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Preface

We were somewhat surprised when Nature Springer invited us to consider producing
a third edition of our book The Networking of Chaperones by Co-chaperones.
However, the downloads and citation data revealed that the second edition of the
book (published in 2015) had been very well received by the scientific community.
We were pleased to learn that all contributed volumes published in 2015 within the
Nature Springer Biomedicine/Lifesciences portfolio (except handbooks and ency-
clopaedias) accumulated on average only half of the downloads in comparison to our
book. Based on the impressive performance of the book and given the important
advances in our understanding of the structure and function of co-chaperones over
the intervening period, we accepted the invitation. Indeed, the broader biological
functions of co-chaperones are starting to emerge, as is our understanding of how
they act as nodes to network and functionalize chaperones. In particular, the broader
biological functions of these fascinating proteins suggest that their co-chaperone
function may not always be their primary function. In the preface to the second
edition of the book, we defined a co-chaperone as “a non-client protein that interacts
with a protein chaperone and/or its client protein to regulate chaperone function”.
We wonder if there is a need to revise this notion of a co-chaperone, to better capture
how these proteins functionally network chaperone machinery into the cellular
ecosystem? The Hsp40/Dnal proteins are a good example of a co-chaperone family
whose biochemical and biological functions go well beyond the confines of this
definition. This family exhibits considerable evolutionary radiation (especially in
protozoan parasites!), with many more members than most other chaperone or
co-chaperone families. In addition, many members are large proteins, with just the
J domain (among many other domains) as evidence of their membership to the
Hsp40/Dnal family. Interestingly, it was recently proposed by a scientific consor-
tium of experts in the field that this family of proteins be renamed J-domain proteins
(JDPs), and this nomenclature is starting to gain traction in the literature (including
our book). You will notice that the third edition has a completely new chapter
addressing the exciting new theme of post-translational modification of
co-chaperones and the contribution to the chaperone code. Furthermore, all the
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other chapters are not simply updated chapters but substantially refreshed contribu-
tions, providing critical insights into the current status of the field. Together, the
chapters comprehensively capture the roles of the major co-chaperone families under
physiological and disease conditions, including the core and specialized
co-chaperones of the major molecular chaperones Hsp70 and Hsp90,
co-chaperones of chaperonins, and organelle-specific co-chaperone function. And
S0, it is our pleasure to present to you the third edition of our book, which we trust
you will enjoy reading as much as we have enjoyed facilitating its creation.

Grahamstown, South Africa Adrienne L. Edkins
Sharjah, UAE Gregory L. Blatch
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Chapter 1

Nucleotide Exchange Factors for Hsp70 s
Molecular Chaperones: GrpE,

Hsp110/Grp170, HspBP1/Sill, and BAG
Domain Proteins

Andreas Bracher and Jacob Verghese

Abstract Molecular chaperones of the Hsp70 family are key components of the
cellular protein-folding machinery. Substrate folding is accomplished by iterative
cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is
regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase
hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the con-
version from the ADP-bound to the ATP-bound state, thus closing the chaperone
folding cycle. NEF function can additionally be antagonized by ADP dissociation
inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a
large diversity of nucleotide exchange factors for Hsp70 have been identified,
connecting it to a multitude of cellular processes in the eukaryotic cell. Here we
review recent advances toward structure and function of nucleotide exchange factors
from the Hsp110/Grp170, HspBP1/Sill, and BAG domain protein families and
discuss how these cochaperones connect protein folding with cellular quality control
and degradation pathways.

Keywords Disaggregase activity - Proteostasis - Protein structure - Protein quality
control
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2 A. Bracher and J. Verghese
Introduction

Cells are confronted with a variety of adverse environmental conditions such as heat
shock, oxidative injury, heavy metals, and glucose depletion as well as pathologic
states such as inflammation, tissue damage, infection, ischemia, and reperfusion. To
cope with this plethora of stresses, cells induce the expression of cytoprotective
genes including heat shock proteins (Hsps). Many Hsps function as molecular
chaperones that aid the folding, assembly, and targeting of their substrate proteins.
Under stress conditions, chaperones shield denatured proteins from aggregation,
disassemble protein aggregates, assist protein refolding, or target proteins to the
degradation machinery in order to maintain protein homeostasis (proteostasis) in the
cell (Hartl et al. 2011; Balch et al. 2008). Hsps can be classified into families based
on their molecular mass: Hsp60, Hsp70, Hsp90, Hsp100, and small heat shock
proteins. Importantly, these general molecular chaperones do not work by them-
selves but are dependent on an elaborate network of different cochaperones that
control their functions and orchestrate the folding of proteins in the cell (Kim et al.
2013; Bukau et al. 2006). Within this proteostasis network, the Hsp70 system forms
a central hub at the crossroads between the translation apparatus, specialized down-
stream chaperones, and the cellular degradation machinery. Hsp70 function, which
is governed by its ATP hydrolysis activity, is regulated by cochaperones. In this
review, we will focus on a specific group of Hsp70 cochaperones, the nucleotide
exchange factors (NEFs). We will present the structures and molecular functions of
NEFs and discuss their role in the cellular protein-folding and degradation
machinery.

Hsp70 Architecture and Functional Cycle

Hsp70 was initially identified in the bacterium Escherichia coli, where it was named
DnaK. Later, Hsp70 proteins were found to be conserved in eukaryotes as well
(Gupta 1998). In eukaryotes, compartment-specific isoforms were identified in the
cytosol/nucleus, endoplasmic reticulum (ER) lumen, and mitochondria. The human
cytosol contains multiple Hsp70 paralogs, including constitutively expressed
(Hsc70/HSPAS8) and stress-inducible isoforms (Hsp72/HSPA1A/B). The
ER-lumenal and mitochondrial forms are named BiP/Grp78/HSPAS and mortalin/
Grp75/HSPAD, respectively.

Hsp70 proteins share a conserved domain architecture containing two major
domains (Fig. 1.1): an amino-terminal nucleotide binding domain (NBD) and a
carboxy-terminal substrate-binding domain (SBD) (Mayer and Bukau 2005;
Mayer and Gierasch 2019). The NBD is approximately 44 kDa in size and forms a
bilobular structure that encloses a cleft with the nucleotide binding pocket at the
bottom (Fig. 1.1c) (Flaherty et al. 1990). The structurally homologous lobes (I and
II) of the NBD are subdivided into regions A and B. The SBD comprises of a
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Fig. 1.1 DnaK structure and folding cycle. (a) Model for the Hsp70 folding cycle. The DnaK-ATP
complex has weak substrate affinity. ATP binding to the NBD (blue) stabilizes a compact domain
arrangement, which leaves the SBD (yellow and green) in an open conformation. This conformation
exhibits dynamic interactions with the substrate (indicated in brown). ATP hydrolysis stimulated by
Dnal (1) causes a conformational change in the NBD that triggers the formation of the closed SBD
conformation, which has higher affinity for the substrate, resulting in a stable substrate complex.
The binding of the NEF GrpE (2) promotes a slight opening of the NBD, which results in the release
of ADP from DnaK. The cycle is reset (3) when a new ATP molecule binds to the NBD, triggering
the release of NEF and substrate. (b) Crystal structure of the DnaK-ATP complex. The peptide
backbone is shown in ribbon representation, and the bound nucleotide as space-filling model [PDB
code 4B9Q (Kityk et al. 2012)]. The nucleotide binding, B-sandwich, and a-helical domains are
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B-sandwich subdomain with a groove that binds hydrophobic polypeptides and a
carboxy-terminal a-helical “lid” that folds over the peptide binding site and facili-
tates high affinity substrate interaction (Zhu et al. 1996). The conserved hydrophobic
NBD-SBD inter-domain linker plays an important role in conveying conformational
information between the domains (Vogel et al. 2006; Swain et al. 2007).

Studies on DnaK from E. coli showed that Hsp70 functions through an
ATP-dependent cycle (Fig. 1.1a). When ATP is bound to the NBD, the Hsp70
SBD transitions to a conformation with low affinity for the substrate (Fig. 1.1b)
(Kityk et al. 2012; Qi et al. 2013). ATP hydrolysis induces a structural
rearrangement in the NBD that detaches the SBD to assume a conformation with
high affinity for segments in client proteins having five consecutive hydrophobic
amino acid residues (Fig. 1.1c) (Ridiger et al. 1997; Zhuravleva et al. 2012).
Substrate binding increases the ATP hydrolysis rate of DnaK substantially. The
spontaneous transition between the two states is slow as Hsp70 only has weak
intrinsic ATPase activity. This prevents substrate-free cycling. The cycle is reset
with the release of ADP and replacement with ATP, which releases the client protein
for a new folding attempt.

DnakK, DnaJ, and GrpE: The Eubacterial Hsp70 System

For its proper functioning in protein folding, DnaK is dependent on the ATPase-
stimulating cochaperone, DnaJ, and the nucleotide exchange function of GrpE
(Fig. 1.1a). Although interactions with substrate protein trigger ATP hydrolysis in
DnaK, meaningful folding rates with model proteins are only achieved in the
presence of Dnal, the prototypical Hsp40 protein (Laufen et al. 1999). Hsp40 and
other J-domain proteins are reviewed elsewhere in the book. Because of DnaK’s
slow off-rate for ADP, the additional presence of GrpE is essential in E. coli to reset
the Hsp70 folding cycle (Ang and Georgopoulos 1989). The combined action of the
two cofactors is thought to drive the folding cycle of the molecular chaperone,
resulting in repetitive rounds of substrate binding and release.

GrpE functions as the nucleotide exchange factor (NEF) for DnaK by stabilizing a
NBD conformation with an open nucleotide binding cleft (Harrison et al. 1997)
(Fig. 1.1a). The crystal structure revealed that subdomain IIB of DnaK is rotated
outward in the complex, which weakens the contacts to ADP (Fig. 1.2).

The cytosol in E. coli comprises of two additional isoforms of Hsp70, HscA and
HscC, and five more proteins containing a J-domain. These isoforms and their
associated J-protein cofactors have more specialized functions than DnakK, such as

Fig. 1.1 (continued) indicated in blue, green, and yellow, respectively. (¢) NMR model for the
DnaK-ADP complex. In this state, the NBD and SBD are loosely associated [PDB code 2KHO
(Bertelsen et al. 2009)]. The representation mode is the same as in panel B. The peptide NRLLLTG
from the complex structure with the SDB alone [PDB code 1DKZ (Zhu et al. 1996)] is superposed



1 Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE,. . . 5

Family NEF structure Hsp70 complex Mechanism

\(c
GrpE
& : :
e« E.coli GrpE Subdomain IIB
l‘-lL éf', rotation
RN
N
\— S.cerevisiae
~ Sse1
Hsp110/
Grp170
rotations
Lobe | displacement
and partial unfolding
H.sapiens HspBP1
HspBP1/
. 140

Sil1 o
LS
Lobel | j&’{\%\

‘ 3 aﬁ-\:
) S

S.cerevisiae Sil1

Subdomain 1B rotation
and lobe | displacement

Fig. 1.2 Structure and mechanism of nucleotide exchange factors. Structures for the four NEF
families are shown together with the respective Hsp70 complexes. The NEF is always shown in
green, the Hsp70 NBD in blue with subdomain IIB highlighted in beige. On the right, the structure
of the NBD in the complex is superposed with the ADP-bound conformation, and the putative
nucleotide exchange mechanism indicated. For comparison, the structure of the NEF-antagonist
Hip is shown. The drawings are based on the PDB coordinate sets 1DKG [GrpE-DnaK (Harrison
et al. 1997)], 2V7Y [DnaK-ADP (Chang et al. 2008)], 3D2F [Sselp-Hsp70 (Polier et al. 2008)],
1HPM [Hsc70-ADP (Wilbanks and McKay 1995)], 1XQS [HspBP1-Hsp70-lobell (Shomura et al.
2005)], 3QML [Sillp-Kar2p (Yan et al. 2011)], 1HX1 [Bagl-Hsc70 (Sondermann et al. 2001)],
3A8Y [Bag5-Hsp70 (Arakawa et al. 2010)], 3CQX [Bag2-Hsp70 (Xu et al. 2008)], and 4J8F
[Hip-Hsp70 (Li et al. 2013)]
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incorporation of Fe-S clusters into substrates using the IscU scaffold protein. In
contrast, DnaK appears to be the more general-purpose protein-folding machine.
Interestingly, functioning of HscA does not require GrpE (Brehmer et al. 2001).

The Evolution of the Eukaryotic Hsp70 Systems

In eukaryotes, close sequence homologs to GrpE are only found in mitochondria and
chloroplasts, i.e., organelles of eubacterial origin, whereas orthologs to DnaK and
Dnal are found in the cytosol/nucleus and the ER lumen. These endosymbiont-
derived organelles have thus preserved a eubacterial protein-folding machinery
(homologs to GroEL, GroES, HtpG, and ClpA are further evidence for this),
although the respective genes were eventually transferred to the host nuclear
genome. The “paralogs” of DnaK, Hsp70, Hsc70, and BiP have somewhat different
properties and are only found in eukaryotes. These proteins might thus have origi-
nated from an independent gene transfer to the archaeal progenitor of eukaryotes,
perhaps of a more specialized isoform or without the NEF. Note that the genes of
DnaJ and DnaK are often part of one operon in bacteria, whereas GrpE is indepen-
dently transcribed. Consistently, archaea in general do not harbor components of the
Hsp70 system, unless the presence of other typical bacterial genes suggests a
relatively recent fusion event with a eubacterium. These archaeal Hsp70 proteins
are clearly more closely related to their eubacterial counterparts than to the Hsp70
proteins of the eukaryotic cytosol and ER lumen.

For a long time, the eukaryotic Hsp70 proteins were assumed to require no NEF
assistance. The measured ADP off-rates were at least one order of magnitude higher
than for DnaK in E. coli. Hence, it came as quite a surprise when the first cytosolic
NEF, Bagl, containing a BAG domain, was discovered (Hohfeld and Jentsch 1997,
Takayama et al. 1999). Soon after, Sillp and Feslp of Saccharomyces cerevisiae
were recognized as members of a second family of NEFs, the HspBP1/Sill proteins
(Kabani et al. 2000, 2002b). Finally, the Grp170/Hsp110 family of Hsp70 homologs
was identified as potent NEFs for Hsp70 in the ER lumen and cytosol, respectively
(Dragovic et al. 2006a; Raviol et al. 2006b; Steel et al. 2004). The fascinating details
of this discovery process were reviewed earlier (Brodsky and Bracher 2007).

It is now clear that under cellular conditions, the function of eukaryotic Hsp70
proteins is strongly dependent on nucleotide exchange factors. The combined
deletion of the yeast Hsp110 homologs, Sselp and Sse2p, is lethal (Raviol et al.
2006b; Shaner et al. 2004); the deletion of Feslp results in a temperature-sensitive
phenotype, suggesting severe problems in protein folding (Shomura et al. 2005;
Kabani et al. 2000). The probable reason for the early misconception of NEF
expendability is the presence of considerable amounts of inorganic phosphate (P;)
in cellular fluids (17-27 mM in S. cerevisiae according to *'P-NMR measurements
(Gonzalez et al. 2000). Additional binding of P; lowers the spontaneous off-rate of
ADP from eukaryotic Hsp70 by approximately one order of magnitude, apparently
via reduced nucleotide binding domain (NBD) dynamics (Arakawa et al. 2011;
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Gissler et al. 2001). Thus, the spontaneous off-rate of eukaryotic Hsp70 under
physiological conditions is actually close to that of DnaK.

The Grp170/Hsp110 family of NEFs appears to be the most ancient and universal
type of eukaryotic Hsp70 NEFs (Table 1.1). Coding sequences for presumed
homologs have been identified in virtually every eukaryotic genome so far. Humans
have three genes for cytosolic isoforms (Hsp105/Hsp110, Apg-1, and Apg-2) and
one ER-lumenal isoform (Grpl70); S. cerevisiae has two cytosolic (Sselp and
Sse2p) and one ER-resident form (Lhslp). Grp170/Hsp110 family proteins are
distantly related to eukaryotic Hsp70 and appear to have emerged from functional
specialization of Hsp70 paralogs. The other NEF families, BAG domain proteins
and Sill/HspBP1 homologs, have rather generic structures frequently found in the
eukaryotic proteome, specifically helix bundles and successions of armadillo
repeats, respectively. Such scaffolds can rapidly (on an evolutionary timescale)
adapt to a new function after a gene duplication event and have been employed
over and over again in eukaryotic protein evolution. For example, helix bundles are
also found in syntaxin SNARE proteins, and armadillo and HEAT repeat proteins in
nuclear transport factors and fB-catenin (Tewari et al. 2010). It is conceivable that
BAG proteins have emerged multiple times, having short and long three-helix
bundle structures (Bagl and Bag4/Bag)), insertions, or four-helix bundle dimer
structures (Bag2). Their few common signature residues have been forced by the
evolutionary constraints of the binding partner, the NBD of Hsp70, which exhibits
high surface conservation (details below). It moreover appears that the versions of
the ER-lumenal NEF, Sill, from yeast and animals have evolved independently:
Although yeast Sillp resembles the mammalian HspBP1 at the secondary and
tertiary structure level (Shomura et al. 2005; Yan et al. 2011), it appears to employ
a binding mode and mechanism of action distinct from mammalian Sill, which acts
more similar to HspBP1 (Hale et al. 2010; Howes et al. 2012). Consequently, the
ancestry and exact functional role of BAG and Sill/HspBP1 protein homologs in
different species are difficult to rationalize on sequence data alone. Humans and
Arabidopsis thaliana have five and seven known cytosolic BAG isoforms, respec-
tively (Table 1.1); yeast has one ER-membrane-bound homolog, Snllp, but exact
functional homologs to Snllp have not been identified in humans and Arabidopsis
either (Sondermann et al. 2002; Takayama et al. 1999).

In addition to the emergence of three Hsp70 NEF families in multiple isoforms in
eukaryotes, an even more dramatic expansion in J-domain protein diversity has
occurred, resulting in approximately 50 isoforms in humans [see review in
Kampinga and Craig (2010)].
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Molecular Structure and Function of Eukaryotic NEFs

Eukaryotic GrpE Homologs

Structural data for eukaryotic GrpE homologs are not yet available. Judging from
sequence alignments, their structures are likely fairly similar to bacterial GrpE
proteins, which have been solved for the homologs in E. coli (Harrison et al.
1997), Thermus thermophilus (Nakamura et al. 2010), and Geobacillus kaustophilus
(Wu et al. 2012). All these proteins have dimeric two-domain structures composed
of a coiled-coil helix bundle and a wing-like B-domain (Fig. 1.2). One p-domain
engages in contacts with subdomains IB and IIB, assisted by additional contacts
from the helix bundle, stabilizing a NBD conformation with an open nucleotide
binding cleft. Opening is enabled by an outward rotation of subdomain IIB.

Simulations suggest a highly dynamic structure for the NBD of Hsp70 proteins,
allowing shearing motions between the lobes and an outward rotation of subdomain
[IB around an inbuilt hinge, which likely influence the nucleotide exchange rate
(Ung et al. 2013). GrpE and the other Hsp70 NEFs appear to capture and stabilize
open states in which a subset of the interactions between the NBD and ADP is
disabled, thereby lowering ADP affinity. Substantial parts of the NBD contact area
with GrpE become buried near the lobe interface in the ADP-bound conformation of
DnakK, suggesting that GrpE captures open conformations, but cannot “force” the
Hsp70 NBD to open. ATP binding induces a conformational change in the NBD of
DnaK, displacing the binding sites on lobes I and II by inter-lobe shearing, resulting
in a strongly decreased affinity for GrpE. In summary, both ADP and ATP compete
with GrpE for binding to DnaK.

The Hspl10 Family of Nucleotide Exchange Factors

The Hsp110/Grp170 proteins belong to the Hsp70 protein family (Easton et al.
2000). Crystal structures of the yeast Hspl110 protein, Sselp, revealed a shared
domain composition comprising an N-terminal actin-type nucleotide binding
domain, followed by a pP-domain and an o-helix bundle (Liu and Hendrickson
2007; Polier et al. 2008; Schuermann et al. 2008). Hsp110 family protein sequences
are however much less conserved than canonical Hsp70, with the greatest diver-
gence found in the C-terminal domains. Backbone extensions compared to canonical
Hsp70 proteins are found at the C-terminus and within the f-domain (Fig. 1.3). The
Grp170 homologs have even larger extensions than cytosolic homologs and always
bear N-terminal import and C-terminal ER-retention signal sequences (Table 1.1).
In the crystal structures of Sselp, the a-helix bundle is associated with the flank of
the NBD, resulting in a compact conformation (Fig. 1.2). The f-domain undergoes
extensive interactions with the bottom of the NBD, but not with the a-helix bundle
domain, which extends in the opposite direction. Sselp exhibits a pronounced twist
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of the NBD lobes, revealing a bound ATP molecule in the center. The crystal
structure of the isolated NBD from the human Hsp110 isoform Hsp105 in complex
with ATP exhibited a similar conformation (Gozzi et al. 2020). Structures of an
ATPase-inactive DnaK mutant demonstrated that the binding of ATP induces a very
similar conformation in canonical Hsp70 proteins (Kityk et al. 2012; Qi et al. 2013).

In the crystal structures of the complex, the NBDs of Sselp and mammalian
Hsp70 face each other in a pseudo-symmetrical fashion (Polier et al. 2008;
Schuermann et al. 2008). The NBD of Hsp70 is captured in an open conformation
by additional interactions of subdomain IIB with the a-helix bundle domain of
Sselp. In this conformation, ADP cannot simultaneously engage in direct interac-
tions with all four subdomains and is thus more likely to dissociate, explaining the
nucleotide exchange activity of Sselp. The residues mediating key contacts to
Hsp70 are conserved in all Hsp110/Grp170 proteins (Andreasson et al. 2010; Hale
et al. 2010). Only the compact, ATP-bound conformation of Hsp110/Grp170 pro-
teins provides the necessary geometry required for simultaneous interactions
between NBD-NBD and a-helix bundle-subdomain IIB of Hsp110/Grpl70 and
Hsp70, respectively (Raviol et al. 2006b; Shaner et al. 2004; Andreasson et al.
2008).

Besides serving as essential NEFs for Hsp70, Hsp110/Grp170 proteins potently
stabilize denatured proteins against aggregation (Goeckeler et al. 2002; Oh et al.
1997, 1999). The molecular basis for this holdase activity to buffer against
proteostatic stress is still controversial. Canonical Hsp70 proteins stably interact
with substrate proteins only in the ADP state, enclosing hydrophobic peptide
segments between pf-domain and o-helix bundle. While Sselp appears to have no
intrinsic ATPase activity—bound ATP survived in the crystallization experiments
for weeks—ATPase stimulation by J-domain proteins has been observed (Mattoo
et al. 2013; Raviol et al. 2006a). Consistently, binding of Sselp and human Hsp110
to hydrophobic peptides has been reported, although with a preference for aromatic
residues, which is in contrast to canonical Hsp70s that prefer aliphatic sidechains and
prolines (Goeckeler et al. 2008; Xu et al. 2012; Riidiger et al. 1997; Zahn et al.
2013). Because of their low sequence conservation in the f-sheet domain, Hsp110
orthologs may differ considerably in their substrate-binding properties. For example,
Sselp potently stabilizes the model protein firefly luciferase (FLuc) at 42 °C for
subsequent refolding, while its close paralog, Sse2p, is inactive (Polier et al. 2010).
The reason for this surprising difference seems to be that Sselp unfolds partially at
37 °C with a concomitant increase in aggregation prevention capacity, while Sse2p
is stable until 46 °C similar to the human Hsp110, Apg-2, which unfolds at 51 °C
(Polier et al. 2010; Raviol et al. 2006a).

While the Hsp110 holdase activity appears to be important, its NEF function is
critical (Raviol et al. 2006b; Shaner et al. 2004). Only mutant forms of Sselp that
abolish interactions with Hsp70 and nucleotide exchange were lethal in the SSE1/
SSE?2 deletion background (Polier et al. 2008). Similar requirements were found for
the “disaggregase” function of mammalian Hsp110, Hsp70, and Hsp40 (see below).
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Fig. 1.3 Domain architectures of different NEF families. As examples for Hsp110 and Grp170
proteins, the yeast homologs Sselp and Lhslp are shown, respectively. Both consist of an
N-terminal nucleotide binding domain (NBD, blue), a p-sandwich (B-Dom, green), and a o-helix
bundle domain (a-Dom, pale yellow). SS indicates a signal sequence for ER import. The HspBP1/
Sil family proteins have characteristic armadillo repeat folds (orange). All members of the BAG
family in humans, Bagl-5, contain C-terminal Hsp70-binding BAG domains (red), but have
otherwise divergent domain architecture. Bag5 has four additional BAG domains of unknown
function. Bagl isoforms contain ubiquitin-like domains (Ubl, dark blue), which might associate
with the regulatory particle of the 26S proteasome. Bag2 contains a coiled-coil dimerization domain
(CC, orange). Bag3 comprises multiple N-terminal sequence motifs, WW domains (WW, yellow),
IPV sequence motifs (brown), and PXXP repeats (pink). BaglL has a NLS sequence (light green)
for nuclear targeting

Sill/HspBP1 Homologs

HspBP1 (Hsp70 binding protein 1) is the mammalian homolog of the cytosolic
Feslp protein in S. cerevisiae (Kabani et al. 2002a, b; Raynes and Guerriero 1998).
The ER-lumenal paralogs are named Slslp/Sillp or Sill/BAP (BiP associated
protein) in yeast and mammals, respectively (Kabani et al. 2000; Chung et al.
2002). Sill homologs occur almost ubiquitously in eukaryotes. Homologs to
HspBP1 are found in most animal, plant, algal, and fungal genomes. Sill/HspBP1
proteins are composed of a divergent N-terminal part of ~85 residues and a con-
served C-terminal core domain, which alone is sufficient to mediate nucleotide
exchange (Fig. 1.3). Crystal structures showed that the core domains of human
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HspBP1 and yeast Sillp consist of armadillo repeats flanked by capping helix pairs
(Shomura et al. 2005; Yan et al. 2011) (Fig. 1.2). Surprisingly, the complex
structures with the respective Hsp70 binding partner revealed distinct binding
modes for the paralogs. The curved-shaped HspBP1 associates so extensively with
subdomain IIB of the Hsp70 NBD that the bulk of the NEF clashes severely with
lobe I, thereby destabilizing its fold, as judged from tryptophan fluorescence
quenching and increased sensitivity against protease degradation (Shomura et al.
2005). Yeast Sillp also embraces subdomain IIB, however using different molecular
contacts, resulting in a distinct region covered by the NEF (Yan et al. 2011). This
binding mode just induces an outward rotation of subdomain IIB and a slight
sideway displacement of lobe I, more similar to the complexes with GrpE (Harrison
et al. 1997) and the Hsp110 protein, Sselp (Polier et al. 2008; Schuermann et al.
2008). The binding mode of animal and plant Sill appears to resemble HspBP1
closer than yeast Sillp, as judged from mutational analysis (Hale et al. 2010; Howes
et al. 2012). Interestingly, the flexible N-terminal extensions to the C-terminal core
domain in HspBP1, Feslp, and Sill/BAP harbor sequence motifs that mimic a
Hsp70 peptide substrate and increase the efficiency of Hsp70 substrate release
upon nucleotide exchange (Gowda et al. 2018; Rosam et al. 2018). Removal of
these elements from Feslp causes a temperature-sensitive phenotype similar to the
Feslp deletion in S. cerevisiae, suggesting a crucial mechanistic role (Gowda et al.
2018).

BAG Domain-Containing NEFs

BAG (Bcl-2-associated athanogene) family proteins have a modular domain archi-
tecture comprising a conserved region of ~100 amino acids at the C-terminus, called
the BAG domain (Takayama et al. 1999). At the N-terminal, diverse domains and
sequence motifs were found for BAG domain proteins (Fig. 1.3). The human
genome comprises six BAG family protein sequences, which were numbered
Bagl-6 (Takayama and Reed 2001) (Table 1.1). This protein family is structurally
and functionally quite heterogeneous and is discussed below. Only Bagl and Bag3
appear to be conserved in most metazoans. Homologs have been described in the
fruit fly, Drosophila melanogaster (Arndt et al. 2010), the nematode worm,
Caenorhabditis elegans (Nikolaidis and Nei 2004), and the tunicate, Ciona
intestinalis (Wada et al. 2006). Bag6 was later shown to lack Hsp70 NEF function
(Mock et al. 2015).

The first structures to be solved were the BAG domain of Bagl (Rap46) in
isolation and in complex with the NBD of Hsc70, revealing a bundle structure
with three long a-helices for the BAG domain (Sondermann et al. 2001; Briknarova
et al. 2001) (Fig. 1.2). Interactions with a-helices 2 and 3 of Bagl stabilize a
conformational change in the Hsc70 NBD similar to the GrpE-DnaK complex
(Harrison et al. 1997; Sondermann et al. 2001). Three different isoforms of Bagl
exist in cells, which are generated by alternative translation initiation from a single
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mRNA (Fig. 1.3). All Bagl isoforms contain a ubiquitin-like (Ubl) domain that
serves as a sorting signal to facilitate interaction with the 26S proteasome (Alberti
et al. 2003). The BaglL isoform contains an additional nuclear localization signal
(NLS) at the extreme N-terminus, whereas the other two isoforms are present in the
cytosol (Takayama et al. 1998). Interestingly, the BAG domain shares binding sites
with Hsc70 and Rafl, a stress-signaling anti-apoptotic kinase, and the two proteins
bind Bagl in a mutually exclusive manner (Song et al. 2001). The structure of the
Ubl domain from mouse Bagl has been solved by NMR, revealing the characteristic
ubiquitin-like fold (Huang and Yu 2013). In mice, this domain of Bagl mediates
interaction with the cytoplasmic tail of the heparin-binding EGF-like growth factor
(HB-EGF) precursor, thereby altering cell adhesion and secretion of the mitogen,
HB-EGF (Lin et al. 2001).

Bag3 (CAIR-1) is expressed prominently in striated muscle tissue but is also
necessary for development and blood cell formation. Bag3 deletion in mice resulted
in severe myopathy (Homma et al. 2006) and loss of hematopoietic stem cells (Kwon
et al. 2010). Interestingly, Bag3 is the only heat stress-inducible BAG domain
protein (Franceschelli et al. 2008; Jacobs and Marnett 2009). Bag3 contains various
sequence motifs and domains, such as WW domains, proline-rich repeats (PXXP),
and IPV motifs, which mediate interactions with numerous partner proteins other
than Hsp70. For example, the first WW domain was shown to interact with PXXP
motifs at the C-terminus of PDZGEF2, a regulatory protein involved in cell adhesion
(Iwasaki et al. 2010); two IPV motifs mediated binding to small heat shock proteins,
Hsp27 (HspB1), aB-crystallin (HspBS5), Hsp22 (HspB8), and Hsp20 (HspB6) as
well as providing a physical link between Hsp27 and Hsp70 (Fuchs et al. 2010;
Rauch et al. 2017). The PXXP repeats of Bag3 likely interact with SH3 domains
found in regulatory proteins of cell adhesion and migration (Doong et al. 2000).
These interactions link Bag3 to processes such as development, autophagy, and
cytoskeletal organization [reviewed in Rosati et al. (2011)]. The complex of Bag3,
Hsc70, and HspB8 was strongly implicated in macroautophagy (Arndt et al. 2010;
Lamark and Johansen 2012), a process in which portions of the cytosol are engulfed
by a membrane and digested. The complex appears to be involved in targeting
aggregated proteins for degradation to aggresomes, which are microtubule-
dependent collection points for such terminally misfolded proteins in the cell
(Guilbert et al. 2018; Kopito 2000). Bag3 co-localizes with the ubiquitin adapter
protein, p62/SQSTMI1, a key regulator of the macroautophagy pathway
(Gamerdinger et al. 2009). An association of Bag3 with the adaptor protein, 14-3-
3y, is dependent on phosphorylation at Ser136 and Ser173 and may serve to attach
aggregates to the motor protein, dynein, that travels along microtubules (Xu et al.
2013). Macroautophagy appears to be vitally important for muscle maintenance. In
D. melanogaster muscles, the Bag3 ortholog, starvin, is required for Z-disk mainte-
nance through a process named “chaperone-assisted selective autophagy” (CASA)
(Arndt et al. 2010). A complex of Bag3, Hsc70, and HspB8 is needed for autophagy
of the large muscle protein filamin after mechanical tension-induced unfolding
(Ulbricht et al. 2013). Autophagosome formation is dependent on the interaction
of the Bag3 WW domain with the filamin-interacting protein synaptopodin-2. On the
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other hand, Bag3 also stimulates filamin biosynthesis via sequestration of TSC1/
TSC2—also mediated by the WW domain—relieving mTORCI inhibition of trans-
lation (Kathage et al. 2017). Starvin biochemically and genetically interacts with the
serine/threonine kinase, NUAK, which appears to regulate the process (Brooks et al.
2020). Besides its role in macroautophagy, the Bag3-HspB8 complex also appears to
be involved in actin dynamics during mitosis (Fuchs et al. 2015). In addition to
domains needed for targeting, Bag3 and Bagl appear to have elements to enhance
substrate release during nucleotide exchange outside of the BAG domain (Rauch
et al. 2016). Mutations in Bag3 are associated with autosomal dominant forms of
myofibrillar myopathy and dilated cardiomyopathy (Liu et al. 2021; Norton et al.
2011; Selcen et al. 2009). The disease-causing Bag3 mutation, P209L, causes the
protein to misfold and form soluble oligomers, which recruit and stall Hsp70 via the
BAG domain interaction, triggering widespread protein aggregation (Meister-
Broekema et al. 2018).

Bag4 is alternatively named “silencer of death domains” (SODD) as it binds to
the cytoplasmic regions of receptors that signal cell death, namely, TNFR1 and DR3,
and prevents ligand-independent receptor signaling and apoptosis (Jiang et al. 1999).
Surprisingly, NMR structures showed that the three-helix bundle in Bag4 is about
25 amino acids shorter than in Bagl, although it comprises the signature residues
needed for interaction with Hsp70 proteins, suggesting that it might have evolved
independently (Brockmann et al. 2004; Briknarova et al. 2002). Bagl, Bag3, and
Bag4 have been shown to bind the anti-apoptotic protein Bcl-2 (Antoku et al. 2001).
Together with their ability to interact with Hsp70, which also has an anti-apoptotic
function, these proteins could be linked to mechanisms for apoptosis inhibition
(Antoku et al. 2001). It is not known whether these BAG domain proteins can
simultaneously bind Hsp70 and Bcl-2, but it has been hypothesized that these two
proteins compete for binding as they have both been shown to interact with the BAG
domain (Doong et al. 2002).

Among the Bag proteins, Bag5 is unique in containing five consecutive, short
three-helix bundle domains similar in structure to the BAG domains of Bag3 and
Bag4 (Arakawa et al. 2010). Of these, only the fifth functions as a BAG domain to
bind the Hsp70 NBD and assist in its refolding of client substrates. The crystal
structure of this domain with the Hsp70 NBD revealed two distinct conformations of
the complex: one where the NBD is in an open state similar to the Bagl complex and
the other with a NBD exhibiting a binding pocket distorted by inter-lobe shearing
(Arakawa et al. 2010) (Fig. 1.2). Both conformational states likely have reduced
affinity for ADP. The functional consequences of the shorter BAG domain structures
in Bag3, Bag4, and Bag5 are currently unknown. Interestingly, Bag5 was shown to
associate with the E3-ubiquitin ligase, Parkin, modulating substrate protein
ubiquitylation (Kalia et al. 2004). Complex formation with Bag5 moreover inhibits
the association of Parkin with dysfunctional mitochondria, preventing mitophagy
(De Snoo et al. 2019).

Bag?2 is the most distantly related member of the BAG family. In the crystal
structures, the predicted BAG domain adopted an unanticipated dimeric structure
formed by pairs of long antiparallel helices intersected by a short additional helix
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(Xu et al. 2008) (Fig. 1.2). Considering these differences from the canonical BAG
domain and the low sequence homology, the respective fold was termed the “brand
new BAG” (BNB) domain. Binding of Bag2 to Hsp70 also elicits a different
conformational change in the NBD—a rotation of the entire lobe II (Fig. 1.2). The
BNB domain was also implicated in substrate binding (Xu et al. 2008). Bag2 has
clearly lower affinity for Hsp70 proteins than other NEFs (Rauch and Gestwicki
2014), but might compensate by being a dimeric protein with two Hsp70 interaction
sites. Thus, Bag2 might be considered the most “eccentric” BAG family protein.
Consistently, Bag2 was found to impair the function of the Hsp70-associated
E3-ubiquitin ligase “carboxyl terminus of Hsp70-interacting protein” (CHIP), in
contrast to Bagl, which seems to target substrate proteins for degradation in collab-
oration with CHIP (Arndt et al. 2005; Dai et al. 2005). Complex formation with
CHIP and Hsc70 is dependent on an N-terminal coiled-coil region that forms a dimer
structure on its own (Page et al. 2012). Overexpression of Bag2 inhibited CHIP
activity and thereby stimulated chaperone-assisted maturation of the model protein
cystic fibrosis transmembrane conductance channel regulator (CFTR) (Arndt et al.
2005). Employing a different mechanism, Bag?2 has also been suggested to facilitate
degradation of Tau, an aggregation-prone protein that accumulates in neurons of
Alzheimer’s disease patients (Carrettiero et al. 2009). The microtubule-tethered
Bag2-Hsp70 complex was proposed to deliver Tau to the proteasome for degradation
in a ubiquitin-independent manner.

In other organisms, only a few BAG domain proteins have been studied. Snllp is
the only known BAG domain-containing protein in S. cerevisiae (Table 1.1). This
protein contains an N-terminal single transmembrane (TM) domain localizing it to
the ER and nuclear membranes with the BAG domain facing the cytosol. Biochem-
ical and genetic experiments have shown Snllp to interact with cytosolic Hsp70s and
components of the nuclear pore, respectively, but no phenotype could be associated
with the deletion of Snllp (Sondermann et al. 2002). Interestingly, a short lysine-rich
motif at the beginning of the Snl1p BAG domain facilitates its interaction with intact
ribosomes (Verghese and Morano 2012). This region, common with a Candida
albicans homolog, which however lacks the TM region, is independent from the
Hsp70 interaction region. It was proposed that the BAG homologs in fungi may
serve a previously unknown role in protein biogenesis based on the recruitment of
Hsp70 and ribosomes to the ER membrane.

Bagl has two putative orthologs in the fission yeast, Schizosaccharomyces
pombe, Bagl01/BaglA and Bag102/Bag1B. Both proteins have a Ubl domain and
a C-terminal BAG domain and associate with the 26S proteasome and Hsp70,
respectively. Interestingly, Bagl102 contains an additional N-terminal single trans-
membrane helix localizing it to the ER/nuclear membrane, similar to Snllp. It was
found that Bag102 but not Bagl01 was able to suppress the temperature-sensitive
growth phenotype and the DNA segregation defect of a spc7—23 strain containing a
point mutation in a conserved kinetochore component, Spc7 (Kriegenburg et al.
2014). This suggests that the two BAG proteins in fission yeast have separate and
specific cellular functions.
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The crystal structure of the BAG domain of the C. elegans Bagl homolog
revealed a dimeric structure of two protomers forming mixed three-helix bundles
(Symersky et al. 2004). A small B-sheet between helices 2 and 3 interferes with the
formation of an intramolecular three-helix bundle in this ortholog. However, the
function of this BAG domain protein as well as the putative Bag3 homolog, unc-23,
remains poorly characterized.

