cache entry for the packet using the syncache_add() routine. If there

are any data in the received packet, they are not acknowledged at this time. Acknowledging the

data would use up system resources, and an attacker could exhaust these resources by flooding

the system with SYN packets that included data. If this SYN has not been seen before, a new

entry is created in the hash table based on the packet’s foreign address, foreign port, the local

port of the socket, and a mask. The syn-cache module responds to the SYN with a SYN/ACK and

sets a timer on the new entry. If the syn-cache contains an entry that matches the received

packet, then it is assumed that the original SYN/ACK was not received by the peer initiating the

connection, and another SYN/ACK is sent and the timer on the syn-cache entry is reset. There is

no limit set on the number of SYN packets that can be sent by a connecting peer. Any limit

would not follow the TCP RFCs and might impede connections over lossy networks.

SYN Cookies

SYN cache was designed to reduce the amount of kernel resources required to handle potential

incoming connections by keeping a minimum amount of state for each nascent connection. The

goal of SYN cookies is for the kernel not to keep any state for a connection until the three-way

handshake has been completed. A SYN cookie is a cryptographically signed piece of data placed

into a SYN/ACK packet sent as the second packet in the standard three-way handshake. The

data encoded into the SYN cookie will allow a server to complete the setup of a TCP connection

on receipt of the final ACK from the remote system. In FreeBSD, SYN cookies are generated for

every received SYN packet as a way of protecting against the SYN cache overflowing. They only

need to be used when the rate of incoming requests overflows the SYN cache.

Two routines, syncookie_generate() and syncookie_lookup(), are used by the kernel to generate

and validate SYN cookies. When the kernel receives a SYN packet from a remote host, indicating

that the remote host wishes to initiate a connection, the syncookie_generate() routine computes

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_81

855

an MD5 hash that includes a secret, an index into a table of possible maximum segment sizes for

the connection, as well as the local and foreign network addresses and ports for the requested

connection. A table encodes the maximum-segment sizes to decrease the amount of space

required to store the MSS in the cookie to three bits. The MD5 hash is placed into the initial

sequence number of the SYN/ACK packet that will be sent back to the remote host. If the remote

host has indicated that it supports RFC1323 timestamps, then a second MD5 hash is calculated

containing the send and receive window scaling factors and a single bit indicating whether the

connection supports SACK. The second hash is placed into the timestamp field of the returning

SYN/ACK packet. Once the SYN/ACK packet is returned to the remote host, all the state

associated with the connection is freed. When an ACK is received from a remote host it is

checked to see if it contains valid syn-cookie data. A valid SYN cookie must be returned within

16 seconds of its having been generated. Packets that fall outside this 16 second boundary are

discarded. The MD5 hash is again calculated over the key, the returned sequence number, and

the connection information and then compared against the data received in the

acknowledgment field of the ACK packet. The remote host should send an acknowledgment that

is one greater than the sequence number it received. Subtracting 1 from the value in the

acknowledgment and comparing it to the MD5 hash generated in the syncookie_lookup()

routine is all that the kernel needs to do to verify that the cookie is valid. Valid ACK packets have

their ISN and timestamp fields unpacked into a SYN-cache entry that is then used to set up a

normal TCP connection.

Connection Shutdown

A TCP connection is symmetrical and full-duplex, so either side may initiate disconnection

independently. As long as one direction of the connection can carry data, the connection

remains open. A socket may indicate that it has completed sending data with the shutdown

system call, which results in a call to the tcp_usr_shutdown() routine. The response to this

request is that the state of the connection is advanced; from ESTABLISHED to FIN_WAIT_1.

The ensuing output call will send a FIN, indicating that the connection is being closed. The

receiving socket will advance to CLOSE_WAIT but may continue to send. The procedure may be

different if the process simply closes the socket. In that case, a FIN is sent immediately, but if

new data are received, they cannot be delivered. Normally, higher-level protocols conclude their

own transactions such that both sides know when to close. If they do not, however, TCP must

refuse new data. It does so by sending a packet with the RST flag set if new data are received

after the user has closed the connection. If data remain in the send buffer of the socket when the

close is done, TCP will normally attempt to deliver them. If the socket option SO_LINGER was

set with a linger time of zero, the send buffer is simply flushed; otherwise, the user process is

allowed to continue and the protocol waits for delivery to conclude. Under these circumstances,

856

the socket is marked with the state bit SS_NOFDREF (no file-descriptor reference). The

completion of data transfer and the final close can take place an arbitrary amount of time later.

When TCP finally completes the connection (or gives up because of timeout or other failure), it

calls tcp_close(). The protocol control blocks and other dynamically allocated structures are

freed at this time. The socket also is freed if the SS_NOFDREF flag has been set. The socket

remains in existence as long as either a file descriptor or a protocol control block refers to it.

14.5 TCP Input Processing

TCP input processing is considerably more complicated than UDP input handling, and the

preceding sections have provided the background needed to examine the the implementation of

the TCP input path. The input routine is called with parameters

void tcp_input(

 struct mbuf *msg,

 int off0);

The first few steps are similar to those of UDP:

1. Locate the TCP header in the received IP datagram. Make sure that the packet is at least as

long as a minimal-size TCP header, and use m_pullup() if necessary to make it contiguous.

2. Compute the packet length, set up the IP pseudo-header, and checksum the TCP header and

data. Discard the packet if the checksum is bad.

3. Check the TCP header length; if it is larger than a minimal header, make sure that the whole

header is contiguous.

4. Locate the protocol control block for the connection with the port number specified. If none

exists, send a packet containing the reset flag, RST, and drop the packet.

5. Check whether the socket is listening for connections; if it is, follow the procedure described

for passive connection establishment.

6. Process any TCP options from the packet header.

7. Clear the idle time for the connection and set the keepalive timer to its normal value.

Here, the normal checks have been made and the kernel is prepared to handle data and control

flags in the received packet. There are still many consistency checks that must be made during

normal processing; for example, the SYN flag must be present if a connection is still being

857

established and must not be present if the connection has been established. For simplicity, many

of these checks are not described below, but the tests are important to prevent wayward packets

from causing confusion and possible data corruption.

The next step in checking a TCP packet is to see whether the packet is acceptable according to

the receive window. It is important that this step be done before control flags—in particular

RST—are examined because old or extraneous packets should not affect the current connection

unless they are clearly relevant in the current context. A segment is acceptable if the receive

window has nonzero size and if at least some of the sequence space occupied by the packet falls

within the receive window. Portions of the data that precede the window are trimmed, since they

have already been received, and portions that exceed the window also are discarded, since they

have been sent prematurely. If the receive window is closed (rcv_wnd is zero), then only

segments with no data and with a sequence number equal to rcv_nxt are acceptable. If an

incoming segment is not acceptable, it is dropped after an acknowledgment is sent.

The processing of incoming TCP packets must be fully general, taking into account all the

possible incoming packets and possible states of receiving endpoints. However, the bulk of the

packets processed falls into two general categories. Typical packets contain either the next

expected data segment for an existing connection or an acknowledgment plus a window update

for one or more data segments, with no additional flags or state indications. Rather than

considering each incoming segment based on first principles, tcp_input() checks first for these

common cases, an algorithm known as header prediction. An incoming segment is one of

two common types if it meets these five criteria:

1. It matches a connection in the ESTABLISHED state.

2. It contains the ACK flag but no other flags.

3. Its sequence number is the next value expected (and its timestamp, if any, is nondecreasing).

4. Its window field is the same as in its previous segment.

5. Its connection is not in a retransmission state.

A segment that matches these five criteria and contains no data is a pure acknowledgment with

a window update. In the usual case, round-trip timing information is sampled if it is available,

acknowledged data are dropped from the socket send buffer, and the sequence values are

updated. The packet is discarded once the header values have been checked. The retransmit

timer is canceled if all pending data have been acknowledged; otherwise, it is restarted. The

socket layer is notified if any process is waiting to output data. Finally, tcp_output() is called

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_141

858

because the window has moved forward and that operation completes the handling of a pure

acknowledgment.

If a packet meeting the tests for header prediction contains the next expected data, and no

out-of-order data are queued for the connection, and if the socket receive buffer has space for

the incoming data, then this packet is a pure in-sequence data segment. The sequencing

variables are updated, the packet headers are removed from the packet, and the remaining data

are appended to the socket receive buffer. The socket layer is notified so that it can notify any

interested thread, and the control block is marked with a flag indicating that an

acknowledgment is needed. No additional processing is required for a pure data packet.

For packets that are not handled by the header-prediction algorithm, the processing steps are as

follows:

1. Process the timestamp option if it is present, rejecting any packets for which the timestamp

has decreased.

2. Check whether the packet begins before rcv_nxt. If it does, ignore any SYN in the packet and

trim any data that fall before rcv_nxt. If no data remain, send a current acknowledgment and

drop the packet. (The packet is presumed to be a duplicate transmission.)

3. If the packet still contains data after trimming, and the process that created the socket has

already closed the socket, send a reset (RST) and drop the connection. This reset is necessary to

abort connections that cannot complete; it typically is sent when a remote-login client

disconnects while data are being received.

4. If the end of the segment falls after the window, trim any data beyond the window. If the

window was closed and the packet sequence number is rcv_nxt, the packet is treated as a

window probe; TF_ACKNOW is set to send a current acknowledgment and window update, and

the remainder of the packet is processed. If SYN is set and the connection was in TIME_WAIT

state, this packet is really a new connection request and the old connection is dropped; this

procedure is called rapid connection reuse. Otherwise, if no data remain, send an

acknowledgment and drop the packet.

The remaining steps of TCP input processing check the following flags and fields, and take the

appropriate actions: RST, ACK, window, URG, data, and FIN. Because the packet has already

been confirmed to be acceptable, these actions can be done in a straightforward way:

5. If a timestamp option is present, and the packet includes the next sequence number expected,

record the value received to be included in the next acknowledgment.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_310

859

6. If RST is set, close the connection and drop the packet.

7. If ACK is not set, drop the packet.

8. If the acknowledgment-field value is higher than that of previous acknowledgments, new data

have been acknowledged. If the connection was in SYN_RECEIVED state and the packet

acknowledges the SYN sent for this connection, enter ESTABLISHED state. If the packet

includes a timestamp option, use it to compute a round-trip time sample; otherwise, if the

sequence range that was newly acknowledged includes the sequence number for which the

round-trip time was measured, this packet provides a sample. Average the time sample into the

smoothed round-trip time estimate for the connection. If all outstanding data have been

acknowledged, stop the retransmission timer; otherwise, set it back to the current timeout value.

Finally, drop the data that were acknowledged from the socket’s send queue. If a FIN has been

sent and was acknowledged, advance the state machine.

9. Check the window field to see whether it advances the known send window. First, check

whether this packet is a new window update. If the sequence number of the packet is greater

than that of the previous window update, or the sequence number is the same but the

acknowledgment-field value is higher, or if both sequence and acknowledgment are the same

but the window is larger, record the new window.

10. If the urgent-data flag URG is set, compare the urgent pointer in the packet to the

last-received urgent pointer. If it is different, new urgent data have been sent. Use the urgent

pointer to compute so_oobmark, the offset from the beginning of the socket receive buffer to

the urgent mark (Section 14.3), and notify the socket with sohasoutofband(). If the urgent

pointer is less than the packet length, the urgent data have all been received. TCP normally

removes the final data byte sent in urgent mode (the last byte before the urgent pointer) and

places that byte in the protocol control block until it is requested with a PRU_RCVOOB request.

(The end of the urgent data is a subject of disagreement; the BSD interpretation follows the

original TCP specification.) A socket option, SO_OOBINLINE, may request that urgent data be

left in the queue with the normal data, although the mark on the data stream is still maintained.

11. Examine the data field in the received packet. If the data begin with rcv_nxt, then they can

be placed directly into the socket receive buffer with sbappendstream(). The flag TF_DELACK

is set in the protocol control block to indicate that an acknowledgment is needed, but should be

delayed in the hope that it can be piggybacked on any packets sent soon (presumably in

response to the incoming data) or combined with acknowledgment of other data received soon;

see the subsection on Delayed Acknowledgments and Window Updates in Section 14.6. If no

activity causes a packet to be returned before the next time that the tcp_delack() routine runs, it

will change the flag to TF_ACKNOW and call the tcp_output() routine to send the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec6

860

acknowledgment. Acknowledgments can thus be delayed by no more than 100 milliseconds. If

the data do not begin with rcv_nxt, the packet is retained in a per-connection queue until the

intervening data arrive and an acknowledgment is sent immediately.

12. As the final step in processing a received packet, check for the FIN flag. If it is present, the

connection state machine may have to be advanced, and the socket is marked with

socantrcvmore() to convey the end-of-file indication. If the send side has already closed (a FIN

was sent and acknowledged), the socket is now considered closed and it is so marked with

soisdisconnected(). The TF_ACKNOW flag is set to force immediate acknowledgment.

Step 12 completes the actions taken when a new packet is received by tcp_input(). However, as

noted earlier in this section, receipt of input may require new output. In particular,

acknowledgment of all outstanding data or a new window update requires either new output or

a state change by the output module. Also, several special conditions set the TF_ACKNOW flag.

Here, tcp_output() is called at the conclusion of input processing.

14.6 TCP Output Processing

This section describes the implementation of the TCP send policy. A TCP packet contains an

acknowledgment, a window field, and data. A single packet may be sent if any of these three

fields change. A naive TCP send policy might send many more packets than necessary. Logically,

three packets are sent when a user types one character to a remote-terminal connection that

uses remote echo.

1. The server-side TCP receives a single-character packet.

2. It sends an immediate acknowledgment of the character.

3. Milliseconds later, the login server reads the character, removing the character from the

receive buffer. TCP immediately sends a window update, noting that one additional byte of send

window was available.

4. After another millisecond or so, the login server sends an echoed character back to the client,

necessitating a third packet sent in response to the single character of input.

A more efficient implementation will collapse the last three responses (the acknowledgment, the

window update, and the data return) into a single packet. However, if the server were not

echoing input data (for example, when the user is typing his or her password), the

acknowledgment cannot be withheld for too long or the client-side TCP would begin to

retransmit. The algorithms used in the send policy to minimize network traffic yet maximize

861

throughput are the most subtle part of a TCP implementation. The send policy used in FreeBSD

includes several standard algorithms, as well as a few approaches suggested by the network

research community. This section examines each part of the send policy.

Sending Data

The most common reason for calling the TCP output routine tcp_output() is that the user has

written new data to the socket. Write operations are done with a call to the tcp_usr_send()

routine. Recall that sosend() waits for enough space in the socket send buffer, if necessary, and

then copies the user’s data into a chain of mbufs that is passed to the protocol by the

tcp_usr_send() routine. The action in tcp_usr_send() is simply to place the new output data in

the socket’s send buffer with sbappendstream() and to call tcp_output(). If flow control permits,

tcp_output() will send the data immediately.

The actual send operation is not substantially different from that for a UDP datagram socket.

The differences are that the header is more complicated and additional fields must be initialized,

and the data sent are simply a copy of the user’s data. However, for send operations large

enough for sosend() to place the data in external mbuf clusters, the copy is done by creating a

new reference to the data cluster. A copy must be retained in the socket’s send buffer to use if

retransmission is required. Also, if the number of data bytes is larger than the size of a single

maximum-size segment, multiple packets will be constructed and sent in a single call.

The tcp_output() routine allocates an mbuf to contain the output packet header and copies the

contents of the header template into that mbuf. If the data to be sent fit into the same mbuf as

the header, tcp_output() copies them into place from the socket send buffer using the

m_copydata() routine. Otherwise, tcp_output() adds the data to be sent as a separate chain of

mbufs obtained with an m_copy() operation from the appropriate part of the send buffer. The

sequence number for the packet is set from snd_nxt and the acknowledgment is set from

rcv_nxt. The flags are obtained from an array containing the flags to be sent in each connection

state. The window to be advertised is computed from the amount of space remaining in the

socket’s receive buffer; however, if that amount is small (less than one-fourth of the buffer and

less than one segment), it is set to zero. The window is never allowed to end at a smaller

sequence number than the one in which it ended in the previous packet. If urgent data have

been sent, the urgent pointer and flag are set accordingly. One other flag must be set. The PSH

flag on a packet indicates that data should be passed to the user; it is like a buffer-flush request.

This flag is generally considered obsolete but is set whenever all the data in the send buffer have

been sent; FreeBSD ignores this flag on input. Once the header is filled in, the packet is

checksummed. The remaining parts of the IP header are initialized, including the type-of-service

and time-to-live fields, and the packet is sent with ip_output(). The retransmission timer is

862

started if it is not already running, and the snd_nxt and snd_max values for the connection are

updated.

Avoidance of the Silly-Window Syndrome

Silly-window syndrome is the name given to a potential problem in a window-based

flow-control scheme in which a system sends several small packets rather than waiting for a

reasonable-size window to become available [Clark, 1982]. For example, if a network-login

client program has a total receive buffer size of 4096 bytes, and the user stops terminal output

during a large printout, the buffer will become nearly full as new full-size segments are received.

If the remaining buffer space dropped to 10 bytes, it would not be useful for the receiver to

volunteer to receive an additional 10 bytes. If the user then allowed a few characters to print and

stopped output again, it still would not be useful for the receiving TCP to send a window update

allowing another 14 bytes. Instead, it is desirable to wait until a reasonably large packet can be

sent, since the receive buffer already contains enough data for the next several pages of output.

Avoidance of the silly-window syndrome is desirable in both the receiver and the sender of a

flow-controlled connection, as either end can prevent silly small windows from being used.

Receiver avoidance of the silly-window syndrome is described in the previous subsection; when

a packet is sent, the receive window is advertised as zero if it is less than one packet and less

than one-fourth of the receive buffer. For sender avoidance of the silly-window syndrome, an

output operation is delayed if at least a full packet of data is ready to be sent but less than one

full packet can be sent because of the size of the send window. Instead of sending, tcp_output()

sets the output state to persist state by starting the persist timer. If no window update has been

received by the time that the timer expires, the allowable data are sent in the hope that the

acknowledgment will include a larger window. If it does not, the connection stays in persist state,

sending a window probe periodically until the window is opened.

An initial implementation of sender avoidance of the silly-window syndrome produced large

delays and low throughput over connections to hosts using TCP implementations with tiny

buffers. Unfortunately, those implementations always advertised receive windows less than the

maximum segment size—a behavior that was considered silly by this implementation. As a

result of this problem, the FreeBSD TCP implementation keeps a record of the largest receive

window offered by a peer in the protocol-control-block variable max_sndwnd. When at least

one-half of max_sndwnd may be sent, a new segment is sent. This technique improved

performance when a BSD system was communicating with these limited hosts.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref07

863

Avoidance of Small Packets

Network traffic exhibits a bimodal distribution of sizes. Bulk data transfers tend to use the

largest possible packets for maximum throughput, whereas interactive services (such as

network-login) tend to use small packets, often containing only a single data character. On a fast

local-area network, the use of single-character packets generally is not a problem because the

network bandwidth usually is not saturated. On long-haul networks interconnected by slow or

congested links, or on wireless LANs that are both slow and lossy, it is desirable to collect input

over some period and then send it in a single network packet. Various schemes have been

devised for collecting input over a fixed time—usually about 50 to 100 milliseconds—and then

sending it in a single packet. These schemes noticeably slow character echo times on fast

networks and often save few packets on slow networks. In contrast, a simple and elegant scheme

for reducing small-packet traffic (small-packet avoidance) was suggested by Nagle [1984].

This scheme allows the first byte output to be sent alone in a packet with no delay. Until this

packet is acknowledged, however, no new small packets may be sent. If enough new data arrive

to fill a maximum-size packet, another packet is sent. As soon as the outstanding data are

acknowledged, the input that was queued while waiting for the first packet may be sent. Only

one small packet may ever be outstanding on a connection at one time. The net result is that

data from small output operations are queued during one round-trip time. If the round-trip time

is less than the inter-character arrival time, as it is in a remote-terminal session on a LAN,

transmissions are never delayed and response time remains low. When a slow network

intervenes, input after the first character is queued and the next packet contains the input

received during the preceding round-trip time. This algorithm is attractive because of both its

simplicity and its self-tuning nature.

Nagle’s algorithm does not work well for certain classes of network clients that sent streams of

small requests that cannot be batched. One such client is the network-based X Window System

[Scheifler & Gettys, 1986], which requires immediate delivery of small messages to get real-time

feedback for user interfaces such as rubber-banding to sweep out a new window. Hence, the

TCP_NODELAY option was added to defeat this algorithm on a connection. This option can be

set with a setsockopt call, which reaches TCP via the tcp_ctloutput() routine.

Delayed Acknowledgments and Window Updates

TCP packets must be sent for reasons other than data transmission. On a one-way connection,

the receiving TCP must still send packets to acknowledge received data and to advance the

sender’s send window. In a bulk data transfer, the time at which window updates are sent is a

determining factor for network throughput. For example, if the receiver simply set the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref20

864

TF_DELACK flag each time that data were received on a bulk-data connection,

acknowledgments would be sent every 100 milliseconds. If 8192-byte windows were used on a

1-Gbps Ethernet, this algorithm would result in a maximum throughput of 655 Kbit/s, or less

than 1 percent of the available network bandwidth. Clearly, once the sender has filled the send

window that it has been given, it must stop until the receiver acknowledges the old data

(allowing them to be removed from the send buffer and new data to replace them) and provides

a window update (allowing the new data to be sent).

Because TCP’s window-based flow control is limited by the space in the socket receive buffer,

TCP has the PR_RCVD flag set in its protocol-switch entry so that the protocol will be called (via

the tcp_usr_rcvd() routine) when the user has done a receive call that has removed data from

the receive buffer. The tcp_usr_rcvd() routine simply calls tcp_output(). Whenever tcp_output()

deter-mines that a window update sent under the current circumstances would provide a new

send window to the sender large enough to be worthwhile, it sends an acknowledgment and

window update. If the receiver waited until the window was full, the sender would already have

been idle for some time when it finally received a window update. Furthermore, if the send

buffer on the sending system was smaller than the receiver’s buffer—and thus smaller than the

receiver’s window—the sender would be unable to fill the receiver’s window without receiving an

acknowledgment. Therefore, the window-update strategy in FreeBSD is based on only the

maximum segment size. Whenever a new window update would move the window forward by at

least two full-size segments, the window update is sent. This window-update strategy produces a

twofold reduction in acknowledgment traffic and a twofold reduction in input processing for the

sender. However, updates are sent often enough to give the sender feedback on the progress of

the connection and to allow the sender to continue sending additional segments.

Note that TCP is called at two different stages of processing on the receiving side of a bulk data

transfer: it is called on packet reception to process input, and it is called after each receive

operation removing data from the input buffer. At the first call, an acknowledgment could be

sent, but no window update could be sent. After the receive operation, a window update also is

possible. Thus, it is important that the algorithm runs in the second half of this cycle.

Selective Acknowledgment

A long-running TCP connection over a lossy network path will have packets dropped in flight.

Once a connection has a sufficiently large transmission window open it can send several packets

at once and the dropped packet may occur in the middle of the set rather than at the end. TCP

normally acknowledges the last byte of the last segment that it received and which it could

correctly append to any previously received data. When a segment is dropped, TCP appends any

new segments that follow the dropped segment to the receive queue, but no indication is given

865

to the sender that one or more segments were dropped, only that the last received byte is at a

particular sequence number. Selective acknowledgments (SACK), are a mechanism whereby the

receiver can tell the sender when one or more segments were dropped, allowing the sender to

choose more efficiently the data to re-transmit [Mathis et al., 1996].

The use of SACK is negotiated at connection setup time. The inclusion of the SACK-permitted

option in a packet containing a SYN, such as the initial connection request, or the SYN/ACK

returned by a host receiving a connection request, indicates that the sender supports SACK.

Once the connection is sending data, the receiver can send a SACK option to the sender as part

of an ACK packet to indicate the data that it has already received. The receiver does not tell the

sender the segments were dropped. Rather, it tells the sender the data that it has received by

sending pairs of sequence numbers specifying the left and right hand sides of the received data.

SACK information is sent as an option rather than as part of the data section of the packet. The

amount of information that can be sent back to the sender from the receiver is limited because

the option field has a maximum size of 40 bytes. In a typical environment where other options

such as timestamps are already in use, a SACK enabled receiver can only indicate three regions

of data that it has received.

Figure 14.5 shows a receiver’s state with four segments and two holes. Each segment contains

500 bytes. The first segment containing bytes 0 to 499 has been received and acknowledged to

the sender. Three additional segments have been received but not yet acknowledged for byte

ranges 1000 to 1499, 1500 to 1999, and 3000 to 3499. Three segments are missing: those that

contain bytes 500 to 999, 2000 to 2499, and 2500 to 2999. The receiver tells the sender about

the segments it has successfully received, but not delivered to the application, by sending a

SACK option that includes the left- and right-hand sides of up to three sections of received data,

which are referred to as SACK blocks. In our current example, the receiver would send an option

with the SACK blocks 1000:2000 and 3000:3500. The right hand side of the SACK block is

defined to be the last received byte plus one. The SACK option has no effect on the

acknowledgment field of the TCP packet sent from the receiver back to the sender. The

acknowledgment field always contains the sequence value of the last correctly received byte (499

in this example). The sender does not depend on the receiver maintaining any extra state to

implement SACK. It is possible that because of memory pressure, the receiving host might drop

undelivered segments from its reassembly queues, thereby invalidating a previous report of data

via a SACK option. The sender cannot free any data it has sent until it receives an

acknowledgment for that data through an ACK with a proper acknowledgment number. The

SACK option is an optimization and not a fundamental change in how TCP works.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig05

866

Figure 14.5 SACK receiver state.

The implementation of SACK in FreeBSD has two main data structures: One data structure for

the list of SACK blocks and the other for the list of holes that the sender believes to be present in

the receiver’s reassembly queue. The array of SACK blocks is used differently by the sender and

the receiver. On the receiver, the array of SACK blocks contains the information that the receiver

will send back to the sender with the next ACK. The sender’s array contains the blocks that have

arrived from the the receiver. The array, sackblks, is contained in the TCP control block and

holds a maximum of six entries because at most four sack blocks can be communicated in a

single SACK option. The two extra entries in the array store blocks that the sender has received

in previous updates. When a TCP connection has many packets in flight, several may be dropped

due to changing network conditions, resulting in several holes appearing in the receiver’s

reassembly queue. Being able to store six SACK blocks per socket at the sender was deemed a

reasonable compromise between memory usage and performance. Whenever a host receives

data on a TCP connection, the tcp_do_segment() routine places the data either into the socket’s

receive buffer or into the reassembly queue. When data is placed into the reassembly queue, it

indicates that packets were received out of order and that a hole may be present. The

tcp_update_sack_list() routine is used by the receiver to update its list of SACK blocks. Because

the receiver has had to use its reassembly queue, the TF_ACKNOW flag will be set on the TCP

control block. After updating its SACK blocks, the receiver will call tcp_output(), which adds a

SACK option containing as many SACK blocks as fit into the options field of the packet. SACK

options are processed last by the tcp_addoptions() routine so that the maximum number of

options can be stored in the 40 bytes available. A TCP connection with both timestamps and

signatures enabled has space for only one SACK block, since a timestamp takes 12 bytes and a

signature takes 18, leaving only 10 for SACK information. As most TCP connections do not use

signatures, it is more common to have space for up to three SACK blocks. The current design of

SACK does not allow space for any more SACK blocks since they can only be communicated

within the limited space allowed for TCP options.

A TCP sender receives SACK blocks in the options part of a packet with the ACK flag set. The

tcp_input() routine calls the tcp_sack_doack() routine to update the sender’s understanding of

the holes that are present in the receiver’s reassembly queue. The sender maintains a scoreboard

of the holes in a tail-queue structure and keeps the received SACK blocks in a per-socket array.

867

All the received blocks are placed into the array, which is then sorted into ascending order based

on the right-hand side of each block. With the SACK blocks sorted, the tcp_sack_doack()

routine walks the list of blocks and adjusts its scoreboard. Three possible adjustments to the

scoreboard can be made:

1. A SACK block may completely cover a hole, indicating that the receiver now has the data that

the sender believed was missing. Here, the hole is removed from the scoreboard.

2. A block can partially cover a hole. Here, the size of the hole is reduced.

3. A block may acknowledge data within a hole, requiring that the hole be split.

Once all of the blocks have been processed, the scoreboard is again in a consistent state and can

be used by the tcp_output() routine when it next transmits data.

The tcp_sack_output() routine is called when a sender wants to transmit data to a receiver and

the sender has holes present in the scoreboard. If more than one hole exists, only the next hole

is returned by the routine and not the complete set. The information from the scoreboard

adjusts the length of the data to be sent by TCP so that the next transmission will cover as much

as possible of the next hole in the scoreboard. The transmission of new data does not update the

scoreboard or the array of SACK holes maintained by the sender. SACK data structures on the

sender are only updated on the receipt of acknowledgments from the receiver. Once the receiver

has acknowledged data past all of the holes, the sender will clear both its scoreboard and its

sackblks array.

Retransmit State

When the retransmit timer expires while a sender is awaiting acknowledgment of transmitted

data, tcp_output() is called to retransmit. The retransmit timer is first set to the next multiple of

the round-trip time in the backoff series. The variable snd_nxt is moved back from its current

sequence number to snd_una. A single packet is then sent containing the oldest data in the

transmit queue. Unlike some other systems, FreeBSD does not keep copies of the packets that

have been sent on a connection; it retains only the data. Thus, although only a single packet is

retransmitted, that packet may contain more data than does the oldest outstanding packet. On a

slow connection with small send operations, such as a remote login, this algorithm may cause a

single-byte packet that is lost to be retransmitted with all the data queued since the initial byte

was first transmitted.

If a single packet was lost in the network, the retransmitted packet will elicit an

acknowledgment of all data transmitted thus far. If more than one packet was lost, the next

868

acknowledgment will include the retransmitted packet and possibly some of the intervening

data. It may also include a new window update. Thus, when an acknowledgment is received after

a retransmit timeout, any old data that were not acknowledged will be resent as though they had

not yet been sent, and some new data may be sent as well.

Slow Start

Many TCP connections traverse several networks between their source and destination. When

some of the networks are slower than others, the entry router to the slowest network often is

presented with more traffic than it can handle. It may buffer some input packets to avoid

dropping them because of sudden changes in flow, but eventually its buffers will fill and it must

begin dropping packets. When a TCP connection first starts sending data across a fast network

to a router forwarding via a slower network, it may find that the router’s queues are already

nearly full. In the original send policy used in BSD, a bulk-data transfer would start out by

sending a full window of packets once the connection was established. These packets could be

sent at the full speed of the network to the bottleneck router, but that router could transmit

them only at a much slower rate. As a result, the initial burst of packets was highly likely to

overflow the router’s queue and some of the packets would be lost. If such a connection used an

expanded window size in an attempt to gain performance—for example, when traversing a

transoceanic network link with a long round-trip time—this problem would be even more severe.

However, if the connection could once reach steady state, a full window of data often could be

accommodated by the network if the packets were spread evenly throughout the path. At steady

state, new packets would be injected into the network only when previous packets were

acknowledged and the number of packets in the network would be constant. Figure 14.6 shows

the desired steady state. In addition, even if packets arrived at the outgoing router in a cluster,

they would be spread out when the network was traversed by at least their transmission times in

the slowest network. If the receiver sent acknowledgments when each packet was received, the

acknowledgments would return to the sender with approximately the correct spacing. The

sender would then have a self-clocking means for transmitting at the correct rate for the

network without sending bursts of packets that the bottleneck could not buffer.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig06

869

Figure 14.6 Acknowledgment clocking. There are two routers connected by a slow link between

the sender and the receiver. The thickness of the links represents their speed. The width of the

packets represents their time to travel down the link. Fast links are wide and the packets are

narrow. Slow links are narrow and the packets are wide. In the steady state shown, the sender

sends a new packet each time an acknowledgment is received from the receiver.

An algorithm named slow start brings a TCP connection to this steady state [Jacobson, 1988]. It

is called slow start because it is necessary to start data transmission slowly when traversing a

slow network. Figure 14.7 shows the progress of the slow-start algorithm. The scheme is simple:

A connection starts out with an initial-segment quota of one to four outstanding packets. A

one-block initial-segment quota is used for a connection with a small initial window size, while a

four-block initial-segment quota is used with a large initial window size. An increased initial

window size takes advantage of the greater bandwidth available from fast networks [Allman et

al., 2002]. Each time that an acknowledgement is received, the limit is increased by one packet.

If the acknowledgement also carries a window update, two packets are sent in response. This

process continues until the window is fully open. During the slow-start phase of the connection,

if each packet was acknowledged separately, the limit would be doubled during each exchange,

resulting in an exponential opening of the window. Delayed acknowledgments might cause

acknowledgments to be coalesced if more than one packet could arrive at the receiver within 100

milliseconds, slowing the window opening slightly. However, the sender never sends bursts of

more than two or three packets during the opening phase and sends only one or two packets at a

time once the window has opened.

Figure 14.7 The progression of the slow-start algorithm.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref01

870

The implementation of the slow-start algorithm uses a second window, like the send window but

maintained separately, called the congestion window (snd_cwnd). The congestion window is

maintained according to an estimate of the data that the network is currently able to buffer for

this connection. The send policy is modified so that new data are sent only if allowed by both the

normal-and congestion-send windows. The congestion window is initialized to the size of the

initial-segment quota, causing a connection to begin with a slow start. Whenever transmission

stops, the congestion window is reset back to the same value as that used in the initial window.

Otherwise, once a retransmitted packet was acknowledged, the resulting window update might

allow a full window of data to be sent, which would once again overrun intervening routers. The

use of slow start after a retransmission timeout prevents the sender from overrunning a

congested network. The timeout may indicate that the network has become slower because of

congestion, a temporary reduction of the window may help the network to recover from this

condition. The connection is forced to reestablish its clock of acknowledgments after the

connection has come to a halt and slow start has this effect as well. A slow start is also forced if a

connection begins to transmit after an idle period of at least the current retransmission value (a

function of the smoothed round-trip time and variance estimates).

Buffer and Window Sizing

The throughput of a TCP connection is limited by the bandwidth of the path that the connection

must transit. Performance is also affected by the round-trip time for the path. For example,

paths that traverse any of the major transoceanic links have a long intrinsic delay, even though

the bandwidth may be high, but the throughput is limited to one window of data per round-trip

time. After filling the receiver’s window, the sender must wait for at least one round-trip time for

an acknowledgment and window update to arrive. To take advantage of the full bandwidth of a

path, both the sender and receiver must use buffers at least as large as the bandwidth-delay

product to allow the sender to transmit during the entire round-trip time. In steady state, this

buffering allows the sender, receiver, and intervening parts of the network to keep the pipeline

filled at each stage. For some paths, using slow start and a large window can lead to much better

performance than could be achieved previously.

The round-trip time for a network path includes two components: transit time and queueing

time. The transit time comprises the propagation, switching, and forwarding time in the

physical layers of the network, including the time to transmit packets bit by bit after each

store-and-forward hop. Ideally, queueing time would be negligible, with packets arriving at each

node of the network just in time to be sent after the preceding packet. This ideal flow is possible

when a single connection using a suitable window size is synchronized with the network.

However, as additional traffic is injected into the network by other sources, queues build up in

routers, especially at the entrance to the slower links in the path. Although queueing delay is

871

part of the round-trip time observed by each network connection that is using a path, it is not

useful to increase the operating window size for a connection to a value larger than the product

of the limiting bandwidth for the path times the transit delay. Sending additional data beyond

that limit causes the additional data to be queued, which increases queueing delay without

increasing throughput.

Avoidance of Congestion with Slow Start

The slow-start algorithm prevents TCP from overloading a network when packet transmission

first begins, or when it resumes after a long idle period. A single connection may reasonably use

a large window without flooding the entry router to the slow network on startup. As a

connection opens the window during a slow start, it injects packets into the network until the

network links are kept busy. During this phase, it may send packets at up to twice the rate at

which the network can deliver data because of the exponential opening of the window. If the

window is chosen appropriately for the path, the connection will reach steady state without

flooding the network. However, with multiple connections sharing a path, the bandwidth

available to each connection is reduced. If each connection uses a window equal to the

bandwidth-delay product, the additional packets in transit must be queued, which increases

delay. If the total offered load is too high, routers must drop packets rather than increasing the

queue sizes and delay. Thus, the appropriate window size for a TCP connection depends not only

on the path, but also on competing traffic. A window size large enough to provide good

performance when a long-delay link is in the path will overrun the network when most of the

round-trip time is in queueing delays. It is highly desirable for a TCP connection to be

self-tuning, as the characteristics of the path are seldom known at the endpoints and may

change with time. If a connection expands its window to a value too large for a path, or if

additional load on the network collectively exceeds the capacity, router queues will build until

packets must be dropped. Here, the connection will close the congestion window to the

maximum segment size calculated for the link and will initiate a slow start. If the window is

simply too large for the path, however, this process will repeat each time that the window is

opened too far.

The connection can learn from this problem and can adjust its behavior using another algorithm

associated with the slow-start algorithm. This algorithm keeps a state variable for each

connection, snd_ssthresh (slow-start threshold), which is an estimate of the usable window for

the path. When a packet is dropped, as evidenced by a retransmission timeout, this window

estimate is set to a maximum of either two maximally size segments (MSS), or half of the

current amount of data in flight (FlightSize):

ssthresh = max(FlightSize / 2, 2 × MSS)

872

Further details about the slow start algorithm are given in [Allman et al., 2009]. The current

window is obviously too large at the moment, and the decrease in window utilization must be

large enough that congestion will decrease rather than stabilizing. At the same time, the

slow-start window (snd_cwnd) is set to the initial-segment quota to restart. The connection

starts up as before, opening the window exponentially until it reaches the snd_ssthresh limit.

Here, the connection is near the estimated usable window for the path. It enters steady state,

sending data packets as allowed by window updates. To test for improvement in the network, it

continues to expand the window slowly; as long as this expansion succeeds, the connection can

continue to take advantage of reduced network load. The expansion of the window in this phase

is linear, with one additional full-size segment being added to the current window for each full

window of data transmitted. This slow increase allows the connection to discover when it is safe

to resume use of a larger window while reducing the loss in throughput because of the wait after

the loss of a packet before transmission can resume. Note that the increase in window size

during this phase of the connection is linear as long as no packets are lost, but the decrease in

window size when signs of congestion appear is exponential (it is divided by 2 on each timeout).

With the use of this dynamic window-sizing algorithm, it is possible to use larger default

window sizes for connection to all destinations without overrunning networks that cannot

support them.

Fast Retransmission

Packets can be lost in the network for many reasons, two of which are congestion and corruption.

TCP detects lost packets by a timeout, which causes a retransmission. When a packet is lost, the

flow of packets on a connection comes to a halt while waiting for the timeout. Depending on the

round-trip time and variance, this timeout can result in a substantial period during which the

connection makes no progress. Once the timeout occurs, an initial-segment quota of segments is

retransmitted as the first phase of a slow start and the slow-start threshold is set as shown in the

previous section. If later packets are not lost, the connection goes through a slow startup to the

new threshold and it then gradually opens the window to probe whether any congestion has

disappeared. Each of these phases lowers the effective throughput for the connection. The result

is decreased performance, even though the congestion may have been brief.

When a connection reaches steady state, it sends a continuous stream of data packets in

response to a stream of acknowledgments with window updates. If a single packet is lost, the

receiver sees packets arriving out of order. Most TCP receivers, including FreeBSD, respond to

an out-of-order segment with a repeated acknowledgment for the in-order data. If one packet is

lost while enough packets to fill the window are sent, each packet after the lost packet will

provoke a duplicate acknowledgment with no data, window update, or other new information.

The receiver can infer the out-of-order arrival of packets from these duplicate acknowledgments.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref02

873

Given enough evidence of reordering, the receiver can assume that a packet has been lost.

FreeBSD TCP implements fast retransmission based on this signal. Figure 14.8 shows the

sequence of packet transmissions and acknowledgments when using the fast-retransmission

algorithm during the loss of a single packet. After detecting three identical acknowledgments,

the tcp_input() function saves the current connection parameters, simulates a retransmission

timeout to resend one segment of the oldest data in the send queue, and then restores the

current transmit state. Because this indication of a lost packet is a congestion signal, the

estimate of the network buffering limit, snd_ssthresh, is set to one-half of the current window.

However, because the stream of acknowledgments has not stopped, a slow start is not needed. If

a single packet has been lost, performing fast retransmission fills in the gap more quickly than

would waiting for the retransmission timeout. An acknowledgment for the missing segment,

plus all out-of-order segments queued before the retransmission, will then be received and the

connection can continue normally.

Figure 14.8 Fast retransmission. Packet with sequence number 3 is lost. Receiver returns

duplicate acknowledgements for the last good packet, sequence number 2. Transmitter

retransmits packet number 3 after receiving three duplicate acknowledgements.

Even with fast retransmission, it is likely that a TCP connection that suffers a lost segment will

reach the end of the send window and be forced to stop transmission while awaiting an

acknowledgment for the lost segment. However, after the fast retransmission, duplicate

acknowledgments are received for each additional packet received by the peer after the lost

packet. These duplicate acknowledgments imply that a packet has left the network and is now

queued by the receiver. In that case, the packet does not need to be considered as within the

network congestion window, possibly allowing additional data to be sent if the receiver’s

window is large enough. Each duplicate acknowledgment after a fast retransmission thus causes

the congestion window to be moved forward artificially by the segment size. If the receiver’s

window is large enough, it allows the connection to make forward progress during a larger part

of the time that the sender awaits an acknowledgment for the retransmitted segment. For this

algorithm to have effect, the sender and receiver must have additional buffering beyond the

normal bandwidth-delay product; twice that amount is needed for the algorithm to have full

effect.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig08

874

Modular Congestion Control

During the 30 years that TCP has been deployed for use on the Internet, there has been a great

deal of research into tuning its algorithms so that they perform well in many different

environments. While it is desirable that a single set of algorithms could handle all types of

network environments from reliable, high-bandwidth, low-latency local-area networks to

unreliable low-bandwidth high-latency wide-area networks, a single algorithm covering all of

the possible combinations of network variables has proved elusive.

Ever since the release of 4.2BSD with its inclusion of TCP, the congestion-control algorithm has

been periodically changed to share bandwidth more fairly and to improve overall performance.

The default congestion-control algorithm in FreeBSD is referred to as New Reno because it was

inherited from the final Reno release from 4.4BSD. Until the inclusion of modular congestion

control in FreeBSD 7, each change to the congestion-control algorithm required a new release of

the operating system [Stewart & Healy, 2007].

Modular congestion control is a system whereby any TCP or SCTP connection can choose the

congestion-control algorithm that will give it the best performance. Each congestion-control

algorithm, including the default, New Reno, is contained in a loadable kernel module and every

TCP protocol control block contains a pointer to a cc_algo and cc_var structure. The cc_algo

structure contains a set of function pointers that are called by TCP whenever an event occurs

that indicates a change in the state of the connection related to congestion in the network. All of

the variables that contain information about connection congestion are stored in the cc_var

structure. Five congestion-control algorithms are now available in FreeBSD’s TCP

implementation: Hamilton Institute’s delay-based congestion control [Budzisz et al., 2009],

CUBIC [Ha et al., 2008], H-TCP [Leith et al., 2005], Vegas [Brakmo & Peterson, 1995], and the

default New Reno [Henderson et al., 2012].

The goal of all TCP congestion-control algorithms is to prevent one or more hosts from

overloading the network to the detriment of all network participants. All the algorithms

provided in FreeBSD avoid congestion by controlling two variables within TCP: the congestion

window snd_cwnd and the slow-start threshold snd_ssthresh. The algorithms also carefully

track the round-trip time measured between the communicating hosts. These variables have

already been described in the previous sections that covered the default slow start and fast

retransmit behavior of FreeBSD. The following sections describe how the various

congestion-control algorithms now supplied with FreeBSD treat these variables differently from

the default. Each algorithm differs in how aggressively it opens the congestion window once the

slow-start algorithm has completed its work, and how it reacts in the face of network congestion.

All the algorithms supported by FreeBSD are encapsulated within loadable kernel modules and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref10

875

share a common kernel API. The cc_algo structure expresses the kernel API that

congestion-control algorithms expose to the rest of TCP. Each of the entry points in the cc_algo

structure, shown in Table 14.5, is used during a different part of a connection’s lifetime. When a

connection is first established, the conn_init function is called to initialize per connection state

that is privately held by the congestion-control module. Each acknowledgment received triggers

a call into the ack_received function, which usually results in an increase in the size of

snd_cwnd, the sender’s congestion window. When congestion is discovered in the network by

the receipt of a duplicate ack, the expiration of the round-trip timeout, or explicit notification by

receipt of a packet with an explicit congestion-notification (ECN) flag, the cong_signal function

is called, with the type of congestion indicated in the type field. Any congestion-control

algorithm receiving a congestion signal is going to take action to change the size of the

congestion window.

Table 14.5 TCP congestion-control module methods.

Congestion-control algorithms can be characterized by how they detect congestion in the

network. The first TCP algorithms, including New Reno, detect congestion using a timeout that

indicates a lost packet. More recently developed congestion-avoidance algorithms designed for

high-speed high-latency networks, such as 1 Gbit per second WAN links with more than 50

milliseconds of round-trip time, detect congestion in the network by monitoring changes in the

round-trip time of packets. A timing-based approach can improve TCP’s ability to react to

congestion since data on the connection’s round-trip time is updated with each ACK received.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab05

876

The Vegas Algorithm

The Vegas congestion-control algorithm is a logical extension of the Reno and New Reno work

that came before it. The two main innovations of the Vegas algorithm are a new system for

handling retransmissions and a novel form of congestion avoidance based on measuring the

bandwidth between the two communicating endpoints. Unlike the Reno and New Reno

algorithms, Vegas is more aggressive about anticipating losses in the network and therefore is

more aggressive about retransmitting packets. The new retransmission mechanism was

introduced to ameliorate problems inherent in the original BSD TCP implementation. The

problem was that the timers used by TCP were too coarse grained to react properly to lost

packets sometimes taking over a second to realize that a retransmission was necessary.

Improvements in the FreeBSD timer system and the implementation of New Reno made the

changes introduced in Vegas moot, so they are not further described.

The main contribution of Vegas is a congestion-avoidance algorithm based on estimating the

bandwidth between two communicating endpoints that attempts to keep a connection’s

bandwidth utilization within an acceptable range. Vegas defines two values, alpha and beta, that

it uses to control the congestion window. Although the literature on Vegas describes its network

utilization mechanism as working in terms of bandwidth, the alpha and beta values are

measured in segments. In FreeBSD, the alpha and beta values are controlled via a pair of sysctl

variables, net.inet.tcp.cc.vegas.alpha and net.inet.tcp.cc.vegas.beta, and are set to 1 and 3

segments respectively. Every time an ACK is received, it is processed by the module’s

vegas_ack_received function. The vegas_ack_received function calculates the expected and

actual transmitting rate and then takes one of three actions:

1. If the difference between the expected rate and the actual rate is less than the alpha value,

Vegas will increase the congestion window by one on the next round trip.

2. If the difference is greater than the beta value, Vegas will decrease the congestion window by

one on the next round trip.

3. If the difference is between alpha and beta, then no action is taken.

Using alpha and beta acts as a damping function, preventing oscillations in the congestion

window that could occur due to minor but noncatastrophic changes in the condition of the

network.

877

The Cubic Algorithm

The Cubic algorithm is one of a new family of congestion-control algorithms designed to

ameliorate problems with underutilization of network links. For most of the history of TCP,

congestion-control algorithms operated in an environment where high bandwidth links also had

low latency, such as in a local-area network. Since the late 1990s, companies commonly

acquired their own private high-bandwidth links between remote locations. A typical example is

a company that operates in the United States as well as Japan. It is common to have a 1-Gbit per

second link between Tokyo and San Francisco with a round-trip time of about 110 milliseconds.

Using the traditional methods of increasing the congestion window found in New Reno and

Vegas, a single connection would take almost 10 minutes to discover the available bandwidth

because the window only increases once per round trip. Trying to address the problem of

underutilizing the link by simply making TCP more aggressive does not work because that leads

to all the connections fighting each other over the available bandwidth, causing drops and

eventually leading to congestion collapse typical in the early days of the Internet [Jacobson,

1988].

The CUBIC congestion-control algorithm works in two phases to find the correct congestion

window. The names for the phases relate to the shape of the CUBIC function that has two areas,

one concave and the other convex. When CUBIC is aggressively increasing the congestion

window, it is in the concave region, but as the congestion window approaches the targeted

maximum value it switches into the concave region so that the congestion window grows more

slowly and does not accidentally overshoot the theoretical maximum size.

14.7 Stream Control Transmission Protocol (SCTP)

For most of the history of the TCP/IP protocol suite, there have been two main transport

protocols. Network application designers were forced to choose between a reliable, ordered,

byte-stream protocol, TCP, and an unreliable, unordered protocol with clear message

boundaries, UDP. The socket API was designed to also handle a reliable message-oriented

transport protocol that could be selected by supplying SOCK_SEQPACKET as the type

argument to the socket system call. Sequential-packet protocol sockets were originally added to

4.2BSD to support the Sequenced-Packet Protocol (SPP) from the Xerox Network System

[Xerox, 1981] and the Delta-t protocol from Lawrence Livermore National Laboratories [Watson,

1989].

The Stream Control Transmission Protocol (SCTP) was designed to provide a reliable

message-oriented transport protocol [Stewart et al., 2000; Stewart et al., 2011]. SCTP is a direct

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_417
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref24

878

replacement for TCP, but this section concentrates on the qualities that make it useful as a

sequenced-packet protocol and also discusses some of the novel features that are not present in

other transport protocols.

A sequential-packet protocol differs from a byte-stream protocol in one important way: each

message is always sent and received by the application as a whole unit. A message may be

broken up into smaller packets for transmission on the network. When an application sends the

data, it is guaranteed that all the data passed into the sendto call is received at the destination in

a single call to recvfrom, so long as the buffer passed to the recvfrom routine is capable of

holding the entire message. When an application tries to receive a message that is larger than

the buffer supplied in the recvfrom call, the kernel fills the buffer, discards the rest of the

message, and returns without the MSG_EOR flag set. The only way to know that a message

received is complete is to check for the MSG_EOR flag on return from the recvfrom routine.

In addition to support for a message-based protocol, SCTP has several features that are

improvements on the work done in TCP including enhanced security, multihoming,

multistreaming, and heartbeats that track the health of a connection.

When applications use TCP, each connection stands on its own and is unrelated to other streams

of data that might be moving between the same hosts. SCTP implements associations to

uniquely identify the endpoints of communication using source and destination network

addresses as well as ports to differentiate one association from another. Within an association

there can be multiple streams of data, each with its own set of performance parameters. Much

like TCP, an association may contain one or more streams that are reliable ordered byte streams.

The association may also contain one or more streams in which the data is ordered but has

message boundaries. Each association can support up to 65,536 independent streams.

Chunks

Every SCTP packet begins with a common packet header as shown in Figure 14.9. The only

information encoded in the header is the source and destination port, verification tag, and a

checksum over the rest of the data contained in the packet. The header is followed by one or

more chunks that are encoded as type / length / value tuples with an embedded set of flags, as

shown in Figure 14.10. All the fields in SCTP packets are encoded so that they fall on 32-bit

boundaries, making them easier to work with on commonly available 32- and 64-bit processors.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig10

879

Figure 14.9 SCTP packet header.

Figure 14.10 SCTP chunk.

The minimum required set of the SCTP chunk types is shown in Table 14.6. Extensions to the

SCTP protocol have defined new types but they are beyond the scope of this book. A more

complete discussion of the SCTP protocol and extensions can be found in Stewart & Xie [2002].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14tab06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref21

880

Table 14.6 SCTP chunk types.

Association Setup

SCTP sets up an association between two endpoints using a four-way handshake. Setting up a

TCP connection only requires three packets, SYN, SYN/ACK, and ACK, but this approach has

left TCP vulnerable to denial-of-service attacks, called SYN floods. A SYN attack works because

TCP has no built-in mechanism for deciding whether a connection is meant to succeed or if it is

meant purely to exhaust the kernel’s resources. The syn-cache and syn-cookies described in

Section 14.4 were designed to overcome the problems caused by using a three-way handshake.

The association setup phase of SCTP is designed to foil denial-of-service attacks.

Association setup begins with a client sending a packet with an INIT chunk to a server on the

network. The INIT packet contains a 32-bit random number in the verification tag that is used

during the remainder of the four-way handshake. When the server receives an INIT packet it

generates its own verification tag as well as a state cookie. The state cookie contains the

minimum amount of state required by a host to re-create a valid protocol control block, a

timeout that limits the lifetime of the cookie, and a verification tag generated using the cookie

data and a private key. The verification tag is protected using a message authentication code as

described in Krawczyk et al. [1997]. The private key does not need to be shared between hosts. It

is used only to verify that the cookie that was generated by the server is the same cookie that is

returned by the client at the end of the association process. The server now creates a packet with

an INIT-ACK chunk containing the verification tag created by the client, the new verification tag

from the server, and the state cookie. When the client receives the INIT-ACK packet, it

immediately creates a packet with a COOKIE-ECHO chunk and transmits the cookie back to the

server. When the server receives the COOKIE-ECHO chunk from the client, it validates the state

cookie and if the signature and data are correct and the cookie has arrived within the requisite

timeout, the association is instantiated. The final step in association setup is for the server to

send a packet with a COOKIE-ACK chunk back to the client. Once the client has received the

packet containing the COOKIE-ACK chunk, the association is complete. To ameliorate the

overhead involved in setting up an association with a four-way handshake, SCTP can transmit

data in the packets that contain the COOKIE-ECHO and COOKIE-ACK chunks, thereby

reducing the time between association initiation and the initial data transfer. Any host that

attempts to flood another host on the network with INIT packets, similar to a SYN flood, does

not cause the kernel to set up or maintain any state as no state is required until the

COOKIE-ECHO is received. At the point in the handshake at which the COOKIE-ECHO has

been received, the kernel has confirmed the legitimacy of the connection by decoding a packet

that it cryptographically signed with its own key.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref13

881

Data Transfer

Once an association has been set up between two endpoints, SCTP can start transferring data.

All data transferred with SCTP are part of a distinct stream within the association. Each stream

has a unique stream identifier. Two different sequence numbers are tracked by SCTP while

transferring data. The stream sequence number tracks where data are in a particular stream and

ensures the correct ordering of messages within a stream. The transmission sequence number

(TSN) tracks chunks for the whole association, and is responsible for guaranteeing reliable

delivery of chunks. Mechanisms such as selective acknowledgment are applied to the entire

association using the TSN to track chunks and to ensure that any missing chunks are eventually

retransmitted and delivered.

When an application is using SCTP as a sequenced-packet transport, the program receiving the

data checks for the MSG_EOR flag to be set in the struct msghdr returned by the recvmsg

routine. To provide a message-oriented service, SCTP has several functions that work together

to take an arbitrary-size message and ensure that either it all arrives at the other end of the

association or that an error is returned to the caller of sendto.

A program using TCP to send distinct records between two endpoints needs to introduce a

marker into the stream of data to identify record boundaries. Even with these record markers, it

is impossible to force TCP to transmit data as records because TCP does not identify the

application-level boundaries. Programs using SCTP do not need to introduce record boundaries

because the basic unit of data transfer is the data chunk. As shown in Figure 14.11, a data chunk

is the abstraction used by SCTP to encapsulate application data for transmission on the network.

All chunks in SCTP have a common header that includes a type, a set of flags, and a length. The

length field is 16 bits. Hence, the maximum amount of data that can be described by a chunk is

64 Kbyte. The length-field’s value must include the size of the header and any user data making

the effective maximum size of a single chunk 64 Kbyte minus 16 bytes or 65520 bytes. Messages

built from chunks can be much larger than 64 Kbyte because SCTP uses the TSN to keep all the

chunks in sequence. On FreeBSD systems with the default socket buffer size, the effective size of

a message passed to a single send call is limited to 225 Kbyte. With larger socket buffers, a single

message could span several megabytes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig11

882

Figure 14.11 SCTP data chunk. TSN–transmission sequence number.

When a program calls the sendto system call on a socket opened with SOCK_SEQPACKET, the

data eventually arrive in the sctp_sosend() routine as a uio structure. After a small amount of

processing to extract any control data, the uio structure is passed to sctp_lower_sosend() where

the real work of transmitting SCTP data begins. Data in SCTP is placed on one or more

associations that are stored in the sctp_inpcb structure, the network-layer protocol control

block for SCTP. One feature of SCTP is the ability to send a chunk of data on all the associations

that are currently active for a socket. The code that handles one-to-many style of

communication adds considerable complexity to the system and is not described here.

Sending data to a new unconnected address is considered an implicit send and requires the

protocol to set up a new association, holding the data chunk until association setup is complete.

After the the correct association is found, the data are queued for transmission by a call to

sctp_chunk_output(). The data passed into the kernel are converted into a chunk structure by

the sctp_move_to_outputqueue() routine. Each association has its own send-queue structure

on which chunks are placed before they are transmitted. Chunks are kept in one of two queues,

either the send_queue or the sent_queue queue, until they are properly acknowledged by the

system receiving the data. With the chunks now correctly placed on the send_queue, a call is

made to sctp_med_chunk_output() that checks to see if it is possible to send any data for the

association. Like TCP, SCTP must maintain a good understanding of network conditions

including any possible congestion. The sctp_med_chunk_output() routine is responsible for

checking the congestion window before deciding whether any data may be output. If there is

enough remaining space in the congestion window to send a packet, then

sctp_med_chunk_output() creates an mbuf chain to be output by

sctp_lowlevel_chunk_output(). It is sctp_lowlevel_chunk_output() that places proper IP or

IPv6 headers onto the packets and transmits the packets by calling the appropriate

network-layer output routine, ip6_output() or ip_output().

883

The handling of received packets in SCTP is easier than transmission because most of the

interesting features of SCTP have to do with where packets are sent. When a network-layer

protocol recognizes an SCTP packet, sctp_input() is called with the mbuf that was received from

the network. It immediately calls sctp_input_with_port() whose task is to tear the packet down

into a set of internal structures for use in determining where the packet should be delivered. The

bulk of the work done by SCTP when processing an incoming packet is handled by

sctp_common_input_processing(). This routine handles input from all the lower-layer network

sources. Data chunks are handled by the code in the sctp_process_data() routine. Each chunk is

checked to make sure that it is within the expected receive window and is then reassembled and

added to a read queue by a call to the sctp_add_to_reqdq() routine. Once the data are on the

read queue, it is the application’s responsibility to retrieve it through a system call such as

recvfrom. A call to recvfrom on a SEQPACKET socket will call into the sctp_soreceive() routine

and then into the sctp_sorecvmsg() routine, which is the final destination of all routines that

read data from an SCTP socket. If there is no data to be read when sctp_sorecvmsg() is called, it

will block in the sbwait state until data arrives or the socket is closed. With data available on the

read queue, the sctp_sorecvmsg() will copy the mbufs from the read queue. As data are being

received from the read queue, the sctp_user_rcvd() routine is called to calculate whether

enough space has been freed in the receiving socket to warrant signalling the sender with an

ACK that more data can now be sent. Once some amount of data has been read, the call to

sctp_sorecvmsg() will return control to the caller of the recvfrom system call with the data and

any ancillary or control information placed into the buffers passed in by the application.

Association Shutdown

Shutting down an association is a multistep process that can be started by either of the involved

hosts. When an application directs that an association is to be shut down, the sender puts the

association into the SHUTDOWN_PENDING state and sets the PCB so that no more data may

be sent. The sending host then waits until all the previously sent data has been acknowledged.

Once all the outstanding data has been acknowledged, the client sends a packet with a

SHUTDOWN chunk to the server. The host receiving the packet with the SHUTDOWN will set a

flag in its own PCB that is part of the association so that user-level programs can no longer send

more data. It then checks to see if it has any outstanding data to send to the client. If there are

outstanding data, the server will not continue the shutdown process until all the remaining data

have been acknowledged. Once all the previously sent data have been acknowledged by the

client, the server will send a packet with a SHUTDOWN-ACK packet. When the client receives

the packet with the SHUTDOWN-ACK chunk, it will reply with a packet with a

SHUTDOWN-COMPLETE chunk. When done, the association has been shut down.

884

Multihoming and Heartbeats

A goal of SCTP is to provide applications with a high-availability communication channel over

the Internet. Unlike a TCP connection, an SCTP association can have multiple network

addresses. Should an address become unreachable because of a network partition or other

failure, the association can choose to use another address to try to reach the endpoint.

Figure 14.12 shows an example of a multihomed host. A multihomed system is one that has two

or more interfaces on two or more networks. Each path through the network between the two

systems should be unique to provide complete protection against the loss of a single path. In the

public Internet, hosts do not have control over the path that their packets traverse and so the

protection from multi-homing an association is probabilistic. A corporate network, where an

administrator knows the full paths of all the underlying network links has a higher probability of

being able to use multi-homing effectively. Two multihomed hosts that shared the same network

would be no better than two hosts each with a single interface sharing the same network. Any

disruption in the shared path would break the association and the two hosts would be

disconnected.

Figure 14.12 Multihomed hosts.

User-level code communicating over SCTP indicates to the kernel that it will use a set of

addresses by calling the sctp_bindx() or sctp_connectx() (wrappers on the bind and connect

system calls respectively) depending on whether the program is receiving or initiating the

connection.

When a stream of data is traversing an association, problems such as network partitions are

immediately obvious because the flow of acknowledgment from the other end of the association

cease. An association that contains several network addresses needs a way to ensure that all of

the addresses that make up the association are still reachable. SCTP maintains reachability

information for every network address that is a part of an association by sending periodic

heartbeat requests to any address that is part of an association but which is not the active

participant in current communication. When SCTP is communicating to a foreign host, there is

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14fig12

885

one primary address and one or more addresses that can be used if the primary fails. When

there is no data flowing across an association, heartbeat requests are sent to all the addresses to

ensure that they are all reachable. A host that receives a heartbeat request immediately sends

back a heartbeat response. When a host receives a heartbeat response for a previously

transmitted request, the kernel updates the state of the association and then sets a timeout using

the callout subsystem so that another heartbeat request will be sent at the next timeout interval

in the future. The default timeout interval is 30 seconds plus the estimated retransmission

timeout between the source and destination addresses, with a small amount of jitter added so

that heartbeat packets do not become closely synchronized with each other.

The initial heartbeat timeout is set when the protocol control block is created in the

sctp_inpcb_alloc() routine. All the timers in SCTP are handled by a centralized routine,

sctp_timer_handler(), that calls various helper routines depending on the type of the timer that

has expired. When the heartbeat timer expires, a call to sctp_heartbeat_timer() figures out

whether a heartbeat acknowledgment has been received. If a heartbeat acknowledgment has

been received, then the timer is simply re-armed and another heartbeat request is sent. When a

heartbeat acknowledgment has not been received, then the address is considered to be partially

failed. The kernel will continue to contact a partially failed address up to five times before that

address is removed from use.

Heartbeat requests are handled directly during packet input by a call to

sctp_send_heartbeat_ack() that immediately packs up and sends a heartbeat acknowledgment

back to the sender of the request. No other processing is required on reception of a heartbeat

request.

Exercises

14.1 What might cause a connection to linger forever when closing?

14.2 Is TCP a transport-, network-, or link-layer protocol?

14.3 Why are TCP and UDP protocol control blocks kept on separate lists?

14.4 Why does the output routine, rather than the socket-layer send routine (sosend()), check

the destination address of an outgoing packet to see whether the destination address is a

broadcast address?

14.5 Why does the TCP header include a header-length field even though it is always

encapsulated in an IP packet that contains the length of the TCP message?

886

14.6 What is the flow-control mechanism used by TCP to limit the rate at which data are

transmitted?

14.7 How does TCP recognize messages from a host that are directed to a connection that

existed previously but has since been shut down (such as after a machine is rebooted)?

14.8 When is the size of the TCP receive window for a connection not equal to the amount of

space available in the associated socket’s receive buffer? Why are these values not equal at that

time?

14.9 What are keepalive messages? For what does TCP use them? Why are keepalive messages

implemented in the kernel rather than, say, in each application that wants this facility?

14.10 Why is calculating a smoothed round-trip time important, rather than, for example, just

averaging calculated round-trip times?

14.11 Why does TCP delay acknowledgments for received data? What is the maximum time that

TCP will delay an acknowledgment?

14.12 Explain what the silly-window syndrome is. Give an example in which its avoidance is

important to good protocol performance. Explain how the FreeBSD TCP avoids this problem.

14.13 What is meant by “small-packet avoidance?” Why is small-packet avoidance bad for

clients (e.g., the X Window System) that exhibit one-way data flow and that require low latency

for good interactive performance?

14.14 Name two features that are in SCTP but are not in TCP.

14.15 What is an SCTP association?

14.16 How does the four-way handshake in SCTP defend against denial of service attacks?

*14.17 Why is the initial sequence number for a TCP connection selected at random, rather than

being, say, always set to zero?

*14.18 In the TCP protocol, why do the SYN and FIN flags occupy space in the

sequence-number space?

*14.19 Describe a typical TCP packet exchange during connection setup. Assume that an active

client initiated the connection to a passive server. How would this scenario change if the server

tried simultaneously to initiate a connection to the client?

887

*14.20 Sketch the TCP state transitions that would take place if a server process accepted a

connection and then immediately closed that connection before receiving any data. How would

this scenario be altered if FreeBSD TCP supported a mechanism where a server could refuse a

connection request before the system completed the connection?

*14.21 How does UDP match the completely specified destination addresses of incoming

messages to sockets with incomplete local and remote destination addresses?

*14.22 The maximum segment lifetime (MSL) is the maximum time that a message may exist in

a network—that is, the maximum time that a message may be in transit on some hardware

medium or queued in a gateway. What does TCP do to ensure that TCP messages have a limited

MSL? What does IP do to enforce a limited MSL? See Fletcher & Watson [1978] for another

approach to this issue.

*14.23 Why does TCP use the timestamp option in addition to the sequence number in

detecting old duplicate packets? Under what circumstances is this detection most desirable?

**14.24 Describe a protocol for calculating a bound on the maximum segment lifetime of

messages in an Internet environment. How might TCP use a bound on the MSL (see exercise

14.22) for a message to minimize the overhead associated with shutting down a TCP

connection?

**14.25 Describe path MTU discovery. When the MTU of a path has suddenly increased, can

FreeBSD take advantage it? Why or why not?

References

Allman et al., 2002.

M. Allman, S. Floyd, & C. Partdrige, “Increasing TCP’s Initial Window,” RFC 3390, available

from http://www.faqs.org/rfcs/rfc3390.html, October 2002.

Allman et al., 2009.

M. Allman, V. Paxson, & E. Blanton, “TCP Congestion Control,” RFC 5681, September 2009.

Bellovin, 1996.

S. Bellovin, “Defending Against Sequence Number Attacks,” RFC 1948, available from

http://www.faqs.org/rfcs/rfc1948.html, May 1996.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#ch14ref08
http://www.faqs.org/rfcs/rfc3390.html
http://www.faqs.org/rfcs/rfc1948.html

888

Brakmo & Peterson, 1995.

L. Brakmo & L. Peterson, “TCP Vegas: End to end congestion avoidance on a global Internet,”

IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, August

1995.

Budzisz et al., 2009.

L. Budzisz, R. Stanojevic, R. Shorten, & F. Baker, “A strategy for fair coexistence of loss and

delay-based congestion control algorithms,” IEEE Comm Lett, vol. 13, no. 7, pp. 555–557, July

2009.

Cerf & Kahn, 1974.

V. Cerf & R. Kahn, “A Protocol for Packet Network Intercommunication,” IEEE Trans. on

Communications, vol. 22, no. 5, pp. 637–648, May 1974.

Clark, 1982.

D. D. Clark, “Window and Acknowledgment Strategy in TCP,” RFC 813, available from

http://www.faqs.org/rfcs/rfc813.html, July 1982.

Fletcher & Watson, 1978.

J. Fletcher & R. Watson, “Mechanisms for a Reliable Timer-Based Protocol,” in Computer

Networks 2, pp. 271–290, North-Holland, Amsterdam, The Netherlands, 1978.

Ha et al., 2008.

S. Ha, I. Rhee, & L. Xu, “CUBIC: A new TCP-friendly high-speed TCP variant,” ACM SIGOPS

Operating Systems Review, vol. 42, no. 5, pp. 64–74, July 2008.

Henderson et al., 2012.

T. Henderson, S. Floyd, A. Gurtov, & Y. Nishida, “The NewReno Modification to TCP’s Fast

Recovery Algorithm,” RFC 6582, available from http://www.faqs.org/rfcs/rfc6582.html, April

2012.

Jacobson, 1988.

V. Jacobson, “Congestion Avoidance and Control,” Proceedings of the ACM SIGCOMM

Conference, pp. 314–329, August 1988.

http://www.faqs.org/rfcs/rfc813.html
http://www.faqs.org/rfcs/rfc6582.html

889

Jacobson et al., 1992.

V. Jacobson, R. Braden, & D. Borman, “TCP Extensions for High Performance,” RFC 1323,

available from http://www.faqs.org/rfcs/rfc1323.html, May 1992.

Krawczyk et al., 1997.

H. Krawczyk, M. Bellare, & R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,”

RFC 2104, available from http://www.faqs.org/rfcs/rfc2104.html, February 1997.

Leith et al., 2005.

D. Leith, R. Shorten, & Y. Lee, “H-TCP: A framework for congestion control in high-speed and

long-distance networks,” PFLDnet Workshop, February 2005.

Mathis et al., 1996.

M. Mathis, J. Mahdavi, S. Floyd, & A. Romanow, “TCP Selective Acknowledgment Options,”

RFC 2018, available from http://www.faqs.org/rfcs/rfc2018.html, October 1996.

Mogul & Deering, 1990.

J. Mogul & S. Deering, “Path MTU Discovery,” RFC 1191, available from

http://www.faqs.org/rfcs/rfc1191.html, November 1990.

Nagle, 1984.

J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, available from

http://www.faqs.org/rfcs/rfc896.html, January 1984.

Postel, 1980.

J. Postel, “User Datagram Protocol,” RFC 768, available from

http://www.faqs.org/rfcs/rfc768.html, August 1980.

Postel, 1981.

J. Postel, “Transmission Control Protocol,” RFC 793, available from

http://www.faqs.org/rfcs/rfc793.html, September 1981.

Scheifler & Gettys, 1986.

http://www.faqs.org/rfcs/rfc1323.html
http://www.faqs.org/rfcs/rfc2104.html
http://www.faqs.org/rfcs/rfc2018.html
http://www.faqs.org/rfcs/rfc1191.html
http://www.faqs.org/rfcs/rfc896.html
http://www.faqs.org/rfcs/rfc768.html
http://www.faqs.org/rfcs/rfc793.html

890

R. W. Scheifler & J. Gettys, “The X Window System,” ACM Transactions on Graphics, vol. 5, no.

2, pp. 79–109, April 1986.

Stewart & Xie, 2002.

Stewart, R & Xie, Q, Stream Control Transmission Protocol (SCTP): A Reference Guide,

Addison-Wesley Longman, Reading, MA, 2002.

Stewart et al., 2000.

Stewart, R, Xie, Q, Morneault, K, Sharp, C, Schwarzbauer, H, Taylor, T, Rytina, I et al., M,

“Stream Control Transmission Protocol,” RFC 2960, available from

http://www.faqs.org/rfcs/rfc2960.html, October 2000.

Stewart & Healy, 2007.

L. Stewart & J. Healy, Light-weight modular TCP congestion control for FreeBSD 7, available

from http://caia.swin.edu.au/reports/071218A/CAIATR-071218A.pdf, December 2007.

Stewart et al., 2011.

R. Stewart, M. Tuexen, K. Poon, P. Lei, & V. Yasevich, “Sockets API Extensions for the Stream

Control Transmission Protocol (SCTP),” RFC 6458, available from

http://www.faqs.org/rfcs/rfc6458.html, December 2011.

Watson, 1989.

R. W. Watson, “The Delta-t transport protocol: features and experience,” Proceedings of the

14th Conference on Local Computer Networks, pp. 399–407, October 1989.

Xerox, 1981.

Xerox, “An Internetwork Architecture,” XSIS 028112, Xerox Corporation, Stamford, CT,

December 1981.

http://www.faqs.org/rfcs/rfc2960.html
http://caia.swin.edu.au/reports/071218A/CAIATR-071218A.pdf
http://www.faqs.org/rfcs/rfc6458.html

891

Part V: System Operation

Chapter 15. System Startup and Shutdown

Most of this book focuses on the FreeBSD kernel’s steady state: the invariants maintained

during operation and the kernel services provided to local processes or, for network services, to

remote systems. In this chapter, we describe how the kernel is bootstrapped and shut down. The

details of the boot process vary significantly by hardware type and anticipated deployment but

share a common structure involving the system firmware, its basic input-output system (BIOS),

a variable number of stages of FreeBSD-provided boot loaders, the kernel boot, and finally

userspace.

System operation begins, and often ends, with vendor-provided firmware that abstracts away

low-level variations in the hardware environment. The firmware also provides information on

processor, memory, bus, and peripheral device configuration to the kernel, and may provide

power-management services. The interfaces to system firmware differ substantially across

platforms, vendors, and deployment environments: workstations and servers have different

operational models than embedded devices, all of which must be taken into account by the

FreeBSD kernel. Higher-end systems often have firmware support for remote management

features and network booting, over which FreeBSD layers multiple stages of scripted boot

loaders, the kernel, and optionally loaded kernel modules. By contrast, embedded and small

personal devices tend to have more constrained boot processes in which a simple firmware

copies a statically linked kernel out of flash to main memory and then jumps to its starting

address to begin execution. In lower-end environments, FreeBSD may boot from a read-only

filesystem image in flash and run a single specialized application.

Kernel boot and shutdown are complex processes that depart from normal execution paths and

hence require careful attention to detail. A key concern during boot is the set of dependencies

between components: filesystems cannot be mounted until storage devices have been

enumerated. In turn, storage device drivers depend on initialization of lower-level features such

as scheduling and virtual memory. Historically, system shutdown has required somewhat less

finesse: freeing each allocated piece of memory is unnecessary as the contents of memory will be

lost on powerdown or reinitialized on reboot. The introduction of virtual network stacks has,

however, forced increasing numbers of subsystems to provide explicit and carefully designed

destructors. Dependencies remain important: user processes must be safely shut down before

filesystems can be unmounted, which in turn depends on draining I/O queues to storage devices

892

before power is turned off. The kernel defines linker-based frameworks to manage these

complex dependencies: the frameworks allow components to register functions for ordered

execution during the boot and shutdown processes. The frameworks also allow code to have a

common structure independent of whether the code is linked into the kernel itself or loaded via

a module at boot or run time.

This chapter traces the boot process starting with the firmware and boot loaders, then the kernel

startup, and finally the startup and shutdown of userspace. The final section examines topics

that are related to the startup procedure. These topics include configuring the kernel load image,

shutting down a running system, and debugging system failures.

15.1 Firmware and BIOSes

The boot process begins with the initial hardware reset as power is turned on, but can also be

triggered following a system-administrator-requested reboot, or a system crash and reset.

Processors begin execution in vendor-provided firmware stored in ROM or memory-mapped

flash referred to as the BIOS. The firmware performs several functions, depending on the device

and vendor, including:

• Initializing low-level hardware features such as CPU caches, programmable interrupt

controllers, bridges, and memory controllers.

• Running a set of boot-time diagnostics, checking CPU and memory functionality, and issuing

warnings if the system may not be able to operate in production. The firmware may maintain a

log of past failures—for example, a list of ECC-memory error recoveries.

• Providing pre-boot administrative services to configure RAID, remote management, and

boot-device choice.

• Coordinating multiprocessor startup; a boot processor will be nominated, and other processors

put in a suspended state awaiting operating-system initialization.

• Performing boot-time hardware discovery to identify and initialize devices from which an

operating system may be loaded; for example, the firmware will enumerate locally attached

media such as USB devices, CD-ROMs, and hard disks suitable for local booting, and it will

identify Ethernet devices suitable for network booting.

• Loading and updating manufacture-time hardware descriptions based on the firmware’s

knowledge of the processor, chipset, and peripherals on the integrated device. This information

will be exported to the boot loader and operating system via a scheme such as the advanced

893

configuration and power interface (ACPI) on X86 systems or Flattened Device Trees (FDT) on

many embedded systems.

• Continuing, optionally, to provide run-time services via a system management mode on the

main processor or an embedded management processor, even as the operating system runs.

These run-time services may include features such as power management and remote-console

access (e.g., serial-over-LAN).

• Providing both I/O services and device-enumeration services to support the bootstrap of

standalone programs.

• Loading and executing code from the selected boot device.

After a variety of boot-time diagnostics, handling any administrative requests, and selecting a

target boot device, the BIOS’s next responsibility is to start bootstrapping the operating system

by loading and executing the initial code. It also provides continuing early I/O and

system-configuration services for the nascent operating-system loader and kernel. Firmware

such as the PC BIOS, U-Boot, and Open Firmware will provide operating-system-like disk and

network I/O routines until the kernel’s device drivers are in operation, as well as descriptions of

hardware devices that cannot be automatically enumerated, such as PCI root bridges.

In the past, PC firmware has rarely understood the filesystems of the operating systems that

they must load; instead, the startup procedure read a program from a reserved area of the boot

disk. The recent Unified Extensible Firmware Interface (UEFI) standard requires that new

BIOSes support the FAT filesystem as an origin for later boot stages, a feature long supported in

embedded and server firmware such as U-Boot and Open Firmware [Forum, 2013]. UEFI also

brings security features such as cryptographically verified boot loading to X86, which will see

increasing support in forthcoming FreeBSD versions.

15.2 Boot Loaders

The role of the operating-system boot-loader sequence is similar to that of the firmware:

bootstrap the higher-level operating system using a restricted set of lower-level facilities. It also

facilitates security, management functions, and failure recovery. Multiple stages are often used

as each successive stage is able to have a larger code footprint and can rely on services and

accumulated configuration state provided by the previous stage.

The first-stage boot loader on a conventional X86 system is limited to a single 512-byte sector,

which is insufficient space for code that can interpret filesystems. Hence, the first-stage boot

loader’s only job is to determine a boot-partition and load a larger and more comprehensive

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref02

894

boot phase from a specified sector. Later boot phases are more complete execution

environments that include filesystem and networking support, allow preloading of

cryptographic keys, can be scripted in a high-level language, and support an interactive menu to

allow recovery from a failed upgrade.

Embedded systems trade off boot-loader size and complexity, depending on the capabilities of

the physical platform and maturity of the integrated firmware. At one extreme, boot loaders

from operating-system vendors are entirely avoided for reasons of space; at the other, the

complete X86-like boot sequence, including scriptable loader, will be present and will offer

greater flexibility.

Master Boot Record and Globally Unique Identifier Partition Table

When the X86 BIOS has selected a disk device for booting, the BIOS loads the first sector into

memory at a fixed location and executes it. On most disk devices, this first sector will contain a

master boot record (MBR). The 512-byte sector, illustrated in Figure 15.1, contains a fragment of

boot code, disk layout information, a four-entry partition table, and a magic number (signature)

that will be checked to confirm a valid boot sector is present. To continue the boot, the BIOS

jumps into the operating system’s boot code once it has been loaded into RAM. FreeBSD

supports two different partitioning schemes on X86: mbr, the default prior to FreeBSD 9.0,

implements the fdisk partitioning scheme from MS-DOS; and pmbr, the default in FreeBSD 9.0

and later, implements the more recent globally unique identifier partition table (GPT) scheme,

which supports greater numbers of partitions and larger disk sizes.

Figure 15.1 X86 boot-time-partition data structures: master boot record (MBR) and globally

unique identifier partition table (GPT).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15fig01

895

GPT is a multisector successor to MBR that provides an additional header in sector 1, described

by the gpt_hdr structure, and further sectors containing a variable-length table of partition

entries, described by gpt_ent structures. FreeBSD 9.0 and later use GPT via the pmbr boot

loader written to the first sector by the installer, although these versions continue to support

optional use of fdisk partitions if required for compatibility. When GPT is used, the boot sector

contains a special variant of the MBR called a protective MBR (PMBR). The PMBR describes a

single partition of the GPT type, causing pmbr to load the GPT and scan it for a freebsd-boot

partition (typically sized at 64 Kbyte). If found, pmbr will load the first 545 Kbyte of that

partition into memory, which will contain gptboot, the next-stage boot loader. The final action

for pmbr is to jump into the loaded code.

The Second-Stage Boot Loader: gptboot

The second-stage boot loader, gptboot, can be a substantially larger multisector program as it

is loaded from a partition and is not limited by the space constraints of the PMBR. This

additional space allows for significantly more functionality, including support for loading

configuration data and later boot code from filesystems rather than simply disk sectors. The

gptboot boot loader has several tasks:

1. Transition to protected mode so that the boot loader can access more than the 1 Mbyte

available to the 16-bit X86 MBR execution environment. This transition is done by the i386 boot

extender (BTX) library against which gptboot is linked. BTX is a protected-mode monitor that

executes the majority of the boot loader with access to a larger virtual address space, but is still

able to forward requests to the BIOS by temporarily switching back to 16-bit real mode.

2. Accept a set of boot flags, which may be entered interactively on a video or serial console, or

loaded from the configuration file /boot.config. The flags will be passed to the next boot stage

via an instance of the bootinfo structure. Boot flags select features such as single-user mode,

verbose logging, or immediate entry to the kernel debugger on start.

3. Load and start the ELF-formatted next-stage boot loader /boot/loader or a kernel from a

filesystem in a GPT partition type of freebsd-ufs using read-only UFS support. A variation of

gptboot named gptzfsboot will likewise search for a ZFS filesystem stored in a GPT partition

of type freebsd-zfs; for RAIDZ, multiple partitions may be used.

The Final-Stage Boot Loader: /boot/loader

The final-stage loader, /boot/loader, is a scriptable, interactive boot environment that can:

896

• Prompt the user for input via a boot menu or command line;

• Offer a choice of kernels to load;

• Inspect and modify kernel environment variables that will be passed to the next phase of the

boot;

• Preload kernel modules; and

• Preload filesystem data such as GELI keys or memory-disk images.

The /boot/loader’s menu-driven user interface is implemented via scripts executed by a

built-in Forth interpreter, libficl, making more complex boot-time customization

straightforward. The interpreter has access to a broad set of system APIs provided by libstand,

a bare-metal system library. The libstand library implements POSIX-like APIs used by libficl,

as well as filesystem access to UFS, ZFS, CD9660, and NFS. As with gptboot, /boot/loader is

linked against BTX, and so has access to BIOS services while running in protected mode.

When the loader starts, it will execute the script /boot/loader.4th, which will then load

/boot/kernel/kernel and any modules enabled in /boot/loader.conf. The loader then

presents a boot menu and begins a countdown that can be interrupted by the user. If requested

by the user, the loader will drop to a command-line interpreter on the console and await input; a

list of commands is shown in Table 15.1. The most commonly used commands are the “unload”

command, to remove the default kernel, followed by the “load” command, to load an alternative

kernel. Typically, the alternative kernel being loaded is /boot/kernel.old/kernel, saved by

the kernel build system when installing a new kernel, in case the new kernel proves to be faulty.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab01

897

Table 15.1 /boot/loader user commands on X86.

The kernel is started by issuing the “boot” command, either by the user or because the

countdown has reached 0. The details of the boot command are machine dependent, but for

systems without a hardware-provided mapping of physical addresses into the virtual-address

space, may include setting up initial memory mappings for physical memory.

898

As with gptboot, /boot/loader expects the next-stage binary to be an ELF file, and will pass a

bootinfo structure pointer as an argument to the kernel, illustrated in Figure 15.2. As with

/boot/loader before it, gptboot will pass on boot flags such as that for single-user mode.

Unlike gptboot, it will also pass kernel-environment variables set during the boot, preloaded

module data, memory-size information, memory-filesystem images, and ACPI table references,

which will be used early in kernel boot by the virtual memory system and kernel linker.

Figure 15.2 The bootinfo structure passed by the boot-loader to the kernel.

Boot Loading on Embedded Platforms

Whereas X86 workstations and servers are resource-rich platforms intended to be maximally

flexible in terms of deployment environments and workloads, embedded systems are often

resource-poor environments tuned to reduce cost, size, and energy use to the minimum required

for their specific function. The firmware, boot loader, and operating system may all be tuned for

small size or reduced functionality, and hence vary significantly in terms of the software features

present.

Very low-end devices such as network switches may have a small firmware that directly loads

and begins execution of the FreeBSD kernel without any further boot-loader stages. Where the

operating-system boot loaders are present, they may be stripped of features to reduce their size,

compared to similar code on server-class platforms. This is the case for the ARM version of

FreeBSD’s boot2, a predecessor to gptboot; in contrast, the MIPS port of boot2 is a full

adaptation of the feature-rich X86 code.

Higher-end embedded devices may provide sufficiently mature and scriptable loader

environments, such as U-Boot, with the result that the flexibility gained from /boot/loader

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15fig02

899

offers little additional benefit. Other devices use both U-Boot and ubldr, a version of

/boot/loader customized to run over U-Boot’s firmware services. Some MIPS targets also use

the /boot/loader. On systems where FreeBSD provides a boot loader but firmware is unable to

provide I/O abstractions, the boot loader may need to incorporate device drivers [Davis et al.,

2014]. Embedded environments also benefit from industry-wide reduction in size and energy

use in integrated circuits, and so are becoming more capable over time. Multistage, feature-rich

boot loaders will likely see increasing deployment to facilitate security, customizability, field

upgrade, and recovery.

15.3 Kernel Boot

After the firmware or boot loader has started the FreeBSD kernel, the kernel must initialize both

the hardware and its own data structures in preparation for the execution of application

programs. The initialization process is divided into four stages. In the first stage, handcrafted

assembly-language code will set up the hardware to allow more generic C-language code to

operate. The second stage continues machine-dependent initialization of hardware and core

data structures, but in the C language. After this stage’s completion, memory size will be known,

virtual addressing will be enabled, and features such as printf() and the kernel debugger will be

available. The third stage initializes a broader set of basic kernel services such as virtual memory,

scheduling, and synchronization. The fourth stage initializes higher-level services such as

filesystems and the network stack, starts kernel processes, and creates the first user-level

process to execute the init binary and user-level startup scripts.

The FreeBSD kernel attempts to rely on only limited aspects of machine state. At the point of

handoff from the boot loader, the following three conditions will be in effect:

1. All interrupts are blocked.

2. The memory management unit is configured so that a range of virtual addresses corresponds

directly to physical memory locations; for some architectures, this mapping requires specific

configuration actions such as the boot loader setting up suitable page tables and flushing the

TLB; for others, a hardware-supported, physically mapped region provides this mapping

automatically in kernel mode (e.g., MIPS).

3. The in-memory location of any firmware-provided configuration state, such as memory

configuration via the X86 ACPI or FDT tables, has been identified and passed to the kernel via

bootinfo.

The boot loader passes to the kernel the identity of the boot device, boot flags, and an initialized

kernel environment consisting of name and value pairs. In addition, it will pass on information

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref01

900

about preloaded modules including loadable kernel modules, memory images, and keying

material for cryptographically protected storage.

The kernel is loaded into physical memory at a known location—for many architectures this

location will be at a low physical address just above the location of interrupt-vector tables or

handlers. In normal operation, the kernel image is mapped into virtual memory at an address

near the top of the address space. For platforms without directly mapped regions, the kernel

image may initially appear at the bottom of the virtual address space. Until the kernel is mapped

to its permanent location, it requires assembly-language startup code to manually convert

between its initial temporary mapping and its eventual permanent mapping. The kernel is

usually loaded into contiguous physical memory, so the translation is simply a constant offset

that can be saved in an index register.

An early task of the startup code is to identify the type of CPU on which the system is executing.

Often, older versions of the CPU support only a subset of the complete instruction set. For these

machines, the kernel must emulate the missing hardware instructions in software. For

workstation and server architectures, FreeBSD can be configured such that a single kernel load

image can support all the models in an architecture family. For embedded systems, it is common

to have a kernel configuration tuned for each board or device, either because of space and

performance limitations, or because of a lack of common conventions for an instruction set,

hardware configuration, and boot-loader behavior. The early startup code may also call

machine-dependent code to initialize the CPU or virtual-memory subsystem.