In D. melanogaster, the Bag3 homolog, starvin, expressed in larval somatic
muscles, was shown to be regulated in a highly developmental stage-specific
manner. The name “starvin” was coined as this protein was essential for viability
and was required by newly hatched larvae to ingest food and grow (Coulson et al.
2005). Starvin expression correlates with the response to cold exposure in
D. melanogaster, but the precise role of this protein in the pathway is not known
(Colinet and Hoffmann 2010).

Plants contain a large variety of BAG family proteins. Sequences for seven
isoforms have been identified in the A. thaliana genome, named AtBAGI1-7
(Kabbage and Dickman 2008). A comparative structural study on the AtBAG1-4
proteins, which share an architecture consisting of a Ubl domain and a BAG domain,
showed that the respective BAG domains have short three-helix bundle structures
similar to human Bag3, Bag4, and Bag5 (Fang et al. 2013). All the proteins lower the
binding affinity of ADP with the NBD to a similar degree, suggesting functional
redundancy. The structure of the complex of AtBAG1 with the NBD of human
Hsp70 revealed for the first time Ubl and BAG domains in context, showing an
extended conformation (Fang et al. 2013). The NBD conformation was similar to the
Bagl and Bag5 complexes, with the subdomain IIB rotated 15° away from the
nucleotide binding site. AtBAG2 mutant plants are larger than wildtype counter-
parts, implicating a function of this isoform in regulating plant programmed cell
death (PCD). Similarly, AtBAG4 confers tolerance to cold, drought, and salt
stresses, apparently also by inhibiting PCD (Doukhanina et al. 2006). The
AtBAGS5-7 proteins contain an IQ motif adjacent to the BAG domain which is
specific for binding to the ubiquitous calcium sensor, calmodulin (CaM). Structural
and biochemical studies of AtBAGS alone and in complex with CaM revealed that
calcium-free CaM and Hsc70 bind AtBAGS5 independently while calcium-saturated
CaM and Hsc70 exhibit negative cooperativity for AtBAGS binding (Li et al. 2016).
The mitochondria-associated AtBAGS5 was implicated in dark-induced leaf senes-
cence (Li et al. 2016). AtBAGT7 is the only known ER-lumenal BAG domain protein
(Williams et al. 2010).

Thus, the diversity of BAG domain-containing proteins in cells appears to play a
role in recruiting Hsp70 to specific locations and for specific functions. How the
combinatorial assembly with multiple cochaperones governs the biochemical prop-
erties of Hsp70 will be a fertile field for further studies.
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ADP Dissociation Inhibitors: Antagonists of Hsp70-NEF
Function

It was recognized early on that the protein Hip (Hsc70-interacting protein, alterna-
tively named ST13, suppressor of tumorigenicity 13) antagonizes Bagl, then the
only known eukaryotic NEF (Kanelakis et al. 2000). Hip is present in protozoa,
plants, and animals and is composed of a dimerization domain, a tetratricopeptide
repeat (TPR) domain for interactions with the NBD of Hsp70, and a C-terminal DP
domain (DP stands for Asp-Pro motifs) connected by flexible peptide linkers (Velten
et al. 2002). The crystal structure of the core complex, consisting of the Hip middle
domain and the NDB of Hsp70, showed that Hip slows ADP dissociation by forming
a bracket over the nucleotide binding cleft (Li et al. 2013), functionally opposing
NEFs (Fig. 1.3). Moreover, the binding area on the NBD overlaps substantially with
the known contact regions for NEFs, indicating that interactions are mutually
exclusive. The binding affinity between Hip and Hsp70 is however approximately
two orders of magnitude lower than with NEFs, which exhibit dissociation constants
of around 0.1 pM (Raviol et al. 2006b; Shomura et al. 2005; Sondermann et al.
2001). Therefore, Hip would only slow the Hsp70 cycle substantially when the
mutual affinity is increased, for example, by additional interactions with Hsp70-
bound substrates (via the DP domains of Hip) or simultaneous interaction with two
Hsp70 molecules attached to the same client protein or aggregate. Such hallmarks
might indicate that substrates require downstream chaperones like Hsp90 for folding
or become hopeless clients to enter a Hsp90/Hsp70-based quality control pathway
for damaged proteins (Wang et al. 2013).

Hsp70-NEF antagonists have also been discovered in different functional con-
texts. The fungal Hsp70-NEF antagonist, Sec72, another TPR-containing protein, is
part of the Sec translocon in the ER membrane (Tripathi et al. 2017). Its interaction
with the ribosome-binding Hsp70 isoform, Ssb, may contribute to recruitment of
translating ribosomes to the translocon. Moreover, mesencephalic astrocyte-derived
neurotrophic factor (MANF), a protein structurally unrelated to Hip, antagonizes the
ER-lumenal Hsp70-NEFs by inhibiting ADP-ATP exchange and might stabilize
certain BiP-client complexes (Yan et al. 2019).

Cellular Functions of NEF Proteins in S. cerevisiae

A comprehensive picture of NEF function is only available for one eukaryotic
organism, S. cerevisiae. This budding yeast comprises seven NEFs, namely, the
GrpE homolog, Mgelp in the mitochondria, Lhs1p (Grp170 homolog) and Sillp in
the ER lumen, and Sselp and Sse2p (Hsp110 homologs), Feslp (HspBP1 homolog),
and Snllp, the only known BAG domain protein, in the cytosol. These NEFs are
associated with the isoforms of Hsp70 found in the mitochondrial matrix (Ssclp and
Ssqlp), the ER lumen (Kar2p), and the cytosol/nucleus (Ssal—4, Ssb1/2).
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Mgelp plays an important role in both import and maturation of mitochondrial
matrix proteins encoded in the nucleus (Laloraya et al. 1995, 1994) and is therefore
essential for yeast viability (Ikeda et al. 1994). During the final step of import
through the inner mitochondrial membrane, Ssclp and Mgelp form a complex
with the import channel-associated protein, Tim44p (Horst et al. 1997). Protein
import is furthermore dependent on the activity of the membrane-anchored J-protein
complex, Tim16p/Tim14p (also known as Pam18p/Pam16p) (Mokranjac et al.
2006). The mechanism of protein import—ATP-hydrolysis-driven power strokes,
entropic pulling, or a Brownian ratchet, which would only prevent back-sliding—is
still under discussion. Overexpression of Mgelp leads to reduced pre-protein trans-
location into the mitochondria, likely due to excessive acceleration of nucleotide
exchange and premature conversion of Ssclp to the low affinity state, thus causing
rapid release of the protein in transit (Schneider et al. 1996). In vitro studies have
shown that ATP but not ADP effectively releases Mgelp interaction with mitochon-
drial Hsp70 (Miao et al. 1997). In the mitochondrial matrix, Mgelp furthermore
helps to fold newly imported proteins. A strain harboring the temperature-sensitive
allele, mgel—100, showed reduced rates of maturation of the Yth1p protein, similar
to the defect observed in a deletion strain for the mitochondrial Hsp70 isoform
Ssqlp, suggesting a close relationship between the two proteins in substrate folding
(Schmidt et al. 2001). Ssc1p and the much less abundant Ssqlp compete for binding
to Mgelp (Schmidt et al. 2001). Overexpression of Mgelp increases the activity of
Ssqlp, indicating that Mgelp availability is limiting for Ssqlp function. A role of
Mgelp as a possible sensor of stress is attributed to the reversible cessation of the
interaction between Mgelp and mitochondrial Hsp70s at heat shock temperatures
and under conditions of oxidative stress (Marada et al. 2013; Moro and Muga 2006).
Reversible methionine oxidation in Mgelp is thought to be regulated by the enzyme,
Mrx2 (Allu et al. 2015). A similar sensor role has been discussed for bacterial GrpE
(Nakamura et al. 2010). The loss of interaction with Hsp70 has been attributed to a
transition from active dimer to inactive monomer.

The ER is a major folding compartment of the cell handling the folding, matu-
ration, and post-translational modification of secretory and membrane proteins and is
therefore rich in molecular chaperones. The ER stress response mediated through the
“unfolded protein response” (UPR) pathway adapts the folding capacity to the
protein load. Aberrant proteins are efficiently cleared by ER-associated decay
(ERAD), a process which retro-translocates substrates into the cytosol for
proteasomal degradation. Therefore, it is not surprising that the combined function
of the ER-NEFs, Lhslp and Sillp, is essential and their double deletion is lethal
(Tyson and Stirling 2000). Both proteins contribute to co-translational import and
subsequent folding of proteins in the ER lumen together with the luminal Hsp70,
Kar2p, and the translocon-associated J-domain protein, Sec63p. Both LHS/ and
SILI gene expressions are up-regulated by the UPR, thus increasing the folding
capacity of the ER. Deletion of either factor triggers the UPR. This may explain why
the single deletions have comparatively mild phenotypes such as altered protein
maturation in the ER lumen and increased ERAD. Lhs1p and Sillp are however only
partially redundant (de Keyzer et al. 2009; Tyson and Stirling 2000). Although Sillp
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appears to be about one order of magnitude more abundant than Lhslp (but
constitutes less than 0.1% of the Kar2p content) under normal growth conditions
(Ghaemmaghami et al. 2003), [hs1 A cells exhibit a slight import defect, as indicated
by the accumulation of pre-proteins. Sillp, but not Lhslp, undergoes redox-
dependent N-glycosylation, which apparently lowers its NEF activity in the absence
of reductive stress (Stevens et al. 2017). The same redox sensor cysteines in Sillp
(Cys52 and Cys57) act as a reductant on Kar2p at Cys63, to switch from the holdase-
only function of oxidized Kar2p to ATP-dependent cycling (Siegenthaler et al.
2017).

The cytosolic Hsp110 family proteins, Sselp and Sse2p, are closely related,
having 76% sequence identity (Mukai et al. 1993). Sselp and Sse2p probably
originated from a recent genome duplication event in S. cerevisiae. Sse2p is
10 times less abundant than Sselp, although both proteins are expressed under
normal conditions. Sselp is the most abundant NEF in the yeast cytosol, but the
concentration of cytosolic Hsp70 proteins is one order of magnitude higher. Under
stress, SSE2 gene expression is strongly induced by the heat shock response (HSR)
pathway, while that of SSE1 is only modestly increased (Mukai et al. 1993). The loss
of Sselp, but not Sse2p, renders cells slow growing, which is exacerbated by
temperature stress (Liu et al. 1999). Overexpression of Sselp also results in a
slow-growth phenotype. The simultaneous deletion of both genes is lethal (Raviol
et al. 2006b). Overexpression of the HspBP1 homolog Feslp can partially compen-
sate ssel,2A (Raviol et al. 2006b). Sselp collaborates with both forms of cytosolic
Hsp70, Ssal-4, and the ribosome-associated, Ssb1/2, to fold newly synthesized
proteins (Yam et al. 2005; Shaner et al. 2005). This is dependent on the ribosome-
associated complex (RAC) (Koplin et al. 2010; Willmund et al. 2013), containing
the J-protein, Zuolp, and the type-I J-domain protein, Ydjlp, respectively (Shaner
et al. 2006). Interactions of Sselp with 1940 potential substrate proteins were listed
in a proteomics survey (Gong et al. 2009), comprising a substantial part of the yeast
proteome (~6600 proteins). Sselp function also appears to have an impact on Hsp90
client proteins such as kinases and nuclear receptors (Goeckeler et al. 2002; Liu et al.
1999), probably by upstream client processing through the Hsp70 system. Specific
examples are the growth control kinase, Sch9p (Trott et al. 2005), and the MAP
kinase, Slt2p (Shaner et al. 2008), enabling Slt2p interaction with downstream
effectors required for yeast cell wall integrity and morphogenesis. The NEF function
of Sselp for Ssal/2 is required for proper distribution of the kinesin-5 motor during
bipolar spindle assembly, thus preventing premature spindle elongation during
mitosis (Makhnevych et al. 2012). Substrate binding via the SBD in Ssel appears
to be required only under heat shock conditions, as suggested by the growth defect of
a quadruple mutant of the putative substrate-binding cleft (Sselpq) in the absence of
Sselp and Sse2p at 37 °C (Garcia et al. 2017). Besides de novo protein folding,
Sselp is also deeply involved in cellular protein quality control, as shown by the
impact of its absence on the proteasomal clearance of the von Hippel-Lindau (VHL)
tumor suppressor protein (McClellan et al. 2005), a model substrate for the
chaperonin, TRiC, which cannot stably fold in the absence of its complex partners
Elongin-BC, and a folding-defective mutant version of the Hsp90 client protein
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Stel1p (Mandal et al. 2010). Sselp interacts with the 19S particle subcomplex of the
proteasome and assists in the recruitment of Hsp70 and its substrates (Kandasamy
and Andreasson 2018). Consistently, the proteasomal degradation of misfolded
proteins via ubiquitin-dependent and ubiquitin-independent pathways was impaired
in the absence of functional Sse proteins. The ability of Sselp and Sse2p to interact
with Hsp70 is also required for efficient protein disaggregation by the AAA protein,
Hsp104, in collaboration with Hsp70 (Kaimal et al. 2017). In the absence of
functional Sse proteins, recruitment of Hsp70 and Hsp104 to FLuc aggregates is
impaired, and the disaggregation process is perturbed.

The cellular concentration of Feslp, the yeast homolog of HspBP1, is ~five-fold
lower than Sselp, and its expression is up-regulated upon stress. Feslp catalyzes
nucleotide exchange on both Ssa- and Ssb-type Hsp70 proteins (Dragovic et al.
2006b; Kabani et al. 2002a) and associates with translating ribosomes (Kabani et al.
2002a). Fes1p and RAC appear to compete for binding to the Ssb proteins, perhaps
indicating the necessity for sequential interactions—RAC and Ssb-ATP upon emer-
gence of the nascent chain at the ribosomal exit channel and Feslp and Ssb-ADP
toward completion of translation (Dragovic et al. 2006b). The FESI transcript is
subject to 3’ alternative splicing, which results in the cytosolic Fes1S isoform or the
12-residue longer Fes1L isoform that is targeted to the nucleus (Gowda et al. 2016).
FeslS is the predominant form, expressed at 2.5-fold higher levels. Both are equally
active as Hsp70 NEFs. Deletion of FESI causes a growth defect under heat stress
and a folding defect in the reporter protein, firefly luciferase (FLuc) (Ahner et al.
2005; Shomura et al. 2005). Fes1p binding to Hsp70, which is coupled to nucleotide
exchange activity, and substrate displacement by the N-terminal RD domain are
critical for its function, since the inactive, but structurally intact, mutant Feslp
(AT9R/R195A) and the RD deletion, respectively, cannot complement the pheno-
type (Shomura et al. 2005; Gowda et al. 2018). Feslp NEF activity might be
regulated by reversible methionine oxidation (Nicklow and Sevier 2020). Interest-
ingly, the armadillo repeat-containing NEF domain of Feslp appears to have
additional Hsp70-independent functions in the vacuole import and degradation
(vid) pathway and in cell wall integrity (CWI) (Kumar and Masison 2019). Deletion
of FESI induces a massive heat shock response with strong up-regulation of
molecular chaperones under standard growth conditions, while sselA triggers only
a mild induction, suggesting a critical function of Feslp in the heat shock factor
(Hsf1l) activation pathway (Abrams et al. 2014; Gowda et al. 2013). This might
explain why the growth defect of fes/A is relatively mild compared to sselA.
Interestingly, Feslp was implicated in the proteasome-mediated clearance of the
constitutively misfolded proteins, DHFRmutC, DHFRmutD, and the protein frag-
ment, Rpo41 (T920-L1217), but not in the clearance of folded proteins such as FLuc,
Stplp, and fructose-1,6-bisphosphatase 1 (Abrams et al. 2014; Ahner et al. 2005;
Gowda et al. 2013). Nuclear Fes1L does not seem to contribute substantially to the
clearance of constitutively misfolded proteins, even if they are targeted to the
nucleus for degradation (Gowda et al. 2016). On the contrary, the misfolded test
substrate, CpY*-GFP, a mutant form of carboxypeptidase Y fused to GFP, is
efficiently degraded in fes/A cells (Abrams et al. 2014). In summary, Sselp and
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Fes1p both contribute to protein quality control, but with different specificities. This
could be based on their distinct nucleotide exchange mechanisms or the additional
holdase activity of Sselp.

The BAG domain protein, Snllp, is expressed at low levels similar to Sse2p. This
ER-membrane protein interacts directly with the ribosome (Verghese and Morano
2012). Many of its surprisingly numerous interactors are integral membrane pro-
teins, suggesting perhaps a role in faithful targeting of secretory proteins. Normally,
these clients would not get in contact with cytosolic Hsp70 proteins.

The cytosolic NEFs of Hsp70 have a strong impact on the maintenance and
propagation of prions in yeast. These fibrous polymeric forms of protein have a
rather generic amyloid core structure, which is inherited in a non-Mendelian fashion
by daughter cells. Interestingly, the fibers morphologically resemble pathologic
protein deposits from amyotrophic lateral sclerosis (ALS) and Alzheimer’s and
Parkinson’s disease in humans. The fibers grow by incorporation of unfolded mono-
mers at their ends and by secondary nucleation, and multiply by fracturing into
seeds. The AAA protein disaggregase, Hsp104, in collaboration with the Hsp70
system, contributes in a complex manner both to the fracturing and the disassembly
of the filaments (Masison et al. 2009). The Hsp70 system might also erroneously
deliver unfolded protein to the growing ends. Faithful maintenance of the [PSI]
prion is dependent on the presence of Sse/ (Fan et al. 2007; Sadlish et al. 2008).
Complementation of the sse/A effect by overexpression of nucleotide-exchange
active Sselp mutants, Feslp and non-membrane-associated Snllp(AN), suggests
that NEF function is the main requirement for propagation (Sadlish et al. 2008).

Aspects of NEF Function in Mammalian Protein Folding
and Quality Control

Compared to yeast, much less is known about the integrated functions of mammalian
NEFs, primarily due to the increased complexity of higher organisms. Mutations or
deletions might affect specific cell types differentially or might prevent development
to an adult organism. Simultaneous deletion of the Hsp110 isoforms, Apg-1 and
Apg-2, in mice resulted in neonatal death (Mohamed et al. 2014); deletion of Apg-1
alone causes faulty spermatogenesis (Held et al. 2011). Deletion of the third isoform,
Hsp105, causes no obvious defects (Nakamura et al. 2008), but truncation of the
human Hspl05 gene by micro-satellite instability in intestinal cancer cell lines
sensitizes these cells toward chemotherapy (Dorard et al. 2011). Knockout of the
cytosolic NEF, HspBP1, in mice results in a defect in spermatogenesis causing male
sterility (Rogon et al. 2014). HspBP1 expression in wildtype mice was strongest in
testes, specifically in spermatocytes during meiosis. In the absence of HspBP1, the
inducible, anti-apoptotic Hsp70 isoforms, HSPAIL and HSPA2, were
downregulated, and spermatocytes underwent massive apoptosis. The knockout of
the ER-lumenal HspBP1 homolog, Sill, in mice causes the “woozy” phenotype
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exhibiting ataxia and cerebellar Purkinje cell loss in the brain, apparently caused by
an inadequate response to persistent ER stress (Zhao et al. 2005, 2010). Later in life,
additional progressive loss of skeletal muscle mass and strength is observed
(Ichhaporia et al. 2018). In Marinesco-Sjogren syndrome, characterized by myopa-
thy and cataracts, in addition to ataxia, inactivating mutations are found in the Sill
gene (Anttonen et al. 2005; Senderek et al. 2005). Deletion of Grp170/Hyoul in
mice is lethal (Kitao et al. 2004).

At high concentrations, NEFs inhibit Hsp70 by competing with nucleotide
binding (Dragovic et al. 2006a; Rampelt et al. 2012; Gissler et al. 2001; Polier
et al. 2008; Raviol et al. 2006b). It is unclear whether competition with J-domain
proteins will also occur. The concentration of Hsp70 components determines if
accelerated Hsp70 cycling will occur or if cycling is inhibited. Experiments
employing overexpression of specific NEFs should be treated with caution for this
reason. There are numerous reports about inhibitory effects of Bagl and HspBP1
(Bimston et al. 1998; Raynes and Guerriero 1998), although these do accelerate ATP
hydrolysis of Hsp70 in conjunction with Hsp40 at appropriate concentrations in vitro
(Hohfeld and Jentsch 1997; Shomura et al. 2005). The expression levels vary
between cell types, and cancer cells lines typically have abnormal chaperone levels.

Comparative studies with model proteins shed light on the differential effects of
members of the different NEF families on the folding and degradation of specific
proteins. Young and coworkers showed that the BAG domains of Bagl (cBagl),
HspBP1, and Hsp105 all trigger ATP hydrolysis by Hsc70/HSPAS in the presence
of the constitutive, cytosolic, type-I J-domain proteins, DNAJA1/Hdj2 and
DNAJA2/Hdj3. However, only the combinations of Hsc70 and DNAJA2 with
cBagl or Hsp105 improved refolding of chemically denatured FLuc compared to
the control without NEF (Tzankov et al. 2008). Protein folding however improved
only in a narrow NEF/Hsc70 concentration range. Later, combinations of the NEF
proteins, Bagl, Bag2, Bag3, and Hsp105, with the J-domain proteins, DNAJAI,
DNAJA2, DNAJBI1/Hdjl, and DNAJB4, were investigated, using the stress-
inducible Hsp70 form, HSPA1A/Hsp72 (Rauch and Gestwicki 2014). All NEFs
apart from Hspl105 accelerated ATP hydrolysis in the presence of the J-domain
proteins. DNAJA1 was inactive in FLuc refolding in any combination, as noted
before by the Young group. In the absence of phosphate, low concentrations of Bag1
and Bag3 together with the type-II J-domain proteins, DNAJB1 and DNAJB4, were
most efficient in FLuc refolding. Type-II J-domain proteins have a slightly different
domain composition than the type-I paralogs. In the presence of phosphate, the
dependency on NEFs increased dramatically, and all combinations with Bagl-3
worked. Hsp105 did not increase FLuc refolding in any combination of the four
J-domain proteins with HSPA1A. Taken together, this indicates that a combinatorial
library of mammalian Hsp70 components might enable adaptation to a spectrum of
substrates with different folding needs such as assistance by holdase activity and
suitable cycling rates (Brehmer et al. 2001). In a comparative study, evidence for
selective interaction of steroid receptors with the Hsp70 complexes of Bag1-M was
found (Knapp et al. 2014). These receptors are prototypical Hsp90 client proteins
that progress through the Hsp70 system beforehand. The respective HspBP1
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complex with Hsp70 failed to interact with both the downstream factor, Hsp70-
Hsp90-organzing protein (HOP) and Hsp90, as well as the (upstream) Hsp40
protein, DNAJB1/Hdj1 (the latter might however be an indirect effect).

The folding of the ABC transporter, cystic fibrosis transmembrane conductance
regulator (CFTR), sheds light on the roles of NEFs in protein quality control and
degradation. In addition to two transmembrane helix bundles, CFTR has large
cytoplasmic domains, which on average require 10 min for folding, and employs
the cytoplasmic Hsp70 and Hsp90 machineries (Wang et al. 2006). Mutations in
CFTR are the molecular basis for cystic fibrosis in humans, causing a lack of
functional protein in mucous membranes. Hsp105 appears to have a prominent
role in early CFTR folding events and later at the epithelial membrane, employing
its holdase activity (Saxena et al. 2012). Ineffective folding results in proteasomal
degradation of most CFTR molecules before reaching the plasma membrane. CFTR
is targeted for degradation by the dimeric E3-ubiquitin (Ub) ligase, CHIP (Meacham
et al. 2001), which attaches to the C-termini of Hsp70 and Hsp90 and ubiquitylates
client proteins (and Hsp70). In cells, most of the CHIP protein appears to be
associated with Bag2 and Hsp70, which form a large complex that is Ub-ligase-
inactive (Dai et al. 2005). Binding of Bag2 prevents association of CHIP with the E2
enzyme (Ub donor), UbcH5b (Arndt et al. 2010; Dai et al. 2005). In a ternary
complex with Hsc70, HspBP1 also inhibits CHIP Ub-ligase activity, however by a
different mechanism (Alberti et al. 2004), whereas Bagl collaborates with CHIP in
targeting substrate proteins for proteasomal degradation (Demand et al. 2001).
Therefore, Bag2 and HspBP1 might help to keep CHIP in check while productive
protein folding is ongoing. For the clearance of the disease mutant, FS08 A-CFTR,
autophagy seems to play an important role, consistent with its increased recovery
upon siRNA downregulation of Bag3 or the autophagy factor, ATG7 (Hutt et al.
2018).

Because of its considerable holdase capability, Hsp110 appears to play a special
role among the NEFs. All Hsp110 isoforms were found attached to large aggregates
of mutant superoxide dismutase (SOD1) that are a hallmark of Lou Gehrig’s disease
(also named amyotrophic lateral sclerosis (ALS)), a protein deposition disease in
which the motor neurons degenerate (Wang et al. 2009). In vitro, Hsp105 can
suppress mutant SOD aggregation to some degree (Yamashita et al. 2007). Apg2
and to a lesser extent Hsp105 and Apgl, but not Bagl, Bag3, Bag4, and HspBP1,
preferentially interacted in vivo with overexpressed HSPA1A versus its close homo-
log HSPAI1L, thereby suppressing aggregation of the SOD1 mutant, A4V, or the
unstable GFP-FLuc DM mutant and triggering increased degradation—rather than
the opposite effect (Serlidaki et al. 2020). A transgenic mouse lacking Hsp105 was
shown to accumulate hyper-phosphorylated tau protein in an age-dependent manner,
which in turn forms neurofibrillary tangles and causes neurodegeneration in
tauopathies and Alzheimer’s disease. This phenotype was comparable to mice
deficient in Hsp70, confirming the role for Hsp70-Hsp110 complexes in maintaining
tau in an unphosphorylated form during aging and central nervous system homeo-
stasis (Eroglu et al. 2010). Hsp110 was also enriched in aggregates of an artificial
model protein for protein deposition diseases, 323 (Olzscha et al. 2011). In a similar
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functional role but with a distinct interaction partner, Hspl110 was required to
suppress polyglutamine-induced cell death in a Drosophila model of polyglutamine
(polyQ) diseases. This class of neurodegenerative diseases, which includes
Huntington’s disease, is characterized by cellular deposition of aggregated mutant
proteins containing expanded polyQ regions. Together with the Hsp40 family
member DNAJ-1, Hsp110 protected cells from neural degeneration, while either
protein expressed alone had little effect, suggesting that an Hsp110-Hsp40 complex
is required to maintain protein homeostasis (Kuo et al. 2013). The mammalian
Hsp105a was found associated with deposits of polyQ-androgen receptor in spinal
and bulbar muscular atrophy (Kennedy’s disease) (Ishihara et al. 2003). Surpris-
ingly, the p-sandwich subdomain of the SBD was expendable for the anti-
aggregation activity of Drosophila Hsp110 in vitro, leading to the discovery of an
additional substrate-binding site in the intrinsically disordered C-terminal region of
the chaperone (Yakubu and Morano 2021).

Interestingly, Hsp110 along with Hsp70 and Hsp40 was found to form a
disaggregase system capable of dissolving amorphous aggregates in mammalian
cells that are resistant to Hsp70 and Hsp40 alone (Rampelt et al. 2012; Shorter 2011).
This system seems to partially replace the function of ClpB/Hsp104 proteins found
in bacteria, plants, and fungi, which together with the Hsp70 system remodel large
aggregates and amyloids in an ATP-dependent process. Animals lack cytosolic
ClpB/Hsp104 homologs. The most effective system for solubilization of aggregates
of FLuc and GFP consisted of the isoforms Apg-2 and Hsc70 and a mixture of
DNAJA2 and DNAJB1 (Nillegoda et al. 2015). Since the functional interfaces
between Hspl110, Hsp70, and Hsp40 proteins are conserved, this suggests that
specific interactions of all individual components with the substrate proteins are
important for activity. Perhaps the substrate specificities of the chaperones have to be
complementary, enabling simultaneous interactions with different regions in the
substrate protein. Additionally, substrate interactions with small heat shock proteins
increase the refolding yields. Co-aggregation with small heat shock proteins seems
to make the aggregates more accessible to the disaggregase system. The
disaggregase activity is dependent on Hsp70-binding and the NEF capability of
the Hsp110 component. Other NEFs can partially substitute for Hsp110 in in vitro
disaggregation reactions (Rampelt et al. 2012). The initial studies disagreed on the
requirement for ATP hydrolysis by the Hsp110 component (Rampelt et al. 2012;
Shorter 2011). Taken together the association of Hsp110 and Hsp70 with cellular
aggregate deposits might be a sign for ongoing remodeling activity.

In vitro, the mammalian disaggregase complex of Apg-2, Hsc70, and DNAJB1
was capable of breaking down amyloid fibrils of a-synuclein, a protein found in
Lewy body deposits in the brains of Parkinson’s disease patients (Gao et al. 2015).
Hsc70 and DNAJB1 bound to fibrils of diverse lengths; Apg-2 seemed to prefer
shortened fibrils or oligomers. The breakdown of the fibrils seemed to operate by
both fragmentation and depolymerization, as judged from electron microscopy and
the kinetics of a-synuclein monomer emergence. Molecular dissection showed that
DNAIJBI1 bound to the flexible C-terminal tails in fibril building blocks and recruited
Hsc70, which recognized both motifs in the N-terminal tail and the amyloidogenic
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core of a-synuclein (Wentink et al. 2020). This resulted in crowding of Hsc70 onto
the fibrils. For the potentiation of amyloid disaggregation by Apg-2, its bulkiness
seemed important, limiting access to the fibrils. The combined action of the
cochaperones seemed to distribute Hsc70 on the fibrils to enable breakdown by
entropic pulling. This disaggregation of amyloids in vivo might have deleterious side
effects by generating amyloidogenic seeds, which can spread between cells in a
prion-like manner (Nachman et al. 2020; Tittelmeier et al. 2020). It is unclear how
the release of these seeds from cells might work. Slight overexpression of the
Hsp110 isoform, Apg-1, reduced the load of a-synuclein aggregates and pathology
in a mouse disease model (Taguchi et al. 2019).

Both Bag3 and Hsp110 are strongly up-regulated upon stress by the heat shock
response. It is unclear to what extent autophagy and disaggregation/UPS-mediated
degradation contribute to the recovery of the cell and the clearance of aggregated
protein after heat shock. Another important aspect might be the cellular localization
of respective proteostasis machineries. Hspl10 proteins are found both in the
cytoplasm and nucleus, whereas Bag3 is found exclusively in the cytosol. Therefore,
the two compartments might follow different strategies for recovery.

Conclusions

The Hsp70 system represents the central hub in the proteostasis network by
interacting with polypeptides at various stages of their existence from birth to
ultimate demise. The Hsp70 folding cycle is fine-tuned by cochaperones adapting
it to the divergent folding requirements of individual substrates that are involved in
various cellular pathways. Recent structural and biochemical evidence has shown
that the different nucleotide exchange factors especially serve additional roles by
linking Hsp70 to other branches of the proteostasis network. We now have first
insights how functional diversity might be encoded in their distinct binding modes to
Hsp70. What is still missing is the integration of all these processes. For this we
would need good estimates for the local concentrations of the players, in healthy
cells, and those under conditions of stress or disease. It will be exciting to dissect this
complex interplay between NEFs, Hsp70, and client proteins.
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Functions of the Hsp90-Binding FKBP s
Immunophilins
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Mario D. Galigniana, and Marc B. Cox

Abstract The Hsp90 chaperone is known to interact with a diverse array of client
proteins. However, in every case examined, Hsp90 is also accompanied by a single
or several co-chaperone proteins. One class of co-chaperone contains a
tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the
C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl
isomerases, most of which belong to the FK506-binding protein (FKBP) family.
Despite the common association of FKBP co-chaperones with Hsp90, it is abun-
dantly clear that the client protein influences, and is often influenced by, the
particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon
receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we
discuss the known functional roles played by FKBP co-chaperones and, where
possible, relate distinctive functions to structural differences between FKBP
members.
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Introduction

Immunophilins are a large, functionally diverse group of proteins that are defined by
their ability to bind immunosuppressive ligands. The signature domain of the
immunophilin family is the peptidyl-prolyl cis-trans isomerase (PPlase; also termed
rotamase) to which the immunosuppressive drugs bind. Early investigations into the
PPlase enzymatic activity led to the belief that the immunosuppressive drugs elicited
their effects by inhibiting PPIase activity. However, some compounds binding the
PPlase active site efficiently inhibit PPlase activity without inducing immunosup-
pression, so PPIase activity is not critical for immune responses. It is now known that
effector domains on the immunosuppressive drugs project from the PPlase pocket.
This allows the immunophilin-drug complex to bind tightly to and inhibit
calcineurin or target of rapamycin, signal transduction proteins required for immune
responses (see Hamilton and Steiner (1998) for a detailed review on the mechanisms
by which immunophilins and their ligands suppress immune responses).

Since the initial identification of the immunophilin proteins, multiple family
members have been identified in all major branches of life. Some immunophilins
are small proteins containing only a single PPlase domain, while others are large,
multidomain proteins containing one or more PPlase domains, as well as additional
functional domains. Based on their ability to recognize different immunosuppressive
ligands, the immunophilins are generally divided into two subfamilies: the FK506
binding proteins (FKBP), which also bind rapamycin, and the cyclosporin-A binding
proteins or cyclophilins (CyP). Though the PPlase domains of FKBP and
cyclophilins are structurally distinct and likely evolved independently, some mem-
bers of either the FKBP or cyclophilin families contain a structurally similar
tetratricopeptide repeat (TPR) domain that targets binding to heat shock protein
90 (Hsp90) (reviewed in Harikishore and Yoon (2015)).

Hsp90 is an abundant molecular chaperone that interacts with a broad array of
protein clients that regulate numerous important cellular pathways. Among the
known Hsp90 clients are transcription factors (e.g., steroid hormone receptors,
heat shock transcription factor 1, aryl hydrocarbon receptor), both serine/threonine
and tyrosine kinases (e.g., Raf and Src-related kinases), and key regulatory enzymes
(e.g., nitric oxide synthase and telomerase). (A compilation of known Hsp90 clients
maintained by Didier Picard at Univ. of Geneva can be accessed at: http://www.
picard.ch/downloads/Hsp90interactors.pdf).

In concert with other chaperone proteins, Hsp90 facilitates client folding and
proteolytic stability but can also promote client degradation. In the case of steroid
receptors, Hsp90 and its associated co-chaperones also regulate receptor activity.
Hsp90 binding to steroid receptors must be preceded by transient receptor interac-
tions with Hsp40, Hsp70, and associated co-chaperones. Hsp90, which is recruited
as a dimer in the latter stages of complex assembly, binds directly to the receptor
ligand binding domain and stabilizes a receptor conformation that is competent for
hormone binding. Proteins that are associated with Hsp90 in the functionally mature
receptor complex are p23, a co-chaperone that stabilizes Hsp90 binding to receptor,
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Fig. 2.1 Domain organization of representative Hsp90-binding FKBPs. TPR-containing FKBPs
from vertebrate, insect, and plant sources were selected for comparison of domain organizations.
The proteins are human FKBP52 (acc. # NP_002005), human FKBP51 (acc. # Q13451), human
FKBPL (acc. #NP_071393.2), human Xap2 (acc. # 000170), human FKBP36 (acc. #NP_003593),
human FKBP38 (acc. # NP_036313.3), Drosophila melanogaster FKBP59 (acc. # AAF18387),
Arabidopsis thaliana FKBP42 (acc. # CAC00654), and Arabidopsis thaliana FKBP62 (acc. #
AAB82062). The percent amino acid identity of each compared to human FKBP52 was determined
from ClustalW2 alignments (http://www.ebi.ac.uk/clustalw). Each protein shown has at least one
FKBP12-like domain (FK), which in some cases has peptidylprolyl isomerase activity and is the
binding site for the immunosuppressant drug FK506, and one tetratricopeptide repeat domain
(TPR), which is typically an Hsp90 binding site. The black box in the C-terminus of AfFFKBP42
is a transmembrane domain used for anchoring the protein to the plasma and vacuolar membranes

and any one of several TPR co-chaperones, including the immunophilin/PPIases
FKBP52 (also termed p59, Hsp56, p5S0, HBI, FKBP59, and FKBP4), FKBP51 (also
termed p54, FKBP54, and FKBP5), and CyP40, or the protein phosphatase PP5
(reviewed extensively in Cox and Johnson (2018)).

The domain organization for several FKBP co-chaperones is compared in
Fig. 2.1. These co-chaperones compete for a common binding site in the
C-terminal region of Hsp90 that includes the highly conserved -MEEVD sequence
that terminates Hsp90. Co-crystallographic structures have shown how an MEEVD
pentapeptide associates with the TPR binding pocket (Scheufler et al. 2000; Wu et al.
2004). In vitro affinity binding studies found that the specific binding of FKBP51
and FKBP52 to Hsp90 alpha or beta subunits was found to be regulated through
affinity, and that the Met residue in the MEEVD motif in Hsp90 is critical for
FKBP51/52 binding (Assimon et al. 2015). Although the TPR domains for each of
these co-chaperones are structurally similar and interact in a similar manner with
Hsp90, the client protein bound by Hsp90 can influence the rank order of
co-chaperone recruitment to Hsp90-client complexes (reviewed in Riggs et al.
(2004)). For instance, PP5 and FKBP51 are preferred components in glucocorticoid
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receptor (GR) complexes, FKBP51 is preferred in progesterone receptor
(PR) complexes, and CyP40 is relatively enhanced in estrogen receptor (ER) com-
plexes (Silverstein et al. 1997; Barent et al. 1998). On the other hand, another
TPR-containing FKBP, the hepatitis B virus protein X-associated protein 2 (Xap2;
also termed AIP, ARA9, and FKBP37), shows little interaction with steroid recep-
tors but is strongly associated with the aryl hydrocarbon receptor-Hsp90 complex
(Ma and Whitlock 1997; Meyer et al. 1998). The distinctive patterns of preference
for co-chaperone association in client complexes are one line of evidence that the
co-chaperones bound to Hsp90 can also interact with the Hsp90-bound client.

In addition to FKBP52, FKBP51, and XAP2, several other FKBP family mem-
bers contain TPR domains that are known or likely to bind Hsp90. FKBP36 is
structurally similar to XAP2 but is required for male fertility and homologous
chromosome pairing in meiosis (Crackower et al. 2003). FKBP38 is a unique family
member that is anchored to the mitochondrial and endoplasmic reticulum mem-
branes, and is involved in a variety of processes including protein folding and
trafficking, apoptosis, neural tube formation, cystic fibrosis transmembrane conduc-
tance regulator (CFTR) trafficking, and viral replication (reviewed in Edlich and
Lucke (2011)). FK506-binding protein like (FKBPL) protein is a divergent member
of the FKBP family that can associate and functionally regulate steroid hormone
receptors, has anti-angiogenic properties, has a role in the DNA damage response,
and controls tumor growth (reviewed in Robson and James (2012)). Drosophila
melanogaster expresses a TPR-containing immunophilin (DmFKBP59) that has
high similarity to FKBP52/51 in vertebrates (Goel et al. 2001; Zaffran 2000). Plants
have several FKBP genes that encode TPR domains; for example, in Arabidopsis
thaliana there are four such genes: AfFKBP42, AfFKBP62, ArFKBP65, and
AfFKBP72 (Binder et al. 2008; Blair et al. 2013). Although prokaryotic and archaeal
genomes also contain FKBP family members (Maruyama et al. 2004), none of these
genes encode a TPR domain.