Assembly-Language Startup

The first steps taken during initialization are carried out by assembly-language code in locore.S.

The goal of this code is to create a run-time environment that meets the expectations of the C

code that is to follow, primarily by providing a conformant stack frame (sometimes on a fresh

stack), and by initializing the register file to the C ABI that will be used by the kernel. It may also

initialize low-level processor features that affect memory management and addressing, so that C

code executes in a uniform and easily understood environment. Assembly code is minimized in

favor of C to the greatest extent possible. The work of locore.S is highly machine dependent

and includes the following:

• Identifying the CPU and its features

• Placing the processor into a known state; for example, by clearing the error flags on X86 and

clearing or setting coprocessor-enable bits on MIPS

• Creating an initial stack or stack frame for the early boot

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_104

901

• Clearing the bss area (pre-zeroed C-language global variables)

• Probing the physical-memory size

• Enabling virtual addressing

• Invoking platform-specific C-language startup code

• Handing over control to machine-independent C-language startup code

In ports to more recent architectures, locore.S has become increasingly minimal: whereas the

32-bit X86 code is several hundred lines of assembly, the 64-bit version is less than 20. The size

reduction reflects not only simplifications made by AMD in the 64-bit ISA design, but also

initialization functions shifting to the boot loader or platform-specific C-language startup code.

Platform-Specific C-Language Startup

Two C-language functions are called by locore.S: one for platform-specific initialization and a

second to proceed with the machine-independent boot (which will not return). The split allows

the machine-independent boot sequence to be done in a well-defined environment. The name of

the platform-specific initialization function varies by architecture; for 64-bit X86, it is

hammer_time; for embedded architectures such as ARM and MIPS, it is typically

platform_start. Platform-specific initialization will include most of the following steps:

• Further characterization of the CPU and configuration of its features, including caches,

memory-management unit, and floating-point unit

• Initialize and enable memory-management hardware, such as virtual-address translation or

caching for a hardware-supported directly mapped regions

• Set up interrupt, trap, exception vectors or handlers, and on architectures that require it,

segment registers and system calls

• Process data passed from the boot loader such as the kernel environment and preloaded

modules

• Tune kernel parameters—especially resource limits such as address-space and process

limits—based on environment variables and compile-time defaults

• Interpret firmware-provided data such as FDT hardware descriptions

902

• Calculate the amount of physical memory on the machine if the architecture does not provide

this information reliably via the firmware

• Set up the first kernel process and thread

• Initialize static and dynamic per-CPU storage for the boot processor

• Set up tables for multiprocessor or multithreaded operation, if necessary

• Initialize the kernel message buffer and console (enabling kernel printf())

• Initialize global locks such as Giant and the machine-dependent IPI lock

• Initialize the kernel debugger

• Invoke pmap_bootstrap to do early virtual-memory system initialization

Although the details of these steps vary from architecture to architecture, the broad outline

described here is applicable to any machine on which FreeBSD runs.

Modular Kernel Design

The kernel is a multimillion-line C program that runs on ‘bare metal,’ and hence must provide

its own run-time linker, memory allocator, threading model, synchronization primitives, work

models, and debugging tools. Higher-level kernel services such as device drivers, filesystems,

and network protocols depend on these lower-level primitives, providing facilities to one

another and to user processes via the system-call interface. To manage this complexity, most

kernel components are encapsulated in kernel modules that consume core-kernel primitives,

register services they offer via common frameworks (such as the device-driver framework), and

specify boot-order dependencies so that the kernel can ensure that any requirements are met

before any code is executed.

Modules can be compiled into the kernel binary itself, or as loadable kernel modules

compiled into separate ELF binaries that can be preloaded by the boot loader or loaded

dynamically. Loadable modules make it possible to extend the kernel at run time as new

requirements become apparent, adding significant flexibility. For example, device drivers can be

loaded when a new peripheral is plugged into a USB hub, and firewall command-line tools can

automatically load their corresponding kernel modules. In practice, many parts of the FreeBSD

kernel source can be compiled either into the kernel or into loadable modules without

source-code modification, depending on the kernel configuration used.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_198

903

A key design goal in the kernel is to avoid differentiating between modules that are linked into

the kernel and modules that are loaded dynamically. The same kernel programming interfaces

(KPIs) declare startup and stop functions, register with kernel frameworks, and so on. This

approach provides modularity without inhibiting practical deployment.

Module Initialization

In earlier versions of BSD, the kernel was brought up using handcrafted C code that implicitly

(and often correctly) encoded the dependencies of each subsystem by virtue of the order in

which subsystem initialization routines were invoked. An intimate understanding of the entire

operating system was needed for someone to add a new service or subsystem, which slowed the

evolution of the kernel and made it more difficult to customize the kernel for incorporation into

larger integrated products. A significant part of the extensibility benefit of kernel modules rests

on the core kernel being unaware of the specifics of modules until they are loaded. The SYSINIT

framework allows modules, whether compiled into the kernel, preloaded by the boot loader, or

loaded at run time, to declare a common set of ordered startup and shutdown functions.

Modules register startup functions via the static SYSINIT macro, and stop functions via

SYSUNINIT:

Click here to view code image

SYSINIT(name, subsystem, order, function, identifier)

SYSUNINIT(name, subsystem, order, function, identifier)

Module startup and stop functions are organized into a two-level hierarchy that determines the

order in which the function should be called during boot, module load, module unload, and

system shutdown. The subsystem argument is the first level of the hierarchy. Each subsystem is

assigned a particular numeric constant that creates the first-level ordering of the modules to be

loaded; an ordered list of subsystem identifiers is in the /sys/sys/kernel.h include file. The

second level of the hierarchy is handled by the order argument. If two modules are in the same

subsystem, the order determines which comes first.

The function argument is a pointer to the function that the kernel will invoke, and the identifier

argument is passed to the invoked function as its sole parameter. The identifier is often a

pointer to a data structure; this parameter allows a single function to be reused in multiple

contexts. For example, the function kproc_start() is used with several SYSINITs to start kernel

processes with varying names and is used for multiple subsystems.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p786pro01

904

The SYSINIT framework is implemented using linker sets: each use of one of its macros creates

a static data structure describing the specific startup or stop function and its properties. The

structure is tagged with a request that the compiler place its symbol in a special named section

in the ELF binary indicating whether it is to be run at startup or stop. After the

assembly-language startup code has completed its work, it calls the machine-independent

kernel start, mi_startup(). The kernel binary is scanned for symbols in the startup section,

whose target data structures are sorted and their function pointers called. This process will be

repeated later in the boot when preloaded kernel modules are runtime linked, as modules are

dynamically loaded and unloaded, and on system shutdown, using the corresponding named

section.

A similar technique allows modules to declare startup and stop functions to be run each time a

virtual network stack is instantiated or destroyed. Macros VNET_SYSINIT and

VNET_SYSUNINIT take identical arguments, but use different ELF sections, allowing modules

to easily perform per-network-stack setup and teardown.

Basic Kernel Services

Before higher-level services such as device drivers and filesystems can do any useful work,

FreeBSD must set up its basic kernel services, including virtual memory, the general-purpose

memory allocator, and the kernel linker. These services are shown in Table 15.2 in the order in

which they are done. All these services are initialized early in the machine-independent startup

sequence so that they can be used by the remainder of the kernel.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab02

905

Table 15.2 Basic kernel services.

SI_SUB_TUNABLES retrieves configuration values from the boot-time kernel environment and

installs them in global variables. Tunables are processed early in the boot as they override

compile-time defaults. Some may be adjusted at run time via sysctl, such as resource limits on

the number of TCP connections. Others commit the kernel to difficult-to-change resource

allocation choices, such as the size of the kernel address space, and so can be set only at boot

time.

SI_SUB_VM and SI_SUB_KMEM initialize the virtual-memory system and general-purpose

kernel memory allocator. The virtual-memory system is initialized by a call to vm_mem_init().

Once the vm_mem_init() routine has completed its work, all memory allocations by the kernel

or processes are for virtual addresses that are translated by the memory-management hardware

into physical addresses. The kernel’s malloc(), wrapped around the slab allocator for small

906

allocations, and the virtual-memory system directly for larger allocations, is initialized by a call

to mallocinit(). These subsystems are described in greater detail in Section 6.3.

SI_SUB_HYPERVISOR detects whether FreeBSD is running under Xen HVM, and if so, sets up

paravirtualized features such as Xen hypercall stubs and Xen-aware virtual-memory operations,

and disables emulated devices in favor of paravirtualized ones. Xen support is discussed in

greater detail in Section 8.10.

SI_SUB_WITNESS initializes the optionally compiled witness deadlock-prevention facility

described in Section 4.3. Witness tracks nested lock acquisitions, building a lock-order graph

that will provide debugging information to the developer if the possibility of deadlock arises.

The witness_initialize() routine allocates memory to hold lock-acquisition data used for

deadlock detection, and also installs any statically declared graph edges.

SI_SUB_MTX_POOL_DYNAMIC initializes the system’s pool of mutexes described in Section

4.3. Mutexes are generally allocated as global variables or embedded within data structures

allocated from the heap, keeping locks close to the data they protect. The pool of mutexes is an

array of mutexes looked up by hashing the pointer of an object that will return a

deterministically selected leaf lock for the object. The pool of mutexes is allocated early in the

boot so that it can be used by higher-level kernel subsystems.

SI_SUB_LOCK indicates the point in the boot at which it is safe for kernel modules to allocate

and initialize locks; it is used both directly by module functions registered with SYSINIT, and

indirectly through static-wrapper macros such as MTX_SYSINIT, RM_SYSINIT, RW_SYSINIT,

and SX_SYSINIT, which as arguments will take a pointer to a global lock, its flags, and its

description. Lock initialization occurs after SI_SUB_WITNESS in the boot so that storage is

available to track new lock classes from inception. Initialization must also occur before any

potential use of the locks in other subsystem code paths.

SI_SUB_EVENTHANDLER initializes the event-handler system, which allows the kernel and

its modules to register functions to be called when events of interest occur elsewhere in the

kernel. Event handlers are used to expose events such as network-interface arrival, departure,

and address changes, routing changes, the creation and destruction of processes, execution of

binaries, the creation and destruction of threads, system-shutdown stages, the filesystem mount

and unmount events, power events, kernel-module load and unload, watchdog timeouts, and

low-memory conditions. Event handlers may be declared statically using the

EVENTHANDLER_REGISTER macro, which uses SYSINIT to initialize the event handler early

in boot before any of the events it describes can occur.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_108

907

SI_SUB_VNET_PRELINK, used only for vnet_init_prelink(), performs early initialization of

virtual network-stack support and runs before most kernel modules have executed any code.

SI_SUB_KLD is complex as it calls many kernel functions associated with modules, linkage, and

memory allocation:

1. In the first phase, the kernel prepares for the linking and initialization of kernel modules. The

module registry is initialized by module_init() and will maintain administrative information on

modules such as their reference counts and descriptions suitable for export to userspace. The

kernel-linker framework is initialized, preparing lists and other data structures that will track

preloaded and dynamically loaded modules. Two special memory allocators are also initialized

before module events that will allocate memory: the dynamic per-CPU allocator by

dpcpu_startup(), and the virtual-network stack allocator by vnet_data_startup(). The

allocators have similar structures, providing frameworks for scoped global-memory allocation.

2. Next, individual linker classes will be initialized—in practice, they will consist of the

ELF-specific linker code, found in link_elf_init(), on all systems.

3. In the next phase, the ELF linker code will search the list of modules preloaded by the boot

loader for ELF kernel modules, process the symbols for each, and register them with the kernel

linker for later processing and initialization.

4. In the final stage, the registration of new linker classes is halted by linker_stop_class_add(),

and then modules linked into the kernel and those preloaded by the boot loader will be

registered and initialized by linker_init_kernel_modules() and linker_preload(). This

registration and initialization must sort the modules so that dependencies are taken into

account when invoking the module constructors. Loadable kernel module SYSINITs with

subsystems prior to SI_SUB_KLD will have those startup functions invoked only after module

linking and registration have taken place. Modules are able to register optional command-line

extensions to the kernel debugger, such as data-structure pretty printers. These extensions are

also processed in this phase.

SI_SUB_CPU is responsible for initializing several CPU-related services, including time-counter

synchronization that is required to implement kernel callouts. It is also responsible for starting

execution of additional processors in multiprocessor configurations. Starting additional

processors requires a blend of machine-dependent and machine-independent code performed

as a series of phases:

1. The first phase is done by a set of machine-dependent cpu_startup() functions. Kernel

virtual-memory configuration is completed by calling vm_ksubmit_init(), which allocates

908

virtual address space for paging and I/O, swap, and transition bio storage. In general, kernel

memory is not pageable, but two pageable submaps are initialized to hold arguments to execve

and for pipe storage. The buffer cache will be initialized by bufinit(), including data structures,

current and running resource limits, and reserved memory to use in low-memory situations.

Swap buffers are set up by vm_pager_bufferinit(). Certain machine-dependent initialization

will also be done. On 64-bit X86, for example, the timestamp counter (TSC) is calibrated with

wall-clock time and registered as a source of timer ticks, CPU and hyperthread information is

printed, and additional CPU registers associated with floating point will also be configured. The

X86 local APIC will be initialized, which allows interrupts to be configured and routed to—and

between—multiple CPUs in a multiprocessor system.

2. In the second phase, the machine-independent mp_start() function will start additional

processors using machine-dependent start functions. On many architectures, starting additional

processors requires some additional interrupt configuration (e.g., setting up interrupt vectors to

receive interprocessor interrupts (IPIs) and then sending an IPI to each additional CPU to

begin execution). On other architectures, such as SPARC64, the firmware may instead provide

interfaces to start the additional CPUs. After the additional CPUs are started, information about

them will be printed on the console by cpu_mp_announce().

3. In the final phase, callout_callwheel_init() will configure the callout wheel for the boot CPU,

making it possible to register callouts without specific CPU affinity (timers are described in

Section 3.4). Additional per-CPU callout wheels will be initialized later in the boot.

Several other machine-dependent CPU-related initialization functions will also run in this phase

of the boot, setting up access to the PC BIOS, allocating space for coprocessor-2 contexts for

certain MIPS processors, and setting up virtual-CPU state for Xen.

SI_SUB_RACCT is responsible for initializing the kernel’s resource-accounting system, used to

limit and balance CPU, memory, IPC, and other resource utilization by competing processes,

users, login classes, and jails. Two routines are run in this subsystem: racct_init(), which creates

a new kernel-memory zone for accounting state, and configures prison0’s accounting state; and

rctl_init(), which sets up kernel-memory zones for resource-accounting policy.

SI_SUB_RANDOM is responsible for initializing the kernel’s noncrypto-graphic

pseudo-random number generator from the timestamp counter via the routine random_init().

It also initializes random-number generation for kernel stack protection via __stack_chk_init().

SI_SUB_KDTRACE initializes software-trace functions relating to two frameworks: DTrace,

described in Section 3.8, and processor hardware performance monitoring counters (HWPMC),

which provide access to CPU performance-sampling functions. DTrace first registers with

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec8

909

thread- and process-creation event handlers in init_dtrace(), which manage storage for each

thread or process that might be used with DTrace. DTrace then initializes its per-CPU debugging

output buffers in dtrace_debug_init(). HWPMC initializes storage for “soft” events in

init_hwpmc (), to be triggered by software sources such as locking events, page faults, and clock

ticks. It accepts registrations using the macro PMC_SOFT_DEFINE via pmc_soft_ev_register(),

which likewise uses SYSINIT. Many later-configured modules implement DTrace events, or

“probes,” relying on the results of this phase.

SI_SUB_MAC, SI_SUB_MAC_POLICY, and SI_SUB_MAC_LATE initialize mandatory access

control (MAC), described in Section 5.10. In the first phase, implemented in mac_init(), data

structures, locks, and kernel-memory zones are initialized. In the second phase, policy modules

that have declared themselves using the MAC_POLICY_SET macro will invoke

mac_policy_register() to attach to entry points and optionally allocate label storage. In the final

phase, mac_init_late() sets the mac_late flag, which indicates to the framework that policy

modules loaded after this point must be registered as “dynamic” policies requiring full

synchronization when entry points are invoked. Until this point, policies that register with flags

that prevent unload can be added to a linked list that does not require locks to iterate over,

avoiding overhead if all policies are “static.” This initialization must be completed before any

operations requiring MAC authorization, such as operations involved in mounting the root

filesystem as well as creation of the first process, can proceed.

SI_SUB_VNET is implemented by vnet0_init(), which allocates the first virtual network stack

and associates it with prison0. This network-stack instance will be used for all processes unless

further stacks are explicitly configured by the system administrator.

SI_SUB_VM_CONF completes initialization of kernel-memory zones by calling

uma_startup3(), which starts up a callout, uma_timeout(), to run every 20 seconds. The

timeout walks the list of kernel-memory zones performing routine activities such as updating

statistics and, as required, resizing hash tables. The timeout also performs machine-dependent

functions such as tuning limits on X86 local descriptor table segments.

SI_SUB_DDB_SERVICES completes initialization of the DDB in-kernel debugger by setting up

its capture buffer in db_capture_sysinit(). The capture facility logs text output from debugger

scripts to a crash partition to create textdumps, a more compact alternative to a full

kernel-memory crash dump.

SI_SUB_RUN_QUEUE initializes the scheduler’s run queues, CPU groups, and initial load

calculations, at boot. Both the ULE and 4BSD schedulers are initialized by routines named

sched_setup(). The system scheduler is described in greater detail in Section 4.4.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#ch04lev1sec4

910

Finally, SI_SUB_KTRACE initializes the userspace kernel-trace facility, ktrace, by calling

ktrace_init(), which must initialize locks and data structures, but also pre-allocate a set of

trace-entry structures. These trace-entry structures will log kernel events such as system calls,

data copied in and out of the user address space, signal delivery, and context switches as

requested by user processes. This initialization must occur before any user process requests

enabling of tracing. Section 3.8 describes ktrace in greater detail.

From this point onward, the bulk of basic kernel services required to support the launching of

kernel threads, device-driver discovery, and the remainder of the high-level boot are now

present.

Kernel-Thread Initialization

Kernel-module code enters execution in several ways—most frequently by direct function

invocation from another subsystem. For example, code might be invoked as a system-call

implementation by the system-call trap-handling code in user threads, as an interrupt handler

in an interrupt thread, as a task function in a task thread, or as a timeout function from a

per-CPU callout thread. In other cases, subsystems will start kernel threads to embody portions

of their activities.

Sometimes, subsystems will create threads to provide asynchronous execution opportunities for

other modules. For example, the interrupt-thread framework calls device-driver interrupt

handlers in interrupt threads when it receives hardware interrupts for the corresponding device.

In other cases, kernel modules create threads to allow the modules to defer blocking filesystem

I/O to an asynchronous context. For example, the virtual-memory and security-audit

subsystems create threads to perform disk I/O asynchronously from the process that triggered

the I/O. A few threads are intrinsic to system functionality, such as idle threads required by the

scheduler, as well as the first user process from which all later user processes will descend.

Threads may be created on demand, as happens for iSCSI worker threads, which are

instantiated when new sessions are configured; others are created unconditionally in boot, such

as the GEOM worker threads that process upward and downward I/O requests. The modules

that start kernel threads or processes during the boot are shown in Table 15.3.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#ch03lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab03

911

Table 15.3 Kernel threads and processes started by default on X86.

SI_SUB_INTRINSIC begins the creation of the process hierarchy by executing p0init(). The

function creates process0, the first process, pgrp0, its process group, and thread0, the first

thread within that process. The first process is named kernel and its first thread is named

swapper. Then, p0init() calls pmap_pinit0() to initialize the process’s virtual-memory space

and memory map. For all later processes, the kernel-memory zone allocator will automatically

invoke thread- and process-creation event handlers; however, since process0 and thread0 are

statically allocated, p0init() must invoke them manually. The function also charges the root user

for the resources associated with this first process.

SI_SUB_AUDIT creates a kernel process and thread to support the kernel’s audit subsystem,

described in Section 5.11. The separate thread allows the audit process to write records to the

filesystem asynchronously from the process that performed the event. The audit_init() function

initializes the audit subsystem and then creates audit_worker by calling audit_worker_init().

The thread executes a loop that alternately awaits further events to write to the audit trail or

blocks on filesystem I/O while writing records to the disk. The thread will also detect low-space

conditions, which will be signalled to userspace by means of a special-device node.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec11

912

SI_SUB_CREATE_INIT is responsible for forking the first userspace process, init. This process

will execute /sbin/init and implement the userspace boot. The create_init() function uses the

kernel-internal fork1() function to create the new process; subsystems such as MAC and audit

then customize init’s process credential with properties that will be inherited by all other user

processes. The final action of create_init() is to call cpu_set_fork_handler() to set the function

that the newly created kernel thread will call to start_init(). The init process will not

immediately run, as it has not yet been placed in a runnable state.

SI_SUB_SCHED_IDLE creates an idle process containing a set of per-CPU idle threads. Idle

threads provide a default thread context that can always run, at the idle priority, on each CPU.

This context ensures that interrupts delivered to an idle CPU always have a thread suitable to

preempt and, therefore, a stack to borrow.

SI_SUB_INTR, SI_SUB_SOFTINTR, and SI_SUB_DRIVERS create a variety of kernel

processes and threads in service of device drivers, including interrupt threads and GEOM’s up,

down, and event threads created by g_init(). Device drivers may create further threads; for

example, the random device described in Section 5.12 creates a thread that intermittently

extracts entropy harvested around the system from queues and feeds it into Yarrow. Interrupt

threads serve not only devices fielding hardware interrupts, but also soft-interrupt handlers

such as the callout thread and network-stack netisr threads.

Four subsystems initialize threads supporting virtual memory, the buffer cache, and filesystems:

SI_SUB_KTHREAD_PAGE, SI_SUB_KTHREAD_VM, SI_SUB_KTHREAD_BUF, and

SI_SUB_KTHREAD_UPDATE. These subsystems incorporate functions that run

asynchronously from user threads, such as write-behind flushes of the buffer cache to disk,

managing the vnode LRU cache, and paging activity. They also perform tasks that must occur at

differing priorities. The virtual-memory subsystem and its threads are discussed in detail in

Chapter 6.

SI_SUB_KTHREAD_INIT completes creation of the init process by calling kick_init(), which

schedules init’s kernel thread. When the thread starts, it will execute start_init(), which

performs a series of activities to bring up the filesystem and userspace environment. First, init

calls vfs_mountroot() to await completion of any device initialization that may be required to

mount the root filesystem. Kernel modules such as the device-driver framework, GEOM RAID

storage classes, and ZFS can request that the boot process be suspended to allow device probes

to continue, and higher-level storage constructs to be discovered, before the root filesystem is

mounted. Each component will invoke root_hold_token(), which returns a reference that must

later be released using root_mount_rel(). Once devices have settled, the kernel must now

identify and mount a suitable root filesystem by means of the following four steps:

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#ch06

913

1. First, kernel environmental variables such as vfs.root.mountfrom and

vfs_root.mountfrom.options are inspected to determine how root filesystem mounting should

proceed. This inspection may update the rootdevnames array whose entries will be tried in the

search for a viable mount.

2. Next, vfs_mountroot_devfs() mounts a devfs instance as the initial root filesystem. Because

it requires no source device, devfs can be mounted before /dev is available. Once devfs is

mounted, then disk-based filesystems can use the same model for root filesystems as they do for

later filesystems, reducing special casing in the root mount path.

3. In the next phase, vfs_mountroot_devfs() will parse each device name, look up a suitable

filesystem in the kernel’s filesystem-module list, and attempt to mount it by calling

kernel_mount().

4. In the final phase, vfs_mountroot_shuffle() will rearrange the two mounted filesystems so

that the newly mounted root is available as /, and the earlier devfs mount can be found under its

/dev.

If a failure occurs, then the next possible filesystem root will be tried. Once the root filesystem is

mounted, prison0 is updated, and the mountroot event handler is called to notify other kernel

modules that the filesystem is now available. Creation of the userspace process is completed by

start_init() searching for a suitable init binary, copying out boot-flag arguments, and issuing

execve to load the binary. Execution will begin when the thread returns to userspace returning

from execve.

Device-Module Initialization

With all the kernel’s basic services in place, and the basic processes created, it is now possible to

initialize the rest of the devices in the system including the disks, network interfaces, and clocks.

Table 15.4 shows the main components used to initialize the device modules.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab04

914

Table 15.4 Device modules.

Before any devices can be initialized—in particular, network interfaces—the mbuf subsystem

must be set up so that the network interfaces have a set of buffers they can use for their own

initialization. The mbuf subsystem initialization is handled by the SI_SUB_MBUF module and

its mbuf_init() routine (mbufs are described in Section 12.3).

At this point in the startup sequence, hardware interrupts are not enabled on the system. The

kernel now sets up all the interrupt threads that will handle interrupts when the system begins

to run. The interrupts are setup by two modules: SI_SUB_INTR, which sets up the interrupt

threads that handle device interrupts, and SI_SUB_SOFTINTR, which creates soft-interrupt

threads. Soft-interrupt threads are used by services that handle asynchronous events that are

not generated by hardware. Soft-interrupt threads provide the soft clock, which supports the

callout subsystem. They also provide the network thread that dequeues inbound packets from

the network-interface queues and moves them through the network stack.

As part of bringing up real hardware devices, the kernel first initializes the device filesystem and

then readies the network stack to handle devices with a call to the if_init() routine. The if_init()

routine does not initialize any network interfaces; it only sets up the data structures that will

support them. Finally, the devices themselves are initialized by the SI_SUB_DRIVERS and

SI_SUB_CONFIGURE modules. All devices in the system are initialized by autoconfiguration as

described in Section 8.9.

Once the devices are configured, the virtual filesystem (VFS) is initialized. Bringing up the VFS

is a multistage process that entails initializing the VFS itself, the vnode subsystem, and the name

cache and pathname-translation subsystem that maps pathnames to vnodes.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#ch12lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#ch08lev1sec9

915

The next systems to be set up are those relating to the real-time clock provided by the hardware.

The initclocks() routine, which is a part of the SI_SUB_CLOCKS module, calls the architecture’s

specific cpu_initclocks() routine to initialize the hardware clock on the system and start it

running. Once the hardware clock is running, other services such as support for the Network

Time Protocol (NTP), device polling, and the time counter are started.

Loadable Kernel Modules

Some kernel modules can be loaded and started or shut down and unloaded while the system is

running. Providing a system where kernel services can be loaded and unloaded at run time has

several advantages over a system where all kernel services must be linked in at build time. For

systems programmers, being able to load and unload modules at run time means that they are

able to develop their code more quickly. Only those modules absolutely necessary to the system,

such as the memory manager and scheduler, need to be directly linked into the kernel. A kernel

module can be compiled, loaded, debugged, unloaded, modified, compiled, and loaded again

without having to link it directly into the kernel or having to reboot the system. When a system

is placed in the field, the use of kernel modules makes it possible to upgrade only selected parts

of the system, as necessary. Upgrading in the field is absolutely necessary in embedded

applications where the system may be physically unreachable, but it is also convenient in more

traditional environments where many systems might have to change at the same time—for

instance, in a large server farm.

Loadable kernel modules are declared in the following way:

Click here to view code image

DECLARE_MODULE(name, moduledata, subsystem, order)

Each module has a name, subsystem, and order that serve the same purposes here as they do in

the SYSINIT macro. The key difference is the use of the moduledata argument, which is a data

structure that is defined in the following way:

Click here to view code image

int (*modeventhand_t)(

 struct module *module,

 int command,

 void *argument);

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p796pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p796pro02

916

typedef moduledata = {

 const char *name;

 modeventhand_t event_handler;

 void *data;

} moduledata_t;

All modules have an associated version that is declared with the MODULE_VERSION macro.

Without a version, it would be impossible to differentiate between different revisions of the

same module, making field upgrades difficult. One last macro used by kernel modules is the

SYSCALL_MODULE_HELPER that developers use to add new system calls to the kernel.

To have kernel modules that can be loaded both at boot time and at run time, two different cases

must be handled. When a module is loaded at boot time, it has already been processed by the

kernel’s build process, which means that its system-call entry points and other data are already

known to the kernel. This knowledge simplifies the loading process. All that needs to be done is

to call the module’s event handler with the MOD_LOAD command. At run time, the module

needs to be loaded into memory, registered with the kernel, and its system calls dynamically

added to the system-call table. Once all that work is done, it can be initialized by calling its event

handler. All the run-time loading is handled by the kldload system call and the

module_register() routine. To keep the interface that programmers use simple, all this

functionality is hidden by the DECLARE_MODULE macro and the use of the single

event-handler routine. When creating a kernel module, a programmer needs to be concerned

only with writing the module event handler and exporting the module-handler’s system calls via

the macros.

A key consideration in the use of loadable kernel modules is that they are a double-edged sword

with respect to security and reliability. On the one hand, loadable modules allow field upgrade of

kernel components without binary patching, which can be used to correct stability defects

discovered after a product is shipped. Loadable modules can likewise adapt the kernel’s security

model to protect against discovered vulnerabilities. On the other hand, the kernel is a critical

part of the system’s trusted computing base (TCB). Attackers that can load kernel modules

can bypass the system’s security policies, install subtle back doors, and mask their presence in

the system by modifying the behavior of monitoring interfaces.

In practice, loadable modules have little concrete effect on the integrity of the TCB for several

reasons. Integrity of the kernel depends on a secure boot process, which currently depends on

correct configuration of userspace-managed protections in the filesystem. Further, userspace

interfaces to system memory and I/O devices allow privileged users the ability to modify kernel

memory even without an explicit loading interface. Jail and MAC policies such as Biba can be

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_436

917

used to provide stronger integrity protection for the TCB, which includes controls on

low-integrity manipulation of the kernel either by module loading or access to virtual and

physical memory via /dev nodes.

As secure boot features such as UEFI’s boot-chain signature-verification support become more

widely deployed, the initial boot chain will become increasingly secure against attacks that

might damage TCB integrity. A sensible future direction would be to extend these facilities into

cryptographic protection of loadable kernel modules using digital signatures and other

security-critical portions of the filesystem and userspace. These extensions will need to address

not just kernel modules, but also configuration files and system maintenance tools. One key

concern in the adoption of such techniques will be increased complexity and fragility:

maintenance operations that previously required root access may now require management of

cryptographic keys; similarly, administrators might be forced to choose between the

performance or functionality benefits derived from kernel customization and boot-time integrity

protection.

15.4 User-Level Initialization

With the start of the init process, the kernel is operating and functional, and userspace is in

execution. There are several additional steps that must be taken before users can log in and

network services are available. All these actions are driven by user-level programs that use the

standard FreeBSD system-call interface that has been described in previous chapters. We shall

briefly examine the steps that take place in a typical system.

/sbin/init

The /sbin/init program is invoked as process 1 in the final step of the kernel bootstrapping

procedure. The parameters specified at the time FreeBSD was bootstrapped are passed to init in

a machine-dependent fashion. The init program uses the values of these flags to determine

whether it should bring up the system to single-user or to multiuser operation and whether it

should check the consistency of its disks with the fsck program. In single-user operation, init

forks a process that invokes the standard shell, /bin/sh. The standard input, output, and error

descriptors of the process are directed to the system’s console terminal, /dev/console. This

shell then operates normally but with superuser privileges until it terminates.

In multiuser operation, init first spawns a shell to interpret the commands in the file /etc/rc,

which is the root of a set of system startup scripts that do all the user-level initialization of the

system. If the /etc/rc script completes successfully, init then forks a copy of itself for each

terminal device that is marked for use in the file /etc/ttys. These copies of init invoke other

918

system programs, such as /usr/libexec/getty, to manage the standard sign-on procedure.

Process 1 always acts as the master coordinating process for system operation. It is responsible

for spawning new processes as terminal sessions are terminated and for managing the shutdown

of a running system.

System Startup Scripts

The /etc/rc file is mostly empty and simply serves to order and execute the various system

startup scripts contained in the /etc/rc.d directory. It will also search for third-party startup

scripts in /usr/local/etc/rc.d, where they may be installed by the FreeBSD ports system or

package system. The /etc/rc.conf, /etc/rc.conf.d, and /etc/defaults/rc.conf files control

which user-level services are started at boot time and some aspects of their configuration. Each

of these files is loaded by the system startup scripts when they execute. The

/etc/defaults/rc.conf file contains the default values for various shell variables that control

whether a service is to be started. Administrators override the defaults by placing different

values for the same shell variables into /etc/rc.conf. For example, to enable the use of the

secure shell (ssh) at boot time, the following line would be placed into /etc/rc.conf:

sshd_enable="yes"

The heart of the rc script system is a program called rcorder that takes a set of shell scripts as

input, works out their interdependencies, and then outputs an ordered list of names. Each

startup script declares the modules that it requires as well as those it provides. The rcorder

programs uses these REQUIRE and PROVIDE statements to determine the proper order in

which to run the startup scripts.

One housekeeping task is to check the local filesystems after a system crash. If the system is not

booted with the fastboot option, then the /etc/rc.d/fsck script carries out filesystem checks. In

versions of BSD before FreeBSD, the filesystem checks were absolutely necessary and had to be

carried out before any other work, but with the advent of soft updates and journaling in UFS

(Sections 9.6 and 9.8) and ZFS (Chapter 10), that is required only if the system has shut down

uncleanly (e.g., because of unexpected power loss). The program /sbin/fsck checks filesystem

consistency and repairs damaged filesystems. Normally, fsck is invoked from the

/etc/rc.d/fsck script to examine and repair each filesystem before it is mounted. When the

system is initially booted, the root filesystem is mounted read-only. If the root filesystem

requires repairs, FreeBSD does a variant of the mount system call that requests the kernel to

reload all its root-filesystem data structures. Reloading ensures consistency between the data in

the kernel memory and any data in the filesystem that were modified by fsck. Having the root

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#ch09lev1sec8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#ch10

919

filesystem mounted read-only ensures that the kernel will not have any modified data in

memory that cannot be reloaded.

Following the filesystem checks, the filesystems are mounted, the root filesystem is updated to

be writable, and any devices that are to be used for swapping and paging are enabled. Disk

quotas are then checked and enabled, and the system starts the background processes that

implement various system services. These processes include /usr/sbin/cron, the program that

executes commands at periodic intervals; /usr/sbin/accton, the program that enables system

accounting; /usr/sbin/syslogd, the system error-logging process; and /usr/sbin/sshd,

which implements encrypted remote access to the shell. Each of these processes is started from

its own startup script in /etc/rc.d.

/usr/libexec/getty

Historically, the /usr/libexec/getty program was spawned by init to open and initialize

terminal lines—most frequently, serial terminals or modems. Today, the primary obligation of

getty is to launch the /usr/bin/login sessions on the video or serial console (if any). It is

sometimes used to launch X Display Manager (xdm) sessions to enable login via graphical user

interfaces, although many systems will instead be configured to start the window system via

rc.d. The getty program reads a login name and invokes the /usr/bin/login program to

complete a login sequence.

/usr/bin/login

The login program is responsible for signing a user in to the system; it is usually invoked by

/usr/libexec/getty with the name of the user who wishes to log in to the system. Login will

then authenticate the user using the pluggable authentication modules (PAM) mechanism. PAM

supports diverse authentication mechanisms including local passwords (stored in the

/etc/master.passwd file), Kerberos distributed authentication, one-time password in

everything (OPIE) onetime passwords, and a range of third-party modules supporting other

distributed or hardware-token-based authentication schemes. If a secret is requested from the

user—for example, a password—then login will disable terminal echoing. After successful

authentication, login is responsible for performing a variety of accounting functions including

adding entries to the system lastlog and utmpx files, as well as auditing the login via the audit

facility described in Section 5.11.

The process credential, described in Section 5.3, must be configured to represent the user and

group identifiers of the authenticated user, as well as audit properties, MAC labels, and resource

limits. The login program must also change the current working directory to the user’s home

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec3

920

directory. The user’s login name is stored in the session structure using the setlogin system call

so that it can be obtained reliably via the getlogin system call by programs that want to know the

login name associated with a given process. Finally, login uses execve to overlay itself with the

user’s shell.

The login program may also be invoked when a user enters the system through a network

connection. For such connections, getty and init are bypassed; their functionality is subsumed

by the daemon spawned when the network connection is established.

15.5 System Operation

In this section, we consider topics that are related to the system-startup procedure.

Kernel Configuration

The software that makes up a FreeBSD kernel is defined by a configuration file that is

interpreted by the /usr/sbin/config program invoked as part of the kernel build process. The

kernel build process has become considerably more complex in FreeBSD and is now controlled

by a set of Makefile targets. To build a kernel, the administrator invokes make in the following

way:

Click here to view code image

make buildkernel KERNCONF=<kernel_config_file>

The buildkernel argument is a Makefile target that tells make to build a kernel but not to install

it. KERNCONF is a Makefile variable that is set to the name of the kernel configuration. Once a

kernel has been properly built, it is installed by running make in the following way:

Click here to view code image

make installkernel KERNCONF=<kernel_config_file>

One reason for this new build process is the need to build and install the necessary kernel

modules that were discussed in Section 15.3. The configuration file specifies the hardware and

software components that should be supported by a kernel. The build process generates several

output files, some of which are compiled and linked into the kernel’s load image. It also creates a

directory into which all the loadable kernel modules will be built. When the kernel is installed,

its modules are installed as well. A complete description of the kernel build process is given in

Hamby & Mock [2014].

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p800pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p800pro02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15lev1sec3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15ref03

921

System Shutdown and Autoreboot

FreeBSD provides several utility programs to halt, reboot, or power off a system, or to bring a

system from multiuser to single-user operation. Safe halting, rebooting, and powering down of a

system require support from the kernel. This support is provided by the reboot system call.

The reboot system call is a privileged call. A parameter specifies how the system should be shut

down and rebooted. This parameter is a superset of the flags passed by the boot program to the

system when the latter is initially bootstrapped. A system can be brought to a halt (typically by

forcing it to execute an infinite loop), it can be rebooted to single-user or multiuser operation, or

powered off, which causes the kernel to first halt the system and then (if supported by the

architecture) request a poweroff. There are additional controls that can be used to force a crash

dump before rebooting (see the next subsection for information about crash dumps) and to

disable the writing to disk of data that are in the buffer cache if the information in the buffer

cache is wrong.

Automatic rebooting is usually done when a catastrophic failure is recognized. The system will

reboot itself automatically if it recognizes an unrecoverable failure during normal operation.

Failures of this type, termed panics, are all handled by the panic() subroutine.

When the system is shutting down, it goes through three separate phases:

• Shutdown of all services that depend on the filesystem to store data

• Shutdown of the filesystem itself

• Shutdown of services that do not depend on the filesystem

These three phases are necessary because some services will want to write some final data to the

filesystem before it is turned off and may not be able to restart cleanly if they cannot do so.

Services register event handlers with the kernel to provide an orderly shutdown of the system.

Each event handler is declared with the following macro:

Click here to view code image

EVENTHANDLER_REGISTER(name, function, argument, priority)

Table 15.5 lists the names of the shutdown phases. In the EVEN-THANDLER_REGISTER

macro, the name parameter identifies in which phase of the shutdown sequence the event

handler’s function will be called. The argument allows the module to pass itself any private data

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15_images.html#p801pro01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#ch15tab05

922

necessary for it to turn off. The priority orders the shutdown routines within a phase. The

priority serves the same purpose here as the order argument does in the SYSINIT macro in

creating an orderly startup sequence. The priority is necessary to make sure that services do not

go away while other services depend on them.

Table 15.5 Shutdown phases.

The kernel shutdown routine first walks the list of shutdown_pre_sync functions and calls each

in turn, and then it shuts down the filesystems on the local disks. With the filesystems in a

quiescent state, it invokes all the shutdown_post_sync functions. A kernel core dump is made if

requested—for example, if it was called because of a kernel panic. Kernel core dumps are written

directly to the swap partition and not to a normal filesystem, which is why this step can come

after the filesystems have been shut down. Finally, the kernel shutdown routine invokes all the

functions registered in the shutdown_final group. The machine then powers down if it has been

directed to do so and the hardware supports software-based power-off. Otherwise, it goes into

an infinite loop awaiting a reset by the user.

System Debugging

FreeBSD provides several facilities for debugging system failures. The most commonly used

facility is the crash dump: a copy of memory that is saved on secondary storage by the kernel

when a catastrophic failure occurs. Crash dumps are created by the doadump() routine. They

occur if a reboot system call is made in which the RB_DUMP flag is specified or if the system

encounters an unrecoverable—and unexpected—error.

The doadump() saves the current context with a call to the savectx() routine and then invokes

the dumpsys() routine to write the contents of physical memory to secondary storage. The

precise location of a crash dump is configurable; most systems place the information in a

primary swap partition. This operation is done by the dump entry point of the configured disk

driver.

A crash dump is retrieved from its location on disk by the /sbin/savecore program after the

system is rebooted and the filesystems have been checked. It creates a file into which the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_67

923

crash-dump image is copied. The system administrator can examine crash dumps with the

standard FreeBSD debugging program, kgdb. The kernel is also set up so that a kgdb debugger

running on one machine can attach itself across a serial line to a kernel running on another

machine. Once attached, it can set breakpoints, examine and modify kernel data structures, and

invoke kernel routines on the machine being debugged. This form of source-level debugging is

particularly useful in developing kernel device drivers, as long as the driver being developed is

not the serial-line driver itself.

Passage of Information To and From the Kernel

In 4.3BSD and earlier systems, utilities that needed to get information from the kernel would

open the special device /dev/kmem, which gave access to the kernel’s memory. Using the

name list from the kernel binary, the utility would seek to the address of the desired symbol and

read the value at that location. Utilities with superuser privilege could also use this technique to

modify kernel variables. Although this approach worked, it had six problems:

1. Applications did not have a way to find the binary for the currently running kernel reliably.

Using an incorrect binary would result in looking at the wrong location in /dev/kmem,

resulting in wildly incorrect output. For programs that modified the kernel, using the wrong

binary would usually result in crashing the system by trashing some unrelated data structure.

2. Reading and interpreting the kernel name list is time consuming. Thus, applications that had

to read kernel data structures ran slowly.

3. Applications given access to the kernel memory could read the entire kernel memory.

Malicious (or vulnerable) programs could snoop the terminal or network input queues looking

for users who were typing sensitive information such as passwords.

4. It is desirable to provide unprivileged access to a subset of monitoring information: for

example, to a user’s own processes or sockets. This policy is not only difficult to enforce

correctly in userspace, which does not have race-free access to kernel data structures such as the

user credential, but it also violates the design goals laid out in Section 5.5 to centralize policy

implementation as an aid to security extensibility. Controlling access to kernel-originated data is

substantially easier within the kernel than it is when a userspace program is given access to all

of kernel memory.

5. As more of the kernel data structures became dynamically allocated, it became difficult to

extract the desired information reliably. For example, in 4.3BSD, the process structures were all

contained in a single, statically allocated table that could be read in a single operation. In

FreeBSD, process structures are allocated dynamically and are referenced through a linked list.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#ch05lev1sec5

924

Thus, they can be read out only one process entry at a time. Because a process entry is

subdivided into many separate pieces, each of which resides in a different part of the kernel

memory, every process entry takes several seeks and reads to extract through /dev/kmem.

6. With an increased focus on long-term binary compatibility, especially with not just individual

userspace binaries but whole userspace installations running in a jail, userspace interpretation

of internal kernel data structures proves extremely fragile. A more explicit monitoring interface

allows userspace monitoring tools to be more robust to internal kernel changes.

To resolve these problems, 4.4BSD introduced the sysctl system call. This extensible kernel

interface allows controlled access to kernel data structures. The problems enumerated

previously are resolved as follows:

1. Applications do not need to know which kernel binary they are running. The running kernel

responds to their requests and knows where their data structures are stored. Thus, the correct

data structure is always returned or modified.

2. No time is spent reading or interpreting name lists. Accessing kernel data structures takes

only a few system calls.

3. Sensitive data structures cannot be accessed. The kernel controls the set of data structures

that it will return. Nothing else in the kernel is accessible. The kernel can impose its own set of

access restrictions on each set of data structures that it returns.

4. Kernel sysctl handlers are able to invoke security policies such as MAC and jails, allowing

limits to be placed on monitoring processes, network connections, and so on. Each user process

is limited to an appropriate view of the system.

5. The kernel can use its standard mechanisms for ensuring consistent access to distributed data

structures. When requesting process entries, the kernel can acquire the appropriate locks to

ensure that a coherent set of data can be returned.

6. The kernel is able to export well-defined and carefully managed versions of data structures to

userspace; for example, rather than exporting the proc structure, which changes frequently as

new kernel features are added, a separate kinfo_proc structure is exported from the kernel,

which includes version information and padding to allow userspace to detect and adjust to

changes. Userspace libraries such as libprocstat and libmemstat provide higher-level APIs

used by monitoring applications such as procstat and memstat.

Additional benefits of the interface include the following:

925

• Values to be changed can be validated before the data structure is updated. If modification of

the data structure requires exclusive access, an appropriate lock can be obtained before the

update is done. Thus, an element can be added to a linked list without danger of another process

traversing the list while the update is in progress.

• Information can be computed only on demand. Infrequently requested information can be

computed only when it is requested, rather than being computed continually. For example,

many of the virtual-memory statistics are computed only when a system-monitoring program

requests them.

• The interface allows monitoring tools to run without the privilege to access kernel memory,

removing them from the TCB; likewise, user processes can manipulate system settings subject to

kernel policy without general write access to the kernel address space. This isolation from access

to kernel memory is important for jails and virtual network stacks, in which guest superusers

must be able to modify settings for their local environments, but not those of other jails or

virtual stacks.

The sysctl system call describes the kernel namespace using a management information base

(MIB). A MIB is a hierarchical namespace much like the filesystem namespace, except that each

component is described with an integer value rather than with a string name. A hierarchical

namespace has several benefits:

• New subtrees can be added without existing applications being affected.

• If the kernel omits support for a subsystem, the sysctl information for that part of the system

can be omitted.

• Each kernel subsystem can define its own naming conventions. Thus, the network can be

divided into protocol families. Each protocol family can be divided into protocol-specific

information, and each protocol can describe its own state.

• The namespace can be divided into those parts that are machine independent and are available

on every architecture, and those parts that are machine dependent and are defined on an

architecture-by-architecture basis.

Since the addition of the sysctl system call in 4.4BSD, the number of variables it controls has

been expanded to include about 3000 values that control the virtual memory system,

filesystems, networking stacks, and the underlying hardware, as well as the kernel itself.

926

Exercises

15.1 What is the purpose of each stage in the boot-loader sequence?

15.2 What is the job of the assembly-language startup? Why is this program written in assembly

language?

15.3 What processes are started when the system is booted?

15.4 How are kernel modules loaded into the system at boot time? Give an example of a kernel

module.

15.5 The reboot system call causes the system to halt or reboot. Give two reasons why this

system call is useful.

15.6 Give two reasons why loadable kernel modules are useful in developing kernel services.

Give one reason not to use them.

15.7 Why is it necessary to have a particular order in which kernel services are loaded and

initialized? Why is it also necessary to have a particular order in which kernel services are shut

down?

*15.8 Suppose that a machine does not have a battery-backup time-of-day clock. Propose a

method for determining that the time-of-day clock is incorrect. Describe a way to initialize the

clock’s time of day. What are the limitations of your method?

**15.9 What are the necessary macros to create a loadable kernel module? How would you test

your module without linking it directly into the kernel?

References

Davis et al., 2014.

B. Davis, R. Norton, J. Woodruff, & R. Watson, “How FreeBSD Boots: a Soft-Core MIPS

Perspective,” Proceedings of AsiaBSDCon 2014, March 2014.

Forum, 2013.

Unified EFI Forum, Inc., UEFI Specification Version 2.4, available from

http://www.uefi.org/specifications, July 2013.

http://www.uefi.org/specifications

927

Hamby & Mock, 2014.

J. Hamby & J. Mock, FreeBSD Handbook, Chapter 9, Configuring the FreeBSD Kernel,

available from

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html, March

2014.

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html

928

Glossary

absolute pathname See pathname.

access control list (ACL) A form of discretionary access control that replaces the group

permissions for a file with a more specific list of the users that are permitted to access the files.

The ACL also includes a list of the permissions that each user is granted. These permissions

include the traditional read, write, and execute permissions along with other properties such as

the right to rename or delete the file. See also discretionary access control; file permissions.

ACL See access control list.

address family A collection of related address formats, as found in a single communication

domain. For example, the IPv4 domain uses the Internet address family.

address-resolution protocol (ARP) A communication protocol used to map one network

address to another dynamically. For example, ARP is used in FreeBSD to map Internet

addresses into Ethernet addresses dynamically. See also neighbor discovery.

address translation A mechanism, typically implemented in hardware, that translates

memory addresses supplied by a program into physical memory addresses. This facility is

important in supporting multiprogramming because it allows an operating system to load

programs into different areas of memory and yet have each program execute as though it were

loaded at a single, fixed memory location. See also memory-management unit.

advisory lock A lock that is enforced only when a process explicitly requests its enforcement.

An advisory lock is contrasted with a mandatory lock, which is always enforced. See also

mandatory lock.

ambient authority Refers to the right to name objects via global namespaces such as the

filesystem root or TCP/IP port namespace. Processes in Capsicum’s capability mode are denied

ambient authority, and hence are able to operate only on objects to which they have been

delegated capabilities. See also capability system; Capsicum; sandbox.

ancillary data Specially interpreted data sent on a network connection. Ancillary data may

include protocol-specific data, such as addressing or options.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_211
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_349

929

anonymous object Represents a region of transient backing storage. Pages of an anonymous

object are zero-filled on first reference and modified pages will be stored in the swap area if

memory becomes tight. The object is destroyed when no references remain.

application compartmentalization Sometimes referred to as privilege separation, this

technique decomposes applications into a set of sandboxed processes, each delegated narrow

sets of rights necessary to perform their specific function. This technique, implemented using

Capsicum in FreeBSD, helps to mitigate security vulnerabilities: successful attacks gain only

limited rights in the system. See also ambient authority; Capsicum; sandbox.

ARP See address-resolution protocol.

association In the interprocess-communication facilities, a logical binding between two

communication endpoints that must be established before communication can take place.

Associations may be long lived, such as in stream-based communication, or short lived, such as

in a datagram-based communication paradigm.

AST See asynchronous system trap.

asymmetric cryptography A cryptographic system that does not use the same key for

decrypting data as it does for encrypting data; sometimes referred to as public-key cryptography.

See also symmetric cryptography.

asynchronous An asynchronous thread usually has nothing to do with the currently running

process. Examples are unrelated hardware interrupts.

asynchronous system trap (AST) A software-initiated interrupt to a service routine. ASTs

enable a process to be notified of the occurrence of a specific event asynchronously with respect

to its execution. In FreeBSD, ASTs are used to initiate thread rescheduling.

autoconfiguration The probing and identification of hardware attached to the system.

Successfully identified hardware is attached to the I/O subsystem. Autoconfiguration is

performed when the kernel bootstraps itself into operation and any time that a new piece of

hardware is attached to the system. In a network protocol, the process by which a system

discovers important information about itself and the network (such as its network address and

default router) without any help from a user.

background process In job-control-oriented process-management systems, a process whose

process group is different from that of its controlling terminal; thus, this process is currently

blocked from most terminal access. Otherwise, a background process is one for which the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_427

930

command interpreter is not waiting—that is, the process was set running with the “&” operator.

The opposite of a background process is a foreground process.

backing storage Storage that holds objects that are removed from main memory during

paging and swapping operations. See also secondary storage.

black-hole route Used to temporarily block packets from moving through the network. A

packet with a destination address that matches a black-hole route is dropped before it can be

routed or forwarded.

block In the filesystem, a unit of allocation. The filesystem allocates space in block-size units or

in fragments of block-size units.

block accounting The process of maintaining a count of the number of disk blocks available

for the storage of new data in the fast filesystem.

block size The natural unit of space allocated to a file (filesystem block size) or the smallest

unit of I/O that a character device can do (for disk devices, usually the sector size). In FreeBSD,

the filesystem block size is a parameter of the filesystem that is fixed at the time that the

filesystem is created.

bootstrapping The task of bringing a system up into an operational state. When a machine is

first powered on, it is typically not running any program. Bootstrapping initializes the machine,

loads a program from secondary storage into main memory, and sets that program running.

bottom half With regard to system operation, the collection of routines in the kernel that is

invoked as a result of interrupts. These routines cannot depend on any per-process state. See

also top half.

breakpoint fault A hardware trap that is generated when a process executes a breakpoint

instruction.

broadcast A transmission to all parties. In a network, a broadcast message is transmitted to all

stations attached to a common communication medium.

broadcast storm Occurs when a router is misconfigured such that it forwards all broadcast

packets to its adjacent networks. A broadcast storm can be caused by a single broadcast packet

being copied and transmitted multiple times throughout the network resulting in a waste of

bandwidth and high levels of network congestion, degrading the overall quality of network

services.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_451

931

bss segment The portion of a program that is to be initialized to zero at the time the program

is loaded into memory. The name bss is an abbreviation for “block started by symbol.” See also

data segment; stack segment; text segment.

buffer bloat A problem caused by overly large buffers present in many network routers. A

network path with too much buffering can cause unnecessarily high packet delays, reducing

overall network performance.

buffer cache A cache of recently used disk blocks. In FreeBSD, the buffer cache has been

merged with the virtual-memory cache.

bus A standardized electrical and mechanical interconnection for components of a computer.

byte A unit of measure applied to data. A byte is almost always 8 bits.

callback In the kernel, a mechanism to notify a subsystem that an asynchronous operation has

completed. In NFS, a scheme where a server keeps track of all the objects that each of its clients

has cached. When a cached object is held by two or more clients and one of them modifies it, the

server sends a notice to all the other clients holding that object so that they can purge it from

their cache. See also lease.

callout queue The kernel data structure that describes waiting events. Each event in the queue

is described by a structure that contains a function to be called, a pointer to be passed as an

argument to the function, and the number of clock ticks until the event should occur.

canonical mode A terminal mode. Characters input from a terminal or a pseudo-terminal that

is running in canonical mode are processed to provide standard line-oriented editing functions,

and input is presented to a process on a line-by-line basis. When the terminal is processing in

noncanonical mode, input is passed through to the reading process immediately and without

interpretation. Canonical mode is also known as cooked mode, and noncanonical mode is also

known as raw mode.

capability A communicable, unforgeable token of authority. In FreeBSD, capabilities are file

descriptors whose permissible operations have been “refined,” or limited to a specific set of

operations. Capabilities are unforgeable as the kernel prevents improper modification.

Capabilities are communicable as they are inherited across fork and exec, and can be delegated

via local-domain sockets. See also capability system; Capsicum; descriptor.

capability system Permits access to underlying objects only via capabilities. Capability mode

prevents processes from acquiring new capabilities via global namespaces. Applications

selectively delegate capabilities to sand-boxed processes to enforce access-control policies and

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_82

932

mitigate vulnerabilities by minimizing unnecessary rights. See also ambient authority;

capability; Capsicum; sandbox.

Capsicum A lightweight, kernel-based sandboxing framework based on the idea of a capability

system. Capsicum’s primary use is in limiting the impact of vulnerabilities via application

compartmentalization: sandboxed processes execute without ambient authority and have access

only to objects for which they have been granted capabilities. See also ambient authority;

application compartmentalization; capability; capability system; sandbox.

caught signal A signal that, when delivered to a process, results in a signal-handler procedure

being invoked. A signal handler is installed by a process with the sigaction system call.

central processing unit (CPU) The primary computational unit in a computer. The CPU is

the processing unit that executes applications. A multiprocessor will have more than one CPU.

Other processing units may be present in a computer—for example, for handling I/O.

character-at-a-time mode A mode of operation for a pseudo-terminal device whereby

processes reading from the pseudo-terminal receive input immediately as it is typed. This mode

differs from raw mode in that certain input processing, such as interpreting the interrupt

character, is still performed by the system. See also canonical mode.

character device A device that provides either a character-stream-oriented I/O interface or,

alternatively, an unstructured (raw) interface. All devices in FreeBSD use the character-device

interface.

checksum The value of a mathematical function computed for a block of data; used to detect

corruption of the data block.

child process A process that is a direct descendant of another process as a result of being

created with a fork system call.

client ID In NFS, a client identifier uniquely identifies a client to a single server. The client ID

is generated by the server and assigned to the client as part of the exchange ID operation.

client process In the client–server model of communication, a process that contacts a server

process to request services. A client process is usually unrelated to a server process; the client’s

only association with the server is through a communication channel. See also server process.

cluster The logical grouping of contiguous pages of virtual memory or a file. In FreeBSD, this

grouping is used by the kernel to aggregate pages when writing or reading them to or from the

disk to reduce the number of I/O operations needed to move data in and out of memory.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_371

933

cold start The initial phase of a bootstrap procedure. The term is derived from the fact that the

software assumes nothing about the state of the machine—as though the machine had just been

turned on and were cold.

communication domain An abstraction used by the interprocess-communication facilities to

organize the properties of a communication network or similar facility. A communication

domain includes a set of protocols, termed the protocol family; rules for manipulating and

interpreting names; the address family; and, possibly, other intrinsic properties. The facilities

provided by the system for interprocess communication are defined such that they are

independent of the communication domains supported by the system. This design makes it

possible for applications to be written in a communication-domain-independent manner.

communication protocol A set of conventions and rules used by two communicating

processes. Communication protocols are most often associated with networking.

configuration file A file that contains parameters for the system-configuration program

/usr/sbin/config. This file describes the device drivers that should be configured into the

kernel and other basic kernel functionality such as the enabling of symmetric multiprocessing

support.

connect request A request passed to the user-request routine of a communication-protocol

module as a result of a process making a connect system call on a socket. The request causes the

system to attempt to establish an association between a local and a remote socket.

context switching The action of interrupting the currently running thread and switching to

another thread. Context switching occurs as one thread after another is scheduled for execution.

An interrupted thread’s context is saved in that thread’s thread control block, and another

thread’s context is loaded.

continuation style A style of programming where two or more functions operate

cooperatively by calling each other instead of returning directly at the end of execution. When

the currently executing function is done with its work, it calls another function, which was

passed as one of the first function’s arguments, as part of its return() call. Programming with

continuations has the effect of creating a function chain and is often used when a system wants

to submit work to a hardware coprocessor but wishes to have a cleanup routine called by the

hardware coprocessor when the coprocessor has completed the job.

continue signal Signal 19 (SIGCONT). A signal that, when delivered to a stopped or sleeping

process, causes that process to resume execution.

934

controlling process The session leader that established the connection to the controlling

terminal. See also session leader.

controlling terminal The pseudo-terminal associated with a process’s session from which

keyboard-related signals may be generated. The controlling terminal for a process is normally

inherited from the process’s parent.

control request A request passed to a communication-protocol module as a result of a process

making an ioctl or setsockopt system call on a socket.

cooked mode See canonical mode.

copy-on-write A technique whereby multiple references to a common object are maintained

until the object is modified (written). Before the object is written, a copy is made; the

modification is made to the copy rather than to the original. In virtual-memory management,

copy-on-write is a common scheme that the kernel uses to manage pages shared by multiple

processes. All the page-table entries mapping a shared page are set such that the first write

reference to the page causes a page fault. When the page fault is serviced, the faulted page is

replaced with a private copy, which is writable.

core file A file (named procname.core) that is created by the system when certain signals are

delivered to a process. The file contains a record of the state of the process at the time the signal

occurred. This record includes the contents of the process’s virtual address space and, on most

systems, the user structure.

CPU See central processing unit.

crash Among computer scientists, an unexpected system failure.

crash dump A record of the state of a machine at the time of a crash. This record is usually

written to a place on secondary storage that is thought to be safe so that it can be saved until the

information can be recovered.

credential See user credential.

current working directory The directory from which relative pathnames are interpreted for

a process. The current working directory for a process is set with the chdir or fchdir system call.

cylinder group In the fast filesystem, a collection of blocks on a disk drive that is grouped and

managed together. The filesystem allocates inodes and data blocks on a per-cylinder-group basis.

Cylinder group is a historic name from the days when the geometry of disks was known.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_473

935

DAC See discretionary access control.

daemon A long-lived process that provides a system-related service. There are daemon

processes that execute in kernel mode (e.g., the pageout daemon) and daemon processes that

execute in user mode (e.g., the routing daemon). The Old English term daemon means “a

deified being,” as distinguished from the term demon, which means “an evil spirit.”

DARPA Defense Advanced Research Projects Agency. An agency of the US Department of

Defense that is responsible for managing defense-sponsored research in the United States.

datagram socket A type of socket supporting an unreliable message transport that preserves

message boundaries.

datalink layer The network software component responsible for handling packets for a

particular media protocol such as Ethernet. It normally resides above the physical layer and

beneath the network layer in the ISO model of layered network protocols.

data segment The segment of a process’s address space that contains the initialized and

uninitialized data portions of a program. See also bss segment; stack segment; text segment.

decapsulation In network communication, the removal of the outermost header information

from a message. See also encapsulation.

delegation In NFS, the process by which a server can allow a client to perform operations, such

as reading and writing data, for a period of time without contacting the server. The server

delegates responsibility for the reading and writing of data cached at the client.

demand paging A memory-management technique in which memory is divided into pages

and the pages are provided to processes as needed—that is, on demand. See also pure demand

paging.

demon See daemon.

denial-of-service attack Any attempt to overload a system such that it is unable to do work

for legitimate users of the system. For example, sending a system so many packets that it runs

out of mbufs and thus cannot process any other network traffic.

descriptor An integer assigned by the system when a file is referenced by the open system call

or when a socket is created with the socket, pipe, or socketpair system calls. The integer

uniquely identifies an access path to the file or socket from a given process or from any of that

process’s children. Descriptors can also be duplicated with the dup and fcntl system calls.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_72

936

descriptor table A per-process table that holds references to objects on which I/O may be

done. I/O descriptors are indices into this table.

device In UNIX, a peripheral connected to the CPU.

device driver A software module that is part of the kernel and supports access to a peripheral

device.

device special file A file through which processes can access hardware devices on a machine.

For example, a sound card is accessed through such a file.

direct memory access (DMA) A facility whereby a peripheral device can access main

memory without the assistance of the CPU. DMA is typically used to transfer contiguous blocks

of data between main memory and a peripheral device.

directory In UNIX, a special type of file containing entries that are references to other files. By

convention, a directory contains at least two entries: dot (.) and dot-dot (..). Dot refers to the

directory itself; dot-dot refers to the parent directory.

directory entry An entry that is represented by a variable-length record structure in the

directory file. Each structure holds an ASCII string that represents the filename, the number of

bytes of space provided for the string, the number of bytes of space provided for the entry, the

type of the file referenced by the entry, and the number of the inode associated with the

filename. By convention, a directory entry with a zero inode number is treated as unallocated,

and the space held by the entry is available for use.

directory table The top level of a two-level hierarchy of data structures used by a

forward-mapped page-table algorithm to describe the virtual address space of a process. Each

entry in a directory table points to a page of page-table pages. A two-level mapping hierarchy is

used on the PC architectures. See also forward-mapped page table; page-table entry;

page-table pages.

dirty In computer systems, modified. A system usually tracks whether an object has been

modified—is dirty—because it needs to save the object’s contents before reusing the space held

by the object. For example, in the virtual-memory system, a page in the virtual-memory cache is

dirty if its contents have been modified. Dirty pages must be written to the swap area or

filesystem before they are reused.

discretionary access control (DAC) Refers to forms of access-control policy in which object

owners control access by other users; for example, file permissions and access control lists

(ACLs). See also access control list; file permissions; mandatory access control.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210

937

disk partition A software scheme that divides a disk drive into one or more linear extents or

partitions. Each partition is a contiguous region of a disk drive that is used as a swap area or to

hold a filesystem.

distributed program A program that is partitioned among multiple processes, possibly

spread across multiple machines.

DMA See direct memory access.

dnode A data structure used by the Zettabyte filesystem to describe objects that may change in

size from tiny to huge. Dnodes describe filesystems, snapshots, clones, ZVOLs, space maps,

property lists, and dead-block lists. When used to describe objects like files and directories, a

dnode is embedded with a znode.

domain Defines a set of related network protocols. The IPv4 protocols, including TCP, UDP,

SCTP, and ICMP, are all members of the Internet domain, while the IPX and SPX protocols are

members of the netipx domain. The network protocols defined for IPv6 are likewise members of

their own, Internet version 6, domain.

double indirect block See indirect block.

effective GID See effective group identifier.

effective group identifier (effective GID) The first entry in the groups array. The effective

GID, along with the other GIDs in the groups array, is used by the filesystem to check group

access permission. The effective GID is set when a set-group-identifier program is executed. See

also credential; group identifier; real group identifier; saved group identifier.

effective UID See effective user identifier.

effective user identifier (effective UID) The UID that the system uses to check many user

permissions. For example, the effective UID is used by the filesystem to check owner-access

permission on files. The effective UID is set when a set-user-identifier program is executed. See

also credential; real user identifier; saved user identifier; user identifier.

elevator sorting algorithm An algorithm used by the device drivers for I/O requests to move

disk heads. The algorithm sorts requests into a cyclic ascending order based on the block

number of the request. The name is derived from the fact that the algorithm orders disk requests

in a manner similar to the way ride requests for an elevator would be handled most efficiently.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_87
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_315
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_475

938

emulate FreeBSD can emulate the system-call interface of other variants of the UNIX

operating system. For example, FreeBSD can run binaries compiled for Linux.

encapsulation In network communication, the procedure by which a message is created that

has an existing message enclosed in it as data. A protocol normally encapsulates a message by

crafting a leading protocol header that indicates the original message is to be treated as data.

See also decapsulation.

erase character The character that is recognized by the terminal handler, when the latter is

running in canonical mode, to mean “delete the last character in the line of input.” Each

terminal session can have a different erase character, and that erase character can be changed at

any time with a tcsetattr system call. The terminal handler does not recognize the erase

character on terminals that are in noncanonical mode. See also kill character; word-erase

character.

errno The global variable in C programs that holds an error code indicating why a system call

failed. The value to be placed in errno is returned by the kernel in the standard return register;

it is moved from this return register to errno by code in the C run-time library.

event handler A function, registered with a software system, that is to be called at a later time

when a particular event occurs. See also callout queue; kqueue.

exactly once semantics A distributed system, built in such a way that certain client

operations can be serialized and can occur only once, is said to provide exactly once semantics.

Remote locking operations are one instance where exactly once semantics are desirable.

extension header Message header that can be easily added and removed from a packet

because it contains the header’s length and some indication of where and how to begin

processing the next header, if such exists.

fault rate The rate at which a process generates page faults. For a reference string, the fault

rate is defined to be time independent by its being specified as the number of page faults divided

by the length of the reference string.

fetch policy The policy used by a demand-paged, virtual-memory-management system in

processing page faults. Fetch policies differ primarily in the way that they handle prepaging of

data.

fifo file In the filesystem, a type of file that can be used for interprocess communication. Data

written by one process to a fifo are read by another in the order in which they were sent. The

name refers to the fact that data are transferred in a first-in, first-out fashion.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_191

939

file An object in the filesystem that is treated as a linear array of bytes. A file has at least one

name and the file exists until all its names are deleted explicitly.

file entry See file structure.

file handle A globally unique token created by an NFS server and passed back to an NFS client.

The client can then use the file handle to refer to the associated file on the server. A handle is

created when a file is first opened; it is passed to the server by the client in later operations, such

as read and write, that reference the open file.

filename A string of ASCII characters that names an ordinary file, special file, or directory. The

characters in a filename cannot include null (0) or the ASCII code for slash (/).

file offset A byte offset associated with an open file descriptor. The file offset for a file

descriptor is set explicitly with the lseek system call, or implicitly as a result of a read or write

system call.

file permissions A bitmask associated with each file or directory that limits how the owner,

group, and other users in the system are able to access the object. Each can be granted read,

write, or execute access; in addition, file permissions include the sticky, setuid, and setgid bits.

Permissions may be managed by the file’s owner, or the root user. See also access control list;

discretionary access control.

file structure The data structure used by the kernel to hold the information associated with

one or more open file descriptors that reference a file. Usually, each open file descriptor

references a unique file structure. File structures may be shared, however, when open

descriptors are duplicated with the dup and dup2 system calls, inherited across a fork system

call, or received in a message through the interprocess-communication facilities.

filesystem A collection of files. The UNIX filesystem is hierarchical, with files organized into

directories. Filesystems include facilities for naming files and for controlling access to files. A

filesystem resides on a single, logical device that may be built from part of a single disk drive or

from a set of disk drives that have been aggregated together.

fill-on-demand page fault The first page fault for an individual page; it must be resolved by

retrieval of data from the filesystem or by allocation of a zero-filled page.

first-level bootstrap The initial code that is executed in a multilevel bootstrapping operation.

Usually, the first-level bootstrap is limited in size and does little more than bootstrap into

operation a larger, more intelligent program. Typically, the first-level bootstrap loads the /boot

program so that /boot can, in turn, bootstrap the kernel.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92

940

foreground process In job-control-oriented process-management systems, a process whose

process group is the same as that of its controlling terminal; thus, the process is allowed to read

from and to write to the terminal. Otherwise, a foreground process is one for which the

command interpreter is currently waiting. The opposite of a foreground process is a background

process.

fork file A directory containing named files for NFSv4 attributes. Each file in the directory

names an attribute and each file’s contents are the value associated with that attribute.

forward The direction a network packet takes through a system if it is received by a host for

which it is not, ultimately, destined. See also inbound; router.

forward-mapped page table A large, contiguous array indexed by the virtual address that

contains one element, or page-table entry, for each virtual page in the address space. This

element contains the physical page to which the virtual page is mapped, as well as access

permissions and status bits telling whether the page has been referenced or modified, and a bit

showing whether the entry contains valid information. Most current memory-management-unit

designs for architectures with 32-bit address spaces use some variant of a forward-mapped page

table. See also reverse-mapped page table; memory-management unit.

fragment In the filesystem, a part of a block. The filesystem allocates new disk space to a file as

a full block or as one or more fragments of a block. The filesystem uses fragments, rather than

allocating space in only full block-size units, to reduce wasted space when the size of a full block

is large.

fragment-descriptor table A data structure in the fast filesystem that describes the

fragments that are free in an entry of the allocation map. The filesystem uses the

fragment-descriptor table by taking a byte in the allocation map and using the byte to index into

the fragment-descriptor table. The value in the fragment-descriptor table indicates how many

fragments of a particular size are available in the entry of the allocation map. By doing a logical

AND with the bit corresponding to the desired fragment size, the system can determine quickly

whether a desired fragment is contained within the allocation-map entry.

free list In the memory-management system, the list of available pages of physical memory

(also called the memory free list). There is a similar free list in the system for dynamically

allocated kernel memory. Many kernel data structures are dynamically allocated, including

vnodes, file-table entries, and disk-quota structures.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222

941

free-space reserve A percentage of space in a filesystem that is held in reserve to ensure that

certain allocation algorithms used by the filesystem will work well. By default, 8 percent of the

available space in the fast filesystem is held in reserve.

gateway See router.

generation number The number assigned to an inode each time that the latter is allocated to

represent a new file. Each generation number is used only once. To make file handles harder to

guess, most NFS implementations, including FreeBSD, use a random-number generator to

select a new generation number.

GID See group identifier.

global page-replacement algorithm An algorithm that does page replacement according to

systemwide criteria. A global-page-replacement strategy tends to make the most efficient use of

the system memory. However, a single process can thrash the entire system by trying to use all

the available memory.

group identifier (GID) An integer value that uniquely identifies a collection of users. GIDs

are used in the access-control facilities provided by the filesystem. See also credential; effective

group identifier; real group identifier; saved group identifier; set-group-identifier program.

half-open connection A connection that is open for communication in one direction between

two endpoints. For example, a client may close its sending side of a stream connection because it

has no more data to send but leave its receiving half of the connection open so that it can

continue to receive data from the server.

handler A procedure that is invoked in response to an event such as a signal.

hard limit A limit that cannot be exceeded. See also soft limit.

hard link A directory entry that directly references an inode. If there are multiple hard links to

a single inode and if one of the links is deleted, the remaining links still reference the inode. By

contrast, a symbolic link is a file that holds a pathname referencing a file. See also symbolic link.

header prediction A heuristic used by TCP on incoming packets to detect two common cases:

the next expected data segment for an existing connection or an acknowledgment plus a window

update for one or more data segments. When one of these two cases arises, and the packet has

no additional flags or state indications, the fully general TCP input processing is skipped.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_315
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_426

942

heap The region of a process that can be expanded dynamically with the sbrk system call (or

malloc() C library call). The name is derived from the disorderly fashion in which data are

placed in the region.

high watermark An upper bound on the number of data that may be buffered. In the

interprocess-communication facilities, each socket’s data buffer has a high watermark that

specifies the maximum number of data that may be queued in the data buffer before a request to

send data will block the process (or will return an error if nonblocking I/O is being used). See

also low watermark.

hole In a file, a region that is part of the file but has no associated data blocks. The filesystem

returns zero-valued data when a process reads from a hole in a file. A hole is created in a file

when a process positions the file pointer past the current end-of-file, writes some data, and then

closes the file. The hole appears between the previous end-of-file and the beginning of the newly

written data.

home directory The current working directory that is set for a user’s shell when the user logs

into a system. This directory is usually private to the user. The home directory for a user is

specified in a field in the password-file entry for the user.

hop limit The number of routers through which a network packet may be forwarded before it is

dropped. See also router.

host-unreachable message A network-layer error message indicating that the host to which

a previous message was directed is unavailable because there is no known path to the desired

host.

ICMP See Internet control message protocol.

ICV See integrity-check value.

idempotent An operation that can be repeated several times without changing the final result

or causing an error. For example, writing the same data to the same offset in a file is idempotent

because it will yield the same result whether it is done once or many times. However, trying to

remove the same file more than once is nonidempotent because the file will no longer exist after

the first try.

idle loop The block of code inside the kernel that is executed when there is nothing else to run.

In FreeBSD, the idle loop zeros pages on the free list while it waits for a thread to be added to

the run queue.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_160

943

idle queue The queue where all idle threads are stored. An idle thread is run only when a CPU

has nothing else to do. See also run queue; sleep queue; turnstile queue.

IKE See Internet key exchange.

inbound The direction a network packet is traveling if it has reached the system for which it is

destined. An inbound network packet is delivered to an application on a system or causes an

error if no appropriate application is found. See also forward.

indirect block In the filesystem, an auxiliary data block that holds the number of a data block.

The first 12 blocks of a file are pointed to directly by the inode. Additional data blocks are

described with a pointer from the inode to an indirect block; the system must first fetch the

indirect block that holds the number of the data block. In FreeBSD, the kernel may have to fetch

as many as three indirect blocks to locate the desired data block. An indirect block that contains

data-block numbers is termed a single indirect block; an indirect block that contains block

numbers of single indirect blocks is called a double indirect block; an indirect block that

contains block numbers of double indirect blocks is called a triple indirect block.

init The first user program (/sbin/init) that runs when the system is booted.

initial sequence number See sequence space.

inode A data structure used by the filesystem to describe a file. The contents of an inode

include the file’s type and size, the UID of the file’s owner, the GID of the directory in which it

was created, and a list of the disk blocks and fragments that make up the file. Note that inodes

do not have names; directory entries are used to associate a name with an inode.

input/output (I/O) The transfer of data between the computer and its peripheral devices.

integrity-check value (ICV) A value computed over a range of data by a sender that is used

by a receiver to ensure that data transmitted across a network was not corrupted. See also

checksum.

interactive program A program that must periodically obtain user input to do its work. A

screen-oriented text editor is an example of an interactive program.

Internet control message protocol (ICMP) A communication protocol used for reporting

errors and controlling the operation of the Internet protocols. Each of IPv4 and IPv6 includes its

own version of ICMP, called ICMPv4 and ICMPv6, respectively.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_45

944

Internet key exchange (IKE) A network protocol for exchanging keys used in the IPSec

security protocols.

Internet protocol See IPv4 domain.

interpreter A program that parses and executes a descriptive language in a single step, rather

than using the more common two-stage process of compiling the language and executing the

resulting binary. The shell is an example of an interpreter; it parses and executes a shell script

rather than first compiling it.

interprocess communication (IPC) The transfer of data between processes. Most facilities

for interprocess communication are designed such that data are transferred between objects

other than processes. An interprocess-communication model that is not directly process

oriented is advantageous because it is possible to model scenarios in which communication

endpoints are location independent and, possibly, are migrated dynamically. For example, in

FreeBSD, communication is between sockets rather than between processes.

interprocessor interrupt (IPI) A special type of interrupt by which one processor may

interrupt another processor in a multiprocessor system if the interrupting processor requires

action from the other processor.

interrupt In computer systems, an event external to the currently executing process that

causes a change in the normal flow of instruction execution. Interrupts usually are generated by

hardware devices that are external to the CPU.

inverted page table See reverse-mapped page table.

I/O See input/output.

I/O redirection The redirection of an I/O stream from the default assignment. For example,

all the standard shells permit users to redirect the standard output stream to a file or process.

I/O redirection is implemented in the shell by first closing the descriptor associated with the I/O

stream and then opening or duplicating another descriptor in its place.

I/O stream A stream of data directed to, or generated from, a process. Most I/O streams in

UNIX have a single common data format that permits users to write programs in a tool-oriented

fashion and to combine these programs in pipelines by directing the standard output stream of

one program to the standard input stream of another.

iovec A data structure used to specify user I/O requests made to the kernel. Each structure

holds the address of a data buffer and the number of bytes of data to be read or written. Arrays

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_159

945

of such structures are passed to the kernel in readv and writev system calls. See also

scatter-gather I/O.

I/O vector See iovec.

IPC See interprocess communication.

IPI See interprocessor interrupt.

IPSec The set of protocols that implement network layer security in the Internet protocols,

versions 4 and 6.

IPv4 domain Version 4 of the Internet protocols. IPv4 used to be called the Internet protocols

until version 6 was developed. See also IPv6 domain.

IPv6 domain Version 6 of the Internet protocols. The newest version of the Internet protocols

with support for larger addresses, security, and autoconfiguration. See also IPv4 domain.

job In UNIX, a set of processes that all have the same process-group identifier. Jobs that have

multiple processes are normally created with a pipeline. A job is the fundamental object that is

manipulated with job control.

job control A facility for managing jobs. With job control, a job may be started, stopped, and

killed, as well as moved between the foreground and the background. The terminal handler

provides facilities for automatically stopping a background job that tries to access the

controlling terminal and for notifying a job’s controlling process when such an event occurs.

keepalive packet A type of packet used by TCP to maintain information about whether a

destination host is up. Keepalive packets are sent to a remote host, which, if it is up, must

respond. If a response is not received in a reasonable time to any of several keepalive packets,

then the connection is terminated. Keepalive packets are used on only those TCP connections

that have been created for sockets that have the SO_KEEPALIVE option set on them.

keepalive timer A timer used by the TCP protocol when using keepalive packets. The timer is

set when a keepalive packet is transmitted. If a response to the packet is not received before the

timer expires several times, then the connection is shut down.

kernel The central controlling program that provides basic system facilities. The FreeBSD

kernel creates and manages processes, provides functions to access the filesystem, and supplies

communication facilities. The FreeBSD kernel is the only part of FreeBSD that a user cannot

replace.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_178

946

kernel-event polling A generic method of notifying a process when an event happens or a

condition holds based on the results of small pieces of kernel code termed filters. The process

describes a set of events for which the process referencing the descriptor wants to be notified.

Events include both dynamic transitions, such as the arrival of data to read, and state transitions,

such as a rename of the file associated with the descriptor. See also nonblocking I/O; polling

I/O; signal-driven I/O.

kernel mode The most privileged processor-access mode. The FreeBSD kernel operates in

kernel mode. See also user mode.

kernel process A process that executes with the processor in kernel mode. The pageout

daemon and swapper processes are examples of kernel processes.

kernel state The run-time execution state for the kernel. This state, which includes the

program counter, general-purpose registers, and run-time stack, must be saved and restored on

each context switch.

key In the kernel, a piece of data that uniquely identifies some resource in the system. When

used by an interprocess communication system, it identifies an endpoint of communication such

as a message queue or a shared facility like a region of shared memory.

kill character The character that is recognized by the terminal handler in canonical mode to

mean “delete everything typed on this terminal after the most recent end-of-line character.”

Each terminal session can have a different kill character, and the user can change that kill

character at any time with an tcsetattr system call. The terminal handler does not recognize the

kill character on terminals that are in noncanonical mode. See also erase character; word-erase

character.

kqueue A kernel data structure associated with a file descriptor that describes a set of events

for which the process referencing the descriptor wants to be notified. Events include both

dynamic transitions, such as the arrival of data to read, and state transitions, such as a rename

of the file associated with the descriptor.

lease A ticket permitting an activity that is valid until a specified expiration time. In the NQNFS

protocol, a client gets a lease from its server to read, write, or read and write a file. As long as the

client holds a valid lease, it knows that the server will notify it if the file status changes. Once the

lease has expired, the client must contact the server to request a new lease before using any data

that it has cached for the file. See also callback.

least recently used (LRU) A policy of reuse whereby the least recently used items are reused

first. For example, in the filesystem, there is a fixed number of vnodes available for accessing

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_277
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_277
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_35

947

files. Vnodes that hold valid file data are reallocated in an LRU order, in the hope that the file

referenced by the vnode may be reused by a later open request.

line discipline A processing module in the kernel that provides semantics for an asynchronous

serial interface or for a software emulation of such an interface. Line disciplines are described by

a procedural interface whose entry points are stored in the linesw data structure.

line mode See canonical mode.

link layer Layer 2 in the ISO Open Systems Interconnection Reference Model. In this model,

the link layer is responsible for the (possibly unreliable) delivery of messages within a single

physical network. The link layer corresponds most closely to the network-interface layer of the

FreeBSD network subsystem. See also network-interface layer.

listen request A request passed to a communication-protocol module as a result of a process

making a listen system call on a socket. This request indicates that the system should listen for

requests to establish a connection to the socket. Otherwise, the system will reject any connection

requests that it receives for the socket.

loadable kernel modules A collection of software that implements a kernel service but that is

not statically linked into the kernel’s image. Loadable kernel modules are brought into the

system dynamically, possibly at run time, by actions initiated either by the system or a user. See

also permanent kernel modules.

local domain A communication domain in the interprocess-communication facilities that

supports stream- and datagram-oriented styles of communication between processes on a single

machine.

locality of reference A phenomenon whereby memory references of a running program are

localized within the virtual address space over short periods. Most programs tend to exhibit

some degree of locality of reference. This locality of reference makes it worthwhile for the

system to prefetch pages that are adjacent to a page that is faulted, reducing the fault rate of a

running program.

local page-replacement algorithm An algorithm for page replacement that first chooses a

process from which to replace a page and then chooses a page within that process based on

per-process criteria. Usually, a process is given a fixed number of pages and must then select

from them when it needs a new page.

logical block A block defined by dividing a file’s linear extent by the underlying filesystem

block size. Each logical block of a file is mapped into a physical block. This additional level of

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_235
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_267

948

mapping permits physical blocks to be placed on disk without concern for the linear

organization of the logical blocks in a file.

long-term-scheduling algorithm See short-term-scheduling algorithm.

low watermark A lower bound that specifies the minimum number of data that must be

present before an action can be taken. In the interprocess-communication facilities, each

socket’s data buffer has a low watermark that specifies the minimum number of data that must

be present in the data buffer before a reception request will be satisfied. See also high

watermark.

LRU See least recently used.

MAC See mandatory access control.

machine check An exceptional machine condition that indicates the CPU detected an error in

its operation. For example, a machine check is generated if a parity error is detected in a cache

memory.

magic number The number located in the first few bytes of an executable file that indicates

the file’s type. Many on-disk data structures have a magic number to help verify their contents.

main memory The primary memory system on a machine.

mandatory access control (MAC) An infrastructure that allows the system administrator to

impose security policies on all users in the system, in contrast to discretionary access control in

which users control access to their own files. Policies include multilevel security in which labels

on processes and files control access to use based on a user’s clearance level and the file’s

confidentiality level. MAC is implemented via a reference monitor, the MAC framework. See also

discretionary access control; multilevel security; reference monitor.

mandatory lock A lock that cannot be ignored or avoided. A mandatory lock is contrasted

with an advisory lock, which is enforced only when a process explicitly requests its enforcement.

See also advisory lock.

mapped object An object whose pages are mapped into a process address space. Processes

map objects into their virtual address space using the mmap system call.

mapping structure The machine-dependent state required to describe the translation and

access rights of a single page. See also page-table entry.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259

949

marshalling Preparing a set of parameters to be sent across a network. Marshalling includes

replacing pointers by the data to which they point and converting binary data to the canonical

network byte order. See also remote procedure call.

masked signal A signal blocked in a sigprocmask system call. When a signal is masked, its

delivery is delayed until it is unmasked. In addition, in FreeBSD, the system automatically

masks a caught signal while that signal is being handled.

maximum segment lifetime (MSL) The maximum time that a segment of data may exist in

the network. See also 2MSL timer.

maximum transmission unit (MTU) The largest packet that can be communicated across a

network link in a single transaction.

mbuf A data structure that describes a block of data. Mbufs are used in the

interprocess-communication facilities for holding network packets, as well as data that are

internal to the network protocol modules. “Mbuf” is shorthand for “memory buffer.”

memory address A number that specifies a memory location. Memory addresses are often

categorized as physical or virtual according to whether they reference physical or virtual

memory.

memory free list See free list.

memory-management system The part of the operating system that is responsible for the

management of memory resources available on a machine.

memory-management unit (MMU) A hardware device that implements

memory-management-related tasks, such as address translation and memory protection. Most

contemporary memory-management units also provide support for demand-paged

virtual-memory management. See also address translation.

message queue A local interprocess-communication mechanism that supports in-order

delivery of messages. Messages are inserted at one end of the queue and removed from the other,

and the kernel guarantees their ordering.

metadata In filesystems, metadata provides pointers and descriptions for linking multiple disk

sectors into files and identifying those files. Metadata are the directories, inodes, and free block

maps that give structure to raw storage capacity.

MLS See multilevel security.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_328
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_465
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_230

950

MMU See memory-management unit.

MSL See maximum segment lifetime.

MTU See maximum transmission unit.

multilevel feedback queue A queueing scheme in which requests are partitioned into

multiple prioritized subqueues, with requests moving between subqueues based on dynamically

varying criteria. The FreeBSD kernel uses a multilevel-feedback-queueing scheme for

scheduling the execution of threads.

multilevel security (MLS) A mandatory access control (MAC), sometimes referred to as the

Bell-LaPadula policy, that controls access based on data confidentiality. In MLS, processes are

labeled with clearances and objects (e.g., files) are labeled with classifications. Two rules are

enforced: higher-clearance processes cannot “write down” to lower-classification objects, and

lower-clearance processes cannot “read up” from higher-classification objects. See also

mandatory access control.

multiple-root problem A problem that results from the implementation details of filesystems

in non-Unix environments, such as Windows-based operating systems, in which each filesystem

has its own root directory without the benefit of a single root to bind all filesystems. Directory

traversal in a system with multiple root directories required changes in the NFS protocol so that

users and programs could move smoothly across filesystems without the need to know about

multiple root directories.

neighbor discovery The technique by which a system on a network discovers the hardware

address of its neighbors, including its router, so that it can send network packets to them. The

neighbor discovery protocol is used by IPv6. See also address-resolution protocol.

netmask A network mask defines the boundary between the host and network parts of a

network address. The mask is used by various parts of the network protocol and routing systems

to make decisions about whether a network address is meant for a specific node, or if it should

be routed to another system in the Internet.

network byte order The order defined by a network for the transmission of protocol fields

that are larger than one byte. In IPv4 and IPv6, this order is “most significant byte first.”

network-interface layer The layer of software in the FreeBSD network subsystem that is

responsible for transporting messages between hosts connected to a common transmission

medium. This layer is mainly concerned with driving the transmission media involved and with

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_05

951

performing any necessary link-level protocol encapsulation and decapsulation. See also link

layer.

network layer The layer of software in the FreeBSD network subsystem that is responsible for

implementing ISO layer 2 functionality. In the IPv4 domain, this functionality is implemented

in the IP protocol module.

network mask See netmask.

newbus The device-driver infrastructure used in FreeBSD to manage the devices on the system.