Structure/Function Relationships of Steroid
Receptor-Associated FKBPs

X-ray crystallographic structures have been resolved for full-length FKBP51 and for
overlapping fragments of FKBP52 (Fig. 2.2). Human FKBP51 and FKBP52 share
60% amino acid sequence identity and 75% similarity, and individual domains do
not differ markedly between FKBP51 and FKBP52. Both share a similar TPR
domain composed of three tandem repeats of the degenerate 34-amino acid motif,
which is a typical characteristic of TPR proteins (Blatch and Lassle 1999). Each
repeat adopts a helix-turn-helix conformation and adjacent units stacked in parallel
to form a saddle-shaped domain with a concave binding pocket for Hsp90. In
addition to the TPR domain, both FKBP51 and FKBP52 have two N-terminal
domains, each of which is structurally similar to FKBP12. FK506-binding and
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Fig. 2.2 Structural and functional characteristics of FKBP51 and FKBP52. Both ribbon and
molecular surface depictions of the X-ray crystallographic structures for human FKBP5]1
(a protein data bank number 1KTO) and a composite of two partial structures for human FKBP52
(b protein data bank numbers 1Q1C and 1P5Q) are shown. In either protein the two FKBP12-like
domains (FK1 and FK2, green and blue, respectively) are indicated, the first of which has FK506
binding and PPIase activities. PPlase activity is not required for receptor regulation. The proline-
rich loop (orange) that overhangs the PPlase catalytic pocket is critical for FKBP52 function and is
responsible for the functional difference between FKBP51 and FKBP52. Two functionally critical
residues (A116 and L119 in FKBP51 and A116 and P119 in FKBP52) within this loop are
highlighted. The FK1 domain, the proline-rich loop in particular, is hypothesized to serve as an
interaction surface within the Hsp90-receptor heterocomplex. A loop structure containing a CKII
phosphorylation site in the hinge region between FK1 and FK2 is pointed out (yellow). The
C-terminal TPR domain (red) consists of three helix-loop-helix motifs that form the Hsp90 binding
pocket. Structures of the individual domains are highly similar between the two proteins, but the
angle between FK2 and TPR domains of FKBP51 is more acute and probably more constrained
than in FKBP52. The FKBP51 and FKBP52 structure models shown were constructed using UCSF
Chimera version 1.5

PPIlase activities reside in the most N-terminal domain (FK1), which has a pocket
and active site residues similar to FKBP12. Due to several amino acid differences,
the second domain (FK2) lacks drug binding and PPIase activity (Sinars et al. 2003).

The most striking difference in crystal structures relates to apparent domain:
domain orientations. The FKBP52 structure shown in Fig. 2.2 is a composite
model derived from merging the separate FK1-FK2 and FK2-TPR structures.
Thus, conclusions and ideas based on this composite structure must be viewed
with caution. However, the composite model suggests that the FKBP52 TPR domain
is aligned in a more linear fashion with the FK domains rather than in the kinked
conformation seen with FKBP51 (Fig. 2.2). In fact, the static orientations shown in
crystal structures are likely more dynamic in solution, but the different crystal
orientations are perhaps telling. Amino acid side chains unique to FKBP51 form a
salt bridge between FK2 and TPR that would stabilize the domain:domain interac-
tion in FKBP51 relative to FKBP52, which lacks this salt bridge. The apparently
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more malleable structure of FKBP52 might allow interactions within the receptor
heterocomplex that are strained in FKBP51.

Significant progress has been made in understanding functionally important
domains and residues on FKBP52 that contribute to the distinct ability to regulate
steroid hormone receptor activity. Random mutagenesis studies in S. cerevisiae
demonstrated that two point mutations (A116V and L119P) in the FKBP51 FK1
domain, which does not potentiate steroid hormone receptor activity under normal
conditions, confer full receptor potentiating ability to FKBP51, similar to that of
FKBP52 (Riggs et al. 2007). This suggests that FKBP51 and FKBP52 functionally
diverged at some point in evolution by only a few residues. A previous study
suggests that there are differences in conformational dynamics between FKBP51
and FKBP52 within the proline-rich loop (Mustafi et al. 2014). 15N NMR relaxation
measurements demonstrated that only the proline-rich loop in FKBP51 displays
significantly larger line broadening, which is completely suppressed in the presence
of the L119P mutation. These data suggest not only that differences in the proline-
rich loop confer distinct functions to FKBP51 and FKBP52, but also that the proline-
rich loop is functionally important for FKBP52 regulation of receptor activity. The
current hypothesis holds that the FKBP52 proline-rich loop serves as an interaction
surface, and the interaction partner is likely the receptor hormone binding domain
(Sivils et al. 2011; De Leon et al. 2011).

Bracher and colleagues demonstrate that the FK1-FK2 domains portray a flexible
hinge that may account for regulatory differences between FKBP51 and FKBP52
(Bracher et al. 2013). It is hypothesized that the FK2 domain of FKBP52 contains an
activation mechanism based on the calmodulin-binding motif at the C-terminus, yet
this region is unable to bind FK506 and rapamycin and lacks PPlase activity
(Chambraud et al. 1993; Pirkl and Buchner 2001; Rouviere et al. 1997).

FKBP51 and FKBP52 also differ in the hinge region connecting FK1 and FK2
domains (FK loop). The FK loop of FKBP52 contains a—TEEED-sequence that has
been identified as an in vitro substrate for casein kinase II; the corresponding
sequence in FKBP51, -FED-, lacks the threonine phosphorylation site. Phosphory-
lation of FKBP52 is potentially important since the phospho-protein is reported to
lose Hsp90 binding (Miyata et al. 1997). This difference was further tested using
comparative analysis of FKBP51 and FKBP52 FK linker sequences (Cox et al.
2007). While the phosphomimetic mutation T143E had no effect on FKBP52
binding to Hsp90 in this study, the mutation did abrogate FKBP52 regulation of
receptor activity. It is predicted that phosphorylation of residue T143 in the FKBP52
FK linker reorients the entire FK1 conformation, thereby eliminating FK1 interac-
tions with the receptor hormone binding domain.
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Cellular and Physiological Functions
of Hsp90-Associated FKBPs

FKBP52

FKBP52 is expressed in most vertebrate tissues and cell lines, although its expres-
sion can be upregulated by heat stress (Sanchez 1990), by estrogen in MCF-7 breast
cancer cells (Kumar et al. 2001), and by the homeobox transcription factor HoxA-10
in the peri-implantation mouse uterus (Daikoku et al. 2005). FKBP52 associates
with steroid receptor complexes in an Hsp90-dependent manner, but FKBP52 is not
required in a defined cell-free assembly system for receptor to reach the mature
conformation that is competent for hormone binding (Dittmar et al. 1996; Kosano
et al. 1998). Nonetheless, FKBP52 in cells potentiates hormone-dependent reporter
gene activation by GR (Riggs et al. 2003), AR (Cheung-Flynn et al. 2005), and PR
(Tranguch et al. 2005). Potentiation of hormone signaling can be related to an
increase in receptor affinity for hormone (Riggs et al. 2003; Davies et al. 2005),
but there may be additional mechanisms by which FKBP52 enhances receptor
activity.

In concordance with hormone binding affinity changes, domain-swapping exper-
iments between GR and ER, which is not potentiated by FKBP52, demonstrated that
FKBP52 potentiation is localized to the ligand binding domain of GR (Riggs et al.
2003). FKBP52-dependent potentiation of receptor activity is abrogated in point
mutants that are defective for Hsp90 binding, and potentiation is blocked by the
PPIase inhibitor FK506 (Riggs et al. 2003; Cheung-Flynn et al. 2005). One model to
explain these findings is that Hsp90 recruits FKBP52 to the receptor heterocomplex
such that the FK1 PPlase can effectively catalyze isomerization of one or more
proline substrates in the receptor ligand binding domain. However, studies have
shown that point mutations within the FKBP52 PPlase pocket that eliminate PPIase
activity have no effect on FKBP52 potentiation of receptor activity (Riggs et al.
2007). Thus, FK506-mediated inhibition of FKBP52 function likely occurs through
the inhibition of FK1 interactions as opposed to inhibition of PPlase enzymatic
activity. As discussed above, the FKBP52 FK1 domain as a whole is functionally
important and the proline-rich loop that overhangs the PPlase pocket could serve as a
functionally important interaction surface that contacts the receptor hormone binding
domain within the receptor-chaperone heterocomplex. A structure-based screen for
small molecules targeting an alternative surface of the androgen receptor hormone
binding domain identified a series of fenamic acid molecules that allosterically affect
coactivator binding at the activation function 2 (AF2) site through interaction with a
surface cleft termed binding function 3 (BF3) (Estebanez-Perpina et al. 2007).
Steroid hormone receptor structural comparisons identified this region to be a highly
conserved regulatory surface that could serve as a therapeutic target for hormone-
dependent diseases (Buzon et al. 2012). Interestingly, mutations within the AR BF3
surface (F673P, P723S, and C806Y) result in increased dependence on FKBP52 for
function. In addition, a drug termed MIJCI13 that specifically inhibits
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FKBP52-regulated AR activity is predicted to target the BF3 surface (De Leon et al.
2011). Thus, the BF3 surface is a putative FKBP52 interaction and/or regulatory
surface, and FKBP52 interaction with the receptor BF3 surface could allosterically
affect receptor interactions at the AF2 site. In addition to the AR BF3 surface, studies
suggest that the helix 1-3 (H1-H3) loop in the GR LBD is an important site of FKBP
regulation. Glucocorticoid insensitivity in guinea pig has been linked to sequence
differences in the H1-H3 loop and substitution of the guinea pig H1-H3 loop into rat
GR resulted in increased FKBP51-mediated repression of receptor activity. It is
hypothesized that changes in the HI-H3 loop result in changes within the GR-Hsp90
heterocomplex that favor FKBP51 repression over FKBP52 potentiation (Cluning
et al. 2013).

Due to FKBP52’s role as a known enhancer of AR transcriptional activity, and
AR being a critical driver of prostate cancer development, a genomic profiling study
recently sought out to understand the evolutionary mechanisms and genomic events
leading to FKBP52’s contribution to castration-resistant prostate cancer (CRPC).
Using matched prostate cancer tumor tissues from both before and after castration,
the tumor history of each sample was delineated via genomic profiling of DNA and
found that chromothripsis resulted in amplification of FKBP52. Further, protein
expression of FKBP52 in over 500 prostate cancer samples displayed increased
levels in CRPC tissues when compared to those which were hormone-naive and with
elevated FKBP52 expression correlated with poor patient prognosis (Federer-
Gsponer et al. 2018).

FKBP52 has been shown through in vitro studies to have a chaperone activity that
is independent of Hsp90 binding or PPlase (Bose et al. 1996; Pirkl and Buchner
2001). Like Hsp90 and numerous other chaperone components, FKBP52 can hold
misfolded proteins in a non-aggregated state that is amenable to refolding. The
possibility that chaperone holding activity displayed by FKBP52 plays a role in
altering receptor activity cannot be dismissed, but this appears unlikely since holding
activity is highly redundant among chaperone components. Furthermore, holding
activity, unlike FKBP52-dependent potentiation of receptor activity, is neither
PPlIase- nor Hsp90-dependent. Unfortunately, no one has identified an FKBP52
mutation that disrupts holding activity in a discrete manner.

In an effort to extend biochemical and cellular data to the physiological level,
FKBP52 gene knockout (52KO) mice were generated independently by two groups
(Cheung-Flynn et al. 2005; Yong et al. 2007). The mutant mice have striking
reproductive phenotypes that can be attributed, at least in part, to loss of steroid
receptor activity. Male 52KO mice are infertile and display abnormal virilization
with persistent nipples, ambiguous external genitalia, and dysgenic seminal vesicles
and prostate (Cheung-Flynn et al. 2005, Yong et al. 2007). These developmental
defects are consistent with androgen insensitivity in these tissues. Testicular mor-
phology, descent, histology, and spermatogenesis are normal and androgen produc-
tion and release from testes is unimpaired; these developmental features are not
highly androgen dependent. On the other hand, sperm isolated from the epididymis
have abnormal tail morphology and reduced motility suggestive of a defect in sperm
maturation within the epididymis, a process that is androgen dependent. Cellular



2 Functions of the Hsp90-Binding FKBP Immunophilins 49

studies confirm that FKBP52 is required for full AR function, which provides a
rational explanation for androgen insensitivity in tissues of 52KO males.

52KO females have no gross morphological abnormalities, yet are completely
infertile (Tranguch et al. 2005). Oocyte formation and release are not markedly
impaired, and oocytes are competent for in vitro and in vivo fertilization. Infertility is
due, at least in part, to a maternal failure of embryonic implantation and uterine
decidualization. During the early stages of pregnancy, the 52KO uterus does not
display the usual molecular or physiological markers for implantation. These events
are largely dependent on progesterone actions, and both molecular and cellular
studies confirm that FKBP52 is required for full PR activity. Additionally,
FKBP52 is related to the etiology of endometriosis given that 52KO mice display
increased endometrial lesions, inflammation, cell proliferation, and angiogenesis,
and FKBP52 protein levels are reduced in human endometrial tissues (Hirota et al.
2008).

Immunohistochemistry staining of granulosa cells (GCs) from rats with polycys-
tic ovarian syndrome (PCOS) displayed higher expression of FKBP52, and culturing
the GCs to overexpress or silence FKBP52 revealed a correlation between expres-
sion of AR, extracellular signal-regulated kinase (ERK), and phosphorylated ERK
(p-ERK)(ref.). The mRNA expression of both FKBP52 and AR in GCs from rat
ovaries with polycystic ovarian syndrome was found to be significantly increased
when compared to the non-PCOS models. Interestingly, levels of p-ERK1/2 were
also increased in the PCOS models. When FKBP52 was knocked down via siRNA
in the GCs, levels of AR and ERK1/2 were found to be decreased; however,
p-ERK1/2 was increased, indicating a potential AR regulation system through the
MAPK/ERK pathway (Song and Tan 2019).

FKBP52 is critical for reproductive development and success in both male and
female mice and its role can be traced to support of AR and PR function (Cheung-
Flynn et al. 2005; Tranguch et al. 2005). Although GR-related phenotypes are not
readily apparent, cellular and biochemical studies suggest that 52KO animals should
display phenotypes related to reduced GR activity. Given that abnormal Mendelian
ratios are not observed for heterozygous crosses, the 52KO phenotype does include
partial embryonic lethality. This combined with the reproductive defects leads to
difficulty in obtaining sufficient numbers of 52KO animals for experiments. Thus,
heterozygous fkbp52-deficient mice (52+/—) were generated to determine the in vivo
roles for FKBP52 in GR-mediated physiology. 52+/— mice displayed phenotypes
associated with reduced GR signaling including increased susceptibility to high-fat
diet-induced hepatic steatosis, hyperglycemia, hyperinsulinemia, and behavioral
alterations under basal and chronic stress conditions (Wadekar et al. 2004; Warrier
et al. 2010). To better understand the role of FKBPs in inflammation-associated
depression, lipopolysaccharide treatment of both male and female Wistar rats
resulted in exhibition of depressive-like behavior and further examination of GR
regulation found that GR, FKBP51, and FKBP52 nuclear localization in the pre-
frontal cortex only occurred in the male rats as opposed to the female rats, with
altered expression of the GR-regulated genes PTGS2 and BDNF (Brkic et al. 2016).
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Although FKBP52 does not alter ER function in cellular studies and 52KO mice
show no signs of estrogen insensitivity, FKBP52 expression is upregulated by
estrogens and FKBP52 is overexpressed in breast tumors (Ward et al. 1999). In
addition, the FKBP52 gene is methylated in ER-negative, but not in ER-positive
breast cancer cells (Ostrow et al. 2009). Thus, a few studies have identified FKBP52
as a potential regulator of at least ER expression in breast cancer.

Despite the fact that FKBPS52 was initially discovered in the immune system, it is
ubiquitously expressed and particularly abundant in the central nervous system.
Thus, it is not surprising that FKBPS52 is involved in neurodegenerative tauopathies
including Alzheimer’s (AD) and Pick’s disease, frontotemporal dementia and Par-
kinsonism linked to chromosome 17 (FTDP), and progressive supranuclear palsy
(Haelens et al. 2007; Hernandez and Avila 2007). The defining neuropathological
characteristic of tauopathies 1is the aberrant aggregation of insoluble
hyperphosphorylated microtubule-associated protein (MAP) tau within the neurons,
which is termed neurofibrillary tangles (NFTs) and is also referred to as paired
helical filaments (PHF) (Cao and Konsolaki 2011). Earlier studies have shown
FKBP52’s direct interaction with tau, particularly with its hyperphosphorylated
form, has antagonistic effects on tubulin polymerization and microtubule assembly
(Chambraud et al. 2007, 2010). In addition, FKBP52 has been shown to induce
Tau-P301L oligomerization and assembly into filaments (Giustiniani et al. 2014).
More importantly, knockdown of FKBP52 was shown to restore axonal outgrowth
and branching caused by Tau-P301L expression, thereby validating FKBP52 as an
attractive therapeutic target in tauopathies. FKBP52 is known to be involved in
subcellular rearrangement. Studies by Quintd et al. demonstrated that the
overexpression of FKBP52 can induce neuronal differentiation and neurite out-
growth (Quinta et al. 2010).

Previous reports have shown that copper (Cu) contributes to the neuropathology
of AD by interacting with copper binding domains of amyloid precursor proteins
(APPs) and beta-amyloid (Af) peptides causing the formation of amyloid plaques
and disrupting metal ion homeostasis (Barnham and Bush 2008; Drago et al. 2008;
Kong et al. 2007). FKBP52 is involved in the regulation of cellular Cu homeostasis
by interacting directly with the copper transport protein Atox1 (Sanokawa-Akakura
et al. 2004), which is part of the Cu efflux machinery in neurons. In addition, both
genetic and cellular data in Drosophila suggest a novel role for FKBP52 in the
regulation of intracellular Cu homeostasis via binding to APP, thus modulating the
toxicity level of AP peptides (Sanokawa-Akakura et al. 2010).

S100A proteins belong to the EF-hand type calcium (Ca**) sensing protein family
that are linked to regulation of various intracellular processes and are often expressed
in a cell- and tissue-specific fashion (Santamaria-Kisiel et al. 2006; Wright et al.
2009). Based on biochemical evidence, it has been demonstrated that SIO0A1 and
S100A6 interact with FKBP52 by competing with Hsp90 for the TPR domain in a
Ca2+-dependent manner (Shimamoto et al. 2010). Cellular data has linked S100A1’s
involvement in the neuronal cell dysfunction/death that occurs in AD by reducing
APP expression and stabilizing the intracellular Ca** homeostasis (Zimmer et al.
2005). It seems that the function of FKBP52 can be regulated by Ca®* homeostasis
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within the cell leading to effects on the phosphorylation of tau and pathology in
AD. Interestingly, a Drosophila orthologue of FKBP52 termed FKBP59 was found
to interact with the Ca®* channel protein TRPL in photoreceptor cells and to
influence Ca* influx (Goel et al. 2001). Subsequent studies revealed that FKBP52
similarly interacts with a subset of rat transient receptor potential channel (TRPC)
proteins that form Ca** channels in the mammalian brain (Sinkins et al. 2004). The
C-terminus of FKBP52 contains a predicted calmodulin-binding domain, which
enables the protein to bind to calmodulin-Sepharose in a Ca**-dependent manner,
the biological function of which is still unknown (Silverstein et al. 1999). In addition
to interacting with TRPC channels in the brain, FKBP52 was found to interact with
TRPC3 channels in the heart using a yeast two-hybrid screen (Bandleon et al. 2019).
In neonatal rat cardiomyocytes, downregulation of FKBP52 resulted in TRPC3-
dependent hypertrophic response and this can be attributed to its PPlase activity,
since overexpression of FKBP52 mutants lacking the PPIase domain displayed the
same effect.

Apart from the well-established roles of FKBP52 in steroid hormone receptor
function, FKBP52, as with other Hsp90 co-chaperones, has been identified in a
variety of client-Hsp90 heterocomplexes such as those containing kinases, aryl
hydrocarbon receptor, and heat shock transcription factor; however, many of these
interactions might reflect passive, transient association of the protein with Hsp90 and
have no functional impact on client activity. FKBP52 is also linked to various
Hsp90-independent interactions. Aside from the aforementioned Hsp90-
independent interactors, FKBP52 has been found to interact directly with the
interferon regulatory factor 4 (Mamane et al. 2000), which regulates gene expression
in B and T lymphocytes and forms a complex with tyrosine kinase receptor RET51,
which is involved in the development and maintenance of the nervous system (Fusco
et al. 2010) and FKBP associated protein 48 (Chambraud et al. 1996), which
influences proliferation of Jurkat T cells (Krummrei et al. 2003). Each of these
interactions was found to be disrupted by FK506 and to target the FKBP52 PPlase
domain to specific proline sites in each partner protein. Phenotypes potentially
related to these interactions have not yet been assessed in 52KO mice. Not only
does FKBP52 interact with proteins, FKBP52 is also capable of directly binding
adeno-associated virus DNA and regulating replication of the viral genome (Qing
et al. 2001; Zhong et al. 2004). The relevant DNA binding site in FKBP52 has not
been identified.

FKBP51

FKBP51/p54/FKBP54 was originally identified as a component of chicken PR
complexes (Smith et al. 1990, 1993a, b) and is now known to assemble as an
Hsp90 co-chaperone with all steroid receptors and other Hsp90-client complexes.
FKBP51 is functionally similar in some ways to FKBP52; both have similar PPlase
activity in the presence of model peptide substrates, both hold misfolded proteins in
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a folding competent state, and they compete for binding a common site on Hsp90
(Nair et al. 1997; Pirkl et al. 2001). As noted above, the overall structural similarity
of these FKBPs is consistent with these shared functional properties, yet their
distinct effects on steroid receptor activity belie these similarities. In addition to
the aforementioned structural differences between FKBP51 and FKBP52, another
distinction is that the FKBP51 gene is highly inducible by glucocorticoids, andro-
gens, and progesterone (Baughman et al. 1995; Kester et al. 1997; Zhu et al. 2001;
Yoshida et al. 2002; Vermeer et al. 2003; Hubler et al. 2003; Febbo et al. 2005).

FKBP51 acts as an inhibitor of GR, PR, and MR function excluding AR. The first
indication of its inhibitory role came from studies by Scammell and colleagues of
glucocorticoid resistance in New World primates (Reynolds et al. 1999; Denny et al.
2000). In squirrel monkeys GR has a relatively low affinity for hormone yet the
cloned monkey GR has an affinity similar to human GR in vitro. This observation led
to a search for cellular factors in monkey cells that reduced GR binding affinity. A
key factor identified was FKBP51, which is constitutively overexpressed in squirrel
monkey cells as well as cells of other New World primates, all of which display
some degree of glucocorticoid resistance. Human FKBP51 was also found to inhibit
GR function but not to the degree of squirrel monkey FKBP51, which differs in
amino acid sequence from its human counterpart at 15 of 457 amino acids. These
differences are scattered fairly evenly along the sequence, and mapping studies have
shown that amino acid changes in several domains contribute to the more potent
inhibitory actions of squirrel monkey FKBP51 (Denny et al. 2005). Crystal struc-
tures for both human and squirrel monkey FKBP51 have been solved (Sinars et al.
2003); although functionally relevant structural changes are not yet apparent, com-
parison of these structures should ultimately help to understand why inhibitory
potencies differ. The function of FKBP51 is dichotomous with respect to regulation
of the steroid hormone receptors. In vitro experiments have shown that
overexpression of human FKBP51 reduces glucocorticoid binding affinity and
nuclear translocation of GR which forms an ultra-short negative feedback loop for
receptor activity (Wochnik et al. 2005). This model is in agreement with the
aforementioned data from squirrel monkeys that have a general resistance to gluco-
corticoids even though they express GR that has the full potential to bind cortisol
with high affinity. Another interesting possibility by which FKBP51 decreases
overall GR signaling is by promoting nuclear translocation of the transcriptionally
inactive P isoform of GR (Zhang et al. 2008). Interestingly, FKBP51 has an
opposing effect on AR; it increases the receptor signaling in prostate cancer cells.
Using both recombinant protein- and cell-based assays, Ni et al. demonstrated that
FKBP51 stimulates chaperone complex association with AR, which further
enhances AR ligand binding and androgen-dependent transcription and cell growth,
resulting in an ultra-short positive feedback loop (Ni et al. 2010).

In a yeast model for studying functional interactions between steroid receptors
and human FKBPs, FKBP51 does not inhibit the activity of GR; however, FKBP51
can effectively reverse the potentiation of GR activity conferred by FKBP52 (Riggs
et al. 2003). Therefore, FKBP51 acts as an antagonist of FKBP52. FKBP51 has also
been shown to inhibit PR function (Hubler et al. 2003), presumably through a similar
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inhibition of FKBP52-mediated potentiation. The mechanism by which FKBP51
antagonizes FKBP52’s ability to enhance steroid receptor function is not understood.
Other Hsp90-binding TPR proteins do not block FKBP52 actions, so it does not
appear that competitive displacement of FKBP52 from receptor complexes by
FKBP51 can fully account for antagonism. On the other hand, FKBP51 is known
to preferentially associate with PR and GR complexes (Nair et al. 1997; Barent et al.
1998). Domain-swapping studies indicate that the FK1 PPlase domain partially
contributes to antagonism but sequences in the FK2 and TPR domain also play a
role (Riggs et al. 2003; Denny et al. 2005).

Given that FKBP51 gene expression is inducible by some steroid hormones and
FKBP51 can both activate and inhibit receptor function, one can reasonably spec-
ulate that FKBP51 serves as a cellular modulator of hormone responsiveness. In cells
unexposed to hormone, FKBP52 actions would predominate and promote a robust
response to hormone. As a consequence, FKBP51 levels would rise and partially
desensitize cells to a secondary hormone exposure in most systems excluding
AR-mediated prostate cancer cells. These effects can be demonstrated in cellular
models, but the physiological importance of this mechanism must be established
with animal models. Toward this goal, FKBP51 gene knockout (51KO) mice were
generated. Homozygous mutant animals are grossly normal and reproductively
viable, so FKBP51 does not appear to be critical in the same physiological processes
as FKBP52 (Storer et al. 2011). Nonetheless, modulatory actions of FKBP51 are
relevant but subject to compensatory physiological mechanisms. Interestingly, dou-
ble knockout of both FKBP51 and FKBP52 genes is embryonic lethal in mice,
suggesting either that FKBP51 and FKBP52 have a critical, mutually redundant
function or that FKBP51 and FKBP52 function in a common developmental path-
way that requires the distinct actions of both immunophilins (unpublished
observations).

The hypothalamic-pituitary-adrenal (HPA) axis controls stress response and is
associated with susceptibility to depression as well as antidepressant efficacy
(Touma et al. 2011; O’Leary et al. 2011). The HPA axis is regulated via negative
feedback of GR activity and FKBP51. GR resistance is conferred by the
overexpression of FKBP51, which is associated with an impaired negative feedback
mechanism (Denny et al. 2005). Polymorphisms in the FKBP5 gene are associated
with an increased susceptibility for depression, an increased response to antidepres-
sants, and an increased risk of posttraumatic stress disorder in response to adverse
early life events (Binder et al. 2004, 2008; Li et al. 2020). In addition, genotype-
directed environment-induced gene programming through FKBP5 gene methylation
was shown to mediate gene-childhood trauma interactions (Klengel et al. 2013).
Studies have shown that FKBP51 is a modulator of the cortisol-HPA axis response
to chronic stress and related psychiatric disorders (Hartmann et al. 2012; O’Leary
et al. 2011; Tatro et al. 2009; Touma et al. 2011). Indeed, 51KO mice displayed
diminished physiological and neuroendocrine response to the adverse effects of
chronic stress with fast recovery from acute stress episodes (Hartmann et al.
2012). The null mice also showed reduced adrenal gland weight and lower levels
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of basal corticosterone, suggesting an enhanced sensitivity of GR due to the loss of
FKBP51 (Hartmann et al. 2012).

As aforementioned, aggregation of MAP tau into neurofibrillary tangles in
neurons is the hallmark of tauopathies. In vitro studies demonstrated that PPlase
activity of FKBP51 regulates and balances the phosphorylation state of tau for
microtubule stabilization (Jinwal et al. 2010; Koren et al. 2011). Interestingly,
knockdown of FKBP51 dramatically reduced tau levels, while inhibiting its PPlase
activity led to increased stability and accumulation of phosphorylated tau (Jinwal
et al. 2010). In addition, overexpression of FKBP51 prevented tau clearance and
produced oligomeric tau in the brain, facilitating its neurotoxicity (Blair et al. 2013;
Jinwal et al. 2010). Studies by Blair et al. demonstrated that upregulation of FKBP51
expression is attributed to a decrease in FKBPS5 methylation in which the process
appears to be inversely proportional over time (Blair et al. 2013). This provides an
explanation for the detection of increased FKBP51 protein levels in aged murine
brains and the manifestation of depression and cognitive deficits in AD patients.

Aside from its role in steroid receptor function, FKBP51 has been identified in a
wide array of Hsp90-independent complexes. Biochemical and cellular studies have
demonstrated that FKBP51 inhibits apoptosis in irradiated melanoma cells (Romano
et al. 2010), promotes dephosphorylation of Akt and downregulation of the Akt
pathway (Pei et al. 2009), and is associated with polymorphisms in fkbp5 as seen in
affective and anxiety disorders (Binder 2009). Furthermore, FKBP51 has been
shown to regulate NFkB pathways. FKBP51 was identified (Bouwmeester et al.
2004) by a proteomic approach in complex with IKKa, one of the serine/threonine
kinases that stimulates phosphorylation and degradation of the NFxB inhibitor IxB.
Knockdown of FKBP51 expression was shown to inhibit IKKa activation and
thereby block TNFa-induced activation of NFkB, which confirmed the functional
significance of FKBP51 in IKKa complexes. Perhaps related to FKBP51-dependent
regulation of NFxB pathways, overexpression of FKBP51 has been correlated
(Giraudier et al. 2002) with idiopathic myelofibrosis, a rare clonal stem cell disorder.
Experimental overexpression of FKBP51 was subsequently shown to stimulate
NFxB activity and, as a consequence, to increase secretion of pro-fibrotic TGF-f1
(Komura et al. 2005). IKKa had previously been shown to be an Hsp90 client
(Broemer et al. 2004), so it is possible that, analogous to steroid receptor complexes,
FKBP51 assembles with IKKa as a heterocomplex with Hsp90. Whether FKBP51
Hsp90 binding or PPIase is required for regulation of IKKa has not been determined.

TPR-Domain Immunophilins Regulate the Subcellular
Localization of Soluble Proteins

Like almost all soluble proteins (RNA-binding proteins, cell proliferation regulators,
transcription factors, enzymes, etc.), unliganded steroid receptors are constantly
shuttling between cytoplasm and nucleus. Upon steroid binding, receptors
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accumulate in the nuclear compartment, but a fraction of this pool escapes to
cytoplasm and must be dynamically reimported (Fu et al. 2018; Yang et al. 1997).
Receptors such as GR, MR, AR, and PR-B reside mostly in the cytoplasm in the
absence of steroid, whereas others such as ER or PR-A are constitutively located in
the nucleus, even in the absence of hormone. Regardless of their primary localiza-
tion, all these receptors shuttle dynamically between both compartments (Elbi et al.
2004; Galigniana et al. 2010a) such that the final localization of a given receptor
under a certain biological condition (i.e., mostly cytoplasmic or nuclear) is the result
of the proper displacement of that dynamic equilibrium between both cellular
compartments (Mazaira et al. 2021b). Accordingly, the presence of hormone favors
the import-driven mechanism that results in the nuclear concentration of
GR. Inasmuch as the transport mechanism operates bidirectionally, specific
protein-protein interactions should be required to determine the direction of signal
protein movement and the final dynamic equilibrium. In this sense, steroid receptors
are associated with Hsp90*TPR-domain immunophilin complexes, a protein-protein
association that regulates their subcellular localization. Thus, the presence of
FKBP52 favors nuclear concentration of receptors, whereas FKBP51 favors the
cytoplasmic accumulation.

The classical model heuristically posited during the early 1980s stated that after
steroid binding, the receptor must dissociate from the Hsp90-based heterocomplex
(a process referred to as “transformation’) to become nuclear. Then, it was discov-
ered that immunophilins are members of that GR*Hsp90 heterocomplex (Tai et al.
1992). Perhaps one of the most interesting findings related to the regulation of the
subcellular localization of GR was the fact that PPIase domain of FKBP52 interacts
with components of the dynein/dynactin motor protein complex (Galigniana et al.
2001). This led to the discovery that the Hsp90sFKBP52 heterocomplex works as a
linker between the GR and the protein system that powers the retrograde movement
of the receptor (Galigniana et al. 2010b; Wochnik et al. 2005) and also for its passage
through the nuclear pore complex (Mazaira et al. 2020).

Figure 2.3 depicts a scheme of the FKBP52-dependent model for GR transport.
Note that the cytoplasmic receptor has FKBP51 as prevailing immunophilin in the
complex, which is exchanged by FKBP52 upon steroid binding (Davies et al. 2002;
Gallo et al. 2007; Daghestani et al. 2012). Importantly, despite the similar structures
of FKBP51 and FKBP52, the former immunophilin is not a relevant dynein
interactor (Wochnik et al. 2005), which justifies the need for the protein exchange
to release the inhibitory immunophilin FKBP51 when the receptor is stimulated
since the active movement is mediated by dynein (Daghestani et al. 2012; Johnston
et al. 2012; Galigniana et al. 2010b; Lukic et al. 2015; Vandevyver et al. 2012).

Because the domain of FKBP52 involved in dynein binding is the FK1 region of
the PPIase domain, the potential interference of the macrolide FK506 was a likely
possibility. However, neither dynein binding nor receptor retrotransport is prevented
by FK506 and these events also occur with inactive point mutants of the PPlase
domain. Therefore, it is regarded that such interaction does not involve or affect the
FK506 binding pocket of the immunophilin. The crystallographic structure of the
N-terminal domain of FKBP52 shows a pocket of B-sheets that forms a hydrophobic
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Fig. 2.3 TPR domain proteins regulate GR shuttling and the biological response. The scheme
depicts the steps where TPR proteins exert regulation on the GR mechanism of action, i.e., the
cytoplasmic assembly of the GR*Hsp90 heterocomplex, the cytoplasmic transport of GR towards
the nucleus, its interaction with nuclear pore complex (NPC) factors, transcriptional activity upon
GRE (glucocorticoid response elements) binding in target genes, GR association to nuclear matrix
structures, and nuclear export. Note the exchange of immunophilins upon steroid binding and that
FKBP51 is depicted as the preferred TPR-protein associated to the Hsp90 complex in the empty
receptor. Transformation (i.e., Hsp90-complex dissociation) occurs in the nuclear compartment
followed by receptor dimerization. The receptor is targeted to the promoter binding-sites to trigger
the proper biological response and the heterocomplex is recycled
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patch, which was assigned to be the potential binding site for the motor protein
(Li et al. 2003). It is important to emphasize that this active transport via
FKBP52edynein machinery simply accelerates the nuclear accumulation of the client
protein, but it is not an absolute requirement for this transport since after the
disruption of the complex, the nuclear accumulation of the receptor takes place
anyway, although the nuclear translocation rate is remarkably slower (~50-70 min
versus ~4-6 min for the normal active transport) (Galigniana et al. 2010b;
Silverstein et al. 1997).

A similar mechanism based on the FKBP52 complex has also been suggested for
other primarily cytoplasmic receptors such as AR (Thadani-Mulero et al. 2014), PR
(Banerjee et al. 2008), and MR (Piwien Pilipuk et al. 2007), as well as for other
nuclear factors such as the ecdysone receptor (Vafopoulou and Steel 2012), p53
(Galigniana et al. 2004), the catalytic subunit of telomerase hTERT (Jeong et al.
2016), the diphtheria toxin (Schuster et al. 2017), NF-xB (Erlejman et al. 2014a),
RAC3 (Colo et al. 2008), adeno-associated virus-2 (AAV) (Zhao et al. 2006), etc.,
just to mention a few relevant examples.

We refer to the GReHsp90sFKBP52edynein heterocomplex as the
“transportosome.” When it was cross-linked and introduced into digitonin-
permeabilized cells, all members of the transportosome molecular machinery were
recovered in a complex in the nuclear compartment upon cell stimulation with
steroid (Echeverria et al. 2009), suggesting that the transportosome is capable of
translocating intact through the nuclear pore complex. This observation was
confirmed for native complexes associated to the MR (Galigniana et al. 2010b),
indicating that the ancient concept of “transformation” (i.e., dissociation of the
Hsp90-based heterocomplex) is indeed a nucleoplasmic rather than a cytoplasmic
event. This was confirmed using different methodologies (Grossmann et al. 2012;
Presman et al. 2014). It is important to emphasize that, in contrast to the steps posited
for the classic model of action in a heuristic manner, all the mechanistic steps
described here have been experimentally supported for each individual step, and
also predicts that other TPR-domain immunophilins may replace FKBP52 in the
transport machinery. The Hsp90-binding immunophilin FKBPL/WISp39 also favors
GR retrotransport in similar fashion as FKBP52 (McKeen et al. 2008).

Because the whole transportosome passes intact through the nuclear pore com-
plex, it can be implied that the chaperones and immunophilins of the complex should
interact with structures of the pore such as nucleoporins and importins. This predic-
tion was experimentally demonstrated (Echeverria et al. 2009; Mazaira et al. 2020).
Based on these observations, it was postulated (Galigniana et al. 2010a) that the
permeability barrier of the pore is in part due to a sieve structure created by the
reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats, which
create a three-dimensional meshwork with hydrogel-like properties (as described by
Frey et al. (2006)). According to the novel model, nuclear transport receptors
overcome the size limit of the sieve and catalyze their own nuclear pore passage
by a competitive disruption of adjacent inter-repeat contacts, which transiently opens
adjoining meshes. The chaperone complex would enhance the capability of the
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receptor to overcome the resistance of the meshwork simply by accomplishing its
standard chaperone role.

The overexpression of the TPR domain of the immunophilin impairs the nuclear
import of the GR (Mazaira et al. 2020, 2021a), which is an expected effect for a
disrupted transport mechanism that requires the involvement of the transportosome
complex. Interestingly, the passage through the nuclear pore is also significantly
delayed, suggesting an inefficient interaction of the receptor with nuclear import
factors. Accordingly, the formation of functional complexes of nucleoporins and
importins with Hsp90 and FKBP52 has been demonstrated (Echeverria et al. 2009;
Mazaira et al. 2020). Moreover, the nuclear retention of the GR is shortened, and its
nuclear export is also accelerated by the overexpression of the TPR peptide. This is
the consequence of the capability of FKBP52 (and also PP5) to anchor the GR to the
nucleoskeleton via NuMA (Nuclear Mitotic Apparatus) protein, a highly abundant
component of the nuclear matrix where that serves a non-mitotic structural role and
occupies the majority of the nuclear volume. It has recently been demonstrated that
both FKBP52 and PP5 co-purify associated to nucleoskeleton and link the GR to
other nuclear regions excluded from the transcriptionally active GRE foci (Mazaira
et al. 2020, 2021a).