Newbus includes machine-independent routines and data structures for use by

machine-dependent layers and provides a framework for dynamic allocation of data structures

for each device. See also autoconfiguration.

nice A user-controllable process-scheduling parameter. The value of a process’s nice variable is

used in calculating the scheduling priority of the process’s threads. Positive values of nice mean

that the process is willing to receive less than its share of the processor. Negative values of nice

mean that the process requests more than its share of the processor.

nonblocking I/O A mode in which a descriptor may be placed, whereby the system will return

an error if any I/O operation on the descriptor would cause the process to block. For example, if

a read system call is done on a descriptor that is in nonblocking I/O mode, and no data are

available, the system will return the error code EAGAIN, rather than block the process until data

arrive. See also kernel-event polling; polling I/O; signal-driven I/O.

noncanonical mode See canonical mode.

nonlocal goto A transfer in control that circumvents the normal flow of execution in a

program across routine boundaries. For example, if procedure A calls procedure B, and B calls C,

then a direct transfer of control from C back to A (bypassing B) would be a nonlocal goto.

nonresident object An object that is not present in main memory. For example, a page in the

virtual address space of a process may be nonresident if it has never been referenced.

nonuniform memory access (NUMA) A computer memory design with nonuniform

memory access (NUMA) used in systems with multiple CPUs. Access time to the memory

depends on the memory location relative to the CPU. Under NUMA, a CPU can access its own

local memory faster than memory local to another CPU or shared between CPUs. See also

symmetric multiprocessing.

NUMA See nonuniform memory access.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_277
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_244

952

object See virtual-memory object.

optimal replacement policy A replacement policy that optimizes the performance of a

demand-paging virtual-memory system. In this book, a policy whereby the full reference string

of a program is known in advance, and pages are selected such that the number of page faults is

minimized.

orphaned process group A process group in which the parent of every member is either

itself a member of the group or is not a member of the group’s session. Such a parent would

normally be a job-control shell capable of resuming stopped child processes.

out-of-band data Data transmitted and received out of the normal flow of data. Stream

sockets support a logically separate out-of-band data channel through which at least one

message of at least 1 byte of data may be sent. The system immediately notifies a receiving

process of the presence of out-of-band data, and out-of-band data may be retrieved from the

stream out of the order in which normal data are received.

overlay In computer systems, a region of code or data that may be replaced with other such

regions on demand. Overlays are usually loaded into a process’s address space on demand,

possibly on top of another overlay. Overlays are a commonly used scheme for programs that are

too large to fit in the address space of a machine that does not support virtual memory.

page In memory management, the fixed-sized unit of measure used to divide a physical or

virtual address space. See also demand paging.

page fault An exception generated by a process’s reference to a page of that process’s virtual

address space that is not marked as resident in memory.

pagein An operation done by the virtual-memory system in which the contents of a page are

read from secondary storage.

pageout An operation done by the virtual-memory system in which the contents of a page are

written to secondary storage.

pageout daemon In FreeBSD, the kernel process that is responsible for writing parts of the

address space of a process to secondary storage, to support the paging facilities of the

virtual-memory system. See also swapper.

pager A kernel module responsible for providing the data to fill a page and for providing a place

to store that page when it has been modified and the memory associated with it is needed for

another purpose.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_483
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_423

953

page reclaim A page fault where the page that was faulted is located in memory, usually on the

inactive or cache list.

page table The data structure used by the virtual-memory system to store the mapping

between virtual addresses and physical addresses. See also page-table entry; page-table pages.

page-table entry (PTE) The machine-dependent data structure that identifies the location

and status of a page of a virtual address space. When a virtual page is in memory, the PTE

contains the page-frame number that the hardware needs to map the virtual page to a physical

page.

page-table pages The top level of a two-level hierarchy of data structures used by a

forward-mapped page-table algorithm to describe the virtual address space of a process. On the

PC, page-table pages are stored in an array called the directory table; each entry in a page-table

page points to a page of bottom-level page-table entries. See also directory table;

forward-mapped page table; page-table entry; page table.

paging The action that brings pages of an executing process into main memory when they are

referenced and that removes them from memory when they are replaced. When a process

executes, all its pages are said to reside in virtual memory. Only the actively used pages, however,

need to reside in main memory. The remaining pages can reside on disk until they are needed.

panic In UNIX, an unrecoverable system failure detected by the kernel. FreeBSD automatically

recovers from a panic by rebooting the machine, repairing any filesystem damage, and then

restarting normal operation. See also crash dump.

parent process A process that is a direct relative of another process as a result of a fork system

call.

partition See disk partition.

path MTU discovery An algorithm and set of messages used to find the largest packet that

can be sent between two endpoints in the network.

pathname A null-terminated character string starting with an optional slash (/), followed by

zero or more directory names separated by slashes, and optionally followed by a filename. If a

pathname begins with a slash, it is said to be an absolute pathname, and the path search begins

at the root directory. Otherwise, the pathname is said to be a relative pathname, and the path

search begins at the current working directory of the process. A slash by itself names the root

directory. A null pathname refers to the current working directory.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_93

954

permanent kernel modules A collection of software that implements a kernel service that

must be present at boot time and may not be removed while the system is running. See also

loadable kernel module.

persist timer A timer used by TCP for maintaining output flow on a connection. This timer is

started whenever data are ready to be sent, but the send window is too small to bother sending

and no data are already outstanding. If no window update is received before the timer expires, a

window probe is sent.

physical block One or more contiguous disk sectors to which the system maps a logical block.

physical mapping The software state, also referred to as the pmap structure, needed to

manage the machine-dependent translation and access tables that are used either directly or

indirectly by the memory-management hardware. This mapping state includes information

about access rights, in addition to address translation.

PID See process identifier.

pipe An interprocess-communication facility that supports the unidirectional flow of data

between related processes. Data transfer is stream oriented, reliable, and flow controlled. A pipe

is specified to the shell with the “|” symbol. For example, to connect the standard output of

program a to the standard input of program b, the user would type the command “a | b.”

pipeline A collection of processes in which a pipe connects the standard output of one process

to the standard input of the next process.

placement policy The policy used by the virtual-memory system to place pages in main

memory when servicing a page fault. FreeBSD uses page coloring to optimize the placement of

pages.

pmap See physical mapping.

pmap module The physical-mapping module manages machine-dependent translation and

access tables that are used either directly or indirectly by the memory-management hardware.

polling I/O The normal mode for a descriptor whereby the system will block if a read request

has no data available or a write request has no buffering available. A process can determine

whether an I/O operation will block by polling the kernel using the select or poll system call. The

select or poll system call can be requested to return immediately with the information or to

block until at least one of the requested I/O operations can be completed. See also kernel-event

polling; nonblocking I/O; signal-driven I/O.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_383

955

POSIX The standards group for P1003, the portable operating-system interfaces established by

the IEEE. Its first established standard was the kernel interface, 1003.1, which was ratified in

1988. The final POSIX standard was ratified in 1999. Since 1999, the only changes have been to

keep the existing POSIX standards current.

prefetching The retrieval of data before they are needed. Many machines prefetch machine

instructions so that they can overlap the time spent fetching instructions from memory with the

time spent decoding instructions.

prepaging The prefetching of pages of memory. Prepaging is a technique used by

virtual-memory systems to reduce the number of page faults. See also cluster.

priority inversion A problematic scenario in scheduling where a high-priority thread is

indirectly preempted by a lower-priority thread effectively inverting the relative priorities of the

two threads. This inversion violates the priority model that high-priority threads can only be

prevented from running by higher-priority threads and briefly by low-priority threads that will

quickly complete their use of a resource shared by the high- and low-priority threads. See also

priority propagation.

priority propagation The propagation of the priority of a high-priority thread blocking on a

mutex to a low-priority thread holding that mutex. The current owner temporarily assumes the

priority of the higher-priority thread waiting on the mutex. This higher priority allows the owner

to resume running if it was preempted by a mid-priority thread, and to continue running should

a mid-priority thread become ready to run. When the owner releases the mutex, it drops back to

its original priority. See also priority inversion.

private mapping When privately mapping a file in virtual memory, changes made to the

memory mapping the file are not written back to the mapped file and are not visible to other

processes mapping the file. See also shared mapping.

privilege The right to bypass normal system protections and access control. Normally, the

kernel grants privilege only to processes owned by the superuser. Root users within jails have

restricted privilege to prevent escape from jail. Mandatory access control may also grant or limit

privilege to processes as dictated by policy. See also mandatory access control; superuser.

privilege separation See application compartmentalization.

probe The operation of checking to see whether a hardware device is present on a machine.

Newer bus designs have a standardized way to identify the devices that are attached to them.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_281
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_11

956

probe effect Placing data collection or debugging code in a program incurs extra execution

time and a different layout of memory. These changes are referred to as the probe effect and

may even cause different results.

process In operating systems, a task that contains one or more threads of execution. In UNIX,

user processes are created with the fork system call.

process context The context of a FreeBSD process consists of user-level state, including the

contents of its address space and the run-time environment, and kernel-level state, including

scheduling parameters, resource controls, and identification information. The process context

includes everything used by the kernel in providing services for the process. See also process

credential; thread; virtual address space.

process credential A data structure describing the security context associated with each user

process as well as cached with open files, sockets, mount-points, and other system objects that

must authorize asynchronous operations. In addition to authorizing UIDs, GIDs, security labels,

and jail information, the credential contains event-auditing configuration and resource limits.

See also user credential.

process group A collection of processes on a single machine that all have the same

process-group identifier. The kernel uses this grouping to arbitrate among multiple jobs

contending for the same terminal.

process-group identifier A positive integer used to identify uniquely each active process

group in the system. Process-group identifiers are typically defined to be the PID of the

process-group leader. Process-group identifiers are used by command interpreters in

implementing job control when the command interpreter is broadcasting signals with the killpg

system call, and when the command interpreter is altering the scheduling priority of all

processes in a process group with the setpriority system call.

process-group leader The process in a process group whose PID is used as the process-group

identifier. This process is typically the first process in a pipeline.

process identifier (PID) A nonnegative integer used to identify uniquely each active process

in the system.

process model A model inherited from the Multics operating system that places

userspace-program instances in separate virtual-address spaces for robustness and security. In

the early 2000s, threads (encapsulating execution context such as register state) were

differentiated from processes (process context containers for executing threads) to support

multithreaded programming. See also process context; thread.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_441

957

process open-file table See descriptor table.

processor affinity In an SMP system, a desire to run a thread on the same processor. For

performance reasons, a thread should not be migrated between processors unnecessarily

because of the loss of its cached working memory.

processor group A set of CPU cores on a processor supporting symmetric multi-threading or

a set of processors in an SMP system that is treated as a unit by the scheduler.

process priority A parameter used by the kernel to schedule the execution of the threads

within a process. The priority for threads running in the timesharing class changes dynamically

according to the operation of the thread. In addition, the nice parameter can be set for a process

to weight the overall scheduling priority for its threads. See also scheduling class; scheduling

priority.

process structure A data structure maintained by the kernel for each active process in the

system. The process structure for a process is always resident in main memory. See also thread

structure.

/proc filesystem A filesystem-based interface to active processes that provides

process-debugging facilities. Each process is represented by a directory entry in a

pseudo-directory named /proc. Applications access the virtual address space of a process by

opening the file in /proc that is associated with the process and then using the read and write

system calls as though the process were a regular file.

protocol family A collection of communication protocols, the members of which are related by

being part of a single network architecture. For example, the TCP, UDP, IPv4, and ICMPv4

protocols are part of the protocol family for the IPv4 domain.

protocol-switch structure A data structure that holds all the entry points for a

communication protocol supported by the kernel.

pseudo-terminal A software emulation of a hardware terminal, built from a pair of character

devices: a master device and a slave device. The slave device provides a process with an interface

identical to that for a hardware terminal. However, instead of having a hardware device driving

it, the slave device has another process manipulating it through the master half of the

pseudo-terminal. Anything written on the master device is given to the slave device as input,

and anything written on the slave device is presented as input on the master device.

PTE See page-table entry.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_259

958

public-key encryption A cryptographic system in which the keys used to encrypt data can be

shared publicly, in contrast to systems that require all keys be kept secret to guarantee the

security of the data.

pure demand paging Demand paging without prepaging.

push migration When the scheduler actively moves a thread from one CPU to another to

balance the computational load in a system.

race condition When two or more actions for an operation occur in an undefined order.

Trouble arises if there exists a possible order that results in an incorrect outcome.

rapid connection reuse A new connection that exactly duplicates the addresses and ports of

a recently closed stream socket in the TIME_WAIT state.

raw-device interface The character-device interface for block-oriented devices such as disks.

This interface provides raw access to the underlying device, arranging for direct I/O between a

process and the device.

raw mode See canonical mode.

raw socket A socket that provides direct access to a communication protocol beneath the

transport layer. For example, a raw socket in the IPv4 domain gives the user the ability to read

and write IP packets directly without using a transport protocol such as UDP or TCP.

real GID See real group identifier.

real group identifier (real GID) The GID that is recorded in the accounting record when a

process terminates. The real GID for a process is initially set at the time that a user logs into a

system and is then inherited by child processes across later fork and exec system calls

(irrespective of whether a program is set-group-identifier). See also credential; effective group

identifier; saved group identifier; set-group-identifier program.

real UID See real user identifier.

real user identifier (real UID) With respect to a process, the true identity of the user that is

running the process. The real UID for a process is initially set at the time a user logs into a

system and is then inherited by child processes across later fork and exec system calls

(irrespective of whether a program is set-user-identifier). The real UID is recorded in the

accounting record when a process terminates. See also credential; effective user identifier;

saved user identifier; set-user-identifier program.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_315
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_376

959

receive window In TCP, the range of sequence numbers that defines the data the system will

accept for a connection. Any data with sequence numbers outside this range that are received

are dropped. See also sliding-window scheme.

reclaim See page reclaim.

reclaim from inactive A page reclaim from the inactive list. A page can be reclaimed from the

inactive list if that page is freed by the page-replacement algorithm, but the page is not

reassigned before a process faults on it.

red zone A read-only region of memory immediately below the last page of the per-thread,

kernel-mode, run-time stack. The red zone is set up by the system so that a fault will occur if a

thread overflows the space allocated for its kernel stack.

referenced page In the virtual-memory system, a page that is read or written.

reference monitor Controls access to objects in order to implement security policies such as

mandatory access control. The classical definition requires that a reference monitor be

tamper-proof, always invoked (non-bypassable), and small enough to subject to analysis and

tests. See also mandatory access control.

reference string A dataset that describes the pages referenced by a process over the time of

the process’s execution. This description represents the memory-related behavior of the process

at discrete times during that process’s lifetime.

region A range of memory that is being treated in the same way. For example, the text of a

program is a region that is read-only and is demand paged from the file on disk that contains it.

relative pathname See pathname.

relocation The copying of a program’s contents from one place in an address space to another.

This copying may be accompanied by modifications to the image of the program so that memory

references encoded in the program remain correct after that program is copied. Code that is not

bound to a particular starting memory address is said to be relocatable or position independent.

remote procedure call (RPC) A procedure call made from a client process to invoke a

subroutine in a server process. Typically, the client and server processes are running on

different machines. A remote procedure call operates much like a local procedure call: the client

makes a procedure call, and then waits for the result while the procedure executes. See also

marshalling.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_257
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_214

960

replacement policy The policy that a demand-paged virtual-memory-management system

uses to select pages for reuse when memory is otherwise unavailable.

resident object An object that is present in main memory. For example, a page in the virtual

address space of a process is resident if its contents are present in main memory.

resident-set size The number of pages of physical memory held by a process. In a well-tuned

system, the resident-set size of a process will be that process’s working set. Usually, the precise

working set cannot be calculated, so a process will have additional pages beyond that needed for

its working set.

retransmit timer A timer used by TCP to trigger the retransmission of data. This timer is set

each time that data are transmitted to a remote host. It is set to a value that is expected to be

greater than the time it will take the receiving host to receive the data and return an

acknowledgment.

reverse-mapped page table A hardware-maintained memory-resident table that contains

one entry per physical page and that is indexed by physical address instead of by virtual address.

An entry contains the virtual address to which the physical page is currently mapped; the entry

also includes protection and status attributes. The hardware does virtual-to-physical address

translation by computing a hash function on the virtual address to select an entry in the table.

The hardware handles collisions by linking together table entries and making a linear search of

this chain until it finds the matching virtual address. See also forward-mapped page table.

root directory The directory that the kernel uses in resolving absolute pathnames. Each

process has a root directory that can be set with the chroot system call, and the system has a

unique root directory, the identity of which is set at the time that the system is bootstrapped.

root filesystem The filesystem containing the root directory that is considered the root of all

filesystems on a machine. The identity of a default root filesystem is compiled into a kernel,

although the actual root filesystem used by a system may be set to some other filesystem at the

time that a system is bootstrapped.

root user See superuser.

round robin In queueing, an algorithm in which each requester is serviced for a fixed time in a

first-come, first-served order; requests are placed at the end of the queue if they are incomplete

after service.

route In packet-switched-network communication, a route to a destination specifies the host or

hosts through which data must be transmitted to reach the destination.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_420

961

router A machine, also known as a gateway, that has two or more network interfaces and that

forwards packets between the networks to which it is connected. Typically, a router runs a

routing process that gathers information on the network topology; it uses that information to

devise a set of next-hop routes that it installs in the kernel’s routing table. See also routing

mechanism; routing policy.

router solicitation A message sent by a host in an attempt, without human intervention, to

discover which machine is its router. See also autoconfiguration; neighbor discovery.

routing daemon A process in FreeBSD that provides a routing-management service for the

system. This service uses a protocol that implements a distributed database of routing

information updated dynamically to reflect changes in topological connectivity.

routing mechanism The routing facilities included in the kernel that implement externally

defined policies. The routing mechanism uses a lookup mechanism that provides a first-hop

route (a specific network interface and immediate destination) for each destination. See also

router; routing policies.

routing policies The routing facilities provided in a user-level process that define external

policies. Routing policies include all the components that the routing daemon uses in choosing

the first-hop routes, such as discovery of the local network topology, implementation of various

routing protocols, and configuration information specifying local policies. See also router;

routing mechanism.

routing redirect message A message generated by a router when the latter recognizes that a

message it has received can be delivered via a more direct route.

RPC See remote procedure call.

run queue The queue of those threads that are ready to execute. See also idle queue; sleep

queue; turnstile queue.

run-to-completion A model of processing in which the maximum amount of work is done on

a piece of data without deferring any work until a later period. Earlier versions of network

protocols repeatedly deferred work between protocol modules so that packets could be buffered

and the buffers tuned to fit the application. Run-to-completion reduces per-packet overhead

because important data remain in the CPU cache for as long as the processing continues, and in

modern processors cache misses are a significant source of overhead.

SA See security association.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_328
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_361

962

sandbox A restricted execution environment in which untrustworthy code can be executed

without granting it the ambient authority of the user who has executed it. See also ambient

authority; application compartmentalization; Capsicum.

saved GID See saved group identifier.

saved group identifier (saved GID) A mechanism that records the identity of a setgid

program by copying the value of the effective GID at the time that the exec for the program is

done. During its execution, the program may temporarily revoke its setgid privilege by setting its

effective GID to its real GID. It can later recover its setgid privilege by setting its effective GID

back to its saved GID. See also credential; effective group identifier.

saved UID See saved user identifier.

saved user identifier (saved UID) A mechanism that records the identity of a setuid

program by copying the value of the effective UID at the time that the exec for the program is

done. During its execution, the program may temporarily revoke its setuid privilege by setting

its effective UID to its real UID. It can later recover its setuid privilege by setting its effective

UID back to its saved UID. See also credential; effective user identifier.

scatter-gather I/O Scatter input allows a single read to be placed in several different buffers.

Scatter output allows several different buffers to be written in a single atomic write.

Scatter-gather I/O uses an iovec structure, an array of buffers and lengths, to identify the buffers

to be used for the I/O. See also iovec.

scheduling In operating systems, the planning used to share a resource. For example, process

scheduling shares the CPU and main memory.

scheduling class The FreeBSD kernel has five scheduling classes: kernel interrupts, system

calls, real time, time sharing, and idle. Each process is placed into a scheduling class. Within

each class, threads of the process are organized by their scheduling priority. See also scheduling

priority; process priority.

scheduling priority A per-process parameter maintained by the kernel that specifies the

priority with which the latter will schedule the execution of the threads of the process. When a

thread is executing in user mode in the timesharing class, the system periodically calculates the

scheduling priority using the thread priority and the nice parameter. See also process priority;

scheduling class.

SCTP See stream transmission control protocol.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_417

963

secondary storage Storage that holds data that do not fit in main memory. Secondary storage

is usually located on rotating magnetic media, such as disk drives. See also backing storage.

sector The smallest contiguous region on a disk that can be accessed with a single I/O

operation.

security association (SA) The basic channel of secure communication in IPSec. Data is

secured only in one direction by a security association, which means that two security

associations are required to create a fully secure channel between two hosts. See also

security-parameter index.

security-event auditing Refers to the fine-grained logging of security-related events in the

trusted computing base. The audit framework tracks security-related system calls and

application events (such as user authentication) to the audit trail in the filesystem. Typical uses

include post-mortem analysis following compromise and live intrusion detection. See also

trusted computing base.

security label Additional security metadata associated with processes and objects (e.g., files

and sockets) used as input to access-control polices. For example, the MAC policy MLS

associates confidentiality labels with processes and objects, and the MAC policy Biba associates

integrity labels with processes and objects.

security-parameter index (SPI) A 32-bit piece of data used to identify the end of a security

association on a host using IPSec. The security-parameter index is used as a key when working

with security associations in a system’s security databases. See also security association.

segment A contiguous range of data defined by a base and an extent. In memory management,

a segment describes a region of a process’s address space. In the TCP protocol, a segment is a

range of bytes within a single connection defined by starting and ending sequence numbers.

semaphores Data structures and a set of functions used for synchronizing access to a shared

resource, such as an area of memory. Semaphores implement two functions: a take and a give,

such that once one thread has taken a semaphore, all others that follow the first are blocked

until the first thread gives the semaphore back.

send window In TCP, the range of sequence numbers that defines the data the system can

transmit on a connection and be assured that the receiving party has space to hold the data on

receipt. Any data with sequence numbers before the start of the send window have already been

sent and acknowledged. Any data with sequence numbers after the end of the window will not

be sent until the send window changes to include them. See also sliding-window scheme.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_361
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_390

964

sense request A request passed to a communication-protocol module as a result of a process

making a stat system call on a socket.

sequenced-packet socket A type of socket that models sequenced, reliable, unduplicated,

connection-based communication that preserves message boundaries.

sequence space The range of sequence numbers that are assigned to data transmitted over a

TCP connection. In TCP, sequence numbers are taken from a 32-bit circular space that starts

with an arbitrary value called the initial sequence number.

server process A process that provides services to client processes via an

interprocess-communication facility. See also client process.

session A collection of process groups established for job control purposes. Normally, a session

is created for each login shell. All processes started by that login shell are part of its session.

session ID Defines a single conversation and set of communications parameters between an

NFSv4 client and server.

session leader A process that has created a session. The session leader is the controlling

process for the session and is permitted to allocate and assign the controlling terminal for the

session. Normally, a session is created for each login shell. All processes started by that login

shell are part of its session.

set-group-identifier program A program that runs with an additional group privilege.

Set-group-identifier programs are indicated by a bit in the inode of the file. When a process

specifies such a file in an exec system call, the GID of the file is made the effective GID of the

process.

set-user-identifier program A program that runs with an UID different from that of the

process that started it running. Set-user-identifier programs are indicated by a bit in the inode

of the file. When a process specifies such a file in an exec system call, the UID of the file is made

the effective UID of the process.

shadow object An anonymous object that is interposed between a process and an underlying

object to prevent changes made by the process from being reflected back to the underlying

object. A shadow object is used when a process makes a private mapping of a file so that changes

made by the process are not reflected in the file.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_48

965

shared mapping When doing a shared mapping to a file in virtual memory, changes made to

the memory mapping the file are written back to the mapped file and are visible to other

processes mapping the file. See also private mapping.

shared memory An area of memory that can be read and written by two different processes. It

is the fastest way to share information between processes on the same system. See also

semaphores.

shell A program that interprets and executes user commands. When a user logs into a UNIX

system, a shell process is normally created with its standard input, standard output, and

standard error descriptors directed to the terminal or pseudo-terminal on which the user logged

in.

short-term-scheduling algorithm The algorithm used by the system to select the next

process to run from among the set of processes that are deemed runnable. The

long-term-scheduling algorithm, on the other hand, can influence the set of runnable processes

by swapping processes in and out of main memory (and thus in and out of the set of runnable

processes).

signal In UNIX, a software event. In FreeBSD, this event is modelled after a hardware

interrupt.

signal-driven I/O A mode in which a descriptor can be placed, whereby the system will deliver

a SIGIO signal to a process whenever I/O is possible on the descriptor. See also kernel-event

polling; nonblocking I/O; polling I/O.

signal handler A procedure that is invoked in response to a signal.

signal post A notification to a process that a signal is pending for that process. Since most of

the actions associated with a signal are done by the receiving process, a process that is posting a

signal usually does little more than to record the pending signal in the receiving process’s

process structure and to arrange for the receiving process to be run.

signal-trampoline code A piece of code that invokes a signal handler. The signal-trampoline

code contains instructions that set up parameters for calling a signal handler, perform the actual

call to the signal handler, and, on return, perform a sigreturn system call to reset kernel state

and resume execution of the process after the signal is handled.

silly-window syndrome A condition observed in window-based flow-control schemes in

which a receiver sends several small (i.e., silly) window allocations rather than waiting for a

reasonable-size window to become available.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_283
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_277

966

single indirect block See indirect block.

sleep queue The queue of those threads that are blocked awaiting a long-term event such as

completion of a disk read. They cannot run until the event has occurred. The name is derived

from the sleep() routine that places threads on this queue. See also idle queue; run queue;

turnstile queue.

sliding-window scheme A flow-control scheme in which the receiver limits the number of

data that it is willing to receive. This limit is expressed as a contiguous range of sequence

numbers termed the receive window. It is periodically communicated to the sender, who is

expected to transmit only those data that are within the window. As data are received and

acknowledged, the window slides forward in the sequence space. See also receive window; send

window; sequence space.

small-packet avoidance In networking, avoiding the transmission of a packet so small that

its transmission would be inefficient.

SMP See symmetric multiprocessing.

snapshot A filesystem snapshot is a frozen image of a filesystem at a given instant in time.

socket In the FreeBSD interprocess-communication model, an endpoint of communication.

Also, the data structure that implements the socket abstraction and the system call that creates a

socket.

socket address structure A generic structure for holding addresses for a socket. Many

interprocess communication routines, such as connect() and bind(), need to know the network

addresses of the communicating endpoints and require that a socket address structure be passed

as a parameter.

soft limit A limit that may be temporarily exceeded, or exceeded a limited number of times. A

soft limit is typically used with a hard limit. See also hard limit.

soft link See symbolic link.

soft updates A technique to maintain filesystem consistency. It uses delayed writes for

metadata changes, tracks dependencies between updates, and enforces these dependencies at

write-back time. Despite allowing blocks to be written in any order, applications always see the

most current copies of metadata blocks, and the disk always sees copies that are consistent with

its other contents.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_426

967

software interrupt A software-initiated interrupt. It is requested with an asynchronous

system trap.

software-interrupt thread A thread that is set running in response to a software interrupt.

In FreeBSD, input processing for each transport-layer communication protocol is embodied in a

software-interrupt thread.

special file See device special file.

SPI See security-parameter index.

spin mutex A spin mutex will not relinquish the CPU when it cannot immediately get the

requested lock, but it will loop, waiting for the mutex to be released by another CPU.

stack An area of memory set aside for temporary storage or for procedure and interrupt-service

linkages. A stack uses the last-in, first-out (LIFO) concept. On most architectures, the stack

grows from high memory addresses to low memory addresses. As items are added to (pushed

onto) the stack, the stack pointer decrements; as items are retrieved from (popped off) the stack,

the stack pointer increments.

stack segment A segment that holds a stack. See also bss segment; data segment; text

segment.

stale translation A translation or mapping that was previously true, but is no longer valid. For

example, on machines that have a translation lookaside buffer, if a page-table entry in memory

is changed to alter the mapping, any address translation for that page present in the translation

lookaside buffer must be flushed to avoid a stale translation.

standalone device driver A device driver that is used in a standalone program. A standalone

device driver usually differs from a device driver used in an operating system in that it does not

have interrupt services, memory management, or full support for virtual-memory mapping. In

the FreeBSD stand-alone I/O library, for example, a standalone device driver polls a device to

decide when an operation has completed. It is also responsible for setting up its own memory

mapping when doing transfers between the device and main memory.

standalone I/O library A library of software that is used in writing standalone programs.

This library includes standalone device drivers that are used to perform I/O.

standalone program A program that can run without the support of an operating system.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_86
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_439

968

standard error The I/O stream on which error messages are conventionally placed. This

stream is usually associated with descriptor 2 in a process.

standard input The I/O stream on which input is conventionally received. This stream is

usually associated with descriptor 0 in a process.

standard output The I/O stream to which output is conventionally directed. This stream is

usually associated with descriptor 1 in a process.

start routine A device-driver routine that is responsible for starting a device operation after

the system has acquired all the resources that are required for the operation.

stateless server A server that does not need to maintain any information about which clients

it is serving or which data have been passed to them. Every request that is received by such a

server must be completely self-contained, providing all information needed to fulfill it.

sticky bit The bit in an inode representing a directory that shows that an unprivileged user may

not delete or rename files of other users in that directory. The sticky bit may be set by any user

on a directory that the user owns or for which she has appropriate permissions. Historically, it

was the bit in an inode that indicated that the text segment of the program was to be shared and

kept memory or swap-space resident because of expected future use. That bit is no longer

needed for this use because the virtual-memory system tracks recently used executables.

stream socket A type of socket that models a reliable, connection-based byte stream that can

support out-of-band data transmission.

stream transmission control protocol (SCTP) A connection-oriented transport protocol

used in the Internet. SCTP supports both stream and sequenced-packet styles of

communication.

superblock A data structure in the on-disk filesystem that specifies the basic parameters of the

filesystem.

superpages A capability of most hardware to allow for multiple page sizes. Larger page sizes

are used to reduce pressure on the TLB. The page sizes available are dependent on the

architecture. Common sizes in addition to the standard 4-Kbyte pages are 8-Kbyte, 64-Kbyte,

512-Kbyte, 2-Mbyte, and 4-Mbyte pages. See also translation lookaside buffer.

superuser The user whose UID is 0. Processes owned by the superuser are granted special

privileges by UNIX. The superuser’s login name is usually root. See also privilege.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_455
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_284

969

swap area A region on secondary storage that is used for swapping and paging.

swap device A device on which a swap area resides.

swapper In FreeBSD, the name of the kernel process that implements the swapping portion of

the memory-management facilities. Historically, the swapper is process 0. See also pageout

daemon.

swapping A memory-management algorithm in which entire processes are moved to and from

secondary storage when main memory is in short supply.

swap space See swap area.

symbolic link A file whose contents are interpreted as a pathname when it is supplied as a

component of a pathname. Also called a soft link. See also hard link.

symmetric cryptography A cryptographic system that uses the same key to encrypt data as it

does to decrypt data, sometimes referred to as secret key cryptography. See also asymmetric

cryptography.

symmetric multiprocessing (SMP) A multiprocessor consists of two or more CPUs

connected to a common main memory. Symmetric multiprocessing describes a kernel that can

run simultaneously on all the CPUs at the same time. See also nonuniform memory access.

synchronous Synchronized with the currently running process. For example, in UNIX, all I/O

operations appear to be synchronous: The read and write system calls do not return until the

operation has been completed. (For a write, however, the data may not really be written to their

final destination until some time later—for example, in writing to a disk file.)

system activity An entry into the kernel. System activities can be categorized according to the

event or action that initiates them: system calls, hardware interrupts, hardware traps, and

software-initiated traps or interrupts.

system call In operating systems, a request to the system for service; also called a system

service request.

system clock The device that maintains the system’s notion of time of day. On most systems,

this device is an interval timer that periodically interrupts the CPU. The system uses these

interrupts to maintain the current time of day and to do periodic functions such as thread

scheduling.

system mode See kernel mode.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_186

970

tag queueing Helps to coordinate I/O operations with a disk driver. Each request passed to the

disk driver is assigned a unique numeric tag. After each request is finished, the tag of the

completed request is returned as part of the completion interrupt. The disk driver gains

efficiency by being able to reorder its I/O requests optimally. The client can ensure integrity by

knowing when write requests have been saved to stable storage.

tags An extensible system for adding arbitrary data to an mbuf or mbuf cluster to communicate

information between different modules in the network stack without having to modify the

packet data.

TCB See trusted computing base.

TCP See transmission control protocol.

termios structure The structure used to describe terminal state. Terminal state includes

special characters, such as the erase, kill, and word-erase characters; modes of operation, such

as canonical or noncanonical; and hardware serial-line parameters, such as parity and baud

rate.

text segment The segment of a program that holds machine instructions. The system usually

makes a program’s text segment read-only and shareable by multiple processes when the

program image is loaded into memory. See also bss segment; data segment; stack segment.

thrashing A condition where requested memory utilization far exceeds the memory availability.

When a machine is thrashing, it usually spends more time doing system-related tasks than

executing application code in user mode.

thread The unit of execution of a process. A thread requires an address space and other

resources, but it can share many of those resources with other threads. Threads sharing an

address space and other resources are scheduled independently and can all do system calls

simultaneously.

thread state block (TSB) A data structure used to hold thread context. The hardware-defined

TSB contains the hardware portion of this context. The software TSB contains the software

portion and is located in memory immediately after the hardware TSB.

thread structure A data structure maintained by the kernel for each active thread in the

system. It contains the stack used when the thread is running in the kernel. Unlike the process

structure, the thread structure can be moved to secondary storage if the process is swapped out.

See also process structure.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_300

971

three-way handshake A set of three messages used by a communication protocol, such as

TCP, to initiate a reliable connection. Three messages is the minimum number necessary to

ensure that both endpoints are aware of the connection process completing successfully.

tick An interrupt by the system clock.

time quantum In a timesharing environment, the period of time that the process scheduler

gives a process to run before it preempts that process so that another process can execute. Also

called a time slice.

timer backoff The rate at which a timer value is increased. For example, in TCP, the value of

the retransmit timer is determined by a table of multipliers that provide a near-exponential

increase in timeout values.

time slice See time quantum.

time-stable identifier An identifier that refers uniquely to some entity both while it exists

and for a long time after it is deleted. A time-stable identifier allows a system to remember an

identity across transient failures and to detect and report errors for attempts to access deleted

entities.

TLB See translation lookaside buffer.

top half With regard to system operation, the routines in the kernel that are invoked

synchronously as a result of a system call or trap. These routines depend on per-process state

and can block by calling sleep(). See also bottom half.

trace trap A trap used by the system to implement single-stepping in program debuggers. On

architectures that provide trace-bit support, the kernel sets the hardware-defined trace bit in the

context of the thread being debugged and places the thread on the run queue. When the thread

next runs, the trace bit causes a trap to be generated after the thread executes one instruction.

This trap is fielded by the kernel, which stops the thread and returns control to the debugging

process.

track In computer systems, the sectors of a disk that are accessible by one head at one of its

seek positions.

track cache When the kernel is reading from a disk, memory associated with the disk that

holds the data passing under the disk heads regardless of whether they have been requested

explicitly. When the kernel is writing to a disk, memory associated with the disk in which data

are stored until the disk heads reach the correct position for writing them.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_455
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_26

972

translation lookaside buffer (TLB) A processor cache containing translations for recently

used virtual addresses.

transmission control protocol (TCP) A connection-oriented transport protocol used in the

Internet. TCP provides for the reliable transfer of data, as well as for the out-of-band indication

of urgent data.

transport layer The layer of software in the network subsystem that is responsible for moving

data between two sockets. Depending on the type of transport protocol used, the data may be

delivered as a sequenced, in-order stream or as an unordered set of individual messages. See

also transmission control protocol; user datagram protocol.

transport mode One of two modes used for secure communications in IPSec. In transport

mode, only the payload of a packet is protected, whereas the network-layer protocol header is

left exposed. See also tunnel mode.

triple indirect block See indirect block.

trusted computing base (TCB) The smallest subset of a system that must be secure in order

for the system as a whole to be secure. In FreeBSD, this includes the kernel, key system libraries,

applications running as root, and system configuration files and startup scripts.

TSB See thread state block.

tunnel mode One of two modes used for secure communication in IPSec. In tunnel mode, the

packet to be secured is completely contained within another packet that carries the inner packet

between two endpoints. The endpoints are the boundaries of the tunnel. See also transport

mode.

turnstile Data structure used to manage threads awaiting a short-term event such as acquiring

a mutex. See also turnstile queue.

turnstile queue The queue of those threads that are blocked awaiting a short-term event such

as acquiring a mutex. They may propagate their priority to the mutex holder to speed their

release of it. See also idle queue; run queue; sleep queue.

2MSL timer A timer used by the TCP protocol during connection shutdown. The name refers

to the fact that the timer is set for twice the maximum time that a segment may exist in the

network. This value is chosen to ensure that future connections will not mistakenly accept late

messages from an older connection. See also maximum segment lifetime.

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_462
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_458
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_458
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_216

973

type-ahead Transmission of data to a system, usually by a user typing at a keyboard, before the

data are requested by a process.

uberblock An on-disk data structure in the Zettabyte filesystem that references the root of the

tree of blocks representing the storage pool.

UDP See user datagram protocol.

UID See user identifier.

uio A data structure used by the system to describe an I/O operation. This structure contains an

array of iovec structures; the file offset at which the operation should start; the sum of the

lengths of the I/O vectors; a flag showing whether the operation is a read or a write; and a flag

showing whether the source and destination are both in the kernel’s address space or whether

the source and destination are split between user and kernel address spaces. See also iovec.

update dependency The required ordering of related updates to separate meta-data

structures to ensure recoverability in the presence of unpredictable failures. An update that

must be done later has an update dependency on an earlier update because it cannot be done

until the earlier update is committed to stable storage. See also metadata.

urgent data In TCP, data that are marked for urgent delivery.

user credential A structure that identifies a user. It contains the real, effective, and saved user

and group identifiers. See also real user identifier; real group identifier; effective user

identifier; effective group identifier; saved UID; saved GID. See also process credential.

user datagram protocol (UDP) A simple, unreliable datagram protocol used in the Internet

protocols. UDP provide peer-to-peer, multicast and broadcast addressing, and optional data

checksums. A single version of UDP works the same way on top of both IPv4 and IPv6.

user identifier (UID) A nonnegative integer that identifies a user uniquely. UIDs are used in

the access-control facilities provided by the filesystem. See also credential; effective user

identifier; real user identifier; saved user identifier; set-user-identifier program.

user mode The least-privileged processor-access mode. User processes run in user mode. See

also kernel mode.

user-request routine A set of routines provided by each communication protocol that

directly supports a socket (a protocol that indirectly supports a socket is layered underneath a

protocol that directly supports a socket). These routines serve as the main interface between the

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_315
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_186

974

layer of software that implements sockets and the communication protocol. The

interprocess-communication facilities make calls to the user-request routines for most

socket-related system calls. See also connect request; control request; listen request; sense

request.

virtual address An address that references a location in a virtual address space.

virtual-address aliasing Two or more processes mapping the same physical page at different

virtual addresses. When using an inverted page table, there can only be one virtual address

mapping any given physical page at any one time. Here, the kernel must invalidate the

page-table entry for the aliased page whenever it switches between the processes with the

conflicting virtual addresses for that page. See also reverse-mapped page table.

virtual address space A contiguous range of virtual-memory locations.

virtual machine A machine whose architecture is emulated in software. The emulation may be

at either the hardware level or at the operating-system level.

virtual memory A facility whereby the effective range of addressable memory locations

provided to a process is independent of the size of main memory; that is, the virtual address

space of a process is independent of the physical address space of the CPU.

virtual-memory object A kernel data structure that represents a repository of data—for

example, a file. An object contains a pager to get and put the data from and to secondary storage,

and a list of physical pages that cache pieces of the repository in memory.

virtual private network (VPN) A network that is layered on top of, or tunneled through, the

public Internet using encrypted links.

vnode An extensible object-oriented interface containing generic information about a file. Each

active file in the system is represented by a vnode, plus filesystem-specific information

associated with the vnode by the filesystem containing the file. The kernel maintains a single

systemwide table of vnodes that is always resident in main memory. Inactive entries in the table

are reused on a least-recently-used basis.

VPN See virtual private network.

wait The system call that waits for the termination of a descendant process.

wait channel A value used to identify an event for which a thread is waiting. In most situations,

a wait channel is defined as the address of a data structure related to the event for which a

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_55
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_484

975

thread is waiting. For example, if a thread is waiting for the completion of a disk read, the wait

channel is specified as the address of the buffer data structure supplied to the disk I/O system.

wildcard route A route that is used if there is no explicit route to a destination.

window probe In TCP, a message that is transmitted when data are queued for transmission,

the send window is too small for TCP to bother sending data, and no message containing an

update for the send window has been received in a long time. A window-probe message contains

a single byte of data.

wired page Memory that is not subject to replacement by the pageout daemon. A nonpageable

range of virtual addresses has physical memory assigned when the addresses are allocated.

Wired pages must never cause a page fault that might result in a blocking operation. Wired

pages are typically used in the kernel’s address space.

word-erase character The character that is recognized by the terminal handler in canonical

mode to mean “delete the most recently typed word on this terminal.” By default, preceding

whitespace and then a maximal sequence of nonwhitespace characters are erased. Alternatively,

an alternate erase algorithm tuned to deleting pathname components may be specified. Each

terminal session can have a different word-erase character, and the user can change that

character at any time with a tcsetattr system call. The terminal handler does not recognize the

word-erase character on terminals that are in non-canonical mode. See also erase character;

kill character.

working directory See current working directory.

working set The set of pages in a process’s virtual address space to which memory references

have been made over the most recent few seconds. Most processes exhibit some locality of

reference, and the size of their working set is typically less than one-half of their total

virtual-memory size.

znode See dnode.

zombie process A process that has terminated but whose exit status has not yet been received

by its parent process (or by init).