It is interesting to point out that molecular modeling showed that the isolated TPR
peptide of PP5 overlaps the overall conformation of the 14-3-3¢ monomer. Not
surprisingly, 14-3-3c functions in a similar manner to the transfected TPR peptide
regarding the GR nuclear import and nuclear behavior (Mazaira et al. 2021a). On
the other hand, the overexpression of FKBP51 also delays GR nuclear import due to
the incapability of this immunophilin to recruit dynein and also expels the GR from
the nuclear compartment, perhaps due to competition with FKBP52 for the nuclear
anchoring sites. Similar observations and conclusions were also achieved for the role
of FKBP52 in the mechanism of action of NF-kB (Erlejman et al. 2014a; Lagadari
et al. 2016a) and hTERT, the catalytic subunit of telomerase (Lagadari et al. 2016b).
The latter represents an interesting property since FKBP51 concentrates in the
nucleus upon several stressing situations, whereas hTERT is exported to the cyto-
plasm and that fraction that is not degraded via proteasome moves into mitochondria
(Lagadari et al. 2016b), a feature that has been associated with the resistance to
apoptotic stimuli (Maida and Masutomi 2015; Lipinska et al. 2017) and may be part
of a complementary mechanism for the anti-apoptotic actions reported for FKBP51
(Gallo et al. 2011; Lagadari et al. 2016b).

Xap2

Apart from the highly characterized steroid hormone receptor-associated FKBPs,
several other TPR-containing FKBPs are present in higher vertebrates. As men-
tioned in earlier sections of this chapter, Xap2 is a TPR-containing immunophilin
that is found almost extensively in AhR complexes. As the name implies, Xap2 also
functionally interacts with the hepatitis B virus protein X (Kuzhandaivelu et al.
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1996). Xap2 was shown to exert an inhibitory effect on both GR and ERa, but not
ERp activity, and may inhibit AR and PR as well (Cai et al. 2011; Laenger et al.
2009; Schulke et al. 2010). In addition, Xap2 is known to have functional interac-
tions with peroxisome proliferator-activated receptor o (PPARa) (Sumanasekera
et al. 2003) and thyroid hormone receptor ; however, these interactions have not
been extensively characterized. AhR is a ligand-dependent transcription factor that
mediates the physiological response to specific environmental contaminants termed
polycyclic aromatic hydrocarbons, the most notorious of which is 2,3,7,8-
tetrachlorodibenzo-p-dioxin. Similar to steroid receptors, AhR requires assembly
with Hsp90 and p23 to achieve a mature ligand binding conformation (reviewed in
Petrulis and Perdew 2002), although the AhR ligand binding domain is unrelated to
steroid receptor ligand binding domains. AhR complexes also contain an FKBP
component, but in this case, it is Xap2 rather FKBP52 or FKBP51.

As with FKBP51 and FKBP52, Xap?2 has a C-terminal TPR domain that is known
to facilitate binding to the MEEVD motif on Hsp90 (Carver et al. 1998) (Fig. 2.1). In
addition, Xap2 contains one N-terminal FK domain that lacks drug binding and also
likely lacks PPlase activity. Although the FK domain is not required for Hsp90
binding, it is required for an interaction with the AhR-Hsp90 complex that func-
tionally influences receptor activity (Carver et al. 1998; Kazlauskas et al. 2002). In a
cell-free assembly system that lacks Xap2, AhR is capable of assembling with Hsp90
and binding ligand, and upon ligand binding AhR is able to bind the AhR response
elements on DNA (Meyer et al. 1998). Again, similar to FKBP52 or FKBP51 in
steroid receptor complexes, Xap2 is not required for basal maturation of AhR
activity, but in both yeast and mammalian systems, Xap2 can modulate
AhR-mediated reporter gene expression (Miller 2002; Ma and Whitlock 1997;
Meyer et al. 1998; Carver et al. 1998). By titrating the relative level of Xap2 protein
in cells, AhR activity can be enhanced or decreased. For example, when Xap2 is
expressed at a level two- to threefold higher than normal, binding of p23 in the
AhR-Hsp90 complex is reduced (Hollingshead et al. 2004). Displacement of p23 by
high levels of Xap2 would destabilize binding of Hsp90 to AhR and reduce the
proportion of AhR in functionally mature complexes. Conversely, there is also
evidence that at elevated Xap2 levels AhR is protected from ubiquitination and
proteosomal degradation which would increase total AhR levels (Lees et al. 2003;
Lapres et al. 2000; Meyer et al. 2000; Meyer and Perdew 1999; Kazlauskas et al.
2000). Finally, several studies suggest that Xap2 facilitates nucleocytoplasmic
shuttling of AhR following ligand binding (Berg and Pongratz 2002; Petrulis et al.
2000; Kazlauskas et al. 2000, 2001; Petrulis et al. 2003).

The physiological relevance of Xap2 interactions with AhR complexes has not
been examined in a whole animal model, but Xap2 could potentially influence any of
several physiological and pathological pathways mediated by AhR. Mice that are
homozygous for a disrupted AhR gene have many physiological and developmental
defects; among these are immune system impairment, hepatic fibrosis, cardiac
hypertrophy, impaired insulin regulation, and defects in ovarian and vascular devel-
opment (Fernandez-Salguero et al. 1995; Lahvis et al. 2005; Thackaberry et al. 2003;
Benedict et al. 2000). In addition, many of the toxic and teratogenic effects produced
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by AhR ligands require an intact AhR signaling pathway (Mimura and Fujii-
Kuriyama 2003; Fernandez-Salguero et al. 1996). For example, dioxin-induced
defects in prostate development are absent in AhR knockout mice (Lin et al.
2002). In a conditional Xap2 hepatic knockout mouse model, AhR and Cyplbl
levels were significantly reduced; however, Cyplal and Cypla2 were induced to
levels seen in wild-type mice in response to dioxin challenge (Nukaya et al. 2010).
Development of a mouse strain lacking Xap2 would aid in determining the role Xap2
plays in these processes and might validate Xap2 as a potential target for therapeutic
intervention. In addition to the above functional interactions, Xap2 has several other
interacting partners including, but not limited to, PDE4AS5 and 2A3, HSC70, TIF-2,
TRp1, RET, and TOMM?20, thereby modulating a host of physiological functions
(Reviewed in Trivellin and Korbonits (2011)). Examination of protein expression
levels of Xap2 interacting protein, PDE4A4, and its closely related isoform
PDE4AS8, in human pituitary tissues and pituitary adenomas found that both
interacting proteins were overexpressed in adenomas (Bolger et al. 2016).

FKBP36

FKBP36 (gene name FKBP6 in humans) is another TPR-containing FKBP that is
structurally similar to Xap2, yet functionally distinct. FKBP36 has a single
N-terminal FK domain and a C-terminal TPR domain. In vitro studies show that
FKBP36 binds Hsp90 and can assemble with steroid receptor complexes
(unpublished observation), but there is currently no evidence that FKBP36 alters
receptor activity. FKBP36 mRNA is broadly expressed in vertebrate tissues with an
exceptionally high level observed in the testis; male FKBP36 knockout mice lack
sperm and FKBP36 was shown to be a critical component in meiotic synaptonemal
complexes (Crackower et al. 2003). FKBP36 has been found to interact with Hsp72
which, in conjunction with clathrin, was found to be a critical element of male
meiosis (Jarczowski et al. 2008). FKBP36 interacts with and inhibits GAPDH
activity and expression (Jarczowski et al. 2009). FKBP36 forms a complex with
Hsp90 and GAPDH and this complex may regulate GAPDH activity in a manner
akin to FKBP/Hsp90/steroid receptor complexes (Jarczowski et al. 2009). FKBP36
can exert an effect on GAPDH in an Hsp90-independent manner by either directly
inhibiting NAD+ binding to GAPDH or by decreasing GAPDH expression
(Jarczowski et al. 2009). Patients with Williams syndrome, which is characterized
by congenital cardiovascular defects, dysmorphic facial features, mental retardation,
growth defects, azoospermia, and hypercalcemia, are typically haploinsufficient for
FKBP6 (Meng et al. 1998); however, the contribution of FKBP6 deletion in this
syndrome is not clear since several contiguous genes on chromosome 11, including
genes for elastin and LIM-Kinase 1, are also deleted in these patients and clearly
contribute to some phenotypic aspects.
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FKBP38

FKBP38 (gene name FKBP8) contains a glutamate-rich domain, FK domain, three
TPR domains, and a calmodulin-binding motif. FKBP38 is ubiquitously expressed
in all tissues, with high expression in neuronal tissues. Among the FKBP family,
FKBP38 is novel in several respects, including a unique C-terminal transmembrane
anchor domain, used to localize FKBP38 to both the mitochondrial and ER mem-
branes. Although FKBP38 contains a PPlase domain, PPIase activity is regulated.
The structure of the PPlase domain is similar to the prototypical family member,
FKBP12; however, there are important differences in the three-dimensional structure
of the loop and the binding pocket of the active site (Maestre-Martinez et al. 2006;
Kay 1996). The loss of several aromatic residues in the active site leads to lower
PPIlase activity, even upon activation, and low affinity for FK506 (Maestre-Martinez
et al. 2006; Edlich et al. 2006). FKBP38 PPlase activation is dependent on the
calmodulin-binding domain and calmodulin/Ca*? binding stimulates PPlase activity
(Edlich et al. 2005, 2007b; Maestre-Martinez et al. 2010).

FKBP38 participates in a number of cellular processes involving protein folding
and trafficking, apoptosis, neural tube formation, CFTR trafficking, and viral repli-
cation (Edlich and Lucke 2011; Banasavadi-Siddegowda et al. 2011). FKBP38
interacts with the anti-apoptotic proteins Bcl-2 in regulating apoptosis and appears
to have both pro- and anti-apoptotic activities that are likely tissue specific (Shirane
and Nakayama 2004). In general FKBP38 anti-apoptotic activity appears to regulate
apoptosis by transporting Bcl-2 to the mitochondrial membrane stabilizing Bcl-2 and
inhibiting apoptosis (Shirane and Nakayama 2004). Two mechanisms on how
FKBP38 protects Bcl-2 from degradation have been explored. One involves the
interaction between FKBP38 and a caspase cleavage site located within Bcl-2 (Choi
et al. 2010). When FKBP38 is associated with Bcl-2, access to the caspase cleavage
site may be blocked, preventing caspase-mediated Bcl-2 degradation (Choi et al.
2010). The second mechanism is through an interaction between the S4 subunit of
the 19S proteasome complex, thereby regulating proteasome activity. However, in
neuroblastoma cells the active FKBP38/calmodulin/Ca** complex has a
pro-apoptotic affect by interfering with the ability of Bcl-2 to interact with and
block pro-apoptotic proteins (Edlich et al. 2005). In this case an interaction between
Hsp90 and the FKB38/calmodulin/Ca*® complex interferes with FKP38
pro-apoptotic activity, which could impede apoptosis (Edlich et al. 2007a). In
addition to its broad anti-apoptotic roles, FKBP38 is known to be found in the
outer mitochondrial membrane to function as an adaptor protein with anti-apoptotic
activity. By way of an N-terminal region which interacts with LC3A, FKBP38 is
able to effectively engage lipidated LC3A to damaged mitochondria to induce
Parkin-independent mitophagy, without becoming degraded itself (Bhujabal et al.
2017). As an outer mitochondrial membrane protein, FKBP38 has been found to
regulate cell death of CD8 T cells by associating with Bcl-2 and calcineurin to
regulate Smyd1C, a histone methyltransferase mainly expressed in activated CD8 T
cells (Nie et al. 2017). To further define the role of FKBP38 in mitophagy, studies
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examining its effects in clearing damaged mitochondria in myocytes found that,
while knockdown of FKBP38 in HEK293 or H9¢2 myocytes did not result in altered
mitophagy, it did produce an accumulation of misfolded protein aggregates in H9¢2
myocytes (Misaka et al. 2018). Hearts from Fkbp38 ~/~ mice which were subjected
to transverse aortic constriction revealed elevated numbers of apoptotic
cardiomyocytes along with increased levels of caspase-12 and endoplasmic reticu-
lum stress markers, hinting at a potential protective role against hemodynamic stress.

FKBP38 is also implicated in the regulation of mTOR signaling through an
interaction with Rheb (Rosner et al. 2003). mTOR regulates a wide range of cellular
processes, including cell cycle and cell growth, in response to various conditions,
including fluctuations in nutrient and energy levels, and growth factors (Yang and
Guan 2007). The FKBP12/rapamycin complex interacts with and inhibits mTOR
activity (Brown et al. 1994). However, FKBP38 interacts with and antagonizes
mTOR in a rapamycin-independent manner (Bai et al. 2007). Overexpression of
FKBP38 decreases the induction of mTOR-regulated genes, and siRNA-induced
reduction of FKBP38 increased mTOR activity (Bai et al. 2007; Fu et al. 2015).
Rheb disrupts the mTOR/FKBP38 complex by binding to FKBP38 in a nutrient-
dependent manner leading to an induction of mTOR-responsive genes (Bai et al.
2007).

FKBP38 is also involved in neural tube formation as the loss of FKBP38 leads to
gross abnormalities during embryonic formation of the nervous system (Wong et al.
2008). It has been speculated that this is due to deregulation of the Sonic hedgehog
(SHH) pathway during neural tube formation, where FKBP38 is a SHH antagonist,
and the loss of FKBP38 function leads to over-activity of SHH during development,
resulting in neuronal malformation (Cho et al. 2008).

In addition to the regulatory role in response to nutritional conditions, FKBP38 is
also involved in the cellular response to hypoxia. Hypoxia-inducible transcription
factors (HIFs) are involved in the cellular response to low oxygen levels and, under
normal conditions, are quickly degraded by prolyl-4-hydroxylase (PDH) enzymes
(Wenger et al. 2005). FKBP38 interacts with PHD2 at the endoplasmic reticulum
and mitochondrial membranes and regulates PDH?2 activity through proteasomal
degradation, thereby regulating HIF stability and downstream gene expression in
response to hypoxic conditions (Barth et al. 2009).

FKBP38 is involved in CFTR synthesis and folding by negatively regulating
CFTR synthesis and positively regulating folding (Banasavadi-Siddegowda et al.
2011). Knockdown of FKBP38 increased CFTR production, but reduced post-
translational modification, resulting in a lower expression of functional CFTR
(Banasavadi-Siddegowda et al. 2011). Interestingly, FKBP38 PPlase activity is
required for the regulation of CFTR folding.

There is evidence of FKBP interaction with TRPC channels, and FKBP38 is not
exempt. In human platelets, FKBP38 is believed to have a regulatory role in
non-capacitative calcium entry through TRPC6 by working in tandem with
FKBP25 (Lopez et al. 2015).

Finally, FKBP38 is required for replication of the hepatitis C virus (HCV). In
HCYV infection the viral nonstructural protein SA (NS5A) has been shown to form a
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complex with FKBP38 and Hsp90 at the mitochondrial and endoplasmic reticulum
membranes (Wang et al. 2006). Either knockdown of FKBP38 with siRNA or
inhibition of Hsp90 activity with geldanamycin results in decreased HCV RNA
replication (Okada et al. 2004). In addition to HCV, FKBP38 was also found to
interact with the NS5A protein of classical swine fever virus to promote viral
replication, as shRNA knockdown of FKBP38 resulted in decreased viral replication
and FKBP38 overexpression promoted expression of viral RNA (Li et al. 2016).

FKBPL

FKBPL shares the same general structure as other members of the FKBP family,
including a TPR domain that facilitates Hsp90 binding and a PPlase domain, which
lacks catalytic activity (Robson et al. 1999; Sunnotel et al. 2010). FKBPL was
initially discovered while screening for genes that were protective against ionizing
radiation (Robson et al. 1997, 1999). FKBPL is most closely related to the larger
FKBP52 (26% identity) (Robson and James 2012). However, the PPlase domain
only shares 17% identity with the FKBP52 PPlase region (Robson and James 2012).
The FKBPL TPR domain shares 33% amino acid identity with FKBP52 and has the
ability to interact with Hsp90 stabilizing steroid hormone receptor conformations as
well as stabilizing newly synthesized p21 preventing its degradation (Robson and
James 2012; Jascur et al. 2005). There is conflicting data on FKBPL and its role in
conferring radiation resistance. Jascur et al. originally showed that, in response to
high-dose radiation, the FKBPL/Hsp90/p21 complex stabilized p21 leading to G2
cell cycle arrest, which conferred a pro-survival effect. However, later data has
demonstrated that there is a downregulation of p21 in response to radiation exposure
and decreased p21 was involved in pro-survival after radiation exposure (Chu et al.
2004; Robson et al. 1999, 2000). In addition to radiation resistance, FKBPL plays a
significant role in tumor progression (Robson et al. 1997, 1999, 2000; Jascur et al.
2005). In tumor cells FKBPL appears to participate in not only growth of the tumor,
but also in the sensitivity of the tumor to various chemotherapeutic agents (Bublik
et al. 2010). For example, high levels of GSTE-1 interact with the FKBPL/Hsp90/
p21 complex, which leads to p21 stabilization, leading to resistance to the chemo-
therapeutic agent taxane (Bublik et al. 2010). Although the exact radio- and chemo-
protective role of FKBPL needs to be elucidated, the data clearly show that FKBPL
is an important factor in cell cycle progression, cell survival, and tumor progression.

Like other Hsp90-associated FKBP proteins, FKBPL also forms complexes with
various steroid hormone receptors (reviewed in Erlejman et al. 2014b). FKBPL and
Hsp90 appear to stabilize AR, ER, and GR/Hsp90 complexes (Sunnotel et al. 2010;
McKeen et al. 2008, 2010). Similar to FKBP52, FKBPL affects the AR-dependent
expression of prostate-specific antigen (Sunnotel et al. 2010). Sunnotel et al. dem-
onstrated that two populations of azoospermic males had alterations in their FKBPL
gene, which may alter FKBPL interaction with AR and contribute to infertility in the
two populations. FKBPL was also shown to colocalize with the GR/Hsp90 complex
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(McKeen et al. 2008). Dexamethasone treatment resulted in the colocalization of
FKBPL and GR in the nucleus and the upregulation of GR-response genes in a
prostate cancer cell line (McKeen et al. 2008). Translocation of the FKBPL/GR
complex appears to be mediated by an interaction with dynamitin motor proteins,
similar to the mechanism described for FKBP52 (McKeen et al. 2008).

FKBPL expression is regulated by estrogen and FKBPL functionally interacts
with the ER/Hsp90 complex (McKeen et al. 2010). In addition, FKBPL expression
correlates with breast cancer tumor growth as FKBPL and ER expression are
inversely related; increased FKBPL levels lead to decreased ER expression
(McKeen et al. 2010; Abukhdeir et al. 2008). Overexpression of FKBPL is associ-
ated with increased survival of untreated breast cancer patients and sensitizes cancer
cells to the anti-proliferative effect of both tamoxifen and fulvestrant, which pro-
motes increased recurrence-free survival (McKeen et al. 2011; Han et al. 2000).
Interestingly, overexpression of related FKBP proteins in tumors is associated with a
poor treatment outcome and prognosis (Romano et al. 2010; Solassol et al. 2011;
Zhou et al. 2017). Conversely, increased levels of FKBPL correlate to a more
positive response to treatment and a more favorable prognosis (McKeen et al.
2010, 2011; Han et al. 2006). Further examining the effects of FKBPL in breast
cancer progression, McClements and colleagues found that FKBPL overexpression
or treatment with FKBPL peptide derivatives in various ER+ and ER- breast cancer
models (including in vitro, in vivo, and ex vivo) reduced the number of cancer stem
cells in ER+ and ER- models and delayed metastasis in triple negative breast cancer
models through downregulation of DLL4 and Notch4 (McClements et al. 2019).
FKBPL stability is regulated by RBCKI, and as with FKBPL, RBCKI is
upregulated by estrogen and can interact with the FKBPL/ER/Hsp90 complex
(Donley et al. 2013). Increased expression of both FKBPL and RBCK1 appears to
correlate with increased survival, however, elevated RBCK1 levels reduce the
efficacy of tamoxifen (Donley et al. 2013). The interactions leading to tumor
survival and progression still need to be explored further.

Finally, FKBPL possesses anti-angiogenic properties (Yakkundi et al. 2013). In a
mouse xenograft tumor model overexpression of FKBPL resulted in decreased
tumor growth and tumor necrosis (Crabb et al. 2009). The anti-angiogenic effects
of FKBPL are mediated through the N-terminal portion of the protein comprised of
amino acids 34-58, termed peptide AD-01, which is currently being explored as a
novel anti-angiogenic drug (Valentine et al. 2011; Yakkundi et al. 2013). FKBPL
may also prove to be a valuable anti-angiogenic biomarker in cardiovascular disease
(CVD). Increased plasma FKBPL was found in patients with CVD and to be a
determinant of CVD, suggesting it’s likely a novel mechanism in the development of
CVD (Januszewski et al. 2020). Further, reduced plasma and placental CD44/
FKBPL ratios were found to be indicative of preeclampsia risk in women at
15 and 20 weeks gestation, when compared to healthy controls (Todd et al. 2021).
Exploiting FKBPL’s role in inhibiting angiogenesis, siRNA targeting FKBPL is
being explored as a means of wound therapy by promoting angiogenesis. In vivo
wound healing studies using a bilayered patch impregnated with siFKBPL
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nanoparticles displayed 326% increase in blood vessel density as compared to the
untreated wounds (Mulholland et al. 2019).

Plant FKBPs

Hsp90-binding TPR immunophilins have been identified in all eukaryotes exam-
ined. A few examples of plant TPR-containing FKBPs are shown in Fig. 2.1. The
TPR domain of each FKBP is very similar in amino acid sequence to that of
vertebrate proteins; these are presumed to bind Hsp90, but that has not been
determined in all cases. The plant and insect FKBPs contain one or more PPlase-
related domain and can contain other functional domains. For example, AfTFKBP42
contains a C-terminal transmembrane domain that localizes the protein to the inner
plasma membrane and the vacuolar membrane (Kamphausen et al. 2002; Geisler
et al. 2003, 2004).

There is ample evidence to suggest that the plant and insect FKBPs are physio-
logically important. Mutations in AtFKBP42 cause the severe developmental phe-
notypes termed twisted dwarf 1 (TWD) (Geisler et al. 2003) and ultracurvata
(UCU2) (Perez-Perez et al. 2004). The mechanism by which these phenotypes
occur likely involves impairment of membrane transport of the growth hormone
auxin, as AfFKBP42 is known to interact with several ATP-binding cassette (ABC)
transporters on the plasma and vacuolar membranes (Geisler et al. 2003, 2004; Liu
et al. 2001; Geisler and Hegedus 2020; Bailly et al. 2014). Mutations in AtFKBP72
result in a class of mutants termed pasticcino or pas mutants, which are characterized
by a wide variety of developmental defects (Vittorioso et al. 1998). AtfFKBP42 has
been found to play a crucial role in the biogenesis of auxin-transporting ABCBs,
aiding in an early quality control step of nascent ABC transporters, and has recently
been shown to be necessary for ABC-transporter trafficking to the plasma membrane
following the endoplasmic reticulum (Geisler and Hegedus 2020; Zhu et al. 2016).
Two Hsp90-binding TPR FKBPs in wheat, wFKBP72 and the heat shock-inducible
wFKBP77, have been shown in transgenic plants to distinctively influence devel-
opmental patterns (Kurek et al. 2002). In Arabidopsis, FKBP15-1 and FKBP15-2
were found to influence nutrient absorption through negative modulation of lateral
root development by inhibiting the catalytic activity of vacuolar invertase 2 (VIN2)
via the FKBPs PPIase activity (Wang et al. 2020). Highlighting the various roles of
plant FKBPs, crystal structures of another Arabidopsis FKBP, FKBP53, revealed the
domains necessary to exert its functions as a histone chaperone—although its
C-terminal domain displayed strong PPlase activity, the N-terminal domain contains
a nucleoplasmin fold which interacts with H2A/H2B and H3/H4 oligomers (Singh
et al. 2020). A recent study found that ectopic expression of an FKBP12 rice
homolog, termed OsFKBP12, in Arabidopsis increased the plant’s susceptibility to
Pseudomonas syringae and the plant FKBP12 homolog was shown to be a negative
regulator of salt tolerance (Cheung et al. 2020).
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Summary

In addressing the physiological importance of PPlases, Heitman and colleagues
(Dolinski et al. 1997) generated an S. cerevisiae strain that lacked all 12 PPlase
genes in the FKBP and cyclophilin families; this pluri-mutant strain displayed some
growth abnormalities but was viable, thus demonstrating that these genes collec-
tively are non-essential in yeast. Nonetheless, it has become clear that the Hsp90-
binding FKBP immunophilins, through interactions with steroid receptors, kinases,
and other cellular factors, play important physiological and pathological roles in
mammals. Significant progress has been made on the elucidation of these roles and
the definition of underlying molecular mechanisms. This increased understanding of
FKBP biology is beginning to drive the identification and development of specific
inhibitors targeting individual FKBP immunophilins for the treatment of a variety of
human diseases.
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Chapter 3 m)
Hsp70/Hsp90 Organising Protein (Hop): e
Coordinating Much More than Chaperones

Kelly Schwarz, Swati Baindur-Hudson, Gregory Lloyd Blatch,
and Adrienne Lesley Edkins

Abstract The Hsp70/Hsp90 organising protein (Hop, also known as stress-
inducible protein 1/STI1/STIP1) has received considerable attention for diverse
cellular functions in both healthy and diseased states. There is extensive evidence
that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90,
playing an important role in the productive folding of Hsp90 client proteins,
although recent evidence suggests that eukaryotic Hop is regulatory within chaper-
one complexes rather than essential. Consequently, Hop is implicated in many key
signalling pathways, including aberrant pathways leading to cancer. Hop is also
secreted, and it is now well established that Hop interacts with the prion protein,
PrP€, to mediate multiple signalling events. The intracellular and extracellular forms
of Hop most likely represent two different isoforms, although the molecular deter-
minants of these divergent functions are yet to be identified. There is also a growing
body of research that reports the involvement of Hop in cellular activities that appear
independent of either chaperones or PrP“. While the various cellular functions of
Hop have been described, its biological function remains elusive. However, recent
knockout studies in mammals suggest that Hop has an important role in embryonic
development. This review provides a critical overview of the latest molecular,
cellular and biological research on Hop, critically evaluating its function in healthy
systems and how this function is adapted in diseased states.

K. Schwarz - A. L. Edkins (D<)

Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology,
Rhodes University, Makhanda/Grahamstown, South Africa

e-mail: a.edkins@ru.ac.za

S. Baindur-Hudson
Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia

G. L. Blatch
Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology,
Rhodes University, Makhanda/Grahamstown, South Africa

Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, UAE

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 81
A. L. Edkins, G. L. Blatch (eds.), The Networking of Chaperones by Co-Chaperones,
Subcellular Biochemistry 101, https://doi.org/10.1007/978-3-031-14740-1_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14740-1_3&domain=pdf
mailto:a.edkins@ru.ac.za
https://doi.org/10.1007/978-3-031-14740-1_3#DOI

82 K. Schwarz et al.

Keywords Hop - STIP1 - STII - Heat shock - Stress - Tetratricopeptide repeats

Assisted Protein Folding by the Hsp70/Hsp90 Chaperone
Complex

Living cells synthesise large amounts of protein in a short time. If the hydrophobic
residues of proteins are exposed, they can aggregate with each other which could
lead to precipitation (Martin 2004; Kampinga 2006). Specialised proteins, known as
molecular chaperones, have evolved to prevent this from happening. They assist
nascent or stress-denatured proteins in folding, conformational assembly, transloca-
tion and degradation (Ellis 1987; Welch 1991; Hendrick and Hartl 1995; Clarke
1996; Hartl 1996; Picard 2002; Wandinger et al. 2008; Taipale et al. 2010; Hartl
et al. 2011). The heat shock proteins, Hsp70 and Hsp90, form an important molec-
ular chaperone network required for folding and maturation of key regulatory pro-
teins, many of which are signalling intermediates or transcription factors (Kimmins
and MacRae 2000; Wegele et al. 2004; Carrigan et al. 2005). Whereas Hsp90 is
primarily involved in conformational regulation and stabilisation of proteins that are
almost completely folded, Hsp70 is required for earlier stages of assisted folding of
nascent or denatured proteins (Whitelaw et al. 1991; Stepanova et al. 2000; Park
et al. 2003; Pratt and Toft 2003; Citri et al. 2006).

Both Hsp70 and Hsp90 are dependent on ATP hydrolysis and association with a
range of accessory proteins, known as co-chaperones, for chaperone activity
(Nadeau et al. 1993; Jakob et al. 1996; Scheibel et al. 1997; Obermann et al. 1998;
Panaretou et al. 1998; Prodromou et al. 2000; McLaughlin et al. 2004; Onuoha et al.
2008; Prodromou 2012). The Hsp70/Hsp90 protein folding cycle has been described
for steroid receptors (e.g. progesterone and glucocorticoid receptors) and is widely
accepted as the mechanism followed for most Hsp90 client proteins (Smith 1993;
Dittmar et al. 1996; Johnson et al. 1998; Wegele et al. 2004; Li et al. 2012a; Alvira
etal. 2014; Rohl et al. 2015a; Rohl et al. 2015b; Sahasrabudhe et al. 2017). The early
stages of the chaperone-assisted folding cycle occur when Hsp70, together with one
of the Hsp40 co-chaperone isoforms, captures nascent or denatured proteins. The
next stage involves the formation of the intermediate complex, in which the client
protein is transferred from the Hsp70 complex to the open Hsp90 complex. Hsp90 is
constitutively dimerised at the C-terminus, while the N-terminal nucleotide binding
domains (NBD) of the dimers are disassociated (resembling a “V” shape). This is
followed by ATP binding to the nucleotide binding domain (NBD) of Hsp90.
Subsequent conformational changes result in N-terminal dimerisation, docking of
the middle domain and binding of the client protein. Hsp90 in this complex is in the
closed conformation. Hydrolysis of ATP occurs, and the protein reverts to the open
conformation and the client protein is released (Wegele et al. 2004; Wegele et al.
2006; Richter et al. 2008; Graf et al. 2009; Hessling et al. 2009). Progression through
the different stages of this cycle is regulated by a variety of co-chaperones, including
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Hsp70 interacting protein (HIP), C-terminus of Hsp70 interacting protein (CHIP),
Hsp70-Hsp90 organising protein (Hop), activator of Hsp90 ATPase 1 (AHAL),
CDC37 and p23 (Chen et al. 1996; Chang et al. 1997; Chen and Smith 1998;
Johnson et al. 1998; Van Der Spuy et al. 2000; Angeletti et al. 2002; Richter et al.
2003; Lee et al. 2004; Hildenbrand et al. 2010; Sahasrabudhe et al. 2017). Hop and
CDC37 are intermediate stage co-chaperones controlling entry of clients into the
pathway, while p23 and AHA are involved in the later stages of the cycle involving
client protein maturation (Li et al. 2012a). In this way, co-chaperones indirectly
modulate the function of the Hsp70/Hsp90 complex by controlling the progression
of client proteins through the chaperone cycle.

Hop (Hsp70-Hsp90 Organising Protein)

The Hsp70-Hsp90 organising protein (henceforth referred to as Hop; but also known
as stress-inducible protein 1 [STI1], stress-inducible phosphoprotein 1 [STIP1] or
p60) is a ubiquitous protein and one of the most widely dispersed co-chaperones of
Hsp90 (Johnson and Brown 2009). First identified in yeast (Nicolet and Craig 1989),
Hop has been demonstrated or predicted to be encoded in the genome of many
organisms. This includes model organisms used for genetic studies of human
disease: nematode (Song et al. 2009), fruit fly (Grigus et al. 1998; Adams et al.
2000), zebrafish (Woods et al. 2005; Tastan Bishop et al. 2013) and mouse (Blatch
et al. 1997), as well as rats (Demand et al. 1998), frogs (Klein et al. 2002), fish
(Andreassen et al. 2009), parasites (Webb et al. 1997; Hombach et al. 2013) and
plants (Zhang et al. 2003; Chen et al. 2010). The gene and nucleotide sequence for
Hop has also been identified in the genome and transcriptome of the Coelacanth
(Latimeria spp.), an organism largely unchanged for millions of years (Amemiya
et al. 2013; Tastan Bishop et al. 2013). The human homologue of Hop was isolated
in 1992 (Honore et al. 1992). Despite the conservation of Hop in these species, there
is some evidence that Hop is structurally and functionally different in different
organisms. For example, Hop is an essential gene in the mouse (Beraldo et al.
2013), but not in yeast (Chang et al. 1997) and can be knocked out in adult human
cell lines which retain viability (Bhattacharya et al. 2020).

Hop is predominantly a cytoplasmic protein but can also be found in the nucleus
(Longshaw et al. 2004), Golgi apparatus (Honore et al. 1992), in the extracellular
environment and associated with cell membranes (Hajj et al. 2013). Dogma suggests
that the nuclear and extracellular Hop species derive from changes in the subcellular
localisation of cytoplasmic Hop. Indeed, mammalian Hop contains a bipartite
nuclear localisation signal (NLS) which has been proposed to facilitate translocation
from the cytoplasm to the nucleus in response to stress. Hop also contains potential
nuclear export signals, and inhibition of nuclear export enhances the nuclear
localisation of murine Hop (Longshaw et al. 2004). Hop translocates to the nucleus
during G1/S transition through phosphorylation by casein kinase II, whereas phos-
phorylation by cell division cycle 2 kinase retains Hop in the cytoplasm (Longshaw
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et al. 2004; Daniel et al. 2008). In astrocyte cell lines, PIAS1 (protein inhibitor of
activated STAT1) was identified as a nuclear retention factor for Hop (Soares et al.
2013). The mechanism by which Hop is transported to the plasma membrane and
extracellular environment is currently undefined, although there is evidence for
export of Hop from mouse astrocytes in exosomes derived from multivesicular
bodies (Hajj et al. 2013) and Hop has been identified in extracellular vesicles
released from mouse embryonic stem cells (Cruz et al. 2018).

Structure of Hop

Structurally, Hop is composed of repeating units of two different types of domain,
namely, the tetratricopeptide repeat (TPR) motif and the aspartate-proline (DP) motif
domains (also known as STI1 domains). Hop contains three TPR domains (desig-
nated TPR1, TPR2A and TPR2B), each of which is formed from three TPR motifs
(Fig. 3.1). There are two DP domains, the DP1 and DP2 domains, which are
positioned between TPR1 and TPR2A and C-terminal to TPR2B of Hop, respec-
tively. The TPR domains of Hop are amongst the best characterised (Scheufler et al.
2000; Brinker et al. 2002; Odunuga et al. 2003; Odunuga et al. 2004; Onuoha et al.
2008). The TPR motif is a protein-protein interaction module that is found in a range
of proteins, which are involved in diverse cellular processes, from transcription to
protein degradation (Allan and Ratajczak 2011). The structure of the TPR domain
consists of modules of anti-parallel a-helices arranged in tandem creating an ampbhi-
pathic groove which is the main site of protein-protein interactions (Allan and
Ratajczak 2011) (Fig. 3.1). In co-chaperones, TPR domains mediate the interaction
with Hsp70 or Hsp90 by binding to the conserved C-terminal EEVD motif of the
cytosolic isoforms of the chaperones. The TPR motif is not unique to Hop and other
TPR-containing co-chaperones of Hsp70 and Hsp90 include, amongst others, CHIP,
HIP, protein phosphatase 5 (PP5), cyclophilin 40 (Cyp40), FK506-binding protein
(FKBP)51 and FKBP52 (Chen et al. 1998; Pratt and Toft 2003; Allan and Ratajczak
2011; Assimon et al. 2015).

Mutational studies in both yeast and murine systems have demonstrated that the
TPR domains of Hop display different affinity for the Hsp70 and Hsp90 chaperones
(Odunuga et al. 2003; Song and Masison 2005). Mutations in TPR1 but not
TPR2AB impair Hsp70 binding, while the converse is true for Hsp90 binding.
The ability of Hop to discriminate between Hsp70 and Hsp90 EEVD motifs is
mediated by specific TPR residues which interact with residues immediately
upstream of the EEVD (PTIEEVD in the case of Hsp70 and MEEVD in the case
of Hsp90) (Scheufler et al. 2000; Odunuga et al. 2003; Carrigan et al. 2004). Hop is
therefore differentiated from other TPR-containing co-chaperones in that its TPR
domains can discriminate between Hsp70 and Hsp90 (Odunuga et al. 2003; Carrigan
et al. 2004). Conserved residues in the TPR domains form a carboxylate clamp with
the C-terminal aspartate of the EEVD motif in the chaperones. Adjacent residues in
TPR1 and TPR2A promote high affinity binding to either the PTIEEVD peptide of
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Fig. 3.1 Structural domains and architecture of Hop proteins. (a) Three-dimensional cartoon
structures illustrate the interaction of the TPR1 and TPR2A domains of HOP with the C-terminal
PTIEEVD (Hsp70) and MEEVD (Hsp90) motifs, respectively. The EEVD motif (red) and speci-
ficity residues (yellow) of each chaperone are shown as sticks. The two TPR-DP modules are
connected by a long flexible linker. Conserved residues in the TPR1 and TPR2A domains of Hop
facilitate binding to these chaperone motifs by forming a carboxylate clamp. Conserved residues
involved in this interaction are represented as sticks and include lysine (cyan), asparagine (green)
and arginine (magenta). Carboxylate clamp residue numbers for TPR1 and TPR2A are K8, N12,
N43, K73, R77 and K229, N233, N264, K301 and R305, respectively. Phosphorylation sites of
human Hop are in blue font. Images were generated using PyYMOL (DeLano Scientific) with the
PDB structure codes as follows: TPR1 (IELW), TPR2AB (3UQ3), DP1 (2LLV) and DP2 (2LLW).
(b) Comparison of Hop domain structure across model organisms. TPR1: tetratricopeptide repeat
domain 1; DP1: aspartate-proline motif domain 1; TPR2AB: tetratricopeptide repeat domains 2A
and B; DP2: aspartate-proline motif domain 2. The N-terminus is indicated by number 1, while the
numbers at the C-terminus give the total number of amino acids in the proteins

Hsp70 or the MEEVD peptide of Hsp90, respectively (Scheufler et al. 2000; Brinker
et al. 2002; Odunuga et al. 2003).

Hop binding to Hsp70 and Hsp90 is not restricted only to their respective
C-terminal EEVD motifs. Hop inhibits the ATPase activity of Hsp90 by preventing
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N-terminal dimerisation, by a mechanism that depends on the presence of TPR2A
and TPR2B but does not require the MEEVD of Hsp90 (Richter et al. 2003; Schmid
etal. 2012). Hop appears to interact with N-terminal regions of Hsp90, with residues
in TPR2A (VISK, residues 334-337) and TPR2B (EIDQLYYKASQQR, residues
505-517) coming within 13 angstroms of residue 57 in the NBD during binding (Lee
et al. 2012). This observation at first appears unlikely given that TPR2A is simul-
taneously involved in binding of the C-terminal EEVD motif of Hsp90. However, it
is explained by the fact that the rate of Hop-Hsp90 binding is dependent on the
length of the linker region between the C-terminal dimerisation domain of Hsp90
and the MEEVD (Lee et al. 2012; Schmid et al. 2012). This suggests a model in
which the C-terminus of Hsp90 has conformational flexibility and can therefore
support simultaneous interactions of Hop TPR2 with both the C-terminal and
N-terminal domains. More recent evidence proposes a model for the Hsp70-Hop-
Hsp90 cycle in which Hsp90 regulates the structural dynamics of Hop and coordi-
nates its interactions with Hsp70, thus synchronising client transfer within the
ternary complex (Rohl et al. 2015b). The TPR1-DP1 module of Hop is separated
from the rigid TPR2A-TPR2B-DP2 module by an extended flexible linker (Rohl
et al. 2015b). The C-terminal EEVD of Hsp90 interacts with Hop TPR2A, while the
client-binding middle domain of Hsp90 makes contacts with Hop TPR2B (Lee et al.
2012; Schmid et al. 2012; Rohl et al. 2015b). Hsp70 demonstrates higher affinity for
Hop TPR2B in the absence of Hsp90 but binds preferentially to Hop TPR1 when
Hsp90 is present. Evidence suggests that Hsp90 binding induces structural
rearrangements of Hop into a more open conformation. This makes TPR1 more
accessible, and paired with the positioning of Hsp90 across TPR2A-TPR2B, it
promotes preferential interaction of Hsp70 with TPR1 (Rohl et al. 2015b). The
flexible linker of Hop brings the two Hsp70 binding sites on the separate TPR-DP
modules into close proximity (Rohl et al. 2015b) and in this manner imparts a
regulatory role reminiscent of the Hsp90 linker. This suggests a potential mechanism
for client protein transfer in which the client-Hsp70 complex binds TPR1 and by
structural rearrangements of the linker is positioned near to TPR2B, allowing client
transfer to Hsp90 (Rohl et al. 2015b; Lackie et al. 2017; Reidy 2019; Lott et al.
2020).

In mammals, discrimination between TPR-containing co-chaperones by Hsp70 or
Hsp90 depends on relative affinities and is regulated by phosphorylation (Muller
et al. 2013). Phosphorylation of serine and threonine residues located close to the
C-terminal EEVD motifs of Hsp70 and Hsp90 promotes association with Hop over
CHIP. Therefore, the C-terminal phosphorylation of Hsp70 or Hsp90 controls the
balance between Hop-based pathways (of finely controlled protein folding and
degradation; Walsh et al. 2011; Bhattacharya et al. 2020) and CHIP-based pathways
(of targeted protein degradation; Edkins 2016; Chap. 12). Phosphorylation of mam-
malian and yeast Hop has been reported at five and six different locations, respec-
tively. The phosphorylation sites are in or adjacent to the Hsp70 binding regions of
Hop (TPR1 and TPR2B) or in the flexible linker between the two TPR-DP modules
(Fig. 3.1). Phosphorylation of human Hop at two of these sites (S189, T198)
regulates shuttling of Hop between the nucleus and cytoplasm. Phosphorylation of
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T198 disrupts the Hop/Hsp90 interaction which may assist in coordinating nuclear-
cytoplasmic translocation (Daniel et al. 2008). Phosphorylation at the remaining
sites (S16, Y354 and S481) reduces affinity of Hop for Hsp70 and impacts client
activation (Rohl et al. 2015a). Furthermore, phosphorylation of the conserved
tyrosine Y354, positioned between the rigid TPR2A and TPR2B domains, appears
to be restricted to human Hop and is the only phosphorylation event that results in
structural rearrangements of Hop, destabilising TPR2A-TPR2B and reducing inter-
action with Hsp70 (Rohl et al. 2015a).

The DP domains (also known as STI domains) are rich in aspartic acid and
proline residues and adopt alpha helical structures (Fig. 3.1a). The DP domains are
flexible structures of five to six alpha helices arranged in a hand-like structure
incorporating a hydrophobic groove and often occur in pairs (Fry et al. 2021).
There is sequence similarity between the DP2 domain of Hop and a C-terminal DP
domain in HIP, although the two domains are not functionally equivalent (Nelson
et al. 2003). The role of these DP motifs is less clear (Song and Masison 2005; Allan
and Ratajczak 2011), although DP2 mutants showed reduced ability to bind HSP70
(Carrigan et al. 2004) and the DP2 segment is required for client activation in vivo
(Carrigan et al. 2005; Flom et al. 2006; Schmid et al. 2012). The TPR1-DP1 module
of Hop is directly involved in translocation of the client protein within the Hsp70/
Hsp90 complex (Schmid et al. 2012), while the TPR2A-TPR2B-DP2 fragment is
sufficient to support client activation in yeast (Schmid et al. 2012; Rohl et al. 2015b).
However, the substitution of DP2 with DP1 in full-length Hop did not support client
activation, despite structural similarity (Schmid et al. 2012). DP1 has also been
demonstrated to bind the disordered N-terminal region of the prion protein with high
affinity and specificity, an interaction that is also mediated by the TPR1 and TPR2A
domains of Hop and does not require Hsp70 or Hsp90 (Maciejewski et al. 2016).

The overall structure of Hop as described above is conserved in the human,
mouse and yeast proteins (Fig. 3.1b). The flexible linker joining the two TPR-DP
modules appears to be necessary to promote a fully functional Hsp70-Hop-Hsp90
complex in TPR1-DP1-containing Hop orthologues. Deletion of the linker reduced
ternary complex formation of Hsp70-Hop-Hsp90 in vitro and reduced client activa-
tion in yeast (Rohl et al. 2015b). Interestingly, not all Hop orthologues share this
structure (Fig. 3.1). For example, Hop in Drosophila lacks the DP1 domain, while
Hop/Stil in Caenorhabditis elegans lacks the TPR1 domain and the short linker
region containing the DP1 domain that precedes the TPR2A domain. Nevertheless,
Hop in C. elegans is able to bind both Hsp70 and Hsp90 via the TPR2AB domain,
although unlike most organisms, the TPR domains of Hop in C. elegans do not
discriminate between Hsp70 and Hsp90 (Gaiser et al. 2009). Hop in C. elegans is
also subject to inhibitory phosphorylation at predicted sites within or adjacent to
TPR2B and a unique site in DP2 (Zheng et al. 2020). This suggests that the transfer
of client proteins between Hsp70 and Hsp90 chaperone systems and how they are
regulated in these organisms may be different. Due to these differences, the study of
Hop, especially using genetic approaches, has been limited to metazoans that are
amenable to genetic manipulation.
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The roles of Hop as a co-chaperone for the Hsp70/Hsp90 complex and as a ligand or
receptor for the prion protein, PrPC, are the best described. However, there is a
growing body of literature that reports the involvement of Hop in cellular activities
that appear independent of either chaperones or PrP® (Table 3.1). It should be noted
that many of these studies do not directly demonstrate that Hsp70 and Hsp90 are not
involved, but rather fail to provide any evidence that they are involved. Therefore, it
is possible that Hsp70/Hsp90, or indeed PrP€, may fulfil yet undefined roles in these
seemingly alternative functions of Hop. In vitro assays have demonstrated that Hop
is able to bind a number of proteins via its TPR1, TPR2A or TPR2B domains, the
former two domains containing the high affinity binding sites that are traditionally
required for interacting with Hsp70 or Hsp90. Hop directly interacted with the
cytoskeletal proteins tubulin (via TPR2B and possibly TPR1 domain) (Li et al.
2012b) and actin (via TPR2AB) (Beckley et al. 2020) as well as Rndl, a small
GTPase also involved in cytoskeletal dynamics (de Souza et al. 2014). The associ-
ated co-immunoprecipitation assays in these studies did not, however, rule out the
possible involvement of Hsp70 and Hsp90 in these complexes. Hop was also found
to interact directly with emerin, a nuclear protein, contributing to the structural
dynamics of the nucleus via a mechanism that appears to involve Hsp70 but not
Hsp90. This interaction is mediated by the TPR2A and TPR2B domains of Hop
(Kituyi and Edkins 2018). While there is sufficient evidence of these interactions
in vitro, the physiological significance of such interactions often remains to be
validated in vivo. To clarify the network of proteins that interact with Hop indepen-
dently of Hsp70 or Hsp90, wild-type Hop or a Hop double mutant that was unable to
bind Hsp70 or Hsp90 was exogenously expressed in a HEK293T Hop knockout cell
line model, and the Hop interactomes were compared (Bhattacharya et al. 2020).
Immunoprecipitation and mass spectrometry analysis revealed that approximately
41.1% of differentially expressed proteins were only detected in cells expressing
wild-type Hop, while 57.3% and 1.6% of proteins were enriched in cells expressing
the wild-type or double mutant Hop, respectively (Bhattacharya et al. 2020). These
data suggest that the vast majority of Hop interactions are mediated predominantly
via Hsp70 and Hsp90. However, it should be considered that the point mutations of
the two carboxylate clamp residues (K8A/K229A) in the mutant Hop may also
impact binding of proteins other than Hsp70 and Hsp90. The primary binding site for
PrP€ is directly adjacent the mutated K229 site, spanning one side of the TPR2A
domain of Hop that forms part of the hydrophobic groove accommodating Hsp90
(Maciejewski et al. 2016). The potential DAYKKK actin-binding motif (residues
234-239) also resides within this region (Beckley et al. 2020). Single point muta-
tions of carboxylate clamp residues have been shown to affect the global conforma-
tion of Hop (Carrigan et al. 2004; Carrigan et al. 2006) and the K8A and K229A
mutations alone were found not only to impair binding of Hsp70 and Hsp90 as
expected, respectively, but marginally reduced binding of the other chaperone to its
respective site as well (Bhattacharya et al. 2020).
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There is a report that Hop has independent ATPase activity (Yamamoto et al.
2014). Hop bound ATP with a similar affinity to Hsp90 and Hsp70 but hydrolysis of
ATP took place at a slower rate than in the two chaperones. The ATPase activity of
Hop was associated with the N-terminal regions of the protein, encompassing the
TPR1, DP1 and TPR2A domains. While the DP1 domain was essential for ATPase
activity, the mutation of a putative Walker B motif in this domain did not abolish the
ATPase activity of Hop (Yamamoto et al. 2014). ATP binding by Hop induced a
conformational change in the protein. The domains which display ATPase activity
are those involved in binding both Hsp70 (TPR1) and Hsp90 (TPR2A), and there-
fore, it is plausible that the ATP-induced conformational changes may be involved in
the transfer of client protein between Hsp70 and Hsp90. However, the consequences
of this ATPase activity for the function of Hop have not been explored in any depth
beyond this study and remain to be determined. Despite putative evidence of
endogenous ATPase activity and the ability of Hop to directly bind and stabilise
several proteins, there has been no report to date of Hop itself having independent
chaperone activity.

Hop as a Co-chaperone for Hsp70 and Hsp90: A Shift
in the Paradigm

Hsp90 substrates include a diverse set of proteins, many of which have been
implicated in regulation of apoptosis (Samali and Cotter 1996; Mosser and
Morimoto 2004; Lanneau et al. 2007), proliferation (Caplan et al. 2007; Lanneau
et al. 2007; Dezwaan and Freeman 2008), autophagy (Agarraberes and Dice 2001;
Qing et al. 2006; Joo et al. 2011; Xu et al. 2011) and cell cycle progression (Francis
et al. 2006; Reikvam et al. 2009) as well as in tumorigenesis (Kamal et al. 2004;
Muller et al. 2004; Whitesell and Lindquist 2005; Chiosis 2006; Neckers et al. 2007;
Mahalingam et al. 2009; Trepel et al. 2010; Miyata et al. 2013; Lianos et al. 2015;
Calderwood and Gong 2016; Graner 2016; Isaacs 2016; Jarosz 2016; Kumar et al.
2016; Vartholomaiou et al. 2016; Wong and Jay 2016; Calderwood 2018; Zuehlke
et al. 2018). In early studies it was found that Hsp90 interacts with the yeast and
vertebrate homologues of Hop in lysates of these cells (Chang et al. 1997). Deletion
of the gene encoding Hop reduced the in vivo activity of the Hsp90 target proteins,
glucocorticoid receptor (GR) and the oncogenic tyrosine kinase, v-Src (Chang et al.
1997). Hop was also shown to stimulate the refolding of luciferase by Hsp70 and a
much more dramatic effect was seen when Hsp90 was also included (Johnson et al.
1998). This led to the conclusion that Hop is a general factor in the maturation of
Hsp90 target proteins. Subsequently, it has been clearly demonstrated that Hop
regulates the molecular chaperone activities of Hsp70 and Hsp90 and thus plays a
crucial role in the productive folding of client proteins (Johnson et al. 1998;
Kimmins and MacRae 2000; Wegele et al. 2004; Song and Masison 2005; Wegele
et al. 2006; Kubota et al. 2010; Lee et al. 2012; Schmid et al. 2012; Rohl et al. 2015a;
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Rohl et al. 2015b). Hop connects Hsp90 and Hsp70 in a ternary multichaperone
complex, where it facilitates the transfer of client proteins from the early complex
(Hsp70-Hsp40) to the intermediate complex (Hsp70-Hsp90) (Chen and Smith 1998;
Johnson et al. 1998; Song and Masison 2005; Wegele et al. 2006). These client
proteins include a variety of kinases, transcription factors and steroid hormone
receptors, many of which are deregulated in cancer (Pratt and Toft 2003; Lee et al.
2004; Song and Masison 2005; Tan et al. 2011; Walsh et al. 2011; Ruckova et al.
2012; Taipale et al. 2012; Willmer et al. 2013). The central role of Hop in these
processes is demonstrated by mutations in Hop that impair the client folding
pathway (Song and Masison 2005; Reidy et al. 2018). Depletion of Hop levels
using RNA interference leads to a dramatic reduction in the levels of obligate Hsp90
client proteins, HER2, Bcr-Abl, ¢c-MET and v-Src (Walsh et al. 2011), while Hop
knockout in mammalian cell lines led to selective loss of specific Hsp90 client
proteins (Bhattacharya et al. 2020). Astil yeast cells remained viable under optimal
conditions but showed increased sensitivity to heat shock (Chang et al. 1997) and
inhibition of Hsp90 (Song and Masison 2005) and were synthetically lethal when
paired with Hsp90 mutants that reduced intracellular levels of Hsp90, or upon
deletion of both Hsp90 genes (Chang et al. 1997; Flom et al. 2006). HEK293T
cell lines in which Hop was depleted by shRNA showed reduced stress resilience
which was linked to reduced levels of the stress-responsive HSF1 transcription
factor that controls transcription of HSP genes (Chakraborty and Edkins 2020).

Hop has long been considered as an essential scaffold protein of the
multichaperone complex (Dittmar et al. 1996; Chen and Smith 1998; Scheufler
et al. 2000; Odunuga et al. 2003; Wegele et al. 2006; Alvira et al. 2014). However,
in the prokaryotic Escherichia coli model, which lacks paralogues of Hsp90
co-chaperones, the E. coli Hsp90 (HtpG) and Hsp70 (DnaK) interact directly to
facilitate client folding and maturation (Genest et al. 2011; Nakamoto et al. 2014;
Genest et al. 2015). Mutational analysis identified a region of the M domain of HtpG
to be important in the interaction with DnaK (Genest et al. 2015). Yeast Hsp90
(Hsp82) and Hsp70 (Ssal) also interact directly in the absence of Hop (Stil), via a
region in the M-domain of Hsp82 that is homologous to that of HtpG (Chang et al.
1997; Flom et al. 2007; Kravats et al. 2018) . The human paralogues of Hsp90 that
are restricted to the endoplasmic reticulum (Grp94) and mitochondria (TRAP1) have
no known co-chaperones (Marzec et al. 2012; Huck et al. 2017), and both interact
directly with their respective Hsp70 paralogue (Sung et al. 2016; Sun et al. 2019a).
Direct interaction of human Hsp90p with the constitutive Hsc70 and stress-inducible
Hsp70 was confirmed by in vitro pull-down assay of purified protein, while a yeast
model demonstrated that Hsc70, but not Hsp70, was able to support the growth of
Asti cells expressing Hsp90p as the sole source of Hsp90 (Reidy et al. 2018).

In the mouse, germline deletion of Hop is embryonic lethal (Beraldo et al. 2013).
However, mammalian Hop can be knocked out using CRISPR in a range of human
cancer cell lines which maintain viability (Bhattacharya et al. 2020). In human Hop
null cell lines, Hop appears to mediate the proteostatic balance between protein
folding via chaperone systems and degradation via the proteasome (Bhattacharya
et al. 2020). In the absence of Hop, mammalian Hsp70 and Hsp90 interacted directly
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in a prokaryote-like binary complex that promoted more efficient protein folding,
compensating for reduced proteasome activity in these cells. Heat-inactivated lucif-
erase refolding occurred at a higher rate in Hop-depleted cells and was reduced to
wild-type levels upon inhibition of Hsp70 or Hsp90. This observation was supported
by recovery experiments incorporating overexpression of wild-type Hop or TPR
mutants unable to bind Hsp70 and/or Hsp90. Absence of Hop did not appear to
affect steady-state levels of Hsp90 client proteins, nor did it affect client activation as
there were no global differences observed in the level of active kinase clients
between the wild-type and Hop-depleted HEK293T and HCT116 colon cancer
cells. However, challenging the proteostatic balance in these cell lines by
overexpressing the Hsp90 clients, glucocorticoid receptor (GR) and v-Src, resulted
in the reduced accumulation and activity of these client proteins relative to that of
wild-type cells. Overexpression of other Hsp90 client steroid hormone receptors, the
oestrogen receptor o (ER) and progesterone receptor (PR), had only a moderate
effect on corresponding protein level and activity in the Hop null background
relative to wild-type cells. Interestingly, Hop deletion in A549 lung cancer cells
reduced the accumulation and activity of endogenous GR, while the activity of
exogenous GR and v-Src in Asti yeast cells was reduced despite no difference in
protein levels (Chang et al. 1997; Sahasrabudhe et al. 2017). The activity of the
steroid hormone receptors ER, PR and mineralocorticoid receptor (MR) did not
significantly change between Asti and wild-type yeast cells (Sahasrabudhe et al.
2017). It was demonstrated in yeast that variants of GR and v-Src that were less
dependent on Hsp90 for maturation no longer required Hop for their activity
(Sahasrabudhe et al. 2017) (Sahasrabudhe et al. 2017) and evidence suggests that
Hop might perform a more client-specific role than previously thought
(Sahasrabudhe et al. 2017; Bhattacharya et al. 2020). It is possible that the observed
effects of Hop depletion on obligate Hsp90 proteins may be dependent on the model
system used and the intrinsic proteostatic buffering capabilities of different cell lines
or organisms. Acute disruption of the cellular proteostatic balance by Hop knock-
down or overexpression may yield different cellular responses as compared to the
long-term effects of Hop knockout models, in which proteomic steady-state levels
might be restored by alternative mechanisms. Inhibition of Hsp90 in the Hop-null
background was synthetically lethal in mammalian cells (Bhattacharya et al. 2020),
similar to observations in Astil yeast. However, unlike Astil yeast that demon-
strated increased sensitivity to heat shock (Chang et al. 1997) and HEK293T with
acute Hop depletion by shRNA (Chakraborty and Edkins 2020), Hop null mamma-
lian cells were as comparably resilient to stress as wild-type cells. The Hsp70-Hsp90
interaction site was mapped to evolutionarily conserved residues shown to be
important for the direct interaction of bacterial Hsp70/Hsp90. These residues were
confirmed to be involved in interaction of human Hsp90a with Hsp70 in vitro and
Hsc/Hsp70 in vivo, in Hop null cells (Bhattacharya et al. 2020).

Taken together, the emerging evidence supports a conceptual change regarding
the indispensable role of Hop within the Hsp70-Hsp90 chaperone complex
(Sahasrabudhe et al. 2017; Kravats et al. 2018; Reidy 2019; Bhattacharya et al.
2020). It appears that the role of Hop may be regulatory rather than critical and it is
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possible that the binary or ternary complexes of Hsp70/Hsp90 and/or Hop may
perform specific roles under certain conditions, depending on the requirements of
the cell.

Extracellular Hop Has Cytokine-Like Activity

Chaperones exist in the extracellular environment and play physiological roles such
as modulation of the stress response and cell survival (Eustace and Jay 2004; Eustace
et al. 2004; Arruda-Carvalho et al. 2007; Lima et al. 2007; Arantes et al. 2009;
Santos et al. 2011; Tsai et al. 2012; Beraldo et al. 2013; Hajj et al. 2013; Carvalho da
Fonseca et al. 2014; Li et al. 2014; Zhai et al. 2018). Hop is secreted by various cells
types, including neuronal stem cells (Santos et al. 2011; Lee et al. 2019), microglia,
astrocytes (Lima et al. 2007; Arantes et al. 2009) and cancerous cells such as gliomas
(Erlich et al. 2007), ovarian cancer cells (Wang et al. 2010; Tsai et al. 2012),
fibrosarcoma cells (Eustace et al. 2004), gastric cancer cells (Zhai et al. 2018) and
hepatocellular carcinomas (Chen et al. 2017; Ma et al. 2020). Despite evidence of an
extracellular Hsp90 complex, in the extracellular environment Hop appears to act
more like a cytokine than a co-chaperone. Secreted Hop activates numerous different
signalling pathways (Erlich et al. 2007; Caetano et al. 2008; Arantes et al. 2009;
Beraldo et al. 2010; Wang et al. 2010; Tsai et al. 2012; Chao et al. 2013a).

Many, but not all, of the activities of extracellular Hop involve an interaction with
normal cellular prion protein PrP€. Extracellular Hop and PrP© interact directly with
each other via an interaction site that maps to residues 230-245 in Hop
(encompassing the start of TPR2A domain) and 113-128 in PrP¢ (Zanata et al.
2002). The TPR1 and DP1 domains have also been shown to associate with PrP¢
(Maciejewski et al. 2016). The binding interface of TPR2A and PrP€ spans a
hydrophobic groove of TPR2A that is involved in binding the Hsp90 C-terminus.
Despite a partial overlap in the binding interfaces of PrP< and Hsp90, both can bind
Hop simultaneously. While the functions of the Hop-PrP“ complex appear indepen-
dent of Hsp90, binding of PrP to Hop seems to promote recruitment of Hsp90 to the
complex, potentially by exposing hydrophobic patches on PrPC or by inducing
conformational changes of Hop (Maciejewski et al. 2016). The Hop-PrP¢ complex
is important in a range of cellular processes such as cell growth, survival and
differentiation. In particular, the interaction between Hop and PrP€ is linked to
processes that involve neuronal development and cognitive function. Interestingly,
these roles of Hop appear to be independent of the Hsp70/Hsp90 chaperones.

Hop-induced signalling was able to protect a range of neuronal cell types from
apoptosis using mechanisms that were dependent on the presence of wild-type PrP©
(Zanata et al. 2002; Lopes et al. 2005; Arantes et al. 2009). Hop-PrP€ autocrine
signalling in multipotent arachnoid-pia stem cells was involved in proliferation and
self-renewal of cells (Lee et al. 2019). Hop expression was regulated by FOXCI, a
transcription factor involved in many developmental functions (Lee et al. 2019).
Studies using cells from PrP< null mice have demonstrated that the effects of Hop on
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neural stem cell renewal and differentiation (Santos et al. 2011; Lopes and Santos
2012), proliferation and survival (Lima et al. 2007), neuritogenesis (Lopes et al.
2005; Lima et al. 2007; Santos et al. 2013) and response to ischemic stress (Beraldo
et al. 2013; Beraldo et al. 2018) are all dependent on an interaction with PrPC. These
interactions appear to have an important impact on cognitive functions, as disruption
of the Hop-PrP® interaction led to defects in memory and learning in rats (Coitinho
et al. 2007), while Hop depletion led to hyperactivity and attention deficits in mice
(Beraldo et al. 2015). Extracellular Hop also acts in a PrPC-independent manner in
certain cases. The control of retinal proliferation by extracellular Hop, for example,
was found to be independent of PrP€ (Arruda-Carvalho et al. 2007), as are some of
the functions of extracellular Hop in cancer (Fonseca et al. 2012; Tsai et al. 2012;
Carvalho da Fonseca et al. 2014).

The effects of extracellular Hop appear to be mediated primarily by activation of
downstream signalling pathways. Hop interacting with PrP€ or other receptors has
been shown to induce activation of a range of signalling pathways, including SMAD
(Tsai et al. 2012; Wang et al. 2017), ERK (Americo et al. 2007; Caetano et al. 2008;
Wang et al. 2017), PKA (Chiarini et al. 2002; Zanata et al. 2002), JAK/STAT (Guo
etal. 2019; Sun et al. 2019b; Xia et al. 2021) and PI3K/Akt (Erlich et al. 2007; Roffe
et al. 2010; Chen et al. 2017) pathways. In this way, Hop appears to function like a
classical cytokine, binding to a transmembrane receptor to induce cellular signalling
cascades. A similar effect has been noted with extracellular chaperones like Hsp90,
which are able to induce signalling from cellular receptors like LRP-1 (Tsen et al.
2013; Calderwood 2018). The studies on extracellular Hop are particularly interest-
ing since there is limited information on the mechanism of export or the isoform
specificity of extracellular Hop (Edkins et al. 2018). If indeed extracellular Hop is
derived from intracellular Hop, then it begs the question of the mechanism and
conditions under which Hop is exported from the cell. It is tempting to speculate that
there may be alternative isoforms of Hop: one isoform that functions as the intra-
cellular co-chaperone of Hsp70/Hsp90, the other, as an extracellular cytokine or
receptor that associates with PrP.

Hop in Human Cellular Function and Disease
Cancer Cell Biology

Transformed cells rely on molecular chaperones together with co-chaperones to
stabilise their mutant, unstable proteins (Soti et al. 1998; Tytell and Hooper 2001;
Daugaard et al. 2005; Chiosis 2006; Boschelli et al. 2010). Numerous studies have
demonstrated that Hop may regulate multiple biological processes in a range of
cancer cell types and/or function as a biomarker (Table 3.1). In most cases, Hop
levels are increased in cancer cells compared to normal cell equivalents, as well as
being upregulated in metastatic, drug resistant or aggressive tumours (Walsh et al.
2009; Wang et al. 2010; Sims et al. 2011; Chao et al. 2013a; Chao et al. 2013b; Cho
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et al. 2014; Van Simaeys et al. 2014; Yuan et al. 2014; Bertram et al. 2016; Chen
et al. 2017; Wang et al. 2017; Xu et al. 2017). This was true of breast (Sims et al.
2011; Lin et al. 2021a), colon (Kubota et al. 2010; Xia et al. 2021), pancreatic
(Walsh et al. 2009; Jing et al. 2019), thyroid (Yuan et al. 2014), oesophageal
(Xu et al. 2017), ovarian (Wang et al. 2010; Tsai et al. 2012; Tsai et al. 2016),
lung (Guo et al. 2019), hepatocellular carcinomas (Sun et al. 2007; Bertram et al.
2016; Chen et al. 2017; Luo et al. 2018; Ma et al. 2020), melanoma (Sun et al.
2019b) and glioblastomas (Lopes et al. 2015; Wang et al. 2017). Concomitant with
the increased expression levels, Hop appeared to function to promote or support
malignancy in tumours, while depletion of Hop levels in cancer cell lines was
sufficient to ameliorate some of these cancer-promoting activities (Walsh et al.
2011; Li et al. 2012b; Willmer et al. 2013). Upregulated Hop expression in cancer
may be regulated by oncogenic driver proteins. Inactivation of p53 combined with
activation of RAS, a common event in cancer, was shown to upregulate Hop
expression which suggests that Hop may form part of the cancer gene signature
(Mattison et al. 2017).

The changes in Hop levels are associated with a major role for intracellular Hop in
cellular functions relating to metastatic processes, such as cell migration and inva-
sion. Depletion of intracellular Hop levels in endothelial (Bull et al. 2010; Li et al.
2012b) and breast cancer cells (Willmer et al. 2013) reduced pseudopodia formation
and inhibited cell migration and polarisation. These effects were predicted to be via
regulation of different cell processes, including a direct interaction with cytoskeletal
proteins like actin and tubulin (Beckley et al. 2020). Hop also regulates the activity
of specific proteins, such as matrix metalloproteinase 2 (MMP2), which are involved
in the degradation of the extracellular matrix during cancer cell invasion (Eustace
et al. 2004; Walsh et al. 2011). Hop was able to bind the MMP9 promoter, directly or
as part of a complex, in endometrial cancer cells and stimulate MMP9 expression
(Wang et al. 2018). Hop was also required in the nucleus for glycogen synthase
kinase-3 beta (GSK3f)-mediated phosphorylation of lysine-specific demethylase
1 (LSD1), an integral epigenetic regulator implicated in tumour aggression (Tsai
etal. 2018). The TPR1 and TPR2B domains of Hop interact with the AOL domain of
LSD1, recruiting the protein to a complex that incorporates GSK3p (via Hop TPR2A
and TPR2B), and Hsp90. GSK3p-mediated phosphorylation of LSD1 increased cell
proliferation of ovarian and endometrial cells (Tsai et al. 2018), while cytosolic
interaction of Hop with Golgi phosphoprotein 3 (GOLPH3) promoted cell prolifer-
ation in pancreatic ductal adenocarcinoma cell lines as a result of increased telome-
rase activity (Wang et al. 2020b). Yeast Stil participated in cytosolic transport of
precursor mitochondrial proteins, potentially as part of an import complex, and was
important for mitochondrial integrity (Hoseini et al. 2016). Nuclear structure dynam-
ics relies on the stabilisation of the nuclear protein emerin by Hop that appears to be
independent of Hsp90 (Kituyi and Edkins 2018), while Hop in complex with Hsp90
and Piwi supports genome integrity by involvement in piRNA biogenesis and
transposon silencing (Gangaraju et al. 2011; Karam et al. 2017). Additionally,
Hop is involved in cell-cycle-dependent transcriptional activation of histone H2B
(Zheng et al. 2003) and aids in the removal of promoter-bound nucleosomes to allow
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gene transcription (Floer et al. 2008), functions that appear to involve Hsp70 and/or
Hsp90. Interestingly, the literature to date suggests that intracellular Hop does not
seem to have a major role in cell proliferation, leading to the suggestion that
intracellular Hop may be a selective target for inhibition of processes associated
with metastasis (e.g. migration, invasion). These data are in contrast with the
functions proposed for extracellular Hop. Interestingly, most studies on Hop func-
tion focus on depletion or knockout of Hop, which provides useful information, but
is a rather blunt approach. Consequently, there are few studies focusing on the
biological changes associated with finely tuning the levels of Hop above
(overexpression) and below (underexpression) normal physiological/cellular levels,
an approach that could potentially provide more meaningful information on the
cellular role of Hop.

Extracellular Hop in cancer does not appear to induce a major migratory pheno-
type, but instead leads to an increase in cancer cell proliferation. Hop is secreted into
the extracellular environment by a range of cell types, including ovarian carcinomas
(Wang et al. 2010; Tsai et al. 2012) and glioblastomas (Erlich et al. 2007; Lopes et al.
2015; Wang et al. 2017). The ability of extracellular Hop to induce cell proliferation
appears to be mediated by the ability of the co-chaperone to activate intracellular
signalling pathways. In both glioma and ovarian cancer cells, Hop activated mito-
genic pathways, including MAPK (Erlich et al. 2007), a major signal transduction
pathway required for cell growth. The difference in biological response to intracel-
lular versus extracellular Hop may, in part, be due to the involvement of PrP€ as a
receptor, for which extracellular Hop is a major ligand. The proliferative effect of
Hop in glioma occurs, at least in part via a PrP°-dependent mechanism (Erlich et al.
2007; Lopes et al. 2015), which also supports self-renewal of glioblastoma stem-like
cells and differentiation of osteoclasts (Iglesia et al. 2017; Wang et al. 2017),
although PrP®-independent growth stimulation has been observed in different cell
lines (Fonseca et al. 2012; Carvalho da Fonseca et al. 2014; Lopes et al. 2015; Guo
et al. 2019).

Many of the studies of the role of Hop in cancer do not include a direct analysis of
the contributions to the phenotype of the chaperones Hsp90 and Hsp70. However,
Hop has been shown to be constitutively incorporated into an Hsp90 complex in
some cancer cells and many of the proteins affected by Hop inhibition or depletion
are in fact client proteins of the Hsp90 complex (Kubota et al. 2010). Therefore, it is
likely that many of the activities of Hop in cancer are linked to perturbations in the
function of the Hsp70/Hsp90 complex. This conclusion is supported by the obser-
vations that compounds that disrupt interactions between Hop and the Hsp90 or
Hsp70 chaperone are toxic to cancer cells (Ardi et al. 2011; Horibe et al. 2011;
Horibe et al. 2012a; Horibe et al. 2012b, 2014). This apparent toxicity of inhibitors
that disrupt the formation of the Hop-Hsp70/Hsp90 chaperone complex appears
contradictory to the observation that cancer cell lines in which the Hop gene has been
knocked out are still able to maintain viability (Bhattacharya et al. 2020). An
explanation for these disparate observations could be attributed to promiscuity of
inhibitors that are not sufficiently specific for the Hop-Hsp70/Hsp90 interaction
(Edkins 2016) or cell-specific differences. Another consideration is the potentially
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confounding effects of genetic compensation (El-Brolosy and Stainier 2017; Salanga
and Salanga 2021). This increasingly documented cellular phenomenon describes
the upregulation of alternative genes that functionally compensate for a loss-of-
function mutation and can account for phenotypic differences observed in acute
(knockdown/pharmacological inhibition) versus long-term (knockout) loss-of-func-
tion studies. Thus, a Hop null cell line model may have favoured the selection of
viable cells that were able to compensate for the loss of Hop. This might also account
for the observation that HEK293T Hop knockout cells were phenotypically similar
to wild-type cells in terms of stress resilience (Bhattacharya et al. 2020), while acute
Hop depletion by shRNA in HEK293T cells was associated with reduced stress
resilience (Chakraborty and Edkins 2020).

Hop as a Therapeutic Target for Cancer

The link between Hop and oncogenic activity has led to the proposal that Hop itself
may be a viable drug target for cancer (Edkins 2016; Darby et al. 2020). Indeed,
studies in which Hop levels were reduced using RNA interference in cancer cells
demonstrated that depletion of Hop could reverse oncogenic properties (summarised
and referenced in Table 3.1). Despite this, there are currently no small molecule
inhibitors that directly inhibit Hop. Currently, the most common strategy used for
anti-cancer compounds is to inhibit the protein-protein interaction of Hsp90 and
Hop, as an alternative to inhibiting Hsp90 (Ardi et al. 2011; Pimienta et al. 2011;
Darby et al. 2020; Veale et al. 2020; Veale et al. 2021). Hsp90 is considered a
promising drug target for cancer treatment because Hsp90 is the main chaperone
required for the stabilisation of multiple oncogenic kinases (Reikvam et al. 2009).
Overexpression of Hsp90 in cancer cells stabilises mutant oncoproteins, promoting
cancer cell survival. Given that Hop is required for entry of these client proteins into
the Hsp90 complex, targeting the interaction of Hop and Hsp90 is likely to inactivate
client proteins. However, inhibition of Hsp90 (particularly by blocking the
N-terminal ATP binding site) has been associated with unwanted compensatory
upregulation of Hsp70, which can lead to drug resistance (Pimienta et al. 2011).
Therefore, the targeting of protein-protein interactions with co-chaperones rather
than ATPase activity has been considered as an alternative strategy for the treatment
of cancer (Reikvam et al. 2009; Maciejewski et al. 2013; Darby et al. 2020; Veale
et al. 2020; Veale et al. 2021).

Compounds specifically inhibiting the interaction of Hop with the Hsp70/Hsp90
complex have been identified. Introduction of a bioisosteric tetrazole moiety into the
native MEEVD peptide resulted in robust inhibition of the interaction between the
Hsp90 C-terminal domain and Hop TPR2A (Veale et al. 2020; Veale et al. 2021). A
hybrid 12-amino acid peptide comprising a sequence based on the TPR2A region of
Hop was designed to competitively inhibit the interaction between Hsp90 and Hop
(Horibe et al. 2011). This peptide induced cell death in a range of cancer cell lines
in vitro, as well as displaying anti-tumour activity in a pancreatic cancer xenograft
model (Horibe et al. 2012a; Horibe et al. 2012b, 2014). The compound also showed
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differential toxicity in that it did not affect the viability of normal cells, which might
be attributed to the constitutive formation of the Hsp90 complex in cancer cells as
opposed to normal cells (Kamal et al. 2003; Kamal et al. 2004; Echeverria et al.
2019). Unlike other inhibitors of the Hsp90 complex, this compound did not alter
Hsp70 expression. In a similar approach, peptide LB76 was designed as a truncated,
cyclic variation of the TPR peptide used by Horibe and colleagues, also targeting the
MEEVD motif of Hsp90 (Horibe et al. 2011; Rahimi et al. 2018; Rahimi and
McAlpine 2019). LB76 interfered with binding between Hsp90 and four
TPR-containing co-chaperones tested, strongly inhibiting both Hop and Cyp40, as
well as FKBP38 and FKBP51 to a lesser extent (Rahimi and McAlpine 2019). A
peptide derived from the DP2 domain of Hop (peptide 520) was able to induce cell
death by suppression of JAK-STAT signalling in ovarian and endometrial cancer
cells lines, mimicking the effect of siRNA-mediated Hop knockdown. The Hop
TPR1 domain was required for interaction with JAK2, while Hsp90/STAT3
interacted with Hop via the TPR2A-TPR2B-DP2 domains. Peptide 520 was able
to disrupt the interaction between Hop and Hsp90 as well as JAK2 and STAT3 and
was effective at reducing tumour growth in vivo (Tsai et al. 2016). It has also been
possible to inhibit Hop interaction with Hsp90 via small molecules, like
Sansalvamide A analogues (Ardi et al. 2011) and a compound termed C9
(1,6-dimethyl-3-propylpyrimido[5,4-e][1,2,4]triazine-5,7-dione) (Pimienta et al.
2011). The Sansalvamide A analogue bound Hsp90 at a region between the
N-terminal and middle domains, inducing allosteric changes that blocked the bind-
ing of Hop (and two other TPR-containing proteins) to the Hsp90 MEEVD (Ardi
et al. 2011). The compound C9 also blocked the interaction of Hsp90 with Hop
in vitro. Six compounds containing a 7-azapteridine ring were similarly able to
inhibit the interaction between Hsp90 and Hop (Yi and Regan 2008). Another
effective small molecule inhibitor is the pyrimidine derivative, Y-632. This inhibitor
does not bind directly to Hsp90 or disrupt its ATPase activity, but rather stimulates
thiol oxidation of Hsp90. This interferes with Hsp90-Hop binding and client proteins
are degraded via the ubiquitin-proteasome pathway. Y-632 was effective against
imatinib-resistant cells expressing mutant Ber-Abl in vitro and in mouse xenograft
models (Wang et al. 2016), although the indiscriminate activity of this type of
inhibitor may limit its progression as a lead compound (Darby et al. 2020). Most
of these compounds were shown to have anti-cancer activity in cell lines, demon-
strating that prevention of the interaction between Hsp90 and Hop may be a viable
target for anti-cancer therapies (Yi and Regan 2008; Ardi et al. 2011; Pimienta et al.
2011; Edkins 2016; Dutta Gupta et al. 2019).