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#gloss_96

976

Index

/, 45–46

., 443, 450, 474–475, 814

.., 443, 450–451, 462, 474–475, 478, 814

#!, 70

.sujournal, 488

A

ABI. See application binary interface

absolute pathname, 46, 807, 828

accept system call, 597–598, 611–614, 646, 664, 739

definition, 597

access control, 29–34, 47–48, 150–174, 184–200, 803–805

commands, 162, 169–172

functions, NFS version 4, 173–174

interprocess, 34, 159–161, 182

list, 30–32, 48, 150, 154, 162–174, 436–437, 525, 573–574, 807, 814

list, default, 170

NFS, 573

access rights, 608, 617

receiving, 620

access system call, 353

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_462
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_159
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_574
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_170
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353

977

access vnode operator, 432

access_mask, 172–173

accounting, process resource, 31, 67, 129, 790, 800

accton, 799

ACL. See access control list

acl structure, 166

acl_denies(), 172–173

acl_entry structure, 166

ACPI. See advanced configuration and power interface

active page list, 290

adaptive idle, 125

adaptive replacement cache, 525, 539, 547–548

address family, 596, 608, 611, 807

address resolution protocol, 641, 655–657, 669, 807

implementation of, 655–657

purpose of, 655

address-space management, process, 228–230

address space. See virtual address space

address structure

Internet, 612

local domain, 612

socket, 182, 596, 611, 839

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_01
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_04
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839

978

address translation, 222, 807

addresses, IPv6, 660–662

adjtime system call, 74

advanced configuration and power interface, 53, 363–364, 777, 781, 783

advanced-encryption standard, 210, 213

block cipher, 213, 215

Advanced Micro Devices Corporation, 25, 285, 362, 420–421, 784

virtualization, 421–422

advanced programmable interrupt controller, 363–364, 420, 423, 790

advanced-technology-attachment disk, 363–364, 399, 402, 409–410

advisory locking, 323, 432, 807

advlock vnode operator, 432

AES. See advanced-encryption standard

AFS. See Andrew filesystem

AH. See authentication header

Ahrens, Matt, xxvi

aio_error system call, 321–322, 330

aio_read system call, 321, 359

aio_return system call, 322, 330

aio_suspend system call, 322, 330

aio_waitcomplete system call, 322

aio_write system call, 321, 359

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_285
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_409
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_05
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_10
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_09
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359

979

algorithm

for disksort(), 376

elevator sorting, 375, 418

mbuf storage-management, 605

for physical I/O, 372

TCP, 732–741

TCP slow-start, 752–756

Allman, Eric, xxix

allocation

descriptor, 614

directory space, 444–445

extent-based, 516–517

FFS file block, 507, 511–513, 809

FFS fragment, 512–514

inode, 434

kernel address space, 233–244, 787

kernel memory, 38–39

kernel resource, 259–260

mbuf, 605, 795

process identifier, 127

virtual memory map, 304–305

ZFS file block, 542–543

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_756
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_434
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543

980

allocator

dynamic per-CPU, 789

keg, 238

slab, 236–237, 787, 791

virtual-network stack, 789

zone, 239–241, 791, 793

allocbuf(), 351

allocdirect structure, 466–468, 470–471

allocindir structure, 467, 470–471

ambient authority, 151, 174–180, 807

AMD. See Advanced Micro Devices Corporation

AMD-V. See Advanced Micro Devices Corporation virtualization

ancillary data, 598, 616–618, 808

Andrew filesystem, 552

anonymous object, 245, 248, 808

AOUT executable format, 70

API. See application programming interface

APIC. See advanced programmable interrupt controller

append-only file, 439

Apple OS/X operating system, 3, 436, 445

application binary interface, 403, 783

application, client-server, 50

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_236
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_237
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_239
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_471
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_471
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_06
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_618
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_07
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50

981

application compartmentalization, 30, 149, 151, 174–175, 808

application programming interface, 34, 51, 114, 166, 187, 191, 198, 201, 403, 700

ARC. See adaptive replacement cache

arc4random(), 209

architecture

ARM, 405, 782, 784

MIPS, 7, 405, 782–784, 790

PC, 362–364

PPC, 405

SPARC64, 790

arguments, marshalling of, 553, 824

ARM architecture, 405, 782, 784

ARP. See address resolution protocol

ARPANET, 6, 650

assembly-language startup, 783–784

assembly language in the kernel, 25, 61, 116, 370, 782–784, 786

association, Internet, 721–723

association setup, SCTP, 761–764

association shutdown, SCTP, 766

assured pipeline, 176

AST. See asynchronous system trap

asymmetric cryptography, 206, 700, 808

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_175
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_02
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_03
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808

982

asynchronous

I/O, 320–322, 326

interrupt, 58, 60, 99

logging facility, 84

system trap, 116–117, 808

transfer mode, 707–708

ATA. See advanced-technology-attachment disk

ATM. See asynchronous transfer mode

AT&T, xxi, xxii, 6–9, 11–12

ATTACHED flag, 466

definition, 466

attribute manipulation, filesystem, 432

attribute update, filestore, 497

attributes, extended, 436–438

attributes, system extended, 168

audit

alarm entry, 171

allow entry, 171

deny entry, 171

event, 35, 200–205

informational entry, 171

pipe, 200–205

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_08
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205

983

preselection, 201, 204

queue, 204–205

record, 35, 200–205

system call, 201, 203, 205

trail, 35, 200–205

UID, 35, 201–202, 204

worker thread, 204–205

auditing, security-event, 30–31, 35, 149, 151, 200–205, 792–793, 800, 836

audit_init(), 793

auditreduce, 35

AUID. See audit UID

authentication, 30, 35

data, 691, 693

header, 663–664, 689–691, 693, 697

autoconfiguration, 402, 660, 808

4.4BSD, 403

contribution of, 8

data structures, 407–410

device driver support for, 369, 403–413

IPv6, 666–670

phase, 404

resource, 412–413

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_203
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_202
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_15
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_663
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_412
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413

984

B

B programming language, 4

back ends, device driver, 414–428

background fsck, 486

background process, 141, 387, 808, 817

backing storage, 221, 397, 809

bare-metal system library, 780

basic input-output system, 52–53, 364, 377, 775–779, 781, 790

basic kernel services, 787–792

basic security module, 35, 201–203, 205

bawrite(), 348

BCPL programming language, 4

bdwrite(), 348

Bell Laboratories, 3–5

benefit of global vnode table, 345

Berkeley packet filter, 700–701, 703

macro hook, 701

Berkeley Software Design Inc., 11–13

best fit, 234, 512–513

bhyve, 184, 414–415

Biba integrity policy, 151, 158, 186–187, 189–190, 195, 200, 797

bind system call, 182, 664, 723, 767

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_203
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_701
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_703
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_701
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767

985

definition, 597

biodone(), 402, 469

BIOS. See basic input-output system

biowait(), 402

bitmap dependencies, soft updates, 466–467

black-hole route, 680, 809

blkatoff vnode operator, 497–498

block, 433, 809

clustering, 498, 505–507, 514–517, 811

I/O, 375, 498–501, 505, 543

interface, Xen, 427

protection, GELI, 215–216

size, 368, 502, 809

bmsafemap structure, 466–467, 470, 472, 490

boot, 775–801, 817

boot blocks, FFS, 503–504

boot, cryptographically verified, 777

boot device, 776–777, 783

/boot/device.hints, 404

boot flags, 779, 781, 783

/boot/kernel/kernel, 781

boot loader, 777–789

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_490
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_503
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789

986

1st-stage, 777–779

2nd-stage, 779

final-stage, 779–781

/boot/loader, 779–782

/boot/loader.4th, 781

/boot/loader.conf, 781

boot menu, 778–781

boot partition, FreeBSD, 779

boot-time diagnostics, 776

boot2, 782

/boot.config, 779

bootinfo structure, 781, 783

bootstrapping, 25, 52, 809

setting time when, 73

see also boot

bottom half of

device driver, 369

kernel, 59–60, 809

terminal driver, 384

BPF. See Berkeley packet filter

bqrelse(), 349

bread(), 348, 350–351, 375

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_20
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_18
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375

987

break character, 390

breakpoint fault, 142, 809

brelse(), 348

bremfree(), 350

broadcast message, 636, 674, 725, 809

address, 636, 653–654

IP handling of, 672

BSD, obtaining, xxvi

BSD, open source, 9–14

BSDI. See Berkeley Software Design Inc.

BSM. See basic security module

bss segment, 69, 263, 784, 809

BTX. See i386 boot extender

buf structure, 375

bufdaemon, 58

buffer cache, 347, 435, 499–501, 790, 793–794, 809

4.4BSD, 302

consistency, 351

effectiveness, 347

implementation of, 350–351

interface, 348–349

management, 347–351

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_674
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_653
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_672
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_19
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351

988

memory allocation, 351

structure of, 349–350

buffer list

CLEAN, 350, 359

DIRTY, 350, 359

EMPTY, 350

LOCKED, 349

buffer update, 468–470

buffer wait, 468–470, 473–474, 476, 496

buffering

filesystem, 499–501

network, 643–644

policy, protocol, 643

bufinit(), 790

bus_add_child(), 413

bus_child_detached(), 413

bus_driver_added(), 413

bus_probe_nomatch(), 413

bus_read_ivar(), 413

bus_write_ivar(), 413

bwrite(), 348, 375

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375

989

C

C-language startup, 784–785

C library, 73

system calls in the, 62

C programming language, 3–4, 26, 62

cache

alias, virtual-memory, 282

directory offset, 446–447

filename, 346–347, 795

inode, 442–443

page list, 290

vnode, 249

caching delegation and callbacks, 574–581

calendar queue, 121

call gates, 150

callback, 567, 579, 610, 810

callout queue, 67–69, 733, 795, 810

callout_callwheel_init(), 790

CAM. See common access method

camisr(), 402

camisr_runqueue(), 402

canonical mode, 383, 810

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_574
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_121
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810

990

capability, 176–180, 810

discipline, 179

mode, 31–32, 176, 179–180

refinement, 176

system, 174–180, 810

system model, 149, 176

cap_check(), 179

cap_enter system call, 179

cap_getmode system call, 179

CAPP. See common access-protection profile

cap_rights(), 179

cap_rights_limit system call, 178

Capsicum, 30–32, 40, 149, 151, 174–181, 420, 810

caught signal, 28, 132, 810

CCB. See common access-method control block

CD-ROM, 11, 44, 357–358, 399

CD9660 filesystem, 358, 781

cdevsw structure, 368, 371, 373

character device, 370–374, 811

driver, 371

interface, 368, 371, 373–374

ioctl, 374

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374

991

operations, 373

character-oriented device, 373–374

chdir system call, 46, 813

checksum, 651, 672, 723–725, 741, 746, 811

chflags system call, 439, 481

chgrp system call, 155

child process, 27, 96, 126, 811

chkdq(), 453–454, 506

chmod system call, 47, 164, 169, 171, 201, 481

Chorus operating system, 22

chown system call, 47, 155, 164, 481

chroot system call, 33, 46, 180–181, 834

chunk, SCTP, 762–766

CIDR. See classless inter-domain routing

CIFS. See common Internet filesystem

cipher, AES block, 213, 215

classless inter-domain routing, 652–653, 659, 662

CLEAN buffer list, 350, 359

client ID, 575, 811

client process, 50, 811

client server

application, 50

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_672
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_453
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_653
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50

992

interaction, NFS, 562–564

model, 612

programming, 596

clock

alternate, 67

interrupt handling, 65–67

interrupt rate, 67

real-time, 58, 795–796

close, device, 391

close-on-exec, 319–321

close system call, 39, 319, 323, 345, 352, 385, 566, 599, 620–621, 700, 741

close vnode operator, 432

closedir(), 445

clustering

block, 498, 505–507, 514–517, 811

page, 268, 280, 294, 309, 811

cold start, 811

common access method, 24, 364–366, 393, 399–402, 404, 429

control block, 399–402

layer, 399–402

SCSI I/O request, 400–402

transport, 400

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_400
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_400

993

common access-protection profile, 201

common Internet filesystem, 162, 171, 552

communication domain, 50, 594, 606–608, 811

data structures, 608

communication protocol. See protocol

compartmentalization, application, 30, 149, 151, 174–175, 808

COMPLETE flag, 466, 470, 472–473

definition, 466

composition, MAC policy, 194–195

Computer Systems Research Group, xxii, xxix, 3, 7–16

condition variables, 112

config, 404, 408, 800, 811

configuration

file, 800, 811

kernel, 800–801

network device, 379–380

congestion control

network buffering, 643–644

TCP, 752–761

congestion window, 754, 757

connect request, 628, 811

connect system call, 182, 597, 612, 614, 664, 697, 723–725, 736, 767, 811

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_175
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_754
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_757
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811

994

definition, 597

connection

queueing, socket, 610, 613

setup, TCP, 727–728, 736–740

shutdown, TCP, 729, 740–741

states, TCP, 727–730

console, 777, 779, 781, 785, 790, 798–799

serial, 777, 779, 799

contents update, filestore, 497

context switching, 63, 90, 99–114, 812

involuntary, 99, 116

low-level, 100

thread state, 100

voluntary, 99, 101–106

continuation style, 698, 812

control, network device, 379–380

control-output routine, protocol, 630–631

control request, 629, 812

controlling process, 136, 138, 812

controlling terminal, 29, 137–138, 812

revocation of, 345

cooked mode, 383

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_729
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383

995

copy object, 4.4BSD, 258

copy-on-write, 6, 37, 261, 309, 812

core file, 28, 130, 812

coredump(), 136

cpu_exit(), 129

cpuid instruction, 422

cpu_mp_announce(), 790

cpu_search(), 123–124

cpuset, 124

cpu_set_fork_handler(), 793

cpu_startup(), 789

cpu_switch(), 116

crash dump, 99, 369, 375, 801–803, 812, 828

crash recovery, NFS, 584–586

crash, system, 47–48, 322, 324, 348, 375, 405, 454, 459, 461, 463, 480, 486, 501, 518, 556–557,

561–563, 566–567, 587, 727, 730, 734, 776, 799, 802–803, 812

create vnode operator, 432–433

create_init(), 793

creation and deletion, filestore, 497

credential, 95

process, 31, 34–35, 127, 144, 150–157, 179, 181–182, 201–204, 259, 354–355, 556, 564, 793, 800,

803, 830

structure, 152, 160, 179, 181

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_123
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_518
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_587
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181

996

critical_enter(), 107

critical_exit(), 107

cron, 799

crypto_done(), 208

crypto_freesession(), 207

cryptographic

descriptor, 207

framework, 30–31, 35–36, 149, 206–208

verified boot, 777

cryptography

asymmetric, 206, 700, 808

session, 206

symmetric, 206, 700, 841

crypto_invoke(), 208

crypto_newsession(), 206–207

crypto_proc(), 208

crypto_register(), 207

csh shell, 139

CSRG. See Computer Systems Research Group

ctfconvert, 80

CTSS operating system, 4

cubic congestion-control algorithm, 758, 760

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_207
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_207
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_808
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_207
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_207
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_758
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_760

997

current working directory, 46, 449, 800, 813

cursig(), 133, 135

cylinder group, 48, 502

D

D programming language, 78, 80, 188–189

DAC. See discretionary access control

dadone(), 402

daemon, 813

NFS, 559–562

operation of the, pageout, 292–295

pageout, 58, 92, 233, 236, 238, 240–241, 244, 248, 268, 271–273, 275, 290–297, 307–309, 482,

813, 822, 827–828

process, 324, 813

routing, 684

DARPA. See Defense Advanced Research Projects Agency

dastart(), 401

dastrategy(), 401

data segment, 36, 69, 71, 263, 813

expansion, 263

data structures

autoconfiguration, 407–410

communication domain, 608

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_236
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608

998

interprocess communication, 606–612

socket, 608–611

data transfer, SCTP, 764–766

datagram socket, 595, 813

datalink layer, 622, 813

dead filesystem, 345

deadlock

avoidance during fork system call, 260

avoidance when locking resources, 112–114, 335–336, 647

detection, 456, 519

memory, 259, 274–275, 295–296

network, 324–325

prevention, witness, 109, 112–114

snapshot, 485–486

debugger, kernel, 779, 782, 785, 789, 791, 802–803

debugging

information in exec header, 71

kgdb, 802

lldb, 142

process, 134, 142–144, 161, 182

system, 802–803

see also ptrace system call

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_595
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_519
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_274
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803

999

decapsulation, 622, 635, 813

decision, local-remote, 678

deduplication, ZFS, 545–546

default pager, 272

Defense Advanced Research Projects Agency, 6, 8, 650, 813

steering committee, 7

definition

ATTACHED flag, 466

COMPLETE flag, 466

DEPCOMPLETE flag, 466

defrtrlist_update(), 667

delayed write, 348, 460

delegation, 579, 813

Delta-t, 761

demand paging. See paging

denial-of-service attack, 739, 813

DEPCOMPLETE flag, 466–467, 470, 472–473, 475

definition, 466

dependencies

kernel-module, 776

soft updates, 460–464

virtual memory machine, 298–308

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_678
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308

1000

descriptor, 39, 813

allocation, 614

duplication, 320–321

management of, 41–42, 316–321

multiplexing, 324–327

table, 40, 316, 814

table, local, 791

use of, 39–41

design

4.2BSD IPC, 8

FreeBSD IPC, 594, 599

I/O system, 39–44

mbuf, 604–605

memory-management, 36–38

NFS, 552–553

/dev, 42, 334, 366–368, 408, 428, 794

filesystem, 44

operation of, 366–367

/dev/console, 798

/dev/cu, 368

/dev/fd, 358

/dev/kmem, 440, 803

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803

1001

/dev/mem, 370, 374, 440

/dev/netmap, 712

/dev/null, 370

/dev/pts, 383

/dev/random, 35

devclass, 408

devd, 413

development model, FreeBSD, 14–17

DEVFS. See device filesystem

device, 42, 44, 408

boot, 776–777, 783

character-oriented, 373–374

close, 391

configuration, 402–413

enumeration, 777

identification, 405–407

interrupt handler, 64

module initialization, 794–796

overview, 361–367

pager, 248, 270–271

probing, 369, 405

raw, 372–373

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_361
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373

1002

special file, 42, 814

swap, 225, 841

device driver, 30, 42, 368, 777, 782, 787, 793–796, 814

attach routine, 405, 407

back ends, 414–428

bottom half of, 369

front ends, 414–428

interrupt handling, 370

maximum transfer size, 371

probe-routine, 405–407

sections of a, 368

support for autoconfiguration, 369, 403–413

support for select system call, 327, 374

top half of, 369

device filesystem, 316, 366–368, 383, 393, 794–795, 797

device_attach(), 406–407

device_identify(), 406

device_probe(), 406–407

devices, network, 378–382

device_t, 367

devinfo, 410, 429

dev_t, 367

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367

1003

df, 479

diagnostics, boot-time, 776

diradd structure, 468, 472–476

DIRCHG flag, 476

direct block dependencies, soft updates, 469–470

direct dispatch, 397, 673

direct map, 228

direct memory access, 282, 373, 381, 399, 401, 414, 419, 427–429, 523, 814

direct route, 677

directly-mapped region, 783–784

directory, 45, 443, 814

dependencies, soft updates, 472–476

entry, 45, 434, 814

offset cache, 446–447

operations, 46–47

space allocation, 444–445

structure, 444–447

table, 298, 814

dirrem structure, 464, 475–476, 495–496

DIRTY buffer list, 350, 359

discretionary access control, 32, 149–150, 161–174, 184, 217, 814

disk device, 374–377

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_434
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_444
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377

1004

interface, 374–375

operations, 374

disk label, 376–377

disk, memory, 780

disk partition, 376, 498, 777–782, 814

disk structure, FFS, 502–504

disk subsystem, 364–366

disk write, ZFS, 536–538

disksort(), 375–376, 401

algorithm for, 376

distributed filesystem, 47

distributed program, 593

DMA. See direct memory access

DMU. See zettabyte-filesystem data-management unit

dnode, 528, 815

structure, 538

ZFS, 528–529

DNS. See domain name system

doadump(), 802

domain, 815

and type enforcement, 186

name system, 665

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_665

1005

zero, 420–423, 426, 428

see also communication domain

double indirect block, 435, 815, 820

dpcpu_startup(), 789

dquot structure, 452–454

Dragonfly BSD, xxii, 3

DSL. See zettabyte-filesystem dataset and snapshot layer

dsl_dataset structure, 533–534, 538, 542, 544

dsl_dir structure, 533

DTE. See domain and type enforcement

DTrace, 78–82, 188–189, 790–791

dtrace_debug_init(), 791

dtrace_pops, 80

dummynet, 702, 704–706

dump, 372, 438, 487, 546

live, 487

dumpsys(), 802

dup system call, 41–42, 48, 319–321, 814, 817

implementation of, 320

dup2 system call, 42, 178, 320, 817

duplication, process virtual memory, 260–262

dynamic inodes, 441–442

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_534
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_544
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_82
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_704
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_706
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442

1006

dynamic per-CPU allocator, 789

E

EACCES system error, 173, 193

EAGAIN system error, 128, 320, 335–336, 391, 614, 617–618, 826

ECAPMODE system error, 179

ECMP. See equal-cost multi-path route

ECN. See explicit congestion notification

ECONNREFUSED system error, 615

effective GID. See effective group identifier

effective group identifier, 155, 815

effective UID. See effective user identifier

effective user identifier, 132, 155, 815

EFI. See extended-firmware interface

Eighth Edition UNIX, 5

EINTR system error, 62, 98, 128

EINVAL system error, 614, 697

elevated privilege, 158

elevator sorting algorithm, 375, 815

ELF, 245, 779, 781, 785–786, 789

executable format, 70

ELOOP system error, 451

Elz, Robert, 9, 451

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_618
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451

1007

embedded systems, 775, 778, 781–784, 796

EMPTY buffer list, 350

EMSGSIZE system error, 616

encapsulating-security payload, 663–664, 689–690, 693, 697

encapsulating security protocol, IPSec, 693

encapsulation, 622, 635, 815

encryption

full-disk, 206, 209, 212–217

initialization vector, 209, 213, 215

public-key, 206, 832

entry point, MAC, 34, 188–189, 191–194

entry to kernel, 60–61

enumeration, device, 777

environment, kernel, 779, 781, 787, 794

environment, location of process, 72

EPERM system error, 173, 193

epoch, 73

equal-cost multi-path route, 682

erase character, 383, 815

ERESTART system error, 98

errno, 26, 62, 163, 193–194, 694, 816

ESP. See encapsulating-security payload

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_663
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_40

1008

/etc/defaults/rc.conf, 798

/etc/exports, 547, 560

/etc/fstab, 547

/etc/mac.conf, 200

/etc/master.passwd, 800

/etc/rc, 440, 798–799

/etc/rc.conf, 798

/etc/ttys, 798

Ethernet, 6, 52, 623, 650

event

audit, 35, 200–205

channel, 422–424, 426–427

handler, 788–797, 801–802, 816

notification, 329–332

port, 426–427

EVENTHANDLER_REGISTER, 788

exactly once semantics, 576, 816

exchange_id(), 575

exec header, 69

exec system call, 27, 41, 72, 89, 126, 138, 142, 144, 156–157, 161, 181, 232–233, 258, 261–263,

266, 269, 304, 308–309, 319–320, 330, 832, 835, 837

operation of, 262–263

execve system call, 160, 162, 173, 790, 794, 800

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_576
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800

1009

exit(), 128, 136

exit system call, 27, 119, 126, 128, 262, 266–267, 330

operation of, 128–129, 266–267

status, 27, 92, 129

explicit congestion notification, 759

explicit privilege, 158, 181–182

exported filesystem services, 343–344

extattrctl system call, 482

extended attributes, 436–438

extended-firmware interface, 377

extension header, 663, 695, 816

extent-based allocation, 516–517

external data representation, 554

F

fast filesystem, 163–164, 166, 168, 170, 174, 209, 353, 431–517, 523–525, 527–529, 531,

535–537, 542, 546, 548, 556, 569, 574, 779–780, 799

32-bit version, 435, 438, 440–441, 445, 447, 502–504, 516–517

64-bit version, 435–436, 438, 440–441, 445–447, 479, 502–504, 516–517

boot blocks, 503–504

cluster map, 515

cylinder group, 502–503, 813

disk structure, 502–504

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_759
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_663
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_170
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_431
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_537
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_569
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_574
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_503
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_503
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504

1010

ffs_balloc(), 506, 511–512

ffs_read(), 505, 515

ffs_realloccg(), 511–512

ffs_write(), 506

file block allocation, 507, 511–513, 809

file block extension, 511

file I/O, 505–507

fragment allocation, 512–514

fragment-descriptor table, 513, 817

fragmentation, 504–507

free-space reserve, 441, 507, 519, 818

implementation of, 502–505, 507–517

layout policies, 508–510

local allocation routines, 510–511

organization, 502–504

overview, 45–48

parameterization, 507

redesign, 501–505

storage optimization, 504–507

superblock, 501

fast retransmission, TCP, 756–757

fault rate, 224, 816

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_519
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_510
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_510
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_756
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_757
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816

1011

fbtp_patchpoint, 81

fbtp_patchval, 81

fbt_probe_t, 81

fbtp_savedval, 81

fchflags system call, 439, 481

fchmod system call, 47, 164, 177, 481

fchmodat system call, 180

fchown system call, 47, 164, 481

fcntl system call, 8, 178, 319–321, 390, 814

fdesc filesystem, 358

fdisk, 778

FDT. See flattened device trees

Federal Information Processing Standard, 8

fetch policy, 223, 816

FFS. See fast filesystem

fget(), 179

fhopen system call, 481

FIB. See forwarding information base

fifo, 40, 316

file, 39, 443, 816

access validation, 164

append-only, 439

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439

1012

control, filesystem, 432

deactivation, 344

descriptor, 32, 48, 153, 161, 175–180, 183, 192–193, 200

descriptor locking, 322–324

executable, 69

flags, 390, 439–441

handle, NFS, 555, 816

hole in, 47, 819

I/O, FFS, 505–507

I/O, user, 499–501

immutable, 439

interpretation, filesystem, 432

management, filesystem, 432

mapping, 264–265

mode, 162, 164

offset, 41, 318, 816

owner, 31–32, 34, 150–152, 154–155, 158, 161–174, 186

permissions, 30–32, 48, 150, 152, 161–174, 186, 816

reclaim, 344–345

file block

allocation, FFS, 507, 511–513, 809

allocation, ZFS, 542–543

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_153
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_175
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_555
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_265
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_511
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543

1013

locality of reference, 509–510

reading, 505

writing, 506

file entry, 318–319, 816

flag, 319, 321

handling during fork system call, 319

implementation of, 319

object oriented, 318, 321

operations, 318

file locking, 319, 322–324, 454–459

implementation of, 323–324, 456–459

NFS, 553

semantics of, 454–456

filecaps structure, 178

file structure, 316, 609, 817

filedesc structure, 316

filename, 45–46, 816

cache, 346–347, 795

negative caching of, 346

whiteout, 356

filestore

abstraction, 498–501

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_509
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_510
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501

1014

attribute update, 497

contents update, 497

creation and deletion, 497

implementation of, 498–501

operations, 497–498

overview, 48

size update, 498

filesystem, 817

3BSD, 501–502, 504, 508–509

4.2BSD, 502

4.3BSD, 342

4.4BSD, 342, 515

attribute manipulation, 432

buffering, 499–501

CD9660, 358, 781

/dev, 44

distributed, 47

fdesc, 358

file control, 432

file interpretation, 432

file management, 432

independent services, 344–351

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_509
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351

1015

initialization, 799

interface, 368

layer, 354–355

links, 449–451

linprocfs, 358

Microsoft NTFS, 47, 171

name creation, 432

name deletion, 432

name lookup, 446–447

name translation, 46, 447–449

naming, 443–451

nullfs, 354–355

operations, 431–433

operator, valloc, 497

operator, vfree, 497

operator, vget, 497

portal, 343, 357–358

/proc, 142–144, 358, 831

procfs, 358

quotas, 8, 451–454, 799

snapshot, 480–487

stackable, 352–358

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_431
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358

1016

support for multiple, 43–44

umapfs, 354–355, 564

union, 355–357

see also buffer cache, quotas

firewall, 31, 184, 701–707, 785

firmware, 775–778, 782–790

First Edition UNIX, 89

first-level bootstrap, 377

first prison, 181, 790–791, 794

first process, 793

fit, best, 234, 512–513

fit, segregated, 234

flattened device trees, 53, 777, 783–784

fletcher4, 546, 549

floating point in the kernel, use of, 736

floating-point unit, 421

flock system call, 553

flow control, network, 643–644

flow control in TCP, 726

foreground process, 138, 141, 387, 809, 817

fork file, 573, 817

fork system call, 4, 27, 41, 48, 89, 94, 96, 119, 126, 128, 138, 142, 144, 155, 177, 179, 181, 258–261,

292, 304, 306, 308–309, 319–320, 330, 811, 817, 828, 830, 832

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_701
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_512
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_513
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_549
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832

1017

deadlock avoidance during, 260

file entry handling during, 319

implementation of, 259–260

implementation issues, 261

see also process creation

fork1(), 793

Forth interpreter, 780

Fortuna, 35, 212

forward, 650, 655, 662, 664, 670, 673–675, 678, 682–683, 752, 754, 817

forward-mapped page table, 282, 817

forwarding information base, 677

forwarding-mechanism, 677

4.0BSD, 6–9, 501

4.1BSD, 6

4.2BSD, xxii, xxix, 6–8, 36, 40, 42–43, 47, 51–52, 54, 71, 227, 322–323, 326, 371, 385, 403, 593,

653, 674

filesystem, 502

IPC design, 8

scheduler, 791

virtual-memory interface, 7

4.3BSD, xxi, xxii, xxix, 6–8, 37, 71, 291, 309–310, 322, 653, 803

filesystem, 342

Reno release, 6–7

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_678
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_754
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_653
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_674
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_310
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_653
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7

1018

Tahoe release, 6–7, 9

4.4BSD, xxi, xxix, 6–7, 13, 267, 804–805

autoconfiguration, 403

buffer cache, 302

copy object, 258

filesystem, 342, 515

Lite, xxii, 7, 13–14

mbuf design, 604

NFS, 551–552

page replacement, 289, 294

stackable filesystem, 352–353

supported architectures, 7

swap out, 296

swap pager, 273

virtual memory, 37

FPU. See floating-point unit

fragmentation, FFS, 504–507

framework, cryptographic, 30–31, 35–36, 149, 206–208

framework, MAC, 30, 34, 184–200

free(), 38, 241, 309

free list, 248

free page list, 290

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_551
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290

1019

freeblks structure, 464, 468, 476, 495–496

FreeBSD

boot partition, 779

development model, 14–17

goals, 17

IPC design, 594, 599

kernel, division of software in, 25

portability of, 23

freefile structure, 468, 476, 495–496

freefrag structure, 468, 470

front ends, device driver, 414–428

fsck, 372, 376, 463, 480, 486–490, 492–494, 501, 504, 509–510, 798–799

background, 486

dependencies, soft updates, 480

fstat system call, 47, 164, 629

fsync dependencies, soft updates, 477–478

fsync system call, 253, 340, 348, 359, 436–437, 461–463, 474, 477–478, 482, 493, 501, 507, 514,

518, 538–539, 566

fsync vnode operator, 497–498

ftruncate system call, 481

full-disk encryption, 206, 209, 212–217

full virtualization, 414

futimes system call, 481

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_376
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_490
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_509
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_510
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_477
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_340
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_477
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_493
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_518
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481

1020

G

gateway, 658, 675, 818

handling, 677–679

g_down, 58, 396–397

GELI, 30, 35, 53, 151, 206, 209, 212–217, 780

block protection, 215–216

flags, 214, 216

I/O model, 216

key management, 213–214

keyfile, 213–214

limitations, 216–217

passphrase, 213–214, 216

startup, 214

threat model, 216–217

g_eli_ctl_resume(), 216

g_eli_start(), 216

g_eli_suspend_one(), 216

g_eli_takefirst(), 216

g_eli_taste(), 214, 216

g_eli_worker(), 216

generation number, 556, 818

generator, random-number, 31, 35, 206, 208–212, 790, 793

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_679
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793

1021

generator_gate(), 212

generic security-service application-program interface, 206, 209, 584

GENIE operating system, 4

GEOM. See geometry layer

geometry layer, 24, 44, 53, 206, 212, 214, 216, 362, 391–399, 401–402, 407, 429, 524–525,

793–794

flags, 178, 397

operation, 396–397

topology, 392–399

getaddrinfo(), 665

getaddrinfo library call definition, 665

getattr vnode operator, 432

getblk(), 350–351

getdirentries system call, 445

getfsstat system call, 344

gethostbyname(), 665

getlogin system call, 800

getnewbuf(), 351

getnewvnode(), 344–346

getpeername system call, 599

getrusage system call, 75

getsockname system call, 599

getsockopt system call, 599, 627, 631

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_392
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_665
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_665
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_665
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_627
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631

1022

gettimeofday system call, 73–74

getty, 798–800

getuid system call, 179

GID. See group identifier

g_init(), 793

g_io_request(), 216

gjournal, 398

global page-replacement algorithm, 289, 818

global vnode table, benefit of, 345

globally-unique identifier partition table, 377, 778–779

goals, FreeBSD, 17

GPT. See globally-unique identifier partition table

gptboot, 779, 781–782

gptzfsboot, 779

grant table, 423–427

entry, 424–426

reference, 424–427

Greenwich time. See Universal Coordinated Time

group identifier, 31, 151–152, 154–157, 160–166, 168, 170–171, 187, 355, 564, 815, 818, 820, 830,

832, 835, 837

use in file-access validation, 164

gsched, 398

gsignal(), 133

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_398
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_170
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_398
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133

1023

GSSAPI. See generic security-service application-program interface

gunzip, 175–176

g_up, 58, 396–397

gvirstor, 398

H

H-TCP, 758

half-open connection, 727

halt, 801–802

hammer_time structure, 784

handle_written_inodeblock(), 469

handling, terminal, 382–391

hard limit, 76, 451, 818

hard link, 449, 818

hardclock(), 66–68, 76

hardware performance-monitoring counters, 790–791

processor, 790–791

hardware virtual machine, 421–423, 788

hardware_cache_fetch, 281

Harris, Guy, 9

hash anchor table, 284

hash message-authentication code, 210–211, 216, 403, 546, 549

SHA-256, 213, 215

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_175
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_397
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_398
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_758
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_281
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_211
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_549
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215

1024

SHA-512, 213, 215

hash, Modulo-N, 682

HAT. See hash anchor table

HBA. See host bus adapter

header prediction, TCP, 742, 818

heap, 72, 819

heartbeat requests, 767

heartbeat response, 768

heartbeat, SCTP, 767–768

high watermark on, 819

socket, 610, 616, 643

terminal, 388

history of

job control, 7

process management, 89

UNIX, 3–7

HMAC. See hash message-authentication code

home directory, 46, 819

hop-by-hop option, 664

hop limit, 662, 819

host bus adapter, 365, 415, 418

host cache metrics, TCP, 737

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_215
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_742
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737

1025

host unreachable, 657

message, 657, 819

HVM. See hardware virtual machine

HWPMC. See hardware performance-monitoring counters

hybrid capability system model, 151

hypercall, 414–428, 788

region, 422

hypervisor, 184, 414–428, 788

I

I/O, 820

asynchronous, 320–322, 326

memory management unit, 420

model, GELI, 216

nonblocking, 320, 325, 614, 617, 619, 826

physical, 372–373

queueing, 369

redirection, 41, 821

signal driven, 320, 325, 838

system design, 39–44

tree, root of, 366, 406, 410

types of kernel, 367–368

I/O buffer, 375

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_56
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_55
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375

1026

I/O stream, 39, 821

I/O vector, 332–333

i386 boot extender, 779, 781

ICMP. See Internet control message protocol

icmp_error(), 658

icmp_input(), 658

ICV. See integrity-check value

idempotent, 554, 819

identification, device, 405–407

idle

loop, 116, 819

process, 58, 793

queue, 819

swap time, 296

threads, 792–793

IEEE. See Institute of Electrical and Electronic Engineers

IETF. See Internet Engineering Task Force

ifaddr structure, 635, 639

if_data structure, 636

if_input, 381

ifnet, 378–379, 381–382

structure, 419, 635, 637, 639–640

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_637
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_640

1027

if_output(), 669–670

IGMP. See Internet group-management protocol

ignored signal, 28

IKE. See Internet key exchange

imgact, 70

immutable file, 439

implementation of

ARP, 655–657

buffer cache, 350–351

dup system call, 320

FFS, 502–505, 507–517

file entry, 319

file locking, 323–324, 456–459

filestore, 498–501

fork system call, 259–260

ioctl system call, 321

kernel malloc, 242–243

kevent system call, 329–332

munmap system call, 264–265

NFS, 558–562

pipe, 40

pmap_enter(), 304–305

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_350
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_242
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_265
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_558
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305

1028

pmap_remove(), 305

quotas, 451–454

select system call, 327–329

sleep(), 97–98, 101–104

system call, 62–63

uiomove(), 332–333

wakeup(), 104–106

implicit privilege, 157

implicit send, 765

inactive page list, 290, 307

inactive, reclaim from, 294, 833

inactive vnode operator, 344, 346, 432, 443

INADDR_ANY, 182

inbound, 820

IN_CAPABILITY_MODE(), 180

indirdep structure, 470–471

indirect block dependencies, soft updates, 470–472

indirect route, 677

inetsw, 707

init, 28, 57, 97, 161, 189, 292, 439, 782, 793–794, 798–800, 820, 846

init_dtrace(), 790

init_hwpmc(), 791

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_471
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791

1029

initialization

filesystem, 799

kernel, 782–783

user-level system, 798–800

virtual memory, 301–303, 308

see also bootstrapping

initiate_write_inodeblock(), 469

inode, 339, 433, 498, 519, 820

allocation, 434

cache, 442–443

contents, 433

definition, 433–442

dependencies, soft updates, 467–469

locality of reference, 508

management, 442–443

number, 356, 437, 441–446, 467, 473, 476, 483, 495, 556, 814

inode wait, 468, 470, 476

inodedep structure, 467, 469–475, 496

inodes, dynamic, 441–442

inpcb structure, 722, 736

in_pcballoc(), 723

in_pcbbind(), 723

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_519
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_434
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_483
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_722
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723

1030

in_pcbconnect(), 723, 736

in_pcbdetach(), 725

in_pcblookup(), operation of, 725

input-output memory-management unit, 420, 427–428

in_rtalloc_ign(), 672

insecure mode, 440

Institute of Electrical and Electronic Engineers, 8, 136, 364–365, 829

integrity-check value, 691–692, 820

Intel virtualization technology, 421–422

intelligent platform-management interface, 363–364

interactive program, 91, 820

Interdata 8/32, 5

interface

addresses, network, 635–636

buffer cache, 348–349

capabilities, 380

capabilities, network, 636–639

character device, 368, 371, 373–374

disk device, 374–375

filesystem, 368

mmap system call, 251–253

mutex, 109–110

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_672
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_692
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110

1031

network device, 378–379

pager, 267–275

protocol-network, 634–643

protocol-protocol, 631–634

queue, 381

routines, network, 639–641

routing-table, 683–684

socket-to-protocol, 626–631

International Organization for Standardization, 8, 823

model, 622, 650

protocol suite, 649

Internet addresses

broadcast, 653–654

multicast, 654–655

packet demultiplexing, 721

structure, 612

Internet association, 721–723

Internet control message protocol, 634, 650–651, 657–659, 666, 669–670, 675, 684, 686, 691,

725, 815, 820

interaction with routing, 658

port unreachable message, 725

Internet domain, 6, 50

Internet Engineering Task Force, 552, 664

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_649
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_653
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664

1032

Internet group-management protocol, 655

Internet key exchange, 693, 820

Internet ports, 721–723

Internet protocol, xxii, 3, 6, 33, 182, 194, 209, 419, 554, 650–658, 686, 715–716, 723–727, 741,

746, 768–769, 821

firewall, 52, 702–706

fragmentation, 554, 650, 652, 672–673

handling of broadcast message, 672

input processing, 673–675

multicast router, 675

options, 651

output processing, 671–673

packet demultiplexing, 723

packet forwarding, 658, 674–675

protocol header, 652

pseudo-header, 741

responsibilities of, 650

routines, 670–675

version 4 addresses, 652

Internet service providers, 33, 51, 180, 652, 660

interpreter, 70, 820

Forth, 780

interprocess access control, 34, 159–161, 182

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_716
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_706
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_672
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_672
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_674
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_650
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_159
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182

1033

interprocess communication, 6, 22, 32, 34, 39–42, 51, 76, 129, 140, 150, 157, 162–164, 180–181,

184, 188, 196, 217, 282, 333–335, 415, 593–646, 648, 790, 820

connection setup, 612–615

data structures, 606–612

data transfer, 615–620

design, 4.2BSD, 8

design, FreeBSD, 594, 599

layers, 599–600

local, 333–338

memory management in, 601–606

message queue, 337–338, 593, 647

model of, 593–599

overview, 50–51

receiving data, 617–620

reliable delivery, 616

semaphores, 335–336

shared memory, 250–258, 338

socket shutdown, 620–621

transmitting data, 616–617

virtualization, 182, 184, 644–646

interprocessor interrupt, 124–125, 421–422, 426, 785, 790, 821

interrupt, 821

asynchronous, 58, 60, 99

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_600
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_426
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99

1034

handler, device, 64

process, kernel, 57

request, 363

synchronous, 60, 99

interrupt handling, 64–65, 782, 790, 792–793, 795

clock, 65–67

device driver, 370

interrupt-vector table, 783

interrupted system call, 62–63

interruptible sleep(), 97, 133

interval time, 74

inverted page table, 284

involuntary context switching, 99, 116

ioctl, character device, 374

ioctl system call, 42, 78, 141, 178, 204, 214, 318, 321, 374, 379–380, 385–387, 620, 629, 635,

638, 700, 712, 714–715, 812

implementation of, 321

ioctl vnode operator, 432

IOMMU. See input-output memory-management unit

iovec structure, 332–333, 821, 835, 844

IP. See Internet protocol

ip6_forward(), 702

ip6_input(), 702

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_638
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_714
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702

1035

ip6_output(), 669, 702, 766

IPC. See interprocess communication

ipcs, 334

ip_fastforward(), 702

ip_forward(), 699

IPFW. See Internet-protocol firewall

IPI. See interprocessor interrupt

ip_input(), 699, 702, 707

ipintr(), operation of, 673–675

IPMI. See intelligent platform-management interface

ip_output(), 671, 699, 702, 746, 766

operation of, 671–673

IPSec, 30, 35, 52, 148–149, 151, 206, 208–209, 626, 660, 671–673, 675, 688–690, 693, 695,

698–700, 716–717, 820–821, 836, 843–844

authentication header, 691

encapsulating security protocol, 693

implementation, 698–700

overview, 689–690

ipsec4_process_packet(), 699

ipsec_common_input(), 699

IPv4, 182–183, 611, 623, 815

IPv6, 50, 182–183, 611, 649, 659–670, 688, 690–691, 695, 698, 716–717, 815, 820–821, 826

addresses, 660–662

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_673
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_716
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_717
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_649
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_716
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_717
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662

1036

autoconfiguration, 666–670

introduction, 659–660

packet formats, 662–664

socket API changes, 664–666

IPX. See Xerox network protocols

IRQ. See interrupt request

ISA bus, 405–406, 413, 784

ISA. See ISA bus

iSCSI, 216, 365–366, 525, 792. See also small-computer system interface

ISN. See transmission control protocol initial-sequence number

ISO. See International Organization for Standardization

ISP. See Internet service providers

issignal(), operation of, 135

ITS operating system, 7

IV. See encryption initialization vector

J

jail, 30–34, 149, 151, 158, 180–184, 790, 797, 803, 805

ID, 183–184

jail system call, 183

jail_attach system call, 183

jail_get system call, 184

jail_remove system call, 183

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_660
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_662
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183

1037

jail_set system call, 184, 645

JID. See jail ID

JIT. See just-in-time compilation

job, 136, 139

job control, 29, 139–141, 821

history of, 7

signals in FreeBSD, 28

terminal driver support for, 387–388, 391

use of process group, 29

journaled soft updates, 487–496

compatibility, 488

future work, 494–495

introduction, 487–488

journal format, 488–489

performance, 493–494

recovery, 492–493

requirements, 489–492

Joy, William, 6

just-in-time compilation, 701

K

KAME, 659

kdump, 78

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_645
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_488
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_489
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_493
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_493
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_489
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_492
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_701
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78

1038

keepalive packet, 734, 822

keepalive timer, 734, 822

keg allocator, 238

Kerberos, 800

kernel, 22, 822

address space allocation, 233–244, 787

assembly language in the, 25, 61, 116, 370, 782–784, 786

based virtual machine, 415

bottom half of, 59–60, 809

configuration, 800–801

debugger, 779, 782, 785, 789, 791, 802–803

entry to, 60–61

environment, 779, 781, 787, 794

event polling, 325, 822

facilities, 21–23

I/O, types of, 367–368

initialization, 782–783

interrupt process, 57

linker, 785–787, 789

linker classes, 789

loading of, 301

memory allocation, 38–39

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_370
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_21
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39

1039

memory management, 230–244

memory maps, 231–232

mode, 90, 226, 822

module dependencies, 776

module initialization, 785–786

organization, 23–25, 57–62

partitioning, reason for, 22

preemption, 60

process, 57, 786, 792–794, 822

programming interface, 185, 188–189, 191–192, 194, 639, 785

resource allocation, 259–260

return from, 61–62

security level, 439

state, 90, 822

structure of, 22–23

thread initialization, 792–794

top half of, 59–60, 843

trace-entry structure, 83

trace macros, 83

tracing facility, 77–84

kernel malloc, 241–243, 785, 787–788

implementation of, 242–243

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_185
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_242
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243