Recently, the first peptides designed to directly target the Hop-Hsp70 interaction
were successful at inhibiting luciferase refolding in vitro (Zaiter et al. 2019). The
success of one of these peptides, C1, was due to its ability to stabilise the Hop-Hsp70
interaction rather than inhibiting it, an effective strategy that is underrepresented in
de novo compound design (Thiel et al. 2012; Andrei et al. 2017). The 5-amino acid
peptide was designed based on the sequence of helix 3A of the Hop TPR1 domain
and was small enough to hypothetically act as a minisolenoid, reinforcing the
interaction between the helices of the Hop TPR1 domain and the C-terminal binding
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domain of Hsp70. Interestingly, while C1 was able to bind both Hop and Hsp70,
longer analogues consisting of 7 and 8 residues (SY7 and SYS8, respectively)
functioned as traditional inhibitors of this interaction, likely due to their larger size
sterically preventing the simultaneous interaction of Hop and the respective com-
pound with Hsp70 (Zaiter et al. 2019). To date, there has been no progression of
Hop-Hsp70/Hsp90 inhibitors beyond proof of concept. Stabilising Hop-Hsp70/
Hsp90 interactions offers another approach for compound design, and sequestering
both proteins to limit their participation elsewhere in the cell may impart alternative
therapeutic responses. The ability to specifically target Hop-chaperone interactions
and accurately identify the on- and off-target effects within the complexity of protein
networks remains a big challenge in Hop-directed drug design.

Developmental and Protein Folding Disorders

Hop has an established role in cellular development. Although human cell lines with
CRISPR-mediated Hop knockout are viable (Bhattacharya et al. 2020), germline
deletion of Hop in the mouse is embryonic lethal and Hop null mice fail to develop
beyond E10.5 (Beraldo et al. 2013). Hop knockdown in ovarian germline nurse cells
causes sterility in Drosophila, with eggs laid at a rate like those of wild-type flies but
unable to hatch into larvae (Karam et al. 2017). Hop has also been linked with a role
in embryonic stem cell biology in vitro. Transient silencing of Hop in embryonic
stem cells led to a reduction in the ability to form embryoid bodies, suggesting a
more differentiated phenotype (Longshaw et al. 2009; Prinsloo et al. 2009). This was
attributed to a decrease in the phosphorylation and concomitant extranuclear accu-
mulation of signal transducer and activator of transcription 3 (STAT3), a protein
shown to interact directly with Hsp90 in vitro and in embryonic cells during
leukaemia inhibitory factor (LIF)-induced pluripotency signalling (Setati et al.
2010; Prinsloo et al. 2012). Hop has also been identified in extracellular vesicles
released from mouse embryonic stem cells, together with Hsp90 (Cruz et al. 2018).
The role of Hop in stem cell biology supports a fundamental role for Hop in
embryonic development. Hop is also required for neurosphere self-renewal
and differentiation in neuronal cells which is linked to neuronal development and
conceptual processes such as memory (Coitinho et al. 2007), attention span and
hyperactivity (Beraldo et al. 2015). These findings are consistent with evidence that
Hop interacts with Rnd1 GTPase to enhance neurite outgrowth in neuronal cell lines,
leading to the proposal that Hop may be involved in neuronal development (de Souza
et al. 2014).

Interestingly, linked to its role in foetal development through neuritogenesis, a
decrease in Hop could be involved in autism spectrum disorders (ASD)
(Braunschweig et al. 2013). The production of maternal IgG antibodies against
several foetal brain antigens, including Hop, has been linked to ASD in the children
born to these mothers. Children from mothers with specific reactivity to these had
increased ASD-type stereotypical behaviours. It was suggested these antigens could
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serve as a panel of markers for risk of maternal-autoantibody-related autism
(Braunschweig et al. 2013). Heterozygous Hop knockout mice expressing reduced
levels of Hop also demonstrated hyperactive behaviour with attention deficits. Mice
overexpressing Hop displayed no distinct phenotype; however, the increased level of
Hop was able to regulate the relative abundance of Hsp70 and Hsp90, while low
levels of Hop could not. Whether this is relevant to the Hop-reduced phenotype
observed remains to be investigated (Beraldo et al. 2015).

In Alzheimer’s disease, soluble B-amyloid oligomers (ABOs) bind to PrP¢ and
trigger neurotoxicity. Hop was found to prevent the binding of ABOs to PrP, both
in vitro and to mouse hippocampal neuronal PrP€ in vivo (Ostapchenko et al. 2013).
Hop was able to prevent APO-induced synaptic loss and neuronal death, and neurons
that were haploinsufficient for Hop were more sensitive to APO-induced death
which could be rescued by treatment with recombinant Hop (Ostapchenko et al.
2013). The toxicity induced by APOs could also be prevented by TPR2A
(Ostapchenko et al. 2013; Maciejewski et al. 2016) and TPR2B but not DP1, despite
all three domains binding with relatively high affinity to PrP® as compared to full-
length Hop (Maciejewski et al. 2016). The protective effect of increased levels of
Hop was shown in primary hippocampal neuronal cultures overexpressing Hop. The
addition of an antibody against Hop resulted in increased levels of cell death,
indicative of the extracellular function of Hop (Lackie et al. 2020a). Further valida-
tion using a C. elegans model for APO toxicity confirmed that increased levels of
Hop and Hsp90 (overexpressed separately and in combination) reduced APO-
induced paralysis of worms, although this effect was not synergistic (Lackie et al.
2020a), while Hop depletion had the inverse effect (Brehme et al. 2014; Lackie et al.
2020a). Surprisingly, overexpression of Hop in a mouse model of Alzheimer’s
disease exacerbated plaque formation and promoted neurodegeneration.
Overexpression of Hop was also associated with a compensatory increase in
Hsp90p (Lackie et al. 2020a). In primary murine neurons the protection against
APO toxicity imparted by Hop was diminished by the addition of excess recombi-
nant Hsp90, possibly due to sequestration of Hop by Hsp90 or interference with
Hop-mediated PrP signalling (Maciejewski et al. 2016). The in vivo results suggest
a more complex mechanism of disease presented in the mammalian system and
aligns with the observation that Hop levels are upregulated in Alzheimer’s disease
patient brains (Ostapchenko et al. 2013; Lackie et al. 2020a). For more detailed
information on the role of Hop and chaperones in neurodegeneration, the reader is
referred to a comprehensive recent review (Lackie et al. 2017).

The role of Hop as a co-chaperone has linked it to disorders in which Hsp90 client
protein stability or misfolding is a hallmark. The leading cause of cystic fibrosis is
the presence of mutations in the cystic fibrosis transmembrane conductance regulator
(CFTR) protein. A variant of CFTR harbouring a phenylalanine deletion (CFTR
AF508) has been shown to interact directly with Hop (Marozkina et al. 2010). Hop
captures CFTR AF508 and prevents its maturation, thereby blocking its function.
The maturation of CFTR AF508 could be rescued by treatment with
S-nitrosoglutathione (GSNO), which reduced Hop levels, without affecting Hsp70
or Hsp90, a phenotype recapitulated by siRNA-mediated knockdown of Hop
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(Marozkina et al. 2010). Hop has also been implicated in other protein conforma-
tional diseases, in which various proteins are converted into a common toxic
conformational state similar to f-amyloid (Wolfe et al. 2013). Molecular chaperones
have been found to suppress the toxicity of f-amyloid-like proteins by packaging the
toxic proteins into protein-handling depots. Hop was found to be a component of the
Hsp70/Hsp90 system in the control of spatial organisation of amyloid-like protein
assemblies, leading to a suppression of toxicity by proteins such as the glutamine-
rich yeast prion [RNQ+] and polyglutamine-expanded huntingtin (Htt103Q) in yeast
(Wolfe et al. 2013). This observation was corroborated in a C. elegans model, in
which Hop depletion was associated with increased polyglutamine toxicity (Brehme
et al. 2014). Interestingly, the correlation between Hop depletion and Htt toxicity
was contradicted by recent evidence that Hop knockout in a mammalian cell line
(Bhattacharya et al. 2020) and Hop depletion in Drosophila (Xu et al. 2019) reduced
aggregation of polyglutamine proteins. The studies in mammalian cell lines showed
that Hop knockout reduced polyglutamine protein aggregation in HEK293T cells
relative to their wild-type counterparts, but not in HCT116 cancer cells
(Bhattacharya et al. 2020), while Hop depletion in Drosophila was associated with
an increase in Hsp70 that possibly acted as a compensatory response more effective
at preventing toxicity (Xu et al. 2019). It is difficult to unravel these varied responses
without more empirical evidence, due to the level of complexity potentially imparted
by differences in cell lines, Hop isoforms and the response of highly proliferative
immortalised/cancer cell lines versus the global response of a whole organism.
Interestingly, in a study investigating the relationship between Hsp90/Hop and the
aggregation-prone Tar DNA-binding protein 43 (TBP-43), HEK293 cells displayed
no significant change in TDP-43 aggregation or localisation upon Hop deletion and
the effects of toxicity were therefore evaluated using mouse neuronal SN56 and
neuroblastoma N2a cell lines (Lin et al. 2021b). TDP-43 is a predominantly nuclear
protein associated with the neurodegenerative disorder amyotrophic lateral sclerosis,
and Hop knockout and overexpression experiments in mammalian cell lines and
yeast indicated that reduced levels of Hop were associated with reduced levels of
TDP-43 but increased TDP-43 toxicity and cytoplasmic aggregation. TDP-43 levels
were also reduced in Hop knockout mouse embryos (Lin et al. 2021b). TDP-43
appears to act as an Hsp90 client protein and its reduction in response to Hop
depletion may be a consequence of modified chaperone function. TDP-43 was
also reduced upon Hsp90 depletion and inhibition of Hsp90 chaperone activity in
yeast. TDP-43 co-immunoprecipitated in a common complex with Hsp90, Hsp70
and Hop in SN56 mammalian cells, although Hsp70 and Hsp90 were able to interact
with TDP-43 in the absence of Hop (Lin et al. 2021b). Interestingly, while moderate
overexpression of Hop in yeast was able to rescue TDP-43 toxicity, both high
overexpression and deletion of Hop increased TDP-43 toxicity. Similar effects
were observed in partially differentiated mammalian N2a cells, although high
overexpression of Hop did not affect TDP-43 toxicity. The dose-dependent effects
of Hop suggest that a finely controlled balance is required between Hsp90 and Hop,
in addition to other co-chaperones, to control TDP-43 toxicity (Lin et al. 2021b).
These observations highlight the relevance of experimental approaches that
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moderately adjust the levels of Hop in order to better understand its biological
functions within a cell or organism.

Parasitic Diseases

Hsp70 and Hsp90 are considered drug targets for the treatment of infectious diseases
like malaria and trypanosomiasis. Hop is conserved across species, including several
parasitic organisms that cause disease in humans, such as Plasmodium and Leish-
mania species. Hop from Leishmania donovani is expressed during the amastigote
stage (Joshi et al. 1993) which is important for adaption of the parasite to the human
host (Morales et al. 2010). Plasmodium falciparum Hop (PfHop) shares a similar
domain architecture with human Hop, and the residues that are known to be
important in the interaction with Hsp70 or Hsp90 (Odunuga et al. 2003) are
conserved. However, even though chaperone and co-chaperone systems are highly
conserved, there is evidence that the proteins are sufficiently biochemically different
to be considered as putative drug targets. The role of PfHop in facilitating the
interaction of cytosolic PfHsp70-1 and PfHsp90 has been biochemically
characterised (Gitau et al. 2012; Zininga et al. 2015). Furthermore, small-angle
X-ray scattering (SAXS) analysis was used to study the structure of PfHop (Silva
et al. 2020; Makumire et al. 2021), while the GGMP repeat residues have been found
to regulate the interaction of PfHsp70-1 with PfHop (Makumire et al. 2021). These
studies indicate that there are structural and functional features of PfHop proteins
that are quite different to those of yeast and mammalian homologues. Consequently,
antimalarial compounds could be designed to selectively target distinct regions of
PfHop or the interface between PfHop and PfHsp70-1/PfHsp90 (Gitau et al. 2012;
Zininga et al. 2015). Interestingly however, despite the presence of a divergent
EEVN motif in the exported PfHsp70-x, human Hop was still able to interact with
this PfHsp70-x isoform in vitro (Mabate et al. 2018), which suggests the possibility
of heterocomplexes involving host and pathogen chaperones. Similarly, despite high
structural and functional similarity, Hop from Leishmania braziliensis demonstrates
low sequence conservation (Batista et al. 2016). Furthermore, deletion of specific
residues in Leishmania donovani Hop blocked phosphorylation and led to parasite
death (Morales et al. 2010). If these residues are unique to the parasitic Hop, they
may indeed be targets for therapy. Furthermore, it may be relevant that the Hop
interaction motif of Hsp90 which is crucial for survival of the parasite is MEQVD in
Leishmania spp. instead of the MEEVD seen in the human host (Hombach et al.
2013). Hop knockdown and single-allele knockout in Trypanosoma brucei and
Trypanosoma cruzi, respectively, were not sufficient to disrupt cell growth (Schmidt
et al. 2018). However, Hop reduction impaired metacyclogenesis of 7. cruzi in vitro
(Schmidt et al. 2018). This differentiation process is usually prompted by stressed
conditions and is vital for progression of the parasite to the infectious stage of its life
cycle (Cruz-Saavedra et al. 2020). These findings offer a tentative route for



110 K. Schwarz et al.

development of species-specific Hop inhibitors, depending on the role of Hop in
parasitic life cycle progression.

Conclusion

While the exact biological function of Hop remains elusive, evidence from knockout
studies in mammals suggests that it is important in embryonic development in this
system at least. A role in development would be consistent with the reported link
between Hop and cancer characteristics. The biological function of Hop will be
system dependent, and while there are conserved features across species, the
sequence and domain variations suggest that it could have been recruited by
evolution for several different biological roles. The diverse functions of Hop in
mammalian cells suggest that at least two major isoforms may exist, one intracellular
and the other extracellular, although direct evidence for this has yet to be presented.
Identification and elucidation of the molecular basis for these isoforms and their
seemingly divergent cellular functions is an exciting area for future research. How
has this dynamic scaffold protein been functionally adapted to such different roles
and processes? More nuanced studies addressing how the concentration of Hop in
time and space affects cellular function are needed to obtain meaningful information
on its cellular and biological role. Such studies could determine the levels of Hop in
different normal (body organs, cell types and subcellular compartments) and dis-
eased systems, and then subtly adjust the levels of Hop to determine the effect on the
equilibrium between folding and degradation of key functional marker proteins. A
deeper structural and functional understanding of these Hop isoforms will assist
research on the role of Hop in cancer. The intracellular isoform appears to be
involved in processes important for successful metastasis, while the extracellular
isoform appears to enhance proliferation of cancer cells. The identification of small
molecules that can specifically disrupt Hop and its partner protein interactions are
starting to emerge. These Hop modulators represent novel molecular tools for
functional analyses as well as novel hit compounds for use in anti-cancer drug
discovery research. In addition, the development of protein-protein interaction
inhibitors for Hop may pave the way for a new class of chaperone regulators in
the future. Finally, there is growing evidence that Hop has functions that may be
independent of its major partner proteins (Hsp70, Hsp90 and PrP%). Many of the
recently defined activities of Hop, including ATPase activity, direct interaction and
stabilisation of substrate proteins, are those that are more associated with chaperone
function than co-chaperone function. As we learn more about this protein, it may be
appropriate to evaluate if Hop is more than just a co-chaperone. This beckons a fresh
approach to understanding the biological function of Hop, especially if its global
biological function is in early development.
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Chapter 4 m)
Specification of Hsp70 Function by Hsp40 e
Co-chaperones

Douglas M. Cyr and Carlos H. Ramos

Abstract Cellular homeostasis and stress survival requires maintenance of the
proteome and suppression of proteotoxicity. Molecular chaperones promote cell
survival through repair of misfolded proteins and cooperation with protein degrada-
tion machines to discard terminally damaged proteins. Hsp70 family members play
an essential role in cellular protein metabolism by binding and releasing non-native
proteins to facilitate protein folding, refolding, and degradation. Hsp40 (Dnal-like
proteins) family members are Hsp70 co-chaperones that determine the fate of Hsp70
clients by facilitating protein folding, assembly, and degradation. Hsp40s select
substrates for Hsp70 via use of an intrinsic chaperone activity to bind non-native
regions of proteins. During delivery of bound cargo Hsp40s employ a conserved
J-domain to stimulate Hsp70 ATPase activity and thereby stabilize complexes
between Hsp70 and non-native proteins. This review describes the mechanisms by
which different Hsp40s use specialized sub-domains to direct clients of Hsp70 for
triage between folding versus degradation.

Keywords Hsp70 - Hsp40 - Protein folding - Molecular chaperone - Protein triage

Introduction

The Hsp40 family of co-chaperone proteins plays a role in cell stress protection,
folding of nascent polypeptides, protein translocation across membrane, refolding of
denatured or aggregated proteins, modulation of amyloid formation, and protein
triage (Kampinga et al. 2019). There are 50 Hsp40 genes present in the human
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A.

HsDNAJAL

Fig. 4.1 The J-domain is responsible for regulation of Hsp70 function. (a) Sequence alignment of
J-domains from bacterial (Ec), yeast (Ydjl and Sisl), and human (Hs) Hsp40s. For reference:
Escherichia coli Dna] (UNIPROT P08622), Saccharomyces cerevisiae Sis1 (UNIPROT P25294)
and YdJ1 (UNIPROT P25491), Homo sapiens DNAJA1 (UNIPROT P31689), DNAJA2
(UNIPROT 060884), DNAJB1 (UNIPROT P25685). (b) NMR solution structure of the
J-domain from Sisl (PDB 6D6X). Red denotes residues perturbed by the interaction with Hsp70.
Those residues are in the HPD motif and in the interface between helices 2, 3, and 4

genome and 20 Hsp40s identified in the yeast genome. These proteins were identi-
fied by the presence of a conserved J-domain that stimulates the ATPase activity of
the Hsp70 (Fig. 4.1). Type I (DNAJA) and Type II (DNAJB) Hsp40s also have the
conserved ability to bind and deliver non-native proteins to Hsp70, which is essential
for life (Johnson and Craig 2001; Lee et al. 2002; Summers et al. 2009).

Type I Hsp40s are descendants of bacterial Dnal and contain the N-terminal
J-domain, followed by a glycine/phenylalanine-rich region (G/F), a zinc finger-like
region (ZFLR), and a conserved C-terminal domain (Kampinga and Craig 2010).
Except for the absence of the ZFLR, the domain structure of Type II Hsp40s is like
that of Type I Hsp40s. Type III Hsp40s contain the J-domain, not necessarily at the
N-terminus, but none of the other conserved domains found in Type I or IT Hsp40s.
Instead, they often have specialized domains that localize them to certain areas of the
cell and provide specificity in substrate binding. Type I and Type Il Hsp40s contain a
C-terminal dimerization domain, but this does not mean that all Hsp40s function as
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dimers (Sha et al. 2000). The transmembrane Hsp40s DnaJB12 and DnaJB 14, which
lack a canonical dimerization domain, also form dimers (Sopha et al. 2012). So, in
many instances dimeric Hsp40s interact with Hsp70, but a general requirement for
dimerization in Hsp40 function has not been demonstrated.

Hsp40s are conserved across species and are found in organisms from bacteria to
humans, and a variety of Type I and Type II, and Type III (DNAJC) Hsp40s are
found in the same subcellular organelles where they can play specialized roles
(Rosenzweig et al. 2019). To better understand the cellular processes that these
chaperones facilitate, we must first understand the mechanism by which Hsp40s bind
substrates and regulate Hsp70 function. It is also important to identify the protein
quality control machinery for which Hsp40 and Hsp70 serve as client selectors or
regulatory subunits. In the following sections, we will review the recently published
genetic, biochemical, cell biological, and structural data that have helped elucidate
the unique mechanisms that different Hsp40s use to maintain protein homeostasis.

A. Hsp70 Co-chaperone Activity of Hsp40s

The affinity of Hsp70 for polypeptides is regulated by its nucleotide-bound state. In
the ATP-bound form, Hsp70 has a low affinity for substrate proteins. However, upon
hydrolysis of the ATP to ADP, Hsp70 undergoes a conformational change that
increases its affinity for substrate proteins (Fig. 4.2). Hsp70 goes through repeated
cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of sub-
strate binding and release. Proteins that fold exit the cycle, whereas proteins that
remain in a non-native state reenter the cycle to suppress their aggregation or
promote delivery to degradation machinery (Bascos et al. 2017; Mashaghi et al.
2016; Schlecht et al. 2011).

The Hsp70 proteins are assisted and regulated by several different Hsp40
co-chaperones. These co-chaperones have been shown to not only regulate steps
of the ATPase cycle of Hsp70 (Fig. 4.1), but they also have an individual specificity
such that one co-chaperone may promote folding of a substrate while another may
promote degradation. For example, the Hsp40 DNAJA1 assists Hsp70 in folding
proteins, whereas DNAJB1 and DNAJB12 assist Hsp70 in the degradation of
misfolded proteins (He et al. 2021; Hipp et al. 2019). The yeast Type II Hsp40
Sis1 functions in spatial protein quality control and promotes protective aggregation
of amyloid-like proteins (Wolfe et al. 2013).

Hsp40 proteins that have polypeptide binding activity contain domains that have
the general ability to bind non-native polypeptides such as DNAJA1 and DNAJB1
(Fig. 4.3) or have highly specialized substrate-binding domains (Kampinga and
Craig 2010; Mayer and Gierasch 2019). The clathrin-binding DNAJC6 and the
iron-sulfur cluster assembly factor DNAJC24 are examples of Hsp40s that bind
specific clients (Rosenzweig et al. 2019; Thakur et al. 2012). The ability of Hsp40s
to load substrates onto Hsp70 is common to most family members. Differences in
client specificity exhibited by different Hsp40s enable Hsp70 to facilitate a broad
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array of cellular processes. The mechanism by which Hsp40s bind and interact with
Hsp70s is discussed in a prior review (Mayer and Gierasch 2019).

B. How Does the J-Domain Regulate Client Binding by Hsp70

The recent crystal structure of the J-domain of Escherichia coli Dnal in complex
with the E. coli Hsp70 DnaK has provided insight into the mechanism by which the
J-domain regulates Hsp70’s ATPase activity and client binding (Kityk et al. 2018).
The J-domain was found to interact with both DnaK’s nucleotide-binding domain
(NBD) and substrate-binding domain (SBD). It contacts the highly conserved
interdomain linker that controls allosteric communication between DnaK’s NBD
and SBD. Mutations that hinder the ability of the J-domain to contact the SBD
reduce the ability of Hsp70 to sense the presence of bound clients that stimulate ATP
hydrolysis. The J-domain can directly influence Hsp70s ability to hydrolyze ATP
and also enable Hsp70 to sense the presence of clients in the SBD (Kityk et al. 2018).
This bipartite mechanism of action increases the efficiency of client transfer from
Hsp40 to Hsp70.

New details about the mechanism for interaction of the J-domain with the HSP70
NBD are being revealed by nuclear magnetic resonance (NMR) studies. Chemical
shift perturbation and intensity changes measured by NMR on the J-domain of Sisl



4 Specification of Hsp70 Function by Hsp40 Co-chaperones 131

A. DNAJA Domain-Structure
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Fig. 4.3 Domain structures of DNAJA and DNAJB Hsp40 subtypes. (a) Schematic of the
sub-domains within DNAJA Hsp40s with the X-ray structure showing the solvent-exposed surfaces
of a yeast-Ydj1 fragment below. (b) Schematic of the sub-domains within DNAJB Hsp40s with the
X-ray structure showing the solvent-exposed surfaces of a yeast-Sisl fragment below. Colors
denote the hydrophobic (red), polar (purple), basic (orange), and acidic (yellow). PDB file: Sisl:
1C3G and Ydjl: INLT_1
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(residues 1-81) suggest that residues A29, H34, T39, F45, F52, and Y67 interact
with Hsp70 (Pinheiro et al. 2019) (Fig. 4.1b). In Sis1 the residues 34-36 correspond
to the HPD motif that is conserved in all Hsp40s. These data also indicate that the
end of helix-2, the HPD, helix-3, and part of helix-4 are involved in binding to
Hsp70. These data define aminos in the J-domain whose environment changes upon
interaction with Hsp70 and define details about the J-domain surface that contact the
Hsp70 NBD (Kityk et al. 2018).

C. Do Hsp40s Act as Chaperones?

It is established that Hsp40s specify Hsp70 function, but the manner by which
Hsp40s bind and deliver substrates to Hsp40 is not completely understood (Fan
et al. 2003; Summers et al. 2009). The first observations of intrinsic chaperone
activity of an Hsp40 came from studying the bacterial Type I Hsp40 Dnal (Langer
et al. 1992) where purified Dnal protein was shown to suppress the aggregation of
denatured rhodanese. Subsequently, the yeast Hsp40 Ydjl was shown to have the
conserved ability to suppress protein aggregation (Cyr 1995; Lu and Cyr 1998).

Studies with the yeast Sis1 protein have shown that Type II Hsp40s can also bind
chemically denatured luciferase and reduced a-lactalbumin and that this binding is
dependent on specific residues within the C-terminal peptide-binding domain I
(CTDI) (Lee et al. 2002; Sha et al. 2000). This ability of Sisl to recognize and
bind non-native polypeptides classifies Sis1 as a chaperone. However, Sisl alone is
not as effective of a chaperone as the Type I Hsp40s because Sisl cannot prevent the
aggregation of thermally denatured luciferase, nor does it hold the thermally dena-
tured luciferase in a folding competent state. However, Sisl is able to hold chem-
ically denatured luciferase in a folding competent state (Lee et al. 2002) and also
binds specific residues in yeast prions to promote prion propagation (Douglas et al.
2008). The human Hsp40, DNAJBI1, also has the ability to bind non-native proteins
and has the ability to recognize proline-rich regions of proteins (Lee et al. 2002).
This appears to make DNAJB1 susceptible to inactivation by huntingtin protein
(Park et al. 2013). The inactivation of DNAJB1 by huntingtin is associated with
inhibition of the proteasome and may contribute to huntingtin toxicity (Park et al.
2013).

Crystal structures of the C-terminal domain (CTD) of both Ydjl and Sisl have
been solved with each being subdivided into structurally similar CTDI and CTDII
(Fig. 4.3) (Li et al. 2003; Li and Sha 2003; Qian et al. 2002; Sha et al. 2000). The
crystal structure of YDJ1 complexed with a peptide substrate GWLYEIS bound to
CTDI reveals two hydrophobic depressions that are involved in client binding. The
X-ray crystal structure of Sisl contains similar hydrophobic depressions in CTDI
with mutational analysis revealing their importance in binding non-native clients
(Fan et al. 2005; Lee et al. 2002). CTDII also contains hydrophobic depressions, but
they are occupied by the side chains of hydrophobic residues from CTDI, so they
were not initially implicated in client binding. Yet, data from recent NMR studies
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suggest that both CTDI and CTDII function in the binding of non-native proteins
(Jiang et al. 2019). DNAJA and DNAJB are suggested to function as multivalent
polypeptide binding proteins.

C. Determination of Hsp70 Functional Specificity

Type I and Type II Hsp40s exhibit different substrate specificity and direct Hsp70 to
perform different functions in vivo. This may be the case for several regions. The
first is the hydrophobic depressions in CTDI of Type I and Type II Hsp40s are
different (Fig. 4.3). Sequence analysis also reveals two possible regions that may
also contribute to specifying clients bound by Type I and Type II Hsp40s. First, the
G/F-rich regions of Ydjl and Sisl are different, with that of Sisl containing a
10-residue long insert containing the amino acids, GHAFSNEDAF (Yan and
Craig 1999). Second, as mentioned previously, the protein modules located in the
middle of Ydjl and Sisl are different such that Ydjl contains the ZFLR and Sisl
contains a G/M region.

There is also recent work that suggests that the specificity of Hsp40 recognition
by an Hsp70 partner occurs through sets of residues that lie at the interface where
helices II and IIT of the J-domain bind to Hsp70 (Faust et al. 2020). Thus, client
recognition by different Hsp40s and selective recognition of the J-domain on
different Hsp40s by Hsp70 provides layers of regulation for Hsp70 action in protein
homeostasis.

D. Hsp40 Quaternary Structure

A common feature of Type I and Type II Hsp40s is that dimerization is important for
them to function in vivo (Summers et al. 2009). There are no crystal structures of
full-length Type I or Type I Hsp40s, but small-angle X-ray scattering (SAXS) and
protein modeling have been used to build models of the quaternary structure of Type
I'and Type II Hsp40s (Borges et al. 2005; Ramos et al. 2008). These models suggest
that there are substantial differences in the quaternary structure of the Type I and
Type II Hsp40s that may help account for their ability to direct Hsp70 to perform
different cellular functions (Fig. 4.3c). In Type I Hsp40 the interface between CTDI
and CTDII and the ZFLR space the polypeptide binding pockets in CTDI and appear
to impact the orientation for the J-domain relative to the long axis of the chaperone
(Silva et al. 2011). In Type II Hsp40s CTDIs on the arms of the different dimers are
closer together, and the J-domains are splayed to the side of the chaperone. It appears
that J-domains can exist in a dimeric state, while the models depicted show the
J-domains of Ydjl and Sis1 as monomers. It is therefore possible that these models
depict an inactive state of Ydj1 and Sis1 and that forms of these Hsp40s that regulate
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Hsp70 ATPase activity undergo a conformational change to permit J-domain dimer-
ization (Goodwin et al. 2014; Mokranjac et al. 2003).

Oligomerization has also been observed in Hsp40 proteins. Karamanos and
co-authors solved the structure of the monomeric CTD domain of human DNAJB6B
by NMR, showing that residues 190-230 form of a four-stranded beta-sheet
while the C-terminus is likely disordered (Karamanos et al. 2019). The oligomeric
interaction (2—40 subunits) likely involves beta-strand-beta-strand interactions as
showed by cross-linking studies (Soderberg et al. 2018). A S/T-rich domain (resi-
dues 132-189) is important for the interaction as its presence shifts the equilibrium
to oligomerization. DNAJBG6 is suggested to fight the aggregation of polyglutamine-
rich proteins that cause neurodegeneration. Whether the oligomers of DNAJB6
detected represent a storage form of this chaperone or a multivalent client binding
form requires investigation.

E. ER-Transmembrane Hsp40s and Membrane Protein
Quality Control

Most attention has been paid to functions of cytosolic Hsp40s in protein homeosta-
sis. Yet, there are Hsp40s in the ER lumen and mitochondrial matrix that play a
critical role in cell stress protection (Kampinga et al. 2019). There is also a subfamily
of ER-transmembrane Hsp40s that contain a cytosolic J-domain and G/F-rich region
and an ER-lumenal disordered region that play critical roles in membrane protein
assembly, ER protein quality control (ERQC), and suppression of ER-stress-induced
apoptosis (He et al. 2021; Sopha et al. 2017). DNAJB12 is a Type II Hsp40 whose
deletion sensitizes cells to ER-stress-induced apoptosis because it functions with and
ER-associated E3 ubiquitin-ligase GP78 to mediate the constitutive degradation for
the BCL-2 homolog BOK (Fig. 4.4a). BOK has a short 15-min half-life and
accumulates to levels that are sufficient to initiate mitochondrially induced apoptosis
when DNAJB12 and the E3 ubiquitin ligase GP78 become saturated with misfolded
clients (Llambi et al. 2016; Sopha et al. 2017).

DNAJB12 and Hsp70 can help degrade BOK because they serve as substrate
selectors for several ERQC-E3 ligases with clients being rapidly ubiquitinated and
retrotranslocated from the ER membrane to cytosol for proteasomal degradation
(Grove et al. 2011) (Fig. 4.4a). There are instances where DNAJB12 and Hsp70 bind
misfolded membrane proteins that contain stable tertiary structures that are resistant
to retrotranslocation (Houck et al. 2014). This occurs due to inefficiencies in
membrane protein folding where folding defects arise after the formation of disulfide
bonds or partially assembled intermediates adopt a difficult-to-handle low free
energy state (He et al. 2021; Houck et al. 2014). In these situations, DNAJB12
interacts with ER-associated autophagy initiation kinase complexes to mediate the
focal activation of autophagy (He et al. 2021; Houck et al. 2014) (Fig. 4.4b). This
mechanism drives the conversion of ER tubules containing ERAD-resistant
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Fig. 4.4 ER-transmembrane JB12-dependent triage of membrane proteins for proteasomal versus
lysosomal degradation. (a) Schematic depicting JB12/Hsp70 functioning with the ER-associated E3
ubiquitin ligase GP78/SEL1/Herp to select the BCL-2 family member BOK for constitutive
proteasomal degradation (Llambi et al. 2016). JB12 is destabilized by severe ER stress. JB12
depletion causes BOK accumulation and induction of apoptosis. (b) Conformation-dependent triage
of misfolded membrane proteins for proteasomal or lysosomal degradation. The E3 ubiquitin ligase
RMA1/RNFS5, E2 ubiquitin-conjugating enzyme UBC6, and Derlin-1 are components of an ERQC
E3-ubiquitin ligase complex that utilizes JB12 and Hsp70 to select globally misfolded membrane
proteins for proteasomal degradation (ERAD). Misfolded membrane proteins containing stable
tertiary structure are resistant to extraction from the ER and are not delivered to the cytosolic
proteasome. Long-term association of misfolded membrane proteins with JB12 drives interaction of
JB12 with omegasomes and delivery of stable intermediates for degradation via ER phagy. The
omegasome is an ER microdomain in which phagophores (autophagosome precursors) form. WIPI
is a WD40 repeat protein that marks omegasomes and scaffolds autophagy initiation machinery.
JB12/Hsp40 localizes in ER tubules with stable membrane protein intermediates that are
intermingled with adjacent WIPI-decorated ER tubules
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membrane proteins into phagophores that give rise to autophagosomes. In this way
ERAD-resistant membrane proteins are cleared from the ER membrane and deliv-
ered to the lysosome. JB12 is an example of an ER-associated Hsp40 that interacts
with cytosolic Hsp70 and different protein quality machines to triage nascent
membranes, regulate autophagy initiation kinase activity, and suppress
ER-stressed apoptosis.

F. Hsp40s into the Future

The Hsp40 family plays a central role in organismal vitality. Mechanisms for Hsp40
action in specification of Hsp70 function are being defined at cellular and atomic
levels. Future Hsp40 studies will uncover mechanisms for regulating interactions
between the J-domain and Hsp70, Hsp40 action in suppression of
neurodegeneration, and triage of proteins between life and death. Use of super-
resolution microscopy will define ER nanodomains where Hsp40s facilitate triage of
misfolded membrane proteins. Quantitative proteomic studies will reveal how post-
translational modification of Hsp40s regulates their dynamic interactions different
cellular machinery. Genome-wide association studies are revealing genetic links
between Hsp40 and disease. In order for the field to understand how the 50 different
Hsp40 family members function to maintain protein homeostasis and suppress
proteotoxicity, much work is still required.
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Chapter 5
Cdc37 as a Co-chaperone to Hsp90 s

Thomas L. Prince, Benjamin J. Lang, Yuka Okusha, Takanori Eguchi,
and Stuart K. Calderwood

Abstract The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting
in molecular chaperone activities, particularly with regard to the regulation of
protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes dem-
onstrates the way in which Cdc37 interacts with and controls the folding of a large
proportion of intracellular protein kinases. This co-chaperone thus stands at the hub
of a multitude of intracellular signaling networks. Indeed, the influence of Cdc37
reaches beyond the housekeeping pathways of protein folding into the regulation of
a wide range of cellular processes. This co-chaperone has attracted attention as a
potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in
cancer due to (1) high expression in a number of tumor types and (2) control of
multiple signaling pathways. These properties indicate (3) a potential for selectivity
due to its elevated expression in malignant cells and (4) robustness, as the
co-chaperone may control multiple growth signaling pathways and thus be less
prone to evolution of resistance than less versatile oncoproteins. Cdc37 may also
be involved in other aspects of pathophysiology and has been shown to be secreted
in exosomes. Protein aggregation disorders have been linked to age-related declines
in molecular chaperones and co-chaperones. Cdc37 also appears to be a potential
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agent in longevity due to its links to protein folding and autophagy, and it will be
informative to study the role of Cdc37 maintenance/decline in aging organisms.

Keywords Cdc37 - Hsp90 - Kinase - Chaperone - Cancer - Autophagy -
Neurodegenerative

Introduction

For many of us, heat shock proteins (HSPs) were first encountered as dominant
bands on SDS-PAGE gel analysis of protein extracts from heat-stressed cells, which
could be readily visualized by a process as insensitive as Coomassie blue staining;
they were apparently made in extraordinarily large amounts after the stress and
became major bands. Their existence had been surmised from the studies of Ritossa
in Drosophila and others who discovered the existence of heat shock-induced
transcripts (Ashburner and Bonner 1979). The cellular functions of the HSPs were
initially unknown. However, early studies of processes involved in Lamda bacteri-
ophage replication in prokaryotes and clathrin cage uncoating in mammalian cells
identified them as proteins that work on the structures of other polypeptides and
sculpt the tertiary and quaternary structures of proteins and protein complexes
(Polissi et al. 1995; Chang et al. 2002). The Lambda phage studies indeed indicated
that a seventy kD E. coli protein called DnaK cooperated with other proteins Dnal,
GrpE, and GroEL to form a “chaperone machine” that promoted many aspects of
Lamda phage replication (Polissi et al. 1995). DnaK was also found to have an
ortholog in mammalian cells called heat shock protein seventy (Hsp70), DnaJ was
the founder member of the J domain co-chaperone family (JDP), GrpE was a
nucleotide exchange factor with functional homologs in mammals (c.f. BAG domain
proteins), and GroEL turned out to be close relative of Hsp60 (Lindquist and Craig
1988; Hartl 1996; Lang et al. 2021; Frydman et al. 1992; Calderwood 2013). These
studies in prokaryotes foreshadowed the identification of the conserved HSP families
in mammals as well as the complex pathways of protein folding and maturation. The
Hsp27, Hsp60, Hsp70, and Hsp90 families and TriC chaperonins are conserved
throughout cellular life and collaborate to maintain the proteome in functional form
(Frydman et al. 1992; Arrigo 2007; Rosenzweig et al. 2019; Neckers and Ivy 2003).
Hsp70 and Hsp90 require families of accessory proteins known as co-chaperones to
function at respectable rates in the cellular environment (Lang et al. 2021).

Protein folding has been proven to be a cooperative process, involving multiple
chaperones and co-chaperones (Baker et al. 2018; Cox et al. 2007; Chen et al. 1998).
An example of this is, the “folding cycle” of mammalian steroid hormone receptors
such as the glucocorticoid receptor, from initial transcription/translation through
intermediate folding states to mature receptors capable of binding the hormone
ligand, traversing to the nucleus and initiating transcription. The cycle incorporates
two main phases, including the binding of the nascent hormone, after translation by
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Hsp70 and a member of the JDP family, Hsp40 in this case. This process results in
the ATP-dependent sequestration of hydrophobic residues by Hsp70. The receptor
cargo is then handed on to Hsp90 through the bridging protein HOP (Hsp70-Hsp90
organizing protein (Johnson et al. 1998)). Dissociation of Hsp70 from this complex
then permits Hsp90 to apply the final folding steps of the protein, leading to a
functional form. Hsp90 maturation of clients requires the co-chaperone p23 to
stabilize the interaction; peptidyl-prolyl isomerases such as CYP40, FKBP51, and
FKBPS52 for proline isomerization; and nuclear localization and phosphatase 5 (PP5)
for dephosphorylation of inhibitory modifications (Riggs et al. 2004; Conde et al.
2005). A similar folding cycle was also discovered for the maturation of many
protein kinases, involving Hsp70- and Hsp90-mediated stages, but differing in that
the essential co-chaperone for Hsp90 in this process was pS0/CDC37, the main
subject of this review (Shao et al. 2001; Kamal et al. 2004; Kamal et al. 2003;
Calderwood 2015).

Cdc37 in the Chaperoning of Protein Kinase

Cell division cycle 37 (Cdc37) is a protein that assists in the three-dimensional
folding of protein kinase domains along with Hsp90. Discovered in a yeast
(S. cerevisiae) genetic screen, Cdc37 was found to be essential for G1 progression
by facilitating the associations between cyclins and cyclin-dependent kinases
(CDKs) (Reed 1980; Gerber et al. 1995). This 50 kD protein, often referred to as
p50, was next found to directly interact with Rous sarcoma viral kinase pp60* " and
Hsp90. Cdc37 and Hsp90 were then shown to be required for the tyrosine kinase
activity in fruit flies (D. melanogaster) (Gerber et al. 1995). It was then later
confirmed that Cdc37 was the kinase-targeting co-chaperone of the Hsp90 chaper-
one machine that maintained Cdk4 levels in both fruit fly and mammalian cells (Fliss
etal. 1997; Stepanova et al. 1996). Since then, Cdc37 has been found to interact with
a large portion of mammalian “client” kinases. Cdc37 has also been shown to
support androgen hormone receptor (AR) activity and endothelial nitric oxide
synthase (eNOS) function, suggesting that the co-chaperone may possess properties
beyond the folding of kinase domains (Rao et al. 2001; MacLean and Picard 2003).
Cdc37 is required for cell viability as it services a large portion of the kinase
population that signals for growth and differentiation. Continuously needed to
maintain the population of client kinases in a cell, Cdc37 and Hsp90 recognize
and fold both nascent kinase polypeptides emerging from ribosomes and mature
kinases that depend on Hsp90 and Cdc37 to maintain their day-to-day activity and
stability. Protein kinases make up 1-2% of all the proteins encoded by eukaryotic
genomes, making them the third most common protein domain in the human
genome (Manning et al. 2002). This prevalence combined with the observations
that aberrant kinase activity often leads to disease has led to the development of
myriads of small molecules directed at kinases by the pharmaceutical industry.
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Protein kinases function catalytically by binding ATP and covalently transferring
the y-phosphate residue to a serine, threonine, or tyrosine residue on the substrate
protein. This event modifies the substrate protein’s structural conformation which, in
turn, affects its function, activity, localization, stability, and protein-protein interac-
tion profile. This simple post-translational modification (PTM) allows for the trans-
duction of information between and within cells regarding environmental
conditions, stress, growth, differentiation, and the cell cycle. Transduction of infor-
mation is propagated through signaling networks made up of tiers of kinases and
effector substrate proteins such as factors that regulate gene transcription factors and
protein translation. Kinase signaling throughout the network occurs in cascade-like
manner with each kinase protein capable of phosphorylating numerous downstream
substrates, allowing the original signal to be exponentially amplified. Each kinase
may also phosphorylate different species of substrates, thereby broadening the effect
of the original signal and creating cross-talk between signaling pathways. This
multiplicity of substrates enables modulation of the signal through positive and
negative feedback mechanisms. Throughout this process, Cdc37 and Hsp90 are
both required to ensure the readiness and activity of the kinase signaling network
by preventing the aggregation and degradation of protein kinases while maintaining
the proper structure of their domains.

The overall protein fold of the kinase catalytic domain is remarkably conserved
across eukaryotes. Made up of between 250 and 300 amino acids, the kinase domain
consists of a two-lobed structure that can be flanked or split by a number of
regulatory or structural domains. The smaller N-terminal lobe (NL) orients the
ATP molecule and contains key catalytic residues, while the C-terminal lobe
(CL) recognizes peptide substrates and also contains residues required for phosphor-
ylation (Hanks et al. 1988). ATP molecules are cradled by the cleft created between
the NL and CL. After substrate phosphorylation, the hydrolyzed ADP must be
replaced with fresh ATP, and this exchange event requires the rearrangement of
the NL-CL interface and exposure of the ATP-binding cleft. This extended confor-
mation state of the kinase domain is recognized and bound by Cdc37 and Hsp90
(Verba et al. 2016). We depict the asymmetric structure of a cyclin-dependent
kinase, CDK4, split and laced through the lumen of an Hsp90f dimer with Cdc37
straddling one Hsp90 protomer while binding each kinase lobe in (Fig. 5.1a, b). The
most prominent structural motifs required for Cdc37 recognition/interaction include
the oE-helix in the CL and the oC-f4 loop, aC-helix, and G-loop in the
NL. Concomitantly, the Hsp90 dimer binds the extended p4—fB5-sheet motif, as per
nomenclature provided by Hanks and Hunter (Hanks et al. 1988). These interactions
were crudely speculated/predicted by previous efforts (Prince and Matts 2004), but
now the atomic structure provided by Verba et al. most beautifully models the
stabilized unfolded state of protein kinases by the Hsp90-Cdc37 chaperone complex
(Fig. 5.1) (Verba et al. 2016). Consideration of this structure suggests why kinases
that are bound by Hsp90-Cdc37 are catalytically repressed and dissociation of the
complex by Hsp90 inhibitors leads to transient activation prior to degradation
(Gaude et al. 2012; Bendell et al. 2015).
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Fig. 5.1 Cdc37 structure and domain map. (a) Human Cdc37 asymmetrically interacts across
Hsp90 dimer and binds cyclin-dependent kinase (Cdk4) (PDB:5SFWM). (b) Top and cutaway view
of Cdk4 extended through the lumen of Hsp90 dimer with Cdc37 binding each lobe of kinase
domain. (¢) AlphaFold predicted structure of free Cdc37 (AF-Q16543-F1-model_v1). (d) Cdc37
domain map. Cdc37: N-terminal kinase-binding domain (NKD), central Hsp90-binding domain
(CHD), C-terminal domain (CTD), Hsp90: N-terminal ATP-binding domain (ND), middle domain
(MD), C-terminal domain (CD), Cdk4: N-terminal lobe (NL), C-terminal lobe (CL)

The frequency and duration of the period a kinase domain occupies the unfolded/
transition state vary among protein kinase family members as it is dependent on the
overall structural stability of the NL-CL interface (Bendell et al. 2015; Taipale et al.
2012). This property suggests that there is no conserved primary amino acid
sequence that is recognized by Cdc37 and Hsp90, but instead that recognition is
dependent on exposure of the structural motifs bound by Cdc37 and Hsp90. The
stability of the intramolecular interaction between the aC-p4 loop in the NL and the
aE-helix in the CL is likely the most important factor influencing Cdc37 recognition.
Indeed, analysis of mutations created in the laboratory and found in the clinic has
suggested this (Xu et al. 2005; Nony et al. 2003). The aC-p4 loop typically contains
a large amino acid such as a histidine (H) that inserts into a notch in the oE-helix
allowing for a pivotal interface between the NL and CL. If the sequence/structure of
the aC-f4 loop is too flexible or thermally unstable (Xu et al. 2005), then the NL-CL
interface can come apart exposing the two motifs. Cdc37 contains a conserved HPN
amino acid motif that mimics the aC-f4 loop and specifically probes the stability of
the kinase domain as demonstrated by Keramisanou et al. (Keramisanou et al. 2016).
The ability of Cdc37 to pry apart the NL-CL and expose the notch in the oE-helix is



146 T. L. Prince et al.

key to determining whether or not a kinase will be recognized as a client. Moreover,
this molecular mechanism suggests that Cdc37 acts as an ATP exchange factor for
some client kinases (Eckl et al. 2015). This consideration also indicates why small
molecule kinase inhibitors that bind and stabilize the ATP cleft reduce Cdc37
interaction and sensitivity to Hsp90 inhibitors (Giannini and Bijlmakers 2004).

Roughly 60% of all protein kinases tested were shown to interact with Cdc37 and
Hsp90 (Taipale et al. 2012), while the remaining protein kinases that do not interact
in this way likely possess stabilized domain structures, as seen with JNK (Prince and
Matts 2005). Moreover, not all Cdc37-Hsp90 interaction dynamics with kinases are
thought to be the same, as discussed here: (1) As a protein kinase is synthesized on
the ribosome, it encounters a crowded cellular milieu (Ellis 2007). Cdc37 and Hsp90
ensure nascent kinase polypeptides become properly folded and are not allowed to
aggregate. Once the kinase is folded and released, it may no longer require Cdc37
and Hsp90 interaction, such as observed with EGFR. (2) Some kinases, however,
such as Her2/neu require continual Cdc37-Hsp90 support due to the unstable
structure of their aC-p4 loop (Xu et al. 2005). Therefore, inhibition of Hsp90 can
result in rapid loss of activity and subsequent degradation of these kinases. (3) Other
kinases may become reliant on Cdc37 and Hsp90 once they are activated and need to
repeatedly exchange ATP (Miyajima et al. 2013). Identifying such kinases, however,
is challenging since their interaction with Cdc37 is stimulus-dependent and transi-
tory, making it difficult to determine the correct experimental conditions. (4) Con-
versely, some kinases such as Erk5 may only bind Cdc37 and Hsp90 while inactive
and dissociate upon activation (Erazo et al. 2013). (4) Lastly, mutated protein
kinases often become increasingly dependent on Cdc37 and Hsp90 (da Rocha
et al. 2005). This is observed in cancer with kinases that signal for cell proliferation.
In this regard, mutations that induce increased kinase activity promote neoplastic
transformation but often reduce the structural stability of the kinase. Furthermore,
kinases may be mutated as a tumor develops resistance to a therapy, as was observed
with a tyrosine kinase inhibitor (TKI) (Schwartz et al. 2015). Together these
scenarios combined indicate why such a large portion of the encoded kinases in
the human genome interact with Cdc37.

Structure and Interaction

Human Cdc37 is made up of 378 amino acids and consists of an extended structure
with globular a-helical bundles in the central and C-terminal end of the protein as
shown by cryo-EM and crystal structures (Verba et al. 2016; Roe et al. 2004). The
predicted protein structure of Cdc37 by AlphaFold provides a similar structure
(Fig. 5.1c) (Jumper et al. 2021). The N-terminus kinase-binding domain (NKD) of
Cdc37 is the most conserved across evolution, containing S13 and the 20HPN22
motif responsible for probing the kinase CL. Phosphorylation of S13 by casein
kinase II (CKII) is required for kinase recognition and stable assembly of the
Hsp90-Cdc37-kinase complex (Shao et al. 2003). Phosphorylation of S13 on
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Fig. 5.2 Cdc37 molecular interactions. (a) Human Cdc37 CHD interacts with yeast Hsp90 ND in
“open” client-loading state. Cdc37 R137 forms a salt bridge with catalytic residue E33 of Hsp90
(PDB: 1US7). (b) Cdc37 binds across Hsp90 with the CHD interacting with the MD in the “closed”
client-holding state. (¢) Phosphorylation of Cdc37 on S13 arranges residues H33 and R36 along
with R406 on Hsp90. This allows the probing of the aE-helix notch in the CL of Cdk4 by the
20HPN motif of Cdc37. (d) Conserved residues Q172 and D169 of Cdc37 pinch the G-loop in the
NL of Cdk4. (e) Q208 of Cdc37 interacts with 68HPN aC-p4 loop of Cdk4. (f) R235 of Cdc37
packs against R338 and F341 of the near Hsp90 protomer, while K339 and K342 of Cdc37 interface
with T616 and M620 on the o-helix containing the phosphorylation site Y619 on the far Hsp90
protomer. (g) 243TADR of Cdc37 cradles the aC-helix of Cdk4 and orients catalytic ES6

Cdc37 allows for electrostatic interactions between H33 and R36 of Cdc37 and
R406 of Hsp90. This arrangement provides the rigidity for the 20HPN motif of
Cdc37 to probe the aE-helix notch on Cdk4 (Fig. 5.2c). Dephosphorylation of S13 is
performed by Hsp90-associated phosphatase, PP5, which allows for kinase release
and Cdc37 dissociation (Vaughan et al. 2008). Another phosphorylation site exists at
Y4 although the biological significance of this residue has not been elucidated. The
NTD is followed by a coiled coil that extends away from the complex before
transitioning into a P-sheet binding alongside the middle domain of Hsp90.
According to the PhosphoSitePlus database, several PTMs exist in this region
although not all of their biological roles have not been studied. However, it has
been found that phosphorylation of S97 by PKA in response to non-steroidal anti-
inflammatory drugs blocks Cdc37 interaction with Hsp90 leading to Axl kinase
degradation and prevention of Zika virus cell entry (Pan et al. 2018).
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Next, the central Hsp90-binding domain (CHD) of Cdc37 interacts with both the
kinase NL and Hsp90. This domain shares homology with the co-chaperone Cdc7L1
also known as Harc (Scholz et al. 2001). Interestingly, the exact biological function
and client set of Harc have not been fully explored. Depending on the conforma-
tional state, the central domain of Cdc37 binds Hsp90 in two different places. This
effect is also observed for other co-chaperones such as Ahal, which promotes
Hsp90’s ATPase activity, and Hop, which coordinates client loading and inhibits
Hsp90 ATPase activity in a similar manner to Cdc37 (Eckl et al. 2013). Further
description of the ATP-fueled Hsp90 chaperone cycle and its numerous
co-chaperones has been recently reviewed by our group and others (Lang et al.
2021).

In the “open” Hsp90 client loading state, Cdc37 binds the N-terminal
ATP-binding domain (Fig. 5.2a) (Roe et al. 2004), while in the “closed” client
holding state, Cdc37 binds the middle domain (MD) of Hsp90 (Fig. 5.2b) (Verba
et al. 2016). The crystal structure generated by Roe et al. shows that human Cdc37
CHD inserts an arginine (R167) side chain into the ATP-binding pocket of yeast
Hsp90 N-terminal domain, thereby locking Hsp90 into an “open” conformation
(Roe et al. 2004). The amino acid sequence surrounding R167 is relatively con-
served, including Harc. In the “closed” kinase-binding structure, however, the
sequence surrounding R167 does not bind Hsp90 but instead interacts with the
kinase NL. Here the kinase G-loop motif is grasped by amino acids D169 and
Q172 (Fig. 5.2d), which are also conserved in Harc, suggesting it may also recognize
a similar motif in non-kinase clients. Similarly, the Q208 residue of Cdc37 interacts
with the “open” Hsp90 ND, but in the “closed” conformation where it interfaces with
the aC-p4/HPN kinase motif (Fig. 5.2e). This property suggests that human Cdc37
has evolved to pivot between inducing the “open” Hsp90 client-loading state and the
“closed” Hsp90 client-holding state, interacting with the same set of amino acid
residues. However, what these interactions indicate, regarding the sequential steps
and regulation of the Hsp90 chaperone cycle, deserves further investigation. It is also
worth noting that Cdc37 mutants can stabilize client kinases without substantial
CHD interaction with Hsp90 in cultured cells, suggesting the CHD is secondary to
the conserved NKD in providing chaperone activity (Smith et al. 2015).

Cdc37 also interacts with each Hsp90 protomer and kinase exclusively in the
“closed” state through a 15 amino acid helix-turn-helix motif. Here Cdc37 inserts a
conserved R235 side chain into a pocket in the middle domain of the near Hsp90
protomer. This is followed by T238, K240, and K242 interaction with an a-helix in
the C-terminal domain of the far Hsp90 protomer. Remarkably, phosphorylation of
Hsp90 at Y619 in this a-helix has been found to dissociate client kinases from the
chaperone complex (Fig. 5.2f) (Xu et al. 2012). Adjoining this interaction, amino
acids 243TADRQ?247 are observed to grasp the N-terminal end of the kinase aC-
helix including the catalytic glutamate (56E) (Fig. 5.2g). This interaction further
provides Cdc37 with its kinase-binding specificity and explains why antibodies that
bind the aC-helix of kinases, such as Cdk2, disrupt Cdc37 and Hsp90 interaction
(Prince et al. 2005). Notably, dimerization of Cdc37 is also predicted to occur
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through residues within and downstream of this helix-turn-helix motif (Roe et al.
2004; Roiniotis et al. 2005).

The far C-terminal domain (CTD) of Cdc37 has been shown to be an a-helix
bundle at the end the long a-helix extending out of the CHD. The exact function of
this domain is not clear although it contains a phosphorylation site at Y298,
suggesting that it may function as a scaffold for recruiting SH2 domain containing
kinases, such as Yes, that regulate client kinase folding and dissociation through
eventual phosphorylation of Hsp90 at Y197 (Xu et al. 2012). This domain is also
phosphorylated by Ulk1 at S339 and results in disruption of kinase recruitment to the
Hsp90-Cdc37 complex, suggesting that kinase maintenance might be reduced dur-
ing autophagy (Li et al. 2017). The remaining C-terminal sequence of Cdc37 exists
as an unstructured tail according to the structure predicted by AlphaFold (https://
alphafold.ebi.ac.uk/entry/Q16543) (Fig. 5.1c, d).

Cdc37 in Cell Proliferation and Cancer

Molecular chaperones including heat shock proteins and co-chaperones are known
to play key roles in the etiology of cancer (Ciocca et al. 2013; Calderwood et al.
2006; Calderwood and Gong 2016). As a cell cycle division protein, required to
drive cell proliferation, it is probably not surprising that Cdc37 appears to play a
positive role in tumorigenesis (Stepanova et al. 2000a; Gray Jr. et al. 2008)
(Fig. 5.3). An early hint suggesting such a role was provided by the finding of a
requirement for Cdc37, along with Hsp90 in the transforming functions of the viral
oncogene p60/v-src (Dey et al. 1996; Perdew et al. 1997). More conclusive evidence
for a transforming role for Cdc37 was next provided by the finding that
overexpression of the Cdc37 gene in transgenic mice could lead to elevated rates
of prostate tumorigenesis, a process that was amplified by co-expression of the
proto-oncogene c-Myc (Stepanova et al. 2000b). Consistently, increased expression
of Cdc37 was found in prostate cancer cell lines (PC-3, LNCaP, and DU-145) as
compared to normal prostate epithelial cells (RWPE-1) (da Rocha et al. 2005;
Eguchi et al. 2019). Cdc37 has been recently shown to be transcribed by the zinc
finger transcription factor MZF1 through binding to multiple motifs in the gene
promoter (Eguchi et al. 2019; Eguchi et al. 2015) (Fig. 5.3a). MZF1 knockdown
reduced prostate cancer growth and decreased Cdc37 expression in multiple prostate
carcinoma cells (Eguchi et al. 2019). Interestingly, SCAN-D1, an endogenous
inhibitor of MZF1 found abundantly in non-malignant prostatic epithelial cells,
reduced Cdc37 expression and malignancy (Eguchi et al. 2019). Moreover, HSF1
the key transcription regulator of the HSR activates CDC37 expression in prostate
cancer (Eguchi et al. 2020; Murshid et al. 2018). In addition to prostate carcinoma,
other cancer types such as anaplastic large cell lymphoma, acute myeloblastic
leukemia, multiple myeloma, and hepatocellular carcinoma have been shown to
express high levels of Cdc37 (Gray Jr. et al. 2008). Indeed, Cdc37 appears to play a
key role in fostering of anaplastic large cell lymphoma (Kuravi et al. 2019).
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Fig. 5.3 (a) Pathophysiological cascade mediated by molecular chaperones. The Cdc37/Hsp90
chaperone complex promotes carcinogenesis by assisting folding of many protein kinases that
promote EMT and exosome production. In prostate cancer, expression of Cdc37/Hsp90 is induced
by oncogenic transcription factors such as MZF1 and HSF1 while suppressed by tumor suppressor
SCANDI (da Rocha et al. 2005; Schwartz et al. 2015). (b). Cdc37 controls a network of intracel-
lular protein kinases. Cdc37 is able to influence a wide spectrum of protein kinases through their
highly conserved catalytic domain. Depicted here are Cdc37 regulation of the ERK-MAP kinase
pathway, the phosphatidylinositol-3-kinase (PI-3-K) pathway, Unc-51-like kinase (ULK-1) activ-
ity, and the activity of AR. In this way, Cdc37 is able to control a wide spectrum of intracellular
metabolic pathways involved in cell growth, survival, autophagy, and carcinogenesis. AR seems to
be exceptional in being a non-kinase client of Cdc37

However, the exact role of Cdc37 in promoting tumorigenesis remains difficult to tie
down due to the large numbers of potential Hsp90/Cdc37 targets with potential roles
in carcinogenesis. Nevertheless, probable candidates include the numerous kinase
signaling pathways and the androgen receptor (AR) (Heinlein and Chang 2004).
While most steroid hormone receptors require Hsp90 for optimal folding and
activity, only AR appears to be dependent on both Hsp90 and Cdc37 (Fliss et al.
1997; Rao et al. 2001). Indeed, Cdc37 knockdown in AR LNCaP cells was shown
to lead to the loss of androgen-dependent AR-mediated transcriptional activity and
to a reduction in target prostate-specific antigen (PSA) expression (Gray Jr. et al.
2007). It may be significant that Cdc37 has been found to be associated with the AR
co-activating protein Vav3 (Wu et al. 2013). Disruption of AR-Vav3 interactions
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inhibited the co-activating effects of Vav3 (Wu et al. 2013). AR has been shown to
be essential for the early stages in prostate tumorigenesis and to even play
unpredicted roles in castration-resistant forms of PCa. Therefore, a role for Cdc37
in fostering AR activity and prostate carcinogenesis appears to be likely. Protein
kinases within most pro-growth pathways are the preferred clients of Cdc37 (Gray
Jr. et al. 2008). The pro-survival phosphatidyl-inositol-3 lipid kinase (PI-3 K)
pathway plays a major driving role in prostate carcinogenesis often due to the
inactivation of the lipid phosphatase PTEN tumor suppressor (Bitting and Arm-
strong 2013). Although PI-3 K is not a known client, knockdown of Cdc37 leads to
reduction of PI-3 K downstream signaling through inhibition of Akt as well as
phosphorylation of the S6 ribosomal protein and the mTORC]1 nutrient-sensing
complex (Gray Jr. et al. 2007). The mTORCI pathway has been shown to play
key roles in cancer progression by boosting the rate of translation in tumor cells and
permitting elevated protein synthesis in such cells. Other potential Cdc37-dependent
targets could include receptor tyrosine kinases such as EGFR and HER2/neu that are
Cdc37 clients and could also play roles in prostate cancer (Calderwood, S. K. et al.,
in preparation), (Lavictoire et al. 2003).

Cdc37 may also play a role in the secretion from tumor cells of extracellular
vesicles (EV) that promote tumor progression in surrounding cells. Triple depletion
of Cdc37, Hsp90 alpha, and Hsp90 beta reduced the transforming potential of EVs
released from prostate cancer and metastatic oral cancer (Ono et al. 2020). In
addition, siRNA-based knockdown of Cdc37 significantly reduced the overall pro-
tein contents of prostate cancer cells and their EVs, suggesting that Cdc37 is broadly
essential for proteostasis in the prostate carcinoma cells and EVs. Knockdown of
Cdc37 significantly reduced the levels of CD9, one of the most established exosomal
markers, indicating that Cdc37 is essential for exosome biogenesis and secretion.
Moreover, triple depletion of Cdc37, Hsp90 alpha, and Hsp90 beta inhibited in vivo
tumorigenesis of castration-resistant prostate cancer cells, which are AR-negative
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prostate cancers (Eguchi et al. 2020). Cdc37 may thus contribute both to intracellular
and extracellular components of oncogenic signaling.

Cdc37 and Cancer Treatment

The dependence of malignant cells, particularly prostate carcinoma cells, on Cdc37
suggests this molecule as a promising potential target. This approach would have the
decided advantage of leading to multi-targeting and the potential for evasion of
resistance, in contrast to targeting individual oncoproteins in which evolution of
resistance is problematic. Cdc37 knockdown was shown to reduce proliferation to
minimal levels in a range of malignant cell types (Gray Jr. et al. 2008; Gray Jr. et al.
2007; Smith and Workman 2009). A natural product-based drug has recently been
isolated that can disrupt Hsp90/Cdc37 interactions. This compound celastrol might
thus be employed for targeting Cdc37 activity in cancer (Salminen et al. 2010).
However, this compound is somewhat lacking in specificity and was shown to
directly inhibit both kinase activity and the function of the proteasome and to induce
HSFI activity (Calderwood 2013). Non-celastrol small molecule Cdc37 inhibitors
have been described and may have potential in therapy (Wang et al. 2019; Huang
et al. 2014). However, a group of small peptides predicted from structural studies to
inhibit Cdc37-Hsp90 interaction proved non-toxic to human cancer cells (D' Annessa
et al. 2020). No doubt future endeavors will lead to further Cdc37-targeted drugs. An
indirect approach to targeting Cdc37 could be through reducing its gene expression
in malignant cells by inhibiting MZF1 as described above (Eguchi et al. 2019).
Moreover, recent drug development approaches such as molecular glues,
proteolysis-targeting chimeras (PROTAC), and chaperone-mediated protein degra-
dation (CHAMP) compounds may also find a way to take advantage of the intimate
interactions between Cdc37, Hsp90, and protein kinases to induce targeted protein
degradation of oncogenes.

Roles for Cdc37 in Autophagy and Protein Aggregation
Disorders

Unsurprisingly, with its versatile role in promoting kinase activation, Cdc37 appears
to also play roles in cell pathologies outside of cancer. The Hsp90-Cdc37 complex
appears to participate in the upstream activation of autophagy, one of the primary
pathways in protein quality control and longevity (Calderwood et al. 2009).
Autophagy is a significant mechanism in protein homeostasis in that bulky protein
aggregates or damaged organelles that cannot enter the lumen of the proteasome for
proteolytic digestion can be enveloped by autophagosomes and broken down
(Calderwood et al. 2009). The Cdc37-Hsp90 complex was shown to stabilize and
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activate ULK1, a protein kinase that phosphorylates Atgl as one of the first steps in
initiating the autophagy pathway and in this way regulates mitophagy, a specialized
autophagy-like process involved in breaking down damaged mitochondria (Joo et al.
2011) (Fig. 5.3b). Although once activated, ULK1 may shutdown further kinase
maintenance and activation (Li et al. 2017). Cdc37-fostered autophagy may be
important in neurodegenerative diseases such as amyotrophic lateral sclerosis and
Alzheimer’s disease that are components of the aging process, and chaperone
complexes may be involved in clearance of misfolded proteins through the
autophagy pathway (Jinwal et al. 2012; Lackie et al. 2017; Gracia et al. 2019).
Furthermore, Cdc37’s regulation of eNOS may also affect aging and ability to
combat infection such as SARS-Cov2 (Harris et al. 2006; Guan et al. 2020).

Conclusions

Cdc37, as a major component of the Hsp90 complex that controls the folding of
protein kinases in the cell, stands at the hub of a multitude of intracellular signaling
networks (Gray Jr. et al. 2008; Karnitz and Felts 2007; Caplan et al. 2007) (Fig. 5.3).
This folding function involves several intricate interactions and may be highly
regulated by PTMS. The intracellular properties of Cdc37 thus reach beyond the
housekeeping pathways of protein folding into a wide range of cell regulatory
processes. Moreover, the role of extracellular Cdc37 and its association with malig-
nancy deserves further attention as a possible cancer biomarker.

Due to its enabling influence, Cdc37, as described above, has attracted much
attention as a potential intermediate in carcinogenesis, and indeed proof-of-concept
cell line studies indicate that Cdc37 is required for cancer cell signaling and that
quenching activity of the co-chaperone prevents malignant cell growth (Gray
Jr. et al. 2008). Consequently, Cdc37 could continue to be an attractive target for
combatting cancer as a result of it being expressed at high levels in several tumor
types, and its targeting could provide a degree of specificity compared to normal
cells. Cdec37 may also be associated with the activated forms of Hsp90 that are
observed in cancer cells and that are thought to contribute to the retention of Hsp90
inhibitors in tumors (Kamal et al. 2003; Rodina et al. 2016). This property, combined
with the fact that the co-chaperone is essential for key pro-growth signaling path-
ways, suggests that targeting Cdc37 may be relevant when addressing cancers that
are driven by multiple oncogenic kinases and/or AR activity as a way to prevent the
evolution of resistance by the tumor. Unfortunately, reliably and specific agents to
target Cdc37 are currently not available.

Protein aggregation disorders have also been linked to molecular chaperones and
to age-related declines in molecular chaperones and co-chaperones (Calderwood
et al. 2009). Cdc37 appears to be a potential agent in longevity due to its links to
protein folding and autophagy, and it will be informative to study the role of Cdc37
maintenance/decline in aging organisms. The development of agents that might
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modulate Cdc37 activity levels may ultimately be called for to remedy aging-related
shortfalls.
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Chapter 6 )
p23 and Ahal: Distinct Functions Promote <o
Client Maturation

Maximilian M. Biebl and Johannes Buchner

Abstract Hsp90 is a conserved molecular chaperone regulating the folding and
activation of a diverse array of several hundreds of client proteins. The function of
Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate
client activation in a client-specific manner. They affect the Hsp90 ATPase activity
and the recruitment of client proteins and can in addition affect chaperoning in an
Hsp90-independent way. p23 and Ahal are central Hsp90 co-chaperones that
regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and
stabilizes a client-bound Hsp90 state, Ahal accelerates ATP hydrolysis and com-
petes with client binding to Hsp90. Even though both proteins have been intensively
studied for decades, research of the last few years has revealed intriguing new
aspects of these co-chaperones that expanded our perception of how they regulate
client activation. Here, we review the progress in understanding p23 and Ahal as
promoters of client processing. We highlight the structures of Ahal and p23, their
interaction with Hsp90, and how their association with Hsp90 affects the conforma-
tional cycle of Hsp90 in the context of client maturation.

Keywords Hsp90 - p23 - Ahal - Hchl - Glucocorticoid receptor

The Conformational Cycle of Hsp90

Hsp90 is an abundant molecular chaperone that is conserved from bacteria to
humans (Chen et al. 2006; Taipale et al. 2010; Johnson 2012). For the maturation
of a diverse set of several hundred client proteins, Hsp90 must undergo an
ATP-driven chaperone cycle, comprising large conformational rearrangements
(Fig. 6.1) (Weikl et al. 2000; Shiau et al. 2006; Cunningham et al. 2008; Echeverria
et al. 2011; Taipale et al. 2012). Hsp90 homodimerization to a V-shaped dimer is
mediated by the C-terminal domain (CTD) (Harris et al. 2004; Ali et al. 2006; Shiau
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Fig. 6.1 The structure and conformational cycle of Hsp90. Hsp90 conformations that are populated
during the ATPase cycle of Hsp90 are shown. After binding of ATP, the lid (pink) closes over the
nucleotide-binding pocket. The N-terminal domains of Hsp90 dimerize forming the closed-1 state.
Twisting and further compaction yield the ATPase-competent closed-2 state. In this state, the
Arg380 residue of the Hsp90 MD contacts the bound ATP stabilizing the closed Hsp90 conforma-
tion and potentially catalyzing hydrolysis. After release of ADP and phosphate, the Hsp90 cycle is
completed and Hsp90 returns to the open conformation. The domain architecture of yeast Hsp90 is
shown on the right

et al. 2006; Wayne and Bolon 2007). Additionally, the C-terminal end of cytosolic
eukaryotic Hsp90 contains the terminal MEEVD motif important for the binding of
tetratricopeptide repeat (TPR)-containing co-chaperones (see below) (Scheufler et al.
2000; Schopf et al. 2017). The middle domain (MD) is implicated in client binding
(Bohen and Yamamoto 1993; Nathan and Lindquist 1995; Kirschke et al. 2014;
Lorenz et al. 2014; Karagoz and Rudiger 2015; Verba et al. 2016) and connected to
the N-terminal domain by a large, charged linker (Hainzl et al. 2009; Tsutsumi et al.
2012; Zuehlke and Johnson 2012; Lopez et al. 2020). Nucleotides which regulate the
conformational cycle are bound by the N-terminal domain (NTD) (Prodromou et al.
1997a, b; Panaretou et al. 1998; Hessling et al. 2009).

Binding of ATP to the NTD leads to the closing of the ATP lid—a helical
segment in the NTD that locks the nucleotide in its binding pocket—and the
association of the two NTDs accompanied by a partial closing of the Hsp90 dimer
into the closed-1 state (Fig. 6.1) (Prodromou et al. 1997b, 2000; Richter et al. 2006,
2008; Hessling et al. 2009). Further compaction of the dimer including the twisting
of the protomers yields the closed-2 state (Ali et al. 2006; Richter and Buchner
2006). In this state, a catalytic loop in the MD carrying the catalytic Arg380 residue
(in yeast Hsp90) is repositioned and contacts the y-phosphate of ATP (Ali et al.
2006; Mader et al. 2020). In this regard, Arg380 seems to enable ATP binding and to
promote the closed state of Hsp90, since mutation of Arg380 inhibits Hsp90 closing
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(Meyer et al. 2003; Cunningham et al. 2012; Schulze et al. 2016). Closing of Hsp90,
i.e., the interaction of the N-domains and of the N- and M-domains, completes the
Hsp90 “split ATPase” which is required for ATP hydrolysis (Meyer et al. 2003;
Cunningham et al. 2008; Cunningham et al. 2012). The rate-limiting conformational
changes required to form an ATPase-competent state render Hsp90 a very slow
ATPase with hydrolysis rates of about 1 ATP/min and 0.1 ATP/min for yeast and
human Hsp90, respectively (Panaretou et al. 1998; McLaughlin et al. 2006; Richter
et al. 2008). Release of ADP and phosphate completes the cycle and induces the
transition to the open state. While ATP hydrolysis by Hsp90 has long been consid-
ered essential for the function of Hsp90 in vivo, more recent data on Hsp90 mutants
suggest that the ability of ATP to induce and populate different conformational states
and the dwell time spent in specific conformations is important, but ATP hydrolysis
is not necessarily required (Zierer et al. 2016). Notably, the general architecture of
the Hsp90 ATPase cycle is conserved between isoforms and species, yet differences
in the directionality, the population distribution of different states, and details of the
hydrolysis mechanism have become evident (Southworth and Agard 2008; Graf
et al. 2009; Mickler et al. 2009; Ratzke et al. 2012; Lavery et al. 2014; Huck et al.
2017).

The Hsp90 cycle is further regulated by different mechanisms including post-
translational modifications (Mollapour and Neckers 2012; Backe et al. 2020), client
binding (Rutz et al. 2018), subcellular localization, and the binding of co-chaperones
(Biebl and Buchner 2019). The co-chaperome of Hsp90 has expanded from bacteria
lacking co-chaperones over yeast encoding 12 co-chaperones to man where more
than 25 co-chaperones have been identified (Johnson 2012; Li and Buchner 2013;
Taipale et al. 2014; Woodford et al. 2016, 2017). Co-chaperones may bind Hsp90 in
a conformation-selective way and either activate or deactivate the Hsp90 ATPase
activity. Additionally, some co-chaperones function as selective recruiters of client
proteins for Hsp90 (Grammatikakis et al. 1999; Taipale et al. 2012; Keramisanou
et al. 2016). Notably, the network of Hsp90 co-chaperones is dynamic and reorga-
nizes functionally to meet the requirements of Hsp90 clients in a client-specific way
(Sahasrabudhe et al. 2017; Biebl et al. 2020). Within a network of loosely
co-operating co-chaperones, for each client few tightly interacting modules are
evident that promote client maturation (Biebl et al. 2020).

Due to the functional diversity of Hsp90 co-chaperones, they have been catego-
rized structurally in two subgroups: (1) TPR-containing co-chaperones such as the
Hsp70-Hsp90 organizing protein (Hop), peptidyl-prolyl-cis/trans-isomerases
(PPlases), and protein phosphatase 5 (PP5) and (2) non-TPR-containing
co-chaperones such as “activator of Hsp90 ATPase” (Ahal) and p23.

p23 and Ahal have been studied intensely in the past. They have in common that
their interaction with the NTD and MD of Hsp90 affects the Hsp90 ATPase and
client binding, albeit in opposing ways. In this review, we will present progress made
to elucidate the roles of p23 and Ahal in the Hsp90 system.
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The Hsp90 Co-chaperone p23

Discovery and Isoforms of p23

p23 was discovered in complexes of steroid hormone receptors (SHRs) and Hsp90
by the Toft lab in the 1990s (Smith et al. 1990; Johnson et al. 1994; Johnson and Toft
1995). Later p23 has been found in association with hepatitis B virus reverse
transcriptase (Hu et al. 1997), telomerase (Holt et al. 1999), and other proteins
(Nair et al. 1996; Xu et al. 1997). Since then, p23 has become one of the best
studied Hsp90 co-chaperones (Sullivan et al. 1997; Weaver et al. 2000; Richter et al.
2004; Al et al. 2006; Martinez-Yamout et al. 2006; McLaughlin et al. 2006;
Echtenkamp et al. 2011; Karagoz et al. 2011; Li et al. 2011; Rehn and Buchner
2015; Biebl et al. 2021), and additional, Hsp90-independent functions have been
found (Bose et al. 1996; Freeman et al. 1996; Echtenkamp et al. 2016; Wu et al.
2018). The yeast homolog Sbal only shares 26% sequence identity with human p23
(Fig. 6.2a) (Johnson et al. 1994; Bohen 1998; Fang et al. 1998). Whereas p23 is not
expressed in human heart and striated muscle, a second human isoform, Aarsd1l
(formerly named tsp23), sharing 44% sequence identity with p23, is expressed solely
in these tissues and was shown to be crucial for muscle differentiation (Freeman
et al. 2000; Echeverria et al. 2016).

The Structure of p23

p23 is a small, acidic protein encoded by the PTGES3 gene in humans. Early circular
dichroism studies suggested that p23 comprises a predominantly 3-sheet--rich folded
domain as well as a largely unstructured C-terminal tail. This tail is 56 amino acids
long in human p23 and 93 amino acids in yeast p23 (Fig. 6.2b, c) (Weikl et al. 1999).
This architecture was defined in more detail by X-ray crystallography and NMR
spectroscopy (PDB: 2CG9, 1EJF) (Weaver et al. 2000; Ali et al. 2006; Martinez-
Yamout et al. 2006; Biebl et al. 2020). The stably folded CS domain of p23
comprises a well-conserved 7-stranded p-sandwich fold similar to the a-crystallin
fold of small Hsps (Fig. 6.2a, b) (Kim et al. 1998; Weaver et al. 2000; Garcia-Ranea
et al. 2002; Ali et al. 2006). Interestingly, CS domains are also found in the
co-chaperones Sgtl and NudC (Zhang et al. 2010; Zheng et al. 2011).

Based on the amino acid composition, the C-terminal tail of yeast p23 can be
divided in an acidic stretch adjacent to the core domain, followed by a GM/A-rich
and a QL-rich stretch as well as a second, C-terminal acidic region. Yet the
functional implications of these motifs have remained elusive (Fig. 6.2c). While
the unfolded tail could not be resolved in crystal structures (Weaver et al. 2000; Ali
et al. 2006), recent NMR studies suggest that the proximal region of the p23 tail has
limited flexibility and forms contacts with the core domain (Biebl et al. 2020). This
region contains residues that define the interaction with Hsp90 and the function of
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Fig. 6.2 p23 harbors a folded CS domain and a long, mostly unstructured tail. (a) The alignment of
the indicated p23 homologs is shown (Sbal = yeast p23; DAF-41 = nematode p23). Alignment
was done using the Clustal Omega tool, and the ClustalX color code was applied in Jalview
2.11.1.3. (b) The folded CS domains of yeast p23 (PDB: 2CGY9) and human p23 (PDB: 1EJF)
are depicted. (¢) The C-terminal unfolded tail which is not resolved in the structures shown in (a)
has been modeled in PyMol 1.7.1.1. The location of the tail helix which directly interacts with GR
(Noddings et al. 2020; Biebl et al. 2021) is indicated. The composition of the tail is shown as a
cartoon (ED = glutamate- and aspartate-rich, GM/A = glycine, methionine/alanine-rich, QL =
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p23 (see below) (Wochnik et al. 2004; Biebl et al. 2020). Notably, deletion of a
major part of the tail does not interfere with Hsp90 binding but impairs the Hsp90-
independent in vitro chaperone function of p23 (Bose et al. 1996; Freeman et al.
1996; Weikl et al. 1999; Forafonov et al. 2008). Recent data indicated the presence
of a-helical segments within the tail of yeast and human p23 which seems to be
important for client processing (Fig. 6.2c) (Seraphim et al. 2015; Biebl et al. 2020;
Noddings et al. 2020).