1040

requirements, 241–242

kernel_mount(), 794

kevent system call, 325–326, 329–331, 715

implementation of, 329–332

key, 334, 822

management, 693–698

management, GELI, 213–214

socket, 697

keyfile, GELI, 213–214

kgdb, 802

kick_init(), 794

kill character, 383, 822

kill system call, 132, 182

killpg system call, 140, 831

kinfo_proc structure, 804

kmap_alloc_wait(), 233

kmap_free_wakeup(), 233

kmem_free(), 234

kmem_malloc(), 234

knote structure, 330–332

KPI. See kernel programming interface

kproc_start(), 786

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_242
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_331
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786

1041

kqueue, 40, 317–318, 822

structure, 330–332

system call, 32, 40, 259, 326, 330

KTR. See kernel tracing facility

ktrace, 77–78, 791

ktrace system call, 161, 482

ktrace_init(), 791

ktr_entry structure, 83

KVM. See kernel based virtual machine

L

L2ARC. See zettabyte-filesystem level-2 adaptive-replacement cache

label structure, 189, 196–197

la_hold structure, 657

LAN. See local-area network

lastlog, 800

layer protocols, network, 51–52

layout, virtual memory, 227–228

lchmod system call, 164, 481

lchown system call, 164, 481

lease, 823

NFS, 559, 580–581

least recently used, 249, 454, 794, 823

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_82
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_657
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_580
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823

1042

LFS. See log-structured filesystem

/libexec/ld-elf.so, 245

libficl, 780

libmemstat, 804

libpcap, 700

libprocstat, 804

library, bare-metal system, 780

library, shared, 72

libstand, 780

lightweight process, 146

limitations, GELI, 216–217

limits

resource, 26, 75–77

in system, 451

line discipline, 383–385, 823

line mode, 383, 823

link count dependencies, soft updates, 478–480

link layer, 622, 823

path, 634

link system call, 46–47, 481. See also filesystem links

link vnode operator, 432

link_elf_init(), 789

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_146
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789

1043

linker, kernel, 785–787, 789

linker sets, 776, 786

linker_init_kernel_modules(), 789

linker_preload(), 789

linker_stop_class_add(), 789

linprocfs filesystem, 358

Linux operating system, xxi, xxii, xxiii, 7, 11, 17, 71, 95, 358, 815

LISP programming language, 6

listen request, 628, 823

listen system call, 597, 612–613, 738, 823

definition, 597

Lite, 4.4BSD, xxii, 7, 13–14

live dump, 487

lldb, 80, 142

llentry structure, 655–656, 670

lle_timer structure, 656

lltable structure, 655

ln_hold, 670

loadable kernel modules, 31, 34, 44, 775–776, 779, 781, 783–786, 794–797, 823

local-area network, 148, 364, 380, 568, 641, 690, 747–748, 777

local descriptor table, 791

local domain, 50, 432, 823

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxiii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_17
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_656
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_656
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_568
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823

1044

address structure, 612

local IPC, 333–338

local page-replacement algorithm, 289, 823

local-remote decision, 678

locality of reference, 225, 508–510, 823

lock canrecurse flag, 111

lock synchronization, 110–112

lock vnode operator, 432

LOCKED buffer list, 349

locking

advisory, 323, 432, 807

file descriptor, 322–324

mandatory, 323, 824

NFS version 4, 581–583

locking resources on a shared-memory multiprocessor, 106–114, 612

locking resources, deadlock avoidance when, 112–114, 335–336, 647

locking semantics of, file, 454–456

lockstat probe macro, 82

locore.S, 783–784

log-structured filesystem, 537–538, 543

logging, ZFS, 538–540

logical block, 498, 824

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_678
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_510
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_111
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_349
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_807
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_583
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_456
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_82
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_537
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_540
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824

1045

login, 155–156, 440, 799–800

login name, 137

login shell, 22

LOMAC. See low watermark mandatory access control

long-term scheduling, 117

lookup vnode operator, 342–343, 432

lost+found, 480

low-level context switching, 100

low-level scheduling, 114–117

low pin-count interface, 363–364

low watermark, 824

mandatory access control, 186, 199

socket, 610

terminal, 389

lower half terminal input, 390–391

lower half terminal output, 389

LPC. See low pin-count interface

LRO. See transmission control protocol large-receive offload

LRU. See least recently used

ls, 508

lseek system call, 41, 178, 318, 816

lstat system call, 164, 450

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_86
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_199
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_87
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_83
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450

1046

lutimes system call, 481

M

MAC. See mandatory access control

mac_error_select(), 194

mac_get_fd system call, 200

mac_get_file system call, 200

Mach operating system, 7, 22, 37, 227, 258, 267, 273, 299

mac_init(), 791

mac_init_late(), 791

Macklem, Rick, xxvi, 558–559

mac_label_get(), 197

mac_label_set(), 197

mac_late, 189–190

mac_policy_conf structure, 190

mac_policy_ops structure, 190

mac_policy_register(), 791

mac_set_fd system call, 200

mac_set_file system call, 200

mac_t, 200

mac test, 199

mac vnode check write(), 193

m_adj(), 606

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_558
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_199
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606

1047

magic number, 69, 377, 824

main memory, 221, 824

malloc(), 38, 72, 198, 227–228, 234, 239, 241, 243, 263, 309, 351, 788, 819

management information base, 191, 805

management mode, system, 777

mandatory access control, 30–32, 34, 149–152, 158, 160–161, 184–200, 217, 437, 630, 655, 791,

793, 797, 800, 804, 824–825, 836

entry point, 34, 188–189, 191–194

framework, 30, 34, 184–200

framework startup, 189–190

object association, 198

object destruction, 199

policy composition, 194–195

policy lifecycle, 190

policy registration, 190

security label, 34, 152, 186–189, 195–200, 836

mandatory locking, 323, 824

mapped object, 228, 824

mapping, physical to virtual, 302–303, 781

mapping structure, 299, 824

maps, kernel memory, 231–232

maps, virtual memory, 231–232

marshalling, 553

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_239
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_199
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553

1048

of arguments, 553, 824

masked signal, 132

Massachusetts Institute of Technology, 4, 7

master boot record, 377, 392–393, 395–396, 778–779

maxcontig, 515

maximum segment lifetime, 729–730, 769–770, 825. See also 2MSL timer

maximum-segment-size option, TCP, 728, 737

maximum transmission unit, 380, 680, 686, 737–738, 770, 825

maxusers, 603

mb_alloc(), 605

MBR. See master boot record

mbuf, 601–605, 795, 825

allocation, 605, 795

cluster, 601–606

data structure description, 601–603

design, 604–605

design, 4.4BSD, 604

storage-management algorithm, 605

structure, 197

utility routines, 606

m_copy(), 746

m_copydata(), 746

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_377
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_392
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_393
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_395
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_396
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_729
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_770
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_770
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_603
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_603
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746

1049

m_copym(), 606

memcpy(), 389

memory allocation

buffer cache, 351

kernel, 38–39

memory deadlock, 259, 274–275, 295–296

memory disk, 780

memory management, 36–39, 221–308

cache design, 280–282

design, 36–38

goals, 221–226

hardware, VAX, 37

in IPC, 601–606

kernel, 230–244

page-table design, 298–299

portability of, 37

system, 221, 825

memory-management unit, 223, 280, 282–284, 298, 301, 307, 427, 825

design, 282–284, 298–299

I/O, 420

memory overlay, 223

memory, process, 222–223

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_274
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223

1050

memstat, 804

menu, boot, 778–781

merged from current, 16

message queue, 51, 825

POSIX, 337–338

System V, 337–338, 593

metadata, 253, 348, 351, 357, 395, 459–463, 478, 484–485, 516–517, 825, 844

metrics, route, 680, 686

MFC. See merged from current

m_free(), 605

m_get(), 605

m_hdr structure, 601

MIB. See management information base

Microsoft NTFS filesystem, 47, 171

MINIX operating system, 7

MIPS architecture, 7, 405, 782–784, 790

mi_startup(), 786

mi_switch(), 100, 104, 116–117

mkdir

structure, 468, 475

system call, 47, 54, 169, 475, 482

vnode operator, 432

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_16
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_395
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_484
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_517
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_601
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_88
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432

1051

MKDIR_BODY flag, 474–475

MKDIR_PARENT flag, 475

mkfifo system call, 481

mknod system call, 481

mknod vnode operator, 432

mlock system call, 253, 290, 307

definition of, 253

MLS. See multilevel security

mmap system call, 36–38, 72, 228, 251–252, 259, 264, 266, 270, 304, 334, 347, 548, 824

definition of, 251

interface, 251–253

mmap vnode operator, 432

MMU. See memory-management unit

modular congestion control, 758

TCP, 758–761

module_init(), 789

Modulo-N hash, 682

MOS. See zettabyte-filesystem meta-object set

motivation for select system call, 324–327

mount, 487, 560–561

mount options, 343

mount system call, 44, 182, 352, 355, 357, 373, 560, 799

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_93
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_758
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_758
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799

1052

mountd, 559–561, 564

mountroot, 794

mprotect system call, 252, 266, 306

definition of, 252

mps_complete_command(), 401

mpssas_action(), 401

mp_start(), 790

m_pullup(), 606, 724, 741

mq_open system call, 318

mq_receive system call, 337–338

mq_send system call, 337

MS-DOS fat filesystem, 552, 777

MS-DOS operating system, 552, 778

msgrcv system call, 337–338

msgsnd system call, 337

MSL. See maximum segment lifetime

msleep (). See sleep ()

msync system call, 253, 268, 271–272

definition of, 253

mtod(), 606

MTU. See maximum transmission unit

mtx_destroy(), 109–110

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_778
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110

1053

mtx_init(), 109–110

mtx_lock(), 109

MTX_OWNED flag, 107

MTX_RECURSE flag, 109

mtx_trylock(), 109–110

mtx_unlock(), 110

MTX_UNOWNED flag, 107

multicast, 636

address, router, 667

Internet addresses, 654–655

message, 725

router, IP, 675

Multics operating system, 4, 7

multihoming, SCTP, 766–767

multilevel feedback queue, 125–126, 825

multilevel security, 34, 186–187, 189–190, 195, 200, 825, 836

multiple-root problem, 569, 825

multiprocessor

locking resources on a shared-memory, 106–114, 612

scheduling, 122–125

startup, 789

virtual memory for a shared-memory, 37

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_655
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_569
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_825
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_122
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37

1054

multiprogramming, 90–91

multiuser mode, 798, 801

munlock system call, 253

definition of, 253

munmap system call, 252, 255, 257, 264, 305

definition of, 252

implementation of, 264–265

mutex, 107–110, 788

interface, 109–110

spin, 107, 839

synchronization, 107–110

N

Nagle, John, 747–748

name

creation, filesystem, 432

deletion, filesystem, 432

login, 137

lookup, filesystem, 446–447

translation, filesystem, 46, 447–449

named attributes, 573

named object, 248

namei(), 180

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_257
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_265
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_447
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180

1055

naming

filesystem, 443–451

shared memory, 252

NAT. See network address translation

National Bureau of Standards, 8

nd6_na_input(), 670

nd6_output(), 669

nd6_output_lle(), 669–670

nd6_timer(), 670

nd_input(), 669

NEEDRESCHED flag, 116, 134

negative caching of filename, 346

neighbor-discovery, 658, 666–670, 826

Net1 release, 7

Net2 release, 7

NetBSD, xxi, xxii, xxvi, 3, 11, 13–14, 342

netfront, 423

netgraph, 707–711

bridge, 708–711

Ethernet, 708–709

netmap, 712–715

netmask, 652, 826

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_669
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_670
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_711
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_711
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_709
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_652
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826

1056

netstat, 636–637, 646

network

address translation, 700

buffering, 643–644

byte order, 651, 826

data flow, 623–624

deadlock, 324–325

device configuration, 379–380

device control, 379–380

device interface, 378–379

device reception, 380–381

device transmission, 381–382

devices, 378–382

flow control, 643–644

interrupt service routine, 642, 793

layer, 621–623, 826

layer protocols, 51–52

mask, 826

protocol capabilities, 626

queue limiting, 643

stack virtualization, 33, 180, 184, 644–646, 683, 717, 776, 786, 789, 791, 805

stack virtualization linker set, 645

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_637
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_624
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_378
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_642
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_717
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_645

1057

time protocol, 580, 796

time synchronization, 74, 796

timer, 67, 625

Network Filesystem, 50, 53, 153, 162–163, 166, 171–174, 206, 209, 217, 340, 345, 348, 354–355,

357, 432–433, 525–526, 547, 551–587, 610, 781, 810–811, 813, 816, 818, 826

4.4BSD, 551–552

access control, 573

asynchronous writing, 566

client-server interaction, 562–564

crash recovery, 584–586

daemons, 559–562

delayed writing, 565

design, 552–553

evolution, 567–586

file handle, 555, 816

file locking, 553

hard mount, 562

implementation of, 558–562

interruptible mount, 563

lease, 559, 580–581

lock reclaim, 586

operation, 553–567

overview, 50, 551

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_580
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_625
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_153
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_340
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_526
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_551
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_587
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_551
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_555
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_558
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_580
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_551

1058

procedures, 569, 572–573, 575–581

security issues, 564

session, 576

soft mount, 563

Network Filesystem version 4, 161–174, 817, 837

access, 574

access control functions, 173–174

attributes, 572–573

locking, 581–583

namespace, 572

security, 583–584

versus version 3, 568–571

network interface, 31, 414, 419–420, 423, 428, 634–643, 795

addresses, 635–636

capabilities, 636–639

cards, 53, 414, 419

layer, 826

routines, 639–641

Xen, 427

newblk structure, 467

newbus, 44, 366, 403, 826

newfs, 441–442, 503–504

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_569
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_572
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_576
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_574
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_572
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_583
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_572
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_583
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_568
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_571
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_403
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_441
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_503
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504

1059

NFS. See Network Filesystem

nfscbd, 575, 578

nfscb_program(), 579

nfsclclient, 576

nfsclient, 575–576

nfsd, 559–561, 563, 579

nfsiod, 562–563

nfsiod_setup(), 562

nfslock structure, 582–583

nfslockfile structure, 582–583

nfslockhash, 582

nfssvc system call, 560

nfssvc_program(), 561

nfsv4_fillattr(), 573

NIC. See network interface cards

nice, 28, 75, 120, 297, 826, 831, 836

Ninth Edition UNIX, 5

N:M threading model, 93

nmount(), 561

non-volatile random-access memory, 49, 460, 526

nonblocking I/O, 320, 325, 614, 617, 619, 826

nonbypassability, 187, 189

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_578
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_576
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_576
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_582
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_583
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_582
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_583
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_582
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_93
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_526
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189

1060

nonuniform memory access, 106, 827

Not-Quite Network Filesystem, 559, 567, 823

Novell, 8

NQNFS. See Not-Quite Network Filesystem

NTP. See network time protocol

nullfs filesystem, 354–355

NUMA. See nonuniform memory access

NVRAM. See non-volatile random-access memory

O

O_ASYNC flag, 320

object

association, MAC, 198

destruction, MAC, 199

oriented file entry, 318, 321

object, shadow, 230, 248, 254–258, 837

object, virtual memory, 247–250, 845

objset structure, 529, 531, 533–535, 538–539, 542, 546

obtaining BSD, xxvi

Olson, Arthur, 9

one-time password in everything, 800

1:1 threading model, 94

open-file entry, 442

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_199
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442

1061

open firmware, 777

open source BSD, 9–14

open system call, 32, 39–41, 48, 162, 168, 177, 179, 183, 198, 203, 269, 318–319, 334, 352, 373,

385, 432–433, 442, 449–450, 481, 599, 700, 712, 813

open vnode operator, 432

openat system call, 32, 179–180

OpenBSD, xxi, xxii, xxvi, 3, 11, 14, 206, 697

OpenBSM, 201

opendir(), 445

operation of /dev, 366–367

operation, NFS, 553–567

operations

filestore, 497–498

filesystem, 431–433

terminal, 388–391

OPIE. See one-time password in everything

optimal replacement policy, 224, 827

organization, FFS, 502–504

orphaned process group, 141, 827

OS/X operating system, Apple, 3, 436, 445

out-of-band data, 617–619, 630, 827

receipt of, 619

transmission of, 616

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_203
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_14
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_431
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_103
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616

1062

overlay, 25, 827

memory, 223

ownership bit, 381

P

packet

filter, 52, 637, 701–702, 706–707

forwarding, IP, 658, 674–675

fragmentation, 761

normalization, 707

processing frameworks, 700–715

reception, 642–643

scheduler, 705

transmission, 641

packet demultiplexing

Internet addresses, 721

IP, 723

page cache, 368, 372

page clustering, 268, 280, 294, 309, 811

page fault, 223, 817, 827–828, 833

page lists, 290

active, 290

cache, 290

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_637
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_701
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_702
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_706
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_674
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_642
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_705
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290

1063

free, 290

inactive, 290, 307

wired, 290

page replacement, 6, 224, 289–295

4.4BSD, 289, 294

criterion for, 289–291

in the VMS operating system, 289

page table, 298, 828

forward-mapped, 282, 817

inverted, 284

pages, 298, 828

reverse-mapped, 284, 834

page-table entry, 282–283, 298, 303, 305–306, 308, 828

page usage, 307–308

page, wired, 271–272, 299–300, 302, 307, 846

pagedep structure, 472–476, 495–496

pagein(), 827

operation of, 276–280

pageout daemon, 58, 92, 233, 236, 238, 240–241, 244, 248, 268, 271–273, 275, 290–297,

307–309, 482, 813, 822, 827–828

operation of the, 292–295

pageout in progress, 275

pager, 248–249, 828

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_283
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_236
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_238
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828

1064

definition of, 268–269

device, 248, 270–271

interface, 267–275

physical-memory, 272

swap, 248, 272–275

vnode, 248, 269–270

paging, 6, 36, 71, 223–224, 226, 245–247, 249–250, 276–289, 799, 813, 828

parameters, 291

systems, characteristics of, 223

PAM. See pluggable authentication module

panic, 801, 828. See also system crash

paravirtualization, 184, 414–428, 788

parent directory, 46

parent process, 27, 96, 126, 828

partial fail, 768

partition. See disk partition

passphrase, GELI, 213–214, 216

path MTU discovery, 680, 738, 770, 828

pathname, 46, 828

translation, 342–343

paths through network node, 624

PC-BSD, xxiv

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_770
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_624
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxiv

1065

PC. See personal computer

p_cansched(), 160

PCB. See protocol control block

PCH. See peripheral controller hub

PCI. See peripheral-component interconnect

PDP-11, 5, 62, 89–90

PDP-7, 3, 89

per-CPU allocator, dynamic, 789

perfect forward secrecy, 210

performance. See system performance

peripheral-component interconnect, 24–25, 53, 363–366, 405–406, 408–410, 414–416, 420,

423, 428, 777

peripheral controller hub, 362–363

permanent kernel modules, 775, 828

persist timer, 734, 829

personal computer, 7, 60–62, 65, 67, 73, 148, 504, 777, 790

architecture, 362–364

stack growth on, 72

PF. See packet filter

PF_KEY

address extension, 695

association extension, 695

base header, 694

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_108
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_145
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_24
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_408
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_416
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_364
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_111
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694

1066

PF_KEY_V2, 693

PF_LOCAL, 630

PFS. See perfect forward secrecy

pgo_alloc(), 268

pgo_dealloc(), 268

pgo_getpage(), 272

pgo_getpages(), 268–272

pgo_haspage(), 268, 272

pgo_init(), 268

pgo_putpages(), 268, 270–272, 275

PGP. See pretty-good privacy

physical block, 499, 829

physical I/O, 372–373

algorithm for, 372

physical mapping, 299, 829

physical-memory pager, 272

physical to virtual mapping, 302–303, 781

physio(), 372–374

PIC. See programmable interrupt controller

PID. See process identifier

ping, 658, 686

pipe, 40–41, 316, 594, 829

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_118
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_594
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829

1067

audit, 200–205

implementation of, 40

system call, 40–41, 198, 232, 318, 790, 813

pipeline, 29, 41, 829

assured, 176

placement policy, 223, 829

Plan 9, 5

platform_start structure, 784

pluggable authentication module, 800

pmap, 299–300, 303–308

functions, 300–301

initialization, 302, 785

module, 229, 299–301, 303–308, 829

structure, 829

pmap_bootstrap(), 300–301

pmap_bootstrap structure, 785

pmap_change_wiring(), 301, 307

pmap_clear_modify(), 301, 307

pmap_copy_page(), 301, 308

pmap_enter(), 300, 304–306

implementation of, 304–305

pmap_growkernel(), 300, 302

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302

1068

pmap_init(), 300–302

pmap_is_modified(), 301, 308

pmap_pinit(), 301, 308

pmap_protect(), 301, 304, 306

pmap_qenter(), 300, 305

pmap_qremove(), 300, 305

pmap_release(), 301, 308

pmap_remove(), 300, 305–308

implementation of, 305

pmap_remove_all(), 301, 306

pmap_remove_write(), 301, 306

pmap_ts_referenced(), 301, 307–308

pmap_zero_page(), 301, 308

PMBR. See protective MBR

pmc_soft_ev_register(), 791

point-to-point protocol, 707–708

policy composition, MAC, 194–195

policy registration, MAC, 190

poll interface, System V, 326

poll system call, 32, 110, 325–327, 329–330, 374, 385, 630, 715, 829

poll vnode operator, 432

pollfd structure, 326

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_708
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326

1069

polling I/O, 325, 829

portability of

FreeBSD, 23

memory management, 37

Seventh Edition UNIX, 5

portable operating-system interface, xxii, 8, 39–40, 94, 136, 141, 150, 162–163, 166, 168–171,

173–174, 248, 251, 317, 321–323, 334, 336–338, 385–386, 455, 463, 524–525, 528, 780, 829

message queue, 337–338

real-time, 161–174

shared memory, 338

portal filesystem, 343, 357–358

portmap, 559–560

ports, Internet, 721–723

POSIX. See portable operating-system interface

postsig(), 133, 135–136

operation of, 136

PPC architecture, 405

PPP. See point-to-point protocol

pr_ctlinput(), 633–634, 658, 725

pr_ctloutput(), 631, 725

preadv system call, 419

preemption

kernel, 60

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_386
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_455
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_113
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_633
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60

1070

thread, 117

prefix option, 668

prepaging, 224, 829

preselection, audit, 201, 204

pretty-good privacy, 30, 209

primary address, 767

pr_input(), 632–633

priority inversion, 103, 830

priority propagation, 103, 830

prison, first, 181, 790–791, 794

prison structure, 181, 646

private mapping, 251, 254–256, 830

private memory, 254–256, 258

priv_check(), 32, 158

priv_check_cred(), 158

privilege, 830

model, 30–34, 149–151, 157–159, 181–182, 803–805

separation, 174, 830

PRNG. See pseudo-random number generator

probe, 79, 830

probe effect, 79, 830

/proc filesystem, 142–144, 358, 831

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_668
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_632
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_633
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_103
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_103
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_256
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_256
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_159
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_121
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_79
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831

1071

procctl system call, 259–260

procedures, NFS, 569, 572–573, 575–581

process, 26, 89, 830

address-space management, 228–230

context, 26, 830

creation, 126–128, 258–262

credential, 31, 34–35, 127, 144, 150–157, 179, 181–182, 201–204, 259, 354–355, 556, 564, 793,

800, 803, 830

debugging, 134, 142–144, 161, 182

first, 793

flags, 142

isolation, 149

kernel, 57, 786, 792–794, 822

kernel interrupt, 57

lightweight, 146

memory, 222–223

model, 149, 831

open-file table, 442, 831

profiling, 63, 74

resource accounting, 31, 67, 129, 790, 800

scheduling, 58, 68, 73, 91–92, 160–161, 782, 792, 794, 796

state, change of, 128, 134, 142

state organization, 92–99

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_569
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_572
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_57
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_146
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_222
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99

1072

structure, 59–60, 90, 94–98, 100, 804, 831

termination, 128–129, 161, 266–267

virtual address space, 245

virtual memory duplication, 260–262

virtual memory resources, 244–250

virtual time, 74

visibility, 34, 160

process group, 29, 136–139, 830

association with, socket, 140, 608

hierarchy, 96

identifier, 137, 320, 608, 831

job-control use of, 29

leader, 137

orphaned, 141, 827

terminal, 140, 387–388, 390

process identifier, 27, 54, 92, 94, 126–128, 137–138, 145, 209, 259, 317, 387, 685, 831

allocation, 127

process management, 26–29, 69–73, 89–144

history of, 89

process priority, 28, 63, 75, 831

calculation of, 67

processor affinity, 117–118, 121, 240, 831

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_827
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_145
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_685
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_118
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_121
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831

1073

processor group, 117, 831

processor hardware performance monitoring counters, 790–791

processor rings, 149–150

processor-status longword, 60–62

procfs filesystem, 358

procstat, 144, 804

profclock(), 66, 74

profil system call, 85

profiling process, 63, 74

timer, 66, 74

program relocation, 833

programmable interrupt controller, 427

programming language

B, 4

C, 3–4, 26, 62

D, 78, 80, 188–189

LISP, 6

protect, 260

protected mode, 779, 781

protection, virtual memory map, 306–307

protective MBR, 779

protocol, 51, 811

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811

1074

buffering policy, 643

capabilities, network, 626

communication, 624–626

control block, 722–723, 766

control-output routine, 630–631

switch, 606, 608

switch structure, 624, 831

protocol family, 608, 805, 831

protocol-network interface, 634–643

protocol-protocol interface, 631–634

protocols, network layer, 51–52

protosw structure, 606, 608

pr_output(), 632

pr_usrreqs(), 631

ps, 94, 98, 120

pseudo-header, IP, 741

pseudo-random number generator, 209, 212

pseudo-terminal, 23, 29, 346, 367, 382–384, 388–390, 811–812, 832, 838

psignal(), 133–135

operation of, 133–134

PSL. See processor-status longword

ps_strings structure, 72

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_624
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_722
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_624
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_634
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_632
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_367
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72

1075

PTE. See page-table entry

pthread model, 94

pthread_create(), 94

ptrace system call, 78, 106, 142–143, 161, 182

public-key encryption, 206, 832

pure demand-paging, 224, 832

push migration, 832

pv_entry structure, 299, 302–303, 305–310

pwrite system call, 177–178

pwritev system call, 177–178, 419

Q

QFQ. See quick fair queueing

queue, audit, 204–205

queue limiting, network, 643

quick fair queueing, 705

quotacheck, 454

quotactl system call, 482

quota.group, 452

quotas

contribution of, 8

format of record, 452

implementation of, 451–454

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_310
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_122
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_705
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454

1076

limits, 451

quota.user, 452

R

racct_init(), 790

race condition, 137–138, 250, 279, 324, 479, 832

radix search trie, 680

RAID. See redundant array of inexpensive disks

RAIDZ. See zettabyte-filesystem RAIDZ variant of RAID

random-number generator, 31, 35, 206, 208–212, 790, 793

random_harvestq_internal(), 211

range lock, System V, 323

rapid connection reuse, 743, 832

raw device, 372–373

interface, 371, 832

raw mode, 384

raw socket, 42, 651, 658, 686–687, 832

control block, 686

input processing, 687

output processing, 687

rctl_init(), 790

rdrand instruction, 35, 210–211

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_279
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_211
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_743
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_372
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_371
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_687
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_687
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_687
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_211

1077

read system call, 37, 39, 43, 51, 143, 179, 209, 212, 318, 327, 333, 347, 352, 359, 385, 390–391,

599, 615, 700, 816, 826, 831, 841

read vnode operator, 497

READ_10, 401

readdir(), 445

readdir vnode operator, 432

readlink vnode operator, 432

readv system call, 43, 332, 821

real GID. See real group identifier

real group identifier, 155, 832

real mode, 779

real-time

clock, 58, 795–796

POSIX, 161–174

scheduling, 28, 75, 91, 117, 252–253

timer, 67, 74

real UID. See real user identifier

real user identifier, 155–156, 832

reboot, 801–802

reboot system call, 801–802, 805

receive

descriptors, 381

ring, 381

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381

1078

stream, ZFS, 546

window, 732, 833, 838

reception, network device, 380–381

reclaim from inactive, 294, 833

reclaim vnode operator, 345, 432, 443

reclamation dependencies, soft updates, 476

recommended attributes, 573

record, audit, 35, 200–205

recv system call, 43, 630

recvfrom system call, 43, 615, 664, 761, 766

recvit(), 615

recvmsg system call, 43, 598, 615, 620, 630, 764

data structures for, 598

red zone, 38, 241, 833

redundant array of inexpensive disks, 46, 49, 53, 362, 392, 394, 526, 529, 540, 547–548, 794

reference monitor, 187, 189

reference string, 224, 833

refinement, capability, 176

region, 245, 833

directly-mapped, 783–784

relative pathname, 46, 828, 833

remote filesystem performance, 565–567

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_362
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_392
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_394
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_526
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_540
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_224
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567

1079

remote procedure call, 553–566, 569, 572–573, 575, 577–579, 581–586, 833

remove vnode operator, 432

rename system call, 47, 482, 557

addition of, 47

rename vnode operator, 432

replacement policy, 223, 833

replay protection, 691–692

request for comments, 568, 573, 584, 659, 661, 688, 739–740

required attributes, 573

resident-set size, 290, 833

resource

accounting, process, 31, 67, 129, 790, 800

autoconfiguration, 412–413

limits, 26, 75–77

process virtual memory, 244–250

sharing, 106–114

utilization, 75–76

restore, 438, 546

retransmit timer, 733, 738, 834

return from kernel, 61–62

return from system call, 63

reverse-mapped page table, 284, 834

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_569
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_572
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_577
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_579
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_223
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_692
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_568
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_659
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_661
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_573
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_412
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_413
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_77
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834

1080

revocation of controlling terminal, 345

revoke system call, 346, 387, 391, 482

rewinddir(), 445

RFC. See request for comments

rfork system call, 40, 94, 126

rip_input(), 658

Ritchie, Dennis, 3–4, 7

rlimit structure, 95

rm, 479

rmdir system call, 47, 475, 478, 482

rmdir vnode operator, 432

root

directory, 45, 834

filesystem, 46, 794, 799, 834

of I/O tree, 366, 406, 410

user, 30–31, 33, 151, 154–155, 157, 174, 181, 793, 834, 841

root_hold_token(), 794

root_mount_rel(), 794

round robin, 115, 834

round-trip time, 565, 735, 769

TCP estimation of, 735–736

route

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_406
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_410
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736

1081

black-hole, 680, 809

metrics, 680, 686

structure, 683

weight, 682

routed, 684

router, 675, 834

advertisement, 666

entry, 667

IP multicast, 675

multicast address, 667

solicitation, 667, 834

routing, 675–686

daemon, 684, 813, 834

information protocol, 684

interaction with ICMP, 658

interface, 685–686

lookup, 680–683

mechanism, 677–684, 834

policy, 684, 835

redirect, 683, 835

redirect message, 683

socket, 685

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_666
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_667
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_675
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_685
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_680
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_685

1082

table interface, 683–684

tables, 677–684

types of, 677

RPC. See remote procedure call

rpc.lockd, 557, 559, 561–562

rpc.statd, 559, 561–562

rtalloc(), 682–684

rtentry structure, 671, 678, 683

rtfree(), 683

rtprio system call, 97

rtredirect(), 658, 684

RTT. See round-trip time

run queue, 96, 114, 835

management of, 115–117

run-to-completion, 642, 835

runq_add(), 115

runq_choose(), 115

operation of, 115

runq_remove(), 115

S

SA. See security association

SACK. See transmission control protocol selective acknowledgment

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_562
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_682
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_678
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_683
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_684
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_642
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_149

1083

Samba, 552

sandbox, 149, 151, 174–181, 835

SAS. See serial-attached SCSI

SATA. See serial advanced-technology attachment

savecore, 802

saved GID, 157, 835

saved UID, 156–157, 835

sbappendstream(), 744, 746

/sbin/init, 793

sbrk system call, 72, 259, 263, 819

SC22 WG15 standard, 8

scatter-gather I/O, 43, 54, 332–333, 416, 419, 615, 835

sched_affinity(), 117

sched_clock(), 117

sched_getparam system call, 160

sched_lend_user_prio(), 117

sched_pickcpu(), 123

sched_setpreempt(), 117

sched_setup(), 791

scheduler(), 296–297

scheduler, packet, 705

scheduling, 90, 414, 836

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_416
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_123
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_705
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836

1084

class, 97, 836

long-term, 117

low-level, 114–117

multiprocessor, 122–125

parameters, 26

priority, 97, 836

process, 58, 68, 73, 91–92, 160–161, 782, 792, 794, 796

real-time, 28, 75, 91, 117, 252–253

short-term algorithm, 126

thread, 106, 114–126

timeshare, 117–126

traditional, 125–126

scripts, user-level startup, 782

SCSI. See small-computer system interface

SCTP. See stream control transmission protocol

sctp_bindx(), 767

sctp_connectx(), 767

SDT. See statically defined tracepoints

secondary storage, 221, 836

secure mode, 440

securelevel, 161

security, 688–700

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_122
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_68
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700

1085

association, 689, 691, 693–694, 697, 699, 836

association, transport mode, 689

association, tunnel mode, 690

clearance, 186

event auditing, 30–31, 35, 149, 151, 200–205, 792–793, 800, 836

flavor, 584

introduction, 688

issues, NFS, 564

label, MAC, 34, 152, 186–189, 195–200, 836

level, kernel, 439

localization, 30

parameter index, 689–691, 697, 699, 836

protocols, 690–693

protocols implementation, 698–700

triple, 584

seekdir(), 445

see_other_gids, 160

see_other_uids, 160

segment, 36, 69, 726, 836

bss, 69, 263, 784, 809

data, 36, 69, 71, 263, 813

stack, 36, 69, 263, 839

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_195
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_584
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_809
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839

1086

text, 36, 69, 71, 263, 842

segregated fit, 234

select system call, 32, 325–327, 329–330, 359, 374, 610, 630, 715, 739, 829

device driver support for, 327, 374

implementation of, 327–329

motivation for, 324–327

selfd structure, 327–329

selinfo structure, 327–329

seltd structure, 327–329

seltrue(), 374

selwakeup(), 329, 389

semaphores, 51, 593, 836

System V, 333, 335

virtual memory, 251

semctl system call, 648

semget system call, 336, 648

semop system call, 336, 648

sem_open system call, 317, 336

sem_post system call, 336

sem_wait system call, 336

send stream, ZFS, 546

send system call, 43, 51, 609, 694, 724, 765

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_836
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765

1087

send window, 731, 837

sendfile system call, 38, 548

sendit(), 615–616

sendmsg system call, 43, 598, 615, 628, 723

data structures for, 598

sendsig(), 136

sendto system call, 43, 615, 628, 664, 723, 761, 764–765

sense request, 629, 837

sequence

numbers, TCP, 726

space, 726, 837

variables, TCP, 730–732

sequenced-packet protocol, 761

sequenced-packet socket, 595, 837

serial advanced-technology attachment, 363, 365–366, 399, 402, 405, 407

serial-attached SCSI, 365, 402

serial console, 777, 779, 799

server message block, 525, 552

server process, 50, 837

service location, 559

session, 29, 136–139, 387–388, 837

ID, 575, 837

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_731
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_595
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_407
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_575
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837

1088

leader, 138, 837

set-group-identifier program, 155, 837

set-user-identifier program, 155, 533, 837

setattr vnode operator, 432

seteuid system call, 157

setfd structure, 329

setgid binary, 31

setgid system call, 155

setlogin system call, 800

setpgid system call, 137–138

setpriority system call, 831

setrunnable(), 100, 134

setsid system call, 138

setsockopt system call, 599, 621, 627, 631, 654, 748, 812

settimeofday system call, 74

setuid, 132

binary, 31, 151, 181

system call, 152, 155

Seventh Edition UNIX, 5

portability of, 5

sh shell, 70, 798

SHA. See hash message-authentication code

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_627
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_58

1089

shadow object, 230, 248, 254–258, 837

chain, 255–258

collapse, 257–258

share deny, 581

share reservation, 581

shared library, 72

shared mapping, 36, 251, 253–254, 837

shared memory, 51, 250–258, 593, 838

naming, 252

POSIX, 338

System V, 252, 272, 338

shared text segment, 6

sharing, resource, 106–114

shell, 838

csh, 139

login, 22

sh, 70, 798

shmat system call, 338

shmdt system call, 338, 647

shmem system call, 248, 252, 338

shmget system call, 338

shm_open system call, 179–180, 317, 338

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_257
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_581
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_70
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338

1090

shm_unlink system call, 338

short-term-scheduling algorithm, 126, 838

shutdown, system, 52–54, 801–802

shutdown system call, 599, 619, 740

shutdown_final, 802

shutdown_post_sync, 802

shutdown_pre_sync, 802

sigaction system call, 130, 136, 810

SIGALRM, 74

sigaltstack system call, 132

SIGCHLD, 134, 138, 142

sigcode(), 136

SIGCONT, 132, 134, 160, 812

SIGHUP, 141, 387

SIGINT, 136

SIGIO, 320, 390, 608–609, 838

SIGKILL, 28, 132, 134, 160

signal, 28–29, 34, 94–95, 129–141, 160, 838

checking for a pending, 63

comparison with other systems, 129

delivering, 135–136

driven I/O, 320, 325, 838

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_29
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838

1091

handler, 28, 130–132, 838

masked, 132

posting, 63–64, 98, 132–134, 142, 838

priority, 28

restrictions on posting, 132

stack, 28, 132

system call, 179

trampoline code, 136, 838

sigprocmask system call, 132, 824

SIGPROF, 74, 85

sigreturn system call, 132, 135–136, 838

SIGSTOP, 28, 132, 144

sigsuspend system call, 101, 132

SIGTHR, 160

sigtramp(), 135

SIGTRAP, 142, 144

SIGTSTP, 145, 391

SIGTTIN, 141, 390

SIGTTOU, 134, 141, 388

SIGURG, 608

SIGVTALRM, 74

silly-window syndrome, 746, 838

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_28
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_145
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838

1092

TCP handling of, 746–747

single indirect block, 435, 820, 838

single-user mode, 779, 781, 798, 801

Sixth Edition UNIX, 4–5

size update, filestore, 498

slab allocator, 236–237, 787, 791

sleep(), 98, 100–101, 116, 132–133, 292, 369, 615, 838, 843

implementation of, 97–98, 101–104

interruptible, 97, 133

operation of, 104

use of sleep(), 97–98, 101

sleep queue, 96, 838

sleepqueue structure, 103–105, 115

sliding-window scheme, 726, 838

slow-start algorithm, TCP, 752–756

small-computer system interface, 363–365, 399–402, 405, 415, 418

bus, 404

I/O request, CAM, 400–402

small-packet avoidance, 747, 839

TCP implementation of, 747–748

SMB. See server message block

SMP. See symmetric multiprocessing

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_236
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_237
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_103
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_756
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_365
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_399
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_404
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_400
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_134
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_143

1093

snapshot, 48, 480, 839

on a large filesystem, 484–486

creating a, 481–483

deadlock, 485–486

maintaining a, 483–484

user visible, 487

ZFS, 541–542

socantrcvmore(), 745

sockaddr structure, 611, 628, 630, 635, 641, 658, 677, 686, 695

sockaddr_dl structure, 635–636

sockaddr_in structure, 182, 664, 724

sockaddr_in6 structure, 664

socket, 40, 42–43, 50, 316, 368, 595, 839

address structure, 182, 596, 611, 839

connection queueing, 610, 613

data buffering, 609, 616, 618

data structures, 608–611

error handling, 615

low watermark, 610

options, 626

process group association with, 140, 608

shutdown, 620–621

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_484
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_483
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_485
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_483
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_484
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_541
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_658
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_686
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_695
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_636
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_595
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_618
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_608
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621

1094

state transitions during rendezvous, 613

state transitions during shutdown, 621

states, 610

structure, 192

types, 595, 607

using a, 596–599

socket system call, 8, 39–41, 50, 198, 318, 596–597, 606, 612, 628, 631, 713, 761, 813

definition, 596

socket-to-protocol interface, 626–631

socketpair system call, 630, 813

SOCK_SEQPACKET, 761, 765

SOCK_STREAM, 596

soconnect(), 614

soft limit, 76, 451, 839

soft link, 449, 839, 841. See also symbolic link

soft updates, 48, 459–480, 839

bitmap dependencies, 466–467

dependencies, 460–464

direct block dependencies, 469–470

directory dependencies, 472–476

fsck dependencies, 480

fsync dependencies, 477–478

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_595
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_607
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_713
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_626
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_477
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478

1095

indirect block dependencies, 470–472

inode dependencies, 467–469

link count dependencies, 478–480

overview, 459–460

reclamation dependencies, 476

structures, 464–466

truncation dependencies, 476

softclock(), 66–69, 74

softdep_disk_io_initiation(), 469

softdep_disk_write_complete(), 469

softdep_update_inodeblock(), 468

software interrupt, 59, 65–66, 210, 839

thread, 65, 208, 793, 795, 839

sohasoutofband(), 744

soisconnected(), 615

soisconnecting(), 736

soisdisconnected(), 745

solid-state disk, 49, 402, 526, 539

solisten(), 613

sonewconn(), 613, 738

soreceive(), 559, 617, 619–620, 647

sorwakeup(), 619

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_460
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_468
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_526
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619

1096

sosend(), 559, 616–617, 647, 746, 768

SPA. See zettabyte filesystem storage-pool allocator

SPARC64 architecture, 790

Spec 1170, 8

special file, 42, 316, 839

SPI. See security parameter index

spin mutex, 107, 839

split device-driver model, 414–428

SPP. See sequenced-packet protocol

SSD. See solid-state disk

ssh, 30, 35, 148–149, 209, 383, 798

stack, 839

growth on PC, 72

segment, 36, 69, 263, 839

zero filling of user, 71

stackable filesystem, 352–358

4.4BSD, 352–353

stale data, 565

stale translation, 280–282, 839

standalone

device driver, 777, 840

I/O library, 779–780, 840

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_559
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_139
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_131
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840

1097

program, 777, 840

standard

error, 41, 840

input, 41, 840

output, 41, 840

start routine, 401, 840

start_init(), 793–794

startup

C-language, 784–785

GELI, 214

MAC framework, 189–190

multiprocessor, 789

scripts, user-level, 782

system, 52–54, 775–800

witness, 788

stat structure, 318, 439, 629

stat system call, 47, 164, 171, 345, 352, 438, 446, 837

statclock(), 66–67, 76

state cookie, 763

stateless protocol, 556, 840

statfs system call, 344

statically defined tracepoints, 80

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_189
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_190
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_763
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_80

1098

statistics collection, 66–67, 76

statistics, system, 66–67

sticky bit, 165, 309, 840

stop character, 389

storage-management algorithm, mbuf, 605

strategy(), 351, 401

strategy vnode operator, 469

stream, 762

I/O system, 6

identifier, 764

sequence number, 764

socket, 595, 840

stream control transmission protocol, xxvi, 52, 209, 651, 721, 761–769, 815, 840

association setup, 761–764

association shutdown, 766

chunk, 762–766

data transfer, 764–766

heartbeat, 767–768

multihoming, 766–767

packet header, 762

stream, 764

STREAMS, 326, 632

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_165
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_605
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_351
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_595
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_840
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_632

1099

structures, soft-updates, 464–466

su, 440

Sun Microsystems, 9, 50, 339, 342, 515, 551, 554, 558

superblock, 501, 841

superpages, 284–289, 841

superuser, 46, 154, 158, 322, 803, 805, 841

supplementary group array, 156

suser(), 32

svc_dg_create(), 561

svc_reg(), 561

svc_vc_create(), 561

swap

area, 225, 841

device, 225, 841

out, 92, 295–296

out, 4.4BSD, 296

pager, 248, 272–275

pager, 4.4BSD, 273

partitions, 273, 802

space, 225, 272, 841

space management, 273–275

swapin(), 106

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_466
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_440
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_551
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_558
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_273
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106

1100

operation of, 296–297

swapoff system call, 274

swapper, 296–297, 793, 822, 841

swapping, 36, 73, 225, 295–297, 799, 841

in FreeBSD, reasons for, 295

SWI. See software interrupt

swp_pager_async_iodone(), 275

symbolic link, 449–451, 841

symlink system call, 481

symlink vnode operator, 432

symmetric cryptography, 206, 700, 841

symmetric multiprocessing, 106, 841

syn-cache, TCP, 739–740, 762

syn-cookie, TCP, 209, 739–740, 762

sync system call, 341, 482

syncer, 58, 359, 464

synchronization, 81–82, 106–114

lock, 110–112

mutex, 107–110

network time, 74, 796

synchronous interrupt, 60, 99

/sys/kern/sched_4bsd.c, 114

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_274
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_297
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_449
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_81
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_82
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114

1101

/sys/kern/sched_ule.c, 114

/sys/sys/kernel.h, 786

syscall(), 61

sysctl system call, 84, 122, 160–161, 191, 200, 206, 209, 260, 291, 357, 639, 787, 803–805

SYSINIT, 53, 785–797, 802

syslogd, 799

system activity, 61, 841

system call, 22, 26, 32, 59–60, 150, 152, 200–205, 792, 797–798, 841

handling, 37, 61–63, 100

implementation of, 62–63

result handling, 62–63

return from, 63

system calls accept, 597–598, 611–614, 646, 664, 739

access, 353

adjtime, 74

aio_error, 321–322, 330

aio_read, 321, 359

aio_return, 322, 330

aio_suspend, 322, 330

aio_waitcomplete, 322

aio_write, 321, 359

audit, 201, 203, 205

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_122
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_63
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_611
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_203
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205

1102

bind, 182, 664, 723, 767

cap_enter, 179

cap_getmode, 179

cap_rights_limit, 178

chdir, 46, 813

chflags, 439, 481

chgrp, 155

chmod, 47, 164, 169, 171, 201, 481

chown, 47, 155, 164, 481

chroot, 33, 46, 180–181, 834

close, 39, 319, 323, 345, 352, 385, 566, 599, 620–621, 700, 741

connect, 182, 597, 612, 614, 664, 697, 723–725, 736, 767, 811

dup, 41–42, 48, 319–321, 814, 817

dup2, 42, 178, 320, 817

exec, 41, 72, 89, 126, 138, 144, 156–157, 161, 181, 232–233, 258, 261–263, 266, 269, 304,

308–309, 319–320, 330, 832, 835, 837

execve, 160, 162, 173, 790, 794, 800

exit, 27, 119, 126, 128, 262, 266–267, 330

extattrctl, 482

fchflags, 439, 481

fchmod, 47, 164, 177, 481

fchmodat, 180

fchown, 47, 164, 481

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_201
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_834
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481

1103

fcntl, 8, 178, 319–321, 390, 814

fhopen, 481

flock, 553

fork, 4, 27, 41, 48, 89, 94, 96, 119, 126, 128, 138, 142, 144, 155, 177, 179, 181, 258–261, 292, 304,

306, 308–309, 319–320, 330, 811, 817, 828, 830, 832

fstat, 47, 164, 629

fsync, 253, 340, 348, 359, 436–437, 461–463, 474, 477–478, 482, 493, 501, 507, 514, 518,

538–539, 566

ftruncate, 481

futimes, 481

getdirentries, 445

getfsstat, 344

getlogin, 800

getpeername, 599

getrusage, 75

getsockname, 599

getsockopt, 599, 627, 631

gettimeofday, 73–74

getuid, 179

ioctl, 42, 78, 141, 178, 204, 214, 318, 321, 374, 379–380, 385–387, 620, 629, 635, 638, 700, 712,

714–715, 812

jail, 183

jail_attach, 183

jail_get, 184

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_814
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_553
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_119
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_181
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_811
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_817
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_828
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_340
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_436
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_437
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_474
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_477
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_493
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_507
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_518
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_627
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_214
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_321
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_379
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_380
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_629
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_635
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_638
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_714
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184

1104

jail_remove, 183

jail_set, 184, 645

kevent, 325–326, 329–331, 715

kill, 132, 182

killpg, 140, 831

kqueue, 32, 40, 259, 326, 330

ktrace, 161, 482

lchmod, 164, 481

lchown, 164, 481

link, 46–47, 481

listen, 597, 612–613, 738, 823

lseek, 41, 178, 318, 816

lstat, 164, 450

lutimes, 481

mac_get_fd, 200

mac_get_file, 200

mac_set_fd, 200

mac_set_file, 200

mkdir, 47, 54, 169, 475, 482

mkfifo, 481

mknod, 481

mlock, 253, 290, 307

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_645
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_331
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_613
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_823
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307

1105

mmap, 36–38, 72, 228, 252, 259, 264, 266, 270, 304, 334, 347, 548, 824

mount, 44, 182, 352, 355, 357, 373, 560, 799

mprotect, 266, 306

mq_open, 318

mq_receive, 337–338

mq_send, 337

msgrcv, 337–338

msgsnd, 337

msync, 253, 268, 271–272

munlock, 253

munmap, 252, 255, 257, 264, 305

nfssvc, 560

open, 32, 39–41, 48, 162, 168, 177, 179, 183, 198, 203, 269, 318–319, 334, 352, 373, 385,

432–433, 442, 450, 481, 599, 700, 712, 813

openat, 32, 179–180

pipe, 40–41, 198, 232, 318, 790, 813

poll, 32, 110, 325–327, 329–330, 374, 385, 630, 715, 829

preadv, 419

procctl, 259–260

profil, 85

ptrace, 78, 106, 142–143, 161, 182

pwrite, 177–178

pwritev, 177–178, 419

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_257
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_560
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_183
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_203
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_319
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_442
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_450
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_712
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_110
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_178
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419

1106

quotactl, 482

read, 37, 39, 43, 51, 143, 179, 209, 212, 318, 327, 333, 347, 352, 359, 385, 390–391, 599, 615,

700, 816, 826, 831, 841

readv, 43, 332, 821

reboot, 801, 805

recv, 43, 630

recvfrom, 43, 615, 664, 761, 766

recvmsg, 43, 598, 615, 620, 630, 764

rename, 47, 482, 557

revoke, 346, 387, 391, 482

rfork, 40, 94, 126

rmdir, 47, 475, 478, 482

rtprio, 97

sbrk, 72, 259, 263, 819

sched_getparam, 160

select, 32, 325–327, 329–330, 359, 374, 610, 630, 715, 739, 829

semctl, 648

semget, 336, 648

semop, 336, 648

sem_open, 317, 336

sem_post, 336

sem_wait, 336

send, 43, 51, 609, 694, 724, 765

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_347
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_766
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_620
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_40
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_475
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_72
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_329
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_330
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_374
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_610
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_715
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_829
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_648
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765

1107

sendfile, 38, 548

sendmsg, 43, 598, 615, 628, 723

sendto, 43, 615, 628, 664, 723, 761, 764–765

seteuid, 157

setgid, 155

setlogin, 800

setpgid, 137–138

setpriority, 831

setsid, 138

setsockopt, 599, 621, 627, 631, 654, 748, 812

settimeofday, 74

setuid, 152, 155

shmat, 338

shmdt, 338, 647

shmem, 248, 252, 338

shmget, 338

shm_open, 179–180, 317, 338

shm_unlink, 338

shutdown, 599, 619, 740

sigaction, 130, 136, 810

sigaltstack, 132

signal, 179

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_598
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_137
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_621
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_627
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_654
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_647
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_317
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_619
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179

1108

sigprocmask, 132, 824

sigreturn, 132, 135–136, 838

sigsuspend, 101, 132

socket, 8, 39–41, 50, 198, 318, 596–597, 606, 612, 628, 631, 713, 761, 813

socketpair, 630, 813

stat, 164, 171, 345, 352, 438, 446, 837

statfs, 344

swapoff, 274

symlink, 481

sync, 341, 482

sysctl, 84, 122, 160–161, 191, 200, 206, 209, 260, 291, 357, 639, 787, 804–805

tcsetattr, 815, 822, 846

truncate, 47, 479, 481, 494

umask, 169

undelete, 357, 482

unlink, 46–47, 479, 481, 557

unmount, 352, 482

utimes, 439, 481

vfork, 94, 126, 138, 261–262, 309

wait, 27, 75, 89, 96, 101, 138, 144, 261, 266–267

wait4, 27, 128–129, 142, 161

write, 26, 37, 39, 42–43, 51, 143, 177, 179, 193, 318, 325, 327, 333, 359, 385, 389, 452, 481, 506,

536, 563, 565–566, 599, 609, 615, 694, 700, 816, 831, 841

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_824
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_136
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_838
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_132
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_50
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_596
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_597
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_606
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_612
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_713
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_813
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_438
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_446
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_274
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_341
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_84
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_122
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_206
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_639
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841

1109

writev, 43, 177, 332, 821

system, capability, 174–180, 810

system crash, 47–48, 322, 324, 348, 375, 405, 454, 459, 461, 463, 480, 486, 501, 518, 556–557,

561–563, 566–567, 587, 727, 730, 734, 776, 799, 802–803, 812

system debugging, 802–803

system entry, 58–59

system error

EACCES, 173, 193

EAGAIN, 128, 320, 335–336, 391, 614, 617–618, 826

ECAPMODE, 179

ECONNREFUSED, 615

EINTR, 62, 98, 128

EINVAL, 614, 697

ELOOP, 451

EMSGSIZE, 616

EPERM, 173, 193

ERESTART, 98

system extended attributes, 168

system library, bare-metal, 780

system management mode, 777

system operation, 800–805

system performance, 62, 65, 69, 71, 73, 91, 116, 617

system shutdown, 52–54, 801–802

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_174
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_810
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_48
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_322
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_324
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_348
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_375
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_405
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_454
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_459
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_463
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_480
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_486
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_518
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_567
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_587
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_776
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_812
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_803
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_336
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_618
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_826
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_614
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_451
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_616
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_116
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_801
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_802

1110

system startup, 52–54, 775–800

scripts, 798–799

system statistics, 66–67

System V, xxi, 6, 11–12, 95

message queue, 337–338, 593

poll interface, 326

range lock, 323

semaphores, 333, 335

shared memory, 252, 272, 338

terminal driver, 385

SYSUNINIT, 53, 786

T

tag queueing, 514, 842

tags, 604, 842

tasklist, 464, 470, 476

TCB. See trusted computing base

TCP. See transmission control protocol

tcp_attach(), 736

tcpcb structure, 722, 736

tcp_close(), 741

tcp_connect(), 736

tcp_ctloutput(), 748

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_54
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_775
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_12
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_95
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_337
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_593
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_326
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_323
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_335
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_252
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_338
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_53
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_786
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_604
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_722
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748

1111

tcp_delack(), 744

tcpdump, 700

tcp_hc_get(), 737

tcp_hc_purge(), 738

tcp_input(), 732, 742, 745, 757

operation of, 741–745

tcp_output(), 732–733, 736, 742, 744–748, 751

operation of, 746

tcp_slowtimo(), 733

tcp_usr_send(), 732, 746

tcp_usr_shutdown(), 740

tcsetattr system call, 815, 822, 846

tcsetpgrp(), 141

tdq_idled(), 124

TE. See type enforcement

telldir(), 445

TENEX operating system, 7

Tenth Edition UNIX, 5

terminal

handling, 382–391

low watermark, 389

multiplexer, 368

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_738
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_742
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_757
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_742
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_751
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_822
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_141
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_124
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_445
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_368

1112

operations, 388–391

terminal driver, 384–385

bottom half of, 384

close(), 391

data queues, 388–391

functions, 385–387

ioctl(), 385–387

modes, 383–384, 390

open(), 388

special characters, 383

System V, 385

top half of, 384

user interface, 7, 385–387

terminal process group, 140, 387–388, 390

termios structure, 385, 842

text segment, 36, 69, 71, 263, 842. See also shared text segment

Thompson, Ken, 3–4, 7, 22

thrashing, 92, 842

thread, 92, 251, 842

preemption, 117

priority, 96–97, 101

priority, calculation of, 105, 117–126

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_387
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_36
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_135
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_92
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126

1113

priority, while sleeping, 97

queues, 96

scheduling, 106, 114–126

software interrupt, 65, 208, 793, 795, 839

state, 100

state block, 60, 93, 98, 100, 842

state, change of, 105

structure, 59–60, 90, 98–99, 125, 842

thread_exit(), 128

threading model

1:1, 94

N:M, 93

threads, idle, 792–793

threat model, GELI, 216–217

three-way handshake, 727–728, 734, 739, 762, 842

3BSD, 6

filesystem, 501–502, 504, 508–509

tick, 65, 842

time, 65–67

of day, 58, 73

interval, 74

process virtual, 74

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_97
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_839
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_93
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_93
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_216
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_502
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_504
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_508
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_509
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74

1114

quantum, 115, 842

representation, 73

slice, 91, 115, 842–843

stable identifier, 556, 843

synchronization, network, 74, 796

wall clock, 73–74

time zone handling, 9

timeout(), 67–69, 790, 792–793, 795

timer

2MSL, 735, 844

backoff, 734, 843

network, 67, 625

profiling, 66, 74

real-time, 67, 74

resolution of, 73

routines, TCP, 734

virtual-time, 66, 74

watchdog, 67

timeshare scheduling, 117–126

timestamp counter, 422, 790

timestamp option, TCP, 728, 736

timing services, 73–74

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_625
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74

1115

TLB. See translation lookaside buffer

TLS. See transport-layer security

top, 120

top half of device driver, 369

kernel, 59–60, 843

terminal driver, 384

TOPS-20 operating system, 7

trace trap, 142, 843

traced process, 133, 142

tracepoint, 78

track cache, 514–515, 843

tracking file-removal dependencies, 495–496

traditional scheduling, 125–126

trail, audit, 35, 200–205

translation lookaside buffer, 283–288, 304–307, 421, 424, 783, 841, 843

transmission control protocol, xxii, 3, 6, 52, 209, 358, 552, 554, 561, 564, 586, 623, 643–644,

649–651, 664, 671, 689, 691, 693, 698, 704, 707, 721–722, 725–762, 764–765, 767–770, 787,

815, 818–819, 831, 842–843

algorithm, 732–741

congestion control, 752–761

connection setup, 727–728, 736–740

connection shutdown, 729, 740–741

connection states, 727–730

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_369
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_59
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_60
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_384
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_133
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_514
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_495
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_205
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_283
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_288
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_783
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_358
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_643
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_649
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_664
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_671
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_704
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_722
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_767
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_770
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_819
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_842
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_729
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730

1116

data buffering, 754–755

delayed acknowledgments in, 744, 748–749

estimation of round-trip time, 735–736

fast retransmission, 756–757

features of, 725

flow control in, 726

handling of silly-window syndrome, 746–747

handling of urgent data, 744

header prediction, 742, 818

host cache, 737

host cache metrics, 737

implementation of small packet avoidance, 747–748

implementation, use of 4BSD, 8

initial-sequence number, 209, 726, 740, 837

input processing, 741–745

large-receive offload, 419

maximum-segment-size option, 728, 737

modular congestion control, 758–761

options, 727

output processing, 745–761

packet header, 727

receive window, 742

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_754
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_755
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_749
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_756
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_757
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_742
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_818
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_747
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_737
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_758
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_727
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_742

1117

retransmission handling, 751–752

segmentation offload, 419, 423, 427

selective acknowledgment, 728, 740, 749–751, 764

selective acknowledgment block, 750

send policy, 733, 745–761

sequence numbers, 726

sequence variables, 730–732

slow-start algorithm, 752–756

state diagram, 730

syn-cache, 739–740, 762

syn-cookie, 209, 739–740, 762

timer routines, 734

timers, 733–735

timestamp option, 728, 736

window-scale option, 728

window updates, 748–749

transmission, network device, 381–382

transmission sequence number, 764

transmit descriptor, 382

transmit ring, 382

transport layer, 622, 843

transport-layer security, 30, 149, 209, 688

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_751
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_749
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_751
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_750
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_745
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_732
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_752
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_756
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_730
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_739
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_740
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_762
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_749
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_381
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_764
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_382
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_209
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_688

1118

transport mode, 689, 843

security association, 689

trap(), 61

trap handling, 58, 61–62, 64–65, 100

trap type code, 61

TRIM disk advisory, 402

triple indirect block, 435, 820, 843

truncate system call, 47, 479, 481, 494

addition of, 47

truncate vnode operator, 498

truncation dependencies, soft updates, 476

truss, 78

trusted computing base, 30, 147–149, 151, 157–158, 176, 184, 187, 204, 217, 797, 805, 844

trusted system, 148

trylock(), 240

TSB. See thread state block

TSC. See timestamp counter

TSN. See transmission sequence number

TSO. See transmission control protocol segmentation offload

tty driver. See terminal driver

ttydevsw, 385, 388

ttydev_write(), 388

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_62
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_65
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_100
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_61
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_435
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_843
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_494
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_78
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_147
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_176
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_217
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_148
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_240
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_153
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_147
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_150
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_146
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388

1119

ttydisc_close(), 391

ttydisc_getc(), 389, 391

ttydisc_read(), 390–391

ttydisc_reprint(), 389

ttydisc_write(), 389

ttypoll(), 385

tunables, 787

tunefs, 487

Tunis operating system, 7, 22

tunnel mode, 623, 632, 690, 844

security association, 690

turnstile, 107, 844

queue, 96, 844

structure, 102–105, 107–108, 112, 115

2MSL timer, 735, 844. See also maximum segment lifetime

TXG. See zettabyte filesystem transaction group

type-ahead, 383, 844

type enforcement, 34, 186–187

U

U-Boot, 777, 782

uberblock, 523, 527, 532–533, 535, 538–540, 844

ubldr, 782

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_487
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_623
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_632
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_102
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_107
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_108
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_115
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_735
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_91
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_186
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_532
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_540
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782

1120

ucred structure, 152

UDP. See user datagram protocol

udp_append(), 725

udp_attach(), 723

udp_bind(), 723

udp_detach(), 725

udp_input(), 724

udp_output(), 724

udp_send(), 724

UEFI. See unified extensible-firmware interface

UFS. See fast filesystem

UFS1. See fast filesystem, 32-bit version

UFS2. See fast filesystem, 64-bit version

ufs_accessx(), 163

ufs_bmap(), 505, 515

ufs_vaccessx(), 168

ugidfw, 187, 200

UID. See user identifier

uintptr_t, 197

uio structure, 332–333, 373, 388, 390–391, 497, 765, 844

uiomove(), 333, 373, 389

implementation of, 332–333

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_159
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_155
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_45
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_505
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_515
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_200
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_197
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_390
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_391
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_765
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_373
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333

1121

ULE scheduling, xxvi, 114, 117–125, 791

umapfs filesystem, 354–355, 564

umask, 164, 170

system call, 169

uma_startup3(), 791

uma_timeout(), 791

uma_zalloc(), 244

uma_zcreate(), 244

uma_zfree(), 244

uma_zone_set_max(), 241

undelete system call, 357, 482

unified extensible-firmware interface, 777, 797

union filesystem, 355–357

Universal Coordinated Time, 73–74, 85

universal serial bus, 213, 363–366, 428

universal UID, 208, 423

University of California at Berkeley, 6

UNIX

32V, 5–6

history of, 3–7

Programmer’s Manual, 4

Support Group, 5–6

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_117
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_125
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_170
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_777
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_797
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_85
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_213
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_363
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_366
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_208
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_3
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_4
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6

1122

System III, 5–6, 8

System Laboratory, 11–13

System V, 5–6, 8

System V, Release 3, 6

unlink system call, 46–47, 479, 481, 557

unlock vnode operator, 432–433

unmount, 478

unmount system call, 352, 482

unprivileged_proc_debug, 161

update dependency, 461, 844

update vnode operator, 467, 470, 472–473, 476, 497

upper half terminal output, 388–389

urgent data, 320, 726, 733, 746, 844

TCP handling of, 744

transmission, styles of, 617

USB. See universal serial bus

use of descriptor, 39–41

USENET, 9, 516

user credential, 152, 844

user datagram protocol, 52, 552–554, 561, 564, 586, 649–651, 689, 691, 693, 698, 707, 721–726,

733, 736, 741, 746, 761, 768–769, 815, 831, 845

control operations, 725

initialization, 723

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_11
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_13
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_46
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_479
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_557
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_478
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_352
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_482
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_461
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_388
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_320
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_744
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_617
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_157
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_41
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_9
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_516
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_844
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_52
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_554
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_586
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_649
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_651
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_689
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_691
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_693
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_698
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_707
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_721
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_726
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_733
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_736
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_741
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_746
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_761
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_768
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_769
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_723

1123

input, 724–725

output, 724

user file I/O, 499–501

user identifier, 31, 34, 47, 151–152, 154–158, 160–166, 168–173, 187, 204, 354–355, 552, 564,

815, 820, 830, 832, 835, 837, 841, 845

use in file-access validation, 164

user-level startup scripts, 782

user-level system initialization, 798–800

user mode, 90, 226, 845

user-request routine, 622, 625–630, 697, 845

operations, 628–630

USL. See UNIX System Laboratory

/usr/bin/login, 799

/usr/local/etc/rc.d, 798

/usr/sbin/config, 429

UTC. See Universal Coordinated Time

utimes system call, 439, 481

utmpx, 800

UUID. See universal UID

V

V Kernel operating system, 22

vaccess(), 163–164, 167–168

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_724
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_499
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_501
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_31
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_47
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_152
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_154
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_160
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_187
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_204
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_354
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_355
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_552
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_564
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_820
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_830
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_832
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_835
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_837
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_90
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_622
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_625
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_697
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_628
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_630
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_798
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_429
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_156
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_439
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_800
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_158
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_22
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168

1124

vaccess_acl_nfs4(), 163, 168, 172–173

vaccess_acl_posix1e(), 163, 168

valloc filesystem operator, 497

/var/quotas, 452

/var/run/lock, 561

VAX, 5–7

memory management hardware, 37

vegas congestion control algorithm, 759

vfork system call, 94, 126, 138, 261–262, 309

implementation issues, 261

operation of, 262

see also process creation

vfree filesystem operator, 497

VFS. See virtual filesystem interface

vfs_mountroot(), 794

vfs_mountroot_devfs(), 794

vfs_mountroot_shuffle(), 794

vfs_unixify_accmode(), 162

vfs.usermount, 357

vget filesystem operator, 497

vgone(), 345–346

VIMAGE. See network stack virtualization

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_173
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_163
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_561
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_5
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_759
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_94
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_126
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_357
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_162

1125

Virtio, Xen, 414–420, 423–424, 427

virtual-address aliasing, 284, 845

virtual address space, 779, 781–784, 787–789, 793, 845

layout of user, 69–73

process, 245

virtual disk, 420, 428

ZFS, 525

virtual filesystem interface, 162–164, 167, 169, 172, 182, 184, 188, 191, 315, 339–344, 795

virtual local area network, 180

virtual machine, 32, 130, 545, 700, 845

virtual memory, 6, 30, 149, 414, 419–421, 782, 785, 787–789, 792–794, 796, 804–805, 845

4.4BSD, 37

for a shared-memory multiprocessor, 37

advantages of, 225–226

cache alias, 282

cache coherency, 270

change protection, 266

change size, 263–264

data structures, 228–230

duplication, process, 260–262

hardware requirements for, 226

implementation portability, 298–308

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_284
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_781
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_784
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_69
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_164
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_169
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_172
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_188
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_191
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_315
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_795
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_130
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_6
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_421
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_782
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_785
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_787
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_792
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_796
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_804
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_805
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_282
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_226
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308

1126

initialization, 301–303, 308

interface, 4.2BSD, 7

layout, 227–228

machine dependencies, 298–308

manipulation of, 263–266

map allocation, 304–305

map protection, 306–307

maps, 231–232

object, 247–250, 845

overview, 227–230

resources, process, 244–250

semaphores, 251

usage calculation of, 259–260, 263–264

virtual-network stack allocator, 789

virtual private network, 30, 35, 690, 845

virtual-time timer, 66, 74

virtualization, 32–34, 149–151, 180–184, 414–428, 788

IPC, 182, 184, 644–646

vmcall instruction, 422

vm_daemon(), 58, 296

vmem resource allocator, 234–243

vm_fault(), 76, 249, 276–278, 299, 307

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_228
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_298
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_304
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_231
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_227
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_251
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_263
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_30
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_690
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_66
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_32
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_34
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_149
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_151
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_428
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_296
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_234
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_76
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_278
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307

1127

vm_forkproc(), 127

vm_ksubmit_init(), 789

vm_map structure, 230–232, 254, 280, 300

vm_map_entry structure, 230–232, 245–248, 253, 255, 259, 261–262, 264–267, 276, 286, 303,

306, 309

vm_object structure, 229–230, 245, 247–250, 253–258, 264–276, 278–280, 287, 294–295,

302–305, 309, 334, 339

vm.overcommit, 260

vm_page structure, 230, 237, 247, 249–250, 267–268, 270–271, 285, 301–302, 305, 307–308

vm_page_alloc(), 291

vm_page_io_finish(), 275

vm_pageout(), 292

vm_pageout_scan(), 292–294

vm_pageout_update_period, 295

vm_pager_bufferinit(), 790

vm_page_startup(), 301

vm_page_test_dirty(), 307–308

vm_pmap structure, 229–230, 299–302, 306–308

VMS operating system, 7–8, 289

page replacement in the, 289

vmspace structure, 229–230, 245–246, 259, 262

vmspace_exec(), 308

vmspace_fork(), 308

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_127
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_254
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_232
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_255
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_286
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_303
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_253
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_258
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_264
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_276
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_278
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_280
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_287
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_309
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_334
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_260
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_237
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_247
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_250
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_268
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_285
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_305
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_291
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_292
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_294
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_295
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_301
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_306
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_289
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_229
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_230
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_245
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_246
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_259
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_262
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308

1128

vmspace_free(), 308

vnet structure, 644–646

vnet_data_startup(), 789

vnlru vnode recycling daemon, 58

vnode, 43, 316, 339, 609, 845

cache, 249

description of, 339–342

operations, 342

vnode operator

access, 432

advlock, 432

blkatoff, 497–498

close, 432

create, 432–433

fsync, 497–498

getattr, 432

inactive, 344, 346, 432, 443

ioctl, 432

link, 432

lock, 432

lookup, 342–343, 432

mkdir, 432

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_308
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_644
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_646
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_789
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_58
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_316
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_845
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_249
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_339
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_344
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_346
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_342
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_343
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432

1129

mknod, 432

mmap, 432

open, 432

poll, 432

read, 497

readdir, 432

readlink, 432

reclaim, 345, 432, 443

remove, 432

rename, 432

rmdir, 432

setattr, 432

strategy, 469

symlink, 432

truncate, 498

unlock, 432–433

update, 467, 470, 472–473, 476, 497

write, 497

vnode pager, 248, 269–270

vnode structure, 192–194, 196, 198

vnode_pager_setsize(), 269

vn_write(), 193–194

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_345
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_443
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_469
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_498
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_432
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_433
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_470
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_472
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_473
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_476
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_248
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_192
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_196
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_198
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_269
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_194

1130

voluntary context switching, 99, 101–106

VOP_ACCESS(), 162

vop_access_args structure, 353

VOP_ACCESSX(), 162, 168

VOP_ACLCHECK(), 167

VOP_GETACL(), 167

VOP_SETACL(), 167

vop_stdaccessx(), 162

VPN. See virtual private network

vring structure, 416

vring_avail structure, 418

vring_desc structure, 417

vring_used structure, 418

vring_used_elem structure, 418

VT. See Intel virtualization technology

W

WAFL. See write-anywhere file-layout filesystem

wait channel, 98, 101, 104–105, 111, 846

wait system call, 27, 75, 89, 96, 101, 138, 144, 261, 266–267, 846

wait4 system call, 27, 128–129, 142, 161

operation of, 129

wakeup(), 104–105, 120, 275

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_99
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_353
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_162
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_165
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_416
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_417
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_418
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_64
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_167
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_98
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_111
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_75
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_89
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_101
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_138
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_144
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_261
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_266
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_267
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_27
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_142
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_161
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_120
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_275

1131

implementation of, 104–106

operation of, 105

wakeup_one(), 105

wall clock time, 73–74

WAN. See wide-area network

watchdog timer, 67

whiteout, filename, 356

wide-area network, 568, 759

wildcard route, 677, 725, 846

window probe, 734, 846

window-scale option, TCP, 728

window system, 140. See also X Window System

Windows operating system, xxii

wine, xxix

wired page, 271–272, 299–300, 302, 307, 846

definition of, 233

list, 290

witness

deadlock prevention, 109, 112–114

startup, 788

word-erase character, 383, 846

working set, 225, 846

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_104
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_106
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_105
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_73
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_74
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_67
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_356
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_568
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_759
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_677
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_725
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_734
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_728
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_140
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_168
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxii
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref02.html#page_xxix
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_271
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_272
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_299
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_300
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_302
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_307
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_233
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_290
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_109
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_112
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_114
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_225
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846

1132

worklist structure, 464, 467

workstation, 221

write-anywhere file-layout filesystem, 543

write system call, 26, 37, 39, 42–43, 51, 143, 177, 179, 193, 318, 325, 327, 333, 359, 385, 389, 452,

481, 506, 536, 563, 565–566, 599, 609, 615, 694, 700, 816, 831, 841

write vnode operator, 497

writev system call, 43, 177, 332, 821

wrmsr instruction, 422

X

X Display Manager, 799

X/OPEN, 8

X Window System, 748

X.25, 641

XDR. See external data representation

Xen, 184, 414–415, 419–427, 788, 790

block interface, 427

network interface, 427

Virtio, 414–420, 423–424, 427

XenBus, 423

xen_hvm_init(), 422

XenStore, 420, 423

Xerox network protocols, 631, 815

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_464
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_467
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_221
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_26
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_37
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_42
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_51
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_143
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_179
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_193
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_318
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_325
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_327
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_333
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_359
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_385
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_389
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_452
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_481
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_506
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_563
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_565
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_566
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_599
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_609
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_615
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_694
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_700
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_816
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_831
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_841
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_43
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_177
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch07.html#page_332
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_821
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_8
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch14.html#page_748
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_641
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_44
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_415
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_419
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_788
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_790
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_414
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_424
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_422
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_423
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#page_631
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815

1133

xform-switch structure, 699

XINU operating system, 7

XPT. See common access-method transport

xpt_action(), 401

xpt_done(), 402

xpt_schedule(), 401

xterm, 383

Y

Yarrow, 35, 210–212, 793

Z

zalloc(), 39, 243–244

ZAP. See zettabyte-filesystem attribute processor

zero filling of user stack, 71

zettabyte-filesystem, xxvi, 25, 33, 166, 171, 180, 182, 184, 270, 420, 427, 496–497, 523–549, 556,

574, 779–780, 794, 799

attribute processor, 524, 528–529, 533–535, 545–546

block free, 543–545

block pointer, 529–531

data-management unit, 524, 528, 530, 546

dataset and snapshot layer, 524, 527, 529, 533

deduplication, 545–546

design tradeoffs, 546–549

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#page_699
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch01.html#page_7
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_23
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_402
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_401
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_383
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_210
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_212
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_170
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch03.html#page_71
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/pref01.html#page_xxvi
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_25
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_33
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_166
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_180
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_182
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch05.html#page_184
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_270
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_420
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch08.html#page_427
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_496
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch09.html#page_497
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_549
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_556
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch11.html#page_574
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_780
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_794
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_799
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_530
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_549

1134

disk write, 536–538

dnode, 528–529

features, 523–527

file block allocation, 542–543

input-output module, 525

intent log, 524, 528, 535, 538

level-2 adaptive-replacement cache, 525, 539

logging, 538–540

meta-object set, 525, 527–528, 531–534, 538–539, 542, 546

objset layer, 534–535

objset structure, 531–532

operation, 535–546

organization, 527–532

overview, 49

POSIX layer, 524, 528, 538

RAIDZ variant of RAID, 524–525, 530–531, 540–541, 543, 547–549, 779

receive stream, 546

remote replication, 546

send stream, 546

snapshot, 541–542

storage-pool allocator, 525, 527–529, 531, 533, 542–545

structure, 532–535

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_523
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_540
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_534
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_534
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_532
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_532
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_49
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_524
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_530
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_540
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_541
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_547
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_549
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_779
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_546
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_541
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_529
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_533
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_545
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_532
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535

1135

transaction group, 530–532, 535–536, 538–539, 543

virtual disk, 525

ZVOL volume, 525, 527–528, 531–536, 539, 542–548, 815

zfree(), 39

ZFS. See zettabyte-filesystem

ZIL. See zettabyte-filesystem intent log

zil_header structure, 535

ZIO. See zettabyte-filesystem input-output module

znode, 528, 815

zombie process, 96, 128–129, 846

zone allocator, 239–241, 791, 793

zone, red, 38, 241, 833

zones, 239–241, 243–244

ZPL. See zettabyte-filesystem POSIX layer

ZVOL. See zettabyte-filesystem ZVOL volume

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_530
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_532
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_538
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_543
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_525
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_527
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_531
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_536
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_539
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_542
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_548
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_39
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_535
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/index.html#index_35
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch10.html#page_528
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_815
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_96
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_128
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#page_129
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_846
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_239
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_791
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#page_793
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch02.html#page_38
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/gloss01.html#page_833
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_239
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_241
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_243
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#page_244
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_171
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/indexa.html#index_171

1136

FreeBSD Kernel Internals on Video

The course is based on this book and provides a firm background of the FreeBSD kernel. It

covers all the topics in this book. In addition, it covers other related topics including

performance measurement, system tuning, and crash dump analysis. The class consists of

fifteen lectures on the FreeBSD kernel that align with the book chapters. There are assigned

readings to be completed before viewing each lecture. The first thirteen lectures have a set of

exercises to be done after each video is viewed. Follow-up comments on the exercises are

provided at the beginning of the lecture following the one in which they are assigned.

The planned syllabus for the the course is as follows:

1. Introduction: kernel terminology and basic kernel services

2. Processes: process structure and process management

3. Kernel-resource management: scheduling and signals

4. Security: security framework and policies, Capsicum, and jails

5. Virtual memory: virtual-memory management, paging, and swapping

6. Introduction to I/O: multiplexing I/O, support for multiple filesystems, the block I/O system

(buffer cache), and stackable filesystems

7. Kernel I/O structure: special files, pseudo-terminal handling, autoconfiguration strategy,

structure of a disk device driver, and machine virtualization

8. Local filesystem implementation: fast filesystem (FFS)

9. Local filesystem implementation: zettabyte filesystem (ZFS)

10. Remote filesystem implementation: network filesystem (NFS)

11. Interprocess communication: concepts and terminology, basic IPC services, system layers

and interfaces, and code review of a simple application that demonstrates use of the IPC and

network facilities

12. Network layer: IPv4 and IPv6 protocols, firewalls, and routing

1137

13. Transport layer: TCP and SCTP

14. System startup: boot loaders, kernel startup, and system launch

15. System tuning: performance measurement, system tuning, and crash dump analysis

In addition to the fifteen lecture videos, you also receive a copy of the course notes containing

copies of all the overhead slides used in the course, a set of weekly readings from this textbook,

thirteen sets of exercises (along with answers), and a set of papers that provide supplemental

reading to the text.

The course video will be produced in 2015. Until then, a course based on the first edition of this

book can be purchased. Tiered pricing is available for companies, individuals, and students.

On-site courses can be arranged. For up-to-date information on course availability and pricing

or to place an order, see the Web page at

http://www.mckusick.com/courses/

http://www.mckusick.com/courses/

1138

Advanced FreeBSD Course on Video

This course provides an in-depth study of the source code of the FreeBSD kernel. It is aimed at

users who already have a good understanding of the algorithms used in the FreeBSD kernel and

want to learn the details of the algorithm’s implementation. Students are expected to have either

taken a FreeBSD Kernel Internals class (such as the one described on the previous page) or to

have thoroughly read and understood this book. They are also expected to have a complete

background in reading and programming in the C programming language. Students will not

need to prove relationship with a source license holder, as the course is based on the

non-proprietary kernel sources released by the FreeBSD project.

The class consists of fifteen lectures on the FreeBSD kernel source code. The lecture topics are:

1. Organization, overview of source layout

2. Kernel header files

3. System calls and file opening

4. Pathname translation and file creation

5. Vnode interface mechanics, writing to a local file

6. Opening, using, and closing locally connected sockets

7. User datagram protocol and routing

8. TCP algorithms

9. Fork, exit, and exec

10. Signal generation and delivery, scheduling

11. Virtual memory header files, file mapping

12. Page fault service, pageout processing

13. NFS client and server operation

14. Multiplexing with select, system startup

1139

15. Special topics: ZFS filesystem

In addition to the fifteen lecture videos, you also receive a CD-ROM with a copy of the FreeBSD

kernel source covered in the lectures and a copy of the lecture notes.

The course video will be produced in 2016. Until then a course based on FreeBSD 9.0 can be

purchased. Tiered pricing is available for companies, individuals, and students. For up-to-date

information on course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

http://www.mckusick.com/courses/

1140

FreeBSD Networking from the Bottom Up on Video

This course describes the FreeBSD networking stack. It is made up of a series of lectures derived

from tutorials given by George Neville-Neil.

The class currently consists of four lectures, though additional lectures are being developed. The

current lecture topics are:

1. Device Drivers: how to write and maintain network drivers in FreeBSD. By way of example it

uses the Intel Gigabit Ethernet driver (igb). The lecture covers the basic data structures and

APIs necessary to implement a network driver in FreeBSD. It is specific enough that given a

device and a manual, you should be able to develop a working driver on your own.

2. The IPv6 Stack: an in-depth discussion and code walk-through of version 6 of the IP

protocols, describing and dissecting the paths that packets take from the driver layer up to the

socket layer of the network stack. The lecture covers the four paths packets travel through the

network stack: reception, transmission, forwarding, and error handling.

3. Routing: packet forwarding and routing subsystems in FreeBSD. The routing and forwarding

code are the glue that keeps the networking stack together, connecting the network protocols,

such as IPv4 and IPv6, to their underlying data link layers and making sure that packets are sent

to the correct next hop in the network. Topics in the lecture include the Routing Information

Base (RIB), Forwarding Information Base (FIB), and the systems that interact with them. Also

covered are routing sockets and the RIB/FIB APIs, the address-resolution protocol (ARP),

Neighbor Discovery (ND6), the Common Address Redundancy Protocol (CARP), the IP firewall

and traffic shaper control program (ipfw), and the packet filter interface (pfil).

4. Packet Processing Frameworks: The FreeBSD Kernel has several different packet processing

frameworks—software that is meant to transform packets but which are not traditionally

considered to be network protocols. It is these packet processing frameworks that are often the

basis for new products built with FreeBSD. This lecture covers all of the packet processing

frameworks, including the Berkeley Packet Filter (BPF), IP Firewall (IPFW), Dummynet, Packet

Filter (PF), Netgraph, and netmap. It discusses the appropriate use of each framework and takes

a walk through the relevant sections of each framework. Working examples of extensions to each

framework are given so that students can see how to build new systems with and around the

frameworks that are present in the kernel.

1141

Each lecture may be purchased separately and comes with a copy of its course notes. Tiered

pricing is available for companies, individuals, and students. For up-to-date information on

course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

http://www.mckusick.com/courses/

1142

CSRG Archive CD-ROMs

Thanks to the efforts of the volunteers of the “UNIX Heritage Society” (see http://www.tuhs.org)

and the willingness of Caldera to release 32/V under an open source license (see

http://www.mckusick.com/csrg/calder-lic.pdf), it is now possible to make the full source

archives of the University of California at Berkeley’s Computer Systems Research Group (CSRG)

available.

The archive contains four CD-ROMs with the following content:

The University of California at Berkeley wants you to know that these CDROMs contain software

developed by the University of California at Berkeley and its many contributors.

The CD-ROMs are produced using standard pressing technology, not with write-once CD-R

technology. Thus, they are expected to have a 100-year lifetime rather than the 10–20 years

expected of CD-R disks. The CDs are sold only in complete sets; they are not available

individually. The price for the 4-CD set is $99. The archive can be ordered from

http://www.mckusick.com/csrg/

http://www.tuhs.org/
http://www.mckusick.com/csrg/calder-lic.pdf
http://www.mckusick.com/csrg/

1143

The compilation of this archive is copyright © 1998 by Marshall Kirk McKu-sick. You may freely

redistribute it to anyone else. However, I appreciate you buying your own copy to help cover the

costs that I incurred in producing the archive.

1144

History of UNIX at Berkeley

Learn the history of the BSD (Berkeley Software Distributions) from one of the key developers

who brings the history to life, complete with anecdotes and interesting footnotes to the historical

narrative.

Part I is titled “Twenty Years of Berkeley UNIX: From AT&T-Owned to Freely Redistributable.”

The history of UNIX development at Berkeley has been recounted in detail by Marshall Kirk

McKusick in his chapter in the O’Reilly book Open Sources: Voices from the Open Source

Revolution and is now recounted in part one of this video. It begins with the start of the BSD

community at the University of California at Berkeley in the late 1970s. It relates the triumphs

and defeats of the project and its releases during its heydays in the 1980s. It concludes with the

tumultuous lawsuit ultimately settled in Berkeley’s favor, which allowed the final release in 1992

of 4.4BSD-Lite, an open-source version of BSD.

Part II is titled “Building and Running An Open-Source Community: The FreeBSD Project.” It

tells the story of the independent development by the FreeBSD project starting from the

open-source release from Berkeley. The FreeBSD project patterned its initial community

structure on the development structure built up at Berkeley. It evolved and expanded that

structure to create a self-organizing project that supports an ever growing and changing group

of developers around the world. This part concludes with a description of the roles played by the

thousands of volunteer developers that make up the FreeBSD Project of today.

Dr. Marshall Kirk McKusick’s work with UNIX and BSD development spans over thirty years. It

begins with his first paper on the implementation of Berkeley Pascal in 1979, goes on to his

pioneering work in the eighties on the BSD Fast File System, the BSD virtual memory system,

and the final release of 4.4BSD-Lite from the University of California Berkeley Computer

Systems Research Group. Since 1993, he has been working on FreeBSD, adding soft updates,

snapshots, and the second-generation Fast Filesystem to the system. A key figure in UNIX and

BSD development, his experiences chronicle not only the innovative technical achievements, but

also the interesting personalities and philosophical debates in UNIX since its inception in 1970.

The price for the video is $19.95. The video can be ordered from

http://www.mckusick.com/history/

http://www.mckusick.com/history/

1145

Teaching a Course Using This Book

The authors have put together course material suitable for both undergraduate and

graduate-level teaching using this book. An example course outline and details on obtaining the

materials for your own course follow.

Systems research refers to the study of a broad range of behaviors arising from complex system

design, including:

• low-level operating systems;

• resource sharing and scheduling;

• interactions between hardware and software;

• network-protocol design and implementation;

• separation of mutually distrusting parties on a common platform; and

• control of distributed-system behaviors such as concurrency and data replication.

This course:

• teaches systems-analysis methodology and practice through tracing and performance profiling

experiments;

• exposes students to real-world systems artifacts such as operating-systems schedulers and

network stacks, and considers their hardware-software interactions with CPUs and

network-interface cards;

• develops scientific writing skills through laboratory-report exercises; and

• assigns a selection of original research papers in these areas to gain insight into potential

research topics and approaches.

The teaching style blends lectures and hands-on labs that teach methodology, design principles,

and practical skills. Students are taught about (and assessed via) a series of lab-report-style

assignments based on in- and out-of-classroom practical work. The systems studied are real,

and all wires will be live.

1146

The materials for teaching this and other courses are available at no charge at

http://www.teachbsd.com

http://www.teachbsd.com/

1147

1148

1149

Code Snippets

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#p135pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#p135pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#p145pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch04.html#p145pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p251pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p251pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p252pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p252pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p252pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p252pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro03a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p253pro03a

1150

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p268pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch06.html#p268pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro03a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro03a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro04a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p597pro04a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p630pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p630pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p665pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p665pro01a

1151

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p668pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p668pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p671pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p671pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p671pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p671pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p687pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p687pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p796pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p796pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p796pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p796pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p800pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p800pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p800pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p800pro02a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p801pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch15.html#p801pro01a

1152

https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p711pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch13.html#p711pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p631pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p631pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p647pro01a
https://www.safaribooksonline.com/library/view/the-design-and/9780133761825/ch12.html#p647pro01a