The Interaction of p23 with Hsp90

Early work on Hsp90 revealed that complexes between Hsp90 and the progesterone
receptor (PR) were stabilized by the addition of non-hydrolyzable ATP analogs such
as AMP-PNP or by molybdate (Dahmer et al. 1984; Johnson and Toft 1995). It
turned out that these conditions promote p23 binding (Johnson et al. 1994; Johnson
and Toft 1995). Additionally, it was found that selective Hsp90 inhibitors such as
geldanamycin disrupt p23 binding (Johnson and Toft 1995; Sullivan et al. 1997,
Fang et al. 1998; Sullivan et al. 2002). Later work revealed that p23 is a conforma-
tional sensor of the closed-2 state of Hsp90 (Hessling et al. 2009; Li et al. 2011). p23
binds the closed Hsp90 state and contacts both protomers (Fig. 6.2d). Binding
involves the Hsp90 ATP lid, the catalytic loop, and the N-terminal regions of the
Hsp90 MD (Ali et al. 2006; Martinez-Yamout et al. 2006; Biebl et al. 2020).
Notably, NMR spectroscopy also revealed transient contacts of the p23 C-terminal
tail with an amphipathic helix protruding from the Hsp90 CTD that has been
implicated in client binding (Fig. 6.2d) (Bohen and Yamamoto 1993; Nathan and
Lindquist 1995; Kirschke et al. 2014; Lorenz et al. 2014; Karagoz and Rudiger 2015;
Verba et al. 2016; Biebl et al. 2020).

Binding of p23 to Hsp90 partially inhibits the Hsp90 ATPase (McLaughlin et al.
2002; Panaretou et al. 2002; Richter et al. 2004; McLaughlin et al. 2006). In contrast
to the well-known allosteric Hsp90 inhibitor Hop, which keeps Hsp90 in an open,
ATPase-incompetent conformation, p23 locks Hsp90 in the closed state, implicating
a different inhibitory mechanism (Chen and Smith 1998; Johnson et al. 1998;
Prodromou et al. 1999; Richter et al. 2003). Two basic inhibition mechanisms are
possible and still under discussion: Hsp90 could either be locked in a pre-hydrolysis
state inhibiting the hydrolysis of ATP or ATP hydrolysis may occur, but release of

Fig. 6.2 (continued) glutamine- and leucine-rich). The sequences of the C-terminal tail of human
P23 (hp23) and yeast p23 (yp23) are presented at the bottom: The a-helices interacting with the GR
are highlighted by a solid box, and additional, predicted o-helices in the yeast sequence are
indicated by dashed boxes. (d) Left: The binding of yeast p23 to yeast Hsp90 (PDB: 2CG9) is
shown, and the C-terminal tail was modeled with PyMol 1.7.1.1. Right: The human p23 (PDB:
1EJF) core domain was aligned to yeast p23 bound in the crystal structure of yeast Hsp90 with yeast
p23 (PDB: 2CG9), and the C-terminal tail was modeled using PyMol 1.7.1.1
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ADP and phosphate required for the progression of the ATPase cycle may be
inhibited. Evidence for both scenarios has been provided: NMR studies (Karagoz
et al. 2011) suggested the inhibition of ATP hydrolysis, while the positioning of the
catalytic loop found in the crystal structure of Hsp90 with p23 (Ali et al. 2006) and
hydrogen exchange mass spectrometry favored a model of decelerated ADP release
(Graf et al. 2014). In this context, two strictly conserved aromatic residues in p23
that lie in the proximal tail region were found to mediate binding to and the
inhibition of Hsp90 (Wochnik et al. 2004; Biebl et al. 2020). Specifically, Trp124
in yeast and Trpl06 in human p23 are pivotal to shift the conformation of the
catalytic loop which prevents ATP hydrolysis. This finding favors a model in
which p23 inhibits the ATP hydrolysis step (Biebl et al. 2020).

Two p23 molecules can bind the Hsp90 dimer in vitro (Richter et al. 2004; Ali
et al. 2006; Karagoz et al. 2011). In the cellular environment, the concentration of
p23 like that of all Hsp90 co-chaperones is much lower than that of Hsp90
(Ghaemmaghami et al. 2003; Finka and Goloubinoff 2013) suggesting that a 1:2
stoichiometry is more likely in vivo. Additionally, the Hsp90 co-chaperones and
clients compete for binding sites on Hsp90, making a 2:2 stoichiometry for any
co-chaperone unlikely in the cell (Lorenz et al. 2014; Noddings et al. 2020).

p23 and Hsp90 Client Maturation

The first implication of the Hsp90-associated function of p23 was linked to steroid
hormone receptor maturation (Johnson et al. 1994; Johnson and Toft 1995). SHRs
are a class of stringent Hsp90 clients that have been intensively studied in pioneering
work by the Pratt, Toft, Smith, and Yamamoto labs (Smith et al. 1992; Smith 1993;
Chen et al. 1996; Pratt et al. 1996; Dittmar et al. 1997; Dittmar and Pratt 1997; Pratt
and Toft 2003; Picard 2006a). Reconstitution of a minimal chaperone system
including Hsp40, Hsp70, Hop, Hsp90, and p23 allowed the activation of SHRs
in vitro (Dittmar et al. 1996; Pratt and Dittmar 1998; Pratt and Toft 2003). In current
models, clients are first bound by Hsp40 and Hsp70 (“early complex”) (Dittmar et al.
1998; Hernandez et al. 2002). Hsp70 together with Hsp40 induces local unfolding of
the client, presumably to allow escape from kinetic traps in the folding pathway
(Kirschke et al. 2014; Sekhar et al. 2016; Rosenzweig et al. 2017; Moran Luengo
et al. 2018; Sekhar et al. 2018; Boysen et al. 2019; Dahiya et al. 2019). Hop
functions as an adaptor between Hsp70 and Hsp90 by binding the EEVD motifs
of both chaperones (“intermediary complex”’) (Chen and Smith 1998; Johnson et al.
1998; Scheufler et al. 2000; Wegele et al. 2006; Schmid et al. 2012; Rohl et al.
2015). Additionally, Hop allosterically inhibits the Hsp90 ATPase and keeps Hsp90
in an open, client-accessible state (Prodromou et al. 1999; Richter et al. 2003).
Optical trap experiments and a recent high-resolution cryo-EM structure of this
“client loading complex” suggest that helix 1 of GR is undocked from the globular
protein and threaded through the Hsp90 dimer orifice (Suren et al. 2018; Wang et al.
2020). This disrupts the integrity of the hormone-binding pocket of GR and inhibits
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Fig. 6.3 p23 performs multiple functions. (a, b) The binding of GR to the closed Hsp90 confor-
mation is shown in the absence and presence of p23. Binding of p23 to Hsp90 and GR prolongs the
interaction of GR with Hsp90. (¢) Different Hsp90-dependent and Hsp90-independent functions of
p23 are shown. Note that the list is not exhaustive

hormone association. Release of the client from Hsp70 by transfer to Hsp90 releases
the folding deadlock of the client (Kirschke et al. 2014; Moran Luengo et al. 2018;
Boysen et al. 2019; Dahiya et al. 2019; Wang et al. 2020). Binding of ATP and p23
promotes the dissociation of Hop, the closing of the Hsp90, and the formation of a
stable Hsp90:client:p23 complex (“late complex”) (Dittmar et al. 1997; Li et al.
2011).

p23 was found to stabilize the “late complex” of Hsp90:SHR:p23 and to delay the
release of the SHR, thus inhibiting the collapse of the hydrophobic hormone-binding
pocket as a prerequisite for efficient hormone binding (Fig. 6.3a, b) (Dittmar et al.
1997). Additionally, it has been shown recently that p23 also directly contacts the
bound GR (Fig. 6.3b) (Biebl et al. 2020; Noddings et al. 2020). In particular, an
amphipathic helical element in the C-terminal tail of p23 binds a groove on the GR,
which may contribute to the stabilization of the Hsp90:GR:p23 complex as shown
by the Pratt and Toft labs. In the Hsp90:GR:p23 complex, the hormone-binding
pocket is functional and the GR can bind hormone (Lorenz et al. 2014; Noddings
et al. 2020). Notably, the association of the p23 helix with GR is also possible in the
absence of Hsp90, suggesting that it may play a role in the Hsp90-independent
chaperone function of p23 (see below) (Biebl et al. 2020). The helical elements in the
p23 C-terminal tail are conserved between yeast and man. This suggests that the
association of helical segments in the p23 tail with clients may be a universal element
in the maturation of different clients. This is in line with the localization of the helical
motifs in a flexible, dynamic region of p23 adapted to the diverse spatial require-
ments of different clients.
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The importance of p23 for client maturation has been confirmed in the cellular
environment. In particular, the relevance of p23 for the maturation of SHRs has been
shown in mammalian cells as well as in yeast expressing mammalian SHRs (Bohen
1998; Fang et al. 1998; Knoblauch and Garabedian 1999; Freeman et al. 2000;
Oxelmark et al. 2003; Oxelmark et al. 2006; Sahasrabudhe et al. 2017; Biebl et al.
2020). p23 is not essential in yeast and during prenatal development and morpho-
genesis in mice, yet p23 is strictly necessary for perinatal survival (Fang et al. 1998;
Grad et al. 2006). The essential function of p23 in mice seems to be at least in part
due to the effect of p23 on GR maturation, highlighting its central role in this process
(Madon-Simon et al. 2017). In yeast, the knockout of p23 had a negative effect on
GR, PR, the mineralocorticoid receptor (MR), androgen receptor (AR), and estrogen
receptor (ER) (Sahasrabudhe et al. 2017). Additionally, the p23 knockout was also
associated with the reduced maturation of v-Src kinase (Fang et al. 1998;
Sahasrabudhe et al. 2017). Interestingly, for v-Src, the deletion of p23 in the yeast
stilA (yeast homolog of Hop) strain could rescue the detrimental effect of sti/A on
kinase maturation, in line with the required balancing of the opposing effects p23
and Hop have on Hsp90 conformation (Biebl et al. 2020). Notably, p23 was found as
one of only two co-chaperones in yeast that, when deleted, had a universal negative
effect on client activation, whereas disruption of the majority of the co-chaperones
had client-specific effects (Sahasrabudhe et al. 2017; Biebl et al. 2020).

Hsp90-Independent Functions of p23

Besides its crucial role as an Hsp90 co-chaperone, p23 has been found to have
Hsp90-independent functions (Fig. 6.3c). These include intrinsic chaperone activity
in vitro (Bose et al. 1996; Freeman et al. 1996; Weikl et al. 1999; Weikl et al. 2000)
and a nuclear function in regulating chromatin and transcription factors (Freeman
et al. 2000; Freeman and Yamamoto 2002; Echtenkamp et al. 2011, 2016). Intrigu-
ingly, the co-expression of p23 and SHRs in mammalian cells and yeast had different
effects on the activity of distinct SHRs (Freeman et al. 2000; Morishima et al. 2003).
This observation was shown to be at least in part due to effects of p23 on the
transcriptional activity of SHRs downstream of Hsp90 (Freeman and Yamamoto
2002; Oxelmark et al. 2006; Toogun et al. 2007; Zelin et al. 2012; Echtenkamp et al.
2016).

The Intrinsic Chaperone Function of p23

An Hsp90-independent chaperone function of Hsp90 co-chaperones has first been
shown in vitro for PPlases and p23 using different model substrates and monitoring
the suppression of their unspecific aggregation (Bose et al. 1996; Freeman et al.
1996). Due to the ATP-independent nature of the interaction, a holdase effect of p23
is suspected as indicated by the formation of soluble high molecular weight
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complexes between p23 and f-galactosidase that can be refolded by Hsp40 and
Hsp70 (Freeman et al. 1996). The chaperone function of p23 has been mapped to the
unstructured C-terminal tail (Weikl et al. 1999; Weaver et al. 2000). Yet, the exact
motifs driving chaperone function have remained elusive, and a comprehensive
knowledge of the function of the different tail regions is still missing. Recently, it
was shown that helical motifs in the C-terminal tail of p23 directly bind GR, which
increased GR function in vitro and in vivo (Fig. 6.3a, b) (Biebl et al. 2020; Noddings
et al. 2020). Since a helix present in the C-terminal tail of yeast p23 also associates
with and stabilizes GR expressed in yeast, client-specific co-evolution is unlikely.
Hence, we hypothesize that the association of amphipathic helical structures in the
C-terminal tail of p23 with substrates is a general feature. Since in a study using
citrate synthase (CS) as a model substrate in vitro the C-terminal region of the tail
lacking a helical motif seemed important for the chaperone function (Weikl et al.
1999), this could indicate that the conformational requirements of the client (e.g.,
opening of the hormone-binding pocket in GR vs. the suppression for aggregation in
CS) dictate which part of the C-terminal tail is required for client chaperoning in the
presence and absence of Hsp90.

The Nuclear Function of p23

While generally considered a cytosolic chaperone/co-chaperone system, both Hsp90
and p23 also localize to the nucleus under native and heat shock conditions (Carbajal
et al. 1990; Morcillo et al. 1993; Picard 2006b; Tapia and Morano 2010; Ge et al.
2011). Early studies had shown that an excess of Hsp90 was negatively correlated
with the binding of nuclear receptors to their cognate DNA and this effect could be
suppressed by Hsp90 inhibition (Sabbah et al. 1996; Kang et al. 1999; Liu and
DeFranco 1999). Freeman and Yamamoto showed by chromatin immunoprecipita-
tion (ChIP) that p23 and to a smaller degree Hsp90 directly associate with GR
response elements and promote the release of GR (Fig. 6.3¢) (Freeman et al. 2000;
Freeman and Yamamoto 2002). This answered the long-standing open question how
the transcriptional activation of SHRs can be reduced within few minutes after
hormone withdrawal. These findings are in line with a continuous recycling
model, in which chaperones trigger the release of SHRs from the DNA and allow
them to adjust to signal fluctuations in the cell quickly (Freeman and Yamamoto
2001). In this scenario, p23 collaborates with the acetyltransferase GCN5 (Fig. 6.3c)
(Zelin and Freeman 2015). After p23 triggers the release of the DNA-bound protein,
GCNS inhibits re-association by acetylation. As a feedback mechanism, p23 nega-
tively regulates GCNS activity.

The release of transcription factors from DNA by chaperones may apply to more
DNA-bound proteins beyond nuclear receptors. Recently, it was shown that Hsp90
and p23 promote the release of heat shock factor 1 (Hsfl)—the central regulator of
the cellular heat shock response—from DNA as part of the regulatory mechanism
(Zelin et al. 2012; Kijima et al. 2018) (Fig. 6.3c). Besides affecting the binding of
nuclear receptors and transcription factors to their cognate DNA, Hsp90 and p23
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have been found to affect other regulatory hubs of transcription, particularly chro-
matin remodeling (Gvozdenov et al. 2019). Mapping of nucleosome-depleted
regions in the yeast genome revealed that Hsp90 triggers the release of “remodeling
the structure of chromatin” (RSC) and additionally increases the chromatin
remodeling activity of RSC (Fig. 6.3c) (Echtenkamp et al. 2016).

Intriguingly, p23 also affected the binding of telomerase to DNA and may
facilitate the release of stalled telomerase complexes (Fig. 6.3c) (Toogun et al.
2007). Furthermore, the maturation of telomerase depends on p23 and Hsp90
(Holt et al. 1999; Forsythe et al. 2001). As p23 and Hsp90 were found in active
telomerase complexes, this suggests a regulatory function (Forsythe et al. 2001;
Keppler et al. 2006).

Concluding Remarks

Despite being known for more than 25 years, only now we begin to understand the
mechanistic details of the interaction between Hsp90 and p23 and its function.
Whereas Hsp90 co-chaperones generally exhibit client-specific effects, p23 is one
of only two co-chaperones with a general function in Hsp90-dependent client
processing. However, also Hsp90-independent functions have gained recognition,
most importantly the intrinsic chaperone function of p23 and the role of p23 in the
regulation of transcription and chromatin remodeling. Interestingly, the long, flex-
ible tail of p23 seems to be involved in Hsp90-independent chaperoning but also
interacts with Hsp90-bound substrates. While we now start to understand the
function of specific parts of the tail such as helical segments found in yeast and
human p23, the function of other tail regions is still elusive. Intriguingly, the p23 tail
may even be involved in unrelated cellular processes: The proteolytic cleavage of the
p23 tail after Asp142 by different caspases suggests that p23 may play a role during
apoptosis (Gausdal et al. 2004; Mollerup and Berchtold 2005; Martini et al. 2017).
Truncated p23 has reduced anti-aggregation capability and is degraded by the
proteasome, suggesting that caspase-mediated cleavage of p23 contributes to the
destabilization of proteins during apoptosis (Mollerup and Berchtold 2005). Hence,
it is likely that new function of p23 will be discovered in the future, highlighting the
crucial role of p23 beyond being one of the most important Hsp90 co-chaperones.

The Hsp90 Co-chaperone Ahal

Discovery and Isoforms of Ahal

While several Hsp90 co-chaperones have been identified as inhibitors of its ATPase,
so far, Ahal (Ahsal in humans) is the only known potent activator of the Hsp90
ATPase (Schopf et al. 2017). Ahal consists of two domains, connected via a flexible
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linker (Fig. 6.4a). While Ahal is conserved from yeast to humans, S. cerevisiae, and
several members of the Saccharomycotina subphylum, express “high-copy Hsp90
suppressor’” (Hch1) as a homolog of Ahal that has been discovered before Ahal in
an overexpression suppression screen for temperature-sensitive Hsp90 mutants by
the Lindquist lab (Fig. 6.4b) (Nathan et al. 1999; Panaretou et al. 2002). The
discovery of Hchl paved the way for the identification of Ahal due to the homology
between Hchl and the N-terminal domain (NTD) of Ahal with a 36.5% sequence
identity. Compared to Hchl, Ahal carries an additional C-terminal domain
(Panaretou et al. 2002). The expression of Ahal and Hchl is upregulated upon
stress similar to established heat shock proteins (Gasch et al. 2000). Intriguingly, it
has been suggested that Hch1 was functionally replaced in mammals during evolu-
tion by the phosphorylation of Tyr627 in human Hsp90 by Yes kinase (Xu et al.
2012; Zuehlke et al. 2017). Mammalian Ahal which carries a short N-terminal
extension of 22 amino acids that is missing in yeast has been shown to associate
directly with substrate proteins and was suggested to funnel them toward
ubiquitination and degradation (Fig. 6.4b) (Tripathi et al. 2014). In higher eukary-
otes, Aha2 (Ahsa2 in humans) is expressed as a paralog of Ahal with about 50%
sequence identity, yet no published information about this protein is available.

The Structure of Ahal

As mentioned, Ahal is organized into an NTD and a CTD connected by a flexible
linker (Fig. 6.4a). The structure of the NTD was solved as a co-crystal with the
Hsp90-MD, revealing a cylindrical structure (PDB: 1USU) (Meyer et al. 2004). The
NTD consists of an N-terminal a-helix followed by a four-stranded p-sheet and a
C-terminal a-helix (Meyer et al. 2004). Due to the significant similarity between the
Hch1 and the Ahal NTD, a similar structure of Hch1 is assumed. The structure of the
Ahal-CTD has been solved by NMR (unpublished); it is composed of a 3-sheet-rich
structure and a C-terminal o-helix (Fig. 6.4a) (PDB: 1X53). Importantly, the con-
nection of the Ahal-NTD and Ahal-CTD is flexible, and significant dynamics of
Ahal bound to Hsp90 is expected (Fig. 6.4c) (Koulov et al. 2010; Oroz et al. 2019).

The Interaction of Ahal with Hsp90

The Ahal-NTD binds on an extensive surface along the Hsp90-MD contacting both
Hsp90 monomers (PDB: 1USU) (Fig. 6.4c) (Meyer et al. 2004; Retzlaff et al. 2010;
Oroz et al. 2019). Binding is governed mainly by polar interactions except for a
hydrophobic patch interacting with the N-terminal region of the Hsp90-MD, in line
with the salt sensitivity of the Ahal:Hsp90 interaction (Panaretou et al. 2002; Meyer
et al. 2004). Binding of the Ahal-NTD to the Hsp90-MD leads to a conformational
switch of the catalytic loop of Hsp90, positioning it in proximity of the nucleotide
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Fig. 6.4 Ahal structure and Hsp90 binding. (a) The crystal structure of the Ahal-NTD (PDB:
1USU) and the NMR structure of the Ahal-CTD (PDB: 1x53) were connected via the unstructured
linker between both domains using PyMol 1.7.1.1. (b) The alignment of Ahal and Hchl from
different organisms is shown. The alignment was done using the Clustal Omega tool, and the
ClustalX color code was applied in the Jalview 2.11.1.3 software. The conserved RKxK motif is
highlighted by a dashed box. (¢) Model of Ahal binding to Hsp90. The crystal structure of the
Hsp90-MD with the Ahal-NTD (PDB: 1USU) was aligned to the crystal structure of full-length
yeast Hsp90 (PDB: 2CG9), and the NMR structure of the Ahal-CTD (PDB: 1x53) was modeled in
PyMol 1.7.1.1. The dynamics of the C-terminal domain are indicated. (d) Different binding modes
of Ahal for Hsp90 are shown as a schematic model based on data from (Retzlaff et al. 2010; Oroz

et al. 2019; Xu et al. 2019; Noddings et al. 2020). Transparent domains indicate conformational
dynamics
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bound to the Hsp90-NTD. This is supposed to contribute to the acceleration of ATP
hydrolysis (Meyer et al. 2003; Meyer et al. 2004; Cunningham et al. 2012). While
full-length Ahal stimulates the ATPase rate of Hsp90 15- to 30-fold, the Ahal CTD
alone had no stimulatory activity (Panaretou et al. 2002; Meyer et al. 2004; Koulov
et al. 2010; Retzlaff et al. 2010; Wolmarans et al. 2016). By contrast, the Ahal-NTD
alone stimulates the ATPase activity by only 1.5- to 3-fold, similar to the activating
effect of Hchl (Retzlaff et al. 2010; Wolmarans et al. 2016). Intriguingly, the
addition of the Ahal-CTD as an isolated domain increases the ATPase stimulation
capacity of the Ahal-NTD (Retzlaff et al. 2010). In line with this notion, the affinity
of the Ahal-NTD for Hsp90 (Kp = 19 pM) is increased by the presence of the Ahal-
CTD in full-length Ahal (Kp = 4 pM) (Retzlaff et al. 2010). Binding of the catalytic
loop requires the interaction of the conserved RKxK motif in the N-terminal region
of Ahal and Hchl, yet surprisingly, the interactions of this motif seem to differ
between Ahal and Hchl (Fig. 6.4b) (Horvat et al. 2014). While the motifs of both
proteins interact with the Hsp90 catalytic loop, a mutation in the catalytic loop only
affects the binding of Ahal (Horvat et al. 2014). In line with the distinct interactions
of the RKxK motifs in Ahal and Hchl, the fusion of the Ahal-CTD to Hchl could
not increase the Hsp90 ATPase to levels of Ahal WT (Horvat et al. 2014).

Together, this suggests a specific synergistic function between the Ahal-NTD
and Ahal-CTD, yet how these domains co-operate is not well understood. A
conserved NxXNNWHW motif is present in the Ahal-NTD and in Hchl (Mercier
et al. 2019). This motif was not resolved in the Hsp90-Ahal co-crystal structure but
is predicted to point toward the Hsp90-NTD (Meyer et al. 2004). A recent study
showed that this motif is required for full ATPase activation, yet loss of the motif
only played a role if the Ahal-CTD was present, suggesting that NxXNNWHW is
important for the interplay between the two Ahal domains (Mercier et al. 2019).
Additionally, this motif is suspected to alter the apparent affinity of Hsp90 for
nucleotides. This is in line with NMR results showing Ahal-induced conformational
changes near the nucleotide-binding site of Hsp90 (Oroz et al. 2019).

The mechanism of the Hsp90 ATPase stimulation by Ahal is still under discus-
sion but likely involves a multistep mechanism in which Ahal binds Hsp90 in
different binding modes (Fig. 6.4c, d) (Retzlaff et al. 2010; Wolmarans et al.
2016; Oroz et al. 2019; Xu et al. 2019). Ahal binds the open and closed state of
Hsp90, albeit with a higher affinity for the closed state (Li et al. 2013; Oroz et al.
2019; Liu et al. 2020). Under physiological conditions, the binding stoichiometry of
1:2 [Ahal:Hsp90onomer] is most likely since Hsp90 is about 30-fold more abundant
than Ahal (Finka and Goloubinoff 2013), matching the finding that a single bound
Ahal leads to the maximal stimulation of the Hsp90 ATPase (Retzlaff et al. 2010).
Notably, the ATPase activity is stimulated in cis and in trans, meaning that binding
of Ahal to one monomer can stimulate the ATPase activity in the opposite monomer
(Retzlaff et al. 2010).

Recently, cryo-EM structures of Hsp90 in complex with Ahal have been solved
(Liu et al. 2020). In the resulting model, binding of Ahal-NTD to apo Hsp90 leads to
a partial closing of the Hsp90 dimer, in line with previous results (Retzlaff et al.
2010; Oroz et al. 2019; Xu et al. 2019). In the cryo-EM structures, the Ahal-NTD
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binds to one Hsp90 monomer, while the Ahal-CTD contacts and bridges both
monomers. By contrast, previous biochemical and NMR analysis also indicated
contacts of the Ahal-CTD with the Hsp90-NTD (Retzlaff et al. 2010; Oroz et al.
2019). In the semi-closed state, density for the Hsp90-NTD was missing, leading to
the hypothesis that the Ahal-CTD clashes with the Hsp90-NTD, leading to an
undocking of the Hsp90 NTDs from the MD (Fig. 6.4d). While surprising, this
matches widespread chemical shift perturbations in the Hsp90-NTD after Ahal
binding found by NMR (Oroz et al. 2019) and optical tweezer experiments showing
that the NTD easily undocks from the MD (Jahn et al. 2014). Additionally, large
N-terminal rearrangements have been shown to be essential in the Hsp90 cycle
(Daturpalli et al. 2017). In the model, the full closing of the Hsp90 monomers is
induced by ATP binding, leading to a rearrangement of the Ahal-CTD to stabilize
the fully closed Hsp90 state (Fig. 6.4a) (Koulov et al. 2010; Xu et al. 2019). Closing
of the Hsp90 dimers is associated with a tilting of the Ahal-NTD, which then
contacts the Hsp90-NTD (Fig. 6.4a) (Liu et al. 2020). In the proposed model, ATP
hydrolysis is sequentially induced first in one monomer and then in the second
monomer (Liu et al. 2020).

Importantly, the recruitment of Ahal to Hsp90 is also regulated by post-
translational modifications (Backe et al. 2020). Phosphorylation of Tyr313 and
Tyr38 in human Hsp90 has been associated with enhanced Ahal recruitment
(Mollapour et al. 2010; Xu et al. 2012; Xu et al. 2019). Similarly, SUMOylation
of Lys191 increases the recruitment of Ahal, while it suppresses the binding of p23,
suggesting that a transient modification may be important for the progression in the
Hsp90 cycle (Mollapour et al. 2014). By contrast, phosphorylation of Thr22 has
been associated with reduced Ahal binding (Mollapour et al. 2011). Notably, the
different binding modes Ahal samples on Hsp90 and which affect Hsp90 activity
may be influenced by post-translational modifications (Dunn et al. 2015; Xu et al.
2019). Together, a complex regulatory layer of PTMs regulates the timely recruit-
ment of Ahal.

Ahal and Hsp90 Client Maturation

As the most potent activator of the Hsp90 ATPase and regulator of Hsp90 confor-
mation, Ahal should have a strong effect on client maturation. So far, depending on
the cell type and organism under investigation as well as the choice of model
substrates, contradicting results on the influence of Ahal were obtained.

Early studies in yeast suggested that the knockout of Ahal and Hchl
downregulated v-Src activity (Panaretou et al. 2002; Lotz et al. 2003). By contrast,
in later studies, neither Ahal nor Hchl affected v-Src activity (Sahasrabudhe et al.
2017; Biebl et al. 2020). Similarly, early studies suggested that loss of Ahal and
Hchl in yeast decreased the activity of GR (Harst et al. 2005). However, other
studies exclusively found an activating effect of the Ahal or Hchl knockouts on
different SHRs (Dunn et al. 2015; Sahasrabudhe et al. 2017; Zuehlke et al. 2017,
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Biebl et al. 2020). In mammalian cells, overexpression of Ahal seems to increase
GR activity and a knockdown of Ahal reduced GR activity (Harst et al. 2005). On
the other hand, overexpression of Ahal in mammalian cells did not affect v-Src
activity but decreased the activity of Akt kinase and luciferase (Sun et al. 2012),
matching the finding that overexpression of Ahal and Hchl in yeast led to reduced
GR activity (Biebl et al. 2020).

Different results have also been obtained on the effect of altered Ahal/Hchl
levels on the sensitivity to Hsp90 inhibitors in mammalian cells and yeast. Knock-
down of Ahal by small interfering RNA (siRNA) led to an increase in sensitivity of
mammalian cells accompanied by decreased client activity (Holmes et al. 2008). By
contrast, deletion of Hchl, but not Ahal, increased sensitivity to Hsp90 inhibitors in
yeast (Armstrong et al. 2012).

Interestingly, the knockdown of Ahal in mammalian cells rescued the folding of
mutant cystic fibrosis transmembrane conductance regulator (CFTR) A508 by
increasing its dwell time on Hsp90 (Wang et al. 2006). The prolonged association
with Hsp90 supposedly allows the mutant protein to overcome a kinetic folding
barrier (Wang et al. 2006). Due to the prospect of rescuing the CFTR A508 mutant,
inhibitors of the Hsp90-Ahal interaction have been developed (Ghosh et al. 2015;
Thrig and Obermann 2017; Stiegler et al. 2017; Singh et al. 2020). In agreement with
the findings for GR presented above, overexpression of Ahal decreased the folding
of the CFTR A508 mutant (Koulov et al. 2010). Notably, Ahal mutants that bound
less efficient to Hsp90 or mutants which increased the Hsp90 ATPase activity less
potently were less efficient in inhibiting CFTR A508 folding (Koulov et al. 2010).

In line with this observation, competitive binding of Ahal and clients to Hsp90
has been shown due to overlapping binding surfaces (Fig. 6.4c) (Meyer et al. 2003,
2004; Lorenz et al. 2014; Verba et al. 2016; Sahasrabudhe et al. 2017; Schopf et al.
2017). Furthermore, the solvent-exposed Trp300 residue in yeast Hsp90 has been
implicated both in Ahal and client binding (Meyer et al. 2004; Hawle et al. 2006;
Rutz et al. 2018; Xu et al. 2019). Taken together these results imply that client
proteins and Ahal compete for binding to Hsp90. This raises interesting questions
concerning the position of Ahal in the chaperone cycle and its role in client
processing. Ahal may function as a general dwell time regulator for Hsp90 confor-
mations and consequently as a “molecular referee” to shift the chaperone machinery
toward productive folding by ridding it of clients trapped in unproductive folding
pathways and resetting Hsp90 by inducing ATP hydrolysis (Koulov et al. 2010;
Biebl et al. 2020). In line with this hypothesis, the affinity of Ahal (Kp ~ 1-4 pM)
(Meyer et al. 2004; Koulov et al. 2010; Retzlaff et al. 2010) and client proteins (Kp ~
1-5 pM) (Muller et al. 2004; Hagn et al. 2011; Karagoz et al. 2014; Lorenz et al.
2014) for Hsp90 binding are similar. In addition, current models suggests that the
open Hsp90 state is necessary for client binding, whereas Ahal can bind to the open
state and induces closing (Chen and Smith 1998; Retzlaff et al. 2010; Schmid et al.
2012; Kirschke et al. 2014). This supports the hypothesis that Ahal may displace
clients that have remained on Hsp90 for a longer time. Current data, however, is
insufficient to decide if discrimination between productive and unproductive folding
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pathways is possible or whether the prolonged association time of clients trapped in
unproductive folding trajectories increases the chance of clearance by Ahal.

Integration of Ahal and p23 into the Hsp90 ATPase Cycle

p23 and Ahal affect the Hsp90 ATPase in opposite ways: p23 is an inhibitor of the
Hsp90 ATPase, locking it in a closed conformation, in which the ATP hydrolysis or
ADP and phosphate release are partially inhibited leading to approximately 50%
Hsp90 activity (Panaretou et al. 2002; Richter et al. 2004; Siligardi et al. 2004;
McLaughlin et al. 2006; Karagoz et al. 2011; Graf et al. 2014; Biebl et al. 2020). By
contrast, Ahal binds both the open and closed Hsp90 conformation, potently
stimulating the ATPase rate and promoting N-terminal dimerization of Hsp90
(Panaretou et al. 2002; Koulov et al. 2010; Retzlaff et al. 2010; Horvat et al. 2014,
Liu et al. 2020). While p23 remains associated when Hsp90 is bound to clients and
even partakes in the stabilization of the bound client, Ahal seems to bind compet-
itively to clients in many cases (Koulov et al. 2010; Sun et al. 2012; Sahasrabudhe
et al. 2017; Biebl et al. 2020). Due to their opposing functions, Ahal and p23 are
considered to associate with the Hsp90 cycle sequentially (Li and Buchner 2013).
In the currently accepted Hsp90 cycle, many clients are transferred to Hsp90 from
the Hsp40 and Hsp70 system via the adaptor co-chaperone Hop (Fig. 6.5) (Chen and
Smith 1998; Johnson et al. 1998; Scheufler et al. 2000; Wegele et al. 2006; Schmid
et al. 2012; Rohl et al. 2015). A PPlase bound to the free MEEVD motif of the
second Hsp90 monomer and Ahal can function synergistically to release Hop
(Li et al. 2013). Additionally, post-translational phosphorylation of Tyr313 on
Hsp90 may promote the release of Hop and recruit Ahal (Xu et al. 2019). This
process is referred to as “co-chaperone switching.” Notably, only full-length Ahal
can replace Hop, whereas the Ahal-NTD alone does not suffice (Wolmarans et al.
2016). In line with the “co-chaperone switching” hypothesis, a switching mechanism
of Ahal by displacing tissue inhibitor of metalloproteinase-2 (TIMP-2) from extra-
cellular Hsp90 in the context of matrix metalloproteinase 2 (MMP2) maturation has
been shown (Baker-Williams et al. 2019). By catalyzing the rate-limiting conforma-
tional rearrangements, Ahal promotes the N-terminal dimerization of Hsp90
(Koulov et al. 2010; Retzlaff et al. 2010). How Ahal is released from Hsp90 is
still under discussion. Possibly, the affinity of Ahal for Hsp90 changes throughout
the different binding modes in which Ahal engages with Hsp90. Additionally,
phosphorylation of Ahal by c-Abl kinase has been found to increase Ahal affinity
for Hsp90 but also poise Ahal for proteasomal degradation (Dunn et al. 2015). The
association of p23 and ATP aids in displacing Ahal from Hsp90, yet whether a
ternary Hsp90:Ahal:p23 complex is possible has remained controversial (Harst et al.
2005; Sun et al. 2012; Li et al. 2013). In this context, also the competition of other
co-chaperones with Ahal for Hsp90 binding may play a role in releasing Ahal, yet
how this is regulated remains unclear (Woodford et al. 2016, 2017). Dynamic,
secondary contacts of the p23 tail in the Hsp90 MD (Fig. 6.2) point toward
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Fig. 6.5 p23 and Ahal affect the Hsp90 cycle in opposite ways. A schematic model of the Hsp90
chaperone cycle is shown. Clients are recruited from the Hsp70 system via Hop. Binding of Ahal
and PPIases (not shown) contributes to the release of Hop and Hsp70. The possible release of clients
by Ahal is indicated by a red question mark and semi-transparent GR. In this case, Ahal may help
to free Hsp90 from clients that are trapped in unproductive folding pathways. Binding of Ahal to
Hsp90 promotes the closing of the Hsp90 dimers. The conformational dynamics of the Ahal-CTD
is visualized as transparent alternative conformations. Subsequently, p23 aids in displacing Ahal
from Hsp90 and leads to a stabilized Hsp90:client:p23 client complex. After release of p23 and ATP
hydrolysis, the mature client gets released, and Hsp90 transitions back into its open state

competition between p23 and Ahal for Hsp90 binding (Biebl et al. 2021). Inhibition
of the Hsp90 ATPase by p23 prolongs the completely closed state and the binding of
clients to Hsp90 (Johnson and Toft 1995; Dittmar et al. 1997; Biebl et al. 2020;
Noddings et al. 2020). To finish the cycle, ATP is hydrolyzed, ADP is released, and
Hsp90 opens for another cycle.
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Conclusion

p23 and Ahal have opposing functions including the important regulation of the
dwell time of clients on Hsp90. Whereas p23 prolongs the binding, Ahal reduces the
time a client is bound to Hsp90, seemingly competing with client binding at least in
some cases. How these opposing effects integrate in the physiological environment
to ensure efficient client maturation is still under investigation. It is not clear if the
sequential action of Ahal and p23 in the Hsp90 cycle observed in vitro is function-
ally important in the cellular environment. The cellular concentration ratio of p23
and Ahal to Hsp90 in HeLa cells is about 1 (Hsp90) to 1/7 (p23) and 1/35 (Ahal)
(Finka and Goloubinoff 2013), suggesting that binding of p23 to an Hsp90:client
complex is more likely than the binding of Ahal and the majority of Hsp90 cycles
will take place in the absence of Ahal. This suggests that a sequential action of p23
and Ahal is not generally necessary for the conformational cycle of Hsp90. More-
over, current evidence indicates that the acceleration of the Hsp90 ATPase cycle by
promoting progression to the closed-2 state is not the only function of Ahal. The
competition of Ahal with client proteins for Hsp90 binding as well as the apparent
inhibition of the maturation of some clients by Ahal would agree with a model of
low basal clearing function of Ahal that frees Hsp90 from clients, yet the relevance
of this proposed function and how this connects to the ATPase regulation by Ahal is
unknown. The presence of Ahal and Hchl as two structurally and functionally
related homologs in yeast which form a genetic module and the emergence of a post-
translational modification in humans that phenocopies the Hchl function further
indicate the importance of the action of Ahal and Hchl for the Hsp90 machinery.
Future research will have to show how Ahal and Hchl1 in yeast or the phenocopying
post-translational modification in humans cooperate to enhance client maturation
and how the clearing of clients from Hsp90 is connected to the ATPase stimulating
function of Ahal.

The discoveries made by many laboratories on the structure and function of p23
and Ahal over the years have shown that the conformational cycle of Hsp90 is set up
in a way that allows modulation at different steps by these co-chaperones and
uncovered their intricate mechanisms. At the same time, the novel insight also
revealed important questions on the mechanisms of action. Addressing these will
further reveal the gearings of the complex Hsp90 machinery and how it exerts its
central role in conformationally regulating proteostasis in the cytosol of eukaryotic
cells.
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